Схема электрическая подключения (Э5) — Студопедия.Нет

Этот тип схем показывает внешние подключения изделия. На схеме размещается изображение изделия, его входные и выходные элементы (соединители, зажимы т. п.) и подводимые к ним концы проводов и кабелей внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей, адреса).

На схеме изделия и их составные части изображают в виде прямоугольников, а входные и выходные элементы (соединители) – в виде УГО.

Допускается изображать изделия и входные/выходные элементы в виде упрощенных очертаний.

Входные и выходные элементы внутри графического обозначения изделия размещают в соответствии с их действительным расположением в изделии и указывают их позиционное обозначение, присвоенное им на принципиальной схеме изделия.

Вводные элементы (сальники, гермовводы, проходные изоляторы), через которые проходят провода или кабели, изображают в виде УГО, как и на схемах соединений (см. рис. 4.9).

На схеме рекомендуется указывать обозначения входных, выходных или выводных элементов, нанесенные на изделие. Если обозначения этих элементов в конструкции изделия не указаны, то допускается условно присваивать им обозначения на схеме. Присвоенные обозначения повторяют в соответствующей конструкторской документации, помещая на поле схемы необходимые пояснения.

Разрешается около УГО соединителей указывать их наименования или обозначения документов, на основании которых они применены.

Провода и кабели на схеме показывают отдельными линиями.

На схеме допускается указывать марки и сечения проводов, их расцветку, марки кабелей, количество и занятость жил, их сечение. Если для этого используются условные обозначения, они должны быть расшифрованы на поле схемы.

 

Схема электрическая общая (Э6)

На схеме изображают устройства и элементы, входящие в комплекс, а также соединяющие их провода, жгуты и кабели. Устройства и элементы изображают в виде прямоугольников.

Допускается изображать элементы в виде УГО или упрощенных внешних очертаний, а устройства – в виде упрощенных внешних очертаний. Расположение графических обозначений на схеме должно примерно соответствовать действительному расположению устройств и элементов в изделии.

Если действительное размещение устройств и их элементов неизвестно, то графические обозначения устройств и элементов располагают с учетом простоты и наглядности изображения электрических соединений между ними.

Около изображения каждого устройства и элемента показывают его наименование, тип или обозначение документа, на основании которого они приведены.

В случае большого количества устройств и элементов их соединения записывают в перечень элементов с присвоением позиционных обозначений, которые проставляют рядом с графическими обозначениями.

Устройства и элементы, сгруппированные в посты или помещения, рекомендуется записывать по постам или помещениям.

Входные, выходные и вводные элементы изображают на схеме в виде УГО, установленных в стандартах ЕСКД с учетом их действительного расположения внутри устройств.

Допускается не учитывать действительное размещение элементов в изделии, если оно снижает наглядность изображения электрических соединений в сложных схемах, а заменять его соответствующим пояснением на поле схемы.

Проходные изоляторы, гермовводы, сальники изображают в виде УГО, как и на схемах соединений (см. рис. 4.9).

Разрешается взамен УГО входных и выходных элементов помещать таблицы с указанием подключения контактов (см. рис. 4.5), как и в схемах соединений.

На схеме указывают обозначения входных, выходных и вводных элементов, нанесенные на изделие. Если в конструкции изде­лия обозначения элементов не указаны, то им условно присваивают обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы помещают необходимые пояснения.

Допускается размещать обозначения документов соединителей с простановкой количества контактов на полках линий-выносок.

Провода жгуты и кабели показывают отдельными линиями и обозначают порядковыми номерами в пределах изделия. Разрешается сквозная нумерация в пределах жгута, кабеля, если провода, входящие в жгуты, пронумерованы в пределах каждого жгута, кабеля. Номера проводов проставляют около концов их изображений. Короткие соединители допускается нумеровать около середины изображения.

Номера кабелей проставляют в окружностях, помещенных в разрывах их изображений, а номера жгутов – на полках линий-выносок.

Если на схеме принципиальной электрическим цепям присвоены обозначения в соответствии с ГОСТ 2.709-89, то одножильным проводам, жилам кабелей и проводам жгутов присваивают те же обозначения, что и в схемах соединений.

На схеме изделия, в состав которого входит несколько комплексов, одножильные провода, кабели и жгуты нумеруют в пределах каждого комплекса. В этом случае буквенно-цифровое обозначение, устанавливающее принадлежность их к определенному комплексу (функциональной цепи), проставляют перед номером через знак дефис. Обозначение кабеля при этом в окружности не вписывают.

Около изображений одножильных проводов и кабелей указывают марку, сечение, количество жил кабеля, иногда расцветку, а для проводов, кабелей и жгутов, изготовленных по чертежам, – обозначение основного конструкторского документа.

При большом количестве соединений эти сведения рекомендуется записывать в перечень. Форма таблицы перечня проводов, жгутов и кабелей приведена на рис. 4.11.

 

 

Рис. 4.11. Форма таблицы перечня жгутов и кабелей

 

Перечень помещают на первом листе схемы или выполняют в виде последующих листов. На первом листе схемы перечень рекомендуется располагать над основной надписью на расстоянии от нее не менее 12 мм.

В графах перечня указывают следующие данные:

 в графе «Обозначение провода, жгута, кабеля» – буквенно-циф­ро­вое обозначение провода, кабеля, жгута, указанного на схеме;

 в графе «Обозначение» – обозначение основного конструкторского документа для провода, кабеля, жгута, которые будут изготовлены по чертежам;

 в графе «Данные провода, жгута, кабеля» – обозначение марки, сечения, количество жил кабеля и расцветки при необходимости;

 в графе «Примечание» – кабели, поставляемые с комплексом или прокладываемые при его монтаже.

Допускается не вносить в перечень кабели, прокладываемые при монтаже изделия.

Общую схему рекомендуется выполнять на одном листе. Если схема сложная, и её невозможно разместить на одном листе, то на первом листе вычерчивают изделие в целом, изображая посты и помещения контурами очертаний со связями между ними. Внутри очертаний постов и помещений изображают только те устройства и элементы, к которым подводят провода и кабели, соединяющие посты или помещения.

На последующих листах вычерчивают схемы отдельных постов или помещений. Если в состав изделия входит несколько комплексов, то общую схему каждого комплекса выполняют на отдельном листе.

 

Схема расположения (Э7)

Схема расположения определяет относительное расположение составных частей изделия, а при необходимости, также жгутов, проводов, кабелей (рис. 4.12). На схеме изображают составные части изделия и при необходимости связи между ними, а также конструкцию, помещение или местность, на которой эти части расположены. Составные части изделия изображают в виде упрощенных внешних очертаний и/или УГО, которые располагают в соответствии с действительным размещением частей изделия в конструкции или на местности.

 

 

Рис. 4.12. 3D-модель расположения компонентов

Провода, жгуты и кабели изображают в виде отдельных линий или упрощенных внешних очертаний.

Около изображений устройств и элементов помещают их наименование и типы и/или обозначение документа, на основании которого они применены.

При большом количестве составных частей изделия эти сведения помещают в перечень элементов с присвоением позиционных обозначений в соответствии с принципиальной схемой. Схемы расположения могут быть выполнены на разрезах конструкций, разрезах или планах зданий и на их наглядных изображениях. В автоматизированном выполнении схемы расположения трехмерная модель изделия и его составных частей является предпочтительной.

 

 

studopedia.net

Схемы электрические соединений. Таблицы соединений

ИНЖИНИРИНГ ЗЛЕКТРОПРИВОДОВ

Схема соединений показывает соединения составных частей изделия меж­ду собой и определяет провода, жгуты, кабели, которыми они осуществляют­ся, а также места их присоединения и ввода (зажимы, соединители). На схеме соединений должны быть изображены все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (разъемы, платы, зажимы и т. п.), а также соединения между устройствами и элементами.

Элементы и устройства на схеме соединений изображают в виде их вне­шних очертаний, прямоугольников или условных графических обозначений, а входные и выходные элементы — в виде условных графических обозначений или таблиц. Вводные элементы, через которые проходят провода, жгуты и кабели, изображают в виде условных графических обозначений, установлен­ных стандартами ЕСКД.

Расположение графических обозначений устройств и элементов на схеме соединений должно примерно соответствовать их действительному размеще­нию в изделии, а расположение входных и выходных элементов внутри уст­ройства — действительному размещению их в устройстве. При этом около графических обозначений устройств указывают позиционные обозначения, присвоенные им на принципиальной схеме. Допускается также указывать наи­менование, тип, основные параметры элементов и устройств.

На схеме соединений следует указывать обозначения выводов (контактов) элементов и устройств, нанесенные на изделие или установленные в доку­ментации на них. При изображении разъемов допускается применять услов­ные графические обозначения, не показывающие отдельные контакты, при

5

О

L/1

Инв. № подп.

Подп. и дата

Взам. Инв. №

Инв. N° дубл.

Подп. и дата

С

О

X

CD

2 p

P

CO 4

О

2 p

4

К

U

3 ■o

0

CO №

1 X О

0

2

1 о —1 о to СО

5 - і №

4

Пі

Il V

А: о

To Пі

Я н •а о я ■о s

Со О to №

Справ. Ns

Пере, примен.

Со О о о о

CD СМ

А> см

729.26.000ЭЗ

Гпавный привод. Щиты 12АВ1, 12АВ2.

Схема электрическая принципиальная

Лит.

Масса

Масштаб

Изм.

Лист

№ докум.

Подп.

Дата

Разраб.

Дюбарева

Пров.

Зементов

Т. контр.

Лист 1 | Листов 2

ОАО

"КО ВНИИМЕТМАШ"

Н. кон тр.

Алексеенко

Утв.

Зементов

0 с

А

Tri

1 X

Рис. 5.7. Схема системы автоматизации (см. также с. 272 и 273)

Питание терминала NT1

Гпо шпТ

LU1

3LU2

![==] п 121

1N

1 2

31N

31N N21

| ' ' XT^5j

N21

LU

S82K-05024 1

I ХТ1 6

Питание базовой панели контроллера

Работа контроллера

Разрешение управления клапаном

101

Внутреннее питание=24 В ВЫходов

Внутреннее питание=24 В

Контроль питания -220 В на входе ИБП

Контроль питания -220 В входов

Контроль питания =24 В PS1

Контроль питания =24 В PS2

I кцу

220В-3 I 220В-3 ГП

ХТ5 П I 220В-4 j 220В

Работа от резервной схемы

KV-BLO 3BL | | N

5__ ^ 6

I О

ХТ1 58

3L1-2

N

Работа от новой схемы

Питание дискретных входов -220 В 50 Гц

+24 В

Питание внешних входов =24 В

-24 В

Питание=220 В

Вентиляция шкафа

Освещение шкафа

РОЗ.2001.300.ЭЗ

ШУВН.

Схема электрическая принципиальная

Лит.

Масса

Масштаб

Изм.

Лист

Ns докум.

Подп.

Дата

Разраб.

Иванов

Пров.

Сидоров

Т. контр.

Петров

Лист 1 | Листов 7

ШКАФ УПРАВЛЕНИЯ ВОЗДУХОНАГРЕВАТЕЛЯМИ

ООО "НПФ "Ракурс" г. Санкт-Петербург

Н. кон тр.

Утв.

3G8F5 CLK21-E

BDL

BD L

BD Н

BD Н

SHLD

SHLD

Рис. 5.7. Окончание

Сеть Controller Link

3G8F5 CLK21-E

BD L

BD L

BD H

BD H

SHLD

SHLD

Unit 1

Node 03

TerSW

-On

A08

CS1W CLK21

BD L

BD H

SHLD

Node 4 I [ TerSW-Off I

3G8F5 CLK21-E

BD L

BD L

BD H

BD H

SHLD

SHLD

Unit 0

Node 03

TerSW

=On

A09

CS1W CLK21

- BD L

BD H

SHLD

TerSW-Off ~| Сервер

3G8F5 CLK21-E

BDL

BDL

BD H

BD H

SHLD

SHLD

Переключатель

Положение

Комментарий

A08

Unit No.

1

Номер модуля

Node No.

3

Номер узла

TerSW

On

Терминатор включен

SW1:1

Off

Скорость передачи

SW1:2

Off

SW1:3

Off

Не используются

SW1:4

Off

A09

Unit No.

0

Номер модуля

Node No.

3

Номер узпа

TerSW

On

Терминатор включен

SW1:1

Off

Скорость передачи

SW1:2

Off

SW1:3

Off

Не используются

SW1:4

Off

РОЗ.2001.300.ЭЗ

Лист

Изм.

Лист

№ докум.

Подп.

Дата

6

Рис. 5.8. Схема соединений силового щита

Х36814

- ХТ2:15(лист 3)

I ^ 2

Т ■ Монтаж цепей L31, L32, L33 выполнить проводом МГШВ сечением 6 мм

---- • Монтаж силовых цепей выполнить проводом МГШВ сечением 1,5 мм2

" 2

Г ■ Монтаж цепей управления выполнить проводом МГШВ сечением 0,5 мм

■ХТ2:19(пист 3)

Р36.1999.440.Э4

Силовой щит N°4 управления разгрузочным транспортером.

Схема электрическая соединений

Лит.

Масса

Масштаб

Изм.

Пист

№ докум.

Подп.

Дата

Разраб.

Розанов

Пров.

Петров

Т. контр.

Иванов

Лист 1 | Листов 3

ООО "НПФ "Ракурс" г. Санкт-Петербург

Н. контр.

Утв.

Сидоров

Этом сведения о подключении контактов приводят в таблице, размещаемой около разъема или на свободном поле схемы.

При использовании многоконтактных элементов допускается указывать сведения о присоединении проводов и жил кабеля к контактам одним из следующих способов:

Многоконтактное изделие изображают в виде прямоугольника, внутри ко­торого условно показывают контакты и провода или жилы кабеля, при этом концы линий направляют в сторону соответствующего жгута или кабеля и обозначают;

Около изображения многоконтактного устройства помещают таблицу с ука­занием подключения контактов.

Провода, группы проводов, жгуты и кабели показывают на схеме соедине­ний отдельными линиями. Для упрощения допускается сливать отдельные про­вода, идущие на схеме в одном направлении, в общую линию, однако при подходе к контактам каждый провод должен быть выделен отдельной линией. Провода, жгуты и кабели обозначают порядковыми номерами в пределах из­делия отдельно для каждого вида проводников.

В качестве примера на рис. 5.8 дан лист 1 схемы соединений силового щита, выполняемой на трех листах.

Если на принципиальной схеме электрическим цепям были присвоены обозначения, то на схеме соединений всем проводам и жилам кабелей долж­ны быть присвоены те же обозначения, при этом для удобства чтения схемы рекомендуется нумеровать по порядку отдельные участки в пределах цепи, отделяя их от номера самой цепи дефисом.

Допускается линии, изображающие провода, группы проводов, жгуты и кабели, не проводить или обрывать около мест присоединения, при этом око­ло обрыва линии связи и места присоединения следует указывать адреса при­соединений (рис. 5.9).

Конт.

Номер провода

Адрес присоединения

1

3

=А1-Х1:2

2

1

-К1:3

3

4

- К2:1

A3

Блок 5

Цепь

Конт.

Адрес

Корпус

1

=А1 - Х4:2

+150 В

2

=А1 - Х7:5

-27 В

3

=А1-Х4:3

-12 В

4

=А1-Х3:2

Рис. 5.9. Варианты указания адресов присоединений 276

На схеме соединений должны быть указаны: для проводов — марка, пло­щадь сечения, при необходимости расцветка; для кабелей — марка, число и площадь сечения жил, а также число занятых жил, которое размещают в пря­моугольнике справа от данных кабеля. Если данные о проводах и кабелях ука­зывают около изображающих их линий, допускается обозначения этим про­водам и кабелям не присваивать. Одинаковые данные (марки, сечения) для всех или большинства проводов рекомендуется указывать на поле схемы.

Сведения о проводах и присоединениях указывают в таблице, размещае­мой на поле первого листа схемы, как правило, над основной надписью на расстоянии не менее 12 мм от нее. Продолжение этой таблицы при необходи­мости помещают слева от основной надписи, повторяя головку таблицы. Та­кая таблица может выполняться в виде самостоятельного документа на фор­мате А4 с основной надписью по ГОСТ 2.104—68 (формы 2 и 2а), при этом ей присваивают наименование «Таблица соединений». Варианты форм таблицы соединений представлены на рис. 5.10. В таблице соединений указывают:

В графе Обозначение провода — обозначение провода, жилы кабеля; в графах Откуда идет, Куда поступает — условные буквенно-цифровые обозначения соединяемых элементов или устройств;

В графе Соединения — условные буквенно-цифровые обозначения соединя­емых элементов или устройств, разделяя их запятой;

В графе Данные провода для провода — марку, сечение и при необходимо­сти расцветку, а для кабеля — марку, сечение и число жил; в графе Примечание — дополнительные данные.

При выполнении соединений жгутами проводов или жилами кабелей пе­ред записью проводов и жил в таблицу соединений дают заголовок, например

20

Обозна­чение провода

30

Данные провода

Куда поступает

Е

00

185

■ .і..

Обозна­чение провода

Соединения

Данные провода

Примечание

185

Рис. 5.10. Две формы таблицы соединений

msd.com.ua

Нераскрытая тема: схемы соединений

Виталий Кочергин

Этап первый

Этап второй

Этап третий

Есть в нашем царстве-государстве такой документ, как «Схема электрическая соединений», обозначаемая как «Э4». И я на своем опыте знаю, сколько времени тратит проектировщик на приведение в соответствие схемы принципиальной и схемы соединений, часами обводя цепи маркерами при проверке документации, находя ошибки и исправляя документацию, а тут еще и заказчик постоянно подбрасывает изменения. И опять возникает то самое «вчера» — это срок, когда надо было сдать документацию в производство.

Так почему же этот документ так не любят «буржуйские» САПР в области электротехники? Да все просто! У них нет аналогичного документа — он им просто не нужен. Все, что необходимо, показывается на схеме электрической принципиальной.

В чем же различие «нашей» и «их» принципиальной схемы? Есть на принципиальной схеме такой символ, как точка соединения. Узнать что-то еще из этого символа, кроме того, что соединение существует, невозможно. На рис. 1 — та самая наша ГОСТовская точка. Есть ли возможность определить реальный путь прохождения проводника от аппарата к аппарату? Нет.

Рис. 1. Точка соединения

А теперь посмотрим на то же самое соединение на рис. 2. Возникает ли в этом случае вопрос о реальном прохождении проводника от аппарата к аппарату? Нет — все ясно и понятно. Но, к сожалению, в соответствии с нашими нормативными документами, схема принципиальная с применением этого символа не пройдет заслон нормоконтроля.

Рис. 2. Символ соединения

Вот здесь и выручает «Схема электрическая соединений», поскольку «Таблицы соединений» в силу некоторых причин, связанных с квалификацией монтажников, многие предприятия не используют.

Часто бывая на различных предприятиях нашей страны, я вынужден был постоянно отвечать на вопрос, можно ли создать «Схему электрическую соединений» с помощью AutoCAD Electrica l. Постараюсь ответить на него этой статьей.

В функционал AutoCAD Electrical заложена возможность создания схемы соединений, но описание этого процесса в документации чересчур размыто. Вот почему в статье я всего лишь постараюсь аккумулировать эту информацию.

Для рассмотрения процесса создания схемы соединений возьмем простейшую схему пуска электродвигателя (рис. 3). Все символы для формирования принципиальной схемы взяты из стандартной библиотеки AutoCAD Electrical, а производителем всех аппаратов у нас будет фирма АВ (Allen-Bradley).

Рис. 3. Схема пуска электродвигателя

По причине, описанной в начале статьи, в AutoCAD Electrical не предусмотрены символы для схемы электрической соединений (далее — монтажный символ). Вот давайте и поработаем над этим упущением и сделаем все сами. Разобьем, условно говоря, создание монтажных символов на три этапа.

Этап первый

Рассмотрим пример создания монтажного символа контактора для схемы соединений КМ1. Смотрим ГОСТ 2.702-75 «Правила выполнения электрических схем», который дает следующие рекомендации по созданию монтажных символов для схем соединений: «При изображении элементов в виде прямоугольников или упрощенных внешних очертаний допускается внутри них помещать условные графические обозначения элементов».

Как советуют, так и сделаем. Чтобы не отрисовывать заново графику монтажного символа контактора, возьмем его из принципиальной схемы, предварительно «разбив» в простую графику (рис. 4).

Рис. 4. Монтажный символ контактора

С помощью инструмента «Конструктор графических образов» (рис. 5) создаем компоновочный образ.

Для этого, как минимум, нужно использовать один атрибут P_TAG1, которого вполне достаточно, чтобы система воспринимала символ как компоновочный образ. Я же добавил еще атрибуты DESK1 (первая строка описания), MFG (производитель) и CAT (номер заказа по каталогу). Опять же, это не аксиома, а мое видение: обязательным является только атрибут P_TAG1, а остальное — на усмотрение проектировщика.

Рис. 5. Конструктор графических образов

В чем же отличие компоновочного образа от монтажного символа с точки зрения AutoCAD Electrical? В наличии точек подключения, установленных с помощью пункта «Конструктор графических образов» -> «Номера клемм/проводов». Именно в этих точках будет формироваться информация о подключении к этому элементу (рис. 6).

Рис. 6. Расстановка точек подключения

Для нашего монтажного символа контактора необходимо создать пять верхних и пять нижних точек подключения, так как этот монтажный символ расположен горизонтально. После «расстановки клемм/проводов» наш монтажный символ контактора можно сохранять как внешний блок — командой «ПБЛОК» в том же окне «Конструктор графических образов».

Точно по такому же алгоритму создаем остальные монтажные элементы: автомат, предохранитель, кнопки. На этом заканчивается первый этап создания монтажных символов.

Этап второй

После создания монтажных символов необходимо связать их с базой данных производителей — для автоматической подстановки символа в схему электрическую соединений. Здесь возникает проблема, поскольку через базу уже привязан компоновочный образ. Итак, дилемма: или монтажный символ, или компоновочный образ, или (в корне неправильный вариант) — выбор вручную.

Эта проблема решается очень просто: создаем в базе данных компоновочных образов таблицы производителей с суффиксом «_WD». Например, если имеется таблица «AB» — создаем « AB_ WD» (рис. 7). Запись в базу данных информации о монтажных символах осуществляется по тем же правилам, что и для компоновочных образов.

Рис. 7. Редактирование таблиц компоновочных образов по производителям

Чтобы самому не путаться, я и при создании папок для хранения монтажных символов руководствовался тем же правилом (то есть создавал папки с суффиксом «_WD»). В остальном же придерживался структуры и наименования файлов, принятой в каталоге производителя (рис. 8).

Рис. 8. Представление записи монтажных символов в базе данных компоновочных образов

После создания структуры хранения блоков монтажных символов можно сказать, что второй этап закончился.

Этап третий

Переходим к третьему этапу — к расстановке монтажных символов на схеме соединений. ГОСТ 2.702-75 «Правила выполнения электрических схем» опять же рекомендует расставлять монтажные символы в соответствии с реальной установкой в изделии. С помощью инструмента «Вставить компоновочный образ (список для схем)» формируем список аппаратов, используемых в принципиальной схеме (рис. 9).

Рис. 9. Компоненты схемы

В поле «Автоматический поиск компоновочных образов» из списка выбираем «Применять таблицы монтажных схем», поскольку именно при выборе этого параметра AutoCAD Electric al обращается к таблицам с суффиксом «_WD». Далее, выбирая тот или иной аппарат (либо группу аппаратов) из сформированного списка, расставляем их на схеме соединений.

Расставив все символы на монтажной схеме, в качестве последнего штриха запускаем на выполнение команду «Адресация проводов на компоновке». В результате получаем информацию о подключении каждого аппарата (рис. 10). Если же к аппарату подходят два проводника или более, то данные о подключении будут перечислены через запятую или в две строки.

Рис. 10. Монтажные символы схемы соединений с зеркальным описанием точек подключений

Вот, пожалуй, и все, что мне хотелось рассказать о создании схемы электрической соединений с помощью AutoCAD Electrical. Думаю, я сумел показать, что процесс этот несложен, да и времени занимает немного.

Приглашаю также всех желающих на тест-драйвы по AutoC AD Electrical, проводимые нашей фирмой. Более подробную информацию и расписание тест-драйвов вы можете посмотреть на нашем сайте www.idtsoft.ru.


Виталий Кочергин

Главный специалист ООО «АйДиТи». В 1994 году окончил Пензенский государственный университет по специальности «Конструирование и производство ЭВС», имеет степень магистра по электроэнергетике. Обладает 12-летним опытом проектных работ — от разработки печатных плат до проектирования систем автоматизированного управления на базе ПЛК.

САПР и графика 6`2008

sapr.ru

Главные схемы электрических соединений подстанций | Справка

В современных условиях для обеспечения надежности и экономичности электроснабжения потребителей необходима совместная работа большого числа электростанций, подстанций и связывающих их электрических сетей разных напряжений. Однако при этом электрические схемы станций и подстанций должны обеспечивать соединение их отдельных элементов достаточно просто, надежно и удобно. В условиях эксплуатации подстанций возникает необходимость изменения схемы при выводе оборудования в ремонт, ликвидации аварий. Чтобы можно было производить эти изменения электрических схем, их элементы — трансформаторы, шины распределительных устройств (РУ), воздушные и кабельные линии — соединяют друг с другом посредством коммутационных аппаратов.
Главной схемой электрических соединений или схемой первичной коммутации называется схема электрических соединений основного электрооборудования, к которому относятся трансформаторы силовые и измерительные, реакторы, коммутационные аппараты и соединяющие их проводники. Для главных схем подстанций определяющими факторами являются местоположение подстанции в энергосистеме и ее назначение, мощность, перерабатываемая на подстанции и проходящая через нее транзитом, количество и мощность трансформаторов и отходящих линий, уровни их напряжений, категории потребителей, которые питаются по этим линиям.
По способу начертания главные схемы подстанций подразделяются на многолинейные, на которых показываются все фазы электроустановки и нулевой провод, и однолинейные, на которых изображается только одна фаза, остальные ввиду их аналогичности не показываются. Графическое изображение однолинейных схем значительно проще, повышается наглядность и запоминаемость таких схем. Однолинейные схемы составляют для всей электроустановки, те участки, схемы, где по фазам есть отличия имеют многолинейное изображение.
Выбранная схема при выполнении электроустановки должна обеспечивать ряд условий:
обеспечивать надежность электроснабжения потребителей;
осуществлять эксплуатацию с минимальными затратами средств и расходом материалов;
обеспечивать безопасность и удобство обслуживания;
исключать возможность ошибочных операций персоналом в процессе срочных переключений.
Выполнение последнего условия затрудняется при очень сложной схеме электроустановки, однако значительное упрощение схемы может вызвать трудности для выполнения первого условия в отношении надежности электроснабжения. Железнодорожные потребители в основном относятся к первой и второй категориям, и для их питания используют чаще трансформаторные подстанции с двумя трансформаторами, один из которых может быть резервным. Для электроснабжения потребителей третьей категории применяют схемы однотрансформаторных подстанций.

Рис. 1. Схема однотрансформаторной подстанции с первичным напряжением 10 кВ
Однолинейная схема однотрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ. Подстанция (рис. 1) получает питание по воздушной линии 10 кВ. На вводе подстанции W установлен разъединитель QS и предохранитель FUX, который защищает трансформатор Т от токов КЗ, длительных перегрузок, опасных для трансформатора. От атмосферных перенапряжений, набегающих на подстанцию по воздушной линии, она защищается разрядником FV. РУ-0,4 кВ имеет одинарную систему сборных шин, на которую напряжение подается от трансформатора Т по вводу. На вводе установлен рубильник S{, предохранитель FU2 и трансформатор тока ТА. Так как трансформаторы тока могут устанавливаться не на всех фазах, то эта часть схемы показана в трехфазном изображении во избежание неясностей. Нулевой провод от нейтрали трансформатора до нейтральной шины N показывается отдельно. От сборных шин 0,4 кВ отходят линии потребителей, на которых установлены рубильники (пакетные выключатели) S2-S5 и предохранители FU1-FU6. Конструкция такой подстанции показана на рис. Как видно на рис. 1, схема подстанции очень проста, ее элементы не резервируются, и в случае отказа или повреждения любого из них часть потребителей или все (при повреждении трансформатора) остаются без электроэнергии. Такой недостаток в значительной степени устраняется при использовании подстанций с двумя трансформаторами.
Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 10 кВ и вторичным напряжением 0,4 кВ представлена на рис. 2. В РУ-10 кВ подстанции принята одинарная секционированная на две секции двумя разъединителями QS1 и QS4 система сборных шин. Это позволяет работать на одной секции без отключения другой. Вводы подстанции W2 и IVр которые снабжают электроэнергией потребители второй и третьей категорий, для удешевления и упрощения обслуживания могут выполняться на выключателях нагрузки QW1 и QW4 с заземляющими ножами. На отходящих линиях Wt и W4 и присоединениях понижающих трансформаторов устанавливают выключатели нагрузки QWV Q W2, Q W5, QWb в комплекте с предохранителями FU2, FUV FU4, FUy При этом предохранители целесообразно устанавливать перед выключателями нагрузки, считая по направлению передачи электроэнергии. На вводах применяются выключатели нагрузки ВНЗ- 16 с заземляющими ножами, на отходящих линиях и трансформаторах — ВНПЗ-17. Для учета электроэнергии, отпускаемой потребителям по линиях W] и W4, предусмотрены счетчики, подключаемые к трансформаторам тока ТА{ и ТА , и к трансформаторам напряжения TV] и TV2, которые подключаются к шинам через разъединители QS2 и QSs с заземляющими ножами типа РВЗ-10. Пунктиром показана блокировочная связь разъединителей и их заземляющих ножей, которая не позволяет включать разъединитель при включенном заземляющем ноже и включать заземляющий нож при включенном разъединителе. Защищаются от токов КЗ 7У, и TV2 предохранителями FUl и FU6. Заземление каждой секции сборных шин предусматривается заземляющими разъединителями QSX и QSb типа РВ-10.

Рис. 2. Схема двухтрансформаторной подстанции с первичным напряжением 10 кВ


Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Рис. 3. Схема двухтрансформаторной подстанции с первичным напряжением 35 кВ

Пой наличии воздушных линий 10 кВ должна быть предусмотрена установка разрядников РВО-10, подключаемых к секциям шин через разъединители QS2 и QSy распределительное устройство 0,4 кВ выполняется из щитов серии Щ0-70, которые в зависимости от назначения комплектуются различными аппаратами, рассчитанными на широкий диапазон токов. В РУ-0,4 кВ принята одинарная секционированная автоматическим выключателем SF2 и рубильниками S4 и S5 на две секции система сборных шин. Питание каждой секции осуществляется от своего трансформатора Г, и Т2, подключенного к шинам через автоматические выключатели 5F, и SF3 и рубильники S2 и Sr К трансформаторам тока ТА4 и Т А1 подключаются амперметры и счетчики активной и реактивной энергии. При раздельной работе секций шин предусмотрено автоматическое включение резерва [ABP)., которое осуществляется включением межсекционного автоматического выключателя SF2 (нормально он отключен) при отключении трансформатора Г, или Т2. При отсутствии АВР секционирование выполняют рубильниками. Разрядники F Vx и F V2 типа РВН-0,5 для защиты изоляции трансформаторов и оборудования РУ-0,4 кВ от перенапряжения устанавливают только при наличии воздушных линий 0,4 кВ. В цепи каждого присоединения линий устанавливаются рубильники Sv Sy Sb, Sg и предохранители F U1 -FU]0 (возможно применение автоматических выключателей). К трансформаторам тока ТАЪ, TAS, ТА6, ТАН подключаются амперметры и, при необходимости, счетчики электроэнергии. Питание собственных нужд СН подстанции выполняется от специальной шины, на которую электроэнергия поступает по вводам 0,4 кВ от трансформаторов 7, и Т2.

Однолинейная схема двухтрансформаторной подстанции с первичным напряжением 35 кВ представлена на рис. 3. Электроэнергия подается на подстанцию под двум вводам W2 и W3 от районной или тяговой подстанции и поступает на одинарную, секционированную выключателем Qs систему сборных шин РУ-35 кВ. На каждом вводе установлены многообъемные масляные выключатели q2 и q1 типа С-35М-630 со встроенными трансформаторами тока ТА4н ТА6типа ТВ-35. Для подключения счетчиков денежного расчета применяются трансформаторы тока ТА3 и ТА5 (комплект из Двух трансформаторов имеет один номер) типа ТФЗМ-35А. К линиям W2 и W" /> выключатели Q2 и Q" /> подключаются линейными разъединителями с двумя заземляющими ножами QS2 и QS3 типа РНДЗ-2-35 (РДЭ-2-35), а к секциям шин — шинными разъединителями QS6 и QS1 типа РНДЭ-1-35 (РДЗ-1-35). Секционный выключатель Q5 подключается к секциям шин с помощью секционных разъединителей QS9 и QS[Q типа РНДЗ-1-35 (РДЗ-1-35). Разъединители с двух сторон выключателя ввода или секционного позволяют обеспечить безопасность производства ремонтных работ на выключателях и трансформаторах тока.
В отдельных случаях от РУ-35 кВ получают питание смежные подстанции по линиям Wх и W4. Электроэнергия поступает на шины по вводам Wг и Wъ и часть ее транзитом без переработки передается другим подстанциям. На линиях W, и W4 установлено такое же оборудование как и на W 2 и Wъ.
К каждой секции РУ-35 кВ подключается понижающий трансформатор Г, и Т2 через выключатель Q6 и Q1 со встроенными трансформаторами тока ГЛ|0 и ТАи и разъединитель QSn и QSi3 с одним заземляющим ножом, позволяющим отделить выключатель от секции при ремонте.
Трансформаторы напряжения TVlnTV2 типа 3HOM-35 и разрядники FVl и FV2 типа РВС-35 присоединяются к секциям шин через разъединители QS[, и QSW которые имеют заземляющие ножи для заземления TV и FV при ремонте и ножи для заземления секций шин. Понижающие трансформаторы Г, и Т2 могут работать параллельно на шины РУ-10 кВ, раздельно (отключен секционный выключатель Ql2) или поочередно (один в работе, второй в резерве) с возможностью автоматического включения резервного (АВР) трансформатора.
Схема РУ-10 кВ предусматривает использование одинарной секционированной выключателем системы сборных шин. Размещают оборудование РУ в закрытых помещениях или шкафах наружной установки. В обоих случаях используют комплектные устройства, состоящие из шкафов или камер, в которых размещаются выключатели и трансформаторы тока. На рис. 3 приведена схема РУ-10 кВ с выключателями Qs - Qw установленными на выкатных тележках, что позволяет обходиться без разъединителей. На каждом присоединении РУ используются стационарные заземляющие ножи, обеспечивающие безопасность ведения работ внутри шкафов. От шин 10 кВ отходят четыре линии, питающие потребителей. Потребители первой категории для надежного электроснабжения получают питание по двум линиям, отходящим от разных секций шин. При отключении или повреждении одной линии или одной секции потребитель будет получать энергию по другой линии от второй секций. Одиночная линия может быть использована для питания потребителей второй или третьей категории. Питание потребителей первой категории по такой одиночной линии возможно, если имеется резервное питание от другого источника питания. Для питания потребителей собственных нужд: релейной защиты, автоматики, телемеханики, цепей управления и сигнализации, освещения и электрического отопления, подогрева оборудования в зимнее время, освещения, а также проведения ремонтных работ предусмотрена установка двух трансформаторов собственных нужд (ТСН) Г3 и Г4 мощностью 63-160 кВ А. ТСН присоединяется к шинам через выключатели Q^ и Q[(>. Трансформаторы тока ТАХ2 и ТАп используются для подключения релейных защит. Учет энергии, расходуемой на собственные нужды подстанции, ведется со стороны вторичного напряжения ТСН.
К секциям шин РУ-10 кВ присоединяются трансформаторы напряжения Т V3 и Т К4типа НТМИ-10, защищаемые предохранителями FUxhF U2 типа ПКТ-10, и разрядники FV3hFVa типа РВП-10, защищающие изоляцию РУ-10 кВ от перенапряжений. Трансформатор напряжения и разрядник одной секции размещаются на общей выкатной тележке. Секционирование шин выполняется с помощью двух шкафов: в одном установлен секционный выключатель Ql2 с трансформаторами тока ТАХ6; во втором — выдвижной элемент  Т, выполняющий роль разъединителя. При использовании понижающих трансформаторов мощностью до 4000 кВ-А и сравнительно небольшой мощности КЗ при напряжении 35 кВ и реже 110 кВ находят применение схемы с выхлопными предохранителями типа ПВТ.
Однолинейная схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ представлена на рис. 4, а ее конструктивное выполнение -— на рис. 27. От линии электропередачи по вводу Wх электроэнергия напряжением 110 (35) кВ поступает на трансформатор Г, типа ТМН-2500/110, который защищается от токов КЗ предохранителем F £/, типа ПВТ-110 и разрядником F Vx типа РВС-110 от перенапряжений. Разъединитель QS типа РНДЗ-1-110/630 служит для отключения трансформатора Тх на холостом ходу при отключенном выключателе ввода РУ-10 кВ Qx и создания видимого разрыва цепи при ремонте и замене предохранителя FUr На одной фазе ввода W х установлена аппаратура высокочастотной связи, состоящая из заградительного реактора L R, не пропускающего высокочастотные токи связи за пределы линии, и конденсатора С, через который токи связи попадают на приемо-передающую аппаратуру.

Рис. 4. Схема комплектной однотрансформаторной подстанции с первичным напряжением 110 кВ
Нейтраль первичной обмотки трансформатора обычно заземляется разъединителем QS2 типа РНД-35 или заземлитель нейтрали ЗОН-110, при работе системы напряжением 110 кВ с изолированной нейтралью заземление осуществляется через разрядник F V2, состоящий из последовательно соединенных разрядников типа РВС-35 и РВС-15.
РУ-10 кВ имеет одинарную несекционированную систему сборных шин, от которой потребители получают электроэнергию по четырем линиям W2, Wy WA и Ws, на которых установлены выключатели, Qv Q4 и Qs типа ВМП-10 или ВКЭ-10. Для подключения релейных защит, счетчиков электрической энергии и других измерительных приборов на каждой линии и на вводе установлены трансформаторы тока TA1 - ТА3. Питание обмоток напряжения измерительных приборов и реле осуществляется от трансформатора напряжения Т V, подключаемого к сборным шинам через высоковольтный контакт пальцевого типа. Разрядник F V3, защищающий изоляцию оборудования РУ-10 кВ от перенапряжений располагается на одной с трансформатором напряжения TV выкатной тележке. Шины заземляются в процессе ремонтных работ на них стационарным заземляющим ножом QSG, расположенном в высоковольтном шкафу трансформатора напряжения.
Такие подстанции используются для питания потребителей второй и третьей категории. Питание потребителей первой категории может осуществляться от данной подстанции при наличии резервного питания от другого источника. При необходимости питания потребителей первой категории от одной подстанции, на ней необходимо устанавливать не менее двух трансформаторов, подключаемых к питающим линиям напряжением 35-220 кВ с помощью отделителей и короткозамыкателей. В районах с интенсивным гололедообразованием, где работа отделителей и короткозамыкателей недостаточно надежна, они заменяются выключателем.
Однолинейная схема РУ-110 (220) кВ концевой и ответвительной подстанций представлена на рис. 5. Питание на трансформаторы Г, и Т2 поступает от линии электропередачи по вводам Ж, и Wг, на которых установлены разъединители QS1 и QS2 типа РНДЗ-2-110 с дистанционными приводами типа ПДН-1. Между вводами выполняется перемычка с двумя разъединителями QS3 и QS4> QS3 имеет привод ПДН-1, QS4 с ручным приводом ПР-90. На первичной стороне трансформаторов Г, и Т2 установлены разъединители QS5 и QS6 такие же как на вводах, быстродействующие отделители QR\ и QR2, дополненные короткозамыкателями QNS и QNr. Встроенные трансформаторы тока ТА{ и ТАг необходимы для подключения амперметра и релейных защит. Наличие перемычки с разъединителем, имеющим дистанционное управление, позволяет обеспечить питание любого трансформатора по любому вводу или двух трансформаторов по одному вводу. Второй разъединитель перемычки QS4 с ручным приводом используется при ремонте QS3 для создания видимого разрыва цепи, Трансформатор Т2 остается в работе, получая электроэнергию по вводу W2. Разрядники FV1 и FF2 THna РВС-110 защищают изоляцию РУ-110 кВ от перенапряжений.

Рис. 5. Схема РУ-110 кВ концевой и ответвительной подстанций
Однолинейная схема РУ-110 (220) кВ проходной подстанции, включаемой в рассечку линии 110 (220) кВ, показана на рис. 6. РУ-110 кВ имеет ремонтную и рабочую перемычки между вводами. Рабочая перемычка с выключателем Q типа МКП-1 10М со встроенными трансформаторами тока Т А2 типа ТВ-110 и разъединителями QSs и QS6 типа РНДЗ-1-110, необходимыми для ремонта выключателя перемычки, используется для транзита электроэнергии энергосистемы. Разъединители QSi и QS2 ремонтной перемычки нормально отключены, включаются для обеспечения транзита электроэнергии при ремонте рабочей перемычки. К трансформаторам тока Т АХ типа ТФЗМ-110 (220) подключаются приборы и реле, нормально получающие питание от ТА2, при переводе транзита энергии через ремонтную перемычку. Трансформаторы напряжения ТУ, и TV2типа НКФ-110 (220) используются для питания обмоток напряжения измерительных приборов и реле. Схема РУ между рабочей перемычкой и трансформаторами такая же как у рассмотренной выше ответвительной или концевой подстанции.


Рис. 6. Схема РУ-110 кВ проходной подстанции

forca.com.ua

1. СХЕМЫ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ЭЛЕКТРОТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра электрических станций

А.В. Новиков Р.В. Медов

Схемы электрических соединений электростанций и подстанций

Учебное пособие по дисциплине «Подстанции систем электроснабжения»

Печатается по решению редакционно-издательского совета Вятского государственного университета

УДК 621.311(07) Н 731

Рецензенты:

Новиков А.В. Схемы электрических соединений электростанций и подстанций: учебное пособие/ А.В. Новиков , Р.В. Медов. – Киров: Изд-во ВятГУ, 2007 – 50с.

Учебное пособие рекомендовано к использованию в учебном процессе для электротехнических специальностей Вятского государственного университета.

Редактор Е.Г. Козвонина

Подписано в печать

 

Усл.печ.л. 4,9

Бумага офсетная

 

Печать копир Aficio 1022

Заказ №

Тираж 53

Бесплатно

Текст напечатан с оригинала-макета, предоставленного авторами 610000, г. Киров, ул. Московская, 36 Оформление обложки, изготовление – ПРИП ВятГУ

© А.В. Новиков, Р.В. Медов, 2007 Вятский государственный университет, 2007

 

3

 

 

ОГЛАВЛЕНИЕ

 

1.

Схемы электрических соединений ..........................................................................

4

1.1. Одна система сборных шин ...............................................................................

6

1.2. Две системы сборных шин.................................................................................

8

1.3. Одна система сборных шин с обходной СШ ....................................................

9

1.4. Две системы сборных шин с обходной СШ....................................................

11

1.5. Схемы многоугольников ..................................................................................

16

1.6. Схемы «Полуторная» и 4/3 (четыре – третьих) ..............................................

20

1.7. Схема с двумя выключателями на одно присоединение................................

23

1.8. Схемы мостиков ...............................................................................................

26

1.9. Схемы генераторных распределительных устройств.....................................

27

2.

Измерительные трансформаторы на главных схемах электростанций...............

32

3.

Установка заземляющих ножей ............................................................................

44

4.

Высокочастотные заградители ..............................................................................

45

Литература..................................................................................................................

47

4

Схемой электрических соединений называют чертеж, на котором в услов-

ных обозначениях изображено оборудование электроустановки, соединенное в определенной последовательности. Схемы подразделяют на первичные и вторич-

ные.

Первичные схемы называют главными. На них показывают основное высо-

ковольтное оборудование: генераторы, трансформаторы, реакторы, коммутацион-

ные аппараты и др.

На вторичных схемах показывают вторичные обмотки измерительных трансформаторов, подключенные к ним реле и измерительные приборы, а также цепи оперативного управления и сигнализации.

По способу исполнения схемы могут быть одно и трехлинейными.

В энергетике чаще применяют однолинейные схемы, на которых изображе-

но оборудование одной из фаз. При этом имеется в виду, что во всех трех фазах установлено одинаковое оборудование. Если в какой-то части схемы оборудова-

ние отдельных фаз различается, то допускается однолинейную схему дополнить фрагментом трехлинейной (см. рисунок 1.1).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

а)

 

 

 

 

б)

 

в)

 

Рисунок 1.1.

а) линия связи с системой с ВЧ заградителями в крайних фазах;

б) силовой трансформатор с короткозамыкателем в одной фазе;

в) выключатель в КРУ с трансформаторами тока в крайних фазах.

5

При строительстве электроустановок монтажные схемы могут выполняться трехлинейными. Оперативный персонал, обслуживающий действующие электро-

установки, использует однолинейные схемы.

Основным нормативным документом проектировщика являются Нормы технологического проектирования (НТП), при разработке конструкции распреде-

лительного устройства(РУ) следует пользоваться Правилами устройства электро-

установок (ПУЭ).

Большинство схем являются универсальными, т.е. могут применяться как на электростанциях, так и на понижающих подстанциях. Другие предназначены только для подстанций, например схемы мостиков.

Некоторые элементы, используемые в разных схемах, имеют одно и то же назначение. Сборные шины (СШ) применяются в тех случаях, когда число источ-

ников питания не равно числу потребителей, и предназначены для равномерного распределения мощности между ними. Любое подключение к СШ генератора,

трансформатора, реактора, или линии называется присоединением. Отношение числа выключателей NQ к числу присоединенийn характеризует экономичность схемы.

NQ = KÝ n

Чем меньше коэффициент экономичности КЭ , тем экономичнее схема.

СШ могут обозначаться любой заглавной латинской буквой. Если на одном чертеже показаны схемы (РУ) разного напряжения, то СШ на них должны быть обозначены разными буквами. Не разрешается на одном чертеже использовать буквы A,B и C, применяемые для маркировки фаз.

При наличии в схеме нескольких шин одного напряжения, их следует про-

нумеровать, например А1, А2 и т.д. Если СШ секционируются, то нумеруют и секции. Например, если система шин А1 имеет две секции, то их обозначают А1.1

и А1.2. Основными оперативными элементами схем являются разъединители и выключатели. Разъединители, установленные на линиях, называют линейными, а

подключенные к шинам – шинными.

6

Выбор схемы зависит от ее назначения, категории потребителей и др. при-

чин, но в первую очередь от напряжения и числа присоединений.

1.1. Одна система сборных шин

Применяется на напряжении 6-35кВ (см. рисунок 1.2).

Схема отличается простотой, наглядностью и экономичностью. Недостатки схемы очевидны: она не обеспечивает даже плановый ремонт сборных шин. При коротком замыкании (КЗ) на шинах релейная защита отключает все присоедине-

ния и потребители остаются без питания.

Для повышения надежности электроснабжения СШ разбиваются на секции.

Число секций зависит от числа источников питания. В схемах ГРУ, например, ко-

личество секций принимается равным числу генераторов. На электростанциях секционный выключать постоянно включен, это позволяет равномерно распреде-

лить вырабатываемую электроэнергию между потребителями. Ответственные по-

требители питаются двухцепными линиями от разных секций (См. рисунок 1.3).

При КЗ на одной из секций, например А1.1, релейная защита действует на отключение секционного выключателя QB и всех присоединений, подключенных к поврежденной секции. Электроснабжение потребителей осуществляется от сек-

ции А1.2. Существенный недостаток схемы состоит в том, что даже плановый ре-

монт секции требует отключения присоединений. При этом ответственные потре-

бители питаются по одной цепи от соседней секции, т.е. остаются без источника резервного питания. Этот недостаток отсутствует в схемах с двумя СШ.

7

W1

 

 

W2

 

 

W3

 

 

 

 

 

 

 

 

 

 

 

СШ

 

 

 

 

ИП1

 

 

 

ИП2

 

 

 

 

 

 

 

 

 

 

 

Рисунок 1.2. Одна система сборных шин

 

 

 

W1

 

 

 

W2

 

 

 

W3

 

 

W4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

СШ

ОВ

Рисунок 1.3. Одна секционированная система шин.

studfiles.net

Главные схемы электрических соединений электростанций

Главная схема электростанции любого типа – это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями. Главная схема изображается графически с помощью условных графических и буквенно-цифровых обозначений согласно единой системе конструкторской документации (ЕСКД). Помимо главных схем в данном курсе будут рассмотрены схемы собственных нужд.

Главная схема и схема собственных нужд отображаются в данном учебном пособии в виде принципиальных схем. Принципиальная электрическая схема – графическое изображение элементов электрического устройства и связей между ними. Принципиальная схема не показывает взаимного (физического) расположения элементов, а лишь указывает на то, какие элементы с какими соединяются в принципе.

Также применяются оперативные, монтажные схемы электрических соединений и схемы вторичных соединений. Оперативные схемы служат для отображения истинного состояния элементов схемы на текущий момент времени и используются оперативным персоналом в повседневной работе. Монтажные схемы содержат информацию о физическом расположении элементов схемы и применяются при монтаже и наладке электрооборудования. К схемам вторичных соединений относятся электрические схемы цепей управления, релейной защиты и автоматики, контроля состояния оборудования, автоматизированной системы управления и т. п.

Вернёмся к главным схемам электростанций. Выбор главной схемы является определяющим при проектировании электрической части электростанции, так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.

На чертеже главные схемы изображаются в однолинейном исполнении (то есть показана лишь одна фаза из трёх реально существующих) при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении, а также в трёхфазном исполнении.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи мощности, на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.

На чертежах этих схем функциональные части изображаются в виде прямоугольников или условных графических изображений. Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т. д.) на этой схеме не показывают.

Структурные схемы электростанций могут быть блочными, с генераторным распределительным устройством (ГРУ) и комбинированными.

Вариант блочной схемы показан на рис. 9.1. На данном рисунке каждый из шести блоков состоит из одного генератора и одного блочного повышающего трансформатора. Электроэнергия на повышенном напряжении поступает на распределительные устройства высшего (РУ-ВН) и среднего (РУ-СН) напряжений и далее – по линиям электропередачи в энергосистему. Как правило, на электростанции имеются два РУ повышенного напряжения, которые для надежности связываются автотрансформаторами связи (АТ) – одним или двумя.

Выключатели повышенного напряжения показаны условно. В действительности они находятся в составе соответствующего РУ, а их количество на одно присоединение не обязательно равно одному. Возможные схемы РУ подробно рассмотрены в главе 8.

На рис. 9.1 не показаны рабочие и резервные трансформаторы собственных нужд, секции собственных нужд одного из блоков, магистраль резервного питания – более подробно соответствующие схемы приведены в главе 11.

Рис. 9.1. Главная схема блочной электростанции

В зависимости от количества генераторов и трансформаторов в блоке и от способа их соединения различают следующие виды блоков, перечисленные в порядке убывания надежности и стоимости капитальных затрат:

моноблок, когда для одного генератора используется один трансформатор – рис. 9.2а;

объединенный блок, когда два моноблока объединяются между собой на стороне высшего напряжения повышающих трансформаторов и имеют один общий выключатель высокого напряжения – рис. 9.2б;

укрупненный блок, когда два генератора подключены к одному общему повышающему трансформатору с расщепленной обмоткой низшего напряжения – рис. 9.2в;

сдвоенный блок, когда два генератора подключены к общей шине, а затем – к повышающему трансформатору с нерасщепленной обмоткой низшего напряжения – рис. 9.2г.

а) б) в) г)

Рис. 9.2. Разновидности блоков генератор-трансформатор

Моноблок – наиболее надёжный блок, т. к. при выходе из строя любого элемента одного из моноблока соседний моноблок остаётся в работе.

Объединённый блок дешевле двух моноблоков, т. к. происходит экономия на одном выключателе высокого напряжения. С другой стороны надёжность объединённого блока ниже, т. к. при аварийном или плановом ремонте единственного выключателя высшего напряжения приходится останавливать оба генератора.

Укрупнённый блок ещё дешевле, т. к. происходит экономия на повышающем трансформаторе. Но при выходе из строя единственного трансформатора произойдёт потеря обоих генераторов, тогда как в объединённом блоке на время ремонта трансформатора отключится лишь один генератор. Второй генератор отключится кратковременно – на время отключения выводимого в ремонт трансформатора разъединителями.

Сдвоенный блок дешевле укрупнённого, т. к. нерасщеплённый трансформатор при прочих равных дешевле расщеплённого. Однако надёжность такой схемы ниже. Действительно, оба генератора имеют общую электрическую точку – генераторную шину. Данная шина является дополнительным элементом, в результате чего вероятность коротких замыканий увеличивается по отношению к другим видам блоков. С другой стороны, как и в случае укрупнённого блока, КЗ могут происходить и на самих генераторах. Здесь также есть принципиальное отличие по отношению к укрупнённому блоку. В сдвоенном блоке при коротком замыкании на одном из генераторов, на другом генераторе произойдёт значительное снижение напряжения, т. к. между генераторами практически отсутствует сопротивление. В схеме укрупнённого блока уменьшение напряжения также произойдёт, но в меньшей степени – из-за большого сопротивления расщеплённой обмотки низшего напряжения. По этой же причине в схеме укрупнённого блока будут ниже токи КЗ.

Для единичной мощности генератора 1000 МВт используется блок особого типа – с 6-фазной обмоткой генератора и с расщеплённой обмоткой повышающего трансформатора – см. рис. 9.3.

Рис. 9.3. Блок с 6-фазной обмоткой генератора и с расщеплённой обмоткой повышающего трансформатора

Блочные схемы характерны для крупных электростанций, электроэнергия которых передаётся на большие расстояния – АЭС, КЭС, мощные ТЭЦ и ГЭС. Действительно, передача электроэнергии на большие расстояния наиболее экономична при повышенных напряжениях.

От блочных схем перейдём к схемам с ГРУ. Схемы с ГРУ характерны для ТЭЦ, которые производят не только электроэнергию, но и тепловую энергию и поэтому находятся рядом с потребителем, на расстоянии до 10 км (электрическую нагрузку такого потребителя будем называть местной). Следовательно, для передачи электроэнергии на малые расстояния можно использовать сравнительно невысокое напряжение, то есть генераторное напряжение 6,3 кВ или 10,5 кВ. С другой стороны, ТЭЦ должна быть связана с единой энергосистемой, куда выдаются избытки мощности, а эту связь дешевле выполнить на повышенном напряжении 110 кВ или 220 кВ. Поэтому помимо ГРУ схема ТЭЦ имеет также РУ-ВН для передачи электроэнергии на большие расстояния. Если вблизи ТЭЦ имеется энергоёмкое производство, то его питание осуществляется на напряжении 35 кВ или 110 кВ, в этом случае предусматривается ещё одно распределительное устройство – РУ-СН. На рис. 9.4 изображен один из вариантов схемы электростанции с использованием ГРУ.

Рис. 9.4. Главная схема с ГРУ

Рис. 9.5. Комбинированная главная схема

Достоинства схем с ГРУ по сравнению с блочными схемами:

достигается экономия на повышающих трансформаторах и выключателях повышенного напряжения, – их число может быть меньше количества генераторов;

схема выдачи мощности становится более гибкой и надёжной, – при выходе из строя одного из генераторов нет необходимости отключать трансформатор и наоборот при отключении одного из трансформаторов другой трансформатор может быть кратковременно перегружен.

Недостатки схем с ГРУ по сравнению с блочными схемами:

из-за увеличения токов КЗ происходит удорожание выключателей и токоведущих частей генераторного напряжения;

для снижения токов КЗ приходится применять токоограничивающие реакторы;

при больших мощностях генераторов токи КЗ становятся настолько значительными, что схема становится нереализуемой технически;

возникают дополнительные капитальные затраты на сооружение ГРУ с многочисленными аппаратами и токоведущими частями.

Кроме рассмотренных выше типов схем выдачи мощности, структурная схема станции может быть также комбинированной, то есть совмещать достоинства блочных схем и схем с ГРУ – рис. 9.5. Комбинированные схемы используются в случае ТЭЦ.

Представленные схемы являются типовыми. Для конкретных электростанций схемы могут несколько варьироваться с изменением топологии и количества элементов. Далее рассмотрим особенности построения главных схем электростанций различного типа.

9.1. Главная схема теплоэлектроцентрали

Рассмотрим различные подходы к формированию главной схемы ТЭЦ в зависимости от доли мощности, потребляемой местной нагрузкой, и от напряжения, на котором электроэнергия выдаётся в энергосистему и к местной нагрузке.

1. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-10 кВ. В этом случае используется чисто блочный принцип – рис. 9.6. Мощность, выдаваемая собственным нуждам, обозначена РСН. Связь с энергосистемой осуществляется обычно от одного РУ-ВН на напряжениях 110-220 кВ через два (реже один) двухобмоточных трансформатора.

Рис. 9.6. Главная схема ТЭЦ с большой местной нагрузкой на напряжении 6-10 кВ

2. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-110 кВ. В этом случае помимо РУ-ВН появляется РУ-СН – рис. 9.7. Соответственно приходится либо использовать трёхобмоточные трансформаторы (рис. 9.7а) и автотрансформаторы (рис. 9.7б), либо увеличивать число двухобмоточных трансформаторов (рис. 9.7в). Трёхобмоточные трансформаторы используется в случае, когда напряжения РУ-ВН и РУ-СН отличаются значительно – например 110/35 кВ или 220/35 кВ. Если напряжения РУ-ВН и РУ-СН отличаются в меньшей степени (220/110 кВ), то используют трёхобмоточные автотрансформаторы. В этом случае проявляются достоинства автотрансформаторов по сравнению с обычными трансформаторами – см. раздел 4.3.

Рис. 9.7. Главная схема ТЭЦ с большой местной нагрузкой на напряжении 6-110 кВ

а – с трёхобмоточными трансформаторами;

б – с трёхобмоточными автотрансформаторами;

в – с двухобмоточными трансформаторами

3. Рассмотрим ТЭЦ с малой местной нагрузкой (РМН < 30 % от Рген) на напряжении 6-10 кВ. В этом случае используется чисто блочная схема, а питание местной нагрузки происходит от отпайки генераторного токопровода, обычно через сдвоенные токоограничивающие реакторы – рис. 9.8.

Рис. 9.8. Главная схема ТЭЦ с малой местной нагрузкой на напряжении 6-10 кВ

4. Рассмотрим ТЭЦ с большой местной нагрузкой (РМН > 30 % от Рген) на напряжении 6-10 кВ и с генераторами разной мощности, что характерно для расширения существующей электростанции. Например, до расширения на ТЭЦ имелись генераторы единичной мощностью Рген ≤ 110 МВт, работающие на общее ГРУ. Такие генераторы имеют номинальное напряжение 6,3 кВ или 10,5 кВ [1]. Допустим в процессе расширения станции предусматривается установка более мощных генераторов единичной мощностью Рген ≥ 120 МВт. Эти генераторы невозможно подключить к существующему ГРУ по двум причинам. Во-первых, согласно [1] их номинальное напряжение больше либо равно 15,75 кВ, то есть не соответствует напряжению ГРУ. Во-вторых, даже если бы напряжения соответствовали, то подключение дополнительного мощного генератора к ГРУ повлекло бы за собой значительное увеличение токов КЗ, а следовательно – невозможность выбора токоведущих частей и коммутационных аппаратов. Поэтому дополнительные генераторы подключаются к РУ-ВН по блочному принципу, а схема станции становится комбинированной – рис. 9.9.

Рис. 9.9. Комбинированная главная схема ТЭЦ

9.2. Главная схема конденсационной тепловой электростанции

Требования к главным схемам электрических соединений КЭС сформулированы в [10]. Главные схемы электрических соединений КЭС выбираются на основании утвержденной схемы развития энергосистемы и участка последней, к которому присоединяется данная электростанция, а также с учетом общей и единичной мощности устанавливаемых агрегатов.

Главная схема КЭС строится по чисто блочному принципу, т. к. электроэнергия от КЭС передаётся на большое расстояние и на повышенном напряжении, а значительная местная нагрузка на генераторном напряжении отсутствует. Обычно в главных схемах КЭС используют моноблоки. Пример главной схемы КЭС с шестью блоками показан на рис. 9.1.

9.3. Главная схема атомной электрической станции

Требования к главным схемам электрических соединений АЭС сформулированы в [11].

Схемы присоединения к энергосистеме должны обеспечивать в нормальных исходных режимах на всех стадиях сооружения АЭС выдачу полной введенной мощности и сохранение устойчивости ее работы в энергосистеме без воздействия системной противоаварийной автоматики при отключении любой отходящей линии электропередачи или автотрансформатора связи.

В ремонтных режимах, а также при отказах выключателей главной схемы и устройств релейной защиты, устойчивость работы АЭС в энергосистеме должна обеспечиваться действием противоаварийной системной автоматики на разгрузку станция.

Как уже отмечалось, АЭС является, по сути, конденсационной электростанцией с дополнительным циклом, относящимся к ядерному реактору. В связи с этим главная схема АЭС аналогична главной схеме КЭС. Отличие состоит в большем разнообразии видов блоков – на АЭС используются не только моноблоки, но и более сложные блочные схемы. Это объясняется двумя причинами. Во-первых, имеются блоки АЭС достаточно большой мощностью – РБМК-1000 МВт и ВВЭР-1000 МВт на существующих АЭС и ВВЭР-1200 МВт на строящихся. Во-вторых, на некоторых АЭС один реактор обслуживается двумя генераторами – ВВЭР-440 (2х220 МВт) и РБМК-1000 (2х500 МВт), или даже тремя генераторами – БН-600 (3х200 МВт).

Главная схема АЭС с реакторами ВВЭР-440 имеет объединенные блоки – два генератора ТВВ-220 и два трансформатора ТЦ-250 – рис. 9.10.

Главная схема блоков ВВЭР-1000 и ВВЭР-1200 имеет отличительную особенность – имеется 6-фазный генератор, подключенный к расщепленному повышающему трансформатору. На рис. 9.11 показана главная схема проекта Ленинградской АЭС-2.

Рис. 9.10. Главная схема Кольской АЭС

Рис. 9.11. Главная схема проекта Ленинградской АЭС-2

Главная схема АЭС с реакторами РБМК-1000 содержит укрупненные блоки – два генератора ТВВ-500 и расщеплённые трансформаторы. При этом в связи с большими перетоками мощности используется группа из трёх однофазных трансформаторов ОРЦ-417. На схемах показывается один однофазный трансформатор, т. к. схема однолинейная. Главная схема АЭС с реакторами РБМК-1000 показана на рис. 9.12 на примере Ленинградской АЭС.

Рис. 9.12. Главная схема действующей Ленинградской АЭС-1

Главная схема АЭС с реакторами БН-600 изображена с учётом того, что один реактор обслуживается тремя генераторами – рис. 9.13.

Рис. 9.13. Главная схема Белоярской АЭС

9.4. Главная схема гидравлической электростанции

Требования к главным схемам электрических соединений ГЭС сформулированы в [12] и во многом совпадают с аналогичными требованиями для АЭС.

Дополнительно учитывается возможность работы гидроагрегатов в режиме синхронных компенсаторов, высокая маневренность гидроагрегатов и более частые коммутации, связанные с участием в покрытии пиковой и полупиковой части графика нагрузки энергосистемы, возможность работы гидрогенераторов в режиме потребления реактивной мощности.

Гидроэлектростанции с агрегатами средней и большой мощности (от 50 МВт и выше) обычно не имеют генераторного распределительного устройства (ГРУ) и всю энергию выдают в энергосистему на напряжениях 110-750 кВ по блочным схемам. В главных электрических схемах ГЭС применяются моноблоки, а также объединенные, укрупнённые и сдвоенные блоки.

Укрупнение и объединение блоков позволяет уменьшить число присоединений к распределительному устройству высокого напряжения и применить схемы с меньшим числом выключателей на присоединение, например, схему многоугольника вместо схемы “3/2”. Это может оказаться существенным для ГЭС, сооружаемых в районах со сложной топографией и ограниченной площадью для РУ высокого напряжения, а также в условиях ограниченной площади под главные повышающие трансформаторы со стороны нижнего или верхнего бьефа.

Главная электрическая схема ГЭС должна учитывать очередность ввода агрегатов и возможность расширения распределительных устройств повышенных напряжений в соответствии с перспективой развития энергосистемы. Выдача электроэнергии от гидроагрегатов первых очередей строящейся электростанции должна предусматриваться через соответствующие части постоянных распределительных устройств.

Главную схему ГЭС рассмотрим на примере проекта Саяно-Шушенской гидростанции – рис. 9.14.

На Саяно-Шушенской ГЭС используются уникальные гидрогенераторы СВФ-1275/275-42 активной мощностью 640 МВт и полной мощностью 711 МВА, что на сегодняшний день в России является максимальной единичной мощностью гидрогенератора. Специально для данного гидрогенератора разработана группа из трёх однофазных трансформаторов 3хОРЦ-533000/500//15,75-15,75 с двумя расщепленными обмотками генераторного напряжения.

Рис. 9.14. Главная схема Саяно-Шушенской ГЭС

9.5. Главная схема гидроаккумулирующей электростанции

Гидроаккумулирующие электростанции ГАЭС имеют обратимые синхронные генераторы-двигатели мощностью в сотни МВт. В связи с этим важно обеспечить допустимые колебания напряжения на шинах повышенных напряжений РУ при различных режимах работы обратимых агрегатов, в том числе при прямом асинхронном пуске. Для облегчения операции пуска обратимых машин ГАЭС в насосном режиме необходимо использование передовых технических решений за счет использования частотного метода запуска через регулируемые тиристорные статические преобразователи. Для включения, отключения и реверсирования обратимых агрегатов ГАЭС используются два выключателя на генераторном напряжении – рис. 9.15.

Рис. 9.15. Главная схема Ленинградской ГАЭС

kursak.net

Схемы электрические общие | Лаборатория Электронных Средств Обучения (ЛЭСО) СибГУТИ

6.8.1 Схема электрическая общая (код Э6) – схема, определяющая составные части комплекса и соединения их между собой на месте экс-плуатации.

6.8.2 На схеме электрической общей изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели, соединяющие эти устройства и элементы.

6.8.3 Устройства и элементы изображают на схеме в виде прямоугольников. Допускается элементы изображать в виде УГО или упрощенных внешних очертаний, а устройства – в виде упрощенных внешних очертаний.

Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.

Если расположение элементов и устройств на месте эксплуатации неиз-вестно, то допускается на схеме их расположение не отражать. В данном случае графические обозначения элементов и устройств располагают так, чтобы обеспечивалась наглядность электрических соединений между ними и простота построения схемы.

6.8.4 На графических обозначениях элементов и устройств входные, выходные и вводные элементы необходимо показывать по правилам приведенным в 6.6.9, 6.6.16 данного пособия.

Расположение УГО входных, выходных и вводных элементов внутри изображений элементов и устройств должно примерно соответствовать их действительному положению в изделии. Для обеспечения наглядности показа соединений допускается располагать УГО этих элементов не в соответствии с их действительным размещением в изделии, при условии приведения на поле схемы соответствующих пояснений.

6.8.5 На схеме должны быть указаны:
- для каждого устройства или элемента, изображенного в виде прямо-угольника или упрощенного внешнего очертания, – их наименование и тип и (или) обозначение документа, на основании которого они применены;
- для каждого элемента, изображенного в виде УГО, – его тип и (или) обозначение документа.

При большом количестве устройств и элементов эти сведения записы-вают в перечень элементов, при этом около графических обозначений устройств и элементов проставляют буквенно-цифровые позиционные обозначения.

6.8.6 Устройства и элементы, сгруппированные в посты (кабины, контейнеры, помещения и т.п.), рекомендуется записывать в перечень элементов по постам (кабинам, контейнерам, помещениям и т.п.).

6.8.7 На схеме следует указывать обозначения входных, выходных и вводных элементов, нанесенных (замаркированных) на изделие. Если обозначения данных элементов в конструкции изделия не указаны, то допускается этим элементам условно присваивать обозначения на схеме, повторяя их в соответствующей конструкторской документации. При этом на поле схемы должны быть помещены необходимые пояснения.

6.8.8 На схеме допускается указывать обозначения документов соединителей на полках линий-выносок и число контактов соединителей, используя для этого УГО в соответствии с рисунком 6.41

Рисунок 6.41 – Обозначение соединителей на Э6

6.8.9 Провода, жгуты и кабели должны быть показаны на схеме отдель-ными линиями и обозначены отдельно порядковыми номерами в пределах изделия.

Допускается сквозная нумерация проводов, жгутов и кабелей в пределах изделия, если провода, входящие в жгуты, пронумерованы в пределах каждого жгута.

Если на схеме электрической принципиальной цепям присвоены обозначения в соответствии с ГОСТ 2.709-89, то всем одножильным проводам, жилам кабелей и проводам жгутов должны быть присвоены те же обозначения.

6.8.10 Если в состав изделия входит несколько комплексов, то одножильные провода, кабели и жгуты должны быть пронумерованы в пределах каждого комплекса. В данном случае принадлежность одножильного провода, кабеля, жгута к определенному комплексу определяют при помощи буквенного (буквенно-цифрового) обозначения, проставляемого перед номером каждого одножильного провода, кабеля и отделяемого знаком дефис.

При необходимости допускается на схеме определять принадлежность провода, жгута или кабеля к определенным помещениям или функциональным цепям при помощи буквенного (буквенно-цифрового) обозначения по правилам, приведенным в 6.6.18 данного пособия.

6.8.11 Номера одножильных проводов на схеме проставляют около концов изображений в соответствии с рисунком 6.42; номера одножильных коротких проводов, которые отчетливо видны на схеме, помещают около середины изображений в соответствии с рисунком 6.43.

Рисунок 6.42 – Пример обозначения одножильного провода   Рисунок 6.43 – Пример обозначения одножильного короткого провода

Номера кабелей проставляют в окружностях, помещаемых в разрывах изображений кабелей в соответствии с рисунком 6.44.

Рисунок 6.44 – Пример обозначения кабеля

В случае обозначения кабелей в соответствии с требованиями 6.8.10 данного пособия, обозначения в окружность не вписывают.

Номера жгутов проставляют на полках линий выносок в соответствии с рисунком 6.45.

Рисунок 6.45 – Пример обозначения жгу

6.8.12 На схеме около изображения одножильных проводов, жгутов и кабелей указывают следующие данные:
- для одножильных проводов – марку, сечение и, при необходимости, расцветку;
- для кабелей записываемых в спецификацию как материал, – марку, ко-личество и сечение жил;
- для проводов, кабелей и жгутов, изготавливаемых по чертежам, – обозначение основного конструкторского документа.

В том случае если при разработке схемы данные о проводах и кабелях, устанавливаемых при монтаже, не могут быть определены, то на схеме приводят соответствующие пояснения с указанием исходных данных, необходимых для выбора конкретных проводов и кабелей.

При большом количестве соединений указанные сведения записывают в перечень проводов, жгутов и кабелей, который помещают на первом листе схемы, как правило, над основной надписью или выполняют в виде после-дующих листов схемы. Перечень выполняют в соответствии с рисунком 6.46.

Рисунок 6.46 – Перечень проводов, жгутов, кабеля

В графах перечня указывают следующие данные:
- в графе «Обозначение провода, жгута, кабеля» – обозначение провода, жгута, кабеля по схеме;
- в графе «Обозначение» – обозначение основного конструкторского документа провода, жгута, кабеля, изготовленных по чертежу;
- в графе «Данные провода, жгута, кабеля»: для кабеля – марку, сечение и количество жил в соответствии с документом, определяющим применение данного кабеля; для провода – марку, сечение, расцветку, если она необходима;
- в графе «Кол.» – количество одинаковых проводов, жгутов, кабелей;
- в графе «Примечание» – кабели, поставляемые с комплексом или прокладываемые при его монтаже и другие необходимые данные.

6.8.13 Схему электрическую общую рекомендуется выполнять на одном листе. Если схема из-за сложности изделия не может быть выполнена на одном листе, то на первом листе приводят изделие в целом, изображая посты (кабины, контейнеры, помещения и т.п.) условными очертаниями и показывая связи между ними.

Внутри условных очертаний изображают только те устройства и элементы, к которым приводят провода и кабели, соединяющие посты (кабины, контейнеры, помещения и т.п.).

На последующих листах приводят полностью схемы групп или отдельных постов (кабин, контейнеров, помещений и т.п.).

Если в состав изделия входит несколько комплексов, то схему каждого комплекса выполняют на отдельном листе.

6.8.14 Пример выполнения схемы электрической общей приведен в приложении М.

www.labfor.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *