Содержание

как сделать лампу из светодиодов своими руками

Светодиодные лампы, на сегодняшний день, – это удовольствие экологически безвредное, но, к сожалению, очень дорогое. Цена на качественные светодиодные светильники (СПО 70/100, ДРЛ-20) будет варьировать в пределах 200 – 700 долларов. По этому, конечно же, из-за такого высокого уровня цен, эффективным есть поиск альтернативных путей и создание таких ламп своими силами. Светильники на светодиодах сэкономят потребность электрики на 75-85%, при этом образуют безупречное качество вечного света.

Для того чтобы сделать светильник на светодиодах, необходимый набор следующие инструменты:

  • Материал для основания, силикатный клей;
  • Канифоль, олово, мощный паяльник;
  • Сильный светодиод, пластинка (металлическая), двойной провод.

При выборе светодиода для светильника, нужно обратить внимание на его качество, не брать дешевку, так как она не сможет дать нужное светодиодное освещение. Не плохими являются китайские светодиоды, цена которых примерно один доллар на один ватт.

Простой и удобный светильник для бытовых потребностей своими руками на подобии светодиодного светильника СМО 70/100.

Светильник СПО своими силами

Светильник СПО служит для освещения офисов, подъездов, складов и прочих помещений, которые защищены от влияния влаги. Именно такой светильник мы будем делать. Поначалу нужно разобраться, какие светодиоды нам нужны. Выбирая между мощными и менее мощными диодами, лучше взять всё же первые, так как они более трудоёмкие. Для замены одного светодиода на 1 Вт нужно 17-20 маломощных пятимиллиметровых светодиодов, при этом обратить внимание на то, что увеличивается количества пайки, поэтому удобным вариантом есть мощные светодиоды не более 1 Вт.

Для того чтоб светодиоды долго служили нужен радиатор, самый эффективный – алюминиевый. Драйвер тока – еще один элемент, который понадобится при создании светильника. Он позволит светодиодам получать необходимое количество напряжения.

Каждый светодиод требует кусочек алюминия размером 50 на 50 мм и толщиной где-то 1 мм. Если взять кусок 25 на 25 мм, толщиной 5 мм, то это будет не эффективно, так как для рассеивания тепла нужна площадь, а не толщина. Для модели простого светильника понадобится: светодиоды — три по 1 Вт, драйвер – 3 по 1 Вт, двухсторонний скотч для теплопроводности, П-образный алюминиевый радиатор длинной 7-8 см и толщиной около 1 мм.

Обычный двухсторонний скотч не подходит, так как он не проводит тепло, поэтому берём теплопроводящий, режем полоску шириной 7-8 см. Очищаем и обезжириваем наш радиатор и сами светодиоды. Для этого не рекомендуется использовать ацетон, так как линза светодиода из пластика, и может помутнеть. На радиатор клеем скотч и делаем разметку для ровной установки светодиодов и размещаем их на скотч. При этом нужно соблюдать полярность так, что бы все светодиоды были развернуты одинаково – «плюс» первого диода должен смотреть на «минус» второго и так дальше. Дальше берём олово и наносим на выводы светодиодов, это облегчит процесс пайки. Для того, чтобы скотч не прогорел нужно поднять выводы диодов, придерживая их конуса пальцами, чтобы они не оторвались от скотча. Чтобы не проводить эту процедуру, можно выводы загнуть заранее. Берём любой многожильный провод и соединяем наши светодиоды друг с другом. К первому и к последнему диоду припаиваем драйвер. Для проверки качества светильника рекомендуется включить его на 2-3 часа, после этого попробовать пальцем заднюю стенку радиатора. Если она не чрезмерно нагрета значить всё в порядке.

Самая простая модель светильника готова к эксплуатации. Теперь её можно ставить в любой корпус. Конечно же, можно делать и намного мощнее такие самодельные светильники, при этом нужно брать большее количество светодиодов и, разумеется, драйвер мощнее – методика изготовления такого светильника остаётся та же. Подобная технология подходит как для изготовления маленького светильника, так и для светильников многосерийного производства.

Светильник со светодиодами в помещения в 10 м2

Для того, чтобы сделать такой светильник своими силами необходимое такое количество материалов:

  • плафон;
  • металлический лист в 30 сантиметров квадратных;
  • источник энергии;
  • 8-10 светодиодов.

Светодиоды крепим с металлической пластиной, используя винты или саморезы. Для обеспечения хорошего теплоотвода, детали сильно прижимаем. Потом эти же светодиоды с пластиной устанавливаем в плафон, который скроет точечный источник света. Похожим способом можно сделать также домашнюю светодиодную настольную лампу. Для этого источником света будет служить светодиод мощностью 3 Вт и со светоотдачей 278 лм. Хороший радиатор получится с любой старой материнской платы, размерами где-то 5 на 5 сантиметров.

Необходимый ток и напряжение для питания светодиодов даст импульсный источник в комплекте с электронным адаптером. Необходимо не превысить предназначены для выбранного светодиода токи. Также предлагается к использованию микро-трансформатор, для того, чтобы в ходе установки и проверки работы будущей настольной лампы проводить регулировку освещения. К примеру, для диода на один ват допустимо прямое питание от трёх батареек, а если питание осуществляется от зарядного устройства, то нужно ставить переменный резистор для того чтобы светодиод не сгорел от высоких токов.

И так для источника питания берём устройство для зарядки мобильных телефонов, а так же резистор в 1 Ом. Для создания предохранительных условий, всю электронную часть помещают в патрон старой лампы. Делаем замеры габаритов оправы и вырезаем детали. Тщательно очищаем их от всей грязи и на чистую поверхность наносим клей.

Нужно обратить внимание, что в случае неправильной упаковки каких-либо элементов, может возникнуть взрыв, так что последовательность инструкции строго необходима. В большинстве случаев проблема возникает из-за неточностей при спайке и сварки.

При сборке нужно вскрыть блок питания и изъять детали, которые монтируют в корпус будущей настольной лампы. Плату закрепляем в корпусе с помощью санитарного силикона с высоким уровнем сопротивляемости к высоким температурам. Клеим боковые стенки и светодиод на основу, наверх – стеклянную крышку, к которой крепим радиатор с подключенными светодиодами.

После того, как клей высох и все детали приклеились, готовый светильник монтируем к металлическому держателю (к пластине). И так – лампа готова к использованию. Потребительная мощность не превышает 2,5 Вт, поток света – 200 лм. Такие показатели идеально подходят для долговечной и прочной самодельной лампы.

Заключение

Как показывает практика, никакой сложности не возникает при сборке своими руками обычных светодиодных светильников и настольных ламп, а их ремонт не будет занимать много силы и времени. Эти светильники подойдут к любому применению, и будут иметь не худшие характеристики по сравнению с известными светодиодными светильниками марки СПО.

схема на 220В, потолочный, люстра

На чтение 7 мин Просмотров 154 Опубликовано Обновлено

Светодиодные осветительные приборы нашли широкое применение в организации не только бытового освещения, но и уличного, промышленного. Обусловлено это несколькими весомыми достоинствами, а именно – неприхотливостью в обслуживании, ремонтопригодностью, экологичностью и экономичностью. Светодиодная люстра своими руками обязательно найдет применение в доме, главное изготовить ее с соблюдением всех правил безопасности.

Схемы подключения светодиодных ламп на 220 В

Светодиодная лампа 220 своими руками

Существует несколько схем, по которым можно изготовить самодельную люстру из светодиодов. Прежде чем приступать к работе, важно определиться со способом сборки. Выделяют два основных, каждый из них имеет свои преимущества и недостатки.

Применение диодного моста

Вариант с диодным мостом

Схема включает четыре основных диода, подсоединяются они разнонаправленно. Это обеспечивает возможность преобразовывать сетевой ток в пульсирующий.

Преобразование происходит следующим образом: синусоидальные полуволны при переходе по двум светодиодам изменяются, что приводит к потере полярности.

Во время сборки к плюсовому выходу перед мостом требуется подсоединять конденсатор, а перед минусовой клеммой – сопротивление силой в 100 Ом. Схема оснащается еще одним конденсатором, устанавливаемым позади моста, он необходим для сглаживания скачков напряжения в электросети.

Изготовление светодиодных лампочек

Самый простой в реализации способ – изготовление нового осветительного прибора на основе сломанного. Предварительно проверяют работоспособность каждой обнаруженной детали, сделать это можно с помощью аккумуляторной батареи мощностью 12 V.

Элементы, вышедшие из строя, подлежат обязательной замене. Для этого распаивают контакты, удаляют неисправные детали и на их место устанавливают новые. Во время выполнения работы важно учитывать правильную последовательность анодов и катодов, в противном случае прибор будет неработоспособным.

При самостоятельном изготовлении нужно в один ряд соединять по 10 диодов, учитывая правила полярности. Несколько таких цепей подсоединяются к проводам паяльником. Нужно, чтобы спаянные концы проводов не соприкасались, в противном случае это неизбежно приведет к замыканию и система выйдет из строя.

Самодельная лампа из светодиодов мягкого свечения

Отрицательная особенность LED-светильников – регулярное мерцание. Чтобы предотвратить это, вышеописанную схему дополнительно оснащают несколькими деталями. Таким образом, она в себя включает конденсаторы на 400 нФ и 10 мкФ, резисторы на 100 и 230 Ом, диодный мост.

Для защиты осветительного прибора от скачков напряжения в начало схемы перемещают резистор на 100 Ом, за ним припаивается конденсатор на 400 нФ, далее следует диодный мост и еще один резистор.

Устройства, оснащенные резисторным сопротивлением

Использование резистора для смягчения яркости светодиодов

Реализовать подобную схему под силу начинающему мастеру, у которого нет навыков. Потребуется два резистора по 12k каждый и две светодиодные цепи с одинаковым количеством лампочек, которые последовательно припаяны с учетом полярности. Одна полоса присоединяется анодом, а вторая катодом.

Светильники, собранные по этой схеме, имеют более мягкое свечение. Достичь этого удается благодаря пульсации вспышек, которые не видны человеческим взглядом. Такие осветительные приборы чаще всего используются в виде настольных ламп.

Корпуса для светильников на светодиодах

Корпус для Led-ленты

Помимо правильной сборки схемы, нужно позаботиться о создании корпуса, в который она будет помещена. Существует несколько способов решения проблемы.

  • Различные приспособления, изготовленные своими руками.
  • Цоколи перегоревших ламп накаливания.
  • Корпуса от перегоревших галогенных или энергосберегающих ламп.

Использование цоколя лампы накаливания имеет одно весомое преимущество – собранное своими руками светодиодное осветительное устройство легко закрутить в патрон и обеспечить этим необходимый теплообмен. При этом есть и весомый недостаток – светильник в конечном итоге имеет не очень эстетичный вид.

Самодельный светодиодный светильник

Самый практичный, безопасный и простой в реализации способ – поместить изготовленную схему в корпус энергосберегающей лампы. Предварительно перегоревшую лампочку следует разобрать и изъять из нее преобразовательную плату.

  • Плату устанавливают непосредственно в цоколь. Для удобства реализации способа рекомендуется использовать обычную пластиковую крышку от бутылки с водой.
  • Светодиодные лампочки помещают в отверстия, которые предварительно проделывают в крышке, расположенной под стеклянной колбой.

Чтобы упростить процесс размещения светодиодов, мастера используют кружочки из картона или пластика, в которых проделываются отверстия под диоды. Если работу выполнить аккуратно, конечный результат будет иметь довольно эстетичный вид.

В виде корпуса можно использовать галогенные лампы. Этот способ не получил широкого распространения, так как отсутствует возможность закрутить светильник в патрон. Однако такая конструкция используется для изготовления различных самодельных индикаторов.

Материалы для изготовления самодельной светодиодной люстры

Необходимые материалы для изготовления светильника

Для изготовления светодиодного светильника потребуется купить отдельные светодиоды марки НК6 или ленты. Сила тока – 100-120 мА, напряжение 3-3,3 V.

Еще нужны выпрямительные светодиоды 1N4007 или диодный мост, предохранители, которые содержаться в цоколях старых приборов.

Обязательно необходим и конденсатор, напряжение и емкость которого полностью соответствуют техническим параметрам электросхемы. Если готовая плата не используется, дополнительно нужно позаботиться о каркасе, к которому будут крепиться все детали. Материал, из которого изготовлен самодельный каркас, должен быть теплоустойчивым и не проводящим ток. Для прикрепления деталей используют суперклей или жидкие гвозди.

Сборка светильников в корпусе со светодиодными лентами

Создание светильника своими руками

Прежде чем приступать к работе, важно ознакомиться с технологией изготовления светодиодных светильников.

Светодиодные лампочки с заводской подложкой, изготовленной из алюминия, подсоединяют к радиатору. В этом случае роль радиатора играет металлический или пластмассовый корпус светильника. Если применим последний вид, поверхности нужно обклеить алюминиевым скотчем для обеспечения качественного отвода тепла. Светодиоды в схеме спаиваются последовательно.

Поскольку светодиодные лампочки с подножкой, к радиатору они крепятся с помощью термоклея.

Сборка светодиодной лампы

Для оптимальной работы самодельного устройства, лампочки должны иметь следующие характеристические особенности:

  • Светодиодный поток 140 люмен.
  • Напряжение питания в пределах 3,2 – 3,4 вольта.
  • Длина волны около 6 500 кельвинов, свет холодный.
  • Потребляемый ток – 350 миллиампер.

Также потребуется светодиодный драйвер со следующими техническими характеристиками:
  • Диапазон рабочей температуры колеблется в пределах от -45 до +75 градусов по Цельсию.
  • Входное напряжение от 100 до 240 вольт.
  • Выходной ток силой 300 миллиампер +- 5%.
  • Выходное напряжение от 18 до 46 вольт.

Для бесперебойной и качественной работы устройства учитываются два основополагающих фактора – рабочее напряжение и ток светодиода. Еще работоспособность осветительного прибора зависит от потребляемого тока светодиодом, и выходного тока у драйвера.

Светодиодные лампочки не способны контролировать потребление тока, при прямом подключении к розетке устройство просто выходит из строя. Установка драйвера обязательна.

SMARTBUY IP20-25W для LED ленты (SBL-IP20-Driver-25W)

Когда все необходимые детали готовы, можно приступать к пайке схемы. На контактах светодиода нельзя долго держать горячий паяльник, это отрицательно скажется на их работоспособности.

Драйвер также монтируется внутри корпуса. Некоторые специалисты дополнительно рекомендуют корпус со схемой накрывать рассеивательным стеклом.

Декоративные самодельные светодиодные светильники имеют широкое распространение, поскольку их облик можно разнообразить специальной бумагой с разными изображениями, нитками, бусинами и тканью. Также на корпуса можно наносить глазурь или акриловые краски. Главное, преображая самодельный светильник, не забывать о безопасности эксплуатации. Приборы устанавливают, крепят на стену или подвешивают в прихожих, гостиных и кухне.

Светодиодные светильники использовать как основной источник освещения в комнате не рекомендуется. Предпочтительнее их применять в качестве вспомогательных или в виде подсветок различных элементов декора, например, статуэток или растений.

Самодельный светильник на простых светодиодах 12 вольт. Мощный светодиодный светильник своими руками — разработка, установка. Какие материалы потребуются

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности не было, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, несмотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера

светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновение зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии не было светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстросохнущим суперклеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы


LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено не было. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в одной из вышеописанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодный мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)


E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от вышеописанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от вышеописанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)


E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросов и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу слева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверхярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии "LL" GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становится жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов


по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора . По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.

Всем мастерам привет! Сегодня хочу Вам показать несколько конструкций светодиодных ламп, которые можно сделать из отслуживших свой срок «энергосберегаек» и . Суть идеи в том, что можно дать новую жизнь старым вещам и они ещё долго будут служить на благо человеку. Схема общая для всех трёх конструкций - обычный бестрансформаторный источник питания. Подробнее о его работе можно почитать здесь.

Светодиодная лампа для ночника

Первая конструкция небольшой мощности, поэтому планируется установить её в ночник. Лампа собирается на базе четырёх трёхкристальных светодиодов SMD5050. Ток потребления 4,5 мА. Балластный конденсатор 0,1 мкФ.

Светодиодная лампа 2 ватта

Лампа на 2 ватта из пятидесяти четырёх однокристальных светодиодов SMD3528 в настольный светильник. Ток потребления 11 мА. Конденсатор 0,47 мкФ.

Лампа на 5,5 ватт из тридцати трёхкристальных светодиодов SMD5050 в прихожую. Ток её потребления 60 мА. Конденсатор 1,5 мкФ.

Схема питания LED ламп

Собирается всё очень просто, вот схема, для которой нам понадобится:

  • резистор 100 Ом * 1 Вт,
  • резистор 1 Мом * 0,25 Вт, нужен для разряда неполярного конденсатора после выключения питания,
  • любой диодный мост с рабочим напряжением не менее 400 вольт (или сборка из четырёх диодов, которые можно взять из тех же «энергосберегаек»),
  • неполярный конденсатор от 0,1 до 2,0 мкФ на напряжение не менее 275 вольт (лучше 400 вольт), он ограничивает ток подводимый к светодиодам,
  • электролитический конденсатор от 2 мкФ и предельным напряжением не менее 400 вольт (тоже можно взять из «энергосберегайки»), он сглаживает пульсации напряжения, исключая мерцание светодиодов,
  • и, конечно, любые одинаковые светодиоды.

Все светодиоды соединяются последовательно (плюс к минусу) и подключаются к схеме, соблюдая полярность. Неполярный конденсатор подбирается исходя из тока светодиодов, который можно посмотреть в даташите на данный светодиод, вот по этой таблице:

Но лучше, конечно, вставив в разрыв питания светодиодов мультиметр (на режиме 200 мА) проконтролировать ток, что бы он не превышал номинальный ток светодиодов, во избежание преждевременного выхода их из строя.

ПРЕДУПРЕЖДЕНИЕ: Данная схема не имеет гальванической развязки с сетью, поэтому необходимо соблюдать осторожность при работе, не касаться руками оголённых участков цепи, включенного в сеть прибора, во избежание удара током!

Архивы на печатные платы для ламп можете скачать по этой ссылке . Удачи Вам в творческих начинаниях и до новых встреч на страницах сайта Радиосхемы ! С Вами был Тёмыч .

Обсудить статью КАК СДЕЛАТЬ СВЕТОДИОДНУЮ ЛАМПУ


Вот уже почти год, как я начал заменять все лампы в доме на светодиодные. Результаты радовали иногда больше иногда меньше, но один случай привел меня к интересному решению.

Причина почему я взялся за светодиодную лампу


Часто ли вы или кого-то из вашей семьи невзначай опрокидывал настольный светильник? Если говорить обо мне, то довольно много раз... Поэтому, когда мой ребенок очередной раз обронил мой настольный светильник с невинным «Ой!», я сказал: «Довольно!»
Предупреждение! В люминесцентных лампах применяется ртуть, которая весьма токсична.
Если вы случайно или преднамеренно разбили такую лампу, то рекомендовано хорошо проветрить помещение, чтобы избавить его от токсичных испарений.
Я решил заменить люминесцентную лампу моего настольного светильника, на что-то более ударостойкое...
Мой светильник должен выдерживать обращение с ним 10-летнего ребенка, и вместе с тем излучать достаточно света для удобной работы за письменным столом, стабильно работать и недорого стоить. Еще пару лет назад эта проблема не имела простого решения, но теперь ответ очевиден – это светодиодная лампа.

Материалы


Я решил использовать с максимальным световым потоком 278 лм, которые остались у меня с прошлого проекта. Светодиод будет размещаться на радиаторе охлаждения размером 5 х 5 см, который был снят со старого ПК.
Для простоты я решил использовать импульсное зарядное устройство для телефона, которое обеспечит напряжением и силой тока, достаточными для работы светодиодной лампы. Для этой цели я использовал зарядное устройство нерабочего Siemens A52, с заявленным выходом напряжения 5 В и силой тока 420 мА.
Патрон старой люминесцентной лампы будет служить для защиты электроники.
Измерения
Согласно заводским характеристикам Cree MX6 Q5 может питаться от источника с максимальной силой тока 1 А и напряжением 4,1 В. Я полагал, что мне понадобится резистор с сопротивлением 1 Ом, чтобы снизить напряжение на 1 В (с 5 В, которые выдавал источник питания) до 4,1 В, потребляемые светодиодом, если только блок питания выдержит силу тока 1 А.
Чтобы проверить максимально допустимую силу тока, которую выдержит блок питания, я подсоединял к его клеммам различные резисторы, в каждом случае измеряя напряжение и подсчитывая силу тока.
Я с удивлением обнаружил, что блок питания устроен таким образом, чтобы ограничивать силу тока на уровне 0,6 А, с которой он нормально справляется. Проводя подобным образом исследования с другими телефонными зарядными устройствами, я узнал, что все они имеют ограничение на силу тока от 20% до 50% выше, чем заявлено производителем. Это имеет смысл, так как каждый производитель проектирует блок питания таким образом, чтобы он не сильно грелся, даже если питаемое устройство будет сломано, включая от короткого замыкания. И самый простой способ обеспечить это – ограничить силу тока.
Таким образом у меня был генератор постоянного тока с ограничением силы тока до 0,6 А, очень эффективный (блок питания мобильного телефона во время использования не сильно греется), с питанием непосредственно от источника переменного тока 220 В, изготовленный на заводе и очень маленьких размеров. И это просто прекрасно.

Изготовление лампы


Для начала я разобрал блок питания, чтобы извлечь внутренности и вставить их в новую лампу. Так как большинство блоков питания при сборке склеиваются, для его вскрытия я воспользовался полотном ножовки.
Чтобы плата поместилась в цоколь лампы, нужно было сделать некоторую подгонку.
Для крепления платы внутри патрона я использовал силиконовый герметик, у которого остается большое сопротивление при высоких температурах. Прежде, чем закрывать цоколь, к его крышке я прикрепил теплоотвод (при помощи шурупа), на котором фиксировался светодиод.

Результат: настольный светильник


Вот лампа в сборе. Потребление энергии не превышает 2,5 Вт, а освещение составляет 190 лм, идеально подходит для экономного и надежного настольного светильника. И все это за час работы, за исключением застывания силиконового герметика и высыхания термоклея, который использовался для фиксации светодиода на радиаторе охлаждения.
Я был так воодушевлен успехом и простотой проекта, что несколько часов спустя, у меня уже была еще одна лампа.

Результат: прихожая


Находясь под впечатлением от полученных результатов, таким же образом я продолжил замену нескольких люминесцентных ламп в моей квартире. Я представлю их, останавливаясь лишь на некоторых деталях.
Для светильника в прихожей я применил два элемента Cree MX6 Q5 с потреблением энергии 3 Вт и максимальным световым потоком 278 лм. Каждый питается от старого зарядного устройства для мобильного телефона Samsung. Несмотря на то, что производителем заявлена сила тока 0,7 А, я путем измерений обнаружил, что ограничение установлено на 0,75 А.
Закреплено все при помощи текстильной застежки (липучки), клея и пластиковых креплений для материнской платы.
Общее потребление энергии конструкцией составляет 6 Вт со световым потоком в 460 лм.

Результат: ванная комната


Для ванной комнаты я сделал светильник из Cree XM-L T6, который питался от двух зарядных устройств для мобильного телефона LG. Согласно заводским характеристикам он может производить силу тока 0,9 А, но на практике я установил, что она ограничена 1 А. Два блока соединены параллельно для общей силы тока 2 А.
Такая лампа будет потреблять 6 Вт энергии и обеспечит освещение 700 лм.

Результат: кухня


Если в случае с прихожей и ванной комнатой обеспечение минимального освещения не было слишком значимым, то с кухней другая история. Я не хотел, чтобы моя жена или кто-либо другой порезал себе палец во время приготовления пищи и обвинил в этом меня, или, что хуже, мои ненаглядные светодиодные лампы...
Для обеспечения хорошего освещения кухни я решил использовать не один, а два элемента Cree XM-L T6, с энергопотреблением каждого 9 Вт и световым потоком 910 лм. В качестве теплоотводящего элемента я использовал радиатор охлаждения от микропроцессора Pentium III, на который при помощи термоклея я прикрепил два светодиода.
Хотя Cree XM-L T6 может работать при максимальной силе тока в 3 А, производитель для стабильной работы рекомендует использовать 2 А, при которой светодиод будет излучать около 700 лм. Тестирование нескольких блоков питания показало, что в них сила тока либо не ограничена, либо ограничение превышает необходимые 2 А. Мне удалось найти источник питания, который, исходя из технических характеристик, выдает 12 В при силе тока 1,5 А. После проверок с помощью резисторов, оказалось, что сила тока ограничена 1,8 А, что весьма близко к желаемым 2 А. Отлично!
Чтобы обеспечить изоляцию радиатора и двух светодиодов, я использовал два неодимовых магнита из нерабочего DVD-привода и пластиковые крепления для материнской платы. Все зафиксировано при помощи клея и липучки.
Хотя я ожидал, что такая лампа будет производить световой поток в 1300 лм, подобно люминесцентной лампе с энергопотреблением 23 Вт, которую она заменила, я был приятно удивлен, обнаружив, что свет производимый новой лампой ощутимо ярче, и потребление энергии составляет 12 Вт – почти вдвое меньше.
Заключение
Самая классная часть данного проекта в том, что его можно осуществить, используя предметы, которые, за исключением светодиодов, почти у каждого есть под рукой.
Таким образом можно получить светодиодную лампу по цене вдвое, а то и вчетверо ниже, чем стоимость светодиодной лампы в магазине.
Надеюсь, что теперь старые зарядные устройства для мобильных телефонов будут снова полезными, а не попадут в мусорное ведро.
Спасибо за внимание!

Изготовление светодиодной лампы на 220 В своими руками занятие интересное, требующее терпения. Дополнительно нужны небольшие знания физики, и умение паять. Главная задача состоит в создании схемы преобразователя переменного тока сети на постоянный в 12 В, на котором работает светодиодный светильник.

Светодиодная лампа

Представляет маленький светящийся диодный элемент, работающий от постоянного тока в основном в 12В. Для создания ламп их собирают по несколько, в зависимости от требуемой интенсивности света . Преимущества такого освещения:

  • мизерное потребление электроэнергии;
  • срок службы от 100 000 часов;
  • могут работать сутками, без отключения;
  • в продаже имеется большой выбор различных моделей.

Основной недостаток в высокой стоимости готовых светодиодных светильников. Продавцы плохо разбираются в вопросе и не могут квалифицированно ответить на ваши вопросы. В самой характеристике лампы не учитываются потери при прохождении света через рассеиватель , матовое стекло и свойства отражателя.

На упаковке светильника указаны расчетные данные, исходящие из характеристик и количества светодиодных элементов. Поэтому по факту световой поток купленной лампы значительно ниже требуемого и освещение слабое. Сами лампы и детали для создания схем стоят копейки. Поэтому проще всего умельцам сделать все своими руками.

Использование светодиодных светильников

В домах и квартирах часто необходимо постоянное освещение какого-то места. Это могут быть лестницы и детские комнаты, туалеты, где нет окон, а в доме живет ребенок, который не может дотянуться до выключателя.

Неяркий свет и малое потребление энергии позволяют ставить освещение в подъездах и на крыльце, перед калиткой и воротами гаража. Светильники с мягким свечением за счет гашения бликов, применяются для освещения рабочих столов в кабинетах и на кухне.

Создание светодиодного светильника своими руками

Многих мучает вопрос, как сделать светодиодную лампу своими руками и возможно ли это. Схем для создания светодиодного освещения, работающего от сети переменного тока в 220 В, много, все они решают ряд общих задач:

При создании светодиодного освещения своими руками приходится решать еще и задачи:

  • куда поместить схемы и светодиоды;
  • как изолировать осветительную конструкцию;
  • правильный теплообмен.

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов , направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента , и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом. Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений. Сделать своими руками такую схему легко , достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими. Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые. Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно , затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный - «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ . В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Схемы на резисторах

Самая простая схема для желающих сделать все своими руками состоит из двух резисторов 12 k и двух цепочек с одинаковым количеством светодиодных элементов припаиваются соединенные последовательно лампы с разной направленностью. Со стороны R 1 одна полоса припаивается катодом, вторая – анодом. Другой отводок к R 2 наоборот.

Это создает более мягкое свечение ламп, поскольку светодиодные элементы горят поочередно и пульсация вспышек для глаз практически незаметна. Такие светильники можно использовать даже в качестве местного освещения при работе за столом, заменив, таким образом, обычную настольную лампу.

Специалисты, которые сделали своими руками не одну лампу, рекомендуют собирать не менее 20 светодиодов для этой схемы . Чаще используют 40. Это обеспечивает хорошее освещение и схема собирается легко. Для большего количества сложно производить качественную пайку схемы, не задев соседних контактов. Да и собирать ее в корпус трудно.

Можно делать светильник из 4 или 6 более мощных светодиодов. Для расчета схем использовать специальный калькулятор, который можно найти в интернете.

При создании различных схем своими руками из светодиодных приборов и других, можно использовать для правильного расчета онлайн-калькулятор . Его легко найти на сайтах, которые посвящены электрическим приборам и описанию, как их сделать. Его использование значительно упростит процесс расчета силы тока, сопротивления и позволит проверить правильность подбора деталей.

Корпуса для светодиодных ламп

Для удобного включения светодиодной лампы, которую сделали своими руками, в обычные осветительные приборы, используют:

  • цоколи обычных ламп накаливания;
  • корпуса от энергосберегающих ламп;
  • галогенные лампы;
  • самодельные приспособления.

Каждый специалист, делая светодиодную лампу своими руками, выбирает наиболее подходящий вариант. Цоколь дает возможность закрутить лампу в обычный патрон и одновременно обеспечивает теплообмен. Перегреваясь, светодиодная лампа быстрее выходит из строя.

Цоколь с лампы накаливания

Аккуратно отделяем стеклянную колбу и извлекаем спираль. Затем внутрь цоколя помещается схема и сверху на плате крепятся лампы. Недостаток такого основания в неприглядном виде и плохой изоляции.

Корпус энергосберегающей лампы

Самый удобный и практичный вариант для создания светодиодной лампы своими руками. Способы крепления диодов могут быть разные. Вначале аккуратно разбирается сгоревшая лампа. Затем из нее извлекается плата преобразователя. Далее, имеются варианты.

Можно разместить в отверстиях крышки, которые сделаны под стеклянные колбы. Это в варианте лампы с тремя дугообразными световыми элементами. Схема располагается внутри цоколя , обеспечивающего теплообмен. Светодиоды вставляются в уже готовые отверстия и крепятся в них.

Готовую плату со светодиодами можно поместить в цоколь с помощью простой пластиковой крышки от бутыли с водой. Можно использовать сделанный самостоятельно кружок и просверлить в нем отверстия под диоды. В результате удобно использовать и эстетичный вид.

Некоторые умельцы, делая своими руками, используют корпус галогенной лампы. Неудобство такого варианта в отсутствии обычной для цоколя возможности закрутить лампу в патрон. Такой вариант больше подходит для создания своими руками индикаторов и светильников постоянного тока.

Прежде чем продолжить читать, обязательно ознакомьтесь с этой информацией . Любой источник электроэнергии опасен для жизни, если не соблюдать правила безопасности. Описанные здесь схемы создания LED не имеют трансформаторов и, следовательно, представляют опасность. Сборку таких схем можно выполнять людям, которые имеют элементарные знания основ электротехники.

Светоизлучающий диод - это электронное устройство, излучающее свет, когда через него проходит ток. Светодиоды при своих небольших размерах чрезвычайно эффективны, очень яркие, при этом состоят из дешёвых и доступных электронных компонентов. Многие думают, что светодиоды - просто обычные светоизлучающие лампочки, но это совсем не так.

История светодиодов

Капитан Генри Джозеф Раунд, один из пионеров радио, во время эксперимента заметил необычное свечение, испускаемое карбидом кремния. Свои наблюдения он опубликовал в General World, но объяснить природу явления он не мог.

Русский учёный Олег Лосев наблюдал излучение света кристаллами - диодами. В 1927 году он опубликовал подробности своей работы в российском журнале и оформил патент на «Световое реле».

В 1961 году инфракрасный диод создали Б. Биард и Г. Питмен. Однако отцом-основателем светодиода по праву считывается Ник Холоняк. Его ученик Дж. Крэфорд в 1972 г. создал светодиод жёлтого цвета. В конце 80-х годов благодаря исследованиям русского учёного Ж. И. Алферова были открыты новые светодиодные материалы, которые дали толчок дальнейшему развитию светодиодов.

В начале 70-х впервые были изобретены светодиоды зелёного цвета, в 1971 году появился синий светодиод, который был очень неэффективным. Прорыв сделали японские учёные только в 1996 году, которые изобрели дешёвый светодиод синего цвета.

Принцип работы LED

Наиболее распространённые светодиоды состоят из галлия (Ga), мышьяка (As) и фосфора (P). Светодиод представляет собой диодный PN-переход, который излучает свет вместо тепла, генерируемого обычным диодом. Когда PN- переход находится в прямом смещении, некоторые из дырок объединяются с электронами N-области, а некоторые из электронов N объединяются с дыркой из P-области. Каждая комбинация излучает свет или фотоны.

Как устроена светодиодная лампа на 220 вольт? Светодиоды имеют полярность и, следовательно, не работают, если они подключены в обратном направлении. Самый простой способ проверить полярность общего светодиода - это определить на глаз толщину электродов. Более толстым является катод (-). Свет излучается от катода. Более тонкий электрод представляет собой анод (+). Некоторые производители выпускают светодиоды таким образом, что длина проводов катода и анода различна, анод (+) длиннее катода (-). Это также облегчает определение полярности . Некоторые изготовители изготавливают оба провода электродов одинаковой длины, в этом случае можно определить полярность, воспользовавшись мультиметром.

Преимущества и недостатки светодиодных ламп

Достоинства LED:

Недостатки светодиодов LED:

  • Могут быть ненадёжным для наружных применений с большими температурными перепадами.
  • Необходимость дополнительно использовать радиаторы для защиты полупроводников от теплового воздействия.

Светодиод используется в самых разных областях применения:

Светодиодное освещение с питанием от сети

Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.

Схема светодиодной лампы на 220 В

Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.

Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками - это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.

Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.

Светодиодная лампа из отходов

LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 - это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.

Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 - D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.

Порядок изготовления настольной лампы своими руками:

LED для автомобиля

Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.

Светодиодная лампа своими руками на 220в

Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.

Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.

40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В - 45 светодиодов.

Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В - 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.

Как сделать лампочку своими руками

Схема состоит из высоковольтного конденсатора, низкореактивного сопротивления для понижения тока, двух резисторов и конденсатора на положительном источнике для снижения входного напряжения и колебаний сети. Фактически коррекция всплеска производится C2, установленным после моста (между R2 и R3). Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе схемы.

Список деталей:

Самодельные LED имеют защиту, а их срок службы увеличен путём добавления стабилитрона по линиям питания. Показанное значение zener составляет 310 В/2 Вт, и подходит, если LED включает в себя светодиоды от 93 до 96 В. Для другого, меньшего количества светодиодных строк необходимо уменьшить значение zener в соответствии с общим вычислением прямого напряжения светодиодной строки.

Например, если используется 50 светодиодная строка, а светодиод имеет 3,3 В, то рассчитываем 50×3,3 = 165 В, поэтому стабилизатора на 170 В будет достаточно, чтоб защитить светодиод.

Автоматическая цепь ночного освещения LED

Схема автоматически включит ночью лампу и отключит через заданное время, используя несколько транзисторов и таймер NE555. Схема недорогая и простая в установке. В качестве датчика здесь используется LDR. В дневное время сопротивление LDR будет низким, напряжение на нем упадет, а транзистор Q1 будет находиться в режиме проводки. Когда освещённость в помещении падает, сопротивление LDR увеличивается, как и напряжение на нем. Транзистор Q1 выключается. База Q2 подключена к эмиттеру Q1 и поэтому Q2 смещается и, в свою очередь, включает IC1.

NE555 автоматически включается при включении питания. Автоматический запуск происходит с помощью конденсатора C2. Выход IC1 остаётся высоким в течение времени, определяемого резистором R5 и конденсатором C4. Когда на выходе IC1 поступает транзистор Q3, он включается, запускает триггер T1 и лампа светится. В цепь входит 9-вольтная батарея для питания таймера во время сбоёв питания. Резистор R1, диод D1, конденсатор C1 и Zener D3 образуют секцию питания схемы. R7 и R8 являются токоограничивающими резисторами.

Схема светодиодного освещения своими руками

Примечания:

  1. Предустановка R2 может использоваться для настройки чувствительности схемы.
  2. Предустановку R5 можно использовать для настройки времени включения лампы.
  3. При R5 @ 4,7M время включения будет около трёх часов.
  4. Мощность L1 не должна превышать 200 Вт.
  5. Для BT136 рекомендуется использовать радиатор.
  6. IC1 должен быть установлен на держателе.

Мероприятия по борьбе с мерцанием светодиодов

Светодиодная лампа из энергосберегающей своими руками имеет огромное преимущество, но нужно потрудиться, чтобы при работе самоделки пользователей не беспокоило излишнее мерцание LED:

Чтобы избежать влияния мерцания светодиодов, нужно всегда помнить о вышеуказанных моментах.

потолочный, на батарейках или от сети

Содержание статьиПоказать

Недостаточное количество света негативно влияет на органы зрения человека. Самодельный светильник на светодиодах станет отличным помощником в освещении вашего дома и устранит недостаток освещенности в нужном месте. В качестве элемента можно использовать светодиодные матрицы, ленты и взятые отдельно светодиоды.

Уникальность этого изобретения состоит в том, что его вы сможете сделать из любого вышедшего из строя осветительного прибора и оформить под любой интерьер. Можно сделать светильник на батарейках, такое решение позволит установить прибор в удобном месте. Уникальный абажур организует нужное направление для света, порадует вас и ваших гостей.

Лампу в стиле High-Tech можно сделать из двух обрезков доски и светодиодной ленты за 15 минут.

Схемы подключения светодиодных светильников

Светодиодный светильник своими руками подключается к сети электропитания двумя способами. Первый способ подразумевает использование драйвера в качестве источника питания, а второй – блок питания.

Если требуются автономность и мобильность, вам нужен светильник на батарейках. В таком случае в корпусе устройства должен быть отсек для элементов питания. Лучше применить рамку от старого нерабочего электроприбора, используя посадочные места под батарейки.

Самодельный светильник на светодиодах. В качестве элемента света – светодиодная лента. Источник питания – блок питания постоянного напряжения.

Драйвер

Светодиод является нелинейной нагрузкой, его электрические параметры меняются в зависимости от условий работы. При использовании драйвера не требуется применение токоограничивающего резистора, все драйвера имеют заводское значение по силе тока, по этому показателю подбирается количество светодиодов в цепи.

В зависимости от диапазона напряжения, в котором работает драйвер, подбирается количество светодиодов, которые соединены последовательно, таким образом, подключение осуществляется параллельно последовательным методом.

Блок питания постоянного напряжения.

Особенность драйвера — он всегда выдаёт одинаковый ток с выходного фильтра вне зависимости от величины и колебаний входного напряжения. Изготавливают их на базе транзисторов либо микросхемы.

Блок питания

Блок питания имеет только расчетное напряжение на выходе, розжиг светодиода осуществляется благодаря включению в цепь резистора, который предохраняет светодиод от перегорания. Когда перегорает резистор, светодиоды, установленные в модуле, могут полностью выйти из строя.

Если вы не хотите рассчитывать цепь с драйвером, то лучше используйте блок питания и светодиодную ленту. В таком случае необходимо обратить внимание на мощность ленты и блока питания, создав запас 20% в пользу блока питания.

Драйвер для питания светодиодной линейки.

Драйверы используются только для подключения светодиодов и являются основой всех светодиодных ламп. Важно отметить, что драйвер рассчитан на работу в определенной цепи, в качестве источника питания с другими светодиодами он не подойдёт. К блоку питания можно подключить любые светодиоды, главное чтобы в цепи был установлен токовый резистор, а потребляемая мощность светодиодов не превышала пиковое значение мощности блока питания.

Читайте также

Как сделать блок питания на 12 вольт своими руками — примеры схем

 

Использование резисторного сопротивления

У светодиодов существует одна негативная особенность – пульсация (регулярное мерцание). Чтобы побороть этот фактор и сделать свет более мягким, необходимо использовать дополнение в схеме электропитания.

Для этого используются сопротивление и конденсатор. Светильники, оснащенные дополнительным сопротивлением, имеют более мягкий свет, это благоприятно сказывается на органах зрения человека.

Реализовать данную схему сможет даже начинающий мастер. В цепь с последовательно соединёнными светодиодами устанавливается дополнительное сопротивление на 8-12 кОм.

Для смягчения света используется схема подключения с линейным стабилизатором.

Электрическая часть

Итак, мы разобрались с источниками питания, теперь давайте посмотрим, что мы сможем запитывать. В качестве источника света вы можете использовать светодиодную ленту, любые отдельно взятые светодиоды нужной мощности и светодиодные матрицы.

Светодиодная матрица – совокупность светодиодов на одной подложке, количество которых может быть абсолютно разным. В отличие от ленты и отдельно взятых светодиодов, матрица отличное решение, которое удовлетворит любого человека. Активно применяются в прожекторах, имеют разный размер.

Бездрайверная светодиодная матрица – не используйте в жилых помещениях.

Компактное размещение существенно уменьшает размер платы. Многие матрицы основаны на изолированной от светодиодов пластине, которая является теплоотводом. Если мощность светодиодной матрицы очень высокая, то требуется установка дополнительного радиатора. Устанавливается он на термопасту.

Некоторые светодиодные матрицы имеют встроенный драйвер и подключаются путем припаивания проводов сети переменного напряжения 220 В прямо к выводным контактам, находящимся на пластине. Такие устройства не рекомендуется использовать в жилых помещениях из-за высокого коэффициента пульсации. Используйте драйверные матрицы.

Применив драйверную светодиодную матрицу, вы получите максимально аккуратный и компактный монтаж светодиодов на плате и, соответственно, вид светильника будет эстетичен. Количество излучаемого света вас очень порадует, а его яркость вы сможете смягчить дополнительным сопротивлением.

Драйверная светодиодная матрица – компактное решение. Сделайте светодиодный светильник своими руками используя такое решение, и получите минимальный размер и направленный свет.

В зависимости от стиля и дизайна не забывайте о светодиодной ленте, возможно применение ленты в паре с матрицей, таким образом, вы сможете создать особенное освещение, ведь лента имеет массу цветовых оттенков.

Идеи для создания светильников

Преимуществом идеи является то, что светильник можно установить стационарно, а также подвесить на потолок. Творчество подрастающего поколения весьма кстати – их шедевры станут хорошими абажурами, а в качестве источника света лучше всего применить мощные светодиоды или небольшую светодиодную матрицу.

Процесс изготовления абсолютно прост, основой для крепления элемента света и абажура станет пластиковая крышка. Источник света крепите при помощи клеевого пистолета, абажур можно зафиксировать клеем.

Чтобы светильник стал гирляндой, проделайте отверстия и соберите плафоны на нить.

Для реализации следующей идеи вам понадобятся деревянный брус, три болта с гайками длиной 40 мм, ножовка по металлу, патрон под лампу и электрический кабель с вилкой. Размер конструкции выбирается исходя из ваших требований.

Абажур можно изготовить самостоятельно или перетянуть уже имеющийся. В качестве каркаса лучше использовать стальную проволоку. Материал для обтяжки используйте любой, вся светодиодная техника излучает достаточно малое количество тепла, поэтому риск возгорания минимален.

Читайте также

Пошаговая инструкция по изготовлению абажура своими руками

 

Неподвижные элементы конструкции смазываются клеем ПВА и устанавливаются в зажим в неподвижном состоянии до полного высыхания, в теплом месте достаточно будет одних суток.

Шарнирная часть выполняется строго по разметке, в противном случае вы испортите заготовку. Тщательно произведите замеры.

Рекомендуем к просмотру.

Светильник на батарейках получиться сделать из старой коробки. Для этого вам понадобиться прорезать отверстия, через которые свет будет попадать в помещения. Удобнее всего вырез получиться выполнить скальпелем.

Очень красиво смотреться вариант со звездами разного размера. Цвет освещения выбирайте индивидуально.

Такой светильник лучше использовать в качестве дополнительного освещения или как ночник.

Аэрозоль или любой отработанный жестяной баллон можно использовать в качестве основания для укладки светодиодной ленты. Такое решение применяется, чтобы компактно уложить большой метраж на малом участке. Сильный световой поток позволит установить абажур, который направит свет в нужное место. Оформляйте на свое усмотрение.

Чтобы воплотить такую идею в жизнь потребуются основание, трубка и светодиодная лента. Все элементы конструкции собираются абсолютно просто. Такой светильник применяется в качестве ночника. Элементом питания пойдет блок постоянного напряжения 12 В.

Видео: Светодиодный недорогой ночник из подручных материалов.

Схемы самых надежных самодельных светодиодных ламп. Как сделать недорогую, но очень мощную светодиодную лампу. Светодиодная лампа из отходов

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света - настоящее чудо. Энергосберегающие лампы - их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) - вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток - они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток - отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование - не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем.
    Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже.
    В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине. Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату.
    На схеме показано, что должно в итоге получиться, более подробно.
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество - направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

Понадобятся:

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше - пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:


Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность - всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза - люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных - низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

Видео

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника
  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.


Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном. Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.


Фото: патрон лампы
Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.


Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.


Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.


Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.


Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.


Готовая мини лампа Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.


Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.


Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.


Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

При многообразии на прилавках страны, остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить , в каких случаях изделие ремонтируется и как это сделать.

Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему , без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.

драйвер gauss 12w

Схема драйвера светодиодной лампы 220 В состоит из:

  • диодного моста;
  • сопротивлений;
  • резисторов.

Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.

Принцип работы драйвера в лампе на светодиодах

Вид на схеме Порядок работы

Напряжение 220 В подается на драйвер и проходит через сглаживающий конденсатор и сопротивление, ограничивающее ток. Это нужно для того, чтобы обезопасить диодный мост.

Напряжение подается на диодный мост, состоящий из четырех разнонаправленных диодов, которые отсекают полуволну синусоиды. На выходе ток постоянный.

Теперь, посредством сопротивления и конденсатора, ток снова ограничивается и ему задается нужная частота.

Напряжение с необходимыми параметрами поступает на равнонаправленные световые диоды, которые служат и как ограничение тока. Т.е. при перегорании одного из них напряжение повышается, что приводит к выходу из строя конденсатора, если он недостаточно мощный. Такое происходит в китайских изделиях. Качественные приборы от этого защищены.

Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных , то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.

Причины выхода из строя осветительных LED-приборов

Чтобы проще было разобраться с причинами, обобщим все данные в одной общей таблице.

Причина поломки Описание Решение проблемы
Перепады напряженияТакие светильники в меньшей мере подвержены поломкам из-за перепадов напряжения, однако чувствительные скачки могут «пробить» диодный мост. В результате перегорают LED-элементы.Если скачки чувствительны, нужно установить , который значительно продлит срок службы светового оборудования, но и остальных бытовых приборов.
Неправильно подобран светильникОтсутствие должной вентиляции влияет на драйвер. Выделяемое им тепло не отводится. В результате происходит перегрев.Выбрать с хорошей вентиляцией, которая обеспечит нужный теплообмен.
Ошибки монтажаНеправильно выбранная система освещения, его подключение. Неверно высчитанное сечение электропроводки.Здесь выходом будет разгрузить линию освещения или заменить осветительные приборы устройствами, потребляющие меньше мощности.
Внешний факторПовышенная влажность, вибрации, удары или запыленность при неправильном подборе IP.Правильный подбор или устранение негативных факторов.

Полезно знать! Ремонт светодиодных светильников невозможно выполнять до бесконечности. Намного проще исключит негативные факторы, влияющие на долговечность и не приобретать дешевые изделия. Экономия сегодня обернется затратами завтра. Как говорил экономист Адам Смит: «Я не настолько богат, чтобы покупать дешевые вещи».

Ремонт светодиодной лампы на 220 В своими руками: нюансы производства работ

Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.

Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.

мультиметры бытовые

Паяльная станция необходима для ремонта светодиодных люстр и светильников. Ведь перегрев их элементов приводит к выходу из строя. Температура нагрева при пайке должна быть не выше 2600, в то время как паяльник разогревается сильнее. Но выход есть. Используем кусок медной жилы, сечением 4 мм, который наматывается на жало паяльника плотной спиралью. Чем сильнее удлинить жало, тем ниже его температура. Удобно, если на мультиметре присутствует функция термометра. В этом случае ее можно отрегулировать точнее.


паяльная станция

Но перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.

Как разобрать светодиодную лампочку

Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.

Некоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.

Выявляем причину выхода из строя светодиодной лампочки

Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.

Если LED-элементы в порядке, переходим к драйверу. Для проверки работоспособности его деталей нужно их выпаять из печатной платы. Номинал резисторов (сопротивлений) указывается на плате, а параметры конденсатора – на корпусе. При прозвонке мультиметром в соответствующих режимах отклонений быть не должно. Однако часто конденсаторы, вышедшие из строя, определяются визуально – они вздуваются либо лопаются. Решение – замена подходящим по техническим параметрам.


Замену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.

Замена светодиодов лампочки: насколько это сложно

При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.

Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.

Современные лампы работают на SMD LED-элементах, которые можно выпаять из светодиодной ленты. Но стоит подбирать подходящие по техническим характеристикам. Если таковых нет, лучше поменять все.

Статья по теме:

Для правильного выбора LED-приборов надо знать не только общие . Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.

Ремонт драйвера светодиодной лампы при наличии электрической схемы устройства

Если драйвер состоит из SMD-компонентов, которые имеют меньший размер, воспользуемся паяльником с медной проволокой на жале. При визуальном осмотре выявлен сгоревший элемент – выпаиваем и подбираем подходящий по маркировке. Нет видимых повреждений – это сложнее. Придется выпаивать все детали и прозванивать по отдельности. Найдя сгоревший, меняем на работоспособный и . Удобно использовать для этого пинцет.

Полезный совет! Не стоит удалять с печатной платы все элементы одновременно. Они похожи по внешнему виду, можно перепутать впоследствии местоположение. Лучше выпаивать элементы по одному и, проверив, монтировать на место.


Как проверить и заменить блок питания светодиодных светильников

При монтаже освещения в помещениях с повышенной влажностью ( или ) используются стабилизирующие , которые понижают напряжение до безопасного (12 или 24 вольта). Стабилизатор может выйти из строя по нескольким причинам. Основные из них – это избыточная нагрузка (потребляемая мощность светильников) или неправильный выбор степени защиты блока. Ремонтируются такие устройства в специализированных сервисах. В домашних условиях это нереально без наличия оборудования и знаний в области радиоэлектроники. В этом случае БП придется заменить.


Блок питания для светодиодов

Очень важно! Все работы по замене стабилизирующего блока питания светодиодов производятся при снятом напряжении. Не стоит надеяться на выключатель – он может быть неправильно скоммутирован. Напряжение отключается в распределительном щитке квартиры. Помните, что прикосновение рукой к токоведущим частям опасно для жизни.

Нужно обратить внимание на технические характеристики устройства – мощность должна превышать параметры ламп, которые от него запитаны. Отключив вышедший из строя блок, подключаем новый согласно схеме. Она находится в технической документации прибора. Сложностей это не представляет – все провода имеют цветовую маркировку, а контакты – буквенное обозначение.


Играет роль и степень защиты устройства (IP). Для ванной комнаты прибор должен иметь маркировку не ниже IP45.

Статья

Прежде чем продолжить читать, обязательно ознакомьтесь с этой информацией . Любой источник электроэнергии опасен для жизни, если не соблюдать правила безопасности. Описанные здесь схемы создания LED не имеют трансформаторов и, следовательно, представляют опасность. Сборку таких схем можно выполнять людям, которые имеют элементарные знания основ электротехники.

Светоизлучающий диод - это электронное устройство, излучающее свет, когда через него проходит ток. Светодиоды при своих небольших размерах чрезвычайно эффективны, очень яркие, при этом состоят из дешёвых и доступных электронных компонентов. Многие думают, что светодиоды - просто обычные светоизлучающие лампочки, но это совсем не так.

История светодиодов

Капитан Генри Джозеф Раунд, один из пионеров радио, во время эксперимента заметил необычное свечение, испускаемое карбидом кремния. Свои наблюдения он опубликовал в General World, но объяснить природу явления он не мог.

Русский учёный Олег Лосев наблюдал излучение света кристаллами - диодами. В 1927 году он опубликовал подробности своей работы в российском журнале и оформил патент на «Световое реле».

В 1961 году инфракрасный диод создали Б. Биард и Г. Питмен. Однако отцом-основателем светодиода по праву считывается Ник Холоняк. Его ученик Дж. Крэфорд в 1972 г. создал светодиод жёлтого цвета. В конце 80-х годов благодаря исследованиям русского учёного Ж. И. Алферова были открыты новые светодиодные материалы, которые дали толчок дальнейшему развитию светодиодов.

В начале 70-х впервые были изобретены светодиоды зелёного цвета, в 1971 году появился синий светодиод, который был очень неэффективным. Прорыв сделали японские учёные только в 1996 году, которые изобрели дешёвый светодиод синего цвета.

Принцип работы LED

Наиболее распространённые светодиоды состоят из галлия (Ga), мышьяка (As) и фосфора (P). Светодиод представляет собой диодный PN-переход, который излучает свет вместо тепла, генерируемого обычным диодом. Когда PN- переход находится в прямом смещении, некоторые из дырок объединяются с электронами N-области, а некоторые из электронов N объединяются с дыркой из P-области. Каждая комбинация излучает свет или фотоны.

Как устроена светодиодная лампа на 220 вольт? Светодиоды имеют полярность и, следовательно, не работают, если они подключены в обратном направлении. Самый простой способ проверить полярность общего светодиода - это определить на глаз толщину электродов. Более толстым является катод (-). Свет излучается от катода. Более тонкий электрод представляет собой анод (+). Некоторые производители выпускают светодиоды таким образом, что длина проводов катода и анода различна, анод (+) длиннее катода (-). Это также облегчает определение полярности . Некоторые изготовители изготавливают оба провода электродов одинаковой длины, в этом случае можно определить полярность, воспользовавшись мультиметром.

Преимущества и недостатки светодиодных ламп

Достоинства LED:

Недостатки светодиодов LED:

  • Могут быть ненадёжным для наружных применений с большими температурными перепадами.
  • Необходимость дополнительно использовать радиаторы для защиты полупроводников от теплового воздействия.

Светодиод используется в самых разных областях применения:

Светодиодное освещение с питанием от сети

Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.

Схема светодиодной лампы на 220 В

Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.

Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками - это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.

Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.

Светодиодная лампа из отходов

LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 - это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.

Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 - D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.

Порядок изготовления настольной лампы своими руками:

LED для автомобиля

Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.

Светодиодная лампа своими руками на 220в

Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.

Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.

40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В - 45 светодиодов.

Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В - 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.

Как сделать лампочку своими руками

Схема состоит из высоковольтного конденсатора, низкореактивного сопротивления для понижения тока, двух резисторов и конденсатора на положительном источнике для снижения входного напряжения и колебаний сети. Фактически коррекция всплеска производится C2, установленным после моста (между R2 и R3). Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе схемы.

Список деталей:

Самодельные LED имеют защиту, а их срок службы увеличен путём добавления стабилитрона по линиям питания. Показанное значение zener составляет 310 В/2 Вт, и подходит, если LED включает в себя светодиоды от 93 до 96 В. Для другого, меньшего количества светодиодных строк необходимо уменьшить значение zener в соответствии с общим вычислением прямого напряжения светодиодной строки.

Например, если используется 50 светодиодная строка, а светодиод имеет 3,3 В, то рассчитываем 50×3,3 = 165 В, поэтому стабилизатора на 170 В будет достаточно, чтоб защитить светодиод.

Автоматическая цепь ночного освещения LED

Схема автоматически включит ночью лампу и отключит через заданное время, используя несколько транзисторов и таймер NE555. Схема недорогая и простая в установке. В качестве датчика здесь используется LDR. В дневное время сопротивление LDR будет низким, напряжение на нем упадет, а транзистор Q1 будет находиться в режиме проводки. Когда освещённость в помещении падает, сопротивление LDR увеличивается, как и напряжение на нем. Транзистор Q1 выключается. База Q2 подключена к эмиттеру Q1 и поэтому Q2 смещается и, в свою очередь, включает IC1.

NE555 автоматически включается при включении питания. Автоматический запуск происходит с помощью конденсатора C2. Выход IC1 остаётся высоким в течение времени, определяемого резистором R5 и конденсатором C4. Когда на выходе IC1 поступает транзистор Q3, он включается, запускает триггер T1 и лампа светится. В цепь входит 9-вольтная батарея для питания таймера во время сбоёв питания. Резистор R1, диод D1, конденсатор C1 и Zener D3 образуют секцию питания схемы. R7 и R8 являются токоограничивающими резисторами.

Схема светодиодного освещения своими руками

Примечания:

  1. Предустановка R2 может использоваться для настройки чувствительности схемы.
  2. Предустановку R5 можно использовать для настройки времени включения лампы.
  3. При R5 @ 4,7M время включения будет около трёх часов.
  4. Мощность L1 не должна превышать 200 Вт.
  5. Для BT136 рекомендуется использовать радиатор.
  6. IC1 должен быть установлен на держателе.

Мероприятия по борьбе с мерцанием светодиодов

Светодиодная лампа из энергосберегающей своими руками имеет огромное преимущество, но нужно потрудиться, чтобы при работе самоделки пользователей не беспокоило излишнее мерцание LED:

Чтобы избежать влияния мерцания светодиодов, нужно всегда помнить о вышеуказанных моментах.

Как сделать LED светильник с аккумулятором своими руками: самодельная светодиодная настольная лампа для рабочего стола с регулятором яркости

Настольная светодиодная лампа очень полезна и присутствует дома практически у каждого. Люди используют LED светильники для чтения и обучения. Наиболее часто можно встретить флуоресцентные настольные лампы, но они потребляют слишком много энергии и их нужно подключать к внешнему блоку питания.

Светодиодные лампы стоят гораздо дешевле и они более энергоэффективны, но их стоимость в магазинах и интернете обычно превышает 600р. Что если сделать такую лампу своими руками? Она легко собирается из дешевых базовых элементов, сборка в домашних условиях займёт кое-какое время и позволит сэкономить, ведь стоимость деталей лампы обойдётся в 300-1000р.

Вы, возможно, уже видели инструкции по сборке ламп, но особенность этой состоит в том, что она очень дешева и её основа собирается из металлической линейки и картона, что обычно находится под рукой у большинства людей. В лампе нет дерева, пластика, акрила, поэтому вам не придётся использовать специальные инструменты для резки материалов.

Самодельный светильник питается от 4V кислотных аккумуляторов и состоит из 36 светодиодов, которые производят достаточно света для чтения в темноте. Также в схему встроен диммер, работающий на базе интегральной схемы 555 ic и с помощью него можно менять яркость, настраивая потенциометр. Лампу можно заряжать при помощи 9V адаптера.

Я написал детальное руководство как сделать светодиодный светильник своими руками и уверен, что его поймёт даже новичок.

Шаг 1: Собираем нужны части

Для создания лампы вам понадобятся детали, перечисленные в следующем списке. Цена каждой детали может сильно варьироваться в зависимости от места, в котором вы её покупаете.

Список компонентов:

  • 36x светодиодов
  • 36x транзиторов на 82 Ом
  • 2x герметичная свинцово-кислотная аккумуляторная батарея на 4v 1.5ah
  • 1x регулятор напряжения 7805
  • 1x выключатель
  • 1x красный или зеленый светодиод
  • 1x разъём-мама 3.5мм
  • 1x потенциометр 50 кОм
  • 1x кнопка на потенциометр
  • 1x таймер 555 ic
  • 2x 1n4001 или аналогичные диоды
  • 1x 8-пиновый сокет DIP IC
  • 2x резистора 1 кОм
  • 1x резистор 330 Ом
  • 2x керамический конденсатор 0.1 uf
  • 1x TIP 31c или другой npn транзистор
  • Макетная плата
  • Кабель «радуга»

Инструмент:

  • Паяльник
  • Провода
  • Вытяжка для дыма
  • Ножницы

Прочее:

  • Картонная коробка
  • Стальная линейка на 30 см
  • Скотч (изолента)
  • Листы черной и белой бумаги
  • Самоклейка

Шаг 2: Собираем батарею

Источник питания для нашей лампы должен быть больше, чем на 5V. Если напряжение будет менее 5V, то мы не добьёмся максимальной яркости от светодиодов. Таким образом, вы должны использовать батареи на 6 и более вольт, но напряжение не должно превышать 12V, иначе регулятор напряжения перегреется. Я купил батареи на 4V, так как они были самыми дешевыми и общее их напряжение в 8V позволит производить достаточно энергии для питания лампы.

Свинцово-кислотные аккумуляторные батарейки были выбраны для удешевления проекта. Их особенность состоит в том, что их можно подключит напрямую к адаптеру питания, и они не нуждаются в дополнительных переходниках. Использование литий-ионных или никель-кадмиевых, алкалиновых и других типов батареек сделают этот проект значительно более дорогим, но при этом такие батареи будут работать дольше.

Для сборки батарей скрепите их двусторонним скотчем и соедините последовательно, что значит соедините положительную клемму одной батареи с отрицательной клеммой другой батареи. Затем припаяйте по проводу к оставшимся свободным клеммам. Соединение батарей в последовательную цепь увеличит их напряжение (общий вольтаж будет равен сумме напряжений каждой батареи), в то время как параллельное соединение увеличит время их работы или силу тока. Спаивайте клеммы батарей быстро, так как перегрев может вывести их из строя.

Шаг 3: Подготавливаем линейку

Согните линейку руками или плоскогубцами как показано на фотографии, а затем покройте её бумагой черного цвета. Линейка нужна для поддержки светодиодов. Причина, по которой я использовал линейку — её дешевизна, гибкость и доступность.

Шаг 4: Подготавливаем плату

Покройте плату белой бумагой. Так как вся плата теперь покрыта бумагой, то для проделывания в ней отверстий приготовьте иглу.

Шаг 5: Припаиваем светодиоды

Так как источник питания на выходе имеет 5V, а светодиодам нужно 3.6V, то их нельзя подключать последовательно. Если соединить их параллельно, то им всё равно нужно будет 3.6V, и если подать на них 5V, то они повредятся. Чтобы избежать этой проблемы, мы добавим в цепь для каждого светодиода резистор. Формула для расчёта значений резистора такая:

Значение резистора (в Омах)= (напряжения блока питания — напряжение источника) / сила тока, необходимая каждому светодиоду (в амперах)

= 5 — 3.6 / 0.02 (20 миллиампер = 0.02 A)
= 1.4 / 0.02
= 70 Ом

Так как 70 Ом — это нестандартное значение, то нам понадобится резистор на 68 или 82 Ом.

При припаивании светодиодов ссылайтесь на приложенную схему.

Шаг 6: Припаиваем светодиоды (шаг 2)

После того, как вы припаяли все светодиоды, последовательно соедините все наборы светодиодов. Затем просто соедините два длинных конца провода с положительной и отрицательной дорожкой.

Шаг 7: Отрежьте лишнюю часть платы

Отрежьте лишнюю часть макетной платы. У вас должна получиться квадратная форма с перпендикулярным выступом, который скрепляется с линейкой. Не выбрасывайте остатки платы, так как они пригодятся для сборки электросхемы диммера.

Шаг 8: Подготавливаем потенциометр

Причина, по которой этот шаг идёт первым кроется в том, что он будет нужен для прототипирования схемы следующего шага. Припаяйте к потенциометру два диода, а затем два провода, как показано на картинке — один к среднему пину, а второй к точке, где соединяются два диода.

Шаг 9: Прототипирование схемы (опционально)

Этот шаг не обязателен и описан для тех людей, кто считает, что сборка схемы сразу на плате не является хорошей идеей. Так что можете собрать приложенную схему на плате прототипирования, подключить 5V источник питания и покрутите потенциометр. На приложенных фотографиях показана работа светильника на 5% и 95% (наименьшая и наибольшая яркость).

Шаг 10: Паяем схему диммера

555 может работать максимум на 200mA, поэтому соединение всех диодов напрямую с выходом перегреет его. Я доработал схему и добавил в неё транзистор tip31c, что позволило безопасно подключить диоды.

Спаяйте всё согласно приложенной схеме. Не припаивайте интегральную схему напрямую, так как её перегрев может повредить устройство — используйте сокет.

Шаг 11: Приклеиваем линейку

При помощи горячего клея или клейкой ленты, приклейте линейку к центру задней части коробки.

Шаг 12: Приклейте плату

Приклейте печатную плату к линейке согласно приложенной фотографии.

Шаг 13: Присоедините батарею

Двусторонним скотчем приклейте батарею к коробке. Убедитесь, что коробку легко закрыть и в ней остается достаточно места.

Шаг 14: Присоединяем выключатель

Выключатель нужен для включения и выключения лампы. Соедините его согласно приложенной схеме.

Шаг 15: Присоединяем потенциометр

Средний пин потенциометра соединяется с пином 2 интегральной схемы, а пин, соединённый с диодом потенциометра соединяется с пином 7 интегральной схемы.

Шаг 16: Подключаем светодиоды

Сделайте отверстие на задней стенке коробки и пропустите в неё провода от светодиодов. Затем соедините положительный провод светодиодов с пином 8 интегральной схемы, а отрицательный провод с коллектором транзистора.

Шаг 17: Подключаем разъём адаптера

Диод соединяется с разъёмом адаптера, поэтому светодиод индикации зарядки горит только во время подключения адаптера, но не горит во время работы лампы. Соедините разъём адаптера с положительной и отрицательной клеммами батареи.

Шаг 18: Присоединяем светодиод индикации зарядки

Соедините светодиод индикации зарядки напрямую с разъемом адаптера и резистором на 330 Ом, подключенным последовательно.

Шаг 19: Приклейте схему

Когда вы всё подключите, приклейте электросхему поверх батареи. Убедитесь, что в коробке еще есть свободное пространство.

Шаг 20: Делаем отверстия

Проделайте в коробке в выбранных вами местах 4 отверстия. Они нужны для установки выключателя, потенциометра, разъёма адаптера и светодиода индикации зарядки. Я разместил выключатель и потенциометр на передней стенке коробки. Для проделывания отверстия подойдёт обыкновенный карандаш.

Шаг 21: Устанавливаем всё в коробку

Следуя приложенным фотографиям, установите все компоненты в коробку.

Шаг 22: Добавляем кнопку

При помощи клея прикрепите к потенциометру кнопку.

Шаг 23: Заклеиваем коробку

Перепроверьте все соединения и при необходимости перепаяйте, а затем заклейте коробку

Шаг 24: Добавляем чёрную крышку

Возьмите кусок картона по размеру чуть больший, чем плата с диодами. Покройте одну сторону картона черной бумагой, а другую — белой. Приклейте картон на плату диодов, черной стороной вперёд.

Шаг 25: Завершающие штрихи

Финальным штрихом при завершении лампы будет нанесение черных полос на края коробки. Комбинация черного и белого цвета придаст лампе опрятный вид.

Отрежьте полосы черного цвета шириной примерно 2 см и проклейте грани коробки.

Шаг 26: Готово!

Чтобы зарядить лампу, просто подключите её к любому адаптеру питания на 9V, светодиод на боку загорится, обозначая, что зарядка началась.

Для получения лучших результатов вы можете смело изменять светодиодную настольную лампу для рабочего стола:

  • Увеличьте или уменьшите количество светодиодов. Увеличение количества светодиодов уменьшит время работы батареи между зарядками, а уменьшение количества светодиодов уменьшит яркость лампы.
  • Вы можете использовать другие светодиоды, например на 1 или 3 Ватта, 5мм светодиоды, которые фокусируют свет на одной небольшой области.
  • Используйте другие типы батарей, например литий-ионные или литий-полимерные: они сделают лампу легче.
  • Пристройте к лампе линзу для фокусировки света на столе, как это делается у магазинных ламп.
  • Покрасьте лампу в свои цвета.
  • Поменяйте дизайн лампы и используйте другие материалы для сборки её корпуса.

Дом, дизайн, ремонт, декор. Двор и сад. Своими руками

Самодельные лампы своими руками. Как сделать простой светодиодный светильник своими руками


Предметы, изготовленные своими руками, наполняют дом особым теплом и уютом. К тому же они получаются эксклюзивными. Предлагаем обзор светильников, которые полностью изменят атмосферу в комнате, превратившись в объект зависти со стоны друзей и родственников. Тем более что делаются из повседневных предметов, которые обычно выбрасываются.

Картонный пакет для соков или других напитков – вполне обыденная вещь в большинстве домов. Чаще всего она выбрасывается. А вот малайский дизайне Эдвард Чу потратил массу времени, чтобы разрезать их на сотни полосок и соорудить из них удивительные лампы без капли клея, простой принцип оригами.

Ярослав Оленев предложил сделать лампы из одноразовых пластиковых ложек и стал победителем в номинации «Экология и дизайн» от журнала «Будущее сейчас».

Не менее оригинальное применение нашла и Натали Симпсон для обычных деревянных вешалок. Смотрятся зато они потрясающе в виде люстры.

Кевину Чемпени нужно отдать должное, не у каждого хватит сил и терпения нанизать 14 тысяч мишек, чтобы получить люстру.

Своё видение на проблему освещения жилья у Тиры Хильден и Пио Диаса. Благодаря их светильникам комната становится похожей на лес. Все стены оживают и превращаются в деревья.

Талантливый сварщик Мэтт Людвиг оказался ещё и отличным дизайнером. Для ресторана «JJ"s Red Hots» он изготовил невероятно оригинальную люстру из старой барабанной установки.

Техасские художники Джо О’Коннел и Блессинг Хенкок из запчастей старых велосипедов соорудили потрясающие светильники и повесили их в туннеле под трассой.

Вероятно, сложно будет найти более оригинальную люстру, чем из тыквы от польского художника. Он вырезает потрясающие узоры на кожуре, которые не повторяются.

Оригинально и стильно смотрятся абажуры из фетровых шляп от Jeeves & Wooster.

Однажды Хизер Дженнингс увидела в магазине удивительную люстру «Рододендрон», вот только стоила она более 800 долларов. Тогда дизайнер решила, что своими руками можно сделать совсем не хуже. Для этого ей понадобились бумажные формочки для кексов.

11. Люстра на кухню

Невероятно красиво будет смотреться люстра, сделанная из обычных металлических четырёхгранных тёрок.

Ещё свежи в памяти вазы и конфетницы, сделанные из ажурных салфеток. Теперь пришла пора вязать люстры.

Странный вариант предлагает Фансуа Лего, он считает, что самый лучший способ хранения столовых приборов – это люстра.

Большая тучка вырезается из дерева, а вот оставшиеся и выключатель - из картона.

Из нескольких глобусов может получиться замечательная каскадная люстра, отличный способ осветить лестничный пролёт.

Декорирование дома самостоятельно любимое занятие многих хозяюшек, данная статья раскрывает как сделать светильник своими руками. Оживить интерьер гостиной, спальни или прихожей можно при помощи подручных средств, только изменив плафон люстры, торшера или настольной лампы. Плафоны для ламп, сделанные своими руками можно использовать не только в жилом интерьере, но и в залах кафе, пабов, пиццерий.

Выбор материалов и ламп для светильника

Изделия, сделанные для детских комнат, должны быть выполнены из натуральных нетоксичных материалов и окрашены экологическими красками.

При изготовлении также следует помнить о пожарной безопасности, поэтому плафоны из горючих материалов, сделанных из бумаги, пластика, перьев или ниток должны использоваться только с лампами, которые имеют небольшую температуру нагрева.

Нужно использовать светодиодные или люминесцентные лампы. Они имеют ряд преимуществ:

  • большой срок эксплуатации;
  • минимальный нагрев цоколя с стеклянной части;
  • свет имеет три оттенка: теплый, холодный, нейтральный.

Кроме этого такие лампы еще называют энергосберегающими, единственным их недостатком можно назвать высокую стоимость.

Также желательно чтобы подключение провода к цоколю производил специалист. Не нужно пытаться самостоятельно выполнять эту операцию, так как это может привести к нежелательным последствиям. Удобнее декорировать уже существующий каркас плафона или сделать его из прочных и не очень тяжелых материалов.

Для создания светильников используют следующие материалы: ножницы, монтажный нож, леска, проволока, плоскогубцы, горячий пистолет, его в некоторых случаях можно заменить супер-клеем. Ими должен пользоваться взрослый человек, ребенка привлекать к склеиванию недопустимо. Так как в одном случае он получит ожог, а в другом может склеить себе пальцы или приклеиться к деталям будущего изделия.

Из чего можно сделать плафон?

Многие умельцы делают светильники из совсем ненужных материалов:

  • из пластиковых или стеклянных бутылок;
  • газет, тонкой или цветной бумаги;
  • искусственных или натуральных ниток;
  • высушенных веток необычной формы;
  • одноразовых ложек;
  • старых дисков.

Светильник из пластика

Из пластиковых емкостей разного объема легко получается самодельная люстра.

  1. Для основы нужно взять бутылку объемом 5 литров. От нее отрезается дно. Затем на поверхности рисуются кружки диаметром 1,5 см. Их нужно вырезать монтажным ножом или небольшими ножницами.
  2. От бутылок для декора отрезается донышко и вся поверхность нарезается ножницами на полосы шириной 0,5 — 1 см, затем над зажженной конфоркой нагревается заготовка. Под действием тепла полосы будут приобретать хаотичный вид.
  3. Затем в 5-ти литровую емкость с отверстиями вставляют заготовки, а с внутренней стороны накручиваются крышки. Затем сквозь большое горлышко продевается провод и устанавливается плафон. Для такого плафона нужно использовать энергосберегающую лампу.
  4. В некоторых интерьерах можно встретить причудливый светильник, сделанный на основе обычной вешалки или соломенной шляпы. Вообще, ограничить простор фантазии как домашних мастеров, так и профессиональных дизайнеров ничего не может.

Плафон из стеклянных бутылок

Очень интересный вариант самодельной люстры получается из стеклянных бутылок. Их используют для декорирования залов предприятий питания. Также это хороший вариант для кухни в жилом доме или квартире. Это может быть плафон, состоящий из одной или нескольких бутылок, у которых отрезается дно. Сделать этом можно самостоятельно, но лучше воспользоваться услугами мастерской, где режут стекло и зеркала.

Как использовать нитки

Для абажура из ниток или тесемок понадобится: готовый каркас из прочной проволоки, нитки разного цвета, ножницы, клей.

  1. Каркас состоит из двух колец, соединенных между собой металлическими отрезками. Его можно сделать самостоятельно из прочной проволоки.
  2. Необходим один цвет или несколько оттенков нити.
  3. На нижней части закрепляется нитка, затем ее нужно протянуть через верхнее кольцо, опустить вниз и перебросить через нижнее кольцо. Нужно следить, чтобы нить была натянута и витки плотно прилегали друг к другу. Как только нить заканчивается, нужно прикрепить к нижнему кольцу следующий отрезок.
  4. Аккуратно обрезать остатки ниток и приклеить их с тыльной стороны.

Ложки для светильника

Можно сделать многоярусную, цветную лампу из обычных одноразовых ложек.

  1. Необходимо сделать каркас из проволоки, для круглой небольшой лампы нужно сделать три круга диаметром: 12, 18, 26 см. Затем круги скрепляются между собой при помощи лески. Вверху будет самый крупный диаметр, между ними должно быть одинаковое расстояние.
  2. В ложках нужно сделать маленькое отверстие толстой иголкой в верху ручки.
  3. Ложки окрашивают акриловыми красками в три цвета, например, желтый, оранжевый, красный.
  4. Сборка самодельной люстры: леску нарезают длиной равной расстоянию между кругами. К одному концу лески привязывают ложку, а другую к каркасу. К нижнему кругу маленького диаметра нужно привязать ложки желтого цвета, к среднему – оранжевого и к верхнему – красного оттенка.

Легкий и изящный плафон

Для плафона из бумаги подойдет бумага или тонкий картон. Такой плафон может быть как прямоугольной, так и квадратной формы. Сначала необходимо продумать размер плафона, чем больше помещение, тем шире может быть конструкция. В небольшой детской или прихожей хорошо будет смотреться плафон диаметром 30 – 35 сантиметров.

Каркас можно сделать из проволоки, он будет состоять из верхней и нижней части, рассмотрим изготовление плафона в форме цилиндра.

  1. Нужно сделать два круга из проволоки нужного диаметра. Их соединяют между собой при помощи лески, расстояние между нижним и верхним каркасом – 12 – 15 см, леской скрепляются обручи в трех, четырех местах. Чем больше диаметр основания, тем больше надо делать соединительных элементов.
  2. На бумажной заготовке можно нарисовать кружочки разного диаметра, фигурки героев мультфильмов. Контурные рисунки можно взять из интернета и распечатать их, затем перерисовать при помощи копирки. Для рисования кружочков подойдет специальная линейка или можно обрисовывать крышечки или пуговицы разного диаметра. Некоторые рисунки вырезают полностью канцелярским ножом, некоторые прорезают по контуру.
  3. Бумагу примеряют на основу и приклеивают внахлест. Затем приклеивают к проволоке, также можно закрепить при помощи тонкой проволоки. Для этого сначала в бумаге делают отверстие толстой иглой или шилом, затем продевают проволоку и аккуратно привязывают к каркасу. Тонкую бумагу желательно приклеивать, так как ее легко испортить.

Эксклюзивный плафон из металлических тазов

  1. Используются тазы из любого металла, интересный вариант получится из медных или алюминиевых емкостей. Подойдет и старый таз, бывший в употреблении. Если в нем есть сквозная дыра, ее нужно заварить или заклеить, например, эпоксидной смолой.
  2. Внутреннюю поверхность нужно окрасить в светлый цвет, чтобы свет максимально отражался от нее.
  3. Наружную поверхность можно покрасить в темный, насыщенный цвет, гармонирующий с интерьером.
  4. На нижнюю часть ободка приклеивают горячим клеем бахрому длиной около 5 сантиметров. В центральной части тазика необходимо сделать отверстие под провод. Его можно просверлить дрелью или пробить гвоздем.

Такой плафон можно декорировать мозаикой из компакт-дисков. Для этого диски нарезаются острыми ножницами на небольшие фрагменты, которые и наклеиваются на наружную поверхность таза. Можно обклеить только нижний контур, а остальное покрасить. Или украсить такой мозаикой всю поверхность плафона. Чем более выпуклая поверхность, тем мельче должны быть фрагменты диска.

Натуральные материалы

Оригинальный светильник можно сделать из сухой ветки необычной формы. Ее нужно очистить от коры и покрыть морилкой, затем, по желанию обработать прозрачным лаком. Ветку необходимо прикрепить к крючку на потолке при помощи обычной лески. Затем провод с лампой несколько раз накручиваю на ветку. Красиво смотрится ветвь, обвитая несколькими проводами.

Можно сделать светильник из пластиковых вешалок. Подробно рассказано на видео:

Светильники в разные помещения

На кухню больше подойдут люстры из бутылок, сделанные своими руками. Конструкции из стекла или пластика будет легко очищать от пыли и при необходимости мыть. Для кухни, прихожей или гостиной подойдет светильник из натурального дерева.

Для детской комнаты больше подойдет плафон из окрашенных пластиковых бутылок, торшер из ярких ниток или бумажная композиция. Последний вариант нельзя назвать долговечным, но именно такой вариант понравится детям. Девочкам понравятся плафон с бабочками, растительными элементами, мальчикам подойдут конструкции с машинками, супергероями или яркие плафоны из пластика.

В некоторых кафе, пабах применяют для декора зала оригинальные светильники из бутылок. Это могут быть пивные бутылки. Они могут служить как плафоном для лампочек, так и быть интересным обрамлением для лампы.

Идеи самодельных светильников по месту размещения

Своими руками можно придать новый облик напольному торшеру. Можно плафон задекорировать тканью, нитками, бумагой с прорезными рисунками, также не нужно оставлять без внимания основание и ножку светильника. Их можно окрасить акриловыми красками, нанести глазурь, декорировать бусинами. Декор нижней части торшера должен перекликаться с элементами в верхней части. Самый простой вариант – это декорировать плафон однотонного цвета кружевом или гипюром.

Декорирование светильников

Нижнюю часть плафона из ниток можно украсить помпонами одинакового размера, висящими на нитке. Их приклеивают с внутренней стороны каркаса на клей. Помпоны могут висеть как на одинаковой, так и на разной высоте. Их можно сделать одного цвета или скомбинировать несколько оттенков.

Для декорирования бумажных светильников можно использовать кружево, плотный фатин, бусины разных размеров. Украсить стеклянные банки или бутылки можно стеклянных камушков, которые можно приобрести в магазинах фурнитуры. Также можно использовать пуговицы разных размеров и цветов. Мелкие пуговицы можно приклеивать даже на ПВА.

На новогодние праздники принято украшать елку, но можно декорировать и плафоны ламп, торшеров. Здесь можно использовать обычный дождик, вырезанные своими руками снежинки, фигурки елки, декоративные шары и обычную гирлянду. Если в настенном или напольном светильнике установлена энергосберегающая лампа, то ее плафон можно декорировать бумажными снежинками.

Настенные бра устанавливают в гостиных, спальнях, детских. После ремонта можно использовать старые бра, только изменив их внешний вид. Можно окрасить корпус светильника в светлый цвет, а сверху нанести кистью с жестким ворсом бронзовую или серебряную краски для создания эффекта патины. Если плафон стеклянный, на его поверхность наносится понравившийся узор при помощи трафарета по стеклу. Здесь можно использовать контурные (их применяют для создания витража) или аэрозольные краски.

Светодиод - это полупроводниковое устройство, позволяющее преобразовывать электрический ток в световое излучение. Одна светодиодная лампа на 220 вольт позволяет сэкономить огромное количество электроэнергии. Экономия выходит в 2 раза больше лампы дневного света и в 10 раз, чем лампа накаливания. Если использовать для изготовления такой лампы детали от перегоревшего светильника, можно значительно снизить расходы. Светодиодную лампу своими руками можно собрать достаточно просто. Но не стоит забывать, что для этого необходимо иметь соответствующую квалификацию, так как придётся работать с высоким напряжением.

Преимущества светодиодов

В наше время можно найти огромное количество видов люстр со светодиодными лампами в магазинах. У них есть разные преимущества и недостатки. Модернизация энергосберегающих ламп позволяет воспользоваться всеми преимуществами люминесцентного света. Это касается самых распространённых светильников с цоколем E 27. А старые представители этого семейства были наделены неприятным мерцанием. Люминесцентные источники света - это действительно настоящее чудо. По сравнению с ними лампы накаливания очень сильно сдают свои позиции. Их высокое потребление энергии и низкую светоотдачу не перекрывает высокий индекс цветопередачи.

Долговечность - это главный их плюс. Механически он прочен и надёжен . Известно, что его срок работы может достигать до 100 000 часов. А также они считаются экологически чистыми источниками света в отличие от люминесцентных ламп, которые, в свою очередь, содержат ртуть. Но как известно, у ламп дневного света есть некоторые недостатки:

  • Пары, которые содержатся в трубках довольно ядовитые.
  • Из-за частого включения-выключения быстро могут выйти из строя.
  • Сама конструкция требует определённой утилизации.

Лампу на светодиодах можно считать второй революцией в области освещения. Она работает в 5−10 раз дольше, более экономично и не требует никакой особой утилизации. Хотя есть несущественный недостаток - она намного дороже.

Для того чтобы убрать этот маленький минус и обернуть его в хороший плюс, можно соорудить лампу из светодиодной ленты своими руками. Таким способом можно снизить стоимость источника света. Она будет намного ниже, чем у люминесцентных аналогов. А также такая лампа будет обладать рядом преимуществ:

  • Срок службы лампы составит рекордные 100 000 часов, но только при правильной сборке.
  • Стоимость самодельного устройства не выше, чем у люминесцентной лампы.
  • Эффективность ватт/люмен намного превосходит все аналоги.

Но также имеется один недостаток - на это изделие отсутствует гарантия. Она должна компенсироваться мастерством электрика и точным соблюдением инструкции.

Самодельные светильники

Для создания лампы своими руками имеется огромное количество способов. Использование старого цоколя от прогоревшей люминесцентной лампы является самым распространённым методом. Такие ресурсы имеются в каждом доме, поэтому с их поиском проблем не будет. А также понадобится:

В некоторых схемах может и не пригодиться один или два элемента из этого списка. Однако в других могут, наоборот, понадобится новые звенья цепи, например: драйвера или электролиты. В каждом конкретном случае нужно индивидуально составлять список необходимых материалов .

Как сделать светодиодный светильник своими руками

Чтобы приступить к монтажу лампы, необходимо подготовить две испорченные люминесцентные лампы с мощностью в 13 Вт и длиной полметра. Нет никакого смысла покупать новые, лучше всего найти неработающие старые. Но их обязательно нужно проверить на наличие трещин и сколов.

Далее в магазине необходимо приобрести светодиодную ленту. К этому нужно подойти ответственно, так как выбор очень велик. Лучше всего подойдут ленты с естественным или чисто-белым светом. Так как они не изменяют оттенки окружающих предметов и являются сверхяркими. Обычно в этих лентах светодиоды собраны в группы по три штуки. Мощность одной группы - 14 Вт, а напряжение - 12 вольт на метровую ленту.

После чего нужно произвести разборку люминесцентных ламп на составные части. Необходимо действовать очень осторожно - не повредить провода и не разбить трубку, так как в этом случае вырвутся ядовитые пары. Все извлечённые внутренности не стоит выбрасывать. Они могут пригодиться в дальнейшем. Далее необходимо разрезать ленту на участки по 3 диода. После этого стоит достать дорогие и ненужные преобразователи. Большие крепкие ножницы или кусачки лучше всего подойдут для того, чтобы разрезать ленту.

В итоге должно оказаться 22 группы по 3 led или 66 светодиодов, которые должны быть подключены параллельно по всей длине. Чтобы преобразовать переменный ток в постоянный, необходимо стандартное напряжение 220 вольт увеличить до 250 в электрической сети. Это связано с процессом выпрямления. Следующим шагом будет выяснение количества секций светодиодов. Для этого необходимо разделить 250 вольт на 12 вольт (напряжение для 1 группы по 3 шт.). Получив в итоге 20,8 (3), нужно округлить в большую сторону - получится 21 группа. Лучше всего добавить ещё одну группу, так как общее количество светодиодов будет делиться на две лампы. А делить чётное количество намного легче.

Далее понадобится выпрямитель постоянного тока, который можно найти в извлечённых внутренностях люминесцентной лампы. При помощи кусачек извлекаем конденсатор из общей цепи преобразователя. Произвести это действие довольно легко, поскольку он находится отдельно от диодов, стоит только отломить плату.

Воспользовавшись суперклеем и пайкой, необходимо собрать всю конструкцию. Не стоит пытаться уместить все 22 секции в один светильник. Как говорилось выше, нужно найти 2 полуметровые лампы, так как разместить все светодиоды в одной просто невозможно. Не нужно рассчитывать на самоклеящийся слой, который располагается с обратной стороны ленты. Он не сможет прослужить долгое время. Поэтому для закрепления светодиодов лучше воспользоваться суперклеем или жидкими гвоздями.

Подводя итоги, можно разобрать все достоинства собранного изделия. Количество света у получившихся ламп в 1,5 раза больше, чем у аналогов. А вот потребляемая мощность намного меньше, чем у ламп дневного света. Срок службы этого источника света будет примерно в 10 раз больше. И также одно из преимуществ - это направленность света. Он направлен строго вниз и не имеет возможности рассеиваться. Поэтому лучше всего будет использоваться у рабочего стола или на кухне. Однако испускаемый свет не отличается высокой яркостью, но имеет низкое энергопотребление.

Постоянное использование лампы во включённом состоянии за год съест всего 4 кВт энергии. Стоимость потребляемой электроэнергии в год можно сопоставить со стоимостью билета в городском транспорте. Поэтому такие источники света часто используют там, где требуется постоянная подсветка, к примеру:

  • Улица.
  • Коридор.
  • Подсобка.
  • Аварийное освещение.

Простая лампочка из светодиодов

Есть другой способ создания светильника. Настольная лампа, люстра или фонарь нуждаются в цоколе E14 или E27. Соответственно, используемые диоды и схема будут отличаться. Сейчас распространены компактные люминесцентные лампы. Для монтажа понадобится один перегоревший патрон, а также изменённый список материалов. Необходимо:

Перейдём к созданию светодиодного модуля своими руками. Для начала надо произвести разборку старого светильника. В люминесцентных лампах цоколь крепится к пластинке с трубками и закрепляется при помощи защёлок. Цоколь можно отсоединить достаточно просто. Необходимо, найдя места с защёлками, поддеть их отвёрткой. Делать нужно всё довольно осторожно, чтобы не повредить трубки. При вскрытии необходимо следить, чтобы электропроводка, которая ведёт к цоколю, осталась цела.

Из верхней части с газоразрядными трубками нужно изготовить пластинку, к которой будут прикрепляться светодиоды. Для этого нужно отсоединить трубки лампочки . В оставшейся пластинке имеется 6 отверстий. Чтобы светодиоды плотно крепились в ней, нужно сделать картонное или пластмассовое «дно», которое также будет изолировать светодиоды. Использовать нужно светодиоды НК6, они многокристальные (по 6 кристаллов в диоде) с параллельным подключением.

Из-за этого источник света получается сверхярким при минимальной мощности. В крышке нужно сделать по 2 отверстия для каждого светодиода. Прокалывать отверстия стоит аккуратно и равномерно, чтобы их расположение соответствовало друг другу и задуманной схеме. Если использовать в качестве «дна» кусок пластмассы, то светодиоды будут закрепляться прочно. А вот в случае применения куска картона потребуется склеить основание со светодиодами при помощи суперклея или жидких гвоздей.

Так как лампочка будет использоваться в сети с напряжением 220 вольт, то потребуется драйвер RLD2−1. К нему можно подсоединить 3 диода по 1 ватту. Для этой лампы ушло 6 светодиодов с мощностью по 0,5 ватт. Из этого следует, что схема соединения будет образовываться из двух последовательно соединённых частей из трёх параллельно подсоединённых светодиодов.

Перед тем как приступить к сборке, нужно изолировать драйвер и плату друг от друга. Для этого можно воспользоваться кусочком картона или пластика. Это позволит избежать короткого замыкания в будущем. Не стоит беспокоиться о перегреве, так как лампа совсем не греется. Осталось собрать конструкцию и испытать её в деле. Из-за белого света лампочка кажется значительно светлее. Световой поток собранного светильника равняется 100−120 люменам. Этого может хватить для освещения маленького помещения (коридора или подсобки).

Виды светильников

Светильники на светодиодах можно разделить на две группы: индикаторные (светодиодные) - используются как индикаторы, поскольку они являются маломощными и неяркими. Зелёные лампочки на маршрутизаторе - это индикаторные светодиоды. Такие диоды есть и на телевизоре. Их применение довольно разнообразно. Например:

  • Подсветка панели автомобиля.
  • Различные электронные приборы.
  • Подсветка компьютерных дисплеев.

Их цвета имеют огромное разнообразие: жёлтый, зелёный, красный, фиолетовый, голубой, белый и даже ультрафиолетовый. Стоит запомнить, что цвет светодиода не зависит от цвета пластика. Он определяется от типа полупроводникового материала, из которого он сделан. В большинстве случаев, чтобы узнать цвет, нужно включить его, так как они выполнены из бесцветного пластика.

Осветительная конструкция используется для освещения чего-либо. Имеет отличия по своей мощности и яркости. А также отличается очень сниженной ценой, поэтому нередко применяется в бытовом и промышленном освещении. Такой вид освещения считается производительным, экологическим и дешёвым. На сегодняшний день уровень развития технологии может позволить производить лампы с большим уровнем светоотдачи на 1 Ватт.

В этой стать мы предлагаем пошаговые мастер-классы, как сделать своими руками настольные лампы из подручных средств, которые есть всегда в доме. Казалось бы на первый взгляд обычные и ненужные вещи, но из них можно смастерить оригинальные и дизайнерские светильники для рабочего стола.

Самыми популярными и простыми подручными материалами является: стеклянные бутылки и банки, картон и бумага, пластиковые сосуды, трубы от водопровода и цемент . Как из этот сделать лампы мы покажем и расскажем в этой статье.

С помощью простой и элегантной настольной лампы из меди вы сможете украсить любой уголок своего дома, сделав ее своими руками. Она отлично впишется современный интерьер от стиля лофт до рустик. Простата и лаконичность — вот главный козырь этой настольной лампы.

Для этого вам потребуются инструменты:

  • Рулетка, маркер
  • Труборез и тряпка для мытья
  • Инструмент для снятия изоляции и зачистки проводов
  • Плоскогубцы и тонкая плоская отвертка
  • Крестовая отвертка

Материалы:

  • Медные трубы
  • Ацетон и супер — клей
  • Медные уголки по 90 °, 7шт.
  • Электрический провод
  • Вилка и Электро патрон
  • Переключатель и лампочка

Техника сборки настольной лампы

Для начала возьмите рулетку, маркер, труборез, тряпку, медные трубы и ацетон.

Маркируем и отрезаем трубки
  • С помощью измерительной ленты и маркера отметьте место, где вы будете отрезать медные трубы.
  • Делайте это аккуратно, точно вымеряя каждый миллиметр, так как если детали будут отличаться, то в конечном результате они будут не такого размера как должны быть.

  • Наведите труборез и регулируйте при помощи гайки диаметр трубы. Смотрите по медной трубке, постепенно перенастраивайте диаметр с гайкой , так чтоб закрытие шло до того момента, пока идет разрезание трубы.
  • После, с помощью ацетона и тряпки вы можете вытереть маркировку с трубы.

СОВЕТ: Наши детали имеют: 3 нарезки по 15 см, 1 разрез по 20 см, 1 разрез по 45 см, 1 разрез по 25 см. Мы использовали 12 трубок. При проектировании вашего светильника обратите внимание, что будет добавляться размер локтей меди.

В то время, пока кабель внутри, соединяем детали

Вставьте детали вместе и проклейте супер клеем. Для того, чтобы избежать проблем в дальнейшем, лучше проклейте каждую часть и положите друг к другу.

Несмотря на мгновенное действие клея, предпочтите подождать несколько минут, прежде чем продолжить, чтобы удостовериться, что части проклеены отлично.

Совет: Наносить клей будет удобнее, если использовать кисть. Если вы хотите, чтобы крышка находилась на самой верхушке, установите ее в первую очередь. Так будет готова и первая часть, и кабель пойдет в другом направлении.

Инструменты:

  • Инструмент для зачистки проводов и снятия изоляции
  • Резцы
  • тонкая плоская отвертка
  • крестовая отвертка

Материалы:

  • вилка
  • электро патрон
  • переключатель
  • Медные трубы
  • электрический провод

Установите электрическую систему
  1. Откройте лицевую панель крышки и начните с зачистки изоляции. Подключите заземление (синий цвет) и фазу (коричневый, серый или черный) с помощью двух винтов, которые вы найдете внутри.
  2. Такой же процесс повторите в вилке и выключателе.
  3. В переключателе вы найдете две пары маленьких винтов, кабель, который вы должны отрезать до высоты, на котором хотите иметь переключатель, и подключить к соответствующим гнездам войдя внутрь маленьких винтов.
  4. Вам остается просто вкрутить лампочку, чтобы получилась ваша настольная лампа из меди.

В завершении поставьте лампу в уголок или место, которое нравится, и вы увидите, как она станет прекрасным дополнением к вашему интерьеру, освещая пространство!

Мастер – класс: Настольная лампа из бумаги

Когда я впервые увидел настольную лампу Роберта Дельта, это была любовь с первого взгляда! Форма удивительна, она идет в различных ярких цветах, все как я люблю. Недавно я задумался, так как аксессуары были удивительно прочны, почему бы не использовать их для лампы?

Вот все используемые материалы:

  • старый фонарь или лампа комплект
  • шаблон и толстый картон или бумага, можно взять полипропиленовые листы
  • клей и шпатлевка
  • шлифовальный блок (средний + штраф)
  • деревянный блок (добавить вес к основанию)

Инструменты:

  • художественные ленты
  • металлическая линейка / xacto нож
  • дрель (необязательно может заменить нож xacto)

Технология изготовления лампы

  • Во — первых, напечатайте шаблон (6 шт. каждого треугольника) (1 из каждого шестиугольника).
  • Вырежьте формы так, чтобы они плотно прилегали к доске. Затем используйте клей, чтобы прикрепить части к задней части паспарту.
  • При помощи металлической линейки и Xacto ножа на разделочной доске, разрежьте каждую фигуру.
  • Положите их вместе.

  • Далее приклейте дно (формы 2 + 4) к основанию (форма 6). Треугольники прекрасно вписываются вместе, и если вы все сделали верно, они просто встанут на свое место.

Затем используйте небольшие кусочки художественной ленты, чтобы прикрепить их вместе, и дождитесь полного высыхания клея.

СОВЕТ: Используйте супер клей, он мгновенно высыхает (мы использовали Aleene). Нанесите клей слегка, и протрите избыток.

  1. После склеивания нижней половины (формы 2 + 4 к основанию, форму 6 переверните вверх дном (открытый конец вниз), квадрат поставьте на плоскую поверхность и дайте ему высохнуть в течение ночи, это поможет сохранить его площадь.
  2. На следующий день, начните работать над верхней частью лампы. Приклейте форму 1 + 3, немного оставляя отверстие, чтобы вставить лампу внутри. Верхняя (форма 5) была приклеена вместе с художественной лентой, но к форме 1 + 3 она пока не клеится.
  3. Тогда усильте швы с помощью клея с внутренней стороны.

Затем приступите к работе над основанием светильника.

Уровень в нижней части лампы надо сделать немного больше, так что сокращайте несколько штук 1 × 4, чтобы немного поднять. Также добавится дополнительный вес, что придаст ему большую стабильность. Используйте винты для крепления 1 × 4 к существующей металлической основе. (Мы поменяли местами существующий стержень с одним из другой лампы, чтобы получить его правильную высоту).

Далее просверлите отверстие для шнура и вставьте пластиковую втулку от старой лампы. Лампа должна быть в разобранном виде, а шнур и проволоку протяните через резьбовой стержень отверстия нового основания. Внутри лампы приклейте его по центру.

В верхней части (форма 5) отметьте центр и просверлите отверстие для центрального стержня. Затем приклейте его на место.

  1. После применения клея, удалите излишки, а в случае необходимости, слегка и нанесите второй слой после шлифовки.
  2. Шпатлевкой со средней зернистостью и тонкой наждачкой, закончите работу шлифовальным блоком. В данный момент, вы заметите его крепкую базу.

Завершив удаление пыли, нанесите краску! Для того, чтобы покрыть верхнюю часть резьбового стержня, используйте верхнюю часть старой лампы — она просто скользит по стержню. Затем верните обратно в гнездо!

Все, настольная лампа, сделанная своими руками готова.

Настольная лампа из бутылки

Лампа из жестяных банок

Такая лампа отлично подойдет для домашнего рабочего стола, как студенту так и школьнику. Особенно ее оценят мальчишки, она больше похожа на трасформер и на робота из будущего. Саму банку вы можете покрасить или декорировать бумагой, нитками или сделать более рельефной. Как правильно .




Настольная лампа из пластиковых бутылок

Пластиковые бутылки всегда найдутся в хозяйстве, поэтому сделать декор старой настольную лампы не составит труда. Обычно при реставрации старых ламп оставляют основания и пластик применяют для абажура. Крепление для абажура обычно используют старое. При работе с пластиковыми бутылками, помните, что резать их проще ножом для бумаги или строительным . Клей применяют на для резины или специальный для пластика.


Настольная лампа из веток и срезов

Дерево в интерьере, это всегда классика — оно всегда модно и актуально. Украсив настольную лампу срезом из дерева или старой корягой своими руками, вы получите дизайнерскую вещь у которой просто нет цены.

  1. Для этого нам нужно подобрать любой понравившийся кусок древесины, правильно его обработать, а именно высушить, нанести пропитку от вредителей и покрыть его лаком.
  2. Второй этап — вмонтировать в основание верх от старого торшера. Если такого нет, не беда, в магазинах все для света обычно продаются основы для абажуров.

Другие оригинальные идеи

Основой для настольной лампы, может послужить в принципе любой предмет не нужный вам: это детские игрушки, швейные машинки, ненужные носки и так далее. Экспериментируйте и творите красоту!

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника
  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.


Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном. Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.


Фото: патрон лампы
Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.


Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.


Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.


Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.


Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.


Готовая мини лампа Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.


Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.


Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.


Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

Сделать освещение своими руками проще, чем когда-либо

Работа со светодиодным освещением не должна быть сложной. Вы, вероятно, подумали о крутой идее освещения, которую не пытались реализовать в прошлом. Почему нет? Я считаю, что большинство людей, таких как вы, считают, что они недостаточно образованы или недостаточно квалифицированы, чтобы самостоятельно создать идею светодиодного освещения.

Что ж, у меня для вас новости ... Стой, оставь эту мысль «но я не могу». В этом посте я покажу вам, насколько легко можно настроить светодиодное освещение с помощью правильных продуктов!

Что нужно для создания светодиодной лампы

Когда-нибудь хотели построить светодиодную лампу? Теперь вы можете использовать всего 2 части!

С ростом популярности светодиодного освещения многие исследовали и связывались со мной, спрашивая, как создать небольшие светодиодные фонари, светодиодные лампы, светодиодные панельные светильники, даунлайты… вы называете это.Это положит начало обсуждению различных компонентов, необходимых для завершения настройки светодиода:

  • Светодиоды для устройств поверхностного монтажа (SMD) или светодиодные модули
  • Драйверы постоянного тока
  • Источники питания переменного / постоянного тока
  • Радиаторы


Этот список по понятным причинам может запутать новичка и сделать этот крутой световой проект головной болью. Прежде чем бросать проект в стопку «Сохранить на потом / Кто-то еще», вы должны знать, что есть способ использовать все эти компоненты для одного простого источника света.Двигателям светодиодных фонарей нужен только источник питания и немного воображения, чтобы создавать светодиодные фонари как для малых, так и для крупных приложений.

Удобные светодиоды - «Светодиодные двигатели»

Что такое светодиодный световой двигатель? Это светодиодный эквивалент обычной лампы. Световой двигатель обычно состоит из светоизлучающего диода (СИД), установленного на печатной плате с электрическими и механическими креплениями, что означает, что он готов к установке в светильник.

Наши светодиодные двигатели разработаны с учетом перечисленного выше списка компонентов и объединения их в единый корпус.Это устраняет барьеры для входа для людей, таких же, как и вы, которые хотят разработать систему светодиодного освещения, не лезя через голову. Звучит слишком хорошо, чтобы быть правдой? Посмотрите, как мы разработали эти светодиодные фонари.

Проектирование светодиодных ламп "все в одном"

После множества звонков и запросов здесь, в LEDSupply, я понял, что нам нужно больше светодиодных источников света, которые могли бы использовать постоянный вход 12-24 В постоянного тока и загораться. Гибкие светодиодные ленты отлично подходят для такого использования, но иногда требуется более компактный, прямой и качественный свет.

Я начал сотрудничать с LuxDrive, чтобы создать светодиодный светильник, который работал бы таким образом. В нашем сотрудничестве я хотел, чтобы наши новые продукты имели 4 основные функции.

Бортовые драйверы

При работе со светодиодами SMD требуется драйвер постоянного тока или токоограничивающий резистор. Электрические свойства светодиодных фонарей меняются по мере их нагрева, водитель будет следить за тем, чтобы светодиод оставался на безопасном токе, вместо того, чтобы потреблять слишком много и в конечном итоге выгорать.

Вместо использования внешнего драйвера, целью было встроить небольшие встроенные драйверы на плату светодиодов. Эти небольшие драйверы действуют как переменные резисторы на плате, так что вы можете вводить постоянное напряжение постоянного тока (например, 12 вольт), и устройства будут ограничивать ток, разрешенный для протекания через плату.

Это поможет вам в трех основных направлениях:

  1. Встроенные драйверы означают, что нет необходимости во внешнем драйвере, который может стоить около 10-15 долларов.
  2. Встроенные драйверы намного меньше, что делает установку более компактной и дискретной.
  3. Снимает напряжение, связанное с согласованием драйвера со светодиодной схемой.

Радиатор не требуется

Светодиоды с радиатором - еще одна область, которая сбивает с толку, когда вы начинаете работать со светодиодным освещением. Светодиоды обычно имеют большое количество энергии, протекающей через очень небольшой источник, что способствует накоплению тепла. Радиатор необходим для рассеивания тепла, отводя его от светодиода, чтобы избежать необратимого повреждения.

Радиатор - всегда хорошая идея, но цель заключалась в создании небольших светодиодных фонарей, которым не требовалось ничего, кроме источника питания. Радиаторы имеют тенденцию быть громоздкими и значительно увеличивают размер вашей установки. Когда LuxDrive разработал светодиодную плату, мы проверили температуру и убедились, что эти светодиодные двигатели могут работать без какого-либо радиатора.

Простое подключение светодиодов

«Как мне соединить несколько светодиодов вместе?» Это частый вопрос, который я задаю каждый день. Есть способы подключения светодиодных ламп SMD к последовательным или параллельным цепям.Эти две разные схемы подключения будут очень отличаться друг от друга в электронном виде.

Нашей целью было создать светодиод, который можно было бы просто соединить гирляндой. Это упрощает подключение части, поскольку все, о чем вам нужно беспокоиться, - это мощность и убедиться, что ваш источник питания будет обеспечивать достаточную мощность для системы.

Качественный световой поток по доступной цене

Наконец, очень важно было иметь эффективный и яркий светодиод, который позволил бы сделать светодиодный светильник доступным по цене.Этот последний шаг занял больше всего времени, так как нам нужно было найти диод, который был бы достаточно эффективным, чтобы выдавать яркий свет, не подавляя при этом систему.

Большая часть ассортимента LEDSupply - это высокомощные светодиоды, такие как семейство Cree XP и светодиоды Luxeon Rebel. Эти светодиоды излучают много света, но также не подходят для желаемого продукта, потому что:

  1. Слишком большая мощность (нагрев) - светодиоды высокой мощности работают при более высоких токах возбуждения от 350 мА и выше. Для высокого тока требуются драйверы большего размера, из-за чего светодиодный модуль слишком сильно нагревается и требуется светодиодный радиатор.
  2. Высокая стоимость - светодиоды высокой мощности стоят дороже и требуют дорогих деталей для создания полного двигателя светодиодного освещения. Это сделает цену слишком высокой, особенно для тех, кто хочет использовать несколько источников света.

Заключение: использование светодиодов средней мощности

О светодиодах высокой мощности не может быть и речи из-за более высокого тока, что приводит к слишком большому нагреву и общей стоимости. Это привело нас к поиску более доступного светодиода с низким током. Наш поиск привел нас к светодиодам средней мощности.

Светодиоды средней мощности работают при более низких токах возбуждения: максимум 180 мА по сравнению с максимумом 1000 + мА для диодов большой мощности. Светодиоды тоже примерно в 10 раз дешевле! Светодиоды средней мощности не такие яркие, но их низкая мощность и стоимость позволили добавить несколько диодов на плату, чтобы сделать их сопоставимыми с выходной мощностью светодиодов высокой мощности.

Nichia 757 - светодиод, чтобы все произошло

Nichia 757 - самый привлекательный светодиод средней мощности. Светоотдача была выдающейся, учитывая цену и ограничения низкой мощности.LuxDrive начал тестирование диодов средней мощности, построенных на печатных платах со встроенными драйверами.

Тестирование дало положительные результаты, которые успешно достигли всех поставленных целей. Это привело к появлению двух новаторских продуктов для LEDSupply. Двигатели светодиодного освещения, представленные ниже, обладают всеми четырьмя необходимыми характеристиками. Они помогают создать удобный для пользователя светодиод: встроенные драйверы, не требуется радиатор, легко подключаемый и качественный световой поток.

The DynaSquare

DynaSquare - это дискретная светодиодная лампа на 12 В, чрезвычайно простая в использовании.Квадратная печатная плата размером 1 дюйм содержит 3 светодиода средней мощности Nichia 757. Использование нескольких диодов средней мощности увеличивает световой поток до 150 люмен, , что сравнимо со светоотдачей мощного светодиода 1-Up. DynaSquare идеально подходит для ламп и светильников, а также для светодиодных панелей и освещения дисплеев.

DynaSquare предлагается в белом цвете с CCT от 2700K до 6500K. Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются Horticulture 3000K и 5000K DynaSquares.В DynaSquare для садоводства используется матрица с очень широким спектром действия, идеально подходящая для выращивания растений. Не забудьте проверить этот индикатор для небольших приложений для выращивания.

Соединение нескольких светодиодов вместе - создайте свою собственную схему!

DynaSquare спроектирован так, чтобы обеспечить простое соединение между платами. Квадратная плата имеет контактные площадки с каждой из четырех сторон. Это позволяет подавать питание на одну сторону DynaSquare, а затем последовательно подключать несколько светодиодов к любой из трех сторон, как показано ниже.Это обеспечивает гибкость перемещения плат в любом месте, где это необходимо для вашего приложения. Пожалуйста, свяжитесь с нами в LEDSupply, прежде чем объединить более 20 DynaSquares вместе.

DynaSquare можно подключить параллельно к источнику питания, как показано ниже. Параллельно нет ограничений на количество подключенных к одному источнику питания.

Мощность

DynaSquare обычно питается от 12 В, но может принимать 11-15 В постоянного тока. Это позволяет вам питаться от простого источника переменного / постоянного тока или даже от батареи! Один DynaSquare работает на 1.5 Вт. С выходной мощностью 150 люмен это высокоэффективный светодиод мощностью около 100 люмен на ватт!

Чтобы найти источник питания, просто убедитесь, что ваша мощность покрыта. Для одного DynaSquare это будет легко. Если вы подключаете несколько светодиодов, последовательно или параллельно, убедитесь, что мощность вашего источника питания соответствует требованиям. (1,5 Вт на используемый DynaSquare)

Затемнение

DynaSquare имеет ШИМ диммирование. Это работает с нашим беспроводным диммером PWM или может работать с другими выходными сигналами PWM, просто посмотрите лист данных здесь.

The Duo - Светодиодная лента высокой яркости

DUO - это светодиодная лента на 24 В, которая является самой яркой светодиодной лентой на нашем сайте с яркостью более 100 люмен на ватт! Duo использует новейшую технологию в светодиодах средней мощности, размещая 48 диодов Nichia 757 на 12-дюймовой жесткой полосе. Двухрядная светодиодная лента излучает 870 люмен на фут при высокой плотности светодиода, поэтому свет выходит равномерно и качественно.

Светодиодная лента DUO предлагается в белом цвете с CCT от 2700K до 6500K.Доступны цвета: красный, желтый, синий и зеленый. Пожалуй, наиболее интересными вариантами являются полосы Horticulture 3000K и 5000K. В вариантах для садоводства используются диоды Nichia 757 с очень широким спектром выходного сигнала. Этот широкий спектр идеально подходит для выращивания растений, и это идеальный свет для выращивания рассады и выращивания растений в помещении.

Модульная конструкция

Duo выпускается в форме 12 дюймов в длину и 0,95 дюйма в ширину. Модульная конструкция полосы позволяет разрезать ее на более мелкие части.Через каждые 3 дюйма есть черная пунктирная линия, которую можно разрезать, чтобы из одного куска сделать несколько светодиодных двигателей.

При самостоятельном разрезании полосы старайтесь разрезать по пунктирной линии. Обычно лучше всего подходят прочные ножницы, кусачки для бумаги или большие кусачки. Если вы хотите предоставить нам разрезание, мы предлагаем полосу в 3, 6 и 9 дюймов в дополнение к стандартной 12-дюймовой полосе.

Подключение светодиодных лент

Duo сконструирован так, что несколько полосок можно соединять в гирляндную цепочку.Количество светодиодных лент, соединенных гирляндой, не должно превышать 8 полных 12-дюймовых плат. Другими словами, не соединяйте вместе полоски длиной более 8 футов.

Мощность

Duo принимает входное напряжение 24 В, которое может поступать от источника переменного / постоянного тока или аккумуляторной батареи. 12-дюймовая деталь - это 7,68 Вт (1,92 Вт на 3-дюймовую деталь). При такой мощности полоса будет выдавать 870 люмен… это 113 люмен / ватт! Эта полоса высокой яркости обеспечивает наивысшую эффективность (люмен / ватт) из всей линейки ламп LEDSupply Strip.

При поиске источника питания убедитесь, что он выдает 24 В постоянного тока, и убедитесь, что учитывается общая мощность.

Профессиональный монтаж

С алюминиевым каналом для светодиодных лент эти ленты превращаются в готовый светильник. У нас есть полосовая дорожка шириной 1 дюйм в квадратном или скошенном стиле, которая идеально сочетается с полосой DUO. Каждая дорожка оснащена матовой поликарбонатной линзой для защиты полос и равномерного распределения света. Посмотрите их здесь.

В заключение

С этими двумя новыми продуктами вы можете увидеть, насколько простой может быть установка светодиодов.Просто найдите источник 12 или 24 В и приступайте к реализации той крутой идеи освещения, которую вы так долго откладывали. Если вам нужна моя помощь, позвоните в LEDSupply или напишите по адресу [email protected]

Как всегда, присылайте нам свои творения с этими продуктами. Нам всегда нравится видеть, что делают наши читатели, чтобы воспользоваться преимуществами светодиодного освещения!

Сделайте свою настольную светодиодную лампу: 26 ступеней (с изображениями)

Настольные лампы очень полезны и присутствуют в доме каждого человека.Люди используют их для чтения и учебы. Лампы КЛЛ - это наиболее часто используемые настольные лампы, но проблема с ними в том, что они потребляют слишком много энергии и их необходимо подключать к внешнему источнику питания. Светодиодные лампы намного дешевле и энергоэффективны, но покупка их в Интернете и магазинах стоит более 10 долларов. Что, если бы вы сделали его дома? Что ж, это может быть легко сделано с помощью дешевых и простых электронных компонентов. Так что изготовление их дома позволит скоротать ваше время и сэкономить деньги, так как это будет стоить всего около 5-18 долларов.

Вы, возможно, видели много инструкций по светодиодным лампам, но особенность этой лампы заключается в том, что она очень дешевая, так как в ней используются линейка из нержавеющей стали и картон для изготовления конструкции, которые у большинства людей лежат. Для его изготовления не используется дерево, пластик или акрил, поэтому вам не потребуются специальные режущие инструменты.

Он питается от двух герметичных свинцово-кислотных аккумуляторных батарей на 4 В и имеет 36 светодиодов, которые дают достаточно света, чтобы легко читать в темноте. Он также имеет схему диммера, которая питается от микросхемы 555 ic и используется для изменения яркости лампы с помощью потенциометра.Лампу можно заряжать с помощью адаптера на 9 В.

Хотя я сделал подробное руководство и убедился, что его легко поймут новички, но если у вас есть какие-либо вопросы, связанные с инструкциями, не стесняйтесь спрашивать в любое время, а также помогите мне внести исправления, если я сделал какие-либо ошибки.

__________

Обновление:

Нелегко отвечать на каждый комментарий к такому количеству инструкций, поэтому вы можете связаться со мной для любой помощи / обсуждения / запроса.Мой адрес электронной почты: [email protected]

Чтобы получить больше таких замечательных поделок, подпишитесь на мой канал на YouTube.

Моя страница в Facebook: Сделайте с SA

Получите лучшее из запчастей от GearBest по разумной цене.

Также обратите внимание на текущие продажи:

Рекламная распродажа 3D-принтеров и электронных инструментов Fall

Arduino Best Deals

3D-принтер Creality3D CR - 10 (купон: GBCR10J) $ 396,99

Создание собственных светодиодных фонарей

Мы все любим возиться и вносить изменения в оборудование, которое мы покупаем, но это далеко не создание чего-либо с нуля.Вы бы попытались сделать свои собственные светодиодные фонари? Лично я бы не стал, но это, вероятно, потому, что я не любитель DIY, а некоторые люди.

Когда мой хороший друг Джефф Кук пригласил меня проверить его самодельные светодиодные фонари, я, конечно, был настроен скептически. Зачем вам создавать свои собственные, когда на рынке так много доступных светодиодных светильников? Я задал этот вопрос Джеффу, и он ответил просто: «Цена и полезность».

Создание собственных светодиодных светильников, безусловно, не для всех.Это не только отнимает много времени, но и нужно знать, что вы делаете. Это не значит, что вы отрабатываете набор инструкций, все идет методом проб и ошибок. Джефф использовал самодельные светодиодные фонари в течение последних нескольких лет, поэтому я подумал, что было бы неплохо провести несколько фотометрических измерений и посмотреть, что он на самом деле сделал.

Прежде чем мы перейдем к результатам, я задал Джеффу ряд вопросов о его светодиодных светильниках «сделай сам».

Почему вы решили создавать свои собственные светодиодные фонари?
В основном две причины: цена и полезность.Для заводских фонарей цена обычно составляет около 1000 долларов за единицу 1 × 1. Утилита - заводские фонари тяжелые и громоздкие (за исключением волны гибких панельных светильников, выходящей в последнее время). Светильники, которые я построил, можно легко вылететь на руке на световой стойке. При необходимости их даже можно приклеить к стене или потолку. Плюс третья причина: мне нравится создавать вещи и экспериментировать.

Как вы пришли к концепции того, что строить и какой тип освещения вам нужен?
Я нашел магазин в Акихабаре (Токио), в котором продавались различные светодиодные ленты, которых я больше нигде не видел.Это остается верным по сей день. Светодиоды плотно упакованы и очень яркие. Издалека они выглядят как сплошная линия, а не как набор точек. Я купил несколько и поэкспериментировал с ними. Я сделал несколько панельных светильников, применив ленту к нескольким алюминиевым листам, и сделал несколько стержней, используя алюминиевые профили длиной в метр. В качестве основного источника света мне нужен был большой источник, поэтому я скрепил две панели на липучках и прикрепил большой рассеивающий слой на лицевой стороне. Большой гибкий диффузор дает такое же качество света (за исключением более крупного и мягкого), что и тяжелый, за 400 долларов.00 софтбокс прикреплен к заводской панели.

Сколько времени потребовалось, чтобы построить?

На создание панели уходит около часа. Измерение ленты и нанесение ее на панели или профили - простая часть. Далее идет военное дело. Я давно ничего не паял, но чем больше вы это делаете, тем лучше становится ваша техника.

Были ли они сложны в изготовлении? Кто-нибудь мог это сделать?
Они не требуют особых навыков. Сами по себе огни могут выглядеть ужасно, но это не повлияет на качество излучаемого света.

Сколько, по вашему мнению, стоило его строительство?
Одна из панелей стоит около 140 долларов, а палка - около 50 долларов.

Изменились ли ваши светильники DIY с годами?
Я всегда пытаюсь их улучшить. Все по модульному принципу. У меня есть мешки с блоками питания с силовыми кабелями. Я сделал кабели питания длинными, чтобы свет мог быть высоко на подставке, а блок питания не висел в воздухе на полпути к подставке. При необходимости я могу соединить вместе несколько кабелей питания.Я также сделал разветвительные кабели, чтобы я мог питать более одного осветительного прибора от одного источника питания. Еще одно преимущество длинных силовых кабелей состоит в том, что они избавляют от необходимости использовать множество удлинителей.

Довольны ли вы результатами, которые дает свет?

Я очень доволен. Я сделал тот тип света, который мне нужен для моей цели. Большая площадь поверхности для основного света и длинная палка для подсветки, которая покрывает волосы и плечи, чтобы отделить объект от фона.У меня также есть вертикально установленный на подставке фонарь, который поддерживает мою подсветку, чтобы добавить немного в щеку. Это также дает красивый ободок на плече и, если объект съемки женский, красивый светлый блик сбоку на ее волосах.

Вещи, которые я хотел бы улучшить: я еще не нашел диммера, который не вызывает неприятного мерцания, поэтому сейчас я должен использовать правило обратных квадратов. Свет не двухцветный, но я считаю, что дневной свет - это то, что я использую больше всего. Обычно я снимаю в офисе или комнате с окнами, поэтому дневной свет хорошо работает.У меня тоже есть вольфрамовые панели, и они не занимают много места в моей сумке, поэтому я использую их, когда мне нужно. Если бы я захотел, я мог упаковать в сумку дюжину фонарей размера «кино-фло».

Каковы ограничения использования ваших фонарей?
Они могут работать только от электросети, и у меня нет никакого способа затемнить светильники. Я попытался построить несколько диммеров, но обнаружил, что они просто заставляли свет мерцать. Конечно, здесь нет стандартных софтбоксов или аксессуаров, поэтому все, что мне нужно, я должен построить или создать сам.

Что думают или говорят клиенты, когда вы увлекаете их на работу?
Часто это корпоративные клиенты, которые комментируют, насколько профессионально выглядит установка освещения. Обычно они удивляются и впечатляются, когда я говорю им, что они «самодельные». (что меня всегда шокирует)

Фотометрия

Итак, приступим к фотометрическим результатам. Я всегда проверяю освещение таким образом, чтобы получить представление о том, как они сравниваются с другими приборами. Результаты рассказывают только часть истории и никогда не должны использоваться в одиночку для оценки источника света.На протяжении многих лет я обнаружил, что некоторые источники света с хорошими фотометрическими результатами не всегда выглядят хорошо, а огни с худшими фотометрическими показателями иногда могут выглядеть лучше, чем показывают их результаты.

ВЫХОДНАЯ ТОЧНОСТЬ ЦВЕТОВОЙ ТЕМПЕРАТУРЫ ПО КЕЛЬВИНУ

Я протестировал самодельный светодиодный светильник дневного света 2 × 1 Джеффа с помощью спектрометра Sekonic C-700, чтобы выяснить, какой световой поток имел свет и насколько точным было воспроизведение цветовой температуры по шкале Кельвина.Показания были сняты на расстоянии 1 м (3,28 фута) в контролируемой среде.

Как вы можете видеть из показаний выше, свет зарегистрировал мощность 1690 лк (157 фк). 1690 лк от гибкой арматуры размером 2 × 1 - это немного меньше. Свет зафиксировал цветовую температуру по Кельвину 7343K, что было более чем на 1700K при воспроизведении истинного источника 5600K. Это определенно показывает вам, что покупка готовых светодиодных лент дневного света не обязательно гарантирует, что вы действительно приобретете светодиоды 5600K.

Чтобы представить себе производительность DIY 2 × 1 в перспективе, давайте сравним ее с Aladdin Bi-Flex 2 × 1, когда он установлен на 5600K:

Как вы можете видеть, Aladdin выдает 3650 люкс (339fc) и зарегистрировал цветовую температуру по Кельвину, равную 5899K.

Цветопередача

Итак, теперь, когда мы увидели, сколько отпечатков дает Jeff DIY 2 × 1, каковы его результаты, когда дело доходит до точного воспроизведения цветов. Выше вы можете видеть, что при освещении средний индекс цветопередачи (R1-R8) составляет 70.8 и расширенный CRI (R1-R15) 60,4. Для точного воспроизведения оттенков кожи он составил -27,5 для R9 (красный), 69,4 для R13 (наиболее близкий к кавказским оттенкам кожи) и 64,7 для R15 (наиболее близкий к азиатским оттенкам кожи). Эти результаты были откровенно ужасными, и цифры были худшими из всех светодиодных ламп, которые я когда-либо тестировал.

таких низких баллов указывают на то, что самодельный светильник не может точно воспроизводить большинство цветов, и ваши изображения должны быть серьезно скорректированы по цвету при публикации, чтобы получить разумно выглядящее изображение.

Давайте снова посмотрим, как это выглядит в сравнении с Aladdin Bi-Flex 2 × 1 (просто чтобы нам было с чем его сравнить):

Как видите, между этими двумя источниками света существует огромная разница, когда дело касается точного воспроизведения цветов.

Спектральное распределение

Выше вы можете увидеть спектральное распределение DIY 2 × 1 Джеффа. Судя по полученным мною показателям цветопередачи, неудивительно, что спектральное распределение довольно ужасное.Несмотря на равномерный спектр от 600 до 540 нм, свету не хватает тонны информации для большинства длин волн. Мало того, что спектр не полон, в нем есть огромные пробелы, где он вообще не может воспроизвести определенные цвета.

Давайте снова сравним DIY 2 × 1 Джеффа с Aladdin Bi-Flex 2 × 1. Выше вы можете увидеть, как должен выглядеть хороший светодиодный светильник, установленный на 5600K.

Я задал Джеффу вопрос после того, как показал ему результаты фотометрии его источников света:

Мы сделали несколько фотометрических измерений ваших фонарей. Вы были удивлены результатами?
Всегда был доволен качеством света, но немного подозреваю в цвете.Фотометрические показания подтвердили мои подозрения, поэтому я был удивлен и немного смущен результатами.

Реальная производительность

Несмотря на то, что тестировать свет на фотометрические характеристики важно, графики и цифры могут рассказать вам только часть истории. Просто потому, что свет работает хорошо, когда дело доходит до фотометрии, нет никакой гарантии, что эти результаты будут перенесены на хорошее качество света.

Несмотря на то, что Jeff DIY 2x1 показал ужасные фотометрические результаты, он на удивление выглядел не так плохо, как я думал.Нельзя сказать, что он был хорош с точки зрения любого воображения, но он действительно работал лучше, чем то, что показали его фотометрические результаты. Я мог ясно видеть, как неспособность света воспроизводить полный спектр влияла на получаемые нами изображения. Отсутствие красного в DIY 2 × 1 явно делало оттенки кожи очень зелеными, а другие цвета просто не совсем подходили.

В ситуациях, когда освещение полностью контролируется и вы балансируете белый цвет своей камеры, эти источники света, вероятно, будут работать лучше.Самая большая проблема с использованием света - это окружающая среда, где есть другие источники окружающего освещения. Как только вы установите баланс белого для светильников DIY, вы начнете видеть, что другие объекты на заднем плане начинают приобретать странный цветовой оттенок.

Что касается качества света, то он был более чем способен производить приятный мягкий, ровный источник при использовании с рассеиванием. В свете определенно не было ничего плохого, кроме того, как он воспроизводит цвета.

У Джеффа была полоса красных светодиодов, поэтому я предложил добавить несколько перед его светом, чтобы посмотреть, что произойдет.Удивительно, но свет внезапно стал намного лучше, и результаты CRI значительно выросли. Ниже вы можете увидеть, как это изменение повлияло на оттенки кожи.

Свет до того, как мы добавили несколько красных светодиодов Свет после того, как мы добавили несколько красных светодиодов

Ниже вы можете увидеть некоторые быстрые тестовые кадры, которые мы сделали с использованием света. Материал снят на Sony a7R II.

Как вы можете видеть из этого видения, результаты далеки от хороших, и попытка исправить изображения была очень сложной.Из-за того, что в цветовом спектре отсутствует так много информации, трудно получить изображение, которое выглядело бы естественным и подходящим для оттенков кожи. Я не колорист и уверен, что кто-то с более умелым набором навыков, вероятно, добьется лучшего результата. После того, как мы добавили красные полоски к свету, результаты действительно улучшились до точки, когда он, вероятно, стал немного приближаться к тому, чтобы выглядеть как дешевый с полки 1 × 1.

Я почти уверен, что если бы Джефф смог найти для использования несколько более качественных светодиодных лент, результаты от этого света действительно могли бы быть довольно хорошими.Нам удалось улучшить его точность цветопередачи, просто добавив полосу красных светодиодов, что вряд ли научно, но это действительно сработало.

Я спросил Джеффа,

Узнали ли вы что-нибудь из результатов, которые заставили вас переосмыслить, как улучшить свои светодиодные фонари?
Да, у меня был запас красных светодиодов, купленных в том же магазине, поэтому я добавил несколько красных полос между белыми, и это действительно помогло округлить цветовой спектр огней.

Сковорода

Еще один источник света, над которым работал Джефф, я назвал «Сковорода», потому что это буквально светодиодные ленты, прикрепленные к внутренней части сковороды.Это новый подход, и использование металлической основы с высокой отражающей способностью, такой как сковорода, безусловно, помогает увеличить интенсивность света. Поскольку светодиоды утоплены в кастрюлю, это также помогает источнику света не разливаться повсюду. Теперь я просто вижу Kickstarter: «Днем светло, ночью готовлю».

Удар и промах

Построить свои собственные светильники своими руками по-прежнему остается нелегкой задачей. Хотя вы можете добиться неплохих результатов, на самом деле все зависит от качества светодиодов, которые вы используете.Поиск и поиск правильных требует большого количества проб и ошибок. Поскольку некоторые светодиодные светильники продаются в розницу всего за несколько сотен долларов, создание собственного может показаться не очень разумным решением. Если вы считаете себя мастером / инженером, вы определенно можете попробовать, но лично я бы предпочел просто выложить немного денег и купить тот, который уже сделал кто-то другой.

Вы раньше использовали или делали светильники своими руками? Какой у вас был опыт? Дайте нам знать в комментариях ниже.

DIY Светодиодная лампа (светодиодная лампа)

Светодиодные лампы становятся все более распространенными и заменяют лампы CFL. Поскольку стоимость светодиодных ламп становится все ниже, люди постепенно переходят на светодиодные лампы в своих домах и офисах. В этом проекте мы попробуем сделать светодиодную лампу своими руками или светодиодную лампу своими руками, используя старый корпус (корпус) светодиодной лампы.

В этой светодиодной лампочке, сделанной своими руками, очень важна конструкция драйвера светодиода. Как правило, у нас есть два способа разработки драйвера светодиода: с использованием импульсного источника питания или обычного линейного регулятора на основе трансформатора.

Но для этой самодельной светодиодной лампы мы будем спроектировать источник питания без трансформатора, который будет выступать в качестве драйвера светодиода. На самом деле, этот тип блока питания для светодиодных ламп становится все более распространенным (ну, по крайней мере, для светодиодов меньшей мощности).

Предупреждение: Эта самодельная светодиодная лампа работает напрямую от основного источника питания, то есть 230 В переменного тока. Вы должны быть очень осторожны при работе с источником переменного тока.

Предупреждение: Проектирование блока питания без трансформатора без знания того, как работают компоненты, может быть фатальным.

Принципиальная схема светодиодной лампы DIY

Компоненты, необходимые для светодиодной лампы DIY

  • C1 - 135 Дж, 400 В, металлопленочный конденсатор
  • B1 - мостовой выпрямитель (4 диода можно подключить в режиме двухполупериодного выпрямителя) - Электролитический конденсатор 22 мкФ, 35 В
  • R1 - Резистор 100 кОм (1/4 Вт)
  • Светодиод от 1 до 12 - Светодиоды 8 мм

ПРИМЕЧАНИЕ: Используйте только металлический пленочный конденсатор с номиналом выше 400 для C1.

Описание компонентов

Конденсатор с номиналом X

Основным компонентом безтрансформаторного блока питания для светодиодной лампы DIY является конденсатор с номиналом X. Это металлический пленочный конденсатор, который часто используется в качестве предохранительного конденсатора.

Конденсатор номиналом X помещается между линией и нейтралью. Если этот конденсатор выходит из строя из-за перенапряжения, выход из строя будет коротким, и избыточный ток приведет к срабатыванию предохранителя, что позволит избежать поражения электрическим током.

Схема самодельной светодиодной лампы

Сначала основное питание подается на металлический пленочный конденсатор.Другой конец конденсатора подключен к входу переменного тока мостового выпрямителя. Для большей безопасности подключите резистор 100 Ом 1 Вт последовательно с конденсатором номиналом X, который будет действовать как предохранитель (на схеме не показан).

ПРИМЕЧАНИЕ: Если у вас нет мостового выпрямителя, вы можете подключить 4 PN переходных диода (например, 1N4007) в режиме двухполупериодного выпрямителя.

Другой вход переменного тока мостового выпрямителя подключен к нейтрали источника питания переменного тока. Выпрямленный выход подается на конденсатор (C2).К конденсатору последовательно подключены 12 светодиодов диаметром 8 мм.

Резистор R1 действует как спускной резистор (он разряжает конденсатор в случае сбоя питания или отказа светодиода).

ПРИМЕЧАНИЕ: Мы разобрали поврежденную светодиодную лампочку, и после реконструкции схемы она была похожа на разработанную нами. Основное отличие состоит в том, что они использовали SMD-компоненты для светодиодов и мостов, а мы использовали сквозные компоненты (по понятным причинам).

Дизайн печатной платы светодиодной лампы «Сделай сам»

Для разработки макета печатной платы светодиодной лампы мы использовали Eagle CAD. На следующем изображении показана компоновка печатной платы светодиодной лампы. Мы сделали печатную плату, используя метод переноса тонера, как указано в этом руководстве: Как сделать свою собственную печатную плату дома .

Сборка светодиодной лампы

Соберите все компоненты согласно схеме и припаяйте их. У нас есть пустой светодиодный корпус от старой светодиодной лампы.После сборки платы мы установили плату в корпусе светодиода со всеми проводами.

Работа светодиодной лампы

Теперь мы увидим работу этой простой светодиодной лампы, сделанной своими руками.

Светодиодам для работы требуется очень меньший ток. Обычно в обычном регулируемом источнике питания на основе трансформатора мы будем регулировать ток с помощью последовательных резисторов. Но в блоке питания без трансформатора ток регулируется или ограничивается конденсатором с номиналом X.

Поскольку этот конденсатор включен последовательно с источником переменного тока, общий ток, доступный в цепи, ограничен реактивным сопротивлением конденсатора.

Реактивное сопротивление конденсатора можно рассчитать по следующей формуле:

X C = 1 / 2πFC Ом, где F - частота источника питания, C - емкость конденсатора.

В нашем случае мы использовали конденсатор емкостью 1,3 мкФ. Следовательно, реактивное сопротивление этого конденсатора равно

X C1 = 1 / (2 * π * 50 * 1.3 * 10 -6 ) = 2449,7 ≈ 2450 Ом.

Следовательно, ток через этот конденсатор определяется как I = V / X C1 Amps = 230/2450 = 93,8 мА.

Теперь ограниченный по току переменный ток подается на мостовой выпрямитель. На выходе моста будет 230 В постоянного тока. Это подается на конденсатор фильтра номиналом 35 В. Но размах пульсаций напряжения на конденсаторе C2 составляет около 44 В.

Это выдается на 12 последовательно включенных светодиодов, поэтому каждый светодиод потребляет около 3,7 В, что равно номинальному напряжению 8-мм светодиода.

Что касается мощности, общая выходная мощность светодиодов составляет около 4 Вт.

Важное примечание: Этот проект - просто демонстрация того, как сконструировать светодиодную лампочку и как она работает. Метод, упомянутый в этом проекте, может не подходить для практического использования.

Также проект предусматривает работу с питанием от сети переменного тока 230 В. При работе с блоком питания переменного тока необходимо соблюдать особую осторожность.

Проекты «Сделай сам» с использованием светодиодных светильников от Ecolocity LED Lighting Solutions

Главная | Светодиодные проекты своими руками

проектов «Сделай сам» с использованием светодиодных модулей и светодиодной ленты для простого и энергоэффективного освещения «Сделай сам».Эти изделия можно использовать по-разному, в том числе под шкафами, под прилавками, при освещении бухт, в карнизах и даже под лестницами. Это некоторые из реализованных нами проектов. Если вы хотите показать нам некоторые из своих проектов, мы будем рады видеть ваши идеи и предложения.

Нужна помощь? Позвоните нам, и мы будем рады помочь вам с вашим проектом. Мы предоставляем бесплатные услуги по расценкам и верстке.

Светодиодное освещение под шкафом быстро становится стандартом для освещения под шкафом, в основном из-за того, что светодиодные светильники служат дольше, потребляют меньше энергии и с ними намного проще работать, чем с любыми другими типами освещения под шкафами, доступными на рынке.Взгляните на этот проект DIY, чтобы увидеть, как легко установить светодиодное освещение под шкафом в вашем доме или офисе.

Для светодиодного освещения над шкафом используется тот же процесс, что и для светодиодного освещения шкафа, и он также прослужит дольше, потребляет меньше энергии, прост в использовании и выглядит потрясающе по сравнению с другими типами решений по освещению шкафа. Ознакомьтесь со второй половиной этого проекта «Сделай сам», чтобы увидеть, насколько хорошо ваш дом или бизнес может выглядеть со светодиодным освещением под и над шкафом.

Следуйте этому руководству «Сделай сам» для справки по модернизации существующих люминесцентных ламп T8, T10 и T12 в экологически чистую и энергосберегающую альтернативу существующим светильникам.Эти лампы бывают длиной 2 и 4 фута, подключаются непосредственно к источнику питания 110–240 В переменного тока и не содержат ртути, других вредных газов или химикатов.

Устали заменять галогенные лампы в салоне автомобиля или просыпаться от разряда аккумуляторной батареи, когда вы забыли выключить плафон? У нас есть идеальное решение, следуйте этому проекту DIY, чтобы заменить галогенные лампы на более яркие и более эффективные светодиодные вафельные лампы G4 мощностью 1 Вт.

Замените неэффективное и тусклое существующее освещение 12 В постоянного тока в вашем прицепе или грузовике на яркие, четкие, энергосберегающие и долговечные светодиодные ленты.Просто используйте существующую проводку прицепа, и вы получите те же результаты для вашего прицепа или самосвала.

Для этого проекта «Сделай сам» мы использовали наши треугольные алюминиевые каналы с нашей светодиодной лентой Ribbon Star Max Warm White 12 В, чтобы добавить света и привлечь внимание к некоторым существующим внутренним стеллажам для дома.

Как сделать светодиодную панель с батарейным питанием

При съемке видео в помещении освещение даже важнее, чем качество вашей камеры. Мало того, что свет должен быть достаточно ярким, он также должен иметь правильную цветовую температуру.Для магазина с окнами, пропускающими естественный свет, освещение внутри магазина должно иметь цветовую температуру дневного света (5000–6500k) для согласованной цветопередачи в каждом кадре.
Итак, когда я впервые подумал о создании световой панели, поиск светодиода с правильной цветовой температурой был самой большой проблемой. Те, которые я использовал для этого проекта, заявлены как «дневной свет», но единственный способ узнать наверняка - это купить их и попробовать. К счастью, оказалось, что они соответствуют рекламе, а цветовая температура идеально подходит для освещения в моем магазине.

Хотя я сделал это специально для видео, нет причин, по которым вы не можете использовать его для других целей. Из него получился бы очень хороший рабочий свет над скамейкой, или полосы можно было бы расположить по-другому в соответствии с вашими потребностями. Рама, которую я сделал, была утилитарной, но ее также можно было сделать так, чтобы она выглядела как угодно. Поскольку светодиоды нагреваются только во время работы и работают от низкого напряжения, нет риска возгорания из-за использования дерева в качестве корпуса.

Купленная мной светодиодная лента была длиной 5 метров и состояла из 60 - 5050 светодиодов на метр.Вместо одной длинной полосы он был собран из частей по 30 светодиодов и спаян вместе. Паяльником расплавил стыки, чтобы разделить полосы:

У меня осталось 10 штук, которые я мог расположить на прямоугольной панели. Это тоже удобно, так как контактные площадки уже покрыты оловом и готовы к пайке выводных проводов.

Несущая панель представляет собой кусок фанеры толщиной 1/4 дюйма, достаточно большой, чтобы уместить десять полос. Я разрезал первую полоску пополам, чтобы я мог вывести цилиндрический разъем (который подключается к источнику питания) через слот посередине:

Я использовал дополнительный двусторонний скотч, поставляемый со светодиодом, думая, что он поможет полоскам приклеиваться.Я также покрасил подложку в белый цвет, чтобы сделать ее светоотражающей, и покрыл ее полиуретаном на водной основе, чтобы сделать ее гладкой. Как выяснилось, лента ненадежна, и мне пришлось использовать другой метод, чтобы закрепить полосы.

Чтобы соединить полосы вместе, я отрезал короткие куски многожильного провода и залудил концы после того, как снял изоляцию:

Я использую флюсовую ручку, чтобы промокнуть каждую паяльную площадку перед тем, как прикрепить провод. Я много паял и обнаружил, что это намного эффективнее, чем пытаться удерживать три вещи (провод, паяльник и припой) двумя руками:

Ручка с флюсом заставляет припой течь, что снижает риск перегрева соединения или нагружения слишком большого количества припоя.

Быстрый тест, подтверждающий, что я не делал ошибок - работает!

Светодиодный свет

очень направлен, и чтобы смягчить и рассеять его, я купил обычную люминесцентную линзу 2 х 4 фута в домашнем центре. Он легко режется на настольной пиле, и я сделал его того же размера, что и задняя панель:

Возвращаясь к отсутствию адгезии ленты к полоскам, я использовал строительный полиуретановый клей, чтобы приклеить их, и зажал его в течение нескольких часов.Я считаю, что это лучший и самый надежный способ закрепить эти полоски.

Рамка вокруг панели довольно проста, и я хотел, чтобы она была как можно более легкой. Вы можете увидеть две канавки - одну для задней панели и одну для линзы:

Я расположил линзу примерно на 3/4 дюйма от подложки, чтобы сделать устройство более компактным. Если расположить его подальше, свет будет рассеиваться немного лучше, но корпус станет более громоздким.

С объективом внутрь и с питанием панели вы можете видеть, насколько яркий и ровный свет:

Рядом с моей световой стойкой светодиодная панель действительно выглядит ярче.Световая стойка оснащена лампой CFL мощностью 42 Вт (что эквивалентно 150 Вт в традиционных терминах) и обеспечивает яркость 2700 люмен. Светодиод был рассчитан на 635 люмен на метр, так что всего около 3100:

Светодиодная лента поставлялась с блоком питания, но я хотел запустить ее от небольшой свинцово-кислотной батареи, чтобы установить ее на , мой портал для камеры . Достаточно просто покопаться в моем мусоре с электроникой и найти старый адаптер питания с цилиндрическим разъемом нужного размера на конце, который подходит для светодиодной ленты.Я перерезал шнур, затем прикрепил лопаточные разъемы, которые подходят к клеммам на батарее:

Я сделал фанерный ящик для батареи и установил его в задней части портала, чтобы компенсировать дополнительный вес спереди от световой панели:

Этот свет находится прямо над камерой и может быть направлен вверх или вниз, чтобы при необходимости пролить нужное количество света на объект:

Я просто приклеил и прикрутил короткий кусок 2 × 2 к рычагу портала, чтобы установить его, затем добавил фанерные крылья, которые выступают с помощью болта с квадратным подголовком и барашковой гайки для регулировки.

Батарейный отсек ограничивает движение кронштейна камеры, но это не будет проблемой. Чтобы зарядить аккумулятор, я сделал небольшое зарядное устройство, которое подключается к цилиндрическому разъему, не вынимая аккумулятор из коробки. Оставьте его заряжаться на ночь, и он будет готов к использованию на следующий день.

Я сделал короткое (хорошо освещенное) видео, показывающее, как я делал панель:

2017 Обновление

Световая панель зарекомендовала себя снова и снова и используется почти каждый раз, когда я включаю камеру, чтобы снимать видео или делать снимки.Учитывая, насколько я доволен производительностью, я решил исправить две проблемы, которые были у меня с самого начала. Во-первых, он больше, чем должен быть, и мешает другим вещам на моем портале камеры . Я также склонен натыкаться на него головой (нехорошо). Во-вторых, мне действительно следовало с самого начала подключить переключатель, так как подключать и отключать разъем гораздо сложнее. Кроме того, этот недорогой штекер разъема начинает изнашиваться / ослабевать.

Итак, я разобрал панель и перерезал части рамы для повторного использования.Я сделал их тоньше, и они тоже будут короче. Новая панель будет почти такой же длины, как оригинал, но только вдвое меньшей:

Новая компактная раскладка светодиодных лент. Я приклеил их с помощью строительного клея (подробнее об этом см. В видео ниже) к новой алюминиевой подложке. Лента удерживает полоски, пока клей схватывается:

Переключатель, который я использовал, предназначен для установки на печатной плате, поэтому я просто приклеил его к отверстию в раме термоклеем:

Пуговица выступает с другой стороны через меньшее отверстие.Не самый элегантный, но работает и должен хорошо держаться:

Я сделал простой кронштейн, чтобы снова установить его на кронштейне моей камеры. Его можно отрегулировать вверх или вниз, просто ослабив барашковую гайку. Вы можете увидеть новый разъем для подключения питания внизу. Я приклеил его клея-расплава так же, как выключатель питания:

Намного ярче, легче и меньше, я думаю, он излучает на 25% больше света, чем оригинал, когда аккумулятор полностью заряжен:

Я снял видео, как разбираю и переделываю панель:

29 DIY светодиодных панелей для выращивания растений, которые можно сделать дома

Создайте свои собственные светодиодные панели для выращивания

DIY по низкой цене, чтобы начать сеять и выращивать растения в помещении без солнечного света. Светодиодные лампы для выращивания растений

потребляют меньше энергии и выделяют меньше тепла. Мало того, они служат долго.

1. Дешевые мощные светодиодные лампы для выращивания растений

Создайте эту мощную светодиодную лампу DIY для выращивания света по низкой цене для ваших растений. Учебное пособие доступно на сайте "Наука в гидропонике".

Также читайте: 14 идей для гидропонного вертикального сада

2. Установка светодиодного светильника для выращивания растений мощностью 15 Вт в ванне

Выращивайте растения при искусственном освещении с помощью этой поделки.Вы можете сделать это легко, если у вас есть базовые знания в области электроники.

3. Светодиод COB, маленький светильник

Из этой статьи вы узнаете, как построить маленький, средний или большой светодиодный светильник для выращивания растений.

4. Светодиодная панель для выращивания растений 108 Вт

Коммерческие светодиодные лампы для выращивания растений стоят дорого, но вы можете сделать свой собственный, следуя этому руководству на Instructables.

5. Самодельные светодиодные лампы для выращивания комнатных растений

Следуйте этому руководству, чтобы построить самодельную светодиодную систему для выращивания для выращивания комнатных растений.

6. Светодиодная вытяжка для выращивания в аквариуме своими руками

Эта светодиодная система освещения не только украсит ваш аквариум, но и поддержит растения в нем. Узнайте, как это было сделано, в обучающем видео.

7. Проект светодиодного светильника для выращивания растений своими руками

Если вам нравится заниматься электронными работами, попробуйте эту поделку своими руками.

8. Светодиодная система освещения для выращивания растений в помещении

Эта светодиодная система освещения для выращивания растений с проволочными полками и таймером идеально подходит для выращивания небольших растений и посева семян в помещении

9.Светодиодный 5-полосный светильник для выращивания растений

Этот сделай сам рассказывает об идеальной длине волны для выращивания растений и о том, как этого добиться.

10. Как сделать свои собственные лампы для выращивания

В этом обучающем видео есть все шаги, которые вам нужно знать, чтобы создать свои собственные лампы для выращивания растений.

11. Доступный светодиодный светильник для выращивания растений за 35 долларов

Научитесь создавать эти дешевые лампы для выращивания с низким энергопотреблением в этом руководстве на YouTube.

12. Светодиодный светильник для выращивания из мусорной корзины

Узнайте, как этот ютубер построил самодельный светодиодный светильник для выращивания растений из мусорной корзины и 6 долларов.76 дюймов светодиодов.

13. Светодиодные фонари для озелененных резервуаров своими руками

Если у вас есть аквариум с растениями или вы планируете его построить, это руководство по светодиодному освещению поможет вам.

15. DIY 12V LED лампа для выращивания растений

Этот проект светодиодного светильника для выращивания растений требует перепрофилирования. Все инструкции доступны в видео.

16. Яркий светодиодный светильник для выращивания растений своими руками

Потратив от 400 до 500 долларов, вы сможете построить эту функциональную систему освещения для выращивания растений, которая идеально подходит для выращивания всех небольших горшечных растений и саженцев.Получите инструкции в видео.

17. Фанерные плантаторы и светодиодные лампы для выращивания растений

Если вы хорошо разбираетесь в деревообработке (или можете нанять кого-нибудь), этот умелый проект Modular Wall Garden стоит попробовать. Это вертикальный сад, в котором используются светодиодные лампы для выращивания.

Также читайте: 12 идей для вертикального огорода своими руками

18. 4 фута DIY LED 2 × 4 Тент для выращивания растений

Эта большая светодиодная палатка для выращивания растений 2 × 4, сделанная своими руками, достаточно велика, чтобы в ней поместилось много контейнерных растений.Зимой в нем можно выращивать травы и зелень.

19. Крытый сад со светодиодной подсветкой для самостоятельного выращивания

С помощью этого урока вырастите свои растения без солнечного света в этом ультрасовременном автоматизированном домашнем саду.

20. Суперяркая светодиодная панель «сделай сам» менее чем за 30 долларов

Узнайте, как этот ютубер создал эту недорогую панель для освещения растений, используя обычные светодиодные лампы для своих комнатных растений.

21. Цветной светодиодный светильник для выращивания растений

Изготовление собственного светодиодного светильника для выращивания растений - более дешевая альтернатива покупке нового.Также таким образом можно выбрать диапазон светового спектра. Узнайте больше здесь.

22. Светодиодный светильник для выращивания растений на металлической панели

Вот еще один доступный проект светодиодного светильника для выращивания растений, который можно выполнить всего за 100–150 долларов. Учебник здесь.

23. Светодиодные лампы для выращивания растений DIY Grow Tent

Создайте этот дешевый светодиодный светильник для выращивания растений в палатке для выращивания растений с помощью этого руководства своими руками.

24. Светодиодные лампы для выращивания растений с подставкой из ПВХ

Эта подставка для светильников из ПВХ, сделанная своими руками, пригодится, когда вы выращиваете семена в помещении.Инструкции здесь.

25. $ 10 Легко сделать DIY LED Grow Light

Для этого проекта светодиодного светильника для выращивания своими руками вам не потребуются дорогостоящие расходные материалы и навыки самостоятельного изготовления, и вы можете сделать это всего за 10 долларов. Как? Посмотрите видео!

26. Ohms Ultra 4 × 4 Светодиодная лампа для выращивания DIY

С помощью этого светодиодного светильника 4 × 4 вы можете вырастить несколько комнатных растений без солнечного света. Узнайте, как это было сделано, на видео.

27. Акриловые светодиодные лампы для выращивания растений

Узнайте, как создать этот прозрачный акриловый светильник для выращивания растений, в этом подробном пошаговом видеоуроке.

28. Компактный светодиодный светильник для выращивания растений DIY

Из этого урока вы узнаете, как сделать свой собственный компактный светодиодный индикатор для выращивания растений с мощностью всего 16,5 Вт.

29. Управление самодельными светодиодными светильниками для выращивания растений

Узнайте, как создать управляющий светодиодный светильник для выращивания растений, из этого видео, транслируемого в прямом эфире на YouTube.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *