Содержание

Еще одна схема фотореле для управления освещением (К561ТЛ1, IRF840)

Схема фотореле для автоматического включения освещения вечером, когда стемнеет и выключения света утром - на рассвете.

Принципиальная схема

Датчиком света служит фоторезистор R1. Тип и номинал данного фоторезистора неизвестны, так как маркировка на его корпусе отсутствует.

Эксперименты показали, что при обычном дневном свете его сопротивление единицы - десятки килоом, а если его накрыть ладонью сопротивление увеличивается до сотен килоом.

Фоторезистор R1, вместе с резистором R2 образует делитель напряжения. Резистором R2 устанавливают такое соотношение, чтобы при дневном свете на выходе элемента D1.1 была логическая единица, а ночью - ноль.

Если все настроено, то днем на выходе D1.1 - единица, а на выходе D1.2 - ноль. Конденсатор С2 разряжен через резистор R4, и напряжение на нем равно нулю. Следовательно и напряжение на входах D1.3 - ноль, и на выходе D1.4 тоже ноль. Транзистор VТ1 закрыт и лампа Н1 не горит.

Рис. 1. Принципиальная схема фотореле для управления лампой освещения.

С наступлением ночи на выходе D1.1 устанавливается логический ноль. На выходе D1.2 - единица, которая через диод VD1 заряжает конденсатор С2 до напряжения логической единицы. На выходе D1.3 устанавливается напряжение низкого логического уровня, а на выходе D1.4 - напряжение высокого логического уровня.

Это напряжение поступает на затвор высоковольтного мощного полевого транзистора VТ1 через резистор R5, ограничивающий ток заряда емкости затвора VТ1. Транзистор VТ1 открывается и включает лампу Н1, которая питается пульсирующим током с выхода мостового выпрямителя на диодах VD5-VD8.

Диоды VD2 и VD3 служат для разряда емкости затвора полевого транзистора при его переключении. Цепь VD1-R4-C2 нужна для того чтобы при непродолжительном увеличении освещенности, например, от света фар проезжающих машин, лампа Н1 не гасла. При увеличении освещенности на выходе D1.2 устанавливается логический ноль.

Но напряжение на входах D1.3 остается на уровне логической единицы пока конденсатор С2 не разрядится через резистор R4 до напряжения логического нуля. Если увеличение освещенности было непродолжительным, конденсатор С2 разрядиться не успевает, и лампа Н1 не выключается.

Лампа Н1 может быть мощностью не более 150W. Питается она пульсирующим постоянным током через мостовой выпрямитель на диодах VD5-VD8. Лампа может быть как лампой накаливания, так и светодиодной.

Большинство светодиодных ламп на входе имеют мостовой выпрямитель, и фактически их схемы питаются постоянным током, так что мост VD5-VD8, включенный перед их собственным мостом их работе никак не мешает.

Детали и конструкция

Транзистор IRF840 может управлять и более мощной нагрузкой, - до 3000W, но для работы с более высокой нагрузкой, во-первых, транзистору IRF840 нужно обеспечить теплоотвод (при мощности нагрузки до 200W теплоотвод не нужен), во-вторых, нужно соответствующим образом увеличить мощность диодного моста VD5-VD8, ведь питание лампы происходит через него. Источник питания схемы датчика выполнен на параметрическом стабилизаторе R6-R7-VD4.

Напряжение питания на микросхему поступает через цепь R3-C1. Микросхему К561ТЛ1 можно заменить на CD4093 или другой аналог.

Стабилитрон 1N5925B можно заменить любым стабилитроном на 10V с током стабилизации не ниже 50 мА. Диоды 1N4007 можно заменить на КД209, a 1N4148 - на КД521, КД522.

Налаживание в настройке чувствительности датчика света, и в оптимальном выборе места его расположения. Чувствительность настраивают изменением сопротивления подстроечного резистора R2. Его нужно настроить так, чтобы при дневном свете на выходе элемента D1.1 была логическая единица, а ночью - ноль.

Оптимальный выбор расположения датчика состоит в том, чтобы его расположить так, чтобы на него не попадал прямой свет от светильника на лампе Н1.

Например, он может быть расположен выше светильника, в бленде - трубке, направленной в небо или в другую сторону. На последнем этапе можно настроить желаемое время задержки выключения лампы подбором сопротивления R4 или емкости С2.

Кузянский Л. РК-02-18.

Фотореле для уличного освещения схема своими руками

Делаем фотореле по схеме своими руками

Емкостное фотореле для уличного освещения — устройство, позволяющее включать или выключать лампы, используемые на дорогах, у подъездов и в парках. Их использование экономит электроэнергию и минимизирует неудобства для водителей, жильцов дома и простых прохожих.

Работа основана на фоторезисторе или фотодиоде — полупроводниковых элементах, которые меняют свои параметры в зависимости от интенсивности освещения среды. Днем при достаточном количестве света датчик освещенности размыкает цепь, и лампа выключается, а ночью происходит обратная последовательность действий: емкостное реле для управления освещением снижает сопротивление, и свет включается.

Установка фотореле

Установить фотореле своими руками несложно, важно лишь исключить прямое влияние регулируемого источника освещения и защитить устройство от неблагоприятного воздействия извне: влаги, прямых солнечных лучей, перепадов температуры.

Для устройств промышленного производства существует ряд стандартов, которым такие решения должны соответствовать: ГОСТ (отечественные) и IP (международные). Добиться же того, чтобы самодельное фотореле было защищено от факторов внешней среды сложнее, хотя и теоретически возможно. Но для желающих установить подобное устройство у себя во дворе, около своего подъезда или гаража, лучше для начала рассмотреть предлагаемые на рынке решения — без владения нужными знаниями и опытом фотодатчик своими руками довести до рабочего состояния будет крайне сложно.

ФР-601 (602)

Если речь заходит об использовании стандартных однофазных фотореле для освещения, то самой популярной моделью являются устройства ФР-601 и ФР-602 производства компании ІЕК.

Они достаточно надежные, и даже у непосвященных в электронику пользователей не возникает вопросов, как подключить автоматический регулятор подсветки. Эти две модификации имеют несущественные различия: они обе работают с током одних и тех же напряжения и частоты, имеют аналогичную потребляемую мощность (0,5 Вт) и абсолютно одинаковые комплекты поставки.

Различия касаются лишь максимального сечения подключаемых проводников: для 601 модели она составляет 1,5 кв. мм., а для 602 — 2,5. Следовательно, отличается у них и номинальный ток нагрузки: 10 и 20 А, соответственно. Фотоэлемент у обеих моделей встроенный, его регулировка возможна в пределах от 0 до 50 лк с шагом в 5 лк.

Изготовление в домашних условиях

Принципиальная схема емкостного фотореле ФР-602 (как и его собрата) легко повторяется даже при незначительных познаниях в электронике. Особую актуальность создания самоделки приобретает при потребности в большом количестве устройств (например, для организации автоматического включения и отключения освещения в зависимости от времени суток).

Для изготовления понадобятся такие детали, в скобках будут указаны обозначение на приведенной схеме и мощность:

Учитывая набор и суммарную стоимость деталей, а также наличие схемы, 602 модель — довольно простое в исполнении решение.

К слову, многие детали из списка можно заменить на отечественные. По отзывам уже собиравших биполярный транзистор Q2 можно заменить встречающимся повсеместно КТ3107Б, а стабилитрон 1N4749 — тремя последовательно подключенными Д814А или двумя Д814Д. Схема подключения также не отличается особой сложностью.

Недостатки модели

Рассмотрим, в чем минусы подобной схемы. Как ни странно, с технической стороны схема не уступает заводской при должной сноровке радиолюбителя. Разница будет ощущаться в реальной эксплуатации: заводское изделие имеет стандарт защиты IP44, что подразумевает пыле- и влагозащиту.

Также заводские ФР-601 и ФР-602 имеют больший диапазон рабочих температур, а самодельная схема в мороз в декабре может перестать работать из-за одного-единственного некачественного соединения.

Аналоги

Среди аналогов данному устройству значатся ФР-75А — фотореле, схема которого более сложна для изготовления в домашних условиях, а также менее стабильна и долговечна при практическом использовании.

Среди его преимуществ — больший диапазон рабочей яркости, составляющий от 1 до 200 лк, что вчетверо превосходит конкурента. Еще один большой плюс устройства ФР-75 — возможность работы в цепях постоянного тока напряжением 12 В.

Также фотодатчик является выносным, что позволяет установить сам регулятор внутри помещения и не беспокоиться о факторах окружающей среды. В целом, в своем классе модель не имеет равных и является лучшим фотореле — 12 вольт постоянного тока часто используются в качестве питания для подобных устройств. Схема подключения устройства изображена на рисунке.

Оборудование высокой мощности

Среди конкурентов также можно рассмотреть фотореле ФР-7Е, но не в его пользу говорят отсутствие защиты от влаги (IP40) и довольно высокая потребляемая мощность.

Также к недостаткам можно отнести открытые контактные зажимы и отсутствие защиты подстроечного резистора на лицевой панели. Положительный момент — работать ФР-7 может в сетях переменного тока напряжением 220 вольт с напряжением до 5 ампер, что почти на порядок больше, нежели у рассмотренных выше конкурентов. Диапазон регулировки в 10 лк также устанавливается лишь специалистом — отрегулировать его самостоятельно не получится.

По габаритам ФР-7 также превосходит рассмотренные в статье фотореле (см. чертеж).

Учитывая опыт эксплуатации фотореле в бытовых и промышленных условиях, наиболее стабильной и легко воспроизводимой в домашних условиях является модель ФР-602 или ее менее мощная вариация ФР-601 от компании AIK. Они отлично показывают себя в различных режимах работы, имеют хороший запас долговечности и, что самое главное, обладают минимальной себестоимостью. Кроме того, их сборка облегчается возможностью заменить многие зарубежные детали на дешевые отечественные аналоги.

Видео

Как сделать фотореле в домашних условиях — самый простой способ

Одним из основных элементов автоматики в уличном освещении, наряду с таймерами и датчиками движения, является фотореле или сумеречное реле. Назначение данного аппарата — автоматическое подключение полезной нагрузки, при наступлении темного времени суток, без участия человека. Это устройство также получило огромную популярность благодаря своей дешевизне, доступности и простоте подключения. В данной статье мы подробно разберем принцип работы сумеречного выключателя и нюансы его подключения, а также расскажем, как сделать фотореле своими руками. Это не отнимет много времени и сил, зато вам будет приятно пользоваться самостоятельно собранным устройством.

Конструкция реле

Основным элементом реле является фотодатчик, в схемах могут применяться фоторезисторы, диоды, транзисторы, фотоэлектрические элементы. При изменении освещенности на фотоэлементе соответственно изменяются и его свойства, такие как сопротивление, состояния P-N перехода в диодах и транзисторах, а также напряжения на контактах фоточувствительного элемента. Далее сигнал усиливается и происходит переключение силового элемента, коммутирующего нагрузку. В качестве выходных управляющих элементов используют реле или симисторы.

Почти все покупные элементы собраны по схожему принципу и имеют два входа и два выхода. На вход подается сетевое напряжение 220 Вольт, которое, в зависимости от установленных параметров, появляется и на выходе. Иногда фотореле имеет всего 3 провода. Тогда ноль – общий, на один провод подается фаза, и при нужной освещенности она соединяется с оставшимся проводом.

При подключении фотореле необходимо ознакомится с инструкцией, обратить особое внимание на максимальную мощность подключаемой нагрузки, тип ламп освещения (накаливания, газоразрядные, светодиодные лампочки). Важно знать, что реле освещения с тиристорным выходом не смогут работать с энергосберегающими лампами, а также с некоторыми видами диммеров из-за конструктивных особенностей. Этот нюанс необходимо учитывать, чтобы не повредить оборудование.

Давайте рассмотрим несколько схем для самостоятельной сборки сумеречного выключателя в домашних условиях. Для примера разберем, как сделать симисторный ночник с фотоэлементом.

Инструкция по сборке

Это самая элементарная схема фотореле из нескольких деталей: симистора Quadrac Q60, опорного резистора R1, и фото элемента ФСК:

При отсутствии света симисторный ключ открывается полностью и лампа в ночнике светит в полный накал. При увеличении освещенности в помещении происходит смещение напряжения на управляющем контакте и меняется яркость светильника, вплоть до полного затухания лампочки.

Обратите внимание, что в схеме присутствует опасное для жизни напряжение. Подключать и тестировать ее необходимо с особой аккуратностью. А готовое устройство обязательно должно быть в диэлектрическом корпусе.

Следующая схема с релейным выходом:

Транзистор VT1 усиливает сигнал с делителя напряжения, который состоит из фоторезистора PR1 и резистора R1. VT2 управляет электромагнитным реле К1, которое может иметь как нормально разомкнутые, так и нормально замкнутые контакты, в зависимости от назначения. Диод VD1 шунтирует импульсы напряжения во время отключения катушки, защищая транзисторы от выхода из строя из-за бросков обратного напряжения. Рассмотрев данную схему, можно обнаружить, что ее часть (выделенная красным) по функционалу близка к готовым сборкам релейного модуля для ардуино.

Слегка переделав схему и дополнив ее одним транзистором и солнечным фотоэлементом от старого калькулятора, был собран прототип сумеречного выключателя — самодельное фотореле на транзисторе. При освещении солнечного элемента PR1, транзистор VT1 открывается и подает сигнал на выходной релейный модуль, который переключает свои контакты, управляя полезной нагрузкой.

Если у вас остались вопросы, то посмотрите видео, на которых также подробно рассказывается, как сделать фотореле своими руками:

Вот, собственно и вся информация о сборке фотореле своими руками. Надеемся, предоставленные схемы и видео уроки помогли вам сделать сумеречный выключатель из подручных средств!

Наверняка вы не знаете:

  • Как сделать датчик движения
  • Схема подключения прожектора с фотореле
  • Как собрать реле времени своими руками

Схемы фотореле для управления освещением - Каталог статей - Каталог статей

Одной из задач, выполняемых при помощи фотодатчиков, является управление освещением. Такие схемы называются фотореле, чаще всего это простое включение освещения в темное время суток. С этой целью радиолюбителями было разработано немало схем, вот некоторые из них.

Наверное, самая простая схема показана на рисунке 1. Количество деталей в ней, невелико, меньше уже не получится, а эффективность, читай чувствительность, достаточно высокая.

Это достигнуто тем, что транзисторы VT1 и VT2 включены по схеме составного транзистора, называемой также схемой Дарлингтона. При таком включении коэффициент усиления равен произведению коэффициентов усиления составляющих транзисторов. Кроме того, такая схема обеспечивает высокий входной импеданс, что позволяет подключать высокоомные источники сигнала, как показанный на схеме фоторезистор PR1.

Рисунок 1. Схема простого фотореле

Работа схемы достаточно проста. Сопротивление фоторезистора PR1 с увеличением освещенности уменьшается до нескольких КОм (темновое сопротивление несколько МОм), что приведет к открыванию транзистора VT1. Его коллекторный ток откроет транзистор VT2, который включит реле K1, которое своим контактом включит нагрузку.

Диод VD1 защищает схему от ЭДС самоиндукции, возникающей в момент выключения реле K1. Таким образом, очень маломощный сигнал фоторезистора преобразуется в сигнал достаточный для включения обмотки реле.

Чувствительность этой простой схемы достаточно высока, иногда просто избыточна. Чтобы ее уменьшить, и регулировать в необходимых пределах можно добавить с схему переменный резистор R1, показанный на схеме пунктиром.

Напряжение питания указано в пределах 5…15В, - зависит от рабочего напряжения реле. Для напряжения 6В подойдут реле РЭС9, РЭС47, а для напряжения 12В РЭС49, РЭС15. При указанных на схеме транзисторах ток обмотки реле не должен превышать 50мА.

Если вместо транзистора VT2 поставить, например, КТ815, то выходной ток может быть больше, что позволит применить более мощные реле. А вообще, чем выше напряжение питания, тем выше и чувствительность фотореле.

Схема фотореле с фотодиодом

Схема этого фотореле показана на рисунке 2.

Рисунок 2. Схема фотореле с фотодиодом

Как и предыдущая, она также содержит минимальное количество деталей, благодаря применению ОУ. В данной схеме ОУ включен по схеме компаратора (сравнивающего устройства). Нетрудно видеть, что фотодиод LED1 включен в фотодиодном режиме, - питание подано так, что фотодиод смещен в обратном направлении.

Поэтому, при снижении уровня освещенности сопротивление светодиода Led1 возрастает, что приводит к уменьшению падения напряжения на резисторе R1, а следовательно и на инвертирующем входе компаратора OP1.

Напряжение на неинвертирующем входе ОУ устанавливается при помощи переменного резистора R2, и является пороговым - задает порог срабатывания. Как только напряжение на инвертирующем входе станет меньше, чем пороговое, на выходе компаратора появится высокий уровень напряжения, который откроет транзистор T1, который включит реле K1.

Реле и транзистор в этой схеме можно подобрать, руководствуясь рекомендациями к схеме, показанной на рисунке 6. В качестве компаратора можно использовать ОУ типа К140УД6, К140УД7 или подобные. Источник питания для схемы подойдет любой, можно даже бестрансформаторный, без гальванической развязки от сети. В этом случае при наладке следует быть внимательным, соблюдать правила техники безопасности. Идеальным вариантом следует считать использование для настройки схемы разделительного трансформатора или, как его иногда называют трансформатора безопасности.

Настройка устройства сводится к установке порогового напряжения таким образом, чтобы включение происходило уже при наступлении сумерек. Чтобы не дожидаться этого природного момента, можно в затемненной комнате засвечивать фотодиод лампой накаливания, включенной через тиристорный регулятор мощности. Эта же методика пригодна для настройки и других схем фотореле.

Возможно, что при срабатывании фотореле релюшка будет дребезжать. Избавиться от этого явления можно присоединив параллельно катушке электролитический конденсатор на несколько сотен микрофарад.

Фотореле на микросхеме

Специализированная микросхема КР1182ПМ1 представляет собой фазовый регулятор мощности, то же самое, что обычный тиристорный. Весьма важным и ценным свойством такого регулятора мощности является то, что он включается в схему как двухполюсник, не требуя для себя дополнительного провода питания: просто включил параллельно выключателю и все уже работает! На рисунке 4 показано, как на этой микросхеме можно построить несложное фотореле.

Рис. 3. Микросхема КР1182ПМ1

Рисунок 4. Схема фотореле на микросхеме КР1182ПМ1

Управляющие выводы микросхемы 3 и 6. Если между ними подключить просто обычный однополюсный выключатель, то при его замыкании нагрузка будет отключаться! Если его разомкнуть, то нагрузка подключится. Кстати, без дополнительных внешних тиристоров или симистора, и даже без радиатора, микросхема выдерживает нагрузку до 150Вт. Это в случае, если при включении нагрузки нет бросков тока, как у ламп накаливания. Лампу накаливания в таком варианте можно включать мощностью не более 75Вт.

Просто выключатель к этим выводам подключать как бы ни к чему, если только в комплексе с другими деталями. Если не обращать внимания на фототранзистор и электролитический конденсатор, мысленно оставить только переменный резистор R1, то получается просто фазовый регулятор мощности: при перемещении его движка вверх по схеме выводы 3 и 6 замыкаются накоротко, тем самым отключая нагрузку, как упомянутым выше контактом. При перемещении движка вниз по схеме мощность в нагрузке изменяется от 0…100%. Тут все понятно и просто.

Если к этим выводам подключить электролитический конденсатор (считаем, что фототранзистора в схеме пока нет), то получится просто плавное включение нагрузки. Каким образом?

Сопротивление разряженного конденсатора невелико, поэтому поначалу управляющие выводы микросхемы 3 и 6 практически замкнуты накоротко и нагрузка отключена. По мере заряда сопротивление конденсатора возрастает (достаточно вспомнить проверку конденсаторов омметром), напряжение на нем тоже растет, мощность в нагрузке плавно увеличивается. Получается устройство плавного включения нагрузки. Причем мощность в нагрузку будет подана на столько, насколько введен движок переменного резистора R1. При отключении устройства от сети конденсатор разряжается через резистор R1, подготавливая устройство к следующему включению. Если конденсатор разрядиться не успеет, то плавного включения не будет.

Вот теперь и добрались до самого главного, до фотореле. Если теперь к управляющим выводам 3 и 6 подключить фототранзистор, то получится фотореле. Работает оно следующим образом. Днем при высокой освещенности фототранзистор открыт, поэтому сопротивление его участка коллектор – эмиттер невелико, выводы 3 и 6 замкнуты между собой, нагрузка отключена.

При плавном уменьшении освещенности в вечерние часы фототранзистор плавненько будет открываться, постепенно увеличивая мощность в нагрузке, то есть в лампе. Никаких пороговых элементов в этой схеме нет, поэтому лампа будет зажигаться и гаснуть постепенно.

Чтобы фотореле не сработало в тот момент, когда включится своя же лампа, фототранзистор желательно защитить от такой подсветки. Проще всего это сделать с помощью пластиковой трубки.

Схема управления освещением: уличным, наружным, внутренним

В статье рассмотрим основные виды схем управления освещением, которые применяются в щитах освещения и шкафах управления освещением как для автоматического, так и для ручного управления наружным (уличным, декоративным) и внутренним освещением.

Управление освещением при помощи автоматических выключателей в щите

Простейшим способом управления освещением является включение и отключение автоматического выключателя в щите освещения. Это решение применяется в щитах аварийного освещения с постоянно горящими светильниками, которые не требуют частого включения и отключения, а доступ к управлению освещением должен иметь только квалифицированный персонал.

Схема управления освещением при помощи автомата в щите

Но вообще, автоматические выключатели не предназначены для частого включения и отключения, поэтому для управления освещением дополнительно внутрь щита устанавливают выключатель.

Схема управления освещением при помощи переключателя внутри щита

У ведущих производителей подобные выключатели есть в модульном исполнении (например, переключатели E211 у ABB или iSSW у Schneider Electric).

Номинальный ток переключателя ограничен, поэтому для управления мощными нагрузками его может быть недостаточно. В таком случае следует использовать схемы управления освещением при помощи контакторов.

Управление освещением местными выключателями с одного, двух, трех и более мест

Самый распространённый способ управления освещением — выключателями освещения. Данный способ знаком каждому, т.к. управление освещением в квартирах реализовано именно так. Этот способ применяется также в общественных (офисные, торговые, административные) и промышленных зданиях для местного управления освещением.

Управление выключателями с одного места

Простейший и наиболее распространённый — управлением одно- , двух- и трехклавишными выключателями с одного места.

При подключении светильника выключатель должен размыкать фазный проводник, т.е. при отключенном выключателе светильник должен быть без напряжения.

Схема управления освещением одноклавишным выключателем

Двухклавишные и трехклавишные выключатели позволяют управлять несколькими светильниками или разными группами включения в многоламповом светильнике.

Схема управления освещением двухклавишным выключателем


Схема управления освещением трехклавишным выключателем

Управление выключателями  двух мест

Для управления освещением в двух мест используют переключатели. Внешне они выглядят как обычные выключатели, но конструктивно отличаются. Такой переключатель содержит перекидной контакт. Соответственно, включение и отключение светильника зависит от положения клавиш на обоих переключателях.

Схема управления освещением переключателями с двух мест

Данная схема управления чаще всего используется в коридорах, т.к. позволяет включить освещение при входе в коридор и отключить при выходе из него. Также переключатели используют для управления освещением в гостиничных номерах и квартирах. Удобно включить общее освещение при входе в спальню, а отключить не вставая с кровати.

Управление выключателями  трех и более мест

Для управления освещением с трех мест потребуется ещё один вид выключателя — перекрестный переключатель. Он устанавливается в схеме между переключателями (на схеме обозначен SA2).

Схема управления освещением переключателями с трех мест

Для управления освещением с четырёх мест потребуется установка ещё одного перекрестного переключателя.

Схема управления освещением переключателями с четырех мест

Теоретически, таким образом можно организовать управлением освещением с большого числа мест, добавляя в схему перекрестные переключатели, но так не делают. С точки зрения простоты схемы, удобства и по экономическим соображениям, управление с трех и более мест целесообразнее делать с использованием импульсных реле и кнопочных выключателей.

Управление освещением с использованием импульсного реле

Импульсное реле позволяет организовать управление освещением одного, двух, трех, четырех и практически неограниченного числа мест. Для реализации схемы потребуется импульсное (бистабильное) реле и кнопочные (нажимные) выключатели.

Для понимания логики работы схемы следует разобраться с особенностями работы импульсного реле. Это реле каждый раз переключает свои контакты при подачи импульса на катушку управления.

В зависимости от производителя, подача импульса может быть как на основной питающий вход реле, так и на отдельный вход управления.

Существуют различные версии импульсного реле с разным набором пар контактов NO (нормально открытыми), NC (нормально закрытыми), перекидными контактами и их различной комбинацией.

Рассмотрим работу схемы управления освещением с самой простой версией импульсного реле с одной NO парой контактов.

Схема управления освещением при помощи импульсного реле

Силовая цепь питания светильников состоит из автоматического выключателя QF1 и контактов импульсного реле KI1. Управление импульсным реле осуществляется кнопочными (нажимными) выключателями SB1, SB2... подключенными параллельно на клеммы X1:1 и X1:2.

В начальном положении контакты реле KI1 разомкнуты (NO). При нажатии на кнопку SB её контакты 1 и 2 замыкаются и на катушку реле поступает управляющий импульс. Реле меняет положение контактов — силовая цепь замыкается, освещение включается.

Повторное нажатии на кнопку SB подаст на катушку реле ещё один импульс и реле опять сменит состояние контактов — силовая цепь разомкнётся, освещение отключится.

Как видим, применяя данную схему можно существенно сэкономить на кабеле и монтажных работах.

Схемы с использованием импульсного реле для управления освещением применяют в жилых, общественных и промышленных зданиях.

Управление освещением с использованием контакторов (магнитных пускателей)

Контакторы (магнитные) пускатели широко используются в схемах управления освещением и инженерным оборудованием.

Конструкция контактора и принцип работы

Конструктивно контактор состоит из неподвижной части сердечника, катушки, неподвижной группы контактов, подвижного сердечника с подвижной парой контактов.

Конструкция контактора

При подачи напряжения на катушку, подвижная часть сердечника под воздействием электромагнитного поля вместе с закреплённой на ней подвижной группой контактов притягивается к неподвижной части сердечника. При этом подвижная и неподвижная группа контактов замыкается.

При снятии напряжения с катушки, подвижная часть сердечника под воздействием пружины возвращается в исходное положение и группы контактов размыкаются.

Мы рассмотрели принцип работы контактора с NO (нормально разомкнутыми) контактами. Аналогичным образом работают контакторы с NC (нормально закрытыми) контактами и перекидными контактами.

Базовая схема управления освещением при помощи контактора

Рассмотрим работу базовой схемы управления освещением при помощи контактора. Силовая цепь питания светильников состоит из автоматического выключателя QF1 и NO (нормально открытых) контактов контактора KM1. Цепь управления состоит из автоматического выключателя SF1 и катушки контактора KM1, между которыми включается контакт управляющего элемента (подключается между клеммами X1:1 и X1:2).

Управление освещением при помощи контактора. Базовая схема

Управляющий контакт K разомкнут, катушка контактора KM1 без напряжения, контакты контактора разомкнуты.

При замыкании управляющего контакта K на катушку контактора KM1 подаётся питание и контактор замыкает свои контакты. Силовая цепь замкнута — освещение включается.

При размыкании управляющего контакта цепь управления размыкается. С катушки контактора снимается напряжение и его контакты возвращаются в исходное положение (разомкнуты). Силовая цепь размыкается — освещение отключается.

В качестве управляющего контакта может выступать обычный одноклавишный выключатель освещения, устанавливаемый в нужном месте на стене помещения. Такая схема применяется в квартирах, когда устанавливают при входе в квартиру мастер-выключатель, отключающий все нагрузки кроме тех, которые нельзя отключать (холодильник, например).

Такая же схема с мастер-выключателем применяется в гостиницах, когда в щите номера устанавливают контактор, управляемый карточным выключателем.

Также в качестве управляющего выключателя может выступать выключатель или переключатель SA1, устанавливаемый в щите (например, модульный переключатель E211 у ABB, iSSW у Schneider Electric или подобный).

Управление освещением при помощи контактора и выключателя в щите

Схемы управления освещением при помощи контактора и кнопок — схема «самоподхвата»

Часто при управлении освещением производственных зданий, а также наружного освещения применяется схема «самоподхвата».

Базовая схема и принцип работы

Рассмотрим работу схемы для питания однофазной цепи освещения. Для реализации данной схемы нам понадобятся:

  • автоматических выключателя QF1 для защиты силовой цепи
  • автоматический выключатель SF1 для защиты цепи управления
  • контактор KM1 c двумя парами нормально разомкнутых контактов 2NO
  • кнопка SB1 «ПУСК» с нормально разомкнутыми контактами NO
  • кнопка SB2 «СТОП» с нормально замкнутыми контактами NC
  • сигнальная лампа HL1 для индикации включения освещения

Управление освещением при помощи контактора и кнопок — схема самоподхвата

Кнопки SB2, SB1 и катушку контактора KM1 подключаем последовательно друг за другом. Параллельно с катушкой подключаем сигнальную лампу. Первую пару NO контактов контактора KM1.1 подключаем в силовую цепь, а вторую пару NO контактов контактора KM1.2 подкючаем параллельно NO контактам кнопки SB1.

  1. В начальном положении цепь управления разомкнута: контакты кнопки SB1 разомкнуты, катушка контактора KM1 без напряжения, пары контактов KM1.1 и KM1.2 разомкнуты, лампа HL1 не горит.
  2. Нажимаем кнопку SB1. Контакты SB1 замыкаются, контакты SB2 замкнуты, на катушку контактора KM1 подаётся напряжение и загорается сигнальная лампа HL1. Контактор KM1 замыкает свои пары контактов KM1.1 и KM1.2. Силовая цепь замыкается и включается освещение.
  3. Отпускаем кнопку SB1. Контакты SB1 размыкаются, но подключенная параллельно пара контактов KM1.2 замкнута, поэтому катушка контактора KM1 остаётся под напряжением и не размыкает свои пары контактов.
  4. Нажимаем кнопку SB2. Контакты SB2 размыкаются, с катушки контактора KM1 снимается напряжение, пары контактов KM1.1 и KM1.2  размыкаются, сигнальная лампа гаснет, освещение отключается.

Как видим, при замыкании кнопки SB1 контактор сам «подхватывает» своё питание за счёт второй пары контактов. Из-за этого данную схему назвали схемой «самоподхвата».

Пожалуй, это одна из основных схем для шкафов и пультов управления освещением. Корпус шкафа делают металлическим, а на переднюю дверцу выводят кнопки и сигнальные лампы. Эту же схему применяют для управления двигателями.

Схема «самоподхвата» для управления освещением с нескольких мест

Также схему «самоподхвата» можно применить для управления освещением с нескольких мест. В этом случае в качестве пар кнопок использую кнопочные посты, устанавливаемые в нужных местах.

Нормально открытые NO контакты кнопочных постов соединяем параллельно, нормально закрытые NC контакты — последовательно. Таким образом, замыкание любого NO-контакта замкнёт цепь питания катушки контактора, а размыкание любого NC-контакта разомкнёт.

Управление освещением с нескольких мест при помощи контактора и кнопок — схема самоподхвата

Подобным образом можно управлять сразу несколькими группами освещения одновременно. Для этого нужно немного видоизменить схему. Контактор 4KM1, установленный в цепи управления, одной парой контактов 4KM1.2 будет «подхватывать» своё питание, а второй парой контактов 4KM1.1 управлять питанием катушек контакторов, включающих освещение.

Управление освещением нескольких групп с нескольких мест при помощи контактора и кнопок — схема самоподхвата

Схемы управления освещением при помощи контактора и импульсного реле

Ещё одним вариантом схемы управления с нескольких мест является комбинированная схема с использованием контакторов и импульсного реле. Данную схему применяют в случае, когда одной кнопкой нужно включить сразу несколько групп освещения.

Рассмотрим данный тип схемы для управления тремя группами освещения  с трех мест.

  1. В начальном состоянии контакты импульсного реле KI1 разомкнуты. Катушки контакторов 1KM1, 2KM1, 3KM1 находятся без напряжения, их пары контактов разомкнуты. Силовые цепи разомкнуты и освещение отключено.
  2. Нажимаем кнопку, например, SB1и, тем самым, подаем управляющий импульс на катушку импульсного реле KI1. Импульсное реле меняет состояние контактов и замыкает свою пару контактов. На катушки контакторов 1KM1, 2KM1, 3KM1 подаётся напряжение и они замыкают свои пары контактов. Силовые цепи замыкаются и включается освещение.
  3. Повторно нажимаем кнопку SB1 (либо любую другую — SB2, SB3) и подаем управляющий импульс на катушку импульсного реле KI1.  Импульсное реле меняет состояние контактов и размыкает свою пару контактов. Напряжение с катушек контакторов 1KM1, 2KM1, 3KM1 снимается и они размыкают свои пары контактов. Силовые цепи размыкаются и освещение отключается.

Управление освещением нескольких групп с нескольких мест при помощи контактора и импульсного реле

При необходимости, данную схему можно доработать, включив параллельно катушкам контакторов сигнальную лампу, а также установить в щите кнопку для включения освещения с дверцы щита.

Управление освещением с использованием реле времени

Реле времени широко используются в схемах автоматики, в том числе для управления освещением.

Реле времени можно разделить на две большие группы:

  1. Программируемые реле времени — реле замыкает и размыкает свои контакты в соответствии с заданной программой;
  2. Таймеры — реле времени замыкает размыкает свои контакты на заданное время после приложения управляющего сигнала.

Программируемые реле времени и таймеры могут быть электронными и электромеханическими.

Программируемые реле времени могут быть с суточным (одна и та же программа повторяется каждые сутки), недельным (одна и та же программа повторяется каждую неделю) и годовым циклом (программа задаётся на год).

Базовая схема и принцип работы

Рассмотрим работу схемы управления освещением на базе программируемого реле времени, работающего по одной суточной программе.

Управление освещением при помощи реле времени. Базовая схема

Допустим, освещение должно быть включено ежедневно с 9:00 до 18:00. В реле времени устанавливаем текущее время и задаем программу, в соответствии с которой в 9:00 реле должно замкнуть свои контакты сроком на 9 часов. Ежедневно, при наступлении 9:00 реле времени KT1 замыкает свои контакты, силовая цепь оказывается замкнутой и освещение включено. Через 9 часов работа программы заканчивается и реле размыкает свои контакты — освещение отключается.

Схемы управления освещением нескольких линий при помощи реле времени

Для управления несколькими линиями по одной программе применяют реле времени в комбинации с контакторами. Контакторы включают и отключают питание, а реле времени управляет их работой.

Управление освещением при помощи реле времени и контакторов

Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:

  • В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, освещение включается в соответствии с заданной программой;
  • В положении «0» цепь питания катушек контакторов разорвана и освещение отключено;
  • В положении «Автомат» питание на катушки контакторов подаётся через контакты реле времени KT1. Включением и отключением освещения управляет реле времени, замыкая и размыкая свои контакты в соответствии с заданной программой.

При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении освещения.

Управление освещением с использованием реле времени для лестничных клеток

Для экономии электроэнергии и управления освещением с нескольких мест используют реле времени из группы таймеров. Данный тип реле замыкают или размыкают свои контакты после подачи на их катушку управляющего сигнала, замыкание или размыкание контактов происходит с заданной временной задержкой.

Основное применение данный тип реле времени нашёл в схемах управления двигателями и схемах АВР (автоматического ввода резерва), но для управления освещением также используется. Например, для управления освещением лестничных клеток.

Рассмотрим применение и работу реле времени для решения данной задачи:

  1. В начальный момент времени контакты реле KT1 разомкнуты, освещение отключено. Кнопки SB1, SB2... установлены на каждом этаже лестничной клетки и подключены параллельно к управляющим контактам реле времени KT1.
  2. При нажатии любую из кнопок SB, на катушку реле времени KT1 поступает управляющий сигнал, оно замыкает свои контакты, освещение включается, а реле времени начинает отсчет.
  3. По прошествии заданного времени реле KT1 размыкает свои контакты и освещение отключается.
  4. Если при замкнутых контактах реле (т.е. до истечения заданного времени) поступает новый управляющий сигнал, то отсчет времени начинается заново.

Управление освещением лестничных клеток с использованием реле времени

Таким образом, человек, заходя на лестничную клетку, нажимает кнопочный выключатель SB и включает освещение. На следующем этаже опять нажимает кнопку и т.д. Через заданное время освещение на лестничной клетке отключается. Настройка задержки отключения выбирается таким образом, чтобы человек достаточно времени, чтобы дойти от одного кнопочного выключателя до другого.

Данную схему можно также использовать для управления освещением в коридорах. Она позволяет организовать включение освещения с нескольких мест (как при использовании импульсного реле) и при этом ещё сэкономить электроэнергию.

Управление освещением с использованием фотореле

Фотореле (сумеречное реле, сумеречный выключатель) используют для управления наружным (уличным, декоративным) освещением. Фотореле состоит из двух частей: самого реле, устанавливаемого в щит, и выносного датчика освещенности.

Рассмотрим работу схемы управления наружным освещением на базе самой простой версии фотореле, реагирующей только на уровень освещенности.

Датчик освещенности (фотодатчик) BL1 подаёт сигнал на фотореле KL1 пропорционально уровню освещённости. При снижении уровня освещённости ниже заданного, фотореле KL1 замыкает свою пару контактов. Силовая цепь замыкается, включается наружное освещение. При повышении уровня освещенности выше заданного, фотореле KL1  размыкает свою пару контактов и наружное освещение отключается.

Управление наружным освещением при помощи фотореле. Базовая схема

В линейках ведущих производителей представлено несколько вариаций фотореле:

  • Самая простая версия — фотореле реагирует только на уровень освещенности. Реле комплектуется фотодатчиком;
  • Версия с возможностью задать программу включения (одну или несколько). Фотореле замыкает и размыкает свои контакты в зависимости от уровня освещенности и в соответствии с заданной программой. Реле комплектуется фотодатчиком;
  • Астрореле. Реле фотодатчиком не комплектуется. Управление включение осуществляется по заданным программам. Время восхода и заката реле определяет автоматически в зависимости от заданных географических высоты, долготы и астрономического времени.

Как видим, по своему функционалу программируемые фотореле являются своего рода реле времени с дополнительными функциями.

На практике базовая схема управления наружным освещением обычное не применяется, т.к. необходимо одновременно включать сразу несколько групповых линий. Установка на каждую групповую линию фотореле нецелесообразно как с экономической точки зрения, так и с точки зрения здравого смысла. Поэтому в щитах наружного освещения и шкафах управления наружным освещением устанавливают одно фотореле, которое управляет питанием катушек контакторов, замыкающих силовые цепи.

Рассмотрим работу доработанной версии схемы управления наружным освещением.

Управление наружным освещением при помощи фотореле и контакторов

Питание на катушки контакторов 1KM1, 2KM1, 3KM1 подаётся через трехпозиционный переключатель SA1 с нейтральным положением:

  • В положении «Ручное» питание напрямую подаётся на катушки контакторов KM и они замыкают свои пары контактов, наружное освещение включается вне зависимости от уровня освещённости
  • В положении «0» цепь питания катушек контакторов разорвана и наружное освещение отключено вне зависимости от уровня освещённости
  • В положении «Автомат» питание на катушки контакторов подаётся через контакты фотореле KL1. Включением и отключением наружного освещения управляет фотореле, замыкая и размыкая свои контакты в зависимости от уровня освещённости.

При необходимости, можно дополнить схему сигнальной лампой HL, включенной параллельно катушкам контакторов, которая будет информировать о включении наружного освещения.

Фотореле с несколькими программами имеет количество пар контактов в соответствии с количеством предусмотренных программ. Таким образом, можно запрограммировать несколько групп включения наружного освещения.

Управление освещением с использованием реле напряжения

Реле напряжения предназначено для других целей, но мы его будем использовать для управление освещением.

Допустим, при пропадании напряжения (снижении ниже допустимого значения и/или повышении выше допустимого значения) в щите рабочего освещения необходимо включить аварийное освещение в щите аварийного освещения.

Для этого на вводе в щит Щит1 устанавливаем реле напряжения SQZ3 производства ABB (KV1). Данное реле имеет перекидной контакт. При выходе напряжения в сети за допустимые пределы, а также при обрыве любой из фаз, реле меняет положение контактов. Выводим контакты 3 и 5 на клеммы X1:1 и X1:2 для удобства подключения сигнального кабеля.

В щите Щит2 реализована стандартная схема управления освещением при помощи контактора. Сигнальный кабель от щита Щит1 подключаем на клеммы в щит Щит2 в цепь управления питанием катушки контактора KM1.

Управление освещением при помощи реле напряжения с NO контактами

При срабатывании реле KV1 в щите Щит1 реле меняет положение контактов и пара контактов 3 и 5 становится замкнутой. Таким образом, цепь питания катушки контактора KM1 в щите Щит2 замыкается, на катушку подаётся напряжение и контактор KM1 замыкает свою пару контактов. Силовая цепь замыкается, включается освещение, подключенное к щиту Щит2.

При возвращении напряжения на вводе в щит Щит1 в допустимые пределы, реле KV1 возвращает свои контакты в исходное положение, размыкая пару контактов 3 и 5. Цепь питания катушки контактора KM1 размыкается, напряжение с катушки контактора снимается и он размыкает свои контакты. Силовая цепь размыкается, освещение, подключенное к щиту Щит2, отключается.

Вместо реле напряжения SQZ3 можно взять аналог у другого производителя, либо установить несколько реле (реле минимального напряжения, реле максимального напряжения, реле контроля фаз), а их управляющие NO-контакты соединить параллельно. Таким образом, при срабатывании любого реле будет генерироваться управляющий сигнал на включение освещения в щите Щит2.

Для большей надежности и страховки от обрыва сигнального кабеля используют схему с нормально закрытыми NC контактами.

Управление освещением при помощи реле напряжения с NC контактами

Принцип работы данной схемы аналогичен предыдущей с единственным отличием, что мы используем нормально закрытые NC контакты в цепи управления. В нормальном режиме (без напряжения на катушке) контакты контактора KM1 замкнуты. Но, т.к., мы используем NC контакт реле напряжения KV1, то в нормальном режиме катушка контактора KM1 в щите Щит2 оказывается под напряжением и размыкает свои контакты. Соответственно, цепь питания контакторов 1KM1, 2KM1 в щите Щит2 разомкнута, питание с их катушек снято и их контакты разомкнуты. Силовая цепь питания освещения, подключенного к щиту Щит2 разомкнута и освещение отключено.

При срабатывании реле напряжения KV1 в щите Щит1 пара контактов 4 и 5 размыкается и, тем самым, разрывается цепь питания катушки KM1 в щите Щит2. Без напряжения NC контакты контактора KM1 возвращаются в исходное положение — замыкаются, тем самым на катушки контакторов 1KM1, 2KM1 подается напряжение и они замыкают свои контакты. Силовая цепь питания освещения замыкается и освещение включается.

Вместо реле напряжения SQZ3 можно взять аналог у другого производителя, либо установить несколько реле (реле минимального напряжения, реле максимального напряжения, реле контроля фаз), а их управляющие NC-контакты соединить последовательно. Таким образом, при срабатывании любого реле либо обрыве сигнального кабеля будет генерироваться управляющий сигнал на включение освещения в щите Щит2, т.к. будет разрываться сеть питания катушки управляющего контактора KM1 с NC-контактами.

Управление освещением с использованием датчиков движения

Датчики движения давно перестали быть чем-то дорогим и экзотическим. Их давно уже применяют для управления освещением и экономии электроэнергии в общественных зданиях (например, в санузлах) и в загородных домах (в основном для управления наружным освещением).

Датчик представляет собой миниконтактор, который замыкает свои контакты при обнаружении движения в контролируемой зоне.

Как и с обычным выключателем, датчик следует подключать  до светильника так, чтобы при его разомкнутых контактах, светильник оказывался без напряжения.

Управление освещением датчиком движения. Базовая схема

Для одновременного управления несколькими группами или для управления трехфазным группами датчики движения используют совместно с контакторами. Контакт датчик SM1 подключают в цепь питания катушки контактора KM1. При срабатывании датчика (обнаружено движение в контролируемой зоне) датчик замыкает свои контакты. Цепь питания катушки контактора KM1, на катушку подается напряжение. Контактор KM1 замыкает свои контакты, силовая цепь замыкается и включается освещение.

При размыкании контактов датчика движения SM1, цепь питания катушки контактора KM1 размыкаетя, с неё снимается напряжение. Контактор размыкает свою пару контактов и разрывает силовую цепь питания освещения. Освещение отключается.

Управление освещением датчиком движения и контактором

При управлении несколькими группами, катушки их контакторов подключаются в схему параллельно.

Также можно реализовать управление освещением по сигналу от нескольких датчиков движения. Контакты датчиков подключаются параллельно на клеммы X1:1, X1:2. При срабатывании любого из датчиков будет замкнута управляющая цепь, подано питание на катушки контакторов и, как следствие, включено освещение.

Управление освещением с использованием контроллеров

На больших объектах управление освещением осуществляют по командам из BMS — Building Management System — Системы управления зданием. Программы управления освещением записаны в контроллерах, контроллеры выдают управляющие сигналы в щиты освещения. В щитах освещения для включения и отключения освещения применены схемы с контакторами.

Скачать примеры схем управления освещением

Для получения чертежа dwg с примерами схем управления освещением из этой статьи заполните контактные данные в форме и на указанный email придёт письмо со ссылкой на скачивание файла.


Подпишитесь и получайте уведомления о новых статьях на e-mail

Читайте также:

фотореле в автоматических схемах управления освещением умного дома

Как известно, в настоящее время фотоэлементы применяются для реализации широкого спектра операций в самых разнообразных устройствах, в частности в системах управления освещением, в которых наиболее простая функция состоит в том, чтобы включать осветительные приборы с наступлением темного времени суток. Такого рода фотореле бывают как промышленной разработки, так и самодельные.

Самая простая, однако при этом в достаточной мере чувствительная схема предусматривает включение транзисторов через так называемую схему Дарлингтона (то есть схему составного транзистора). Она позволяет получать коэффициент усиления, который равен общему коэффициенту усиления составляющих транзисторов. Кроме того, такая схема также обеспечивает высокое входное сопротивление для подключения высокоомных источников сигнала.

Принцип работы фотореле прост

По мере увеличения уровня освещенности фоторезистора начинает уменьшаться уровень сопротивления, благодаря чему провоцируется открывание транзистора. который, в свою очередь, включает реле для подачи нагрузки. Защита схемы от самоиндукции, которая получается при выключении реле, происходит за счет диода, потому слабый сигнал, исходящий от фоторезистора, в итоге имеет мощность, достаточную для активации обмотки реле. В некоторых случаях чувствительность может быть излишней, и для ее коррекции используется переменный резистор. При замещении транзистора VТ2 на более мощный, к примеру, КТ815, ток на выходе может быть также больше, таким образом, можно применять более мощное реле. При этом повышается и чувствительность фотореле.

Схемы с фотодиодом для фотореле управления освещением

Благодаря ОУ число необходимых деталей небольшое. В данном случае, включение происходит по тому же принципу, что и включение сравнивающего устройства: фотодиод LED1 подключается в фотодиодном режиме, при этом за счет подаваемого питания он смещается в обратном направлении. С возрастанием уровня освещенности увеличивается сопротивление светодиода LED1, и уменьшается снижение напряжения на резисторе R1, на инвертирующем входе. Порог же срабатывания задается на неинвертирующем входе OУ. Но если на инвертирующем входе напряжение снижается до ниже порогового, то в таком случае на выходе компаратора высокое напряжение открывает транзистор, который включает реле.

Источник питания выбирается любой, в том числе и бестрансформаторный, однако в таком случае при наладке повышаются и требования к безопасности. По этой причине, если есть такая возможность, то для настройки устройства рекомендуется использовать специальный разделительный трансформатор (так называемый трансформатор безопасности — подробнее о том, где купить трансформатор 220-220 — на 220-110.рф). Настройка устройства, его пороговое напряжение выставляется таким образом, чтобы схема включалась с наступлением вечерних сумерек. Для этого в дневное время, чтобы не ждать вечера, в затемненном помещении фотодиод засвечивают обычной лампой накаливания, подключенной через тиристорный регулятор мощности. Способ также пригоден для настройки других схем фотореле.

Управление уличным освещением при помощи фотореле

Принцип функционирования фотореле основан на работе фотодатчика, контролирующего уровень освещения.

Фотодатчик делится на два типа:

  • выносной — располагается вне корпуса;
  • встроенный – монтируется на распределительный щиток.

Выносные фотореле, в соответствии с условиями эксплуатации, устанавливаются в прочных корпусах с повышенными показателями защиты от негативного воздействия окружающей среды. Реле в обязательном порядке комплектуются потенциометром, который позволяет безошибочно определить порог функции включения и выключения. Также такие устройства не обходятся без строенной защиты от ложных срабатываний.

Качественное сертифицированное оборудование строго включается только в моменты, заданные мастером при их монтаже.

Особенности управления освещением на улице

Очень часто фотореле обладают функцией запоминания информации, то есть оборудование можно программировать. Например, в летнее время темнеет позже, чем зимнее, и это предусматривается в процессе программирования.

Большинство современных устройств имеют встроенный переключатель, позволяющий включать и отключать прибор вручную, что очень важно для профилактики и при возникновении форс-мажорных ситуаций. Также на реле устанавливаются таймеры, которые отключают реле в строго отведенное время, что значительно снижает затраты электроэнергии.

Схема подключения фотореле

Ниже приведена схема подключения реле для уличного освещения, реагирующего на уровень света. Вместо датчика в данном случае используется индикаторный светодиод, работающий по принципу фотоэлемента.

В схеме светодиод отмечен как HL1, а сопротивление R1 и R2 используются для управления чувствительность реле.

ВАЖНО! Каждый светодиод имеет свой порог чувствительности к смене освещения.

Резиcтор R2 используется для регулирования начального напряжения VT1, которое с помощью постоянного напряжения HL1 позволяет регулировать порог чувствительности устройства.

Виды фотореле

Реле для управления уличным освещением делятся на несколько типов, в зависимости области применения:

  • устройство со встроенным фотоэлементом;
  • устройство с встроенным фотоэлементом и таймером;
  • устройство с возможностью управления порогом срабатывания;
  • устройства с выносным фотоэлементом.

Также существуют и более усовершенствованные модели, используемые в отдельных промышленных отраслях, например, в условиях севера.

Устройство со встроенным фотоэлементом

Данное фотореле используется для автоматического включения уличного освещения с наступлением сумерек и выключения с появлением первых солнечным лучей. Корпус реле представляет собой прозрачную конструкцию, защищающую механизм прибора от воздействия природных факторов.

Устройство с встроенным фотоэлементом и таймером

Фотореле также применяется для автоматического регулирования освещения. Таймер позволяет управлять временем освещенности, то есть задавать определенный промежуток, по достижении или на протяжении которого действует указанный уровень света. Выключение реле также происходит автоматически: в установленное время или по достижению определенного уровня освещенности.

Существует несколько типов таймеров:

  • с дневными механизмами;
  • с недельными механизмами;
  • с годовыми механизмами.

Такие устройства можно программировать одинаково на несколько дней и, например, отдельно выделять выходные дни.

Устройства с возможностью управления порогом срабатывания

В целом принцип работы такого реле аналогичен предыдущим. Отличие лишь в наличии переключателя, которым можно установить порог срабатывания фотоэлемента.

При выборе положения «плюс», фотоэлемент будет срабатывать даже при небольшом затемнении, например, в пасмурную погоду. В положении «минус» – только с наступлением ночи.

Ручная корректировка позволяет учитывать погодные условия и времена года для каждого региона.

Устройство с выносным фотоэлементом

Фотоэлемент подобного реле можно устанавливать на расстояние до 150 метров от главного блока, который монтируется в распределительный щиток. Таким образом, основная составляющая прибора всегда будет находиться в защищенном месте.

Преимущества

Фотореле с механизма регулировки порога идеально подходят для дачных участков и дворов многоквартирных домов. Их конструкция позволит значительно сэкономить на электроэнергии. Монтаж реле со встроенным фотоэлементом достаточно прост и под силу каждому, а вот установка выносного оборудования требует определенных навыков. Подобные устройства размещаются на территории больших складов, ангаров, крупных промышленных предприятиях.

Фотореле – это универсальный автоматический прибор, на который можно спокойно переложить ответственно по управлению уличным освещением. Многие современные устройства также имеют датчики движения, срабатывающие даже при небольшом шевелении на заданном участке. То есть, если человек попадает в эту области, то свет автоматически включается. В противном случае лампы не работают, следовательно, затрачивается меньше электрической энергии. Если установить такое реле на дачном участке, то оно еще будет уведомлять о званных или незваных гостях.

Видео

Фотореле, сумеречный выключатель, схема, самому собрать простой сумеречный выключатель, фотореле.

Разделы: Советы Схемы → Автоматическое управление уличным освещением.

Для чего предназначено это устройство?
Управление в автоматическом режиме включением и выключением света на территории, в подъезде, когда освещенность на улице становиться ниже установленного значения.
Имеются много подобных самоделок, к которым до сих пор не потерян интерес к паянию, неумолимый прогресс и новые технические решения приходят к нам, в основе конструкции которых микроконтроллеры, но всегда остается потребность и желание собрать самому простую и недорогую схему.
Практическая полезность этой конструкции остается всегда нужной, тем более во время, когда экономия электричества стала одной из серьезных и актуальных хозяйственных проблем.

На рынке существует самые разнообразные сумеречные выключатели, которые легко доступны, зачем что-то еще изобретать? Для желающих "помастерить" и "попаять" предлагается эта миниатюрная "конструкция выходного дня", она хорошо подойдет для применения в домашней электронике. Фотореле представляет собой схему с релейным выходом, размер печатной платы 29x29x15 мм, питание от внешнего источника питания постоянного тока.
Схема фотореле.

Схема электрическая

Простое фотореле день - ночь схема. Принцип работы достаточно прост: операционный усилитель используется в качестве компаратора (сравнивающего устройства), фоторезистор определяет уровня освещения окружающей среды. Нагрузкой сумеречного выключателя является малогабаритное электромагнитное реле. Как уже указывалось выше, для определения уровня падающего света предназначен фоторезистор FR1, он имеет максимальное сопротивление в темноте около 1 МОм и минимальное в несколько сотен Ом при воздействии на него сильного света: это позволяет определить уровень освещенности на основе разницы значений сопротивления FR1. По схеме видно, что сопротивление фоторезистора входит в состав делителя напряжения, состоящий из R3, FR1 и R5 для получения необходимой величины напряжения с выхода делителя.
Подавая напряжения с делителя на вход 5 U1 (неинвертирующий вход) можно получить на выходе 7 компаратора устойчивое срабатывание, которое будет соответствовать выбранному значению яркости к величине напряжения с делителя. Включение переменного резистора (триммера) в схему с компаратором дает возможность отрегулировать порог (необходимую величину напряжения ) срабатывания компаратора, в соответствии с уровнем освещенности, при котором выходное реле должны включиться (активировано).

Работа устройства

Рассмотрим работу схемы подробнее, предполагая, что фотодатчик FR1 не освещен, находится в темноте, в результате этого сопротивление FR1 гораздо выше, чем сопротивление R3 и R5. В результате этого напряжение с делителя поступающее через R3 и R6 на вход компаратора будет примерно равно напряжению питания U1, поступающего через диод D1.

Если подстроечный резистор RV1 находится в положении ближе к минусу источника питания и дальше от положительного потенциала (катода D1), величина напряжение поступающее на инвертирующий вход 5 операционного усилителя меньше, чем напряжение на неинвертирующем входе 6. Таким образом, на выходе U1 образуется сигнал высокого потенциала прикладываемый к базе Т1, транзистор открывается, величина коллекторного тока становится достаточной для срабатывания реле RL1 и зажигания LD1 (включенный светодиод сигнализирует срабатывание фотореле), замыкается контакт С и NO, включая цепь нагрузки.
Когда освещенность начинает повышаться, напряжение поступающее с делителя через R6 и D3 на контакт 5 U1 уменьшается, в следствии постепенного понижения сопротивление фоторезистора от попадания света на его чувствительный слой. В какой-то момент неинвертирующий вход станет находиться под более низким потенциалом, чем напряжение на инвертирующем вводе, определяемое триммер RV1 и компаратор переключается, изменяя состояние выхода, потенциал на выходе становится низким, транзистор Т1 закрывается. В результате гаснет светодиодный индикатор, а выходное реле переключается в исходное состояние, нагрузка выключается. Если уровень освещенности уменьшается, то на выход 7 U1 потенциал опять становится высоким и выходное реле замыкает снова (индикатор загорается).
Регулировка момента включения сумеречного выключателя в сумеречное время выставляется триммером RV1, когда необходимо зажечь уличное освещение. Плавным перемещение подстроечного резистора устанавливается уровень напряжения срабатывания устройства, перемещая движок в сторону земли (минуса) напряжение уменьшается, а в противоположную, наоборот увеличивается. Для срабатывания реле в более темное время суток необходимо резистор перемещать в направлении минуса.

Назначение элементов фотореле

Рассматривая предложенную схему можно увидеть, что в ней установлен диод D3 подключенный к выводу 5 компаратора, его назначение пропустить напряжение с делителя через резистор R6 ко входу 5 и на цепочку R4, С3, не давать быстро разряряжаться конденсатору С3, когда потенциал с делителя станет меньше чем потенциал на С3. Эта задержка по времени необходима для того чтобы не дать выключиться освещению в случае кратковременных помех по питанию, или при резком кратковременном изменении освещенности датчика (фары автомобиля и т.д.). Еще это необходимо и для того, что при переходе от темного к светлому и наоборот, реле может кратковременно срабатывать, находясь а неустойчивом состоянии, поскольку сопротивление фоторезистора на этот момент может колебаться в районе значений (гистерезиса) определяющее напряжение срабатывания.
Напряжение источника питания поступает через диод D1, защищающий от подключения напряжения обратной полярности, для фильтрации напряжения и подавления импульсных помех предусмотрены конденсаторы С1 и С2.
Схема работает от источника постоянного напряжения от 9 до 12 вольт, для нормальной работы предпочтительнее питать от стабилизированного источника (в противном случае при нестабильном источнике колебания напряжения в районе порогового значения ухудшит стабильность параметров устройства, несмотря на RC фильтр). Требуемый ток порядка 40 мА, благодаря субминиатюрному реле, потребление которого составляет около15 мА.
Дополнительно поясним работу диода D2, подключенный параллельно обмотке электромагнитного реле RL1. Так как диод подключен параллельно обмотке RL1, то во включенном состоянии реле он не функционирует, но при выключении реле, когда транзистор переключается и благодаря индуктивному характеру свойства обмотки реле на ней возникает эдс, полярностью направленной против источника питания, поэтому на коллекторе транзистора появляется в момент переключения удвоенное напряжение источника. Для исключения выхода из строя транзистора Т1 и служит диод D2, гасящий обратную полуволну возникающей ЭДС.
Перечень элементов
R1: 15 кОм
R2: 1 кОм
R3: 15 кОм
R4: 3,3 кОм
R5: 150 Ом
R6: 3,3 кОм
RV1: триммер 1 кОм М.В.
FR1: фоторезистор 2-20k
С1: 100 мкФ 25VL
С2: 100 нФ
С3: 100 мкФ 25VL
D1: 1N4148
D2: 1N4148
D3: 1N4148
LD1: LED 3 мм красный
T1: BC547
U1: LM358 аналог КР1040УД1 / КФ1040УД1
RL1: Реле 12V

На выходе тиристор

Как использовать схему на фототранзисторе | Переключатель светового контроллера

Я собираюсь показать вам, как использовать схему на фототранзисторе очень просто. Сделать его переключателем или реле контроллера света с основными компонентами, такими как транзистор, ИС и т. Д. Представьте, что при солнечном свете релейный переключатель включается для нагрузки, когда работает вентилятор. мы счастливы. Потом закат. релейный выключатель выключается и нет ветра нам. Это просто? Его также можно использовать для обнаружения светового луча, фар и т. Д.

Цепь реле, активируемая светом, с использованием фототранзистора

См. Ниже, это схема реле, активируемая светом, для управления электрическими приборами с помощью света.Выдающаяся точка этой схемы будет встречать свет быстрее, чем при использовании схемы управления LDR.

Когда свет уходит с работы внезапно. Когда свет встречает свет, заставляет работать фототранзистор, изменение тока смещения заставляет транзистор работать, заставляя работать реле.

VR1 отлично украсит быстроту схемы. Схема эта простая. Оборудование, которое используется для замены, например, Q1 = 2N2222 , использовать другие номера, может заменить почти готовый запрос типа NPN достаточно, например, BC549 или BC337 или C1815 или C945 и т. Д.

Для овала следует использовать размеры 6–9 В, которые имеют ценное сопротивление в катушке реле около 500 Ом. Остальные детали имеют немного и легко собираются. Что еще? выучите вторую схему.

Простая схема регулятора света на фототранзисторе

Это схема простого регулятора света, которая управляется световой активацией. Которые используют затвор инвертора IC-40106 в качестве основных компонентов в переключателях сравнения и управления, а обычные фототранзисторы в качестве датчиков.

Работа переключателя имеет несколько форм.Самый простой способ - нажать переключатель напрямую. Если современные, должны управляться инфракрасным светом или дистанционным управлением.

А также использует радиочастоту для управления переключателем включения / выключения. Даже обычный свет, так что можно контролировать включение / выключение. Мини-переключатель

, управляемый светом с использованием CD40106

Принцип работы


Схема на рисунке 1 представляет собой мини-переключатель, управляемый светом, который использует фототранзистор в качестве светоприемника, есть триггер Шмитта IC (CD40106) в качестве привода выходного тока. для нагрузки или внешней цепи.

Он может обеспечивать выходной ток до 25 миллиампер. Схема, в которой используются несколько компонентов вместе. Может быть напрямую подключена к небольшим нагрузкам. или управлять реле или оптопарой типа. для управления нагрузкой, использующей переменное напряжение или высокое постоянное напряжение.

Работа схемы при наличии света на фототранзисторе-Q1 вызывает протекание тока между переходом коллектор-эмиттер и падение напряжения на потенциометре-VR1 как «высокое» напряжение для запуска первого триггера Шмитта-IC1 / 6 до тех пор, пока выход «низкий».И есть еще пять триггеров Шмитта, которые параллельно затвору инвертора обеспечивают «высокое» выходное напряжение. Подключение параллельно с максимальным током привода или около 25 мА.

Резистор-R1 и конденсатор-C1 подключены к RC-цепям для предотвращения помех, которые могут быть вставлены. Если проблема в шумах. может немного прибавить ёмкость С1. Потенциометр VR1 для регулировки чувствительности в качестве переключателя Q1. Когда много света. Схема может использоваться с источником питания до 16 В

Как собрать

В этом проекте не используются некоторые компоненты, поэтому их можно собрать на универсальной печатной плате, как Рисунок 2.
В схеме сборки, начиная с нижнего уровня стартового оборудования до Красивого и простого в сборке. Начните с диода, а затем с резисторов и постоянно повышайте уровень.


Компоновка компонентов данного проекта

Для устройства различной полярности следует соблюдать осторожность при сборке схемы. Перед размещением этих компонентов необходимо установить полярность на печатной плате, и детали должны соответствовать друг другу, потому что если вы поместите их назад, это может привести к повреждению оборудования или цепи.

Список компонентов
Размер резисторов ¼ W + 5%
R1: 10M
VR1: 1M Потенциометр
Конденсаторы
C1, C2: 0,1 мкФ 50 В, полиэфирные конденсаторы
Полупроводник
Q1: SFh409-6 Фото транзисторы
IC1: CD40106__CMOS Hex Schmitt Triggers
Другое
Универсальная печатная плата

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ

Я всегда стараюсь сделать Electronics Learning Easy .

Фотореле

Проект электронного строительства


Реле подает питание 120 В переменного тока на нагрузку в темноте.

  • Максимальная нагрузка два ампера (скачок 30 ампер)
  • Адаптируется к более высоким токам
  • Адаптируется к 240 В переменного тока
  • Адаптируется к темноте
  • Адаптируется к постоянной установке

Рисунок 1

Схема


* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не используется, замените его на короткое.
(Фотореле также может быть смещено, частично блокируя свет, падающий на LDR.)
** ПРОВЕРКА ПОЛЯРНОСТИ БЕЗОПАСНОСТИ: Клемма заземления для проверки полярности.
Если горит неоновая лампа, полярность правильная. Если неон не горит, переверните входной штекер.
Прочтите приведенные ниже рекомендации по безопасности.
*** См. Приложение по нагрузке ниже.

Описание цепи

Вторичная обмотка трансформатора, два диода и конденсатор 270 мкФ вырабатывают рабочую мощность 6-9 В постоянного тока для схемы. Резистор 8,2 кОм, регулируемый резистор 1 кОм и LDR образуют делитель напряжения. Сопротивление LDR обратно пропорционально интенсивности падающего на него света. Средь бела дня сопротивление LDR составляет около 100 Ом, а напряжение на контактах 2 и 6 находится рядом с отрицательной шиной питания. По мере приближения темноты сопротивление LDR увеличивается, а напряжение на контактах 2 и 6 7555 повышается.7555 действует как компаратор напряжения. Когда напряжение на контактах 2 и 6 достигает примерно 2/3 положительного напряжения шины питания, контакт 3 переходит в низкий уровень, запуская реле SS. Реле замыкает цепь переменного тока, подавая напряжение на нагрузку. По мере приближения дневного света операция меняется на противоположную. Сопротивление LDR падает, и напряжение на контактах 2 и 6 падает. Когда напряжение на контактах 2 и 6 достигает примерно 1/3 напряжения источника питания, контакт 3 становится высоким, обесточивая реле SS. Резистор 10 кОм обеспечивает отрицательную обратную связь, которая сужает 2/3 - 1/3 окна включения-выключения.† Резистор 150 кОм ограничивает ток в неоновой лампе примерно до 200 мкА.

† Уменьшите значение этого резистора, чтобы сузить окно включения / выключения; увеличьте значение (или удалите), чтобы расширить окно.


Детали для рисунка 1

ТРАНСФОРМАТОР 115V / 6Vx2, BV020-5417.0 (Pulse), Digikey cat # 567-1007
LDR Light Dependent Resistor, All Electronics cat # PRE-12 (or similar)
7555 Таймер CMOS, LMC555CN (Nat.Полупроводник), Digikey cat # LMC555CN
SS RLY 2-амперное твердотельное реле, G3MC-202PL DC5 (Omron), номер по каталогу Mouser 653-G3MC-202PL-DC5
POT 1 кОм, 9 мм, Digikey 3309-102 (Необязательно. Если не используется, заменить на короткое)
NE-2 Неоновая лампа, Mouser cat # 606-A1A
РЕЦЕПТИЧЕСКИЙ 2-х проводный, защелкивающийся, Digikey Q281
КОРПУС Пластик, 4.5 дюймов x 2,75 дюйма x 1 дюйм (11,4 см x 7 см x 2,5 см)
MISC Мелкие детали, как показано на схеме

Digikey Mouser Electronics Вся электроника



Строительство начато

Все детали крепятся к корпусу с помощью силиконового герметика (RTV).

Монтажная плата завершена

Большинство мелких компонентов для проекта смонтированы на плате.
2-контактный разъем подключается к LDR.

Печатная плата

в корпусе

Проводной

Выходной приемник

Установлен в корпус

Установлены входной линейный шнур и первичная проводка трансформатора

Детали проверки полярности

Гнездо наконечника (это будет вывод заземления), резистор 150 кОм, монтажная втулка светодиода, NE-2.

Установлены неоновая лампа и клемма заземления

в океане RTV.

Завершенный объект - внутренний

Завершенный проект - Внешний

Да, это крышка от бутылки. Он защищает LDR и придает ему направленность.

LDR

крупным планом

Фотоэлемент в эксплуатации

Это внешнее место, защищенное от непогоды накануне.



- Соображения по безопасности -

Эта схема, если она построена с использованием сертифицированных, протестированных устройств, указанных в списке деталей (трансформатор и реле SS), обеспечивает очень высокую гальваническую развязку.Тем не менее, фотоэлемент, показанный на этой странице, является автономной переносной (временной) версией. Таким образом, при его использовании следует помнить о нескольких вещах:

  • Фотоэлемент необходимо защищать от непогоды и других влажных условий. (См. Ниже.)
  • Перед вводом фотоэлемента в эксплуатацию необходимо выполнить проверку полярности. Это гарантирует, что оба выходных проводника будут обесточены, когда устройство находится в состоянии «ВЫКЛ». (Проверка полярности не применяется, если реле рассчитано на использование 240 В переменного тока.См. Ниже.)
  • Отсоедините фотоэлемент от источника питания перед работой с любым устройством или проводкой, управляемой устройством.


Вариант №1: Построение версии на 240 В переменного тока

Однополюсный:

Фотореле можно сконструировать как однополюсную версию на 240 В переменного тока, заменив трансформатор на 240 В на трансформатор, показанный в списке частей на Рисунке 1 выше, и удалив резистор 150 кОм и неоновую лампу.Никаких других изменений не требуется. Однополюсная версия подходит для портативного (временного) обслуживания только , если реле будет подключено к полностью плавающей и сбалансированной ответвленной цепи на 240 В, защищенной прерывателем цепи замыкания на землю (GFCI).

ТРАНСФОРМАТОР 230V / 6Vx2, BV020-5388.0 (импульсный), Digikey 567-1022

Двухполюсный:

Двухполюсная версия показана на рисунке 2. Используйте эту конфигурацию, если фотореле будет подключено к 240-вольтной ответвленной цепи без защиты GFCI (или если тип автоматического выключателя неизвестен).

Рисунок 2

Схема - 240 В перем. Тока, 2-полюсная версия

* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не используется, замените его на короткое.
(Фотореле также можно смещать, частично блокируя свет, падающий на LDR.)
*** См. Приложение к нагрузке ниже.

Детали для рисунка 2

ТРАНСФОРМАТОР 230V / 6Vx2, BV020-5388.0 (импульсный), Digikey 567-1022
LDR Светозависимый резистор, вся электроника PRE-12 (или аналогичный)
7555 Таймер CMOS, LMC555CN (Nat. Semiconductor), Digikey cat # LMC555CN
SS RLY (2) 2-амперное твердотельное реле, G3MC-202PL DC5 (Omron), номер по каталогу Mouser 653-G3MC-202PL-DC5
POT 1 кОм, 9 мм, Digikey 3309-102 (Необязательно. Если не используется, заменить на короткий.)
РЕЦЕПТИЧЕСКИЙ
КОРПУС
MISC Мелкие детали, как показано на схеме

Вариант № 2: Построение удаленной / всепогодной версии

Датчик освещенности (LDR) может быть удален с помощью низковольтной проводки для создания «погодоустойчивой» версии схемы, как показано на рисунке 3. Поместите LDR в прозрачный или полупрозрачный водонепроницаемый внешний кожух; оставшуюся часть цепи установите в защищенном от атмосферных воздействий месте внутри.

Рисунок 3

Пульт ДУ LDR

Вариант № 3: Построение сильноточной версии

Для приложений с более высоким током указанные твердотельные реле серии G3MC и резисторы на 390 Ом могут быть заменены сильноточными твердотельными реле (или реле), такими как Omron G3NA-2xxB-DC5-24 серия (до 90 ампер) или серия Crydom h22WD (до 125 ампер). Заменить резисторы на 390 Ом на короткое замыкание.

В качестве альтернативы, схему на Рисунке 1 можно использовать для управления (пилотирования) электромеханического реле или контактора 120/240 В переменного тока, как показано на Рисунке 4.

Рисунок 4

Фотореле управляет электромеханическим реле.


Установленный пример

Электромеханическое реле находится в сером ящике.

Вариант №4: Построить версию для выключения темноты

Цепь реле может быть изменена для отключения нагрузки, когда становится темно. Схема остается той же во всех отношениях, за исключением того, что проводка реле SS и связанного с ним резистора на 390 Ом изменена, как показано на рисунке 5.Обратите внимание, что работа элемента управления BIAS изменится.

Рисунок 5

Схема - Модификация Off-When-Dark.

* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВЫКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не будет использоваться, замените его на короткое.
(Фотореле также может быть смещено, частично блокируя свет, падающий на LDR.)

Приложение: нагрузки на твердотельное реле

Минимальная нагрузка

В отличие от электромеханического реле, твердотельное реле не будет полностью переключаться из состояния «ВЫКЛ» на высокое сопротивление (т.е.е., низкая мощность) нагрузки или обрыва цепи. Максимальное сопротивление, которое может выдержать реле Omron SS, составляет около 1200 Ом, что эквивалентно 12 Вт резистивной нагрузки без накаливания (0,1 А) при 120 В. Для лампы накаливания минимальная эквивалентная нагрузка составляет около двух ватт (холодное сопротивление 2-ваттной лампы накаливания составляет менее 1200 Ом). Интересно, что для магнитной нагрузки (двигатель, реле, трансформатор и т. Д.) Минимальная нагрузка составляет практически ноль Вт, поскольку магнитные устройства переменного тока регистрируют очень низкое сопротивление в обесточенном состоянии.Другими словами, минимальная нагрузка зависит от типа нагрузки:

Минимальная нагрузка, необходимая для различных типов нагрузки
Тип нагрузки Минимальная мощность при включенном состоянии для этого типа нагрузки Типичное сопротивление в выключенном состоянии при этой мощности
резистивный 12 Вт (24 Вт при 240 В) 1200 Ом (2400 Ом при 240 В)
Лампа накаливания 2 Вт (4 Вт при 240 В) <1200 Ом (<2400 Ом при 240 В)
Магнитный <1 Вт <200 Ом

Особый случай - светодиодные нагрузки

Интересный эффект можно увидеть, когда реле подключено к цепочке светодиодных декоративных фонарей.Эти цепи состоят из выпрямителя и примерно 35 светодиодов, соединенных последовательно (70 светодиодов для цепочек на 240 вольт). Поскольку светодиоды являются высокоскоростными нелинейными устройствами, они выключаются каждый раз, когда напряжение возбуждения падает ниже порогового значения в 2-3 вольта на светодиод. Это происходит при нормальной работе дважды в течение каждого цикла переменного тока. Кажется, что светодиоды горят непрерывно, но на самом деле они мигают с частотой, в два раза превышающей частоту линии питания переменного тока.

Требование минимальной нагрузки / максимального сопротивления вступает в игру, когда реле SS переключается в состояние «ВЫКЛ».Каждый раз, когда напряжение цепочки падает ниже порогового напряжения светодиодов, цепочка для реле выглядит как разомкнутая цепь. Реле пытается подать ток на цепочку светодиодов, и напряжение в цепочке поднимается до порогового значения. В результате на светодиоды подается серия импульсов с ограничением на пороге с частотой, в 2 раза превышающей линейную. Видимый результат - струна не темнеет, а тускло светится. Это происходит независимо от количества светодиодных цепочек, подключенных к реле.

Если это неприемлемо, решение простое: в дополнение к светодиодной нагрузке обеспечьте по крайней мере 2 Вт лампы накаливания.Одна лампа мощностью 2 Вт (или больше) на 120 В (4 Вт при 240 В) или цепочка ламп, подключенная параллельно светодиодной цепочке, полностью устранит этот эффект. В качестве альтернативы можно использовать какую-либо магнитную нагрузку, например, трансформатор дверного звонка или сетевой адаптер питания от бородавок с питанием от трансформатора (без переключателя). (Нет необходимости подключать стенную бородавку к ее нагрузке.)

Если ваша единственная задача - устранить тусклое свечение светодиодов при выключенном фотореле, можно использовать резистор относительно высокого номинала.Хотя это не позволит реле SS полностью переключиться в состояние «ВЫКЛ.», Оно снизит выходное напряжение настолько, чтобы погасить светодиодную цепочку. Вероятно, наиболее практичным местом для этого резистора являются клеммы приемника выходной нагрузки фотоэлемента, как показано на рисунке 6. Присутствие этого резистора не повлияет на работу реле с другими типами нагрузки.

Рисунок 6

Дополнительный нагрузочный резистор, если реле должно использоваться со светодиодными цепочками.

(используйте 100 кОм, 1 Вт для 240 В перем. Тока)

Особый случай - импульсные источники питания и импульсные источники питания

Указанное реле SS рассчитано на импульсный ток 30 А.Хотя этого вполне достаточно для большинства ситуаций с нагрузкой, включая люминесцентные лампы и двигатели, есть один тип нагрузки, где это могут не быть импульсные источники питания без коррекции коэффициента мощности (PFC) : . Эти источники питания обычно работают непосредственно от линии переменного тока с двухполупериодным выпрямителем, за которым следует конденсатор для фильтрации пульсаций большой емкости. Этот конденсатор представляет собой виртуальное короткое замыкание на линию в момент подачи питания, и в течение первого или двух циклов после включения может протекать 100 ампер или более, что значительно превышает номинальное значение перенапряжения реле SS.

Хорошо спроектированный импульсный источник питания будет включать коррекцию коэффициента мощности или ограничитель пускового тока, также известный как термистор с отрицательным температурным коэффициентом (NTC), который предотвращает это. Если вы не уверены в своем импульсном источнике питания, вы можете включить его в фотоэлемент в качестве меры предосторожности. Ограничитель тока подключается, как в приведенном выше примере, в задней части грузоприемного устройства. Ограничитель пускового тока должен быть подключен между реле SS и нагрузкой, как показано на рисунке 7.Указанный ограничитель тока будет ограничивать пусковой ток значительно ниже номинального значения импульсного тока реле SS. Ограничитель тока будет нагреваться во время нормальной работы под нагрузкой.

Рисунок 7

Дополнительный ограничитель пускового тока, необходим только тогда, когда нагрузка переменного тока представляет собой импульсный источник питания без коррекции коэффициента мощности.

* Mouser 527-CL80

Схема, созданная с помощью DCCAD.


Родственный проект

Звезда со светодиодной подсветкой

Простое твердотельное реле для маломощных светодиодных ламп 120 В


Фиг.1

by Lewis Loflin

Светодиодные лампы

отличаются очень низким энергопотреблением, поэтому для включения можно использовать переключение с более низким энергопотреблением. Идеальным переключателем для непосредственного взаимодействия с микроконтроллером является серия оптосинхронизирующих фотоэлементов серии MOC30XX.

На рис. 1 я легко управляю лампой мощностью 120 В переменного тока, 650 люмен и 8 Вт с помощью одного MOC3011. Никаких других частей не требуется на стороне переменного тока цепи.

MOC3011 рассчитан на пиковое напряжение 250 В при мощности рассеяния 300 мВт. Я бы не стал использовать лампочку мощностью более 10 Вт при 120 В переменного тока.

Я использую его постоянно для освещения панелей переменного тока на 24 В. Хорошо бы работать с неоновыми лампами NE-2.


Рис. 2

Схема на Рис. 1.

В техническом паспорте отмечается, что MOC3011 не предназначен для непосредственного управления нагрузками.

Из техпаспорта:

Серии MOC301XM и MOC302XM представляют собой оптически изолированные драйверы симисторов. Эти устройства содержат GaAs инфракрасный излучающий диод и кремниевый двусторонний переключатель, который работает как симистор.Они предназначены для взаимодействия между электронные средства управления и силовые симисторы для управления резистивными и индуктивными нагрузками на 115 В переменного тока.


Рис. 2

Оптопара типа MOC3031 имеет внутреннюю схему перехода через нуль. Их нельзя использовать в схемах диммера типа MOC3011.

Из техпаспорта:

Устройства MOC303XM и MOC304XM состоят из AlGaAs инфракрасный излучающий диод, оптически связанный с монолитным кремнием детектор, выполняющий функцию драйвера двустороннего симистора с переходом через нулевое напряжение.

Они предназначены для использования с симистором в интерфейсе логики. систем к оборудованию, питающемуся от линий 115 В переменного тока, например телетайпы, ЭЛТ, твердотельные реле, промышленные средства управления, принтеры, двигатели, соленоиды, бытовая техника и т. д.

При номинальном напряжении 250 В пиковая мощность рассеивания составляет всего 150 мВт. Используйте как указано для управления другими устройствами.

Оптическая развязка управления двигателем H-моста YouTube
Оптическая развязка управления двигателем с Н-образным мостом

Теория оптопары и схемы YouTube
Драйверы оптоизолированных транзисторов для микроконтроллеров

All NPN Transistor H-Bridge Motor Control YouTube
Управление двигателем с Н-мостом на всех NPN транзисторах

Учебное пособие по широтно-импульсной модуляции YouTube
Учебное пособие по широтно-импульсной модуляции

PIC12F683 Микроконтроллер и схемы YouTube
PIC12F683 Микроконтроллер и схемы

Информационный документ по выбору эффективного управления освещением

% PDF-1.4 % 249 0 объект > эндобдж 234 0 объект > эндобдж 297 0 объект > эндобдж 326 0 объект > поток Acrobat Distiller 6.0 (Windows) 500L, 500FL, освещение, контактор, комбинация, питатель, 500LG, 500LC, 100LPScript5.dll Версия 5.22011-02-17T14: 44: 36-06: 002006-11-03T11: 13: 55-06: 002011-02-17T14: 44: 36-06: 00uuid: 7bad620b-7397-4553-9c4f-adf9a2727c2cuuid: c206582d-52a8-4929-b03a-83f3439d00adaapplication / pdf

  • Выбор эффективного управления White Paper
  • Rockwell Automation
  • 500L
  • 500FL
  • освещение
  • контактор
  • комбинация
  • питатель
  • 500LG
  • 500LC
  • 100 л
  • конечный поток эндобдж 235 0 объект > эндобдж 229 0 объект > эндобдж 230 0 объект > эндобдж 231 0 объект > эндобдж 232 0 объект > эндобдж 233 0 объект > эндобдж 135 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Type / Page / LastModified (D: 20061116081930-06 ') >> эндобдж 138 0 объект > / ColorSpace> / Font> / ProcSet [/ PDF / Text / ImageC / ImageI] / ExtGState >>> / Type / Page / LastModified (D: 20061116081930-06 ') >> эндобдж 143 0 объект > / ProcSet [/ PDF / Text] / ExtGState >>> / Type / Page / LastModified (D: 20061116081930-06 ') >> эндобдж 146 0 объект > / ProcSet [/ PDF / Text] / Свойства> / ExtGState >>> / Тип / Страница >> эндобдж 325 0 объект > поток HW ێ |? _1? # / HmMtU79g% eDaвa / E} y /! M% l ݕݥ ww ~ Ϗi {oo.'x ", HW9 * /. lb1n8ҭ * rRM7тJƼxX

    Низковольтная система освещения в старом доме

    Какая система освещения низкого напряжения установлена ​​в вашем доме?

    У вас старый дом с низковольтной проводкой? Kyle Switch Plates специализируется на запасных частях для систем освещения низкого напряжения. У нас есть нечетные конфигурации коммутационных панелей для старых кулисных переключателей низкого напряжения, а также производимые в настоящее время квадратные или прямоугольные кнопочные электрические устройства, совместимые с системами, установленными в домах, построенных в U.С. в 1940-е, 1950-е, 1960-е, 1970-е и 1980-е гг. Просмотрите здесь основные системы, чтобы определить свою серию, а затем купите запасные части по брендам: GE, Bryant, Touch-Plate, Sierra / Despard или Remcon.

    ВАЖНО: Самый быстрый и лучший способ определить марку вашей низковольтной системы - это найти реле .

    Некоторые бренды прекратили производство выключателей света, и в результате некоторые или все выключатели в вашем доме могли быть обновлены до более новой марки.

    Реле укажут правильную марку вашей системы , а марка системы повлияет на то, какие новые детали вам необходимо приобрести при замене сломанных реле, переключателей и т. Д.

    Используйте изображения переключателей ниже, чтобы понять, какой у вас тип системы, но не забудьте найти свои реле, чтобы проверить оригинальную марку вашей системы. Реле могут быть расположены в потолке рядом с осветительной арматурой или в релейной панели в гараже или на чердаке.

    НАЖМИТЕ на изображение ниже, которое выглядит как ваша система, чтобы узнать больше о заказе подходящих запасных частей.


    ** См. Ниже другие стили и детали, которые помогут идентифицировать другие системы lo-vo . **


    Типы переключателей и реле низкого напряжения

    # 1 Системы освещения низкого напряжения General Electric в оригинальном стиле

    Описание: Редкие, старомодные системы освещения низкого напряжения GE имеют миниатюрные 3-проводные кулисные переключатели на 24 В, номера деталей RFS-3, RFS-6 или RFS-9, которые крепятся на узких стальных ремнях, также называемых кронштейнами или хомутами .У переключателей есть зазор посередине, на одной стороне написано ВКЛ, на другой - ВЫКЛ. Переключатели качаются из стороны в сторону. Во многих домах эти пластины устанавливались горизонтально, поэтому переключатели перемещались вверх и вниз. Пластины переключателей могут иметь 1, 2, 3, 4 или 6 отверстий для переключателей высотой 0,656 дюйма и шириной 1,092 дюйма, которые закрывают устройства, закрепленные на ремне. В системе электропроводки используются трансформаторы и соленоидные реле.

    Варианты замены: Kyle Switch Plates имеет пластины переключателя оригинального стиля, изготовленные на заказ, поскольку GE больше не производит их.Обязательно сохраните монтажные кронштейны, так как они больше не производятся. Переключатели старого типа были обновлены до переключателей серии RS2. Эти переключатели работают так же, и являются прямой заменой. Переключатели нового стиля немного больше, чем переключатели старого стиля, поэтому в любом месте, где будет установлен новый переключатель, должны быть установлены пластины переключателя нового стиля.

    Чтобы купить детали, посетите сайт GE Low Voltage Lighting Systems Replacement Parts.


    # 2 Системы низковольтной проводки Snap-In

    Описание - Серия RS Snap-In для низкого напряжения Размеры: Эти текущие детали доступны для покупки.

    Для низковольтных систем освещения General Electric требуются панели переключателей с одним вертикальным отверстием или одним, двумя или тремя горизонтальными отверстиями размером 0,76 x 1,278 дюйма.

    Сменные переключатели

    GE защелкиваются или вставляются в переднюю часть пластин переключателей. Выберите эту систему, если вы используете электрические устройства серии GE RS нового стиля без ремня и хотите имитировать формат настенных плит и выключателей Bryant или General Electric старого стиля.

    Переключатели и ремешки в оригинальном стиле (показанные на изображении № 1 «GE» выше) больше не производятся.Чтобы купить текущие детали, посетите сайт GE RS Series Snap In Low Voltage Lighting Parts.


    # 3 Системы освещения низкого напряжения на кронштейнах GE

    Описание - Низковольтное устройство для крепления на кронштейне GE. Размеры: Система освещения низкого напряжения General Electric, устанавливаемая на кронштейне, включает панели переключателей, которые имеют от одного до четырех вертикальных отверстий.

    Коммутаторы серии

    RS устанавливаются в ромбовидные одно- или двухклавишные кронштейны.

    Выберите эту серию, если вы используете электрические устройства General Electric серии RS нового типа, закрепленные на металлическом кронштейне, установленном в электрической коробке.

    Пластины переключателей устанавливаются на кронштейн, поэтому их можно снимать, не трогая переключатели и не разъединяя их.


    # 4 Коммутаторы GE RTS-5

    Описание - Переключатели GE RTS-5: Эти винтажные переключатели имеют базовую форму обычного переключателя, но с некоторыми отличиями. Основание переключателя может иметь либо строго прямоугольную форму, либо с закругленными краями с двух сторон (форма Despard). А поскольку переключатели мгновенно контактируют, переключатель возвращается в центр после включения или выключения света.Прежний тип сменного тумблера низкого напряжения больше не выпускается.

    Один из способов отличить мгновенные переключатели от обычных тумблеров - это то, остается ли переключатель в верхнем или нижнем положении или возвращается в центральное положение, когда вы его отпускаете. Обновите внешний вид GE, добавив современные переключатели низкого напряжения и крышки.

    Замените любые вышедшие из строя переключатели модели RTS-5 GE новыми переключателями и настенными панелями GE или переключателями мгновенного действия низкого напряжения, которые подходят к пластинам переключателей Despard.


    # 5 GE, низковольтные триггерные переключатели RTS-6

    Описание - Триггерный переключатель GE: Как и большинство этих старинных выключателей света от GE, выключатели этого типа больше не производятся.

    Наиболее распространенным обновлением для снятых с производства коммутаторов RTS-6 являются коммутаторы нового типа GE с соответствующими крышками. Новые переключатели имеют 2 кнопки, и вы нажимаете одну сторону для включения, а другую - для выключения.

    Если вы предпочитаете функциональность старых переключателей триггерного типа (которые возвращаются в центральное положение после нажатия в одну или другую сторону), вы также можете заменить эти старые переключатели GE на переключатели мгновенного действия низкого напряжения и крышки.


    # 6 GE RCS Технические характеристики систем низковольтной проводки

    Описание - RCS Spec. Размеры: General Electric RCS spec. Пластины низкого напряжения имеют самые большие отверстия в старых системах проводки, которые составляют 0,906 дюйма в высоту и 1,25 дюйма в ширину для одного, двух или трех устройств. Обратите внимание, что отверстие с 3 переключателями представляет собой открытый прямоугольник, который очень похож по размеру и форме на текущие отверстия в стеновых панелях в стиле Decora, но не может использоваться взаимозаменяемо, потому что они не подходят.Эти переключатели были разработаны для больших широких кулисных переключателей и контрольных ламп General Electric, известных как серия RCS. (Контрольные лампы имеют длинную светящуюся прямоугольную красную полосу посередине, которая загорается при включении устройства.) Эта серия производилась в основном в 1970-х годах. Kyle Switch Plates производит сменные пластины выключателя из нержавеющей стали для снятой с производства линейки выключателей RCS. Эти переключатели могут также использоваться в некоторых автономных электрических установках аккумуляторных батарей, которые обычно используются на лодках и жилых автофургонах.Чтобы купить сменные настенные панели, посетите сайт GE Low Voltage RCS Switch Plates. Kyle Switch Plates - единственный производитель сменных пластин переключателя для старых низковольтных линий RCS компании GE.


    # 7 Система освещения низкого напряжения GE RFS Decorator

    Мы работаем над решением по замене пластин переключателей для нескольких групп переключателей серии General Electric Decorator.

    Свяжитесь с нами для получения дополнительной информации.


    # 8 Оригинальный стиль для систем освещения низкого напряжения Bryant

    Описание - Типоразмеры низковольтного оборудования Bryant: Системы низковольтной проводки Bryant были установлены в старых домах, построенных в 1950-х и 1960-х годах.Эти редкие, старомодные низковольтные системы освещения имеют коричневые миниатюрные кулисные переключатели с надписью «BRYANT» на них, закрепленные на узких ремнях. Пластины переключателей имеют отверстия размером 0,656 дюйма в высоту и 1,092 дюйма в ширину. В основе систем электропроводки Bryant лежат трансформаторы и соленоидные реле того же типа, что и в системах General Electric, поэтому детали этой серии совместимы с системами освещения GE. Обратите внимание, что ремни и устройства Bryant оригинального стиля больше не производятся. Чтобы купить детали, посетите Bryant Low Voltage Lighting Systems Replacement Parts.


    # 9 Система электропроводки низкого напряжения Sierra Electric

    В системах низковольтной проводки Sierra Electric используются ремни, которые внешне аналогичны другим сериям ». Основное отличие состоит в том, что переключатели Sierra вставляются в отверстия на панели переключателей, закругленные на концах, известные как переключатели Despard. Это контрастирует с типичными низковольтными сериями, которые имеют прямоугольные отверстия в коммутационной панели. Sierra Electric вышла из бизнеса и была куплена Pass & Seymour, которая продолжает производить как триггерные переключатели низкого напряжения 3A, так и обычные переключатели Despard на 15A и 20A.Kyle Switch Plates несет на себе панели переключателей Despard в широком разнообразии металлических поверхностей и конфигураций.

    Чтобы купить детали, щелкните Запасные переключатели и заглушки Sierra.


    # 10 Системы низковольтной проводки в стиле Remcon

    Описание - Remcon Размеры: В очень старых системах освещения Remcon использовались низковольтные кулисные переключатели, которые были изогнуты, уложены друг на друга и прочно закреплены в кронштейнах. Коммутационные панели Remcon старого типа обычно устанавливались горизонтально с переключателями, раскачивающимися вверх и вниз вертикально, чтобы включать и выключать свет.Устройства использовались вместе с трансформаторами в коробках. Более новые переключатели представляли собой маленькие черные рокеры, которые защелкивались в настенных панелях из нержавеющей стали с отверстиями высотой 0,4375 дюйма и шириной 1,1875 дюйма для одного, двух или трех устройств. Оригинальные сменные переключатели низкого напряжения Remcon и настенные крышки больше не производятся, хотя твердотельные реле Remcon со встроенными трансформаторами все еще активно производятся. Если вам нужны запасные устройства или крышки настенных панелей, которые будут работать с вашей системой электропроводки Remcon, мы рекомендуем использовать переключатели управления световыми переключателями с сенсорной панелью и панели переключателей .Чтобы купить реле, посетите сайт Remcon Low Voltage System Parts.


    # 11 Пирамида, освещение низкого напряжения

    Пирамидальные переключатели и крышки сняты с производства. Вы больше не можете приобрести сменные переключатели Pyramid или панели переключателей, подобные изображенным здесь. Изображение показано, чтобы помочь вам определить вашу низковольтную систему. Если вам нужны запасные части, реле Remcon и переключатели Touch Plate совместимы с вашей старой системой Pyramid.

    Чтобы узнать, как заказать новые детали, щелкните «Запасные реле и переключатели для Pyramid».


    # 12 Сенсорная панель Системы освещения низкого напряжения серии 5000

    Описание - Сенсорная панель серии 5000 Низковольтные системы: Серия Touch-Plates 5000 очень похожа на серию настенных панелей GE & Bryant, которые имеют 1, 2 или 3 переключателя на группу. Разница в том, что переключатели немного шире и расположены ближе друг к другу, чем на схемах GE или Bryant. Стандартная панель переключателя на одну группу имеет размеры 4-1 / 2 H x 2-3 / 4 дюйма W (4.5 дюймов в высоту и 2,75 дюйма в поперечнике) с одним, двумя или тремя сложенными в стек горизонтальными коммутаторами 5/8 дюйма в высоту и 1-1 / 8 дюйма в ширину (0,625 дюйма в высоту x 1,125 дюйма в ширину), установленными на кронштейне с отдельным переключателем. пластина крышка. Отверстия расположены на расстоянии 2-9 / 32 дюймов от верхнего края верхнего переключателя до нижнего края самого нижнего переключателя на крышках двух- и трехкнопочных переключателей. Отверстия для монтажных винтов коробки в кронштейнах расположены на расстоянии 3-9 / 32 дюйма (3,281 дюйма) друг от друга. Центр к центру Системы управления освещением Touch-Plate Electro-Systems были установлены в 1940-х, 1950-х, 1960-х, 1970-х и 1980-х годах.Чтобы узнать больше или купить детали, посетите раздел «Детали низковольтной системы сенсорной панели».

    Важное примечание относительно реле:

    Выключатели

    Touch Plate - единственная замена для другой низковольтной марки: Remcon.

    У вас могут быть переключатели Touch Plate, которые подключены к реле Remcon , и в этом случае вам необходимо заменить все сломанные реле на марку Remcon, а не Touch Plate.

    Перед тем, как заказывать новые реле или выключатели света, проверьте, какой марки у вас реле.

    Тип реле, которое у вас есть (Remcon или Touch Plate), определит, какие переключатели Touch Plate подходят для вашей системы. Узнайте больше о замене системы низкого напряжения Remcon здесь.


    # 13 Сенсорная панель MTL Frame Series Система освещения низкого напряжения


    # 14 Системы освещения низкого напряжения серии Genesis с сенсорной панелью

    Описание - Низковольтная сенсорная панель Genesis Размеры: Серия Genesis имеет более крупные кнопки и механизмы промышленного качества.Стандартная двухпозиционная панель переключателя имеет размеры 4,5 дюйма в высоту и 4,5 дюйма в ширину. Две настенные панели имеют переключатели 27/32 дюйма (0,844 дюйма) в поперечнике и 1-23 / 32 дюйма (1,719 дюйма) в высоту и расположены на расстоянии 1-13 / 16 дюймов друг от друга на 2 настенных пластинах с кнопками и 1-1. На расстоянии / 4 дюйма друг от друга настенные панели с 3 кнопками (от центра к центру). Отверстия для монтажных винтов коробки в настенной панели расположены на расстоянии 3-9 / 32 дюйма (3,281 дюйма) друг от друга от центра к центру. Переключатели ввинчиваются в заднюю часть настенной панели. Системы управления освещением Touch-Plate Electro-Systems были установлены в 1940-х, 1950-х, 1960-х, 1970-х и 1980-х годах.

    Перед покупкой любых реле Borken убедитесь, что у вас есть реле Touch Plate (а не Remcon) - подробнее здесь. Чтобы узнать больше или купить детали, посетите страницу Touchplate Genesis Low Voltage System Parts.


    # 15 Сенсорная панель Classic Series Системы освещения низкого напряжения

    Описание - Сенсорная панель Classic Размеры: В серию Classic входят станции управления с квадратными кнопочными колпачками 1/2 дюйма, расположенные по 4 или 6 переключателей на группу (8 или 12 кнопок на пластинах с двумя переключателями), которые будут управлять равное количество огней.Переключатели устанавливаются на кронштейне с отдельной пластиковой крышкой пластины переключателя, которая защелкивается над ней. Системы управления освещением Touch-Plate Electro-Systems были установлены в 40-х, 50-х, 60-х, 70-х и 80-х годах. Эти обновленные современные системы Touch Plate Lighting Controls устанавливаются и сегодня.


    # 16 Сенсорная панель серии Ultra

    Описание - Touch-Plate Ultra Размеры: Линия Ultra от Touch Plate - это самая современная низковольтная система для дома.Это двухпроводная система с переключателями мгновенного действия.

    Пластины без винтов придают красивый чистый вид. Или вы можете купить только переключатели и соединить их с рокерами в 17 вариантах отделки.

    Чтобы купить детали линии Ultra, посетите Touchplate Ultra System.

    Перед заменой вышедшего из строя реле проверьте марку (это может быть Touch Plate или Remcon) - подробнее здесь.


    # 17 GE для поверхностного монтажа

    Некоторые старые переключатели GE не крепятся на ремне с крышкой (как показано в примере №1 вверху).

    Если у вас есть низковольтный переключатель GE для поверхностного монтажа, подобный показанному здесь, вашим решением будет покупка нового переключателя GE с крышкой и удлинителем коробки.

    Удлинитель коробки позволит вам установить новый выключатель на поверхность стены.


    # 18 Контроллер освещения GE RMS-2A


    # 19 GE RMS-4A Мастер-селекторная панель низкого напряжения

    Еще один пример старинного управления освещением с 2 дисками для системы GE.


    # 20 Мастер селекторная пластина GE

    Эта деталь - ваш единственный вариант замены старого контроллера GE или главной селекторной панели.

    Новые главные селекторные переключатели могут занимать до 8 слотов на обновленной пластине. Любые неиспользуемые отверстия можно заполнить заглушками.

    Обратите внимание, что переключатели и сама панель продаются отдельно.

    Для более дешевой замены приобретите 8 переключателей GE (столько же, сколько требуется для заполнения показанной панели), но накройте крышкой с 8 переключателями вместо более громоздкой панели переключателей.


    Что такое элементы управления фотографиями?

    Что такое элементы управления фотографиями?

    Управление фотографиями - одно из тех многих устройств, которые встречаются ежедневно, и немногие из нас находят время, чтобы признать их практическое значение. Включение уличных фонарей, когда солнце начинает садиться, или включение освещения ваших дорожных фонарей, когда вы подходите к входной двери, элементы управления фотографиями можно найти в промышленных, коммерческих и жилых помещениях. На рынке доступно множество электрических таймеров и переключателей, но элементы управления фотографиями уникальны тем, что они используют уровни окружающего освещения для включения источника питания для освещения определенной области.Такая светочувствительность позволяет обеспечить надежное освещение только тогда, когда оно необходимо - экономия энергии и денег!

    Фотоэлементы

    или фотоэлектрические блоки управления (PECU) - это светочувствительные переключатели, которые можно сочетать с традиционными световыми решениями для обеспечения автоматического освещения в периоды относительной темноты. Переключатель фотоуправления срабатывает, чтобы обеспечить подачу питания, когда уровень освещенности падает ниже заданного значения, а затем отключает питание, когда уровень освещенности достигает другого заданного значения.

    Соотношение между уровнем освещенности «включено» и уровнем освещенности «выключено» называется коэффициентом переключения. Доступны различные варианты управления фотографиями с различными коэффициентами переключения, чтобы удовлетворить потребности вашего приложения в часах горения и уровнях затемнения.

    Компоненты управления фотографиями

    Фотоэлементы обычно состоят из монтажной детали, фотоэлемента, корпуса, реле и опционального купола с цветовой кодировкой для обозначений ANSI. Большинство элементов управления также имеют встроенную задержку, которая помогает предотвратить ложное переключение, которое может быть вызвано другими источниками света, такими как фары автомобиля, молния, фонарики, фонари и т. Д.

    В связи с широким спектром потребностей в средствах управления фотографиями во многих отраслях, существует довольно много вариантов на выбор для вашего приложения. Важно учитывать размер, воздействие окружающей среды, время отклика и требования к направлению для вашего конкретного использования. Для большинства марок фотоэлементов существует универсальная розетка для фотоэлементов, но доступно несколько вариантов монтажа.

    Chapman Electric предлагает полный набор опций для фотоуправления Tork.

    Опции модели

    Модели с поворотным замком

    • Полезный сорт
    • Быстрый и отложенный ответ
    • Энергосбережение

    Модели для скрытого монтажа

    • Погодостойкий кожух
    • Лексан закрытый
    • Отложенный ответ

    Фиксированные модели с кабельным вводом

    • Цинк для тяжелых условий эксплуатации
    • Лексан закрытый
    • Отложенный ответ

    Модели с кабельным вводом шарнирного соединения

    • Цинк для тяжелых условий эксплуатации
    • Лексан закрытый
    • Отложенный ответ
    • Поворот на 180 °

    Фотоэлементы

    • Сульфид кадмия, с эпоксидным покрытием

    Варианты ориентации при установке

    • Фиксированное положение
    • Варианты поворота
    • Варианты установки заподлицо

    Варианты материалов корпуса

    • Полипропилен (у некоторых производителей доступны варианты с цветовой кодировкой)
    • Прозрачное акриловое окно
    • Lexan®
    • Цинк, литье под давлением

    Приложения для управления фотографиями:

    Фотоэлементы используются во множестве различных приложений в промышленных, коммерческих и жилых помещениях:

    Промышленное

    Обеспечивая мгновенный отклик, элементы управления фотографиями для промышленного использования должны соответствовать последнему стандарту ANSI C136.10 стандартов. Некоторые компании, такие как Tork, предлагают контактные блоки фиксирующего типа, которые обеспечивают высокую надежность за счет модернизации электромагнитного реле.

    Общие приложения:

    • Уличные и дорожные фонари
    • Огни парковки
    • Огни по периметру здания

    Коммерческий

    В зависимости от приложения существует ряд опций управления фотографиями для коммерческого использования. Вариант поворотного или стационарного монтажа с корпусом, защищенным от вандализма и несанкционированного доступа, является отличным вариантом для обеспечения безопасности.Бизнес также может получить выгоду от экономии, которую фотоуправление может предложить в отношении использования энергии и времени горения лампочек.

    • Сигнальные огни
    • Огни безопасности
    • Огни парковки

    Жилая

    Фотоэлементы часто используются в жилых районах в целях безопасности или в декоративных целях. Недорогие средства управления фотографиями, предлагаемые рядом компаний, позволяют домовладельцам и арендодателям существенно экономить средства и удобство.

    Общие приложения:

    • Озеленение
    • Фонари фонтана
    • Патио или палубное освещение
    • Декоративное освещение

    Основы управляющих реле

    На протяжении многих лет управляющие реле различных типов использовались сотнями - даже тысячами - для управления почти каждой функцией в коммерческих и промышленных процессах. Сегодня многие из этих приложений были вытеснены программируемыми логическими контроллерами (ПЛК) и так называемыми «интеллектуальными реле», которые на самом деле больше похожи на небольшие ПЛК, чем на реле.Тем не менее, реле по-прежнему играют важную роль в современных электрических системах.


    Фото 1. Реле постоянного тока с полюсным наконечником внутри катушки; контакты были удалены, чтобы показать катушку.


    Реле используются для изоляции одного уровня напряжения от другого. ПЛК может использоваться для управления работой двигателя среднего напряжения, возможно, 2300 В или 4160 В. Реле используется для включения стартера, который, в свою очередь, переключает напряжение двигателя, в то время как ПЛК управляет реле.Подключенные для обеспечения последовательности управления, реле также могут использоваться для простых схем управления, в которых использование ПЛК было бы неэкономичным. Устранение неисправностей реле может быть выполнено в короткие сроки, без необходимости возвращаться в мастерскую по обслуживанию компьютера, необходимого для анализа последовательности управления в ПЛК.

    Реле постоянного тока

    Реле постоянного тока

    состоят из проволоки, намотанной на катушку, которая помещена на ферромагнитный сердечник. Навесной контактный узел расположен над сердечником ( Фото 1 ).Когда на катушку подается ток, в ферромагнитном сердечнике индуцируется магнитный поток, в результате чего контакты замыкаются.


    Фото 2. Реле переменного тока с затеняющим кольцом (у стрелки) в разъемном полюсе внутри катушки. Снова удалили контакты, чтобы показать катушку.


    Реле переменного тока

    Реле

    переменного тока производятся аналогично своим аналогам постоянного тока. Если переменный ток подается на реле постоянного тока, реле будет пульсировать с частотой переменного тока.Чтобы решить эту проблему, сердечник снабжен затемняющим кольцом на половине сердечника ( Фото 2 ). Затеняющее кольцо действует как закороченная вторичная обмотка в трансформаторе, заставляя магнитный поток в этой половине сердечника сдвигаться по фазе на 90 ° с потоком в другой половине. В результате магнитный поток в сердечнике никогда не падает до нуля, позволяя реле активировать контакты.

    Контакты

    На чертежах контакты реле показаны обесточенными, то есть с отключенным питанием катушки.Типы условных обозначений контактов показаны на рис. и рис. 1 .

    Типы реле

    Доступно множество типов реле, некоторые из которых мы сейчас обсудим.

    Вставные реле

    Также известные как реле льда, вставные реле недороги, широко доступны и используются для цепей управления ( Фото 3 ). Контакты обычно бывают нормально разомкнутыми / нормально замкнутыми (NO / NC) или формой C в количестве одного, двух, трех или четырех полюсов на реле. Реле имеют фиксированное количество контактов.Вставные реле вставляются в розетки; розетки могут быть установлены непосредственно на панели или на DIN-рейке. Некоторые крошечные реле настолько малы, что вписываются в линейку секционных клеммных колодок и выглядят почти как клеммы. Напряжение катушки обычно составляет от 6 до 240 В (переменный ток) и от 6 до 110 В (постоянный ток).

    Номинальные параметры контактов для съемных реле обычно доступны до 240 В переменного тока и от 24 до 30 В постоянного тока. Номинальный ток составляет от менее 1 А до 30 А. Обратите внимание, что номинальные значения постоянного напряжения и тока могут быть меньше номинальных значений переменного тока.Поскольку напряжение постоянного тока никогда не проходит через ноль, как напряжение переменного тока, при размыкании контактов возникает большая дуга. Напряжение необходимо снизить из-за узкого зазора между контактами. По той же причине снижены и текущие рейтинги. Некоторые контакты могут быть рассчитаны на мощность в лошадиных силах для работы двигателей с дробной мощностью.


    Рис. 1. Нормально разомкнутые контакты называются контактами формы A, нормально замкнутые контакты - формой B, а нормально разомкнутые / нормально замкнутые контакты формой C.


    Следует соблюдать осторожность при использовании контактов в слаботочных цепях.Когда контакты реле работают, они зависят от определенного уровня тока для удаления окисления. Реле, которые будут использоваться с малыми токами, должны иметь контакты, рассчитанные на текущий уровень. Например, контакт, рассчитанный на 10 А, неприемлем при использовании в цепи всего в несколько миллиампер. В технических паспортах реле обычно указывается минимальный ток нагрузки.

    Некоторые вставные реле оснащены светодиодными индикаторами, которые показывают, что на катушку подается напряжение.Хотя светодиодный индикатор не подтверждает, что катушка работает, он подтверждает наличие напряжения.

    Тестовые кнопки, полезная функция на некоторых съемных реле, позволяют вручную активировать контакты реле. Ручное срабатывание может быть полезно при поиске неисправностей в цепях, когда на катушку не подается напряжение.

    Реле для станков

    Обычно термин «реле станка» применяется к реле типа NEMA. Сегодня реле IEC, часто называемые «реле управления», также используются для тех же целей.В этой статье термин «реле станка» будет использоваться как синонимы для реле типа NEMA и IEC.

    Реле для станков

    доступны с количеством контактов от двух до 12. Базовый блок содержит от двух до четырех контактов. Дополнительные деки могут быть добавлены в количестве от четырех до максимум 12 контактов. Контакты бывают нормально разомкнутыми (форма A) или нормально замкнутыми (форма B). Контакты для реле станков - это контакты с двойным размыканием, которые состоят из двух неподвижных контактов и одного набора подвижных контактов.Благодаря использованию контактов с двойным размыканием контакты могут иметь более высокое номинальное напряжение, чем у съемных реле. Контакты могут быть рассчитаны на 600 В переменного тока и 240 В постоянного тока. Обязательно проверьте характеристики отдельных реле. Катушки доступны от 6 до 600 В переменного тока и от 6 до 240 В постоянного тока. Реле станка можно установить непосредственно на монтажную панель или на DIN-рейку.

    Некоторые реле станков в стиле NEMA имеют фиксированные контакты, как по количеству на деку, так и по типу (NO или NC), в то время как другие имеют трансформируемые контакты.Трансформируемые контакты размещены в отдельных картриджах, которые можно снять и перевернуть, чтобы преобразовать из NO в NC. Также могут быть добавлены дополнительные картриджи. Почти все реле IEC содержат фиксированные контакты, как в количестве, так и в зависимости от типа.

    Реле

    для станков может иметь вспомогательные устройства, такие как модули временной задержки (твердотельные или пневматические) и магнитные фиксаторы, которые могут быть добавлены пользователем. Кроме того, возможность добавления устройства задержки времени позволяет пользователю избежать добавления отдельного реле задержки времени в систему управления.


    Фото 3. Вставные управляющие реле с розетками, также известные как реле «ледяной куб».


    Блокировочные реле

    Контакты съемных реле и реле станка остаются замкнутыми (или разомкнутыми, в зависимости от обстоятельств), пока на них остается напряжение. Снятие напряжения приводит к размыканию контактов катушки. Также доступны реле с магнитной фиксацией, которые имеют замыкающую катушку, которая срабатывает для включения реле. При снятии напряжения контакты реле остаются в последнем положении.Для переключения реле в противоположное положение предусмотрена отдельная катушка. Вставные реле необходимо приобретать с функцией магнитной фиксации. Некоторые реле станков могут иметь защелкивающиеся приспособления, добавленные к реле, в то время как другие заказываются с запирающими приспособлениями.

    Приложения

    Реле управления часто используются для изоляции одного уровня напряжения от другого. В центрах управления двигателями частотно-регулируемый привод (VFD) может иметь собственный источник питания 24 В постоянного тока для питания собственных входов.Пользователь может пожелать управлять элементами управления от 120 В переменного тока из-за большой длины полевой проводки. Съемное управляющее реле обеспечивает необходимую изоляцию между двумя уровнями напряжения. Эта концепция проиллюстрирована на Рис. 2 (щелкните здесь, чтобы увидеть Рис. 2 ).

    Реле

    для станков можно использовать там, где задействованы более высокие напряжения, потому что большие пускатели часто требуют большого тока для работы своих катушек. Катушка будет работать от сетевого напряжения 480 В переменного тока, а органы управления оператора работают от 120 В переменного тока или 24 В постоянного тока в целях безопасности.Реле станка с контактами, рассчитанными на 600 В переменного тока, может использоваться для управления катушкой стартера от источника питания 480 В, используемого для питания двигателя. Рисунок 3 (щелкните здесь, чтобы увидеть Рис. 3 ) иллюстрирует этот принцип.

    Обратите внимание на то, что в каждом из вышеупомянутых примеров схематический символ «CR» используется для каждого типа реле. С помощью условных обозначений не делается различия между типами реле. Для определения используемых компонентов фактического типа следует обращаться к ведомости материалов для сборки.

    Хотя они и не используются в тех количествах, в которых были раньше, до появления ПЛК, реле остаются важным элементом в управлении многими продуктами. Поскольку они по-прежнему встречаются везде, где используются электрические элементы управления в домах, коммерческих объектах и ​​промышленных объектах / процессах, профессионалам-электрикам важно досконально их понимать.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *