Содержание

место для установки электрического котла, подключение электрокотла к сети

Для небольшого загородного дома отличным вариантом будет отопительная система с применением электрического котла. Такое отопления является безопасным и не несет вреда для здоровья человека. Как подключить электрокотел вы узнаете в нашей статье.

 

Содержание:

 

Место для установки электрического котла

Устанавливать котел желательно в нежилой комнате. Хороши вариантом будет устройство оборудования на кухне или в подсобном помещении. Следует взять во внимание удобство для техобслуживания котла. Проход к оборудованию не должен быть загроможден. 


Следует соблюдать все нормы по устройству электрического котла. От стены до оборудования должно быть свободное место более 5 см. над котлом должно соблюдаться свободное пространство в 80 см, под оборудованием свыше 50 см, а перед – более 70 см.


Устройство электрокотла можно производить только на стене, которая выполнена из негорючего материала.

В комплектацию оборудования входит специальная монтажная планка, которая необходимо при установке котла на стену. Сама планка крепится к стене при помощи дюбелей. 

Если в электрическом котле установлен расширительный мембранный бак, то система отопления рассчитывается на объем до 500 литров.

Какие компоненты входят в систему установки электрокотла

При правильном подключении котла отопительная система будет работать эффективно и безопасно. Компоненты, которые входят в систему установки:

 

  1. Радиаторы.
  2. Расширительный бак.
  3. Вентили запорные и сливные.
  4. Температурные датчики.
  5. Насос для циркуляции и фильтр.
  6. Аппарат.

Функции и недостатки

Также хорошим вариантом является универсальный твердотопливный котел со встроенным электрическим тэном. Такое оборудование выгодно устанавливать, так как многие модели имеют варочную поверхность. Таким образом, можно не устанавливать плиту для приготовления пищи, а также не потребуется дополнительная отделка.

 


Если вы включается отопления только по выходным или еще реже, то электрический котел отличный для вас вариант. Так как они хорошо переносят долгое отключение от сети. А также если случаются частые перебои электричества. 


Единственным недостатком подключения электрокотла является подведение мощных кабелей, которые должны иметь большое сечение. 

 

Необходимо знать для безопасности

Электрический котел можно подключать к розетке, если его потребление не превышает 3,5 кВт. Котлы с большей мощностью необходимо подключать к специальному щитку, который выделен кабелем. Для таких щитков питание свыше 220 В. 


Производители ограничивают максимальный ток 16А в целях безопасности. Поэтому применяется отдельный кабель. Котлы, которые имеют мощность свыше 7 кВт, могут питаться только от сети от 380В.

 

Подключение электрокотла к сети

Подключать электрический котел можно только с использованием медной проводки. А ее сечение должно быть такого же размера, как указывается в технических документах оборудования. При помощи специальных выводов для кабелей должны быть устроены электрические соединения оборудования внешнего типа. Такие выводы необходимо расположить в левом нижнем углу. В этом же месте надо установить клемму заземления из латуни с болтом М6. 


При врезке электрического котла в отопительную систему и при установке заземления необходимо чтобы между латунным болтом и металлическим корпусом был создан хороший контакт. Прежде чем соединять раму и болт в месте соединения рекомендуется хорошо зачистить. 


Если вы будете отапливать большой дом при помощи электрической системы отопления то перед выбором оборудования необходимо обратить внимание на приборы, которые поддерживают установку каскада. Для эффективной работы оборудования в каскаде необходимо клеммы соединить с управляемым оборудованием. 


Также вы можете управлять каскадом при помощи регулятора. В таком случае нужно клеммы управляющего оборудования соединить с контактами управления. 


Необходимо изучить техническую документацию электрического котла. После этого следует внимательно осмотреть оборудование зрительно и проверить правильность его установки. А также проверить все подключения и давление воды в отопительной системе, которое должно соответствовать норме.


При установке электрического котла в отопительной системе необходимо применять регулятор комнатного типа.


После соблюдения всех правил схема подключения электрокотла должна соответствовать следующим действиям:
  • В первую очередь проверяется работоспособность трубопроводной арматуры. Для этого необходимо переключить ее из положения «открыто» в «закрыто», и наоборот. 
  • Трубопроводная араматура системы отопления, водоснабжения и элетрического теплового генератора должна быть переведена в положение «закрыто». 
  • Трубопроводы, которые подводят холодную воду к оборудованию, необходимо открыть запорную арматуру. Для электрической системы отопления не следует применять в качестве теплоносителя незамерзающую жидкость. Связано это со свойствами, которые влияют на работу отопительной системы негативно.  
  • Незамерзающая жидкость обладает свойствами, которые приводят к износу и старению резиновых элементов оборудования.
  • На входе оборудования на обратке необходимо установить фильтр для предотвращения попадания мусора. 
  • Затем можно наполнить систему отопления водой. После этого можно проверять ее герметичность.
После установки электрического котла и радиаторов отопления необходимо произвести проверку работоспособности датчиков системы: сигнальные, датчик давления воды, датчик регулирования температуры, управляющий и датчик аварийного типа для температуры.


В период проведения ремонтных работ или при неблагоприятных условиях следует подключать электрокотел при помощи резиновых шлангов. Для системы отопления рекомендуется использовать воду с низким значением мощности. В таком случае вы продлите срок эксплуатации тэнов.

 

Читайте также:

Двухтрубная система отопления дома – монтаж и схема разводки трубопроводов

Двухтрубная система отопления

Содержание:

С давних времен известно, что деревянный дом, благодаря своим свойствам проводимости тепла, замечательным образом сохраняет комфортную для жильцов температуру. В случае если сруб предназначен для постоянного проживания, к тому же в территориальных зонах, где температура понижается до минусовой отметки, есть смысл планирования и дополнительных источников тепловой энергии.

Независимо от того, что монтаж однотрубных отопительных сетей для частных домов прост, не требует большой протяженности трубопровода и материальных затрат, список обустройства жилья возглавляют двухтрубные системы.

Убедительный, хотя и незначительный по длине список достоинств делает эксплуатацию двухтрубной системы отопления весьма це2лесообразной. Приобретение труб в двойном количестве, связанное с монтажом, оправдывается, поскольку для сооружения двухтрубной системы нет необходимости в трубопрокате большого диаметра.

Типы и размеры крепежных соединений, вентили и фасонные изделия необходимы в небольшом количестве. Стало быть, разница в стоимости для приобретения материала, довольно незначительна. Помимо всего, работу по установке двухтрубной системы отопления, вполне можно осилить и самостоятельно – своими руками.

Содержание статьи:

Системы двухтрубного водяного отопления частного дома

Двухтрубная система отопления создает качественный обогрев жилища. Это и понятно, ведь в каждый радиатор вмонтированы две трубы. Одна с горячей водой, параллельно подключенной к каждому из отопительных приборов, а уже остывшая вода через другую трубу имеет обратный выход в систему.

Установка крана перед каждым радиатором позволяет отключать любой из них, по необходимости, от общей подачи тепла. Температура в последнем радиаторе с горячей водой довольно низкая, по сравнению с однотрубной системой, однако потери, все равно будут намного меньше.

Горизонтальная двухтрубная система

Разница между горизонтальным и вертикальным типом отопительной системы зависит от труб, соединяющих каждый отдельный прибор в единый механизм расположения.

Вертикальная отопительная система присоединяет все приборы к вертикальному стояку. Ее монтаж обычно несколько дороже, однако воздушные пробки при эксплуатации практически не возникают.

Этот вариант является отличным для частных домов, имеющих два и больше этажей, поскольку каждый этаж может быть подсоединен к стояку отдельно.

Двухтрубная горизонтальная система отопления устанавливается в больших одноэтажных домах, где разумно и очевидно присоединить радиаторы к трубопроводу, проложенному именно в горизонтальном положении. Такой метод отопления удобен в обустройстве, скорее панельно-каркасных строений или для деревянных домов, не имеющих простенков. Стояки разводки для нее располагаются обычно в коридоре.

Схема горизонтальной системы

Горизонтальная система отопления имеет два типа подключения тепловых приборов:

  • лучевой;
  • последовательный.

Суть лучевого типа работы состоит в отдельной отопительной подаче к радиатору. Механизм действия последовательного типа заключается в общей паре трубопроводов.

Оба типа обладают своими преимуществами: в первом, абсолютно нет необходимости регулировать двухтрубную систему отопления, не нужно контролировать проходимость дросселей, расположенных у котла радиаторов.

А температурный режим будет одинаковым по всей лучевой длине. Небольшой недостаток этой системы отопления – расход материала.

Протягивая горизонтальную проводку к большому количеству радиаторов по стене, сложно сохранить безукоризненность внешнего вида. Поэтому лучшим вариантом будет предварительно спрятать трубы под стяжку во время строительства.

Лучевая система окажется практичной только в случае если частный дом имеет один этаж.

Последовательная двухтрубная сеть отопления всегда практична и выгодна в обогреве помещений, поскольку температура носителя тепла в системе отопления может всегда поддерживаться одинаковой.

Осуществляя правильную установку горизонтальной двухтрубной системы отопления, как и ее настройку необходимо знать:

  • Полная процедура монтажа системы займет достаточно много времени.
  • Регулировка системы должна быть проведена до наступления холодов.
  • При расчете горизонтальной двухтрубной системы отопления необходимо обратиться к квалифицированному специалисту.

Двухтрубная система обогрева с верхней разводкой

Применение двухтрубной вертикальной системы отопления с верхней разводкой предполагает параллельное соединение радиаторов, в которые тепло поступает от котла.

Двухтрубная вертикальная с верхней разводкой

Отличительной особенностью этого способа является верхнее прокладывание разводящего трубопровода и обязательное присутствие расширительного бака.

Бак монтируется в пиковой – верхней точке по отопительному контуру. Из котла носитель тепла поднимается вверх по трубопроводу, равномерно поступая по подводкам в каждый нагревательный радиатор.

В горизонтальных системах трубы прокладываются с небольшим уклоном.

По обратным подводкам вода от теплонагревателей возвращается в обратный трубопровод, а уже из него – в котел. Все приборы подобной системы отопления имеют два трубопровода: подающий и обратный. Именно поэтому она получила название двухтрубной.

Подача воды по системе происходит от водопровода. При отсутствии водоснабжения, вода заливается через отверстие расширительного бака вручную. Подпитывать отопительную систему лучше в обратку. То есть: холодная водопроводная вода перемешивается с горячей водой обратки. Это повышает ее плотность и увеличивает напор циркуляции во время подпитки.

Схема работы системы: нагретый теплоноситель под давлением поднимается вверх на чердак, после чего по радиаторам отопления спускается вниз. Уже остывшая вода подается обратно в трубы, которые расположены ниже уровня радиаторов. «Завоздушины» в такой циркуляции удаляются сами, чему дополнительно способствует расширительный бак.

Двухтрубная система отопления с нижней разводкой

Отопления с нижней разводкой

[ads1]От системы с верхней разводкой этот тип отличается подающим трубопроводом, который прокладывается рядом с обратным – снизу. Вода в нижней разводке движется снизу вверх по подающим трубам. Через нагревательные приборы она проходит по обратным подводкам и поступает уже в обратную трубу. После этого ее путь – в котел. Воздушные пробки из отопительной системы спускаются через специальные воздушные краны Маевского. Их необходимо установить на всех радиаторах.

Отопительная сеть с нижней разводкой может быть спроектирована с одним контуром, несколькими, с тупиковым или попутным. Движение теплоносителя может быть попутным или тупиковым.

Подобный вид разводки применяются редко. Связано это с тем, что количество конечных радиаторов обязательно нуждается в установке воздушных спускников. Поскольку эти системы имеют расширительный бак, который вовлекает воздух в кольцо циркуляции из-за сообщения с атмосферой, то работа по стравливанию воздуха из радиаторов должна проводиться каждую неделю.

Неоспоримое преимущество подобной системы в том, что дом можно отапливать еще до полного окончания строительства или согревать только тот этаж, где на данный момент вы проживаете.

Схема двухтрубной системы отопления

В двухтрубной системе, согласно схеме отопления к каждому радиатору обогрева подходят две трубы, одна верхняя – прямого тока, другая нижняя – с обратным током.

Двухтрубная отопительная система состоит из:

  1. котла;
  2. автовоздушника;
  3. термостатического клапана;
  4. батареи;
  5. устройства балансировки;
  6. бака;
  7. вентиля;
  8. фильтр трубопроводный;
  9. насос;
  10. манометр температуры;
  11. предохранительный клапан
  • Схема двухтрубного радиаторного отопления двухэтажного дома

    При наличии расширительного бака его установка должна быть не ниже самого верхнего пика (точки) системы. Если дом снабжен автономной водоподачей, то расширительный бак можно совместить с расходным бачком водной системы подачи.

  • Уклон труб в подаче и обратке может быть не больше десяти сантиметров на двадцати погонных метрах и более.
  • Если при монтаже трубопровод двухтрубной сети отопления нижней разводки оказался у входной двери, системы можно разделить на два отдельных колена. Разводка в таком случае должна создаваться от места, где расположена верхняя точка системы.
  • При автономной двухтрубной системе обогрева с верхней разводкой могут создаваться разные схемы монтажа. Зависеть они будут от места, где расположен расширительный бак, учитывая также высоту от пола.
  • Правильным решением станет установка расширительного бачка в нехолодном помещении, при соблюдении к нему свободного доступа. Это может оказаться неудобным, если верхняя горизонтальная труба подачи окажется посередине: между потолком и окном, нарушая эстетичный вид, и оформление стены или проема окна.
  • Разумеется, подобные меры изменят общий вид помещения не в лучшую сторону. Однако размещение расширительного бака на чердаке – над потолочным перекрытием тоже может оказаться неудобным, в смысле доступа, и к тому же частично небезопасным в холодный период.
  • Верхняя пиковая точка в двухтрубной системе при верхней разводке может быть выбрана, учитывая все возможные удобства и любое место для размещения расширительного бака. Самой лучшей окажется работа системы при наличии как можно большей по длине трубы теплоподачи.
  • Высоким также будет качество работы системы, если сама схема и монтаж будут содержать трубы различного диаметра, поскольку верхняя точка трубы подачи располагается в самом начале разводки. Дело в том, что при автономной работе по такой схеме система с трубами одинаковыми в диаметре может создать неверное движение теплоносителя – только по радиусу малого круга: котел – самая ближний радиатор – котел.
  • В любой системе отопления наличие циркуляционного насоса повышает ее эффективность в разы. Однако, что касается двухтрубной отопительной системы с верхней разводкой труб, он будет лишним. Циркуляционный насос имеет мощность, составляющую 60-100 Ватт, не нуждаясь в дополнительном обслуживании при длительной эксплуатационной «жизнедеятельности». При этом скорость нагрева помещения благодаря ему, весьма значительна.

Правила гидравлического расчета

Необходим ли гидравлический расчет двухтрубной системы отопления?

Каждый дом сугубо индивидуален. Соответственно и отопление с определением количества тепла должно быть индивидуально. Сделать это можно и нужно с помощью гидравлического расчета.

Цель гидравлического расчета:

  • определить количество нагревательных приборов;
  • рассчитать диаметр и количество трубопроводов;
  • определить возможные потери в системе отопления.

Все расчеты производятся по предварительно составленной схеме отопления со всеми элементами, входящими в систему. Выполняется гидравлический расчет по аксонометрическим таблицам и формулам.

Более нагруженное кольцо трубопровода принимается за расчетный объект и определяется необходимое сечение трубопровода, оптимальная площадь поверхности радиаторов, возможная потеря давления всего отопительного контура.

Проведение расчета создает четкую картина с распределением всех существующих сопротивлений в отопительном контуре и дает возможность получить точные параметры расхода воды, температурного режима в каждой части отопительной системы.

Как результат – гидравлический расчет должен выстроить самый оптимальный план отопления вашего дома. Не стоит полагаться только на свою интуицию, необходимо провести расчет, прибегнув к помощи специалиста.

Монтаж двухтрубной системы отопления

При монтажных работах двухтрубной системы отопления необходимо соблюдать ряд технологических правил.

  • Для начала очень важно определиться с выбором системы отопления, которая предполагается в конкретном доме. Понятно, что самым оптимальным окажется установка той системы, энергоносители которой будут доступны и одновременно экономичны. Именно экономичность в отоплении частного дома на сегодняшний день для большинства очень важна.
  • При проведенном к дому газоснабжении, можно не задумываясь устанавливать водяную систему отопления, имеющую два котла, один из которых основной – газовый, а второй запасной – электрический или для твердого топлива, создавая, таким образом, полную энергонезависимость.
  • Следующим этапом следует обращение в проектное бюро. Там будет произведены необходимые расчеты, составлена вся документация по проекту и созданы чертежи по отоплению дома. После этого можно смело начать приобретение необходимого оборудования и материалов.

Котельная

Перво-наперво необходимо установить отопительный котел. Для этого необходимо обустроить котельную, где будут находиться возможные продукты горения. Лучше, если это будет отдельное помещение или же подвальная комната с хорошей вентиляционной системой.

Доступ к котлу должен быть свободным, располагать его лучше на достаточном расстоянии от стен. Пол и прилегающие стены, вокруг него нужно облицевать огнеупорным материалом. Дымоход от котла выводится на улицу.

Установка коллекторного шкафа

Если необходимо, то следующим этапом монтажа будет установка циркуляционного насоса, распределительного коллектора, если таковой предусмотрен системой, а так же регулирующих и измерительных приборов рядом с котлом.

Прокладка труб

От места размещения котла ведется магистраль трубопровода к тем местам, где установлены радиаторы. Для проведения труб через толщину стены, необходимо делать отверстия. После проведения труб, образовавшиеся отверстия необходимо замазать раствором цемента. Соединяются трубы исходя из материала изготовления.

Подключение радиаторов

Монтаж радиаторов

Самым последним этапом монтажа двухтрубной системы отопления будет монтирование радиаторов. Они устанавливаются обязательно под оконным проемом на кронштейны. Если размеры радиатора малы и не закрывают оконный проем, желательно нарастить секции или установить по возможности два радиатора.

Высота от пола должна быть от 10 до 12 см, расстояние от стен от 2 до 5 см, от подоконников до радиаторов – 10 см. Вход и выход радиатора фиксируется установлением запорной и регулирующей фурнитуры. Обязательна так же и установка термодатчиков. Благодаря их наличию можно регулировать желаемый температурный режим или перекрывать по необходимости движение воды.

После завершения установки всех элементов отопительных конструкций системы производится опрессовка. Первичный запуск котла допустим только после документального разрешения и в присутствии одного из представителей от газового хозяйства.

Закрытые системы отопления

Двухтрубная закрытая система отопления – это сеть с постоянно поддерживающимся давлением, отсутствием водоразбора и притока извне теплоносителя. Она по достоинству является самой популярной в решении отопления частных домов с электрическими котлами.

Управление расходом теплоэнергии желательно сопроводить установкой термостатов. Последние модели этих устройств производят автоматический контроль работы котла: включение или отключение дополнительной горелки, по необходимости. Топливо и энергия при этом расходуется очень экономно.

Закрытая система отопления со смешанной циркуляцией

Закрытая двухтрубная система отопления состоит из:

  • котла;
  • автовоздушника;
  • термостатического клапана;
  • радиатора;
  • балансировочного клапана;
  • мембранного расширительного бака;
  • шарового крана – вентиля;
  • фильтра сетчатого магистрального;
  • циркуляционного насоса;
  • термоманометра;
  • предохранительного клапана.

Основное достоинство двухтрубной закрытой системы отопления – отсутствие возможного «завоздушивания» системы. В ней отсутствует испарение теплоносителя, поэтому его применение не лимитируется.
Монтаж закрытой сети отопления сопровождается и предусматривает наличие мембранного расширительного бака.

Плюсы закрытой системы:

  • Бак располагается в том же месте, где и котел. Отпадает необходимость протягивания трубы на чердак. Этот пункт полностью исключит контроль над уровнем воды и снимет беспокойство относительно постоянного доливания воды в бак.
  • Отсутствует контакт атмосферы и воды. Следовательно, возможность растворения в воде лишнего кислорода тоже исключается. Этот факт увеличивает срок эксплуатации радиаторов и котла соответственно.
  • Уменьшается риск возникновения «завоздушин» в верхних радиаторах, поскольку присутствует возможность увеличения давления даже в пиковой – верхней — пиковой точке системы отопления.

Советы по расчету и монтажу двухтрубной системы смотрите на видео ниже:

http://www. youtube.com/watch?v=LyJLwabP9Zk

Из всего рассмотренного выше можно сделать вывод: монтаж двухтрубной отопительной системы своими руками, вполне доступен и не так уж сложен. Изобилие на рынке материалов и методического материала по этой теме в сетях интернета достаточно. Что касается сборки нынешних отопительных систем при помощи фурнитуры, то эта работа под силу окажется и обычному дилетанту, особенно если присутствует желание. Главный момент – это грамотное составление проекта, покупка качественных материалов и оборудования.

Схема подключения электрокотла к системе отопления |


Вариантов отопления помещений достаточно много, но наиболее эффективный способ — электрический котел. Это безопасно для экологии и выгодно для жителей здания.

Электрические нагреватели имеют высокий КПД, поэтому могут гарантировать оптимальную температуру в любом помещении. На них обычно устанавливаются регуляторы, что способствует настройке устройства под желания потребителя.
Установить электрокотел для отопления непросто, но для начала его нужно купить, с чем вам поможет этот сайт.

Если устройство куплено, его нужно подготовить к установке. Для этого котел распаковывается и проверяется на целостность. Проверяются все заглушки на патрубках (снимаются и одеваются обратно), чтобы они не сидели жестко.

Основы установки

Установку лучше проводить в нежилом помещении (кухня или котельная). Место должно быть удобным для работы с системой отопления и её обслуживания.

Схема подключения электрокотла к системе отопления должна рассчитываться с учетом всех требуемых норм. Расстояние между котлом и стенами должно быть не менее 5 см, над устройством должна быть ниша в 80 см, а под ним — в 50. Кроме того, перед аппаратом тоже ничего не должно находиться на расстоянии 70 см. Генератор должен быть установлен только на несущей стене, а для подвески устройства следует использовать монтажную планку, которая крепится на стену на 4 шурупах.

Подключение котла

Подключать котел с сети нужно только медной проволокой соответствующего сечения. Внешние электрические соединения должны быть выполнены через специальные выводы, которые располагаются в левом углу. Тут же, по идее, располагается клемма заземления.

Во время врезки котла нужно тщательно установить контакт между клеммой заземления и металлическим корпусом устройства. Для больших помещений электрокотлы устанавливаются каскадом, поэтому нужно знать, возможно ли это для вашего агрегата.

Что делать после установки?

После проверки устройства на пригодность, следует оценить исправность трубопроводной арматуры и перевести её в состояние «закрыто». Такое же положение должно быть на системе отопления и водоснабжения.

На всех трубопроводы, которые отвечают за подведение холодной воды к котлу, должна быть открыта запорная арматура. После этого грязевик или фильтр следует установить между котлом и обратным трубопроводом. Когда отопительная система наполнится водой, нужно проверить её на герметичность.

После завершения монтажа проверке подлежат датчики системы, в том числе регулятор температуры, датчик давления и аварийный датчик. Для обеспечения качественной работы отопительной системы нужна дистиллированная вода, ведь только она не загрязняет ТЭНы накипью и продлевает срок их жизни.


Покупка электрического котла: что нужно знать

  • Гиды и советы

Электрические котлы не занимают много места, работают тихо и зачастую дешевле в установке, чем газовые и масляные котлы. Однако они подходят только для небольших домов и квартир.

Что такое электрический котел?

Электрические котлы обеспечивают центральное отопление и горячее водоснабжение домов без сжигания какого-либо топлива, такого как нефть и газ. Вместо этого они используют только электричество, как чайник. Электрические котлы часто представляют собой компактные агрегаты, которые легко устанавливаются и не требуют дымохода или трубы для конденсата, поскольку они не производят отходящих газов.

Доступно несколько типов электрокотлов:

Электрокотел тип Как это работает
Прямой Подогревает воду по запросу и не хранит ее в баллоне, как в комбинированном котле.
Хранение Хранит воду в резервуаре для горячей воды, который находится либо внутри устройства, либо в другом месте на территории.
Комбинированное первичное хранилище (КПСС) Часто это самый крупный тип электрического бойлера, они хранят горячую воду внутри агрегата.
Хранение сухих ядер Нагревает кирпичи в течение ночи, затем в течение дня тепло отводится в воду и используется для центрального отопления и горячего водоснабжения.

Агрегаты намного проще, чем другие типы котлов, с гораздо меньшим количеством движущихся частей, что значительно снижает вероятность возникновения неисправности.

Преимущества электрического котла?

Для небольших домов, где установлен электрический бойлер, есть много преимуществ.

Более дешевая установка

Сравнивая расценки на установку, вы обнаружите, что электрический котел зачастую дешевле в установке, чем газовые и масляные котлы. Это связано с тем, что электрические котлы не производят никаких отходов, поэтому нет необходимости в дымоходе или трубе для конденсата, что также устраняет необходимость в дополнительных трубопроводах.

Нет риска утечки окиси углерода

В отличие от газа и масла, которые при сжигании выделяют окись углерода, электрические котлы не сжигают никакого топлива, что полностью устраняет риск утечки окиси углерода.

Без годового обслуживания

Электрокотлы не нуждаются в ежегодном обслуживании, так как в них очень мало движущихся частей. Отсутствие необходимости в организации обслуживания сэкономит вам от 50 до 160 фунтов стерлингов ежегодно.

Гибкая установка

Электрический котел можно установить практически на любой стене вокруг дома, тогда как газовый или масляный котел должен быть на внешней стене, что дает вам большую гибкость.Это связано с тем, что электрические котлы не производят вредных отходящих газов или воды во время работы, поэтому нет необходимости в дымоходе или трубе для конденсата.

Совместим с солнечной батареей

Использование электрического котла с солнечными панелями позволяет использовать в котле бесплатную возобновляемую солнечную энергию для снижения эксплуатационных расходов. Солнечная тепловая система также может использоваться для нагрева горячей воды в водонагревателе.

Проблемы с электрокотлом

Хотя электрические котлы – более простая альтернатива газу и маслу, они не обходятся без своих проблем.

Высокие эксплуатационные расходы

Электроэнергия намного дороже газа, поэтому ваши счета за электроэнергию могут возрасти. Хотя эксплуатационные расходы могут быть выше, вы сэкономите на ежегодном обслуживании и с меньшей вероятностью будете нуждаться в ремонте. Сравните затраты на электрические котлы и газовые котлы.

Вы можете бороться с высокими эксплуатационными расходами с тарифами Economy 7 или Economy 10, которые предлагают сниженные цены на электроэнергию в ночное время или за счет использования электрического котла с солнечной энергией, вырабатываемой солнечными фотоэлектрическими батареями.

Меньше горячей воды

Электрический бойлер – не лучший вариант для больших домов, поскольку они не могут удовлетворить повышенный спрос на центральное отопление и горячую воду.

Когда дело доходит до выбора электрического бойлера подходящей мощности, вам нужно 1,5 кВт на один радиатор в вашем доме. Итак, если в вашем доме 8 радиаторов, следует установить электрокотел мощностью не менее 12 кВт.

3. Отключение электроэнергии

В результате отключения электроэнергии ваш дом останется без отопления и горячей воды, пока он не заработает снова, но это проблема не только для электрических котлов. Все современные котлы состоят из множества электрических компонентов, в том числе печатной платы (PCB), которая считается «мозгом» котла, поэтому во время отключения электроэнергии газовый котел тоже не будет работать.

4. Перегорел предохранитель

Перед тем, как выбрать электрический бойлер, очень важно знать размер предохранителя в вашем доме, иначе есть большая вероятность, что предохранитель сработает.

Предохранитель

А обеспечивает питание дома, и многие дома в Великобритании, особенно старые, имеют предохранители на 30 или 60 А.Типичный электрический котел будет потреблять 48 ампер, что достаточно, чтобы пережечь предохранитель на 30 ампер или не оставить много места для работы других электроприборов с предохранителем на 60 ампер.

В британские дома можно установить предохранитель на 80 или 100 ампер, и стоит проконсультироваться с электриком, прежде чем покупать электрический бойлер.

Объяснение эффективности электрического котла

При сравнении электрических котлов показатели эффективности могут ввести в заблуждение. Трудно найти электрический котел с КПД 99-100%, но рейтинг ErP, европейская система оценки энергопотребления, часто составляет C или D по шкале от A +++ (самый высокий уровень эффективности) до G. .С другой стороны, газовые и масляные котлы часто получают рейтинг A, несмотря на то, что их КПД составляет около 89% – 94%.

Итак, почему у электрокотлов такой низкий рейтинг ErP? Ответ заключается в том, как электричество чаще всего вырабатывается в Великобритании.

Хотя производство электроэнергии с использованием возобновляемых источников энергии в Великобритании растет, большая часть по-прежнему производится с использованием ископаемых видов топлива, таких как газ и нефть. По этой причине электричество считается углеродоемким топливом.

Электроэнергия как углеродоемкое топливо дороже природного газа, сжиженного нефтяного газа и нефти. Единственный способ снизить углеродоемкость и стоимость электроэнергии – это привлечь больше поставщиков энергии к производству электроэнергии из возобновляемых источников.

К счастью, в National Grid считают, что это может произойти уже в 2025 году: «Мы считаем, что к 2025 году мы сможем полностью эксплуатировать электроэнергетическую систему Великобритании с нулевым выбросом углерода».

Узнайте больше, прочитав «Объяснение эффективности электрического котла».



Дома лучше всего подходят для электрического котла?

Распространенным решением для отопления домов для объектов, не подключенных к газовой сети, является нефть, но это означает, что необходимо иметь место для хранения нефти. Электрокотлы – эффективная альтернатива, не занимающая много места.

Однако, поскольку электрические бойлеры могут обеспечить лишь ограниченное количество горячей воды, они не являются лучшим решением для отопления дома для более крупных объектов. Если вы живете в большом доме, не подключенном к электросети, и ищете альтернативу масляному котлу, то есть несколько возобновляемых альтернатив.

Помимо домашней газовой сети, для квартир хорошо подходят и электрические котлы. Все газовые котлы нуждаются в дымоходе для удаления отработанных газов из дома, но в правилах дымохода указано, что они должны находиться на определенном расстоянии от окон и дверей, чтобы газы не попадали в ваш собственный дом или в дом соседа. Соблюдение этих правил дымохода может быть особенно трудным для квартир.

Поскольку в квартирах не может быть и речи о масляном котле, так как им также нужен дымоход, не говоря уже о резервуаре для хранения масла, электрический бойлер является идеальным решением.

Квартиры, как правило, идеального размера для электрического бойлера, отвечающего требованиям отопления и горячего водоснабжения, к тому же они компактны по размеру, поэтому не занимают много места, что может быть очень ценно в небольшой квартире.

Кто может установить электрический котел?

При замене газового котла на электрический, вам необходимо нанять зарегистрированного инженера Gas Safe для демонтажа газового котла. Они также снимут дымоход, конденсатную трубу и закроют газовую линию, поскольку они не нужны для электрического котла.

Зарегистрированный инженер Gas Safe также должен иметь возможность установить электрический котел, но как только он будет установлен на стене, потребуется электрик, который позаботится о последних частях проводки – ваш инженер-теплотехник может кого-то порекомендовать.

Смета на установку электрокотла

Если вы хотите установить электрический бойлер, мы настоятельно рекомендуем сравнить расценки на установку от нескольких установщиков. Сравнение котировок дает вам наибольшие шансы найти лучшее предложение, доступное в вашем районе.

Чтобы упростить поиск инженеров, которые могут предоставить расценки, потратьте пару минут, чтобы заполнить нашу простую онлайн-форму, и вы получите бесплатные расценки от до 3 установщиков электрических котлов, находящихся рядом с вами.



Об авторе

Адам

Адам – ​​наш постоянный эксперт по отоплению дома. Его опыт и советы помогли миллионам клиентов повысить эффективность своих домов и сэкономить деньги.

% PDF-1.4 % 4520 0 объект > эндобдж xref 4520 88 0000000016 00000 н. 0000003975 00000 н. 0000004126 00000 н. 0000004428 00000 н. 0000004529 00000 н. 0000004644 00000 н. 0000018877 00000 п. 0000018990 00000 п. 0000019061 00000 п. 0000019167 00000 п. 0000034825 00000 п. 0000035099 00000 н. 0000035583 00000 п. 0000035612 00000 п. 0000036242 00000 п. 0000036382 00000 п. 0000051199 00000 п. 0000051458 00000 п. 0000052019 00000 п. 0000052552 00000 п. 0000052667 00000 п. 0000074307 00000 п. 0000074560 00000 п. 0000075223 00000 п. 0000075889 00000 п. 0000075960 00000 п. 0000076059 00000 п. 0000100159 00000 н. 0000100431 00000 н. 0000100852 00000 н. 0000100881 00000 н. 0000101417 00000 п. 0000101557 00000 н. 0000101789 00000 н. 0000101873 00000 н. 0000101930 00000 н. 0000101996 00000 н. 0000102178 00000 п. 0000102258 00000 н. 0000102357 00000 п. 0000102514 00000 н. 0000102927 00000 н. 0000126830 00000 н. 0000131780 00000 н. 0000137858 00000 н. 0000142851 00000 н. 0000142928 00000 н. 0000603720 00000 н. 0000612783 00000 н. 0000612824 00000 н. 0000615404 00000 н. 0000615523 00000 п. 0000615592 00000 н. 0000615628 00000 н. 0000615954 00000 н. 0000616033 00000 н. 0000625096 00000 н. 0000625137 00000 н. 0000625178 00000 н. 0000625219 00000 н. 0000625260 00000 н. 0000634429 00000 п. 0000637077 00000 н. 0000640076 00000 н. 0000642261 00000 н. 0000642402 00000 н. 0000642544 00000 н. 0000642967 00000 н. 0000643225 00000 н. 0000643661 00000 н. 0000661838 00000 н. 0000661867 00000 н. 0000662166 00000 н. 0000662316 00000 н. 0000662385 00000 н. 0000662672 00000 н. 0000662754 00000 н. 0000663317 00000 н. 0000663346 00000 п. 0000663753 00000 н. 0000664035 00000 н. 0000664104 00000 п. 0000664391 00000 н. 0000664484 00000 н. 0000666582 00000 н. 0000666696 00000 н. 0000003714 00000 н. 0000002102 00000 п. трейлер ] / Назад 4358663 / XRefStm 3714 >> startxref 0 %% EOF 4607 0 объект > поток h ޴ VklSu? {oqo ۽ lX% c8) L> 8) c ܍6 ZcS`t> SHАGF ՠ! См.’ͽs ~ w

Коммерческие электрические котлы

A.S.M.E. Судно, построенное кодексом, зарегистрированное Национальным советом

Котлы

Cemline сконструированы и проштампованы в строгом соответствии с последними требованиями A.S.M.E. код с использованием качественной пластины для сосудов высокого давления, сваренной сертифицированными сварщиками. Резервуары, используемые в котлах, изготовлены в соответствии с Разделом IV или Разделом I A.S.M.E. Предоставляются сертификаты кода и формы H или S. Все резервуары зарегистрированы Национальным советом инспекторов сосудов под давлением котлов и сертифицированы.Сосуды обычно рассчитаны на максимальное рабочее давление воды 150 фунтов на квадратный дюйм или пар 15 фунтов на квадратный дюйм.

Стальная оболочка 20 калибра с эмалевым покрытием Hammertone

Котлы Cemline аккуратно и красиво покрыты стальной рубашкой толщиной 20 мм поверх стекловолоконной изоляции. Куртка защищает изоляцию и профессионально окрашена эмалью высшего качества, что дает дополнительное преимущество в виде простой в уходе поверхности.

3 ”изоляция из стекловолокна

Котлы Cemline снабжены изоляцией из стекловолокна толщиной 3 дюйма.Эта высококачественная изоляция оказалась чрезвычайно надежным средством минимизации потерь тепла и соответствует действующим стандартам ASHRAE. Вертикальные нагреватели поставляются с опорами для ног с регулировочными болтами и муфтами для приема ног. Это дает возможность установить агрегат прямо на пол или поднять его с помощью трубных ножек на любую желаемую высоту. Горизонтальные котлы Cemline устанавливаются на опорных полозьях двутавровых балок, которые спроектированы таким образом, чтобы обеспечивать правильную опору для нагревателя в качестве постоянного основания.

Электронагревательные элементы

Cemline Нагревательные элементы бойлера состоят из одного или нескольких съемных погружных стержней в оболочке из инколой. Эти стержни сгруппированы вместе в трехфазные треугольники для достижения требуемого общего количества киловатт. Каждый стержень содержит проволоку сопротивления, окруженную толстым слоем сжатого оксида магния. Отдельные стержни являются съемными и заменяемыми обычными ручными инструментами для замены в полевых условиях, чтобы обеспечить беспроблемное обслуживание нагревателя.

Система цепей управления

Цепи управления электрическим котлом

Cemline оснащены разделительным трансформатором линейного напряжения на 120 вольт для обеспечения управления 120 вольт.Этот трансформатор защищен предохранителями на первичной стороне и предохранен и заземлен на вторичной стороне в соответствии с A.S.M.E. Кодекс, Национальный электротехнический кодекс и лаборатории страховщиков. Электрокотлы Cemline имеют встроенную защитную защиту от высоких температур. Электрокотлы оснащены регулируемым верхним пределом с автоматическим сбросом и термостатом верхнего предела с ручным сбросом и кнопкой ручного сброса. Эти термостаты размыкают цепь управления, если температура котла превышает заданное значение.

Контакторы

Электрические котлы

Cemline оснащены сверхмощными магнитными контакторами для замыкания и размыкания цепей, необходимых для управления нагрузкой. Контакторы управляются твердотельным ступенчатым контроллером.

Окончательная сборка и тестирование

Электрические котлы

Cemline проходят тщательную проверку перед отправкой. На все компоненты и качество изготовления дается гарантия сроком на один год с даты запуска или восемнадцать месяцев с даты отгрузки.

Предохранители

В электрических котлах

Cemline используются предохранители типа «J».Каждая линия контактора защищена отдельным предохранителем, который предназначен для отключения питания в случае перегрузки в этой цепи.

Электропроводка

Электрокотлы Cemline

подключаются на заводе с использованием термостойкого медного провода с цветной маркировкой. Все компоненты подключены на заводе к клеммной колодке большого размера для беспаечных соединений. Нагреватели, снабженные автоматическим выключателем или выключателем, подключаются на заводе к стороне нагрузки выключателя.

Отсечка по низкому уровню воды

Электрические котлы Cemline

оснащены поплавковой системой отключения при низком уровне воды, с возможностью размыкания цепи управления при низком уровне воды.

Шкаф электрического управления

Электрические элементы и органы управления Cemline смонтированы в корпусе NEMA I с дверцей с замком на ключ.

Контрольные огни

Поставляются контрольные лампы

, позволяющие оператору сразу увидеть состояние.

Предохранительные клапаны

Электрические котлы Cemline оснащены системой A.S.M.E. клапан сброса давления. Размер клапана рассчитан на сброс общего количества БТЕ на входе нагревательных элементов.

Список UL

Электрические котлы

Cemline соответствуют требованиям испытаний и инспекций Underwriters ’Laboratories и внесены в списки и маркируются в соответствии с требованиями Underwriters’ Laboratories.

Термометр и манометр

Электрические котлы

Cemline оснащены термометром для контроля температуры в емкости и манометром с круговой шкалой для контроля давления в емкости. Эти датчики устанавливаются в легкодоступном месте, чтобы их можно было считывать с пола.

Разъяснение котельной системы

(LTHW) – Инженерное мышление

Описание котельной системы (LTHW). В этом уроке мы рассмотрим типичную современную систему отопления в коммерческом здании.Есть много вариантов того, как это можно настроить, но эта версия довольно типична для коммерческих зданий новой постройки.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по системам кипячения

В этой системе у нас есть два больших котла, которые подключены параллельно. Это означает, что оба котла могут работать одновременно или по отдельности. Один из котлов может быть изолирован, отключен и открыт для обслуживания, в то время как другой котел продолжает работать и обеспечивать отопление здания. Это наиболее распространенный тип конфигурации для современных систем отопления. Другая версия будет подключена последовательно, но это устаревшая конструкция, которая не так практична, по крайней мере, для коммерческих офисов.

Пример разных котлов Котлы

бывают разных исполнений, несколько примеров я привел выше. Это может быть пара больших котлов или несколько более мелких. В лучших проектах будет использоваться сочетание размеров, чтобы эффективно удовлетворить спрос. Возможно, большой зимой и меньше летом.

Эти котлы служат источником тепла для системы отопления. Это тепло передается циркулирующей воде системы отопления, которая затем выталкивается наружу и вокруг здания.

В системах такого типа вы встретите два термина: первичные и вторичные цепи.

В первичном контуре горячая вода будет циркулировать от котлов к гидравлическому разделителю. Гидравлический разделитель будет подавать горячую воду во вторичные контуры, а затем возвращать использованную горячую воду из охладителя обратно в другой конец гидравлического коллектора.

Вода первичного контура может течь прямо через гидравлический разделитель и обратно в котел для сбора большего количества тепла, или может течь вверх через вторичные контуры. Путь прохождения воды будет зависеть от потребности в горячей воде во вторичных контурах. Вода может протекать прямо, потому что бойлерам для работы требуется минимальный расход, в противном случае они могут повредить или разрушить свои внутренние части.

Каждый первичный и вторичный контуры имеют свои собственные насосные агрегаты.

Первичные насосы обычно представляют собой более крупные насосы, обычно центробежного типа с приводом от асинхронного двигателя. Это зависит от размера системы, хотя они также могут быть встроенными, особенно в небольших офисных помещениях.

Подробное описание первичной и вторичной сторон , описанных здесь

Первичные насосы будут проталкивать воду только по первичному контуру. Эта горячая вода выходит из котла, попадает в этот трубопровод, всасывается первичным насосом и затем выталкивается в гидравлический разделитель.

Эта вода может затем либо выйти через вторичные насосы, выходящие из коллектора с малыми потерями, и течь в стояки, либо некоторая ее часть будет проходить через другую сторону коллектора. В любом случае вода достигнет дальнего конца коллектора и продолжит течь обратно в котел, но при более низкой температуре, чтобы собрать больше тепла и повторить этот цикл.

Из коллектора с горячей стороны выходят несколько небольших насосов, которые подсоединены к трубам, известным как стояки.Стояки поднимаются вверх по зданию, чтобы подавать нагретую воду в разные контуры. Например, кондиционеры восточного или западного крыла.

В этом примере у нас четыре вторичных цепи. Вторичные контуры 1–3 имеют сдвоенный насос, а четвертый – только один, поскольку тепловая нагрузка небольшая и находится поблизости, возможно, возле стойки регистрации.

Вторичные насосы

Выше вы можете увидеть пример некоторых вторичных насосов меньшего размера. Это могут быть и большие центробежные насосы, это зависит от размера системы отопления. Эти насосы нагнетают горячую воду туда, где это необходимо, но только для выбранной области здания, к которой подключен трубопровод.

Установки с двумя насосами обычно работают в дежурном и резервном режимах. Это означает, что один насос работает в любой момент времени, а другой действует как резервный на случай выхода рабочего насоса из строя.

Вторичные контуры будут обеспечивать водой определенную площадь здания. Например, первый контур может обеспечивать горячей водой радиаторы на первом этаже.Второй, вторичный контур может обеспечивать горячей водой вентиляционные установки и фанкойлы только на восточной стороне здания и т. Д. И т. Д.

После того, как горячая вода проходит через теплообменник и теряет часть своей тепловой энергии, она возвращается через обратный стояк, откуда она течет обратно в разделитель с низкими потерями и обратно в котел для сбора большего количества тепла.

Горячая вода

В этом примере у нас также есть вторичный контур, который идет в водонагреватель. Водонагреватель – это место, где производится горячая вода, это горячая вода, которая выходит из кранов.

Почему мы отделяем бытовую воду от горячей воды, циркулирующей по всему зданию? Много химикатов попадает в первичную систему отопления системы LTHW, систему горячего водоснабжения с низкой температурой, и вы действительно не хотите пить это.

Горячая вода подается из котла во вторичный контур, где она затем нагнетается насосом в теплообменник в водонагревателе.Затем он будет передавать свое тепло свежей воде, которая находится внутри резервуара. Температура пресной воды неизбежно повысится из-за теплообменника. Эта подогретая пресная вода затем подается на кухни, чайные зоны и раковины в ванных комнатах, где она используется и стекает в канализацию. Он не вернется обратно в систему отопления. Между тем, подаваемая горячая вода из бойлера во вторичном контуре будет вытекать из теплообменника в водонагревателе с более низкой температурой, потому что она отдала часть своего тепла пресной воде, и она вернется обратно в водонагреватель. Гидравлический разделитель и обратно в котел.

Блок наддува

Выше вы можете увидеть пример расширительного бака и блока повышения давления. Давление в системе изменится, например, если включится вторичный насосный агрегат, тогда первичный насосный агрегат увидит снижение давления, потому что теперь больше воды течет из коллектора во вторичный контур.

То же самое, если температура воды повышается или понижается, ее плотность изменится, и это также повлияет на давление.Вода расширяется при нагревании и сжимается при охлаждении.

Расширительный бак и блок повышения давления подключаются к главному трубопроводу, обычно где-то около гидравлического коллектора. Если давление становится слишком высоким, то, очевидно, расширительный бак поглотит часть этого, а когда оно станет слишком низким, блок повышения давления заставит его вернуться в систему, чтобы выровнять его.

Система дозирования

Выше вы можете увидеть пример дозирующей емкости. Обычно это устанавливается с помощью тонких трубопроводов, соединенных через гидравлический разделитель.Затем он будет использовать перепад давления, чтобы пропустить через него горячую воду. Дозатор просто позволяет заливать химические ингибиторы в систему, что сохраняет ее чистоту и отсутствие бактерий.


Вот почему ваша печь или котел не запускается

Хотя газовые печи и котлы эффективны, они могут иметь проблемы, как и любая другая механическая система. Когда температура в вашем доме опускается ниже комфортного уровня, вы задаетесь вопросом: почему у меня не включается обогреватель? Есть несколько распространенных причин, по которым ваш котел или печь не загорается. Несколько шагов по устранению неполадок, которые вы можете предпринять, помогут вам определить причину.

причин, по которым ваша печь или котел не запускается

Термостат

Убедитесь, что ваш термостат установлен в положение нагрева и что заданное значение ниже текущей температуры в помещении. Настройки термостата могут быть случайно изменены. Уменьшите настройку на несколько градусов ниже текущей комнатной температуры и подождите несколько минут, чтобы система активировалась. Если система отопления не включается, переходите к следующему шагу.

Проблемы с электричеством

Многие современные котлы и печи не имеют запальных ламп. В них используется электронное зажигание. Они также могут быть оснащены предохранительным вентилятором, отводящим горючие газы. Котлы также оснащены циркуляционными насосами. Для работы этих компонентов требуется электричество. Убедитесь, что автоматические выключатели вашей печи не сработали. Если да, сбросьте выключатели. Ваше устройство может также иметь аварийный выключатель. Он похож на выключатель света и будет установлен возле вашей печи или котла.Для масляных систем он может быть наверху вашей ступеньки, ведущей в подвал. Убедитесь, что он находится в положении «Вкл.».

Газоснабжение

Если термостат и питание работают правильно, убедитесь, что в систему поступает достаточный поток газа. Убедитесь, что запорный клапан находится в открытом положении. В качестве меры предосторожности он мог быть закрыт летом, когда топка или бойлер не понадобились.

Неисправный компонент

Конечной причиной отказа котла или печи может быть неисправный компонент.Детали загрязняются и со временем изнашиваются. Есть датчики расхода воздуха и газа, которые требуют очистки, а также отверстие, через которое газ проходит к запальной лампе горелки. Регулирующий клапан содержит датчик температуры, который отключит систему в случае неисправности датчика. Термопара – это устройство, которое останавливает поток газа, если сигнальная лампа не горит. Электронная система зажигания и конденсатный насос также могут выйти из строя.

Вы можете проверить термостат, сбросить автоматические выключатели и открыть клапан подачи газа самостоятельно, но работу с линиями подачи и заменой компонентов системы следует доверить профессионалу, чтобы свести к минимуму потенциальные проблемы с электричеством или утечку газа в будущем.

Получение справки

Прежде чем наступят холода, проверьте систему отопления. Чтобы запланировать технический визит одного из высококвалифицированных технических специалистов Frederick Air, свяжитесь с нашим офисом. Этот профилактический осмотр может помочь вам избежать потенциальных проблем с вашей печью или котлом. Технические специалисты Frederick Air также доступны 24 часа в сутки в случае возникновения чрезвычайных ситуаций. Позвоните по телефону 301-663-0300, чтобы назначить встречу или забронировать онлайн, нажав здесь.

Энергии | Бесплатный полнотекстовый | Гибкость электрического котла и теплоаккумулятора для взаимодействия нескольких энергетических систем

1.

Введение Централизованное теплоснабжение (ЦТ) обеспечивало горячей водой 63% частных домов в Дании в 2015 году [1]. Концепция системы централизованного теплоснабжения / охлаждения 4-го поколения, поддерживаемая возобновляемыми источниками энергии, представлена ​​в [2]. Чтобы к 2030 году стать углеродно-нейтральным в секторе отопления, возобновляемые источники энергии должны удовлетворить все потребности в отоплении. Таким образом, существует возможность интеграции тепловых и электрических сетей для поддержки вспомогательных услуг сети с помощью гибких электрических нагрузок, таких как электрические котлы (EB) и тепловые насосы (HP), поддерживающие тепловую систему [2,3].Электроэнергетическая и тепловая сети соединены вместе как электроэнергия-тепло (P2H), чтобы использовать возобновляемую электроэнергию для централизованного теплоснабжения. Интегрированный накопитель тепла разделяет спрос и выработку, чтобы повысить гибкость и лучшую адаптацию к потребностям в энергии. Концепция P2H в мультиэнергетической системе требует незначительного расширения сети и хранилища [4]. Цель данной статьи – подтвердить гибкость работы теплового блока, состоящего из электрического котла (EB) и накопительного бака, смоделированного с помощью стратифицированного слои, как часть системы P2H.Это в первую очередь реализуется посредством анализа данных по измеренному потреблению тепловой энергии в жилом районе и оценки спроса на тепловую энергию с использованием подбора кривой с последующим составлением оптимального графика EB на основе спотовой цены. Модель многослойного стратифицированного резервуара для хранения тепла подходит для интеграции в электрическую сеть и гибкой работы, чтобы компенсировать ошибку в оценке потребности в тепле. Этот метод также может быть применен к системе с тепловым насосом. Однако применение ЭБ в настоящее время весьма важно для обеспечения гибкости энергопотребления, а также частотных услуг системы [5].Например, ЭБ мощностью 50 кВт используется в качестве гибкой нагрузки на острове Ливо, Дания, для увеличения собственного потребления от ветряных и фотоэлектрических установок, установленных на острове [6]. Преимущества централизованного накопления тепла с точки зрения эксплуатационной гибкости ТЭЦ (комбинированное производство тепла и электроэнергии) для централизованного теплоснабжения хорошо изучено в [7]. Гибкость сети централизованного теплоснабжения для рынка резерва автоматического восстановления частоты изучается в [8]. Уравновешивающие рынки предоставляют возможность для привлечения большего количества ЭБ в ЦТ и увеличения его вклада в гибкость [9].Важным аспектом здесь является то, как можно эффективно реализовать развертывание системы. Ref. [7] обращается к гибкой работе тепловых насосов с использованием стратегии прогнозирующего управления, пренебрегая потреблением горячей воды из-за его сильно рандомизированного и трудно предсказуемого характера. Прогностическое управление тепловым насосом путем оценки только температуры наружного воздуха было изучено в [10]. Таким образом, существует необходимость в исследовании простых и эффективных методов определения влияющих параметров для прогнозирования тепловой нагрузки для управления гибкой работой тепловых блоков в технологии P2H.Перспектива электрификации тепла на рынке с преобладанием ветра с использованием резистивного нагрева и накопления является наиболее углеродоемким методом [11] с более низкими инвестиционными затратами по сравнению с HP [9,12]. Кроме того, большим HP требуется много времени от холодного пуска до достижения оптимальной эффективности. Таким образом, они не очень активны на балансирующих рынках между часами из-за коротких интервалов старт-стоп. Скорее, они в основном используются в качестве базовой нагрузки [9]. Следовательно, гибкость легкого запуска-останова в балансировочных услугах является основным стимулом для введения большего количества EB в систему.Электроэнергетические установки в централизованном теплоснабжении имеют потенциал для отрицательной вторичной регулирующей мощности за счет увеличения потребления и поддержания баланса сети [13]. В [14] реализованы преимущества управления спросом и возможность реагирования на спрос для повышения эффективности энергосистемы с помощью интегрированных устройств энергии ветра и электрического обогрева с учетом постоянной тепловой нагрузки в течение дня. Более высокий потенциал ТН в системах ЦТ в будущем реализован в [15]. Интеграция ЭП с накопителями в низковольтную бытовую сеть в качестве гибкой потребительской нагрузки была представлена ​​в [16].Следовательно, существует потенциал хорошей гармонии и гибкости между секторами электрической и тепловой энергии, поддерживающими друг друга в мультиэнергетических системах. Исследование потребностей в отоплении помещений и горячей воде для бытовых нужд представлено в [17] на основе подбора кривой и функций распределения. В [18] индекс коэффициента пиковой нагрузки зданий используется для определения разнообразия тепловых нагрузок с целью создания теплового профиля для жилых зданий. В справочнике [19] рассчитывается вероятность потребления горячей воды для бытового потребления в момент времени (t), который зависит от вероятности в течение дня, дня недели, сезона и праздника, как функции времени (t).Ступенчатые функции с большей вероятностью для выходных дней по сравнению с рабочими днями используются для индикации более высокого потребления горячей воды для бытового потребления в выходные дни. Тепловая потребность в отоплении помещения в типичный зимний день исследуется в [20]. Однако схема использования комбинированного эффекта отопления помещений (SH) и горячего водоснабжения (ГВС) все еще остается нереализованной. Надлежащее знание структуры спроса на отопление помещений и бытового использования, представленное в этой статье, является ключевым фактором для разработки хорошего и применимого инструмента оценки спроса на тепловую энергию.В основном тексте и формулах он выделен курсивом. Для согласованности в документе, пожалуйста, внимательно проверьте и измените их на курсив. Возможность оценки потребности в тепле для отопления помещений всего за несколько часов заранее с использованием нейронной сети на основе потребления тепла в зданиях в Польше сопоставлена ​​с погодными условиями более чем на 10%. годовой период в [21]. В [21] метод прогнозирования основан на нейронной сети временных рядов с учетом температуры и потребления тепла в конкретный час, день и предыдущую историю.Данные за один месяц из сети ЦО в Риге были проанализированы для прогнозирования в [22] со сравнением методов с использованием искусственной нейронной сети, модели полиномиальной регрессии и их комбинации. С помощью этих методов прогнозы выполняются путем обновления статистики фактической нагрузки и температуры предыдущего измерения. ЦО из Чехии был проанализирован в [23] в модели прогноза, основанной на временных рядах температуры наружного воздуха и зависимых от времени социальных компонентов, которые могут различаться для разных дней недели и времени года.Для реализации прогноза социальной составляющей используется метод Бокса – Дженкинса. В [24] рассматриваются вопросы выбора соответствующих входных переменных от датчиков систем управления энергопотреблением. Температура окружающей среды и относительная влажность наряду с солнечной радиацией являются преобладающими факторами для прогнозной модели [24,25]. В [26] прогнозирование, основанное на методе аналогичного дня, хорошо представлено для выходной мощности на сутки вперед для маломасштабной солнечной фотоэлектрической системы. Тем не менее, ни одна из литературы не обсуждалась относительно централизованного теплоснабжения как летом, так и зимой, а также прогноза тепловой нагрузки, основанного на совокупном влиянии фактора времени и переменных окружающей среды (таких как температура наружного воздуха, влажность и скорость ветра) вместе.Эти аспекты важны для изучения в комплексной структуре, чтобы четко понять эффективный потенциал тепловых устройств, таких как электрические блоки. Таким образом, такие гибкие блоки могут обеспечивать энергетическую гибкость, необходимую для поддержки интеграции возобновляемых источников энергии в будущие энергетические системы. В этом документе предложенная методология для получения гибкости с EB в P2H резюмирована на блок-схеме, как показано на Рис. 1. Существенным вкладом в этот документ является определение модели тепловой нагрузки, оценка тепловой нагрузки с использованием инструмента подбора кривой и использование стратифицированного резервуара для хранения для проверки гибкости работы EB.Фактические тепловые данные от оператора ЦО анализируются, чтобы раскрыть конкретную модель потребления жилых районов, связанных с использованием, на основе различных временных факторов, таких как почасовые, будние, выходные и сезонные. Эта информация полезна при обучении инструмента построения кривой для оценки тепловой нагрузки. Со ссылкой на [21,22,23], оценка потребности в тепловой энергии основана на прошлом и ее текущем состоянии на зиму. Простой, но эффективный метод построения кривой для оценки потребности в тепле в жилом районе на основе зависимых параметров, таких как временной фактор (на основе профиля потребления) и переменные среды (кажущаяся температура), был исследован и также сравнен с фактическими данными. как следствие существующей литературы.Анализ выполняется для оценки тепловой нагрузки как зимой, так и летом. Подгонка кривой проста и решает проблему, возникающую при обновлении измеренных данных (из-за отказа измерительного оборудования), как при оценке временных рядов. Расчетный спрос используется для определения оптимального графика работы ЭБ в P2H, для планирования мощностей для одновременного хранения и удовлетворения спроса на тепловую энергию на основе спотовой цены на электроэнергию. Использование многослойного накопительного бака в сочетании с EB имитирует реальные условия эксплуатации, при которых температура подаваемой горячей воды более реалистична по сравнению со средней моделью накопительного бака, где температура горячей воды постепенно снижается.Результат подтверждается фактическим потреблением тепла, чтобы проиллюстрировать, как накопитель тепла справляется с ошибкой прогнозирования, и вносит свой вклад в качестве примера гибкой нагрузки в концепции P2H. Документ структурирован следующим образом. Анализ потребления тепловой нагрузки, основанный на фактических измерениях на одном конкретном жилом участке в Дании, снабженном пятью фидерами, анализируется для раскрытия конкретной модели использования и описывается в Разделе 2. Выбор параметров для эффективной оценки тепловой нагрузки с использованием различных инструментов, таких как нейронные сеточная подгонка и аналогичный дневной метод обсуждаются в Разделе 3.Обзор подхода к моделированию стратифицированного резервуара для хранения горячей воды и EB представлен в разделе 4 вместе с проверкой модели. В Разделе 5 представлена ​​методология оптимизированного графика работы ЭБ вместе со стратегией управления ВКЛ / ВЫКЛ ЭБ. Результаты расчетного спроса обсуждаются в Разделе 6, а затем его применение в гибком графике EB для реагирования на спрос. Наконец, статья завершается результатами исследовательской работы в Разделе 7.

2.Анализ тепловых данных

Тепловые данные, измеренные на терминале пяти тепловых распределительных фидеров (F1-F5), снабжающих ряд жилых домов, в одном конкретном жилом районе Ольборга, Дания, используются для анализа. Проанализированы имеющиеся измеренные данные о почасовом потреблении тепловой энергии с 21 декабря 2015 года по 4 декабря 2016 года. На рисунке 2 показано общее годовое потребление тепловой энергии (QDHW) для жилых домов в фидерах (F1-F5), снабжающих жилые дома. Годовое потребление колеблется от 723 ед.7 МВтч как самое низкое потребление для F1 до 1278,5 МВтч как самое высокое потребление в F4. Это различие связано с разным количеством жителей в районе и их уровнем комфорта. Общее годовое потребление составило 5195,7 МВтч. На рис. 3а, б показан график почасового потребления QDHW для фидеров (F1-F5) и их общего потребления соответственно в течение года. Рисунок 3a, b ясно показывает, что есть сезонные колебания. Рисунок 3b показывает, что есть внезапный переход в потреблении тепла в определенный период времени, например, ближе к концу января, середине марта и началу мая.Однако между серединой мая и концом сентября наблюдается значительная разница в потреблении тепла, которая составляет менее 35% от пикового зимнего потребления. Таким образом, чтобы упростить дальнейший анализ, тренд потребления тепла условно разделен на два сезона, зимний и летний, независимо от осени и весны. Следовательно, с октября по апрель считается зимним сезоном, а с мая по сентябрь – летним сезоном. Переходный период в начале мая и октябре в данном анализе не рассматривается.Похоже, что в мае спрос на тепло немного больше, чем в сентябре, из-за перехода с зимы на лето и составляет около 30 ± 5% от пикового зимнего потребления. Интересно увидеть анализ данных с сезонной точки зрения: потребление зимой и летом. В остальной части статьи анализ проводится с учетом совокупного воздействия всех питателей. В результате максимальная потребность в тепле, вероятно, будет меньше суммы пиковой нагрузки отдельного питателя. Это также снижает периодические колебания спроса на отдельные кормушки.

Среднее потребление QDHW в час для всех фидеров с учетом годового потребления составляет 618,5 кВтч. Зимой это 881,8 кВтч, что на 205,8% больше, чем потребление летом 288,4 кВтч.

На рис. 4a, c показан график среднечасового режима потребления тепла в разные дни недели зимой и летом соответственно. Хорошо видно, что существует уникальная картина среднего теплового потребления с пиками. В выходные (суббота и воскресенье) картина отличается от будней (с понедельника по пятницу).Для упрощения графиков, показанных на рис. 4a, c, графики со средним потреблением тепловой энергии в течение недели, будних и выходных дней были построены на рис. 4b, d для зимы и лета соответственно. Отмечается, что существуют определенные закономерности почасового использования среднего QDHW. Есть две вершины и две впадины. Очевидно, что разница в потреблении тепла по отношению к минимальному потреблению выше для выходных, чем для будних дней, что указывает на более высокое потребление горячей воды для бытового потребления, как указано в [19].На рисунке 5 показана структура потребления в будние, будние и выходные дни за период с декабря 2016 года по август 2017 года для зимы и лета соответственно. В отличие от рисунка 4b, d общее потребление в выходные дни ниже, чем в будние дни. Таким образом, количество потребляемой тепловой энергии по выходным и будним дням не очень актуально. Однако почасовая структура потребления в будние и выходные дни сопоставима с аналогичными пиками и спадами в определенные часы, показанными на рис. 4b, d. Следовательно, знание этих моделей потребления тепла в будние и выходные дни очень полезно для обучения инструмента оценки, чтобы компенсировать ошибку из-за факторов, не зависящих от температуры, таких как поведение пользователя.Самый низкий уровень потребления наблюдается в период 03: 00–04: 59 ч, который постепенно увеличивается до 07: 00–07: 59 ч в обычные будние дни, когда люди готовятся к своей работе (рис. 4b, d). В выходные дни этот пик смещается примерно с 10: 00–12: 59. Сдвиг пика может быть вызван тем, что в выходные люди предпочитают поздно вставать. После утреннего пика потребление тепла снижается до 2: 00–3: 59 ч, когда люди находятся на работе в будние дни. В течение недели вечерний пик приходится на 18: 00–20: 59, который постепенно снижается до 4:59 ранним утром.Однако летом наблюдается сдвиг вечернего пика по сравнению с зимним. Этот анализ показывает актуальность времени, дня и сезона для определения характера использования теплового потребления и его важность для прогнозирования, как показано в [21] для тепловой нагрузки, аналогично прогнозированию электрической нагрузки [27].

3. Оценка тепловой нагрузки

Трудно оценить тепловую нагрузку для жилого района, поскольку она в значительной степени зависит не только от переменных окружающей среды (погоды), но также от поведения пользователя и геометрии здания.В действительности, анализ занятости и комфорта на уровне пользователей затруднен и приводит к проблемам, связанным с проблемами конфиденциальности отдельных лиц. Это приводит к значительным усилиям по поиску компромисса между ошибками в оцениваемых переменных и зависимых параметрах. Анализ тепловых данных в жилых районах дает замечательную информацию о структуре спроса на тепловую энергию без ущерба для конфиденциальности частных лиц. Эта информация полезна при выборе эффективных переменных для оценки спроса на тепловую энергию с точки зрения поведения пользователя, которое определяет структуру спроса.Время суток и дни недели (будние или выходные) – это два основных параметра, связанных со структурой потребления тепла в зависимости от уровня комфорта пользователя.

Расчетные параметры используются для определения гибкости работы тепловой системы на основе спроса, предложения, мощности и цен на энергию. В этой статье для оценки потребления тепла в жилом районе используются тепловые данные, показанные на Рисунке 5.
3.1. Зависимые переменные для оценки тепловой нагрузки
На тепловую нагрузку сильно влияют переменные окружающей среды, такие как температура воздуха.На рисунке 6а показано почасовое значение тепловой нагрузки и соответствующая средняя внешняя температура окружающей среды. Это показывает, что снижение температуры увеличивает потребность в тепле. Помимо температуры воздуха, холодный воздух с высокой относительной влажностью увеличивает отвод тепла от тела по сравнению с сухим воздухом той же температуры. Чтобы учесть комбинированный эффект относительной влажности, ветра и температуры воздуха, ответственный за потерю тепла телом, учитывается кажущаяся температура.Кажущаяся температура рассчитывается с использованием (1) и (2) [28]. На рисунке 6b показано почасовое значение тепловой нагрузки и соответствующая кажущаяся температура. Коэффициент корреляции тепловой нагрузки по отношению к внешней температуре окружающей среды и кажущейся температуре составляет -0,88 и -0,89 соответственно.

AT = Ta + 0,33e − 0,7v − 4,00

(1)

е = Rh2006.105exp17.27Ta237.7 + Ta

(2)

где AT = видимая температура [° C]. Ta = Температура внешней среды по сухому термометру [° C].e = давление водяного пара [гПа]. v = скорость ветра [м / с]. RH = относительная влажность [%]. На рисунке 7a показан график зависимости видимой температуры от тепловой нагрузки в период с декабря 2016 года по август 2017 года. На рисунке 7b показано распределение тепловой нагрузки по отношению к видимой температуре только летом и зимой. Из рисунка 7b видно, что потребность в тепле зимой обратно пропорциональна кажущейся температуре. Тогда как летом пропорциональная связь между собой очень мала.Это может быть связано с тем, что помимо внешней температуры, потребление тепла в основном используется для бытовых целей, таких как купание, стирка, обогрев туалета / ванной комнаты и потери при передаче. Таким образом, логично заключить, что сезонный эффект необходимо рассматривать как входную переменную в модели для оценки.

Параметры для оценки тепловых нагрузок в жилых районах основаны на таких факторах, как поведение пользователя (часы, рабочие и выходные дни) и условия окружающей среды (видимая температура и время года).

3.2. Метод оценки тепловой нагрузки

Рассмотрены различные подходы к оценке тепловой нагрузки, основанные на методе подбора кривой, такой как подгонка нейронной сети и аналогичный дневной метод, поскольку они широко используются. Встроенные инструменты и функции MATLAB используются для разработки модели оценки с помощью инструмента нейронной сети. Анализируются различные сценарии, основанные на сезонных колебаниях (летом и зимой).

Для инструмента подбора нейронной сети 50% сезонного набора данных используются для обучения, 25% для проверки и 25% для тестирования для разработки модели.Наборы данных делятся случайным образом для обучения, тестирования и проверки модели. После разработки модели для оценки используется 50% оставшегося набора сезонных данных.

Для аналогичного дневного подхода почасовые данные дня упорядочены по сезону (лето и зима), будням и выходным, как показано на рисунке 8. 50% каждого набора данных (будние и выходные для лета и зимы) используются как исторические данные для построения евклидова расстояния (ED) для измерения сходства. В методе аналогичного дня предполагается, что тепловая нагрузка связана с кажущейся температурой (AT) для аналогичного дня (будние дни и выходные летом или зимой), что приведет к аналогичной тепловой нагрузке.Значение ED, основанное на записанных нормированных значениях AT (AT˜) в конкретный час (h) дня (d), рассчитывается для каждого исторического аналогичного дня (di) с использованием (3) [26]

ED (AT˜, d, di) = ∑h = 124 (AT˜h (d) −AT˜h (di)) 2

(3)

где ED (AT˜, d, di) – ED между днем ​​d и историческими днями di относительно значения AT˜. Дни с аналогичным графиком AT будут иметь очень маленькие значения ED, поэтому соответствующее значение тепловой нагрузки выбрано в качестве оценочного значения. Параметры AT могут быть получены из прогнозируемых метеорологических данных.

5. График работы ЭБ для обеспечения гибкости

Чтобы спланировать время работы ЭБ для зарядки резервуара для горячей воды, следует процедура оптимизации, описанная в (11) и (12). Целевая функция – минимизировать затраты на электроэнергию для производства горячей воды для удовлетворения спроса и потребностей в хранении. Ограничения рассчитывают энергию, хранящуюся в резервуаре для хранения, и не позволяют резервуару для хранения заряжаться больше, чем его допустимый максимальный и минимальный предел. Энергия, извлекаемая из сети, равна 0 (когда EB выключен) или равна номинальной мощности электронагревателя EB (Pb, когда EB включен).Энергия, извлекаемая из сети, должна быть способна заряжать хранилище, а также удовлетворять спрос. Несмотря на то, что есть возможности для управления мощностью ЭБ в несколько этапов, проблема здесь упрощается с помощью только включения и выключения, чтобы продемонстрировать гибкость в работе ЭБ в условиях динамического тарифа с помощью предполагаемого спроса. Кроме того, работа ЭБ в часы пик в вечернее время ограничена, чтобы свести к минимуму проблемы, связанные с перегрузкой сети и пониженным напряжением в низковольтной жилой сети Дании, из-за интеграции и работы электрических котлов (ЭБ) [6].Тепловая энергия, хранящаяся в резервуаре в конце дня, максимизируется, чтобы проиллюстрировать, что резервуар для хранения не только обеспечивает гибкость, удовлетворяя потребность в тепловой энергии во время высокой цены на электроэнергию и пикового спроса на электроэнергию, но также сохраняет энергию в течение периода низкая цена на электроэнергию в течение 24 часов по спотовой цене на рынке электроэнергии.

Minimize∑t = 124CtPg, т

(11)

Ограничения St + 1 = St − QDHW, t + Pg, tSmin≤St≤SmaxPg, t∈ [0, PbΔt] Pg, t = 0 для 17≤t≤20 (Smax − PbΔt) ≤St≤Smaxfort = 24

(12)

Здесь C = цена энергии [евро / МВтч].Pg = энергия, извлекаемая из сети [МВтч]. S = энергия, которая может быть извлечена из хранилища [МВтч]. QDHW = тепловая нагрузка [МВтч]. Pb = номинальная мощность EB [2,4 МВт]. Индексы: t = время [ч], min = минимум, max = максимум, ini = начальное значение. Максимальная энергия, которая может храниться в резервуаре для горячей воды, определяется выражением (13)

Smax = MbCw (Ts-Tr) / (3600 × 106) [МВтч]

(13)

Здесь Mb = Масса воды в хранилище [2 × 105 кг]. Ts = температура подаваемой горячей воды в баке [80 ° C]. Tr = температура возвратной воды в баке [40 ° C].Cw = удельная теплоемкость воды [4190 Дж / кг · K]. Задача оптимизации была решена путем минимизации функции стоимости с помощью оптимизации грубой силы в MATLAB. Все возможные кандидаты в решения генерируются и затем проверяются на соответствие постановке задачи, как указано в (11) и (12). Для более чем одного решения выбирается решение с меньшим количеством операций включения / выключения EB. Решения были проверены с помощью «PuLP», моделлера линейного программирования, написанного на python.
Управление EB
Оптимизированный график работы EB определяется на основе предполагаемой тепловой нагрузки.С другой стороны, фактическая потребность в тепле будет в некоторой степени отличаться от расчетной стоимости. Это приводит к ошибке оценки. Если ошибка велика, это может привести к тому, что температура накопительного бака будет отклоняться от указанного предела (T10≤75 ° C, когда накопитель заряжен, и T7≥46 ° C, чтобы ограничить разряд накопителя до 70% его емкости). Таким образом, чтобы компенсировать большую ошибку в расчетной потребности по отношению к фактическому значению, оптимизированный график работы EB усилен контроллерами пределов на основе управления гистерезисом, реализованным с помощью RS-триггера, для включения / выключения EB, как показано на рисунке 12.Это гарантирует, что температура горячей воды в накопительном баке находится в пределах указанного предела. На рисунке 12а показано, что при температуре нижнего слоя T10≥75 ° C EB необходимо выключить, как описано в разделе 4.1. Он отключается только на короткий период, пока температура седьмого слоя (T7) не станет ниже 78 ° C, чтобы он мог в дальнейшем следовать графику. Рисунок 12b гарантирует, что если T7 <46 ° C (накопитель разряжается более чем на 70% своей емкости), EB включается до тех пор, пока он не будет полностью заряжен (т.е.е., T10≥75 ° C). Помимо этих двух условий, ЭБ работает по установленному графику. Общая стратегия управления показана в таблице 3, где Ca - управляющий сигнал для включения и выключения EB, а Ca1 - сигнал запланированного включения / выключения EB.

7. Выводы

Этот документ показывает суть ежедневного использования тепловой энергии летом и зимой в жилом районе, а также факторы, влияющие на оценку потребности в тепле, такие как параметры поведения пользователя и параметры внешней среды.На основе этих факторов была реализована модель нейронной сети и аналогичный дневной метод оценки. Используя эту модель, можно получить оценку использования тепла для одной и той же области, но не для других областей. Так что уже имеющуюся модель вряд ли можно будет использовать для новых предметов. Тем не менее, выводы этой статьи об использовании входных параметров для определения потребности в тепле в конкретной области и ее влияния на характер использования были оправданы.

Результаты анализа данных о потреблении тепла (QDHW) позволяют сделать некоторые важные выводы о структуре энергопотребления в зависимости от времени и дня использования, отражая поведение пользователей без ущерба для личной жизни.Эта ценная информация полезна для определения генерации тепловой нагрузки и потребности в хранении. Когда большие ТЭЦ заменяются небольшими тепловыми насосами или электрическими котлами и интегрируются в электросетевую сеть, это увеличивает потребность в электроэнергии с профилем, показанным на Рисунке 4. Таким образом, в непиковые часы, когда спрос на электроэнергию низкий, Теплоаккумулятор можно использовать для хранения излишков электроэнергии, вырабатываемой ветряными турбинами и другими возобновляемыми источниками энергии. Это хранилище тепловой энергии можно использовать в часы пик, снижая выбросы парниковых газов при производстве горячей воды.Кроме того, расчетное значение потребности в тепле помогает в определении диапазона требований к аккумулированию тепла для удовлетворения потребительского спроса, а также реакции спроса на использование модуля аккумулирования тепла в качестве гибкой потребительской нагрузки в многоэнергетической системе.

Нагреватели горячего масла и теплоносители: полное руководство

Теплообмен

В целях теплообмена описанную конфигурацию можно разделить на три части в соответствии с методом теплопередачи и с учетом требуемых технических ограничений в каждой точке, чтобы достичь энергоэффективности и долговечности благодаря заправке теплоносителя и материалам оборудования.(см. Теплопередача).

На Рисунке 3 четко разграничены три зоны:

1. Излучение

Оно охватывает практически всю камеру сгорания, а точнее внутреннюю поверхность внутреннего змеевика, и в этой области играет решающую роль. с технической точки зрения, чтобы знать точные значения максимальной температуры, достигаемой как жидким теплоносителем, так и материалом змеевика, потому что, хотя это область с наибольшей обменной емкостью, она также подвержена риску превышения максимальной допустимые значения.- Рисунок 4 -.

Рисунок 4. Площади котла по способу теплопередачи. В зависимости от достигнутой температуры массы и пленки – см. Температуры-.

Характеристики используемого теплоносителя, топлива, регулирования горения, диаметра пламени, требований к обмену, необходимого минимального циркулирующего потока жидкого теплоносителя и, следовательно, его скорости и диаметра змеевика являются параметрами. которые определяют, что следует считать критическим в конструкции – размер диаметра и длины камеры.

Слишком малый диаметр для камеры сгорания обеспечил бы оптимальную передачу тепла, но поставил бы под угрозу полезный срок службы заряда жидкого теплоносителя, а также самого котла, а также вызвал бы потерю заряда дымового контура, что может быть чрезмерным бременем для стандартной горелки.

С другой стороны, слишком большой диаметр камеры сгорания снижает энергоэффективность оборудования.

Длина камеры сгорания также имеет большое значение с точки зрения надежности оборудования.Камера сгорания, слишком короткая для требуемой мощности, будет иметь необычно высокие температуры в нижней и верхней части камеры, что может привести к частичному разрушению этих элементов.

2. Переходная зона

Она включает внутренние поверхности концов внутренней и внешней катушек. В зависимости от настройки горелки он может частично включать внешнюю грань внутреннего змеевика. В этой области излучение и конвекция сосуществуют как процессы теплопередачи, и, следовательно, в отношении тепла необходимо учитывать как меры предосторожности при обмене посредством излучения, так и ограничения, связанные с обменом посредством конвекции.

Особое внимание следует обратить на конструкцию изменения направления газового контура в нижней части камеры сгорания, так как должна быть достигнута полная герметичность (в противном случае дымовые газы будут проходить непосредственно из 1-го прохода в дымоход. выход, что дает очень плохую производительность и, что еще хуже, с чрезвычайно высокими температурами в дымоходе, которые могут вызвать его разрушение) вместе с низкой потерей заряда при изменении направления дымовых газов.

3. Зона конвекции

Это соответствует обеим сторонам внешнего змеевика и внутренней поверхности внутреннего змеевика.

Несмотря на то, что существует небольшой риск превышения максимальных температур использования теплоносителя и материалов (см. Рисунок 4), основная проблема при проектировании этой зоны заключается в достижении высокого уровня теплопередачи за счет значительной скорости. дымовых газов, но без значительного риска загрязнения в дымоходах 2 и 3 из-за недостаточного размера этих каналов или высокой потери заряда в дымовом контуре (известной как избыточное давление котла), что затрудняет использование стандартных горелок.

Рис. 3. Отдельные области в бойлере с жидким теплоносителем для целей теплообмена

В дополнение ко всем параметрам, рассмотренным выше, змеевики также должны быть тщательно спроектированы так, чтобы с точки зрения гидравлики теплоноситель потери заряда контура невелики, что приведет к нестандартным насосам и высокому потреблению электроэнергии, и в то же время гарантирует достаточную скорость теплоносителя для обеспечения удовлетворительных коэффициентов теплопередачи – см. рисунок 5.

Рис. 5. Скорость теплоносителя / коэффициент теплопередачи. Значения для BP Transcal N. Температура теплоносителя 290 ° C. Другие факторы исключены для лучшего понимания важности скорости

Дифференциал тепла. Проходы в змеевиках

Дифференциал тепла , также известный как тепловой скачок , представляет собой максимальное повышение температуры теплоносителя, которое котел может получить при номинальной тепловой мощности при расчетном расходе теплопередачи. жидкость.

Наиболее распространенными тепловыми скачками являются 20 ° C и 40 ° C, хотя эти значения имеют некоторый запас в зависимости от используемого теплоносителя и рабочей температуры, поэтому на самом деле мы должны говорить об интервалах между 18-22 ° C в в первом случае и 36-42 ° C во втором случае.

Важно помнить, что один котел не лучше и не хуже другого котла с той же тепловой мощностью, но с другим скачком. При правильной конструкции оба типа котлов будут иметь одинаковые энергетические характеристики и аналогичные рабочие функции.

Причина наличия котлов с разной температурой дифференциала заключается в том, чтобы обеспечить лучшую адаптацию котла к характеристикам производственного процесса и, в частности, к бытовым приборам системы.

Первоначально бойлер с скачком тепла на 20 ° C может обеспечивать большую однородность температуры в потребляющих устройствах из-за большего циркулирующего потока, хотя при изначально более дорогой установке из-за большего диаметра трубы, большей емкости теплоносителя в системы и более высокое потребление электроэнергии в главном насосе.Однако котел с перепадом тепла 40 ° C может также достичь тех же результатов с помощью контуров рециркуляции с вторичными насосами, которые обеспечивают большую скорость потока в бытовых приборах и, следовательно, большую однородность. Однако в последнем случае стоимость установки теплового дифференциального котла значительно выше, что не является положительным фактором.

Перепады тепла выше 40 или 50 ° C не являются обычным явлением, учитывая, что на срок полезного использования жидкого теплоносителя влияют такие высокие и резкие изменения температуры, а конструкция котла должна предусматривать меры по поглощению дополнительных расширений, что делает конструкцию более специализированный и более дорогой.Однако в приложениях для солнечных тепловых электростанций можно найти котлы с теплоносителем с перепадом тепла до 100 ° C.

Мы рекомендуем пользователю связаться с производителем котла, авторизованным установщиком, штатным или внешним инженером, чтобы обсудить, какой перепад тепла будет наиболее подходящим для их процесса.

Мы уже видели, что определение разности температур, в основном по характеристикам потребляющих устройств, определяет расход циркулирующего теплоносителя, необходимый в системе.Но этот расход также должен соответствовать определенным требованиям, обозначенным на котле.

Скорость теплоносителя в змеевиках должна быть достаточно высокой, чтобы обеспечить хороший теплообмен, не превышая при этом температуру пленки используемого теплоносителя, чтобы избежать его быстрой деградации. Но эти высокие скорости циркуляции, которые требуются, также подразумевают значительные потери заряда (потери давления), поскольку потери заряда пропорциональны квадрату высокой скорости, с возможностью использования очень больших насосов с чрезмерно высоким потреблением электроэнергии для достижения гидравлического давления. стабильность в цепи.

Согласование факторов высокой скорости и приемлемых потерь заряда возможно только при точном тепловом и гидравлическом исследовании катушек, диаметра их трубок, их длины и их соединения.

С помощью диаграмм на рисунке 6 и небольшого примера мы постараемся немного прояснить все эти вопросы. Мы упростили возможные варианты гидравлики исключительно в этих трех случаях. В действительности параллельные проходы катушек могут составлять от 1 прохода до 6, 7 или 8.

Рабочая температура T 1 и его тепловая мощность в кВт одинаковы на всех трех диаграммах на Рисунке 6. Кроме того, общая длина составляющей трубы змеевика одинакова – 4L.

Различия относятся к температурам на входе в котел (температура возврата от потребляющих устройств после подачи необходимой энергии), T2, T3 и T4. Расходы циркулирующего потока Q, Q 1 y Q 2 и потери заряда ΔP 1 , ΔP 2 и ΔP 3 также различаются.

Реальный числовой пример

У нас есть бойлер с жидким теплоносителем с перепадом тепла 40ºC и мощностью нагрева 1100 кВт. Его обменная поверхность составляет 54 м 2 с выходом порядка 86-89%, в зависимости от рабочей температуры.

Схема его конструкции показана A) на Рисунке 6, с двумя последовательными катушками и двумя параллельными проходами на катушку. Расчетный расход для этих условий составляет 52 м 3 / ч с потерей заряда 2,37 бар при рабочей температуре 260 ° C.

Если мы попытаемся эксплуатировать этот котел с тепловым скачком на 20 ° C, расход должен составить 104 м 3 / ч, а ожидаемые потери заряда при той же температуре, что и раньше, 260 ° C, будут 8,17 бар. Придется прибегнуть к очень сложным и дорогим насосам с очень высоким потреблением электроэнергии.

С другой стороны, если мы используем схему конструкции B) на рисунке 6 (две катушки последовательно с тремя параллельными проходами на катушку) с одинаковой скоростью потока, 104 м 3 / ч, и поверхностью обмена, 54 м 2 , потеря заряда составит 2.62 бар, что приемлемо для обычных насосов.

Этот тип конструкции B) не подходит для котла с перепадом тепла 40 ° C, поскольку при требуемом низком расходе 52 м 3 / ч не возникнет проблем с перепадом давления (всего 0,71 бар) но вместо этого проблема будет заключаться в преодолении температуры пленки жидкости, поскольку она будет примерно на 44 ° C выше, чем рабочая температура.

Как видно из раздела «Температуры», максимальная температура пленки обычно на 10-20 ° C выше максимальной рабочей температуры, поэтому в этом гипотетическом случае мы либо столкнемся с быстрой деградацией заряда теплоносителя, либо мы были бы вынуждены работать при низких температурах, что может быть неприемлемо для нашей производственной системы.

Конструкция C), с двумя змеевиками, соединенными параллельно, каждая из которых имеет три прохода теплоносителя, соответствует довольно необычной конструкции и типичной для котлов, требующих очень малых перепадов тепла, порядка 10 или 15 ° C.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *