Содержание

Заземление электроустановок и оборудования - правила и требования

Заземление – соединение корпуса электроустановки с заземляющим контуром, с целью предотвращения поражения током работающих и находящихся в непосредственной близости людей. Является обязательным элементом комплекса мер по обеспечению безопасности. Существуют различные виды электроустановок, и каждый требует особого подхода к организации заземления, поэтому важно уделить внимание технической стороне вопроса. 

Классификация заземляющих устройств

Система заземления электроустановок – комплекс, состоящий из заземляющего контура и проводников, соединяющих его с корпусами оборудования для обеспечения стекания в землю  избыточного тока, появившегося в результате попадания фазы на корпус. Действующая в России  классификация устройств заземления (далее УЗ) подразумевает градацию по следующим признакам:

  • Виду нейтрали. По наличию соединения с заземляющим устройством:
    • заземленная;
    • изолированная.
  • Способу прокладывания от понижающей подстанции до электроустановки.
  • Способ подключения нагрузки к нейтрали.

Организация системы заземления регулируется правилами устройства электроустановок (ПУЭ). Документ регламентирует порядок и признаки классификации заземляющих систем. Для обозначения маркировки используются буквы английского алфавита:

T – заземление;

N – нейтраль;

I – изолированное;

C – общая;

S – раздельная.

Такой вид маркировки позволяет определить используемый способ защиты генератора тока и предпочтительные схемы заземления электроустановок на стороне потребителя.

При монтаже линий электроснабжения общепринятыми для России считаются три системы заземления:

  • TN-C – обозначает, что нулевой рабочий и защитный проводники объединены в общую шину на всем протяжении трассы.
  • TN-S – нулевой рабочий и защитный проводники прокладываются раздельно.
  • TN-C-S – нулевой рабочий и защитный проводники на части трассы объединены, а на остальной прокладываются раздельно.

Реже встречаются следующие системы:

  • TT – нулевой рабочий и защитный проводники заземляются раздельно. Чаще всего этот способ используют в случае неудовлетворительного состояния питающей воздушной ЛЭП или для предотвращения поражения людей через токопроводящие поверхности временных сооружений.
  • IT – в этой схеме нейтраль изолируется от земли или заземляется через специальное оборудование. Такой вариант чаще всего используют, если необходимо обеспечить высокий уровень защиты оборудования. Поскольку при таком варианте подключения риск искрообразования минимален.


Технические требования к организации заземления электроустановок

УЗ используют для защиты людей и оборудования от разрушительного действия электрического тока. Безопасность обеспечивается путем соединения защищаемых корпусов электроустановок с землей. Работы по организации заземляющих сетей регламентируются положениями ГОСТ 12.1.030-81, согласно которым  защитное заземление электроустановки следует выполнять при следующих параметрах:

  • при значениях номинального напряжения 380 B и более переменного тока и более 440 B и более постоянного тока – при любых значениях;
  • при значениях номинального напряжения 42-380 B переменного тока 110-440 B.
    Для работ связанных с повышенной опасностью.

Правильно организованная система заземления электроустановок способна нейтрализовать избыточный потенциал любой мощности и защитить людей, оборудование и здания от воздействия электрического тока будь то скачки, вызванные включением или отключением силового оборудования или грозовое воздействие.

Принцип работы основан на разнице сопротивлений человеческого тела и УЗ. Избыточный потенциал отводится в направлении меньшего показателя, т. е. в сторону защитного контура.

Выбор естественных заземлителей

Согласно правилам устройства электроустановок, их корпуса должны быть подключены к искусственным или естественным заземлителям. В качестве естественных используют следующие металлические объекты:

  • каркасы подземных металлоконструкций, имеющие непосредственный контакт с грунтом;
  • защитные кожухи кабелей, проложенных под землей;
  • металлические трубы, за исключением газо- и нефтепроводов;
  • железнодорожные рельсы.

Контакт объекта с естественным заземлителем должен осуществляться минимум в двух местах. Преимущества этого метода в простоте, эффективности и сокращении затрат на организацию системы электробезопасности.

Нельзя выбирать в качестве естественных заземлителей следующие объекты:

  • трубопроводы горючих и взрывчатых газов и жидкостей;
  • трубы, покрытые антикоррозийной изоляцией;
  • канализационные трубопроводы;
  • трубы централизованного отопления.

Сопротивление стеканию тока

Заземление работает по следующему принципу: ток, стекающий в землю через место замыкания, проходит вначале на корпус электроустановки и с него через УЗ в грунт. Очевидно, что при организации сетей заземления до 1000 Вольт, важно создать цепочку, обеспечивающую стекание избыточного заряда в землю.

Значения сопротивления заземления для сетей различного назначения:

Назначение сети

Максимальное значение сопротивления, Ом

Частные дома 220, 380 Вольт

30

Промышленное оборудование

4

Источник тока при напряжении 660, 380 и 220 Вольт

2, 4, 8

Частный дом при подключении газопровода

10

Устройства защиты линий связи

2 (реже 4)

Телекоммуникационное оборудование

2 или 4

Чтобы получить показатели сопротивления, установленные нормативами, следует придерживаться типовых процедур:

  • Увеличить площадь соприкосновения деталей заземляющего устройства с грунтом.
  • Обеспечить качественный контакт между элементами устройства и соединительными шинами.
  • Усилить проводимости почвы увлажнением или повышением ее солености.

Для контроля за соответствием сопротивления предписанным нормам следует проверять его уровень не реже одного раза в шесть лет.

Работа УЗ при нарушении защитной изоляции электрооборудования

Нарушение целостности защитной изоляции нередко приводит к замыканию фазы на корпус. Дальнейшее развитие событий зависит от качества системы электробезопасности. Возможны следующие варианты:

  1. Заземление отсутствует, устройство защитного отключения не установлено. Самая неблагоприятная ситуация. При прикосновении к корпусу ощущается сильный удар.
  2. Корпус подключен к системе заземления, УЗО отсутствует. Если ток утечки будет велик, сработает автомат и отключит питающую линию или цепочку. Этот вариант может привести к накоплению избыточного потенциала на корпусе, если сопротивление переходов и номинал предохранителей будут велики. Такая ситуация опасна для людей.
  3. Заземление отсутствует, устройство защитного отключения установлено. Ток утечки вызовет срабатывание УЗО и человек успеет ощутить только слабый удар током.
  4. Корпус подключен к заземлению, УЗО установлено – наиболее надежный вариант, обеспечивающий защиту людей и техники благодаря тому, что защитные устройства дополняют и отчасти дублируют друг друга. При замыкании фазы на корпус, избыточный потенциал стекает через систему заземления. Одновременно устройство защитного отключения реагирует на утечку и отключает подачу тока, исключая возможность поражения током людей. Если ток утечки значительно превышает возможности УЗО, может сработать автомат и продублировать его функцию.

Заземление цехового оборудования

Согласно правилам устройства электроустановок до 1000 Вольт, их классифицируют по виду заземляемых устройств:

  • Для типового станочного оборудования.
  • Для электродвигателей и сварочных аппаратов.
  • Для передвижных установок и эксплуатируемых электроприборов.

Заземление типового станочного оборудования

Для заземления цехового оборудования используют контур системы уравнивания потенциалов (далее СУП).

Система уравнивания потенциалов  – это элемент устройства заземления, представляющий из себя контур из проводящих элементов для подключения корпусов оборудования с целью достижения равенства потенциалов.

 Важно уделить внимание  следующим техническим вопросам: 

  • Определить расположение контура СУП в рабочей зоне.
  • Рассчитать толщину шины, используемой для соединения корпуса станка с УЗ.
  • Определить место наложения стационарного заземления.
  • Выяснить какие устройства используются для защиты опасных частей оборудования.

Контроль этих вопросов – обязанность цехового электрика, владеющего информацией о структуре и расположении элементов системы заземления и порядке подсоединения к ней корпусов станков, в том числе предписанном конструкцией станка расположении точки подключения заземляющей шины.

Заземление электродвигателей

Согласно нормам, заземление электродвигателей также является обязательным, кроме случаев, когда оборудование устанавливается на металлический пьедестал, имеющий контакт с грунтом. В остальных случаях необходимо соединить корпус с системой заземления при помощи медной жилы. Правилами указывается, что контакт с заземлением должно быть прямым у каждого электродвигателя и последовательное подключение нескольких устройств через заземляющую цепочку недопустим, поскольку обрыв линии приводит к потере контакта сразу всех электродвигателей.

Для грамотного подключения заземления необходимо предусмотреть на подводящем силовом кабеле 380 Вольт дополнительную шину, одним концом подключенную клемме заземления в распредкоробке двигателя, а вторым – к корпусу силового шкафа. При этом важно соблюсти последовательность подключения и соединить с системой заземления вначале электрический щиток. Важно также обеспечить соответствие диаметра сечения проводников установленным нормам.


Заземление сварочных аппаратов

Правила устройства электроустановок регламентируют также порядок заземления сварочных аппаратов. Заземление корпусов оборудования в данном случае является обязательным. Кроме корпуса заземляться должна и трансформаторная вторичная обмотка через один из выводов. Другой используется для подключения держателя электродов.

Возле заземляемого вывода на корпусе расположен соответствующий знак и приспособление для фиксации шины, соединяющей его с защитным контуром. Переходное сопротивление защитного контура или устройства не должно быть выше 10 Ом.

Для повышения электропроводимости системы заземления следует увеличить контактную площадь соединений, в том числе площадь соприкосновения с землей. Подключение к ЗУ должно быть индивидуальным у каждого сварочного аппарата и не должно осуществляться через заземляющую цепочку, поскольку в случае обрыва контакт с УЗ будет потерян сразу всеми аппаратами.


Защита передвижных установок

Особое внимание стоит уделить заземлению передвижных установок. Для защиты передвижных установок используют заземлители для передвижных установок  ГОСТ 16556-02016. Поскольку особенности их эксплуатации затрудняют выполнение требований по обеспечению показателей переходного сопротивления, поэтому правилами устройства электроустановок допускается повышение показателя до 25Ом. Это относится только к установкам, снабженным автономным питанием и имеющим изолированную нейтраль.

Этот вид УЗ может применяется для установок с пониженным искрообразованием, не являющихся источниками питания для иного оборудования, а также для передвижных агрегатов, имеющих собственные заземлители, не задействованные в данный момент.

Передвижные установки, оснащенные автономным питанием, требуют регулярного освидетельствования на наличие повреждений защитной оболочки, поскольку имеют изолированную нейтраль и повышенный риск образования трущихся сочленений.

Защита электроприборов

При работе с электроприборами разных типов можно ориентироваться на стандартные правила обеспечения безопасности:

  • Защитить открытые токоведущие части.
  • Нарастить защитную изоляцию.
  • Использовать специальные приспособления для ограничения доступа к корпусам оборудования.
  • Если позволяет конструкция, можно как меру использовать понижение напряжения.

 Во избежание пробоев изоляции и попадания фазы на корпус электроприбора эффективными являются традиционные методы:

  • Наличие системы заземления.
  • Система уравнивания потенциалов.
  • Усиление изоляции токоведущих частей.
  • В некоторых случаях как меру безопасности при работе с электрооборудованием можно использовать ограничение доступа в помещения, представляющие потенциальную опасность за счет повышенной влажности, запыленности и т.п.

Важно учесть, если помимо заземления используются другие методы защиты людей – они не должны быть взаимоисключающими и снижать эффективность друг друга.

Задействовать естественные заземлители для обеспечения защиты возможно только при отсутствии вероятности повреждения подземных конструкций, в случае протекания по ним аварийного тока.

Защита с помощью заземления и зануления

Для обеспечения электробезопасности людей нередко используют комбинированный метод заземления и зануления электрооборудования. Зануление обеспечивается соединением защитных корпусов с нейтралью подводящей силовой линии. Это позволяет преобразовать сетевое напряжение, попавшее на корпус установки, в однофазное короткое замыкание. И заземление и зануление выполняют защитную функцию, но разными методами.

При заземлении для обеспечения снижения избыточного потенциала используется дополнительное устройство. Для работы системы зануления достаточно соединить корпус электроустановки с нейтралью питающей сети.

При работе в потенциально опасных помещениях использование одного из описанных методов является обязательным. Ответственные сотрудники должны четко понимать отличие одного способа защиты от другого и знать каким должен быть контур заземления у каждого вида оборудования.

Контроль состояния защитных устройств

Правила устройства электроустановок предписывают проводить периодическую проверку работоспособности системы заземления. Она позволяет установить соответствие параметров сопротивления стеканию тока заземляющих контуров нормативным. Проверка происходит с использованием специальных измерительных приборов, подключаемых к заземляющим устройствам по определенным схемам.

Правилами также регламентируется периодичность проведения проверки. Она зависит от класса обследования, конструкции заземляющих устройств, типа и мощности используемого оборудования. Визуальный осмотр состояния системы заземления должен проводиться каждые полгода. Проверки, сопровождаемые вскрытием грунта в местах, связанных с повышенным риском – раз в 12 лет или чаще.

Грамотный подход к организации системы заземления электроустановок, четкое понимание структуры и особенностей разных типов УЗ, а также своевременный контроль их состояния, в соответствии с действующими регламентами, обеспечит безопасность сотрудников предприятия, сохранность оборудования и зданий.

TN-C, TN-S, TNC-S, TT, IT

Для работы электроприборов достаточно присоединить к ним ноль и фазу. Однако такое подключение может привести к аварии и опасно для людей, проживающих в доме. Для предотвращения подобных ситуаций необходимо выбрать, устанавливать и подключить системы заземления и зануления.

Питание бытовых потребителей осуществляется от понижающего трёхфазного трансформатора, имеющего напряжение на выводах вторичной обмотки 0,4кВ или 380В. Катушки этого аппарата соединены звездой, средняя точка которой подключается к контуру заземления, находящемуся в земле возле трансформаторной будки. Такой аппарат называется "трансформатор с глухозаземлённой нейтралью".

В квартиру или частный дом от трансформатора приходят как минимум два провода - ноль и фаза, соединённых с фазным выводом и средней точкой звезды соответственно. Такое подключение обеспечивает напряжение в розетках 220В.

Кроме нулевого и фазного проводов в квартирах прокладывается заземляющий проводник, защищающий людей от поражения электрическим током при нарушении изоляции между корпусом электроприбора и частями электросхемы, находящимися под напряжением. Этот провод соединяется с системой заземления.

Такая система состоит из двух основных элементов - трансформатор и электроустановка. В простейшем случае это однофазная нагрузка, однополюсный автомат и одна фаза трёхфазного трансформатора.

Справка! Само понятие "система" происходит от др. греч. σύστημα "целое, состоящее из отдельных частей" - несколько элементов, работающих вместе и объединённых в одну конструкцию.

В этой статье рассказывается о классификации систем заземления, различии между чаще всего применяющимися видами - ТТ, TN-C и TN-C-S и про опасность применения зануления вместо заземления, а также о системах заземления TN-S и IT.

Классификация систем заземления по ПУЭ

Электроустановки (в частности трансформаторы) напряжением до 1000В по наличию систем заземления делятся на две категории, каждая из которых имеет свои сферы применения:

  1. С глухозаземлённой нейтралью. Самый распространённый тип электротрансформаторов. Вторичные обмотки соединены в "звезду", средняя точка которых имеет постоянное подключение к контуру заземления. Жилые дома питаются только от трансформаторов с таким способом заземления нейтрали.
  2. С изолированной нейтралью. Вторичные обмотки трансформаторов не заземляются. Являются разделительными и используются только в промышленности в специальных установках, таких, как нагревательные печи и некоторые другие, в которых важно отсутствие электрического соединения токоведущих частей и контура заземления.

Глухозаземлённая нейтраль в электротрансформаторах обозначается "TN". Самое распространённое защитное применение такой нейтрали - соединение с ней токопроводящих корпусов электроприборов отдельными проводами, однако они могут соединяться и другими способами.

При проектировании систем электроснабжения проектная организация выбирает тип заземления согласно полученному техническому заданию и описанию систем заземления. Этот выбор определяется ПУЭ и другими нормативными документами и от него зависит безопасность людей и приёмка здания в эксплуатацию.

Важно! Неправильный выбор вида системы заземления или некачественный монтаж приведут к требованию контролирующей организации исправить допущенные ошибки.

Виды систем заземления

Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:

  • TN-C;
  • TN-C-S;
  • TN-S;
  • TT;
  • IT.

Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.

Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.

Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.

Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.

Система TN-C

Самый старый вид системы заземления - это система TN-C. В ней отсутствует отдельный провод для заземления и оно (заземление) осуществляется общим проводом PEN. Начиная от подстанции (трансформатора) PEN провод совмещает в себе нулевой защитный и нулевой рабочий проводники (PEN = PE + N). В старых жилых домах применяется именно такое заземление.

По системе TN-C заземляются только вводные щитки в подъездах и столбы уличного освещения. В квартирах таких домов заземление в розетках отсутствует, а электропроводка выполнена двухпроводной – фаза и ноль.

Такое защитное заземление морально устарело и не обеспечивает надёжной защиты от поражения электрическим током. При необходимости заземлить электроприборы, а также во время реконструкции электропроводки заземление тип TN-C заменяется на TN-C-S.

Система TN-C-S

Защитное заземление этого типа устроено аналогично системе TN-C. Питающий трансформатор имеет глухозаземлённую нейтраль, а заземляющие провода соединяются с ней нулевым проводом PEN, который на входе в дом разделяется на нулевой проводник - N и заземляющий - PE.

Такое разделение производится только на вводе кабеля в многоквартирный дом, как правило в ВРУ (вводном распределительном устройстве). В вводном щитке эти кабеля присоединяются к общей шине или клемме. Допускается применение такой системы в частных домах, питание которых осуществляется воздушными линиями при подключении к трёхфазной сети.

Согласно ПУЭ пункт 1.7.132 разделение нулевого и заземляющего проводов в однофазной сети 220В не выполняется. При необходимости выполнить такое разделение оно производится там, где это разрешено правилами, а к дому прокладывается дополнительный провод.

То есть, если у Вас в квартире нет заземления, и вы хотите из системы TN-C сделать TN-C-S, такой способ разделения PEN проводника на просто ноли и заземление не прокатит в квартирном щитке.

Важно! Согласно ПУЭ 1.7.135 после разделения в вводном щитке провода PE и N НЕ ДОЛЖНЫ соединяться между собой.

Система TN-S

Самые дорогостоящие в реализации, но самые удобные и надёжные системы заземления - это системы TN-S, которые монтируются вместе с трансформаторами с глухозаземлённой нейтралью.

Для системы TN-S заземляющий и нулевой провода соединяются в трансформаторной подстанции. На всем протяжении больше эти проводники не связаны между собой.

К потребителю, будь то квартира или дом, приходит два независимых друг от друга проводника нулевой рабочий N и нулевой защитный PE.

Для бОльшей надёжности заземляющий провод РЕ может соединяться с контуром заземления на вводе в здание.

Это самый простой в эксплуатации тип защиты. При его монтаже отсутствуют высокие требования к контуру заземления здания.

Недостаток этой системы в необходимости вместо четырёх проводов (L1,L2,L3,РЕN) использовать пять, где пятым проводом является заземляющий PE, однако это перекрывается повышенной безопасностью эксплуатации. Поэтому новые воздушные и кабельные линии электропередач прокладываются пятижильными кабелями и проектируются по системе TN-S.

Система TT

Это такая система защитного заземления, которая выполняется при невозможности смонтировать заземление другого типа. В этом случае нейтраль трансформатора не имеет связи с заземляющими проводами электропроводки, и они подключаются к собственному контуру заземления дома.

То есть в системе TT нулевой провод сети никак не связан с заземляющим контуром потребителя.

Случаи применения системы ТТ указаны в ПУЭ п1.7.59.

Важно! Ток, возникающий при замыкании токоведущих частей с заземлённым корпусом может быть недостаточным для срабатывания автоматического выключателя. Поэтому, согласно ПУЭ п1.7.59, применять систему ТТ без УЗО или дифференциального автомата запрещается.

Система IT

Применяется с трансформаторами с изолированной нейтралью. Обычно она соединяется с заземлением через разрядник, обладающий высоким сопротивлением при низком напряжении и низким при повышении напряжения выше допустимого предела. Это защищает потребителей от попадания первичного напряжения во вторичную обмотку.

В этой питающей сети отсутствует нулевой провод N, заземляющий РЕ и однофазное напряжение как таковое. Потребители подключаются на линейное напряжение 380 Вольт.

Данная система используется только с двух- и трёхфазными установками. Металлический корпус электрооборудования и другие токопроводящие элементы соединяются с контуром заземления здания.

Токи короткого замыкания на землю в такой системе незначительные, поэтому использование УЗО или дифференциальных автоматов является обязательным.

Система уравнивания потенциалов

В особоопасных сырых помещениях, таких, как бассейны или сауны, кроме непосредственного заземления корпусов электроприборов, используется система уравнивания потенциалов.

Она заключается в соединении между собой всех металлических частей в помещении - стальных дверей, нержавеющих раковин, водопроводных и канализационных труб и других элементов. Все эти соединённые между собой части подключаются к применяемой системе заземления.

В чём опасность применения зануления вместо заземления

Некоторые электромонтёры предлагают использовать зануление вместо заземления. Это нельзя делать по нескольким причинам:

  • Жилые дома подключаются к трёхфазной сети и по нулевому проводу течёт уравнительный ток. Так как этот провод имеет сопротивление, то между занулённым корпусом электроприбора и заземлёнными конструкциями, например водопроводным краном, имеется разность потенциалов. В обычных условиях это неопасно, но при прикосновении к воде или мокрой земле можно получить электрическим током.
  • При обрыве нулевого провода и неравномерной нагрузке между нулём и фазой может быть не 220В, а больше, вплоть до 380В. В этом случае между занулённым корпусом электрооборудования и заземлёнными конструкциями появится опасное для жизни напряжение 220В.
  • Нулевой и фазный провода подключаются к квартире через двухполюсный автоматический выключатель. При его срабатывании нулевой провод N, используемый в качестве заземляющего проводника, отключается от контура заземления. Это недопустимо по требованиям ПУЭ п1.7.145

К отдельно стоящему зданию может быть подведено не однофазное напряжение 220В, а трёхфазное с тремя фазными и одним нулевым проводами. В этом случае есть возможность переделки защитного зануления в систему заземления TN-C-S.

Вывод

Системы TT и IT также являются системами с заземлением. В них заземляющий провод РЕ не имеет электрической связи с нейтралью трансформатора.

Системы заземления TN всех видов считаются системами с занулением. В них заземляющий провод РЕ связан каким-либо способом с нейтралью питающего трансформатора и проводником N:

  1. В системе TN-C-S заземляющие жёлтые или жёлто-зелёные провода подключены к проводнику PEN. Он проложен от нейтрали трансформатора к вводному щитку в здании.
  2. В системе TN-C заземляющий проводник РЕ совмещён с нейтральным проводом N, поэтому к нему корпуса электроприборов не подключаются. Для их заземления защитное заземление типа TN-C необходимо переделать в TN-C-S.
  3. Система TN-S является самой надёжной. В ней провода РЕ и N разделены на всём протяжении от электроприбора до нейтрали питающего трансформатора.

Нет системы заземления, идеально подходящей для всех ситуаций. Каждая из них обладает своими достоинствами и недостатками, но у всех одна задача - обеспечение максимальной безопасности людей. Для выбора типа защиты необходимо знать, какие бывают системы заземления и зануления.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Устройство защитного заземления электроустановок по требованиям ПУЭ

При эксплуатации жилых и административных зданий устройство заземления имеет большое значение. В совокупности с защитными автоматическими системами отключения, они предотвращают пожары в случаях короткого замыкания в сетях. Молниезащита зданий заводится на общий контур заземления. Исключаются поражения электрическим током обслуживающего персонала, обеспечивается стабильная, безаварийная работа электроустановок. Требования по их монтажу и используемым материалам регулируют Правила устройства электроустановок (ПУЭ).

Правила устройства электроустановок (ПУЭ)

Понятие заземления

Это система из металлоконструкций, обеспечивающая электрический контакт корпуса электроустановок с землей. Основным элементом является заземлитель, который может быть цельный или из соединяющихся между собой отдельных токопроводящих частей, на конечном этапе уходящих в грунт. Правила требуют, чтобы монтаж металлоконструкций выполнялся из стали или меди. На каждый вариант существует свой ГОСТ и требования ПУЭ.

На эффективность работы заземляющего устройства существенно влияет электрическое сопротивление.

Требования ПУЭ в пункте 7.1.101 гласят: на жилых объектах с сетью 220В и 380В заземляющий контур должен иметь сопротивление не более 30 Ом, на трансформаторных подстанциях и генераторах не более 4 Ом.

Чтобы выполнить эти правила, величину сопротивления системы заземления можно регулировать. Для повышения проводимости заземляющего устройства  используют несколько способов:

  • увеличивают площадь соприкосновения металлоконструкций с грунтом, вбивая дополнительные колья;
  • повышают проводимость самого грунта на участке, где размещен контур заземления, поливая его соляными растворами;
  • меняют провод от щита к контуру на медный, который имеет более высокую проводимость.

Проводимость системы заземления зависит от многих факторов:

  • состава грунта;
  • влажности грунта;
  • количества и глубины залегания электродов;
  • материала металлоконструкций.

Практика показывает, что идеальные условия для эффективной работы защитного заземления создают следующие грунты:

  • глина;
  • суглинок;
  • торф.

Особенно если этот грунт имеет высокую влажность.

Правила определяют, что провода и шины защитного заземления для электроустановок до 1 кВ с глухозаземленной нейтралью обозначают маркировкой (РЕ), добавляя штрихованный знак с чередованием желтых и зеленых полос на концах проводов. Проводники рабочего нуля имеют голубой цвет изоляции и маркируются буквой (N). В схемах электроустановок, где рабочие нулевые провода используются как элемент защитного заземления, подключены на заземляющий контур, они имеют голубую окраску, маркировку (РЕN) с желтыми и зелеными штрихами на концах. Этот порядок цветов и маркировки определяет ГОСТ Р 50462. При монтаже конструкций используют правила для разных видов подключения защитного заземления электроустановок.

Виды и правила заземления электроустановок


ТNCтакая конструкция заземления электроустановок была принята в Германии с 1913 года, эти правила остаются действующими на многих старых сооружениях. В этой схеме рабочий нулевой провод сети одновременно используется как РЕ-проводник. Недостатком этой системы оказалось высокое напряжение на корпусах электроустановок в случае обрыва РЕ-провода. Оно в 1,7 раза превышало фазное, что увеличивало угрозу поражения электрическим током обслуживающего персонала. Подобные схемы защитного заземления электроустановок часто встречаются в старых зданиях Европы и государств постсоветского пространства.

TNS новое устройство защиты электроустановок. Эти правила монтажа электропроводки были приняты в 1930 году. Они учитывали недостатки старой системы ТN-C. TN-S отличается тем, что от подстанции до корпуса электрооборудования прокладывался отдельный защитный нулевой провод. Здания оборудовались отдельным контуром заземления, к которому подключались все металлические корпуса бытовых электроприборов.

Схемы подключения TN-S и TN-С

Защитное заземление этого вида способствовало созданию автоматов отключения цепи. В основу работы дифференциальных автоматических устройств заложены законы Киргофа. Его правила определяют: «ток, протекающий по фазному проводу, имеет равную величину току, который протекает по нулевому проводу». При обрыве нуля, даже незначительная разница токов управляет отключением автоматических устройств, исключая возникновения линейного напряжения на корпусах электроустановок.

Комбинированная система ТN — C – S разделяет рабочий нулевой провод и заземляющий не на подстанции, а на участке цепи в зданиях, где эксплуатируются электроустановки. Правила этой системы имеют существенный недостаток. При коротком замыкании или обрыве нуля на корпусе электроустановок возникает линейное напряжение.

В большинстве случаев в жилых, производственных и офисных зданиях, сооружениях используется защитное заземление с глухозаземленной нейтралью. Это означает, что рабочий нулевой провод подключается к заземлению. В пункте 1.7.4 ПУЭ определено: «Нейтральные (нулевые) провода трансформаторов или генераторов подключаются к заземляющему контуру».

Защитное заземление в групповых сетях

В частных, многоквартирных и многоэтажных офисных зданиях потребители имеют дело с электроснабжением от распределительных устройств, с которых электроэнергия поступает на розетки, осветительные приборы и другие приемники тока. В подъездах на каждой лестничной площадке установлено ВРУ (вводное распределительное устройство), от которого сеть разделяется на группы по квартирам и функциональному назначению:

  • группа освещения;
  • розеточная группа;
  • группа для питания нагревательных приборов (бойлера, сплит системы или кухонной плиты).

Пример монтажа в шкафу ВРУ

Распределительное устройство разделяет группы по функциональному назначению или для электроснабжения отдельных помещений. Все они подключаются через защитные автоматические выключатели.

Распределительное устройство – разделение сети на группы

На основании требования ПУЭ (пункт 1.7.36) групповые линии выполняются трехпроводным кабелем с медными проводами:

  • фазный провод с обозначением – L;
  • провод рабочего ноля обозначается буквой – N, при монтаже используется проводник с синей или голубой изоляцией в кабеле;
  • нулевой провод, защитное заземление обозначается – РЕ желто-зеленой окраски.

Для монтажа используются трехпроводные кабели, соответствующие требованиям, определяющим состав полихлорвинилового пластика изоляции на проводах:

  • ГОСТ – 6323-79;
  • ГОСТ – 53768 -2010.

Насыщенность цвета определяют ГОСТ – 20.57.406 и ГОСТ – 25018, но эти параметры не являются критичными, так как не влияют на качество изоляции.

В старых зданиях советской постройки проводка выполнена двухпроводным проводом с алюминиевой проволокой. Для надежной и безопасной эксплуатации современной бытовой техники от корпуса ВРУ до розеток, через распределительные коробки, прокладывается третий заземляющий провод. Рекомендуется при капитальном ремонте заменить всю старую проводку и установить новые розетки с контактом на защитный провод.

Категорически запрещается в качестве защитного заземлителя использовать действующие конструкции трубопроводов канализации или системы отопления.

В щитке все провода, согласно своему назначению, крепятся на отдельные контактно-зажимные планки. Запрещается подключение проводов N на контактные шины РЕ другой группы и наоборот. Также не допускается подключение РЕ и N отдельных групп на общие контакты линий РЕ или N. В сущности, при контактах нулевого провода и провода защитного заземления работа цепи электроснабжения не нарушится. В конечном итоге через подстанцию и заземляющий контур они замыкаются, но может нарушиться расчетный баланс токовых нагрузок на защитные автоматы. Несоблюдение этого баланса приведет к незапланированному отключению на отдельных группах.

Монтаж рабочего нулевого и заземляющего проводов в ВРУ

Пример крепления нулевых и заземляющих проводов в ВРУ

Практически, исходя из пункта 7.1.68 ПУЭ, все корпуса электроприборов в здании подлежат заземлению:

  • токопроводящие металлические элементы светильников;
  • корпуса кондиционеров, стиральных машин;
  • утюги, электрические плиты и многие другие бытовые приборы.

Все современные производители электрооборудования учитывают эти требования. Любое современное устройство, потребляющее электроэнергию от стандартных промышленных сетей, производится со схемой подключения к трехпроводным розеткам. Одним проводом является защитное заземление (провод, который присоединяет корпус электроустановок к контуру заземления).

Контур для частного дома


Устройство металлоконструкций заземляющего контура собирается из различных элементов, это могут быть:

  • стальной уголок;
  • стальные полосы;
  • металлические трубы.
  • медные стержни и провод.

Наиболее подходящим материалом для монтажа считаются стальные оцинкованные полосы, трубы и уголки, соответствующие ГОСТ – 103-76. Производители изготавливают их разных размеров.

Размеры стальных оцинкованных шин

ИзделиеГОСТШиринаТолщина
Стальная оцинкованная шинаГОСТ - 103-7620 мм4 мм
Стальная оцинкованная шинаГОСТ - 103-7625 мм4 мм
Стальная оцинкованная шинаГОСТ - 103-7630 мм4 мм

Стальные трубы и полосы для устройства контура заземления

Такие полосы удобно прокладывать по стенам здания, соединяя контур и корпус распределительного щита. Полоса гибкая, устойчивая к коррозии и имеет хорошую проводимость. Это гарантирует, что устройство защиты будет работать эффективно.

Наиболее распространенная конструкция, когда контур на защитное устройство заземления имеет по периметру форму равнобедренного треугольника, стороны которого 1.2 м. В качестве вертикальных заземлителей применяют стальной уголок 40х40 или 45Х45 мм, толщиной не менее 4-5 мм, металлические трубы диаметром не менее 45 мм с толщиной стенок 4 мм и более. Можно использовать элементы трубопроводов, бывшие в употреблении, если металл еще не проржавел.  Для того чтобы было удобно забивать уголок в грунт, нижний край обрезается болгаркой под конус. Длина вертикального заземлителя составляет от 2 до 3м. Допустимые размеры в зависимости от материала и формы элементов указаны в таблице 1.7.4 ПУЭ.

Схема расположения контура заземления

Забиваются уголки так, чтобы над поверхностью грунта осталось 15-20 см. На глубине 0.5 метра вертикальные заземлители по периметру соединяются стальной полосой 30-40 мм шириной и 5мм толщиной.

Засыпаются горизонтальные полосы однородным грунтом, длительное время сохраняющим влагу. Не рекомендуется отсев или щебень. Все соединения  осуществляются сваркой.

Контур размещается не далее чем на 10 метров от здания. Защитное устройство заземления соединяется с корпусом распределительного щита стальной пластиной 30 мм в ширину и не менее 2 мм толщиной, стальной круглой катанкой 5-8 мм в диаметре или медным проводом, сечение которого не мене 16 мм2. Такой провод крепится клеммой на заранее приваренный к контуру болт, и затягивается гайкой.

Крепление заземляющего провода на контур

Требования ПУЭ (пункт 1.7.111) – защитное заземление может быть выполнено из медных элементов, это надежно. Продаются специальные наборы, «устройство медных заземляющих конструкций», но это дорогое удовольствие. Для большинства потребителей дешевле и проще выполнить требования, используя стальные детали.

Это облегчит труд, в пункте 1.7.109 ПУЭ говорится, что подключая защитное заземление, в процессе монтажа допускается использование естественных заземлителей.

Это могут быть:

  • элементы металлических трубопроводов, проложенных под землей;
  • экраны бронированных кабелей, кроме алюминиевых оболочек;
  • рельсы железнодорожных неэлектрифицированных путей;
  • железные конструкции арматуры фундаментов высотных железобетонных зданий и многие другие подземные металлические сооружения.

Неудобство этого варианта состоит в том, что для использования этих объектов (рельсов или трубопроводов) как защитное заземление, необходимо согласовать возможность подключения с владельцем конструкции. Иногда проще бывает установить собственный контур заземления, соблюдая все требования.

При использовании естественных заземлителей, ПУЭ предусматривает требования по ограничению. В пункте 1.7.110 запрещается использовать конструкции трубопроводов с горючими жидкостями, газопроводы, сети центрального отопления и трубопроводов канализации.

Молниезащита частного дома


ПУЭ и другие руководящие документы не обязывают владельца частного дома, чтобы у него стояла молниезащита. Мудрые владельцы в целях безопасности устанавливают эту конструкцию самостоятельно, руководствуясь требованиями ГОСТ — Р МЭК 62561.2-2014. Молниезащита включает в себя три основных элемента:

  1. Мониеприемник устанавливается на верхней точке крыши здания, принимает на себя электрический разряд молнии. Выполняется из стальной трубы Ø 30-50 мм, высотой до 2м. На верхнюю часть приваривается стальной наконечник круглого проката Ø 8мм.
  2. Заземляющее устройство обеспечивает растекание токов в грунте;
  3. Токопровод выполняется из того же материала, что и наконечник, он направляет ток электрического разряда от молниеприемника к контуру заземления.

Прокладывается токопровод по самому короткому маршруту, максимально удаленному от окон и дверей.

Видео. Проверка заземления.


Исходя из перечисленной информации видно, что грамотно организовать процесс монтажа проводки, подключить защитное устройство заземления, учитывая требования ПУЭ, в частном доме можно самостоятельно. Для измерения сопротивления контура можно использовать мультиметр, предварительно установив его в режим измерения на Омы. Потом это делают специалисты энергоснабжающей организации или контрольно-измерительной лаборатории, они знают все требования и имеют нужное оборудование. При необходимости в предписании специалисты укажут недостатки и меры по их устранению. Порядок сдачи объекта в эксплуатацию однозначно определяет наличие протоколов измерений сопротивления на устройство заземления.

Оцените статью:

Защитное заземление и способы его выполнения

Многие части электроустановок, не находящиеся под напряжением (корпуса электрических машин, кожухи трансформаторов, осветительная арматура, приводы и кожухи электрических аппаратов, вторичные обмотки измерительных трансформаторов, каркасы распределительных шкафов и щитов управления, металлические конструкции подстанций, металлические оболочки кабелей и кабельные муфты, стальные трубы электропроводок и т.п.) могут во время аварии оказаться под напряжением, что обусловливает опасность поражения электрическим током обслуживающего персонала. Обеспечить безопасность прикосновения к таким частям позволяет защитное заземление.


Рис. 1. Устройство заземления в трехфазной установке с изолированной (а) и глухозаземленной (б) нейтралью
Заземление снижает до безопасного значения потенциал по отношению к земле Металлических частей электроустановки, оказавшихся под напряжением при аварии.
Защитное действие заземления состоит в уменьшении тока, протекающего в теле человека при соприкосновении с корпусом машины, оказавшимся под напряжением (рис. 1, а). Человек включается в электрическую цепь параллельно заземлению; чем больше сопротивление человека гч по сравнению с сопротивлением заземления, тем меньше ток в теле человека /ч.
Сопротивление заземляющих устройств для электроустановок при различных напряжениях должно приниматься в соответствии с нормами ПУЭ.
Способы выполнения защитного заземления зависят от системы электроснабжающей сети и напряжения электроустановки. В электроустановках напряжением до 1 000 В с глухозаземленной нейтралью трансформаторов (или генераторов) защитное заземление выполняют присоединением заземляемых частей установки к заземленному нейтральному проводу электросети. В этом случае при повреждении изоляции и переходе напряжения на металлические части установки возникает короткое замыкание одной фазы трансформатора (или генератора) через нейтраль (рис. 1, б). В результате поврежденная часть электроустановки немедленно автоматически отключается (перегорает плавкая вставка предохранителя или отключается автомат).

В электроустановках напряжением до 1000 В с изолированной нейтралью трансформаторов (или генераторов), а также во всех установках напряжением свыше 1000 В, защитное заземление выполняют путем сооружения местного заземляющего устройства с малым сопротивлением, к которому присоединяют заземляемые части установки (см. рис. 1, а). Действие такого заземления состоит в том, что оно снижает до безопасного значения напряжение относительно земли, появляющееся на металлических частях установки при повреждении изоляции.
Значения сопротивления местного заземляющего устройства нормируются ПУЭ.
Для заземляющих устройств следует по возможности использовать естественные заземлители: водопроводные и другие металлические трубы, проложенные в земле без изоляции (кроме трубопроводов с горючими веществами), металлические конструкции зданий и сооружений, а также имеющие соединения с землей шпунты, свинцовые оболочки проложенных в земле кабелей и т.п.
Искусственные заземлители, как правило, выполняют из вертикально забитых в фунт стальных стержней, соединяемых между собой стальными полосами. Полосы прокладывают в земле на глубине не менее 0,5 м и приваривают к верхним концам стержней.


Рис. 2. Правильная (f) и неправильная (б) схемы присоединения заземляемых элементов к заземляющей магистрали:
I — заземляемый элемент; 2 — ответвление;     3 — заземляющая магистраль

Каждый заземляемый элемент 1 установки следует присоединять к заземлителю или заземляющей магистрали 3 при помощи отдельного ответвления 2 (рис. 2, а). Заземляемые элементы нельзя включать последовательно в заземляющую магистраль (рис. 2, б). Присоединение заземляющих проводников к электрооборудованию выполняют при помощи болтов или сварки.
Заземляющие устройства начинают действовать только при повреждениях изоляции электроустановок.


Рис. 3. Схемы заземления однофазных (а) и трехфазных (б, в) понизительных трансформаторов

Передвижные механизмы, электроинструменты, понизительные трансформаторы и сварочные аппараты, работающие при напряжении до 1000 В в сетях с глухозаземленной нейтралью, получают питание от питаюших пунктов (щит или силовой шкаф). Заземление корпусов указанных электроприемников осуществляют заземляющей жилой питающего шлангового кабеля, один конец которой присоединяют к заземляющему болту на корпусе устройства, а другой — к корпусу питающего пункта. Корпуса питающих пунктов через заземляющий зажим соединяют с нейтральным проводом сети и через него — с заземленной нейтралью источника питания (как правило, трансформатора). Все корпуса электроинструментов, работающих при напряжении свыше 40 В, подлежат заземлению (подсоединению к нейтральному проводу сети) с помощью специального проводника или заземляющей жилы шлангового провода (кабеля). Все корпуса и обмотки низшего напряжения понижающих трансформаторов для электроинструмента заземляют таким же образом (рис. 3).
Для выполнения повторных заземлений нейтрального провода на передвижных установках применяют переносные инвентарные заземлители, к которым присоединяют корпуса и металлические конструкции машин и механизмов.

Заземление в квартире и частном доме - как сделать своими руками

В этой статье описаны наиболее часто встречающиеся схемы заземления, рассмотрены их назначение, принцип действия, достоинства и недостатки.

Для начала - немного терминологии, которая будет использоваться при изложении материала:

  • N - нулевой (рабочий) проводник,
  • PE - отдельно проложенный проводник защитного заземления,
  • PEN - совмещенный нулевой и заземляющий проводник,
  • Расщепление - разделение провода PEN на два провода - N и PE.

Рассматриваемые здесь схемы предусматривают использование заземленной нейтрали на стороне трансформаторной подстанции (первая буква Т в обозначении системы).

Схема заземления TN-C.

Отдельный провод заземления здесь отсутствует (рис.1). Этот вариант присущ старым квартирам, дачам, некоторым частным домам. При такой системе проводник PEN на схемах иногда обозначается как N - в том числе в ряде материалов этого сайта.

Попытка заземлить корпус прибора путем соединения его с нулевым проводом может помочь лишь при коротком замыкании фазы на корпус с протеканием по этой цепи тока, достаточного для срабатывания автомата защиты. По принципу действия это больше зануление чем заземление.

В любом другом случае такой вариант чреват появлением на металлических частях электрооборудования опасных напряжений, так что использовать его не надо. Обеспечить электробезопасность в этом случае может устройство защитного отключения (УЗО).

Правда сработает оно только в случае прикосновения человека к корпусу прибора.

Таким образом, уровень обеспечения безопасности при использовании такой системы заземления весьма низок.

Система TN-C-S.

Эта схема предусматривает расщепление PEN провода (рис.2). Одновременно она требует использования вторичного заземления в вводно распределительном устройстве (ВРУ). В квартирах эта система заземления используется достаточно часто.

Как можно видеть в этом случае появляется отдельный проводник PE предназначенный для подключения (при необходимости) заземления электроприборов. При использовании совместно с УЗО при появлении на заземленных частях электрооборудования постороннего напряжения происходит моментальное срабатывание устройства отключения.

Это, безусловно, достоинство системы. Недостатком является то, что при обрыве PEN проводника на корпусах электрооборудования может возникнуть опасное напряжение.

ЗАЗЕМЛЕНИЕ В ЧАСТНОМ ДОМЕ

Сделать заземление в частном доме своими руками, причем не важно -для цепи 220В или 380В вполне реально. Конечно, если строго соблюдать все нормы и правила и ясно представлять себе принцип действия различных систем защиты.

Одна из них - TN-C-S описана выше и может быть рекомендована для частного домовладения. Она требует выполнения двух мероприятий:

  • расщепления PEN проводника,
  • создания контура заземления.

Начнем с того как самостоятельно выполнить расщепление. Делаем это во вводном щите (рис.3).

Слева - фаза и PEN проводник (или, если привычнее - ноль), подходящие к дому со стороны подстанции (см. статью про подключение электричества). Справа имеем:

  • фазу 220В (L),
  • рабочий ноль (N),
  • отдельный заземляющий проводник (PE).

Внутри щитка устанавливаем три шины, причем первая и вторая должны быть изолированы от корпуса, а третья - иметь с ним электрический контакт.

Остается установить перемычку - 4 и соединить третью шину и корпус щитка с контуром заземления.

В частном доме можно использовать еще один вариант по схеме TT. (рис.4).

При этом все получается гораздо проще. Здесь шины 1,2 изолированы от корпуса, а третья имеет с ним электрический контакт. Думаю дальнейшие пояснения излишни - все достаточно очевидно.

Кстати, система TT гарантирует безопасность при отгорании PEN проводника или перекосе фаз - за счет отсутствия электрического контакта между нулем сети и проводом заземления.

Для повышения уровня электробезопасности настоятельно рекомендую совместно с любой системой заземления использовать устройство защитного отключения.

ТРЕБОВАНИЯ К ПРОВОДАМ ПРИ ОРГАНИЗАЦИИ СИСТЕМЫ ЗАЗЕМЛЕНИЯ

Сечение PEN проводов должно быть не меньше сечения нуля на не менее 10 мм2 для меди (16 мм2 - для алюминиевых жил).

Сечение проводников PE должно равняться:

  • фазным при их сечении до 16 мм2,
  • 16 мм2 при фазе от 16 мм2 до 35 мм2,
  • 50% от сечения фазных большего размера.

Цвета проводов по ПУЭ:

  • фазный (L) - коричневый или красный,
  • рабочий ноль (N) - синий,
  • PEN - голубой по всей длине и желто зеленые полосы на концах,
  • PE - желто зеленый (полосы).

Сечение фазных и нулевых проводников определяется в зависимости от нагрузки на электропроводку и определяется на стадии проектирования системы электроснабжения.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


TN-S, NN, TN-C, IT, TN-C-S

До выхода в свет седьмого издания ПУЭ характер связи нейтрали генераторов или трансформаторов с заземляющим устройством системы разделялись так:

  • с глухозаземленной нейтралью;
  • с изолированной нейтралью.

В системах с глухозаземленной нейтралью нейтраль силового трансформатора соединялась с контуром заземления сразу же на трансформаторной подстанции. Иногда в этой цепи устанавливался трансформатор тока, в основном же соединение выполнялось жестким шинопроводом. Такими выполнялись все распределительные системы переменного тока напряжением до 1000 В, за исключением электрооборудования шахт и карьеров.

В системах с изолированной нейтралью такого проводника не предусматривалось. В результате относительно земли на ней присутствовал электрический потенциал. Но и нейтрали в них не предусматривалось: обмотки силового трансформатора соединялись в треугольник. Потребители получали электричество по трем проводникам.

Недостатки систем заземления

Что же привело к введению западных стандартов применительно к конструкции систем заземления? Для этого рассмотрим, как они выполнялись.

В системе с глухозаземленной нейтралью сама нейтраль несла в себе, помимо функции проводника нулевого тока, еще и функцию связи заземляемого оборудования с контуром заземления. Поскольку ток в нейтрали не равен нулю, то на ее концах образовывалась разность потенциалов. Присутствие ее относительно сторонних металлических конструкций на безопасность персонала влияла отрицательно.

Но главной бедой, угрожающей безопасности людей, становился обрыв нейтрали. В этом случае ее потенциал зависел от распределения токов по фазам распределительной сети. В неблагоприятном случае потенциал нейтрали относительно земли достигал 380 В. При этом металлоконструкции, присоединенные к нейтральному проводнику с целью заземления, оказывались под тем же потенциалом. Защита на этот режим не реагировала никак, пока в сети не выходил из строя электроприбор из-за превышения напряжения в его фазе.

Еще один недостаток связан с подключением к контуру заземления корпусов малогабаритных приборов. По сути их требовалось присоединить к нейтральному проводнику. Такой способ назывался защитным занулением. Но в случае обрыва нейтрали корпус автоматически оказывался под опасным для жизни потенциалом. Поэтому корпуса люминесцентных светильников на предприятиях предпочитали вовсе не заземлять, из-за чего на них постоянно дежурит опасный для жизни потенциал. Но это –меньшее зло.

Новая классификация систем заземления

В седьмое издание ПУЭ добавлена информация из вновь созданного ГОСТ Р 50571.1-2009, по сути своей являющимся копией стандарта Международной электротехнической комиссии (МЭК). Можно было придумать собственный стандарт, но лучше, если в большинстве стран будет царить единообразие. Ведь в Россию не только поставляется западное электрооборудование, но и целые заводы собираются по иностранным проектам. Чем меньше будет конфликтных ситуаций – тем лучше.

Системы заземления

Стандарт касается электроустановок, напряжением до 1000 В. В системах заземления установок выше 1000 В менять нечего.

Первое, на что обращают внимание все, открывающие главу 1.7 ПУЭ – это новые системы обозначения электроустановок в зависимости от режимы работы нейтрали и расположения нулевых проводников.

Первая буква обозначения: «T» или «I» — обозначает соответственно заземленную или изолированную нейтраль электроустановки.

Вторые буквы означают следующее

NЗаземляемых частей к нейтрали выполняется при помощи проводников
ТДля связи защищаемого оборудования с землей используется свой собственный контур заземления. При наличии контура заземления нейтрали они независимы друг от друга.

Защитные и рабочие проводники

Проводники, объединенные раньше в одном понятии «ноль» теперь меняют свое назначение и разделяются на два типа.

Нулевые рабочие проводники служат только для передачи электрической энергии. Использование их как защитных запрещено. Они окрашиваются в голубой цвет, обозначаются буквой N. При этом использование голубого цвета для маркировки других проводников тоже запрещается, чтобы избежать путаницы. Нулевые рабочие проводники не подключаются напрямую к корпусам, а устанавливаются на изоляторах.

Нулевые защитные проводники необходимы для связи корпусов или частей защищаемого оборудования с контуром заземления. Цвет их оболочки состоит из перемежающихся желто-зеленых полос, а буквенное обозначение самих проводников – РЕ. Для предотвращения путаницы запрещено теперь использование комбинации из этих цветов, даже каждого в отдельности. Разработан еще один ГОСТ, регламентирующий цветовую маркировку токопроводов, в котором отразились эти изменения.

Если вспомнить, то заземляющие шины в электроустановках до этого окрашивались в черный цвет. Волею случая этот цвет теперь обозначает один из фазных проводников.

Система заземления TN-C: схема

Система с глухозаземленной нейтралью в сетях до 1000 В осталась неизменной. Никто, естественно, не бросился в срочном порядке перекрашивать шины и добавлять дополнительные проводники в уже сформировавшиеся цепи. Требования ПУЭ и стандартов учитываются только в двух случаях:

  • при проектировании и вводе в эксплуатацию новой электроустановки или части ее;
  • при выполнении модернизации электрооборудования.

Все остальное остается прежним. А для этого прежнего в ПУЭ предусмотрено свое название – система TN-С. Разберемся, что это такое.

Буквы «TN» означают, что это – система с глухозаземленной нейтралью, в которой соединение потребителей с контуром заземления и нейтралью осуществляется при помощи проводников. С ними мы разобрались в предыдущем разделе.

А вот буква «С» означает, что функции этих проводников, рабочего и защитного, совмещены в одном, называемом «совмещенном». Носит он буквенное обозначение PEN, а окрашивается либо в голубой цвет с желто-зелеными полосами по краям, либо наоборот.

Ничего не изменилось, только цвет теперь не черный. Все, что было создано еще в советские годы, называется теперь системой заземления TN-C. С ней приходится считаться, потому что к новому виду заземления полностью промышленность перейдет еще не скоро.

Система заземления TN-S: схема

А вид этот новый носит название TN-S. Буква “S» как раз означает, что нулевые защитные и рабочие проводники разделены на все протяжении. Разделение это происходит непосредственно на трансформаторной подстанции. Нулевая шпилька трансформатора подключается к шине РЕ, а к ней перемычкой подключается нулевая шина. К шине РЕ сразу же подключают контур заземления подстанции.

Теперь все кабельные линии, отходящие от созданного таким образом распределительного устройства, становятся трехпроводными (если питают однофазную нагрузку) или пятипроводными при питании трехфазного потребителя.

Теперь появляется возможность удобно подключать заземляющие контакты розеток, корпуса светильников, бойлеров, распределительных щитков к контуру заземления. Для этого выделена персональная жила.

На всякий случай упомянем, что, если заземляющий проводник кабеля подключить не к чему, его нельзя ликвидировать. Со временем может потребоваться его использование, поэтому во всех соединительных коробках РЕ-проводники все равно соединяют, а у розеток или светильников – изолируют.

Есть ситуации, когда заземляющие проводники проложены, а подключать их пока не к чему: нет еще контура заземления или не готова часть электроустановки, через которую планируется подключение. В этом случае их соединяют в коробках, но не подключают к абонентам. Некоторые бытовые приборы: светильники, компьютеры, телевизоры, стиральные машины – имеют на входе помехоподавляющие фильтры, использующие корпус для связи с контуром заземления. Опасный потенциал от такого фильтра разбежится по все сети заземления.

Система заземления TN-C-S: схема

Мы уже упоминали реконструируемые электроустановки или части электроустановок, подлежащих модернизации. Их конструкция должна соответствовать новым требованиям ПУЭ. Но для создания системы заземления TN-S реконструировать электроустановку нужно с трансформаторной подстанции. Это потребует серьезных финансовых затрат. Как быть в этом случае?

Для этого используется система заземления TN-C-S, являющаяся комбинацией выше рассмотренных. В части ее, от трансформаторной подстанции, используется TN-C, а на определенном участке защитный и рабочий проводники разделяются, создавая систему TN-S.

Системы заземления TN

Такое разделение устраивают во вводных распределительных устройствах (ВРУ) главных распределительных щитках (ГРЩ) или просто в щитках ввода в здание. Но в этом месте желательно наличие контура повторного заземления, иначе такое разделение не будет безопасным.

Особенное внимание при разделении совмещенного проводника TN-C на защитный и нулевой рабочий обращают на его точку подключения. Проводник PEN при переходе подключается к шине РЕ. Мотивация этого такова. Между шинами N и РЕ при переходе на систему TN-S устанавливается перемычка. Если подключить PEN к шине N, то при обрыве перемычки ничего видимого не произойдет. Все защитные проводники, подключенные к распределительному устройству, потеряют связь с контуром заземления. И никто ничего не заметит, пока не произойдет беда.

При подключении PEN-проводника к шине РЕ и обрыве перемычки произойдет тот же эффект, что был описан ранее в случае обрыва нуля. В электроустановке установится аварийный режим, который вряд ли заметят. С одной разницей: соединение корпусов электрооборудования с контуром заземления не исчезнет, и люди не пострадают.

Система заземления IT: схема

Эта система применяется на горных выработках: карьерах, шахтах. Особенности эксплуатации электрооборудования на этих предприятиях таковы, что получить качественного контура заземления там не представляется возможным.

Система заземления IT

Нейтраль трансформатора там все-таки заземляется, но через контрольно-измерительные приборы, выполняющие функцию защиты от утечки. В случае ее возникновения происходит отключение электроустановки.

Система заземления ТТ: схема

Устройство с двумя разделенными друг от друга заземляющими устройствами используется там, где невозможно обеспечить безопасность при помощи TN. Это связано либо с аварийным состоянием нулевых проводников, либо с их большой протяженностью. В основном это касается воздушных линий электропередачи.

Система заземления ТТ

Особенность защиты людей от поражения электрическим током в системе ТТ — обязательное применение устройств защитного отключения (УЗО) с дифференциальным током 30 мА.

Оцените качество статьи:

Схема заземления и зануления объекта электроснабжения

Чем отличается заземление от зануления

Для безопасной работы на различных электоустановках и проводниках используется соединение открытых металлических отводов с землей и подключение сети к нулевому кабелю. Но немногие начинающие мастера точно знают, чем отличается заземление и зануление электроустановок и электрооборудования.

Определение заземления

Заземление – это умышленное подключение открытых частей электрического оборудования, которые находятся под напряжением, к специальному заземляющему отводу, шине или другому защитному оборудованию. Это может быть арматура в земле, часть электроустановки и другие приспособления. Такой подход, согласно ПУЭ, является обязательной мерой преднамеренной защиты как жилого, так и нежилого фонда. Это же гласят правила и требования ГОСТ 12.1.030-81 ССБТ (электробезопасность и система стандартов безопасности труда).

Фото — схема

Практически в каждом современном доме установлена схема заземления TN-C-S или TN-S. Но в зданиях старой постройки заземление зачастую вообще отсутствует, поэтому владельцам квартиры в таких постройках приходится своими силами организовывать землю. Такая система называется TN-C. Выполняется при помощи подключения отвода к заземляющему контуру, который может располагаться непосредственно в земле у здания или возле трансформаторной будки.

Теоретически, такую модернизацию проводки может организовать специальная монтажная компания, но практикуется это редко. Чаще к щитку на этаже (в многоквартирном доме) подводится земля, и уже к ней подключаются остальные провода.

  1. Если фаза попадает на открытый металлический отвод любого электрического устройства, то в нем появляется напряжение. Это же случается, если, к примеру, нарушена изоляция кабеля. Человеческое тело – отличный проводник тока, если Вы дотронетесь к такому отводу, то получите сильный удар током. Заземление поможет избежать это;
  2. Блуждающие токи уходят в заземляющий проводник, этим гарантируется охрана жизни;
  3. В особенности опасно напряжение, которое попадает на радиаторы отопления. В таком случае, все батареи в доме становятся проводниками тока. Но если установлена земля, то все напряжение уйдет по проводнику.
Фото — вариант земли

Если нет возможности провести полноценный заземляющий контур, тогда используются другие способы. К примеру, сейчас очень распространено подключение переносных заземляющих штырей (портативные шины). Их действие никак не отличается от стандартного стационарного отвода, но при этом они гораздо практичнее по своему функционалу.

Фото — переносная шина

Назначение зануления

Иногда зануление и заземление путают друг с другом, так в чем разница между ними? Зануление применяется по ПУЭ только для промышленных установок и не является гарантом безопасности. Если фаза попадает на открытую часть устройства, то ток не уходит. После этого происходит сопряжение двух фаз, и, как следствие, короткое замыкание. Нулевой проводник необходим для быстрого реагирования дифференциального защитного автомата на КЗ, но не для защиты человека от поражения током. Поэтому его принято использовать только на производстве, где требуется быстрое отключение питания в случае аварийной ситуации.

Фото — схема зануления

Нужно ли делать зануление в частном доме или квартиры? Нет, это необязательно, и даже чревато различными негативными последствиями. Скажем, если нулевой провод сгорит, то большее количество электрических устройств, к которым он был подключен, сломается из-за чрезвычайно высокого скачка напряжения. Стоит помнить, что Ваша безопасность не пострадает, если вместе с занулением обустроить также заземление, установить УЗО и защитный выключатель.

Фото — принцип работы зануления

Как установить зануление, чтобы устройство, подключенное к нему, не сгорело:

  1. Нужно использовать трехжильный провод с изоляцией. Одна жила отведена для фазы, вторая для нуля, третья для заземления;
  2. Земля подключается в самом конце электромонтажных работ на корпус безопасного проводника к заземляющему контуру и т. д. Наиболее практичен специальный заземляющий отвод у щита;
  3. В целях безопасности обязательно устанавливаются различные выключатели питания и прочие защитные установки.

Видео: в чем разница зануления и заземления

Главное отличие

Самое главное, что нужно запомнить: схемы зануления и заземления имеют различное защитное действие. Ноль гарантирует быструю реакцию на изменение потенциалов или утечку тока для обеспечивающих защиту установок. Соответственно, при высоком напряжении обеспечивается отключение всех потребителей энергии: осветительных приборов, компьютера и других машин (в том числе, станков, трансформаторов).

Фото — отличие зануления и заземления

Заземлением же обеспечивается выравнивание потенциалов и защита от поражения током. Земля чаще применяется в домашних условиях, её монтаж можно легко сделать своими руками. Но здесь нет гарантии, что предохранители быстро отреагируют на утечку. Оптимальным вариантом для повышения гарантии безопасности является совместное применение зануления и заземления сетей и открытых частей машин.

Перед установкой любого из этих вариантов защиты, нужно обязательно получить разрешение на проведение работ. Также дополнительно проводится расчет защитного проводника, подведение к каждому потребителю в жилище земли и установка защитного оборудования.

Что такое защитное зануление и где оно применяется

Защитное зануление — система, в которой токопроводящие части оборудования, не находящиеся в норме под напряжением, соединены с нейтралью. В защитных целях преднамеренно создается соединение между открытыми проводящими элементами глухозаземленной нейтрали (в сетях трехфазного тока).

В сетях однофазного тока создают контакт с глухозаземленным выводом источника однофазного тока, а в случае с постоянным током — с глухозаземленной точкой источника тока. Хотя зануление характеризуется серьезными недостатками, система по-прежнему широко применяется во многих сферах для защиты от тока.

Разница между занулением и заземлением

Между занулением и заземлением имеются отличия:

  1. В случае заземления лишний ток и появившееся на корпусе напряжение перенаправляются в грунт. Принцип действия зануления основан на обнулении на щитке.
  2. Заземление более эффективно с точки зрения защиты человека от удара током.
  3. Заземление основано на быстром и значительном уменьшении напряжения. Тем не менее, какое-то (уже неопасное) напряжение остается.
  4. Зануление заключается в создании соединения между металлическими деталями, в которых отсутствует напряжение. Принцип зануления основан на умышленном создании короткого замыкания при пробое изоляции или попадании тока на нетоковедущие части электроустановок. Как только происходит замыкание, в дело вступает автоматический выключатель, перегорают предохранители или срабатывают иные средства защиты.
  5. Заземление чаще всего используют на линиях с изолированной нейтралью в системах типа IT и TT в трехфазных сетях, где напряжение не превышает тысячи вольт. Заземление применяют при напряжении более тысячи вольт с нейтралью в любом режиме. Зануление используют в глухозаземленных нейтралях.
  6. При занулении все элементы электроприборов, не находящиеся в стандартном режиме под напряжением, соединяются с нулем. Если фаза случайно коснется зануленных элементов, резко увеличивается ток и отключается электрооборудование.
  7. Заземление не зависит от фаз электроприборов. Для организации зануления требуется соблюдение жестких условий подключения.
  8. В современных домах зануление применяется редко. Однако этот способ защиты все еще встречается в многоэтажных домах, где по каким-либо причинам нет возможности организовать надежное заземление. На предприятиях, где имеются повышенные нормативы по электробезопасности, основной способ защиты — зануление.

Обратите внимание! Для правильного определения нулевых точек и выбора способа защиты понадобится помощь квалифицированного электрика. Сделать заземление, собрать элементы контура и установить его в грунт можно и своими руками.

Схема работы

Как было сказано выше, зануление основано на провоцировании короткого замыкания после попадания фазы на металлический корпус электроустановки, соединенной с нулем. Так как сила тока возрастает, подключается защитный механизм, отключающий электропитание.

По нормативам Правил установки электроустановок в случае нарушения целостности линии она должна отключаться автоматически. Регламентируется время на отключение — 0,4 секунды (для сетей 380/220В). Для отключения используются специальные проводники. Например, в случае однофазной проводки задействуется третья жила кабеля.

Для правильного зануления важно, чтобы петля фазы-нуля характеризовалась невысоким сопротивлением. Так обеспечивается срабатывание защиты за нужный промежуток времени.

Организация зануления требует высокой квалификации, поэтому такие работы должны выполнять только квалифицированные электрики.

На схеме ниже показан принцип работы системы:

Область применения

Защитное зануление используют в электроустановках с четырехпроводными электросетями и напряжением до 1 кВт в следующих случаях:

  • в электроустановках с глухозаземленной нейтралью в сетях TN-C-S, TN-C, TN-S с проводниками типов N, PE, PEN;
  • в сетях с постоянным током и заземленной средней точкой источника;
  • в сетях с переменным током и тремя фазами с заземленным нулем (220/127, 660/380, 380/220).

Сети 380/220 допускаются в любых сооружениях, где зануление электроустановок обязательно. Для жилых помещений с сухими полами зануление обустраивать не нужно.

Электрооборудование 220/127 используются в специализированных помещениях, где отмечается повышенный риск поражения током. Такая защита необходима в условиях улицы, где занулению подлежат металлические конструкции, к которым прикасаются работники.

Проверка эффективности зануления

Чтобы проверить, насколько действенно зануление, нужно сделать замер сопротивления петли фаза-ноль в наиболее отдаленной от источника электропитания точке. Это даст возможность проверить защищенность в случае воздействия тока на корпус.

Сопротивление измеряется с использованием специализированной аппаратуры. Измерительные приборы оснащены двумя щупами. Один щуп направляют на фазу, второй — на зануленную электроустановку.

По результатам измерений устанавливают уровень сопротивления на петле фазы и нуля. С полученным результатом рассчитывают ток однофазного замыкания, применяя закон Ома. Расчетное значение тока однофазного замыкания должно быть равно или превышать ток срабатывания защитного оборудования.

Предположим, что для предохранения электроцепи от перегрузок и коротких замыканий подключен автомат-выключатель. Ток срабатывания составляет 100 Ампер. По результатам измерений сопротивление петли фазы и нуля равно 2 Ом, а фазовое напряжение в сети — 220 Вольт. Делаем расчет тока однофазного замыкания на основе закона Ома:

I = U/R = 220 Вольт/2 Ом = 110 Ампер.

Поскольку расчетный ток короткого замыкания превышает ток мгновенного срабатывания автомата-выключателя, делаем вывод об эффективности защитного зануления. В противном случае понадобилась бы замена автомата-выключателя на прибор с меньшим током срабатывания. Другой вариант решения проблемы — сокращение сопротивления петли фаза-ноль.

Нередко при проведении расчетов ток срабатывания автомата умножают на коэффициент надежности (Кн) или коэффициент запаса. Причина в том, что отсечка не всегда равна указанному показателю, то есть возможна определенная погрешность. Поэтому использование коэффициента позволяет получить более надежный результат. Для старого оборудования Кн составляет от 1,25 до 1,4. Для новой техники применяется коэффициент 1,1, так как такие автоматы работают с большей точностью.

Опасность зануления в квартире

Скачки напряжения опасны как для людей, так и для бытовой техники в квартирах. В многоквартирных домах одной из квартир достанется низкое напряжение, а другой — высокое. Если в розетке квартиры случится обрыв нулевого проводника, при следующем включении электроустановки (например, бойлера) человека ударит током.

Особенно зануление опасно в двухпроводной системе. К примеру, при проведении электромонтажных работ электрик может заменить нулевой проводник на фазный. В электрощитах эти жилы далеко не всегда обозначены определенным цветом. Если замена произойдет, электрическое оборудование окажется под напряжением.

По нормативам Правил установки электроустановок на бытовом уровне зануление не разрешается для использования в бытовых целях именно по причине его небезопасности. Зануление эффективно только для защиты больших объектов производственного назначения. Однако, несмотря на запрет, некоторые люди решаются на установку зануления в собственном жилье. Происходит это либо по причине отсутствия иных методов решения проблемы, либо из-за недостаточности знаний по данному предмету.

Зануление в квартире технически осуществимо, но эффективность такой защиты непредсказуема, как и возможные негативные последствия. Далее рассмотрим ряд ситуаций, которые возникают при наличии зануления квартире.

Зануление в розетках

В некоторых случаях защиту электроприборов предлагают выполнить путем перемычки клеммы розеточного рабочего нуля на защитный контакт. Такие действия противоречат пункту 1.7.132 ПУЭ, поскольку предполагают задействование нулевого провода двухпроводной электросети в качестве как рабочего, так и защитного нуля одновременно.

На вводе в жилое помещение чаще всего расположено устройство, предназначенное для коммутации фазы и нуля (двухполюсный прибор или так называемый пакетник). Коммутация нуля, используемого как защитный проводник, не допускается. Иными словами, запрещено использовать в качестве защиты проводник, электроцепь которого включает коммутационный аппарат.

Опасность защиты с применением перемычки в розетке состоит в том, что корпуса электроустановок в случае повреждения нуля (независимо от участка) попадают под фазное напряжение. Если нулевой проводник обрывается, электроприемник перестает функционировать. В этом случае провод кажется обесточенным, что провоцирует на необдуманные действия со всеми вытекающими последствиями.

Обратите внимание! При обрыве нуля источником опасности становится любая техника в квартире или в частном доме.

Перепутаны местами фаза и ноль

При проведении электромонтажных работ в двухпроводном стояке своими руками существует немалая вероятность путаницы между нулем и фазой.

В домах с двухпроводной системой жилы кабелей лишены отличительных признаков. При работе с проводами в этажном щитке электрик может попросту ошибиться, перепутав фазу и ноль местами. В результате корпуса электроустановок попадут под фазное напряжение.

Отгорание нуля

Обрыв нуля (отгорание нуля) часто случается в зданиях с плохой проводкой. Чаще всего проводка в таких домах проектировалась, исходя из 2 киловатт на единицу жилья. На сегодняшний день электропроводка в домах старого типа не только износилась физически, но и не способна удовлетворить возросшее количество бытовой техники.

При обрыве нуля дисбаланс возникает на трансформаторной подстанции, от которой питается многоквартирное здание. Перекос возможен в общем электрическом щите здания или в этажном щитке дома. Следствием этого станет беспорядочное понижение напряжения в одних квартирах и повышение — в других.

Низкое напряжение губительно для некоторых видов электробытовой техники, в том числе кондиционеров, холодильников, вытяжек и прочих аппаратов, оснащенных электрическими двигателями. Высокое напряжение представляет опасность для всех видов электроустановок.

Альтернатива занулению

В подсистеме TN-S зануление защитного проводника PE осуществляется лишь на одном участке — на контуре заземления трансформаторной подстанции или электрогенератора. В этой точке разделяется PEN-проводник, и далее защита и рабочий ноль нигде не встречаются.

В такой схеме энергоснабжения заземление и зануление органично взаимодействуют, создавая условия для высокой электробезопасности. Однако в системах, где нейтраль изолирована (IT, TT), зануление не используется. Электрическое оборудование, работающее в рамках системы TT и IT, заземляется за счет собственных контуров. Так как система IT предполагает подачу питания только специфическим потребителям, рассматривать такой способ организации защиты в жилых домах не имеет смысла. Единственная альтернатива неправильному, а потому опасному занулению шины PE — система TT. Особенно актуальна такая система, потому что переход на технически прогрессивные системы TN-S, TN-C-S технически и финансово затруднен для домов, чей возраст превышает 20 – 25 лет.

Электрическая сеть, построенная по стандарту TT, призвана обеспечивать качественную защиту от попадания под напряжение нетоковедущих частей. Все работы по организации зануления должны осуществляться в соответствии с нормами, указанными в пункте 1.7.39 Правил установки электроустановок.

Выполнение заземления и зануления электроустановок

Обязательным условием безопасного функционирования электроприборов и различного оборудования является качественное заземление и зануление. Такая работа выполняется самостоятельно, что позволяет избежать выхода из строя техники из-за ее перенапряжения и коротких замыканий в сети. Заземление и зануление электроустановок выполняется с учетом особенностей оборудования, что предупредит его преждевременный выход из строя.

Определение понятий

Под заземлением принято понимать использование специальных конструкций, которые соединяют электропроводку дома или отдельные приборы с землёй. Благодаря наличию такой защиты прикосновение к поверхностям, которые находятся под напряжением, не приведет к летальному исходу, а удар тока будет минимальным. Изготавливается защита с электрооборудованием, имеющим изолированную нейтраль. Заземляющие устройства могут выполняться целой группой проводников, соединяющих с землей токопроводящие элементы.

Заземление электрооборудования также увеличивает аварийные токи замыкания, что необходимо в тех случаях, когда имеющаяся защита срабатывает при попадании под напряжение нетоковедущих частей. Это позволяет предупредить выход оборудования из строя при замыканиях, неквалифицированном ремонте и вмешательстве в электросети. Сегодня принято выделять несколько разновидностей заземления:

  • рабочий тип обеспечивает бесперебойную работу электрооборудования в штатном и аварийном режиме;
  • защитный тип обеспечивает безопасность электроустановок, предупреждая пробой на корпус и рабочую поверхность токоведущих проводов;
  • грозозащитный тип отводит молнию от зданий, уводя разряд в землю, предупреждает повреждение электрооборудования и возгорание строений.

Принято также различать искусственно изготовленное и естественное заземление. Первое выполняется для защиты сооружений и электроприборов от повышенного напряжения. Такие устройства состоят из металлического стержня, провода, труб некондиционного типа и стальных уголковых приспособлений. Естественное заземление также изготовлено человеком, однако изначально оно не предназначается для защиты от повышенного напряжения. В качестве него можно рассматривать железобетонные сооружения, трубопроводы, обсадные трубы и т. д.

Зануление также обеспечивает необходимую защиту электрооборудования, предупреждая его выход из строя из-за замыканий и перенапряжения в сети. Такой вид работ отличается от заземления принципом монтажа и назначением. Зануление подразумевает подключение токопроводящих элементов к корпусу электроприбора или металлическим деталям. Для обеспечения безопасности обязательно соединение с нейтралью, которая является источником трехфазного пониженного напряжения.

Основной задачей зануления является защита электрооборудования и рабочего персонала от поражения током за счёт срабатывания автоматического коммутационного оборудования. Принцип работы такой защиты заключается в создании искусственных коротких замыканий при попадании тока на корпус техники или в случаях пробоя изоляции. Возникновение короткого замыкания приводит к срабатыванию:

  • предохранителей;
  • автоматических выключателей;
  • специальной защиты от короткого замыкания.

Заземление отличается от зануления применением специального оборудования, которое использует нейтраль и за счёт коротких замыканий разрывает цепь, предупреждая серьёзное поражение электрическим током. Особенностью зануления является необходимость высокой мощности тока нулевого провода, за счёт которого происходит короткое замыкание. Только в этом случае можно обеспечить стопроцентную вероятность защиты от поражения электричеством при наличии проблем в электроснабжении. Если мощности нулевого провода и токов короткого замыкания недостаточно, это приводит к появлению повышенного напряжения в электрооборудовании.

Выбор технологии

Планируя электрозащиту дома, многие из нас задумываются о выполнении дополнительной защиты электроснабжения. Однако домовладельцы не всегда понимают, в чем разница заземления и зануления. Основными различиями являются:

  • при заземлении избыточный ток отводится в землю, а при выполнении зануления напряжение сбрасывается в щитке на ноль;
  • заземление считается наиболее эффективным способом защиты человека от поражения электротоком.
Сделать заземление проще, чем зануление. В последнем случае потребуется помощь специалиста, который должен рассчитать оптимальные показатели нулевого тока и лишь после этого можно будет обеспечить правильность работы защитного оборудования.

К выполнению заземления чаще всего прибегают владельцы частных домов, а вот обладателям квартир в многоэтажках требуется делать зануление, для чего дополнительно устанавливают УЗО и аналогичные устройства, предупреждающие поражение током и повреждение работающих электроприборов. При правильном устройстве защиты можно полностью исключить опасность поражения электротоком, а различная техника и приборы будут полностью защищены от вероятных скачков напряжения и замыканий в сети.

Для обеспечения качественной защиты при занулении необходимо учитывать фазность приборов и выполнять сложные расчёты. Самостоятельно провести такую работу не представляется возможным. Только опытный электрик правильно спланирует подключение, установит соответствующие защитные приборы и проведет качественное зануление.

Выполненное заземление не будет зависеть от разности приборов, поэтому его проще обустроить самостоятельно, даже не имея каких-либо профессиональных навыков. Сбросить лишнее напряжение в землю намного безопаснее, чем монтировать дополнительные приспособления, которые отводят ток на щиток.

Сегодня в продаже имеются уже готовые комплекты для заземления частного дома. Потребуется только заглубить на несколько метров в землю металлический контур, подключить к нему фазу со щитка, что и позволит обеспечить максимальную безопасность используемых электроприборов. Можно подобрать различные комплекты, которые подходят для дачи или полноразмерного частного дома, отличаются своей конструкцией, способом подключения и максимально возможной нагрузкой.

В последние годы отмечается тенденция, когда полноценное зануление выполняется на производстве и предприятиях, где требуется обеспечить повышенную электробезопасность эксплуатируемым приборам и промышленному оборудованию. Обычные же домовладельцы в целях защиты от поражения током обустраивают простейшее заземление, сделать самостоятельно которое не составит особого труда.

Разновидности защитных систем

Основные требования к заземлению и занулению описаны в ГОСТе, что упрощает выполнение такой работы и стандартизирует используемые устройства. Защитные системы отличаются способом обустройства, принципом работы и используемым дополнительным оборудованием.

Система TN-C была разработана в Германии еще в начале прошлого века. Такая защита предусматривает использование единого кабеля с PE проводником и нулевым проводом. Недостатком этой системы заземления является появление избыточного напряжения при нарушении корпуса оборудования и отгорания нуля. Несмотря на имеющиеся недостатки, TN-C пользуется сегодня популярностью благодаря простоте в реализации.

Системы заземления TN-S и TN-C-S используют два провода, которые отходят от щитка и идут в землю. Контур выполняется в виде сложной металлической конструкции, что полностью исключает вероятность поражения током и выход из строя электроприборов при наличии проблем с электроснабжением. Эта схема получилась чрезвычайно удачной, она пользуется популярностью и обустраивается на дачах и в частных домах.

Заземление по типу TT основывается на соединении контура электроустановки с металлическими элементами, находящимися под землёй. Такая схема не получила сегодня должного распространения из-за сложности в реализации, а также возможных перепадов напряжения в сети.

Разновидность защиты OT подразумевает передачу лишнего напряжения на корпус и в землю с нейтрали, которая изолирована от грунта и подключена к приборам с большим сопротивлением. Такая схема получила распространение при использовании электрического оборудования, которому требуются стабильность и повышенная безопасность.

Популярные способы зануления

Зануление PNG отличается простотой конструкции, что объясняется совмещением защитных и нулевых проводников. К недостаткам этой системы безопасности относятся повышенные требования к взаимодействию проводникового сечения ее потенциалов. PNG широко используется при необходимости зануления асинхронных агрегатов, работающих в трехфазных сетях.

Наибольшую популярность сегодня получили модифицированные системы зануления электроустановок, которые питаются от однофазной сети. В них используется общий совмещенный PEN проводник, соединяющийся с глухозаземленной нейтралью. После такого соединения происходит разделение кабелей PE и N, которые далее подключаются к корпусу или аналогичным приборам защиты. Преимуществом такой технологии зануления является ее универсальность, возможность использования в однофазной и трехфазной сети, а также простота конструкции и полная безопасность.

Заземление и зануление электроустановок позволяет защитить технику от скачков напряжения и коротких замыканий. Зануление подразумевает использование специального оборудования, позволяющего перенаправить лишнее напряжение на щиток. Такая защита используется преимущественно на промышленных предприятиях и объектах, где требуется повышенная безопасность работы оборудования. Владельцы частных домов могут самостоятельно выполнить заземление, что позволит им защитить себя и используемые электроприборы от замыканий и перепадов в сети.

Заземление и зануление электроустановок, разновидности (TN-C,TN-S,TN-C-S,TT,TI), достоинства и недостатки

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

Отличия зануления от заземления, их схемы и область применения

Чем отличается заземление от зануления? Специалисты разобрались с этим вопросом. Все это — защитные меры от пиковых токов. Предусматривают работу по недопущению поражения электричеством человека и бытовых приборов. Названия разные, но все это — системы защиты.

Чтобы понять, в чем разница между заземлением и занулением, нужно знать назначение и принцип работы электрических устройств.

Принцип действия

Заземляющий контур электрической цепи – система проводов, соединяющая каждого потребителя, в обслуживаемой цепи, со специальным заземляющим контуром здания. При пробое на корпус прибора или утечке тока с поврежденной проводки, ток проходит по проводам к заземлителю.

Сопротивление заземления, как правило, выполняется меньше, чем сопротивление всей цепи. Поэтому ток течет по «легкому» пути и отводится с корпусов оборудования.

Занулением называется выполнение электрического соединения токопроводящих корпусов приборов с глухозаземленной нейтралью. При возникновении пиковых значений тока, его потенциал отводится, с помощью шины зануления, в специальную щитовую или на трансформаторную будку.

Главное его назначение – в случаях пробоев и утечек напряжения на корпус оборудования, вызывается короткое замыкание, сгорают предохранители или срабатывают автоматические размыкатели цепи.

Это и есть главное отличие заземления от зануления. Заземляющий контур принимает на себя токи КЗ, зануление вызывает срабатывание предохранительных устройств.

Разберем подробнее работу систем защиты от воздействия электрического тока.

Особенности заземляющего устройства

Основной целью заземляющего контура является понижение потенциала при пробое на корпус и коротком замыкании, до безопасного значения.

При этом, на корпусе оборудования понижается напряжение и сила тока, до безопасного уровня. На производстве заземляют корпуса электрооборудования, зданий и помещений от воздействия атмосферных токов.

При монтаже контура, в сети трехфазного тока не более 1000 В, применяют изолированную нейтраль. При больших уровнях напряжения сети, монтируется система с разными режимами нейтрали.

Контур заземления – это целая система, включающая в себя:

  • заземлитель;
  • заземляющие горизонтальные проводники;
  • подводящие провода.

Заземлитель подразделяют на искусственный и естественный.

При возможности следует использовать естественный заземлитель:

  • подземные трубопроводы водоснабжения. Но в этом случае, необходимо оборудовать трубопровод защитой от блуждающих токов;
  • подключаются на металлоконструкции цехов и помещений;
  • стальная или медная оплетка кабеля;
  • трубопроводы в скважине.

По нормам ПУЭ запрещено подключать заземляющий контур на трубы отопления и с пожароопасными материалами.

При искусственном оснащении, заземляемое оборудование предохраняется путем изготовления контура в виде равностороннего треугольника из металлических штырей или уголков.

Для щелочной и кислой почвы, рекомендуется использовать медный, оцинкованный заземлитель. Для изготовления контура в виде треугольника, необходимо углубиться в землю на 70 см.

Нельзя устанавливать групповые заземлители в пробуренные отверстия. Их необходимо забить в месте разметки, на глубину, не менее 2-х метров. Затем, соединяют заземлители в единую конструкцию с помощью отрезков стальной полосы.

Корпуса каждого прибора должны обязательно подключаться к системе защиты. При этом, нельзя подключать несколько потребителей последовательно, каждое устройство обязано обустраиваться линией подключения.

Теперь о главном – значение уровня сопротивления контура. В него суммируется сопротивления каждого прибора цепи и его проводов.

При расчете сопротивления контура, следует учитывать уровень значения грунта, размеры и глубину забивания заземлителей. Необходимо учитывать температурные особенности региона обустройства контура.

Помните – при жаркой погоде, место установки следует заливать водой, почва при высыхании меняет уровень сопротивления.

При обслуживании сетей до 1000. В и мощности оборудования свыше 100 кВА – сопротивление контура не более 10 Ом. В бытовых сетях оптимальным значением будет 4 Ома. Напряжение при прикосновении должно быть меньше 40 В. Сети свыше 1000 В защищаются устройством с сопротивлением не более 1 Ома.

Это некоторые особенности и принцип действия заземления. Более подробно, вы можете ознакомиться в статьях по этой теме на сайте.

Особенности и принцип действия зануления

Назначение зануления — метод защитного устройства позволяет провести подключение корпусов оборудования и других деталей из металлов с нейтралью (нулевой защитный проводник). В условиях с заземленным защитным проводником и напряжением в сети не более 1000 В, используется схема зануления.

При пробое фазного тока на корпусе электроприборов и оборудовании происходит КЗ фазы. При этом, срабатывают автоматы защитного отключения тока и цепь размыкается. Этим и отличаются две защитные системы.

К приборам зануления относят:

  • плавкий предохранитель;
  • автомат отключения тока;
  • встроенные в пускатели, тепловые реле;
  • контактор с тепловой защитой.

Возникла ситуация пробоя фазного напряжения. При этом от корпуса электроустановки ток проходит по нейтрали на обмотку трансформатора. Затем, от него по фазе — на предохранитель. Плавкие предохранители сгорают от пиковых значений тока, в электрическую цепь прекращается подача напряжения.

При этом, ноль беспрепятственно проводит ток, позволяя сработать защите. Его прокладывают в безопасном месте, запрещается оснащать его дополнительными выключателями и другими устройствами.

Значение уровня проводимости провода фазы должно быть наполовину больше нулевого проводника. Как правило, в этом случае используют стальные пластины, оболочки кабеля и другие материалы.

Зануляющие проводники проверяют на исправность при сдаче работ по подключению и проводке электроэнергии в здании, а также, через определенное количество времени, при пользовании электрической схемой.

Не менее одного раза в период 5 — летнего срока, производятся замеры значений сопротивления всей цепи фазного и нулевого проводника на корпусах самого дальнего оборудования от щита электропроводки, а также самого мощного оборудования в помещении.

Защитное зануление, в некоторых случаях, может выполнять работу защитного отключения. При этом, отличаются эти 2-е защитных системы тем, что в случае защитного отключения цепи, его можно использовать в любых условиях, при различных режимах заземляющего проводника, показателей напряжения цепи. В таких сетях можно обойтись и без провода нулевого подключения.

Расчет зануления необходимо производить с учетом всех условий работы и принципа его действия.

Защитное отключение выполняют с использованием защитной системы, которая отключает электрооборудование автоматически. При возникновении аварийных ситуаций и угроз поражения и нанесения электротравм человеку, к таким ситуациям можно отнести:

  • короткое замыкание фазного провода на корпус;
  • повреждение изоляции электрической проводки;
  • неисправности на заземляющем контуре;
  • нарушения целостности зануляющих проводников.

Эта защитная система нередко используется при невозможности провести защитные системы заземления и зануления. Но на ответственных участках, возможна установка защитного отключения и как дополнительный контур защиты человека и оборудования от поражения токами утечки и короткого замыкания.

При этом, их подразделяют, в зависимости от величины тока на входе и изменений реакции защитных устройств, на несколько схем:

  • наличия напряжения на корпусе оборудования;
  • силу тока при замыкании на провод земли;
  • напряжения или силу тока в нулевом проводнике;
  • уровня напряжения на фазе относительно значения на проводе земли;
  • устройства для постоянного или переменного тока;
  • устройства комбинированные.

Все системы защиты и отключения подачи тока в сеть оснащаются автоматическими выключателями. В их конструкции предусмотрена установка специального оборудования защитного отключения. При этом, период времени для отключения сети не должен превышать 2-е десятые секунды.

В заключение разберем вопрос, который может задать начинающий электрик.

Взаимозаменяемость защитных систем

Можно ли установить зануление вместо заземления? На этот вопрос любой специалист ответит «да», но только в промышленном здании.

В жилом помещении применять такую схему защиты следует в очень редких случаях, и только в нежилых помещениях. Это обусловлено, в первую очередь, с неравномерной нагрузкой на провод фазы и нейтрали.

При работе, на провода каждой фазы поступает одинаковая нагрузка, но по нейтрали общей цепи проходит достаточно малый ток. Каждому известно, что нельзя касаться фазы, но можно выполнять работу с нолем под нагрузкой.

При этом, сечение нулевого провода меньше провода фазы. При долгом использовании он окисляется на скрутках, нарушается слой изоляции при нагреве, в худшем случае он просто отгорит. При этом, напряжение фазы подходит к щитовой, затем, через провод ноля идет к потребителю. Корпуса приборов находятся под напряжением, повышается возможность поражения человека током.

Как советуют некоторые умельцы в Интернете, можно подвести к каждому бытовому прибору провода системы зануления, но это повлечет за собой значительные траты на проводку и последующий ремонт. Поэтому занулять источники в жилых помещениях нельзя.

Лучше в электрощите установить устройство защитного отключения и спокойно пользоваться бытовыми приборами. Каждое защитное устройство выполняет свое предназначение, при правильном расчете, монтаже и его использовании.

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Основы подключения и заземления трансформаторов

Предоставлено www.MikeHolt.com.

Эта статья является пятой в серии из 12 статей о различиях между заземлением и заземлением.

Давайте начнем обсуждение, сосредоточив внимание на требованиях к объединению услуг.

Металлические части кабельных каналов и / или кожухов, содержащие рабочие провода, должны быть соединены вместе [разд. 250.92 (А)]. Используйте соединительные перемычки вокруг переходных шайб и кольцевых заглушек для сервисных дорожек качения (, рис.1 ). Вы можете использовать стандартные контргайки для механических соединений с дорожками качения, но вы не можете использовать их в качестве средств соединения [разд. 250.92 (B)].

Рис. 1. Следуйте этим требованиям, чтобы правильно закрепить оборудование на месте обслуживания.

Обеспечьте сервисное соединение одним из этих методов [разд. 250.92 (B)]:

(1) Прикрепите металлические части к рабочему нейтральному проводу. Для соединения корпуса рабочего выключателя с нулевым проводом обслуживания требуется основная перемычка [разд.250.24 (B) и п. 250,28]. В корпусе сервисного разъединителя рабочий нейтральный проводник обеспечивает эффективный путь тока замыкания на землю к источнику питания [гл. 250,24 (C)]; следовательно, вам не нужно устанавливать перемычку на стороне питания в ПВХ-кабелепровод, содержащий входные провода для обслуживания [разд. 250.142 (A) (1) и п. 352.60, исключение № 2].

(2) Присоедините металлические дорожки качения к резьбовым муфтам или ступицам с указанной резьбой.

(3) Соедините металлические дорожки качения с фитингами без резьбы.

(4) Используйте перечисленные устройства, такие как контргайки соединительного типа, втулки, клинья или втулки с соединительными перемычками к рабочему нейтральному проводнику. Перечисленный соединительный клин или проходной изолятор с соединительной перемычкой к рабочему нейтральному проводнику требуется, когда металлическая дорожка качения, содержащая служебные проводники, заканчивается кольцевым выбиванием.

Перемычка на стороне питания того типа провода, который используется для этой цели, должна иметь размер в соответствии с таблицей 250.102 (C) (1), основанный на размере / площади проводников рабочей фазы внутри кабельного канала [разд.250.102 (C)]. Контргайка соединительного типа, соединительный клин или соединительная втулка с соединительной перемычкой могут использоваться для металлической дорожки качения, которая заканчивается к корпусу без кольцевой выбивки.

Крепежная контргайка отличается от стандартной контргайки тем, что она содержит крепежный винт с острым концом, который входит в металлический корпус, обеспечивая надежное соединение. Присоединение одного конца служебного кабельного канала к служебной нейтрали обеспечивает необходимый путь тока короткого замыкания с низким сопротивлением к источнику.

Соединительные системы связи

Для систем связи должно быть предусмотрено оконечное устройство соединения [Art. 805], радио и телеаппаратура [ст. 810], CATV [ст. 820] и подобные системы [разд. 250.94]. Вы соединяете эти разные системы вместе, чтобы минимизировать разницу напряжений между ними.

Оконечное устройство для межсистемного соединения должно отвечать всем следующим требованиям [разд. 250.94 (A)]:

(1) Будьте доступными.

(2) Иметь емкость не менее трех проводов межсистемного заземления.

(3) Устанавливается так, чтобы не мешать открытию какого-либо корпуса.

(4) Быть надежно закрепленным и электрически подключенным к сервисному разъединителю, корпусу счетчика или проводнику заземляющего электрода (GEC).

(5) Надежно смонтировать и электрически подсоединить к разъединителю здания или GEC.

(6) Указывается как заземляющее и соединительное оборудование.

Исключение: оконечное устройство межсистемного соединения не требуется, если системы связи вряд ли будут использоваться.

«Межсистемное заземляющее соединение» - это устройство, которое обеспечивает средства для подключения соединительных проводов систем связи (витой провод, антенны и коаксиальный кабель) к системе заземляющих электродов здания [ст. 100] ( Фиг. 2 ).

Рис. 2. Оконечное устройство для межсистемного соединения должно соответствовать всем требованиям гл. 250,94 (А).

Склеивание металлических частей

Металлические части, предназначенные для использования в качестве заземляющих проводов оборудования (EGC), должны быть соединены вместе, чтобы гарантировать, что они могут безопасно проводить любой ток короткого замыкания, который может быть на них наложен [разд.110.10, п. 250.4 (A) (5), п. 250.96 (A) и Таблица 250.122 Примечание].

Непроводящие покрытия (например, краска) необходимо удалить, чтобы обеспечить эффективный путь тока замыкания на землю, или концевые фитинги должны быть спроектированы таким образом, чтобы в удалении не было необходимости [разд. 250,12].

Соединение цепей 277 В и 480 В

Металлические кабельные каналы или кабели, содержащие цепи 277 В или 480 В, заканчивающиеся кольцевыми заглушками, должны быть прикреплены к металлическому корпусу с помощью перемычки, размер которой соответствует размеру сек. 250.122 [Разд. 250.102 (D)].

Там, где не встречаются выбивки увеличенного размера, концентрические или эксцентричные, или если коробка или корпус с концентрическими или эксцентричными отверстиями указаны в списке для обеспечения надежного соединения, соединительная перемычка не требуется. Но вы должны использовать один из методов, перечисленных в Исключении из Разд. 250,97. Например, используйте две контргайки на жестком металлическом трубопроводе или промежуточном металлическом трубопроводе - один внутри, а другой снаружи ящиков и шкафов.

Перемычки для подключения оборудования должны закрываться любым из восьми способов, перечисленных в разд.250,8 [Разд. 250.102 (B)]. К ним относятся перечисленные соединители давления, клеммные колодки и экзотермическая сварка.

Размер перемычки на стороне питания

Размер перемычки на стороне питания должен соответствовать Таблице 250.102 (C) (1), в зависимости от размера / площади фазного проводника внутри кабелепровода или кабеля [разд. 250.102 (C) (1)].

Если фазные провода питания соединены параллельно в двух или более кабельных каналах или кабелях, установите размер перемычки заземления на стороне питания для каждого из них по Таблице 250.102 (C) (1), исходя из размера / площади фазных проводов в каждой кабельной канавке или кабель [Сек.250.102 (C) (2)].

Размер одной перемычки на стороне питания, устанавливаемой для соединения двух или более дорожек качения или кабелей, должен соответствовать Таблице 250.102 (C) (1), Примечание 3, исходя из эквивалентной площади фазных проводов на стороне питания [разд. 250.102 (C) (2)].

Давайте рассмотрим пример, который поможет прояснить эти требования.

Вопрос : Какой размер перемычки на стороне питания требуется для трех металлических кабельных каналов, каждая из которых содержит служебные проводники 400 тыс. Км мил?

Ответ : Согласно п.250.102 (C) (2) и Таблица 250.102 (C) (1), вам понадобится соединительная перемычка 1/0 AWG на стороне питания для каждой дорожки качения. Для нескольких кабельных каналов допускается использование одной перемычки на стороне питания в зависимости от эквивалентной площади фазных проводов на стороне питания.

Размер соединительной перемычки на стороне нагрузки

Размер соединительной перемычки на стороне нагрузки устройств максимального тока фидера и ответвительной цепи в сек. 250.122 [Разд. 250.102 (D)].

Давайте рассмотрим еще один пример, который поможет прояснить эти требования.

Вопрос : Перемычка заземления оборудования какого размера требуется для каждого металлического кабельного канала, где проводники цепи защищены устройством защиты от перегрузки по току (OCPD) на 1200 А?

Ответ : Если вы используете одну соединительную перемычку для соединения двух или более металлических дорожек качения, измеряйте ее размер в секунду. 250.122, исходя из рейтинга самой большой цепи OCPD. В этом случае быстрая проверка таблицы 250.122 показывает нам, что требуется соединительная перемычка оборудования 3/0 AWG ( рис.3 ).

Рис. 3. Подбирайте перемычку для подключения оборудования в соответствии с номиналом самого мощного устройства защиты от тока перегрузки в цепи.

Соединение систем трубопроводов и обнаженного конструкционного металла

Металлический водопроводный трубопровод с непрерывным электрическим током должен быть соединен с одним из следующих [разд. 250.104 (A) (1)]:

(1) Корпус сервисного выключателя

(2) Рабочий нулевой провод

(3) GEC, если достаточное сечение

(4) Один из заземляющих электродов заземления электродная система, если GEC или соединительная перемычка к электроду имеют достаточный размер

Соединительная перемычка системы металлических трубопроводов должна быть медной, если в пределах 18 дюймов.поверхности земли [гл. 250.64 (A)] и надлежащим образом защищены в случае физического повреждения [разд. 250,64 (В)].

Дорожка качения из черного металла, содержащая GEC, должна быть электрически непрерывной путем соединения каждого конца дорожки качения с GEC [разд. 250.64 (E)]. Точки крепления должны быть доступны.

Размер перемычек для перемычки металлических водопроводных трубопроводов указан в Таблице 250.102 (C) (1) в зависимости от размера / площади проводников рабочей фазы. Они не должны быть крупнее меди 3/0, алюминия или алюминия с медным покрытием или 250 тыс. Куб. См, за исключением случаев, предусмотренных в разд.250.104 (А) (2) и (А) (3).

Склеивание не требуется для изолированных участков металлического водяного трубопровода, подключенного к неметаллической системе водяного трубопровода. Фактически, эти изолированные участки металлических трубопроводов не следует соединять, поскольку они могут стать причиной поражения электрическим током при определенных условиях.

Когда электрически непрерывная металлическая водопроводная система в отдельном помещении металлически изолирована от других людей в здании, металлическая водопроводная система для этого человека может быть подключена к клемме заземления оборудования распределительного устройства, распределительного щита или щита.Выберите размер перемычки в зависимости от номинального значения OCPD цепи в секунду. 250.102 (D) [Разд. 250.104 (А) (2)].

Металлическая водопроводная система здания, снабженная фидером, должна быть подключена к одному из следующих компонентов:

(1) Клемма заземления оборудования в корпусе отключения здания.

(2) Заземляющий провод фидерного оборудования.

(3) Один из заземляющих электродов в системе заземляющих электродов, если заземляющий электрод или соединительная перемычка к электроду имеют достаточный размер.

Размер перемычки соединения в сек. 250.102 (D), но он не обязательно должен быть больше, чем самый большой провод фазы фидера или ответвительной цепи, питающей здание.

Другие системы металлических трубопроводов в здании или прикрепленные к нему должны быть соединены [разд. 250.104 (B)]. Трубопровод считается соединенным, если он подключен к устройству, подключенному к заземляющему проводу оборудования цепи.

Информационное примечание 1. Склеивание всех металлических трубопроводов и металлических воздуховодов обеспечит дополнительную безопасность.

Информационное примечание 2: Дополнительную информацию можно найти в NFPA 54, , Национальном коде топливного газа и NFPA 780, стандарте для установки систем молниезащиты .

Открытый конструкционный металл, который соединен между собой в металлический каркас здания, должен быть прикреплен к одному из следующих [разд. 250.104 (C)]:

(1) Корпус отключения для обслуживания.

(2) Нейтраль в сервисном разъединителе.

(3) Корпус разъединителя здания для питаемых от фидера.

(4) GEC достаточного размера.

(5) Один из заземляющих электродов системы заземляющих электродов, если GEC или соединительная перемычка к электроду имеют достаточный размер.

Комментарий автора : Это требование не распространяется на металлические элементы каркаса (например, металлические стойки) или металлическую обшивку здания.

Металлические водопроводные системы и конструкционные металлические конструкции, соединенные между собой для образования каркаса здания, должны быть соединены с вторичной обмоткой трансформатора за сек.250.104 (D) (1) - (D) (3). Например, открытый конструкционный металл, используемый таким образом в области, обслуживаемой трансформатором, должен быть соединен с нейтральным проводником вторичной обмотки, где GEC подключается к трансформатору [разд. 250.104 (D) (2)].

Исключение № 1: соединение с трансформатором не требуется, если металлический каркас конструкции служит заземляющим электродом [разд. 250,52 (A) (2)] для трансформатора.

Не виноват

Учитывая все детали, при соединении для тока короткого замыкания вероятно упущение или недосмотр.Это могло привести к трагическим последствиям.

Попробуйте этот метод проверки. На монтажном чертеже отметьте все точки, в которых перемычка должна обеспечивать обратный путь к источнику повреждения. Затем пройдите по установке с этим рисунком и отметьте то, что отсутствует.

Эти материалы предоставлены нам компанией Mike Holt Enterprises из Лисберга, штат Флорида. Чтобы просмотреть учебные материалы по Кодексу, предлагаемые этой компанией, посетите сайт www.mikeholt.com/code.

Заземление и соединение электрических систем Справка

Используйте поиск, чтобы быстро найти ответы на вопросы - откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материале курса

Назначение.

Целью этого курса является ознакомление инженеров с проблемами заземления и соединения электрических систем, связанными с глухозаземленными системами под напряжением 600 В. Этот курс может служить введением в заземление и подключение для инженеров, не имеющих или почти не имеющих опыта профессионального проектирования электрооборудования. В курсе также представлена ​​практическая, но не совсем известная информация по применению заземления и соединения, которая будет полезна даже самому опытному профессионалу в области проектирования электротехники.

Зачем тратить время на изучение заземления и подключения?

 Многие специалисты в области электротехники придерживаются популярного и ошибочного убеждения, что заземление металлического объекта (путем прямого подключения к земле)
поможет снять опасное напряжение, вызванное замыканием линии на землю.Заземление объекта никак не снимает опасное напряжение или снижает напряжение прикосновения или шагового напряжения, которые являются причиной нескольких смертей каждый год.

 Неправильное заземление и подключение - частая причина несчастных случаев с электрическим током.

 Эффективное заземление играет важную роль в правильной работе чувствительного электронного оборудования.

 «Более 80% всех отказов электронных систем, которые связаны с аномалиями питания, на самом деле являются результатом ошибок электропроводки или заземления или вызваны другими нагрузками на предприятии заказчика.”EPRI (Исследовательский институт электроэнергетики)

“ Из всех проблем с питанием и заземлением, влияющих на электронное оборудование, почти 90% вызваны электропитанием и условиями заземления внутри объекта, в котором используется оборудование… Что еще более важно, почти 75% Проблемы с качеством электроэнергии внутри объекта связаны с заземлением, что делает его единственным наиболее важным фактором с точки зрения объекта для обеспечения надежной работы оборудования ». Уоррен Льюис, ECM Magazine

 Издание 2005 г. Национального электротехнического кодекса (NEC) включало полный пересмотр и переименование статьи 250 (ранее называвшейся «Заземление»), которая, по словам редакторов Справочника NEC, « одно из самых значительных изменений, произошедших в новейшей истории Кодекса ».

Основа и ресурсы.

Следующие ресурсы служат в качестве первичной основы информации, представленной в этом курсе
, и на них будут ссылаться в материалах курса:

 Статья 250 Национального электрического кодекса (NEC) - издание 2005 г.

 Стандарт IEEE 1100-1999 рекомендуется Практика питания и заземления чувствительного электронного оборудования

 Стандарт IEEE 142-1982 Заземление промышленных и коммерческих систем питания

 Общие сведения о тестировании сопротивления заземления AEMC (рабочая тетрадь, издание 6.0)

Для многих инженеров, подрядчиков и техников Национальный электротехнический кодекс и его статья 250 (Заземление и соединение) являются единственной основой при проектировании и установке системы заземления.

Перед тем, как начать курс, жизненно важно, чтобы мы рассмотрели цель и ограничения Национального электрического кодекса (NEC) - чтобы понять, как следует применять NEC.

Статья 90.1 Национального электротехнического кодекса устанавливает его цель и намеренные ограничения:

90.1 Цель

(A) Практическая защита - Целью настоящего Кодекса является практическая защита людей и имущества от опасностей, возникающих в результате использования электричества.

(B) Соответствие - этот Кодекс содержит положения, которые считаются необходимыми для обеспечения безопасности. Их соблюдение и надлежащее обслуживание приводят к установке, которая по существу не опасна, но не обязательно эффективна, удобна или адекватна для хорошего обслуживания или будущего расширения использования электричества.

(C) Намерение - Этот Кодекс не предназначен в качестве проектной спецификации или руководства по эксплуатации для неподготовленных людей!

Согласно NEC - инженеры, проектирующие и определяющие заземление и подключение, не должны использовать Национальный электрический кодекс (NEC) в качестве поваренной книги.

NEC не заменяет понимание теории, лежащей в основе требований кодекса.

Чтобы понять заземление и связывание, важно знать значения слов, которые мы будем использовать. В статье 110 Национального электротехнического кодекса содержатся определения слов, которые мы будем использовать в этом курсе. Они перечислены в порядке важности, не обязательно в алфавитном порядке.

Приложение 1 Различные компоненты заземления и соединения.

Заземленный проводник. Система или проводник цепи, который намеренно заземлен. Его также обычно называют нейтральным проводом в заземленной звездообразной системе.

Заземляющий провод. Проводник, используемый для соединения оборудования или заземленной цепи системы электропроводки с заземляющим электродом или электродами.

Заземляющий провод, оборудование. Проводник, используемый для подключения нетоковедущих металлических частей оборудования, кабельных каналов и других кожухов к заземленному проводнику системы, проводнику заземляющего электрода или к тому и другому на сервисном оборудовании или в источнике отдельно созданной системы.Статья 250.118 NEC описывает различные типы заземляющих проводов оборудования. Правильный выбор заземляющих проводов оборудования приведен в 250.122 и таблице 250.122.

Электрод заземления. Устройство, обеспечивающее электрическое соединение с землей.

Провод заземляющего электрода. Проводник, используемый для подключения заземляющего электрода (ов) к заземляющему проводу оборудования, к заземленному проводу или к обоим при обслуживании, в каждом здании или сооружении, где питание подается от фидера (ов) или ответвительной цепи (ов). , или в источнике отдельно производной системы.

Склеивание (скрепленное). Постоянное соединение металлических частей для образования электропроводящего пути, обеспечивающего непрерывность электрического тока и способность безопасно проводить любой ток, который может возникнуть.

Назначение соединения - установить эффективный путь для тока короткого замыкания, который, в свою очередь, облегчает работу устройства защиты от сверхтока. Это объясняется в статьях 250.4 (A) (3) и (4) и 250.4 (B) (3) и (4) Национального электротехнического кодекса. Конкретные требования к соединению содержатся в Части V Статьи 250 и в других разделах Кодекса, как указано в Статье 250 NEC.3.

Соединительная перемычка. Надежный проводник, обеспечивающий необходимую электрическую проводимость между металлическими частями, которые необходимо электрически соединить.

Заглушки концентрического и эксцентрического типа могут ухудшить электрическую проводимость между металлическими частями и фактически вызвать ненужный импеданс в цепи заземления. Установка перемычки (перемычек) - это один из часто используемых методов между металлическими дорожками качения и металлическими частями для обеспечения электропроводности. Связывающие перемычки можно найти в сервисном оборудовании [NEC 250.92 (B)], подключение более 250 В (NEC 250.97) и расширительные фитинги в металлических дорожках качения (NEC 250.98). На рис. 2 показана разница между выбивками концентрического и эксцентрического типов. На Таблице 2 также показан один из методов установки соединительных перемычек при этих типах заглушек.

Приложение 2 Соединительные перемычки устанавливаются вокруг концентрических или эксцентрических выбивных участков.

Соединительная перемычка, оборудование. Соединение между двумя или более участками заземляющего провода оборудования.

Соединительная перемычка, основная. Соединение между заземленным проводом цепи и заземляющим проводом оборудования при обслуживании.

На рисунке 3 показана основная перемычка, используемая для обеспечения соединения между заземленным служебным проводом и заземляющим проводом оборудования на рабочем месте. Связывающие перемычки могут располагаться по всей электрической системе, но основная соединительная перемычка находится только в служебных помещениях. Основные требования к перемычкам подключения приведены в NEC 250.28.

Приложение 3. Основная перемычка, устанавливаемая на рабочем месте, между заземленным проводником и заземляющим проводом оборудования.

Соединительная перемычка, System. Соединение между проводником заземленной цепи и проводом заземления оборудования в отдельно выделенной системе.

На рисунке 4. показана перемычка заземления системы, используемая для обеспечения соединения между заземленным проводником и заземляющим проводом (проводами) оборудования трансформатора, используемого как отдельно производная система.

Приложение 4. Перемычка заземления системы, устанавливаемая рядом с источником отдельно выделенной системы между заземленным проводником системы и заземляющим проводом (ами) оборудования.

Перемычки соединения системы расположены рядом с источником отдельно производной системы. В производной системе используется соединительная перемычка, если производная система содержит заземленный провод. Подобно основной перемычке заземления на сервисном оборудовании, перемычка заземления системы обеспечивает необходимое соединение между заземляющими проводниками оборудования и заземленным проводником системы, чтобы создать эффективный путь для тока замыкания на землю. Требования к перемычкам для подключения системы находятся в NEC 250.30 (А) (1).

Заземлен. Подключен к земле или к какому-либо проводящему телу, которое служит вместо земли.

Эффективно заземлено. Преднамеренно подключено к земле через заземляющее соединение или соединения с достаточно низким импедансом и достаточной допустимой нагрузкой по току для предотвращения повышения напряжения, которое может привести к чрезмерной опасности для подключенного оборудования или людей.

Без заземления. Подключен к земле без установки резистора или устройства импеданса.

 Распространенное заблуждение состоит в том, что заземление и соединение - это одно и то же. Хотя они связаны, это не одно и то же. Цель этого курса - прояснить каждую тему.

 В Национальном электротехническом кодексе 2005 г. это признается и изменено название статьи 250 (которая раньше называлась «Заземление») на «Заземление и соединение», чтобы подчеркнуть, что заземление и соединение - это две отдельные концепции, но не исключающие друг друга, и фактически, напрямую связаны между собой требованиями статьи 250.

 Соединение - это соединение двух или более проводящих объектов друг с другом с помощью проводника, такого как провод.

 Заземление, также называемое «заземлением», представляет собой особую форму соединения, при которой один или несколько проводящих объектов соединяются с землей с помощью проводника, такого как провод или стержень.

 Правильное заземление объектов (проводников) в поле обычно включает как связи между объектами, так и особую связь с землей (землей).

Заземление для целей этого курса означает намеренное соединение с землей или другим проводящим телом относительно большой протяженности, которое служит вместо земли.Другое слово для обозначения заземления - «заземление». Если мы будем помнить об этом и использовать термин «заземление» всякий раз, когда мы используем термин «заземление», это поможет нам понять, что такое заземление (или заземление), а что нет.

Соединение - это соединение проводящих частей между собой с целью поддержания общего электрического потенциала и обеспечения электрического проводящего пути, который будет гарантировать непрерывность электрической цепи и способность безопасно проводить любой ток, который может возникнуть. IEEE Std. 1100–1999.

В соответствии со статьей 250.4 (A) Национального электротехнического кодекса, ниже приведены общие требования к заземлению и соединению заземленных систем. В системе с заземлением вторичные обмотки питающего трансформатора могут иметь конфигурацию «звезда» с заземленной общей ветвью или конфигурация «треугольник» с заземленным центральным отводом или заземленным углом.

Следующие общие требования определяют, какие заземления и соединения электрических систем необходимо выполнить. Для соответствия эксплуатационным требованиям этого раздела необходимо следовать предписывающим методам, содержащимся в Статье 250.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время нормальной работы. операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

(3) Соединение электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть соединены вместе и с источником электропитания таким образом, чтобы установить эффективный ток замыкания на землю. дорожка.

(4) Соединение электропроводящих материалов и другого оборудования Электропроводящие материалы, которые могут оказаться под напряжением, должны быть
соединены вместе и с источником электропитания таким образом, чтобы создать эффективный путь тока замыкания на землю.

(5) Эффективный путь тока замыкания на землю Электрооборудование, проводка и другие электропроводящие материалы, которые могут оказаться под напряжением, должны быть установлены таким образом, чтобы создать постоянную цепь с низким сопротивлением, облегчающую работу устройства максимального тока или детектора заземления для системы с высокоомным заземлением. Он должен быть способен безопасно пропускать максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю источника электропитания.Заземление не должно рассматриваться как эффективный путь тока замыкания на землю.

Давайте рассмотрим с предыдущей страницы общие требования, представленные в Национальном электрическом кодексе для заземления и соединения, чтобы лучше понять, какие требования выполняются посредством заземления (заземления), а какие - посредством методов соединения.

 Требования (1) и (2) относятся к заземлению - они конкретно относятся к «заземлению».

 Требование (1) - заземление системы или преднамеренное соединение системного проводника в заземленной системе с землей.Заявленная цель этого преднамеренного подключения к земле состоит в том, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и это стабилизирует напряжение относительно земли во время нормальной работы.

 Требование (2) выполняется путем присоединения нетоковедущих металлических предметов к заземляющему проводу оборудования, который присоединен к проводнику заземляющего электрода на служебном входе и на стороне нагрузки каждой отдельно выведенной системы.

 Требования (3), (4) и (5) являются связующими. Путем соединения всех металлических предметов, которые могут оказаться под напряжением в случае неисправности (и путем обеспечения заземляющего проводника оборудования, соединенного с этими предметами и с источником), обеспечивается эффективный путь заземления, облегчающий работу устройств защиты от перегрузки по току. Проще говоря, путь тока короткого замыкания должен иметь достаточно низкое сопротивление, чтобы пропускать ток короткого замыкания достаточно высокой величины, чтобы вызвать срабатывание защитного устройства на входе.Связывание также помогает обеспечить безопасность персонала, так что кто-то, прикоснувшись к двум частям оборудования одновременно, не получит шока, став путем выравнивания, если они окажутся под разными потенциалами. По той же причине, по которой соединение защищает людей, оно защищает оборудование, уменьшая ток по проводам питания и данных между частями оборудования с разными потенциалами.

Важно понимать разницу между соединением и заземлением (заземлением). Имейте в виду, что земля (грунт) является плохим проводником, и на нее нельзя полагаться как на часть пути возврата тока замыкания на землю - это путь, предназначенный для устранения замыкания.Причина, по которой никогда нельзя полагаться на землю / почву как часть обратного пути замыкания на землю, связана с ее высоким сопротивлением.

Сопротивление земли примерно в один миллиард раз больше, чем у меди (согласно стандарту IEEE 142, раздел 2.2.8), и обеспечивает возврат к источнику только нескольких ампер (1-10).

Стандарт 142 Института инженеров по электротехнике и радиоэлектронике гласит: «Самая сложная система заземления, которую можно спроектировать, может оказаться неадекватной, если соединение системы с землей не является адекватным и имеет низкое сопротивление.Отсюда следует, что заземление является одной из наиболее важных частей всей системы заземления. Это также самая сложная часть для проектирования и получения ... Для небольших подстанций и промышленных предприятий в целом должно быть получено сопротивление менее 5 Ом, если это практически возможно ».

Однако с практической точки зрения на заземляющий электрод, независимо от его сопротивления, нельзя полагаться на устранение замыкания на землю. Если оборудование эффективно заземлено и соединено, то должен быть предусмотрен путь с низким сопротивлением (не через заземляющий электрод к земле и через землю обратно к источнику), чтобы облегчить работу устройств максимального тока в цепи.В то время как минимальное практическое сопротивление заземляющего электрода желательно и будет лучше ограничивать потенциал рамы оборудования над землей, более важно обеспечить путь с низким импедансом для быстрого устранения повреждения в целях обеспечения безопасности. Чтобы получить наименьшее практическое сопротивление, цепь заземления оборудования должна быть подключена к заземленному проводу внутри вспомогательного оборудования.

Ни заземление (заземление), ни система заземляющих электродов не помогают устранять электрические неисправности. Именно соединение металлических предметов с заземляющим проводом оборудования обратно к источнику обеспечивает путь с достаточно низким импедансом, позволяющим срабатывать защитным устройствам от сверхтоков и устранять неисправности.Если путь замыкания на землю опирается на землю, то тока короткого замыкания (из-за высокого импеданса) будет недостаточно для срабатывания защитного устройства
.

Помните закон Ома, V = I x R? Рассмотрим следующий пример. Фазный провод на 120 В намеренно подключается непосредственно к земле (если оголенный провод под напряжением был подключен к заземляющему стержню в грязи), а заземляющий стержень имеет сопротивление 25 Ом к заземленному источнику питания (трансформатору). В этом сценарии будет получено чуть менее 5 Ампер (4.8А) тока замыкания на землю. Это преднамеренное соединение с землей не даст достаточного тока короткого замыкания для отключения даже автоматического выключателя на 20 А, поскольку автоматический выключатель на 20 А может непрерывно выдерживать 16 Ампер.

Тот же высокий импеданс земли, который ограничивает ток короткого замыкания до уровней, меньших, чем требуется для размыкания защитных устройств, создаст опасные скачки напряжения или напряжения прикосновения в непосредственной близости от заземляющего стержня, которые могут быть смертельными. Несколько человек умерли в последние годы именно из-за этого состояния, когда столбы уличного освещения были заземлены заземляющими стержнями, но не имели заземляющих проводов оборудования, которые могли бы служить эффективным путем обратного тока короткого замыкания к источнику питания.

Давайте рассмотрим факторы, которые влияют на сопротивление систем заземляющих электродов (давайте использовать стержни для обсуждения).

 Сопротивление электрода (разница всего в несколько миллиом между различными обычно используемыми материалами и размерами - IEEE Std 142-1982). Сопротивление электрода зависит от материала стержня и площади поверхности стержня. Площадь поверхности стержня зависит от диаметра стержня.

 От стержня к поверхности почвы (не имеет значения - обычно составляет лишь долю Ом - если стержень вбивается в уплотненную почву и не является рыхлым - IEEE Std 142-1982) Различия в размерах заземляющих стержней и материалах делают небольшая заметная разница в сопротивлении электрода (однако материал стержня играет роль в ожидаемом сроке службы стержня).

 Контактное сопротивление между стержнем и окружающей почвой. Если стержень вбивается в уплотненный грунт, сопротивление между стержнем и окружающей почвой не является существенным фактором (это обсуждается более подробно в разделе, посвященном стержням с глубоким забиванием).

 Сопротивление почвы, окружающей электрод (самый большой фактор). В правильно установленной системе заземляющих электродов сопротивление почвы является ключевым фактором, определяющим, каким будет сопротивление заземляющего электрода и на какую глубину необходимо ввести стержень, чтобы получить низкое сопротивление заземления.
Удельное сопротивление почвы зависит от глубины от поверхности, типа концентрации растворимых химических веществ (минералов и растворенных солей) в почве, содержания влаги и температуры почвы. Другими словами, удельное сопротивление определяется электролитом в почве. Сопротивление заземляющего стержня 5/8 дюйма для типичных типов грунта из IEEE 142-1982 представлено ниже:

Вот несколько удивительных фактов:

Согласно этой таблице IEEE 142-1992, 10-дюймовый заземляющий стержень приводится в действие в двух из четырех категорий типов грунтов в среднем не обеспечивали сопротивления 25 Ом или меньше! Это обычное дело во многих районах с песчаной почвой.

Присутствие поверхностных вод не обязательно указывает на низкое удельное сопротивление (IEEE Std 142-1982).

Недавний проект наглядно иллюстрирует истинность этого утверждения. Почва водомелиоративного сооружения всегда была влажной. Инженеры-электрики, исследующие проблемы с заземлением на объекте, наивно полагали, что постоянное присутствие воды (из-за высокого уровня грунтовых вод) гарантирует низкое удельное сопротивление почвы и что отдельных стержней заземления или, возможно, параллельных стержней заземления будет достаточно для создания заземления с низким сопротивлением. (заземление).Однако все было наоборот. Дальнейшие исследования показали, что высокий уровень грунтовых вод был связан с подземным водным потоком. Буквально через это место протекала река, которая была частью гидрологии района. Почва была очень песчаной.

Со временем все растворимые минералы, которые существовали, были растворены и унесены медленно текущей водой, оставив песок и дистиллированную воду - оба отличные изоляторы!

Это открытие радикально изменило направленность исследования заземления площадки и соответствующих корректирующих действий, заставив инженеров задуматься о стратификации почвы.

Обычные методы заземления, которым в течение последних сорока лет обучали производителей заземления и тестирования заземления, основаны на предполагаемом однородном состоянии почвы. Традиционные методы породили практические правила, которые стали приняты многими инженерами
как стандартные методы. Одна из таких практик заключалась в том, что как удвоение глубины заземляющего стержня, так и установка двух параллельных заземляющих стержней были одинаково эффективными методами для снижения сопротивления стержня (ов) относительно земли.Эти практические правила предполагали, что почва однородна - что почва остается того же типа и сопротивления при погружении на большую глубину. На практике на многих территориях почва слоистая, а не однородная.

Как ответственные инженеры, мы должны помнить, что практика использования параллельных заземляющих стержней, иногда соединенных по схеме треугольника, которая была разработана с использованием методов, предполагающих однородность грунтовых условий, может быть не лучшей практикой для стратифицированных почвенных условий.

Мы рассмотрим это более подробно в следующем разделе.

Что может служить заземляющим электродом?

Помните: заземляющий электрод - это средство выполнения двух из пяти требований к заземлению и соединению, перечисленных в Национальном электротехническом кодексе.

(1) Заземление электрической системы Заземленные электрические системы должны быть подключены к земле таким образом, чтобы ограничить напряжение, создаваемое молнией, скачками напряжения в сети или непреднамеренным контактом с линиями более высокого напряжения, и стабилизировать напряжение относительно земли во время Нормальная операция.

(2) Заземление электрического оборудования Нетоковедущие проводящие материалы, охватывающие электрические проводники или оборудование или составляющие часть такого оборудования, должны быть заземлены, чтобы ограничить напряжение относительно земли на этих материалах.

В соответствии с Национальным электротехническим кодексом в качестве заземляющих электродов можно использовать следующие электроды, и если их более одного, их необходимо соединить вместе:

 Металлическая подземная водопроводная труба (NEC 250.52 (A) (1))

 Металлический каркас конструкции (NEC 250.52 (A) (2))

 Заземляющий электрод в бетонном корпусе (также известный как заземление UFER) (NEC 250,52 (A) (3))

 Кольцо заземления (NEC 250,52 (A) (4))

 Заземляющий стержень (NEC 250.52 (A) (5))

 Заземляющие пластины (NEC 250.52 (A) (6))

В Национальных электротехнических правилах указаны конкретные требования к установке для каждого типа электрода.

Два или более заземляющих электрода, которые эффективно соединены вместе, должны рассматриваться как единая система заземляющих электродов.

Давайте рассмотрим различные места, где требуется заземление (имеется в виду преднамеренное соединение или подключение к системе заземления). Национальный электротехнический кодекс требует следующего:

Служебный вход - Статья 250.24 (A) NEC требует, чтобы в системе электропроводки помещения, снабжаемой заземленной службой переменного тока, был провод заземляющего электрода, соединенный с заземленным служебным проводом (также называемый нейтралью). дирижер). Статья 250.24 (A) (1) требует, чтобы соединение выполнялось в любой доступной точке от конца нагрузки на линии ответвления или боковой линии обслуживания до терминала или шины, к которым подключен заземленный провод (нейтраль), на стороне обслуживания, включительно. отключающие средства.Это переводится в одно из трех мест, как показано ниже:

Отдельно производные системы - Обратитесь к разделу VI для обсуждения отдельно производного заземления системы.

Металлические водопроводные и другие металлические трубопроводы, которые могут оказаться под напряжением - 250.104 (A) и (B) требует, чтобы металлическая система водяных трубопроводов была соединена с системой заземления в любом из следующих мест: корпус вспомогательного оборудования, заземленный провод обслуживания, провод заземляющего электрода или заземляющих электродов.В то время как металлические водопроводные трубы должны быть заземлены, другие системы металлических трубопроводов должны быть соединены с землей (заземлены) только в том случае, если есть вероятность, что они будут под напряжением - то есть там, где в оборудовании (например, газовые приборы) имеются механические трубопроводы и электрические соединения .

Конструкционный металл - 250.104 (C) требует наличия открытого конструкционного металла, который соединен между собой для образования металлического каркаса здания и не заземлен намеренно и может оказаться под напряжением, должен быть соединен с землей либо в корпусе сервисного оборудования, либо в заземленном проводе в сервисе , провод заземляющего электрода или к заземляющим электродам.

Если система переменного тока подключена к заземляющему электроду в здании или сооружении или на них, тот же электрод должен использоваться для заземления корпусов проводников и оборудования внутри или на этом здании или сооружении. Если отдельные службы, фидеры или ответвления питают здание и должны быть подключены к заземляющему электроду (ам), следует использовать тот же заземляющий электрод (а). Это необходимо для того, чтобы все металлические объекты в конструкции имели одинаковый потенциал земли.

Какое сопротивление заземления требуется? Разрешается?

Если вас спросят: «Сколько Ом сопротивления земли требуется Национальным электрическим кодексам (NEC) для заземления системы?» Что бы вы сказали? А) 25 Ом? Б) 10 Ом? В) 100 Ом? Или D) Вы бы сказали, что NEC не устанавливает минимальных требований?

Если бы вы ответили D), вы были бы правы! Как бы трудно в это поверить, но в Национальных электротехнических правилах нет заявленного минимального сопротивления заземления для заземления системы.

Давайте посмотрим на статью 250-56 NEC

250.56 Сопротивление стержневых, трубных и пластинчатых электродов:

 Отдельный электрод, состоящий из стержня, трубы или пластины, не имеющий сопротивления заземления 25 Ом или менее, должен может быть дополнен одним дополнительным электродом любого из типов, указанных в пунктах от 250,52 (A) (2) до (A) (7). Если в соответствии с требованиями данного раздела установлено несколько стержневых, трубных или пластинчатых электродов, они должны находиться на расстоянии не менее 1,8 м (6 футов) друг от друга.

 FPN: эффективность параллельной работы стержней длиннее 2.5 м (8 футов) увеличивается за счет расстояния более 1,8 м (6 футов).

Обратите внимание, что NEC говорит, где «Один электрод…». Также обратите внимание, что это не требует повторных испытаний и установки дополнительных стержней или стержней дополнительной длины до тех пор, пока не будет достигнуто сопротивление 25 Ом или меньше. Эта статья NEC позволяет подрядчику запускать две штанги, разнесенные на 6 футов друг от друга, не проводить наземных испытаний и прекращать работу!

Многие районы имеют слоистую (то есть слоистую) песчаную почву. Наиболее чистый песок - это кварц, диоксид кремния (SiO2).Диоксид кремния - это высококачественный электрический изолятор, который обычно используется в качестве барьерного материала при имплантации примесей или диффузии, для электрической изоляции полупроводниковых устройств, в качестве компонента металлооксидных полупроводниковых (МОП) транзисторов или в качестве межслойного диэлектрика при многоуровневой металлизации. такие структуры, как многокристальные модули
. Песок - хороший изолятор; это НЕ хороший заземляющий материал.

Чтобы выйти из слоистых песчаных почв, необходимо продвинуть заземляющие стержни глубже через слой песка (каким бы глубоким он ни был) в более проводящую почву.

Размещение нескольких параллельных стержней в песчаной почве не имеет большого значения, если требуется соединение с землей с низким сопротивлением - вы должны пройти под слоем песка.

Национальный электротехнический кодекс содержит две таблицы, в которых указаны размеры заземления и соединения.

 Таблица 250.66 Заземляющий провод для систем переменного тока

 Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования.

Таблица 250.66 Провод заземляющего электрода для систем переменного тока

Примечания:
1.Если используются несколько наборов служебных вводных проводников, как это разрешено в 230.40, исключение № 2, эквивалентный размер самого большого служебного вводного проводника должен определяться по наибольшей сумме площадей соответствующих проводников каждого набора.
2. Если нет проводов для входа в сервисный центр, размер жилы заземляющего электрода должен определяться эквивалентным размером самого большого входного проводника, необходимого для обслуживаемой нагрузки.

Таблица 250.122 Минимальный размер заземляющих проводов оборудования для заземляющих каналов и оборудования

Примечание:
Если необходимо, чтобы соответствовать требованиям 250.4 (A) (5) или (B) (4), заземляющий провод оборудования должен иметь сечение больше, чем указано в этой таблице.
* См. Ограничения по установке в 250.120.

Источником этих таблиц был отчет комитета IEEE «Руководство по безопасности при заземлении подстанций переменного тока». В отчете комитета обсуждалась обоснованность размеров заземляющих проводов, указанных в таблицах, исходя из типичной длины проводника 100 футов и падения напряжения на проводнике на основе этой длины 100 футов. [Руководство к Национальному электротехническому кодексу - Грегори Биералс - Институт электрического проектирования].Для длин более 100 футов «минимальный размер», указанный в таблице, может оказаться недостаточным для устранения неисправности или проведения тока повреждения, которому она подвержена.

С практической точки зрения, проводники заземляющих электродов редко проектируются так, чтобы их длина превышала 100 футов, и на Таблицу 250.66 можно положиться почти без исключения.

Заземляющие проводники оборудования, с другой стороны, часто длиннее 100 футов, то есть всегда, когда длина ответвительной цепи или фидера заземляющего проводника оборудования, с которым они установлены, превышает 100 футов.В этих ситуациях минимальный провод заземления оборудования, указанный в таблице 250.122, не будет достаточным для пропускания и / или снятия ожидаемых токов повреждения.

Опытные инженеры-электротехники и специалисты по проектированию знакомы с необходимостью увеличения размеров проводников для длинных ответвлений цепи и проводов фидера для решения и смягчения проблем, связанных с падением напряжения. В статье 250.122 (B) указывается, что заземляющий провод оборудования также должен быть увеличен.

250.122 (B) Увеличенный размер - Если размер незаземленных проводов увеличен, заземляющие проводники оборудования, если они установлены, должны быть увеличены в размере пропорционально круговой миловой площади незаземленных проводов.

Заземляющие провода оборудования на стороне нагрузки средств отключения обслуживания и устройств максимального тока подбираются в зависимости от размера устройств максимального тока фидера или ответвленной цепи перед ними.

Если незаземленные проводники цепи (токоведущие, линейные) увеличены в размере для компенсации падения напряжения или по любой другой причине, связанной с правильной работой схемы, заземляющие провода оборудования должны быть пропорционально увеличены.

Пример:

240-вольтовая однофазная 250-амперная нагрузка питается от 300-амперного выключателя, расположенного в щитке на расстоянии 500 футов.«Нормальная» цепь (без увеличения размера для ограничения падения напряжения) будет состоять из медных проводников на 250 тыс. Куб. М с медным заземляющим проводом оборудования 4 AWG. Если количество проводников было увеличено до 350 тыс. Куб. М из соображений падения напряжения, каков минимальный размер заземляющего проводника оборудования с учетом требования пропорционального увеличения?

Решение

ШАГ 1.

Рассчитайте соотношение размеров проводов увеличенного диаметра и проводов нормального сечения:

ШАГ 2.

Рассчитайте площадь поперечного сечения заземляющего проводника увеличенного оборудования, умножив соотношение размеров на площадь поперечного сечения заземляющего проводника оборудования стандартного размера, взятую из Таблицы 250.122 для защитного устройства на 250 А (необходимо использовать следующий больший или 300 А). В таблице 250.122 указано, что подходит медный провод номер 4 AWG. В соответствии с таблицей 8 главы 9 Национального электротехнического кодекса - Свойства проводника
(см. Стр. 21) заземляющий провод 4 AWG имеет площадь поперечного сечения 41 740 круглых мил.

Соотношение размеров x круговых милов заземляющего проводника

1,4 x 41,740 круглых милов = 58 436 круглых милов

ШАГ 3.

Определите сечение заземляющего проводника нового оборудования.

Опять же, обращаясь к таблице 8 главы 9, мы обнаруживаем, что 58 436 круговых милов больше 3 AWG. Следующий больший размер - 66 360 круглых милов, который преобразуется в медный заземляющий провод для оборудования 2 AWG.

Для данного сценария нормальный заземляющий провод оборудования, указанный в Таблице 250.122 для цепи на 250 А будет медным заземляющим проводом № 4 AWG. В этом случае заземляющий провод оборудования необходимо увеличить до медного заземляющего проводника № 2 AWG, чтобы соответствовать требованиям статьи 250.122 (B) NEC. Целью этого требования к увеличению размера является обеспечение проводника, имеющего соответствующий размер, чтобы выдерживать и устранять ожидаемые токи короткого замыкания.

NEC Ch. 9 Таблица 8

Согласно требованиям Национального электрического кодекса (NEC), нейтраль и заземляющий провод оборудования должны быть подключены к главной сервисной панели и вторичной стороне отдельно выделенной системы (подробнее об этом ниже).NEC разрешает использовать только одно соединение нейтрали с землей в каждой отдельно производной системе. Неправильное дополнительное соединение нейтрали с землей - довольно распространенная проблема, которая не только создает опасность поражения электрическим током для обслуживающего персонала, но также может ухудшить характеристики электронного оборудования. Неправильное соединение нейтрали и заземления в розетках можно обнаружить с помощью тестера проводки и заземления, предназначенного для этой цели.

Вольтметр также можно использовать для определения наличия неправильных соединений в розетках.Измерение напряжения между нейтралью и землей на розетках может указывать на напряжение в диапазоне от милливольта до нескольких вольт при нормальных рабочих условиях и в зависимости от нагрузки, длины цепи и т. Д. Однако показание 0 В может указывать на наличие поблизости нейтрали. - земляная связь. Чрезмерный ток заземления оборудования в распределительных щитах также указывает на возможность заземления нейтрали на стороне нагрузки. Визуальный осмотр нейтральной шины внутри щитовых щитов необходим, чтобы проверить расположение этих дополнительных и неправильных соединений.

Когда в отдельно созданной системе существует более одной связи нейтраль-земля, это приводит к намеренному соединению (или соединению) проводов нейтрали и заземления в двух местах. Это создает параллельное соединение, в котором ток нейтрали делится на часть, возвращающуюся на нейтраль, а остальная часть возвращается к источнику через путь заземления оборудования в соответствии с законом Ом (ток будет делиться пропорционально, чтобы пройти путь наименьшего сопротивления с напряжением падение по каждой параллельной траектории одинаково).На рисунке ниже представлены два варианта предотвращения протекания нежелательного тока в системе заземления (и соединения).

Отдельно производные системы - это системы, которые не имеют прямого соединения между выходными проводниками питания и входными проводниками питания. Это трансформаторы без прямого соединения между нейтралью первичной системы и вторичной нейтралью, только системы ИБП, которые включают в себя изолирующие трансформаторы, таким образом получая новый нейтральный системный проводник (примечание - все системы ИБП не являются отдельно производными системами), и комплекты двигателей-генераторов, которые подключаются к системе электропроводки здания через 4-полюсный автоматический переключатель являются отдельно производными системами, потому что у них есть отдельная нейтраль, которая не имеет прямого соединения с нейтралью электросети (из-за 4-го полюса безобрывного переключателя).Двигатель - генераторные установки, в которых применяются 3-полюсные системы переключения, имеют прямое соединение с нейтралью энергосистемы общего пользования и не являются отдельно производными системами и не могут иметь заземления нейтрали на двигателе-генераторной установке. [IEEE Std 1100-1999]

Есть много дискуссий об отдельных или специальных основаниях, связанных с чувствительным электронным оборудованием. Статья 250.96 (B) Национального электротехнического кодекса разрешает изолировать электронное оборудование от кабельного канала таким же образом, как шнур и подключенное к вилке оборудование изолируются от кабельного канала.

250,96 (B) Изолированные цепи заземления. Если требуется для снижения электрического шума (электромагнитных помех) в цепи заземления, корпус оборудования, питаемый от ответвленной цепи, должен быть разрешен для изоляции от кабельного канала, содержащего цепи, питающие только это оборудование, с помощью одного или нескольких перечисленных неметаллических фитингов кабельного канала, расположенных в точку крепления кабельного канала к корпусу оборудования. Металлический кабельный канал должен соответствовать положениям данной статьи и должен быть дополнен внутренним изолированным заземляющим проводом оборудования, установленным в соответствии с 250.146 (D), чтобы заземлить корпус оборудования.

FPN (ПРИМЕЧАНИЕ FINE PRINT): Использование изолированного заземляющего провода оборудования не отменяет требования по заземлению системы кабельных каналов.

Ключом к этому методу заземления электронного оборудования является постоянное обеспечение того, чтобы изолированный заземляющий провод, независимо от того, где он заканчивается в системе распределения, был подключен таким образом, чтобы создать эффективный путь для тока замыкания на землю (через соединение), как требуется NEC 250.4 (А) (5).

Хотя использование изолированных заземляющих проводов оборудования может быть полезным для снижения электромагнитных помех, очень важно, чтобы требование изолированного заземления НЕ приводило к изолированному, изолированному или иным образом не подключенному к заземлению заземлению заземляющей системе электродов здания. Такой изолированный стержень заземления (соединение с землей) нарушит NEC 250.50.

250,50 Система заземляющих электродов Все заземляющие электроды, как описано в пунктах 250.52 (A) (1) - (A) (6), которые имеются в каждом обслуживаемом здании или сооружении, должны быть соединены вместе, чтобы сформировать систему заземляющих электродов.

Причина, по которой изолированный заземляющий стержень (то есть тот, который не соединен с другими заземленными или заземленными электродами) запрещен и что NEC требует, чтобы отдельные заземляющие электроды были соединены вместе, заключается в уменьшении разницы потенциалов между ними из-за молния или случайный контакт с линиями электропередач. Системы молниезащиты, связи, радио и телевидения, а также заземления системы кабельного телевидения ВСЕ должны быть соединены вместе, чтобы минимизировать возможные различия между системами.Отсутствие соединения (или соединения) всех компонентов заземления может привести к серьезному поражению электрическим током и пожару.

Например, для установки кабельного телевидения, показанной на Рисунке 250.39, предположим, что ток индуцируется в линии электропередачи импульсным перенапряжением или ближайшим ударом молнии, так что мгновенный ток силой 1000 ампер возникает по линии электропередачи к источнику питания. линия земли. Такая сила тока не является чем-то необычным при таких обстоятельствах - она ​​может быть и часто бывает значительно выше.Также предположим, что сопротивление заземления питания составляет 10 Ом, что в большинстве случаев является очень низким значением (один стержень заземления в среднем грунте имеет сопротивление относительно земли около 40 Ом).

Приложение 250.39 Установка кабельного телевидения, не соответствующая Кодексу, иллюстрирующая, почему необходимо соединение между различными системами. Согласно закону Ома, ток через оборудование, подключенное к электрической системе, будет на мгновение увеличиваться до потенциала 10 000 вольт (1000 вольт). амперы × 10 Ом).Этот потенциал в 10000 вольт будет существовать между системой CATV и электрической системой
, а также между заземленным проводником в кабеле CATV и заземленными поверхностями в стенах дома, такими как водопроводные трубы (которые подключены к заземлению), по которому проходит кабель. Этот потенциал также может появиться у человека, держащего одной рукой кабель кабельного телевидения, а другой рукой - металлическую поверхность, подключенную к заземлению (например, радиатор или холодильник).

Фактическое напряжение, вероятно, будет во много раз больше рассчитанного 10 000 вольт, поскольку для сопротивления заземления и тока были приняты чрезвычайно низкие (ниже нормального) значения.Однако большинство систем изоляции не рассчитано выдерживать даже 10 000 вольт. Даже если система изоляции выдержит скачок напряжения в 10 000 вольт, она может быть повреждена, и выход из строя системы изоляции приведет к искрообразованию.

Такая же ситуация могла бы существовать, если бы скачок тока был на кабеле CATV или телефонной линии. Единственная разница будет заключаться в напряжении, которое будет зависеть от индивидуального сопротивления заземляющих электродов относительно земли.

Решение состоит в том, чтобы соединить две системы заземляющих электродов вместе или соединить оболочку кабеля CATV с заземлением питания, что в точности и требуется Кодексом.Когда одна система поднимается выше потенциала земли, вторая система достигает того же потенциала, и между двумя системами заземления отсутствует напряжение.

Exhibit 250.40 Установка кабельного телевидения, соответствующая требованиям 250.94.

Ниже приведены примеры реальных случаев, когда отдельные заземления или предметы, которые должны быть заземлены (заземлены), были изолированы друг от друга (не соединены вместе):

 Женщина заметила «покалывание» электричеством, когда принимала душ. Расследование показало, что между сливом для душа и ручками для душа присутствовало электрическое напряжение.Тот факт, что женщина была босиком с мокрыми руками (а люди часто бывают в душе!), Способствовал тому, что она чувствовала разницу в напряжении. Причиной проблемы были паразитные напряжения, создаваемые воздушной распределительной линией. Разница в напряжении была между колодцем и септической системой. Решением было скрепить дренажную и водопроводную трубы вместе.

 Владелец бизнеса жаловался на постоянные сбои компьютерного модема и компьютера. Коммунальная компания обнаружила, что сбои произошли по совпадению с перебоями в электроснабжении (замыканием на землю) на одном из основных фидеров, обслуживающих объект.Проведенное расследование показало, что телефонный, водопроводный и силовой заземления электрически изолированы (не соединены между собой). Правильное соединение (соединение) систем устранило дальнейшие проблемы с этим клиентом.

[Примеры цитируются из статьи «Заземление энергосистем: практическая точка зрения», номер статьи PCIC-2002-xx Джон П. Нельсон, сотрудник IEEE]

Термин «заземление Ufer» назван в честь консультанта, работающего в США. Армия во время Второй мировой войны. Техника Mr.Придуманный Уфер был необходим, потому что на участке, нуждающемся в заземлении, не было грунтовых вод и мало осадков. Пустыня представляла собой серию хранилищ бомб в районе Флагстаффа, штат Аризона.

Принцип Уфер земли прост. Его очень эффективно и недорого устанавливать при новом строительстве. Земля Уфер использует агораскопические свойства бетона. Бетон быстро впитывает влагу и очень медленно теряет влагу. Минеральные свойства бетона (известь и другие) и присущий им pH означает, что бетон имеет запас ионов для проведения тока.Почва вокруг бетона становится «легированной» бетоном. В результате pH почвы повышается и понижается, что обычно составляет 1000 Ом · метр в почвенных условиях (трудно получить хорошую почву). Присутствующая влага (бетон очень медленно отдает влагу) в сочетании с «легированной» почвой являются хорошим проводником для электрической энергии или тока молнии.

Эффект почти такой же, как и при химической обработке почвы вокруг электрода. Авторы статьи IEEE 1969 года пришли к выводу о следующих обширных испытаниях такой электродной системы: «.. . Сети из арматурных стержней… бетонных оснований обеспечивают приемлемо низкое сопротивление заземления, с возможностью защиты от коротких замыканий и импульсных токов, подходящих для всех типов заземления конструкций и цепей. . . . Не последним преимуществом системы арматуры является ее доступность и низкая стоимость ». [Фаган и Ли, «Использование бетонных арматурных стержней в качестве заземляющих электродов», Конференция по нефтяной и химической промышленности 1969 г.]

Методы Ufer используются при строительстве нижних колонтитулов, бетонных полов, радио- и телебашен, анкеров для опорных тросов, освещения столбы и др.Медная проволока не работает как «уферское» заземление из-за pH-фактора бетона (обычно + 7pH). Использование стальной арматуры в качестве «уферского» грунта работает хорошо, и бетон не трескается и не отслаивается, как это было с медью. Использование медной проволоки, привязанной к стержням арматуры, находящимся вне бетона, не вызывает ни одной из этих проблем.

Минимальный размер арматуры, необходимый для предотвращения проблем с бетоном, зависит от:

1. Тип бетона, его содержание, плотность, удельное сопротивление, коэффициент pH и т. Д.

2. Площадь поверхности бетона, контактирующей с почвой.

3. Удельное сопротивление почвы и содержание грунтовых вод.

4. Размер и длина арматурного стержня, проволоки или пластины.

5. Величина тока удара молнии.

На следующей диаграмме показана проводимость тока молнии на фут арматурного стержня (арматурного стержня). Учитывается только внешний арматурный стержень. Арматурный стержень в центре нижнего колонтитула или фундамента не учитывается в этом расчете. В нижнем колонтитуле траншеи можно учитывать только арматуру по бокам и внизу нижнего колонтитула.

Г-н Уфер не знал, что он нашел, пока не экспериментировал с проволокой различной длины в бетоне. Сегодняшний информированный инженер извлекает выгоду из открытия г-на Уфера и свяжет стержни стальной арматуры в здании или другом фундаменте с электрическим заземлением здания. При присоединении к электрическому заземлению, строительной стали и т. Д. Армированный пол и фундамент здания становятся частью системы заземления здания. Результатом является значительно улучшенная система заземления с очень низким общим сопротивлением относительно земли.

Если бы одного заземления Ufer было достаточно, производители заземляющих стержней прекратили бы свою деятельность. Но одной только земли Уфер этого недостаточно. Немногие здания, даже те, которые строятся сегодня, построены с учетом преимуществ земли Уфер. Часто можно увидеть использование «заземления Ufer» на военных объектах, компьютерных залах и других сооружениях с очень специфическими характеристиками заземления. Это не распространено на большинстве промышленных предприятий, офисных зданий и жилых домов. Сегодня более распространенным является заземление в соответствии с минимальными национальными и местными электротехническими нормами.Это будет включать в себя один или несколько приводных заземляющих стержней, подключенных (соединенных) к нейтральному проводу электрического служебного входа.

В 2005 году NEC был пересмотрен, чтобы четко требовать включения UFER или электрода в бетонном корпусе (теперь 250,52 (A) (3)) в систему заземляющих электродов для зданий или сооружений, имеющих бетонное основание или фундамент без площадь поверхности менее 20 футов в непосредственном контакте с землей. Это требование применяется ко всем зданиям и сооружениям с фундаментом и / или опорой размером 20 футов или более или более 1/2 дюйма.или армирующая сталь с большей электропроводностью, или 20 футов или более из чистой меди не менее 4 AWG.

Заземляющие стержни бывают разных форм, но чаще всего в заземлении электрических сетей используются заземляющие стержни из оцинкованной стали. Пожалуйста, помните, что лучший день для заземляющего стержня (удельное сопротивление) - это день его установки. Коррозия, остекление и т. Д. - все это факторы, снижающие эффективность заземляющих стержней.

Заземляющие стержни обычно делятся на один из следующих размеров; 1/2 дюйма, 5/8 дюйма, 3/4 дюйма и 1 дюйм.Они бывают из стали с покрытием из нержавеющей, оцинкованной или медной стали и могут быть из твердой нержавеющей стали или из мягкой (без плакировки) стали. Их можно приобрести в безрезьбовых или резьбовых частях различной длины. Наиболее распространенная длина - 8 футов и 10 футов. Некоторые из них будут иметь заостренный конец, другие будут иметь резьбу и могут быть соединены вместе для образования более длинных стержней при движении.

Эффективность заземляющего стержня диаметром 1 дюйм над стержнем заземления 1/2 дюйма минимальна при снятии показаний сопротивления. Штанги большего размера выбираются для более сложных почвенных условий.Глиняные или каменистые условия часто требуют использования силовых приводов, похожих на ударные, используемые механиками при работе с вашим автомобилем. Обычно они бывают электрическими или пневматическими. Силовые приводы при использовании с тяжелыми заземляющими стержнями диаметром 1 дюйм будут работать на большинстве почв.

Пруток с медным покрытием диаметром 1 дюйм по сравнению с прутком с медным покрытием 1/2 дюйма в тех же почвенных условиях дает улучшение производительности примерно на 23%. Площадь поверхности стержня 1/2 дюйма составляет 1,57 по сравнению с площадью поверхности стержня 1 дюйм при 3,14 (3,14 x.5 = 1,57 и 3,14 х 1 = 3,14). Таким образом, удвоение площади поверхности дает улучшение производительности примерно на 23%.

Покрытие заземляющих стержней предназначено для защиты стали от ржавчины. Большинство думает, что оболочка (медь на стальном стержне) предназначена для увеличения проводимости стержня. Это действительно способствует проводимости, но основная цель покрытия - предохранить стержень от ржавчины.

Не все плакированные заземляющие стержни одинаковы, и важно, чтобы плакированные стержни имели достаточно толстую оболочку.Высококачественные промышленные заземляющие стержни из стали, плакированной медью, могут стоить немного дороже, но они оправдывают небольшие дополнительные затраты.

Когда заземляющий стержень вбивается в каменистую почву, он может поцарапать покрытие, и стержень заржавеет. В сухом виде ржавчина не проводит электричество, это хороший изолятор. Когда он влажный, он все еще не такой проводящий, как медь на стержне. Можно проверить pH почвы, и это должно определить тип используемого стержня. В почвенных условиях с высоким pH следует использовать только высококачественные плакированные стержни.Если почва очень кислая, лучше всего подойдут нержавеющие стержни. Один из самых популярных стержней заземления - стержень заземления из оцинкованной (горячеоцинкованной) стали.

Этот стержень используется с медными и алюминиевыми проводниками для формирования заземления служебного входа в большинстве зданий и жилых домов. Это плохой выбор для определения удельного сопротивления грунта с течением времени. Стыки между заземляющим стержнем и проводом выполняются выше или ниже поверхности земли и в большинстве случаев подвержены постоянной влажности. В лучших условиях соединение двух разнородных материалов со временем приведет к коррозии и увеличению сопротивления.

При соединении разнородных материалов происходит электролиз. Если алюминий используется с медью, которая не покрыта оловом, алюминий будет разъедать медь, оставляя меньшую площадь поверхности для контакта, и соединение может расшататься и даже вызвать искрение. Любой резкий удар или удар могут привести к разрыву соединения. При установке в грунт не рекомендуется использовать луженую проволоку. Олово, свинец, цинк и алюминий более анодны, чем медь, и они пожертвуют (исчезнут) в почве.При подключении над поверхностью почвы в распределительном щите допускается использование луженой проволоки.

Имейте в виду, что статья 250.64 Национального электротехнического кодекса указывает, что алюминиевые заземляющие проводники с алюминиевым или медным покрытием не должны контактировать с почвой или бетоном и должны иметь концевые заделки не менее чем на 18 дюймов выше готовой конструкции при использовании на открытом воздухе.

Другой способ лечения коррозии стыков - это использование герметика для швов для предотвращения образования мостиков влаги между металлами.Наиболее популярными соединениями являются частицы меди или графита, погруженные в консистентную смазку. Использование аналогичного материала - лучшее решение, поскольку даже стыковые смеси могут потерять свою эффективность, если их не поддерживать в надлежащем состоянии, но их использование предпочтительнее, чем сухое соединение. Соединения работают путем погружения частиц в металлы, чтобы сформировать чистый стык с низким сопротивлением, лишенным воздуха, когда они находятся под давлением. Это давление обеспечивается за счет затягивания зажима на проводе и стержне.

Проблема разнородных материалов не встречается в стальных стержнях, плакированных медью.Из всех вариантов по разумной цене лучшим выбором будет стальной пруток, плакированный медью с медным проводником. Если бы деньги не были целью, золотой проводник и заземляющий стержень были бы идеальными, но вряд ли экономически практичными.

Ведомый стержень намного лучше по сравнению со стержнем с обратным наполнением. Плотность ненарушенного грунта намного выше, чем даже уплотненного грунта. Связь грунта со стержнем - ключ к производительности удилища.

Одним из интересных аспектов проводников заземляющих электродов является их необходимость в физической защите.Если для защиты проводника заземляющего электрода используется стальной кабелепровод или рукав, то на каждом конце рукава должны быть предусмотрены некоторые средства, чтобы сделать его непрерывным электрически с проводником. Этого можно добиться, установив перемычку на каждом конце гильзы и подключив ее к гильзе, оборудованию и заземляющему электроду на каждом конце. Причина, по которой этот метод важен, заключается в том, что при тяжелых условиях повреждения стальная трубная муфта создает дроссельный эффект (индуктивность муфты создает магнитное поле, которое препятствует изменениям тока), а полное сопротивление системы заземления резко возрастает.Из-за этого - по возможности лучше использовать неметаллическое покрытие соответствующего номинала (таблица 80, где возможны повреждения) для обеспечения физической защиты.

Установить заземляющие стержни несложно, но необходимо соблюдать соответствующие процедуры, а полученные стержни должны быть проверены на работоспособность.

Установка заземляющих стержней глубиной более 10 футов представляет несколько проблем. Должны использоваться секционные стержни (обычно длиной 10-12 футов) и соединяться вместе для достижения желаемой глубины.Муфта имеет больший диаметр, чем стержень, и поэтому образует отверстие больше, чем сам стержень. Это создает пустоту муфты, ограничивающую контакт почвы с поверхностью штанги дополнительных секций. Только первая секция будет поддерживать полный контакт стержня с почвой.

Ручное забивание штанг с помощью кувалд, трубных инструментов и других средств не может обеспечить достаточное усилие для проникновения в твердые почвы. Для стержней с глубоким забиванием необходимы механические или механические приводы.

Материал штанги и конструкция муфты должны выдерживать силу, необходимую для прохождения через твердый грунт.

Из-за чрезмерных усилий, необходимых для привода более длинных штанг, муфты винтового типа механически выходят из строя. Резьба обрывается, что приводит к плохому контакту стержня со стержнем. Коническая шлицевая / компрессионная муфта зарекомендовала себя как самая надежная муфта.

Чтобы поддерживать полный контакт стержня с почвой, суспензионная смесь бентонита натрия (природная глина) может быть введена в полость муфты при установке стержней. Это обеспечивает токопроводящий материал между поверхностью стержня и почвой по глубине стержня.Для обычного 60-футового заземляющего стержня требуется от 2 до 5 галлонов бентонита.

Недостатком более длинных и глубоких штанг является то, что соединенные штанги могут изгибаться при столкновении с более плотной почвой. В одном из проектов подрядчику требовалось соединить и установить заземляющий стержень длиной 100 футов для достижения сопротивления 5 Ом в слоистых песчаных почвах. Когда подрядчик соединил и проехал пятую 10-дюймовую штангу, было замечено, что «заостренный конец» заземляющей штанги проходил под автомобилем на ближайшей стоянке.[Глубокое заземление по сравнению с заземлением на мелководье, Computer Power Corporation, Мартин Д. Конрой и Пол Г. Ричард - http://www.cpccorp.com/deep.htm]

Эффективность заземляющих стержней снижается из-за состояния почвы , токи молнии, физические повреждения, коррозия и т. д. и должны регулярно проверяться на сопротивление. То, что в прошлом году земля была хорошей, не значит, что это хорошо сегодня.

Проверили бы его методом испытания на падение потенциала или методом зажима при условии, что установка подходит для измерения сопротивления заземления с использованием метода зажима (см. Следующий раздел для обсуждения инструментов и методов тестирования).

Измерение сопротивления заземления может выполняться только с помощью специально разработанного оборудования. В большинстве приборов используется принцип падения потенциала переменного тока, циркулирующего между вспомогательным электродом и заземляющим электродом при тестировании. Показание выражено в омах и представляет собой сопротивление заземляющего электрода к окружающей земле. Некоторые производители испытательного оборудования недавно представили тестеры сопротивления заземления, которые также будут обсуждаться.

Принцип измерения сопротивления заземления (падение потенциала - трехточечное измерение)

Разность потенциалов между стержнями X и Y измеряется вольтметром, а ток между стержнями X и Z измеряется амперметром (см. Рисунок 13). )

По закону Ома E = IR или R + E / I, тогда мы можем получить сопротивление заземляющего стержня R. Если E = 20 В и I = 1 A, то:

R = E / I = 20/1 = 20

Нет необходимости проводить все измерения при использовании тестера заземления.Тестер заземления будет измерять непосредственно, генерируя собственный ток и отображая сопротивление заземляющего электрода.

Положение вспомогательных электродов при измерениях

Целью точного измерения сопротивления относительно земли является размещение вспомогательного токового электрода Z на достаточном удалении от тестируемого заземляющего электрода, чтобы вспомогательный потенциальный электрод Y находился за пределами эффективного площадь сопротивления как заземляющего электрода, так и вспомогательного токового электрода.Лучший способ узнать, находится ли вспомогательный потенциальный стержень Y за пределами эффективных областей сопротивления, - это переместить его между X и Z и снять показания в каждом месте. Если вспомогательный потенциальный стержень Y находится в зоне эффективного сопротивления (или в обеих, если они перекрываются, как на рисунке 14), при его перемещении полученные показания будут заметно отличаться по величине. В этих условиях невозможно определить точное значение сопротивления заземления.

С другой стороны, если вспомогательный потенциальный стержень Y расположен за пределами эффективных областей сопротивления (рисунок X), когда Y перемещается вперед и назад, вариация показаний минимальна.Полученные показания должны быть относительно близки друг к другу и являются наилучшими значениями сопротивления заземления X. Показания должны быть нанесены на график, чтобы гарантировать, что они лежат в области «плато», как показано на рисунке 15. Эта область часто упоминается как «плато». как «62% площади».

Измерение сопротивления заземляющих электродов (метод 62%)

Метод 62% был принят после графического рассмотрения и после реальных испытаний. Это наиболее точный метод, но он ограничен тем фактом, что тестируемая земля представляет собой единое целое.

Этот метод применяется только тогда, когда все три электрода расположены на прямой линии, а земля представляет собой один электрод, трубу или пластину, как показано на рисунке 16.

Рассмотрим рисунок 17, на котором показаны площади эффективного сопротивления (концентрические оболочки) заземляющего электрода X и вспомогательного токового электрода Z. Области сопротивления перекрываются. Если бы показания были сняты путем перемещения вспомогательного потенциального электрода Y к X или Z, тогда разница показаний была бы большой, и нельзя было бы получить показания в разумном диапазоне допуска.Чувствительные области перекрываются и постоянно действуют, увеличивая сопротивление по мере удаления Y от X.

Теперь рассмотрим рисунок 18, на котором электроды X и Z достаточно разнесены, чтобы области эффективного сопротивления не перекрывались. Если мы построим график измеренного сопротивления, мы обнаружим, что уровень измерений сбился, когда Y расположен на 62% расстояния от X до Z, и что показания по обе стороны от начальной настройки Y (62%), скорее всего, будут в установленный диапазон допуска.Этот диапазон допуска определяется пользователем и выражается как
процентов от начального показания +/- 2%, +/- 5%, +/- 10% и т. Д.

Расстояние между вспомогательными электродами

Нет определенного расстояния между Могут быть заданы X и Z, поскольку это расстояние зависит от диаметра испытуемого стержня, его длины, однородности испытуемого грунта и, в частности, от эффективных площадей сопротивления. Однако приблизительное расстояние можно определить из следующей таблицы, которая дается для однородной почвы и электрода диаметром 1 дюйм (для диаметра ½ дюйма уменьшите расстояние на 10%).

Измерение сопротивления заземления при помощи клещей

В отличие от метода падения потенциала (трехточечный), который требует, чтобы заземляющий стержень или тестируемая система были отключены от энергосистемы, этот метод измерения требует соединения между тестируемым стержнем для подключение электросети к земле. В результате метод предлагает возможность измерения сопротивления без отключения заземления. Он также предлагает преимущество включения заземления и общего сопротивления заземляющего соединения.

Принцип работы

Обычно заземленную систему общей распределительной линии можно смоделировать как простую базовую схему, как показано на рисунке 29, или как эквивалентную схему, показанную на рисунке 30. Если напряжение E приложено к любому измеренному заземляющему элементу Rx через специальный В трансформаторе ток I течет по цепи, что может быть представлено следующим уравнением:

Суть этого состоит в том, что заземляющий электрод для типичной заземленной электрической системы i параллелен заземляющим стержням и стыковым заземлениям на каждом трансформаторе. и столб, который находится на стороне линии обслуживания, для которого вы тестируете землю.Все параллельные заземления выше по потоку становятся очень и очень малым параллельным сопротивлением по сравнению с сопротивлением стержня, на котором вы опираетесь (R x ).

Если R x и R 1 , и R 2 …. имеют примерно одинаковую величину, а n - большое число (например, 200), тогда R x будет намного меньше, чем

. Например, если R x , R 1 , R 2 , R 3 и т. Д. Все равны 10 Ом и n = 200, тогда:

В этом примере мы видим, что до тех пор, пока количество заземляющих стержней в системе электроснабжения велико (и проверяемый стержень подключен к ним), то эквивалентное сопротивление боковых стержней линии (.05 Ом) незначительно по отношению к измеряемому сопротивлению заземления (10 Ом).

E / I = Rx установлен. Если I определяется при постоянном значении E, можно получить измеренное сопротивление заземляющего элемента. Снова обратитесь к рисункам 29 и 30. Ток подается на специальный трансформатор через усилитель мощности через генератор постоянного напряжения 1,7 кГц. Этот ток обнаруживается детекторным трансформатором тока. На частоте 1,7 кГц сигнал усиливается фильтрующим усилителем. Это происходит перед аналого-цифровым преобразованием и после синхронного выпрямления.Затем он отображается на жидкокристаллическом дисплее.

Фильтр-усилитель используется для отсечки как тока земли на промышленной частоте, так и высокочастотного шума. Напряжение обнаруживается катушками, намотанными на трансформатор тока впрыска, который затем усиливается, выпрямляется и сравнивается компаратором уровня. Если зажим на CT не закрыт должным образом, и на ЖК-дисплее появляется индикация OPEN или OPEN.

Хотя точность клещей для тестеров сопротивления заземления хороша для многих сценариев, но имеет свои ограничения.Например, если условия заземления на стороне линии неизвестны (на этом основана теория работы клещевого тестера) или если в системе электроснабжения не так много заземлений на стороне линии (заземления полюсов), тогда трехточечный падение потенциального испытания должно быть выполнено.

Прежде чем использовать и полагаться на данные любого измерительного оборудования, убедитесь, что оно откалибровано и сертифицировано. Если вы этого не сделаете, данные, которые он предоставляет, могут оказаться бесполезными.

Это обсуждение методов тестирования сопротивления заземления было взято из не защищенного авторским правом материала из рабочей книги AEMC Instruments «Общие сведения о тестировании сопротивления заземления», издание 6.0.

Электрическое заземление - электрическое 101

Защита от замыкания на землю

Существует две основные причины защиты электрических цепей от замыкания на землю.

  1. Заземляющий провод оборудования (EGC) на электрических инструментах, приборах и электронике обеспечивает защиту от замыканий на землю на металлических частях. Это должно исключить возможность поражения электрическим током в случае замыкания на землю.
  2. EGC обеспечит хороший обратный путь при замыкании на землю к электрической панели, поэтому автоматический выключатель немедленно сработает в случае замыкания на землю.

Электрическое заземление очень важно для безопасности электрических систем. Новые жилые дома необходимо заземлить из-за изменений в Электротехническом кодексе 1962 года.

Определения заземления и нейтрали

(* означает NEC (Национальный электротехнический кодекс) 2014, определения статьи 100)

Земля - ​​ Контрольная электрическая точка, которая соединяется с землей.Земля подключается к нейтрали в одной единственной нейтральной точке в электрической системе, измеряющей ноль (0) вольт.

Замыкание на землю - это происходит, когда незаземленный провод (линейный провод) соприкасается с чем-либо заземленным (например, обмотка двигателя касается корпуса или линейный провод прибора касается металлического корпуса).

Заземленный провод * - Проводник системы или цепи, который намеренно заземлен. (т.е. нейтральный провод).

Заземляющий проводник - Оборудование (EGC) * - Проводящий путь (и), установленный для соединения обычно не током - металлических частей оборудования вместе и с заземленным проводом системы или с проводом заземляющего электрода, или с обоими.

Нейтральный проводник - Проводник, по которому в нормальных условиях проходит ток. Он заземлен в нейтральной точке системы. Напряжение на нейтральном проводе составляет 0 вольт (или очень близко к 0 вольт в условиях нагрузки). Предупреждение. Нейтральный проводник может находиться под напряжением в цепи под напряжением при размыкании и представлять опасность поражения электрическим током.

Заземление электрических шнуров

Разница между заземлением и нейтралью

Заземляющий провод не предназначен для протекания тока, за исключением случаев замыкания на землю.Нейтральный провод предназначен для передачи тока в качестве возврата от линейного тока. Провод заземления (EGC) передает ток замыкания на землю на землю на электрической панели.

Штырь заземления на этой вилке подключается к EGC внутри шнура.

Электрический шнур на инструментах, приборах и электронике может иметь трехпроводную вилку со встроенным EGC в шнур. При наличии двухпроводной вилки и шнура инструмент, прибор или электронное устройство должным образом изолированы и не нуждаются в EGC.

Удлинители и переходники для вилок

Двухпроводной удлинитель не имеет EGC или заземления на вилке и розетке. Никогда не используйте удлинительный шнур 2- или переходник для вилки на оборудовании с проводом 3- и вилкой. Это устранило бы любую защиту от замыкания на землю.

Заземление на проводном устройстве

При замене устройства с жестким проводом (например, посудомоечной машины) в доме с заземлением очень важно подключить провод заземления (EGC) к раме нового устройства.Это соединение обычно находится рядом с клеммами линии и нейтрали на приборе.

Если линейный провод отсоединился и коснулся корпуса посудомоечной машины, EGC обеспечит путь от линейного напряжения к земле на электрической панели и немедленно отключит автоматический выключатель в этой цепи. Если EGC не был подключен к посудомоечной машине должным образом, а линейный провод касался корпуса, металлические части посудомоечной машины находились под напряжением, что приводило к поражению электрическим током.

Сломанный контакт заземления на электрических шнурах

Никогда не используйте удлинитель с поврежденным контактом заземления или электрическое устройство с поврежденным контактом заземления на электрическом шнуре.Это устранит защиту от замыкания на землю.

Дома без земли

Старые жилища могли быть построены до того, как земля требовалась кодексом. Электрическая система в некоторых из этих домов была обновлена ​​и теперь включает новую проводку и электрическую панель с заземлением.

Если в вашем доме нет заземления, вы можете запросить предложение у лицензированного подрядчика по электрике для обновления проводки. Если потребуется серьезная реконструкция, было бы дешевле и проще обновить проводку в это время.

Разница между заземлением переменного и постоянного тока

Заземление постоянного и переменного тока - это разные типы заземления. Земля переменного тока использует землю в качестве основного заземления. Заземление постоянного тока не связано с землей. Земля постоянного тока - это общий термин для отрицательной (- ) стороны цепи постоянного тока.

В большинстве автомобилей отрицательная клемма автомобильного аккумулятора подключена к раме и часто называется заземлением.

Что такое заземление и зачем мы заземляем систему и оборудование?

Что такое заземление?

Термин «заземление» обычно используется в электротехнической промышленности для обозначения «заземления оборудования» и «заземления системы».Заземление оборудования означает соединение заземления с нетоковедущими проводящими материалами, такими как кабелепровод, кабельные лотки, распределительные коробки, кожухи и корпуса двигателей.

Что такое заземление и почему мы заземляем систему и оборудование? (на фото: заземляющий электрод и проводник; кредит: nachi.org)

Заземление системы означает соединение заземления с нейтральными точками токопроводящих проводов , такими как нейтральная точка цепи, трансформатор, вращающееся оборудование или система, либо монолитная, либо с токоограничивающим устройством.

На рисунке 1 показаны два типа заземления.

Рисунок 1 - Система заземления (щелкните, чтобы развернуть диаграмму)

Что такое система с заземлением?

Это система, в которой, по крайней мере, один провод или точка (обычно средний провод или нейтральная точка обмоток трансформатора или генератора) намеренно заземлены либо жестко, либо через полное сопротивление (стандарт IEEE 142-2007 1.2).

Типы системного заземления, обычно используемые в промышленных и коммерческих энергосистемах: твердое заземление , заземление с низким сопротивлением, заземление с высоким сопротивлением и незаземленное .


Какова цель заземления системы?

Заземление системы, или преднамеренное соединение фазы или нейтрального проводника с землей, предназначено для цели управления напряжением относительно земли или земли в предсказуемых пределах. Он также обеспечивает прохождение тока, что позволит обнаружить нежелательное соединение между проводниками системы и землей [замыкание на землю].


Что такое замыкание на землю?

Замыкание на землю - это нежелательное соединение между проводниками системы и землей .Неисправности заземления часто остаются незамеченными и наносят ущерб производственным процессам на предприятиях. Выключение питания и повреждение оборудования, замыкания на землю нарушают поток продукции, что приводит к часам или даже дням потери производительности.

Необнаруженные замыкания на землю представляют потенциальную угрозу здоровью и безопасности персонала. Замыкания на землю могут привести к угрозам безопасности, таким как неисправности оборудования, пожар и поражение электрическим током.

Замыкания на землю вызывают серьезные повреждения оборудования и ваших процессов.Во время неисправности оборудование может быть повреждено, а процессы прекращены, что серьезно повлияет на вашу прибыль.

Вопросы и ответы

ВОПРОС №1 - У меня есть максимальная токовая защита. Нужна ли мне дополнительная защита от замыкания на землю?

Защита от перегрузки по току будет действовать для прерывания цепи на токи, для которых она была разработана и настроена на работу. Однако некоторые замыкания на землю, особенно дуговые замыкания низкого уровня, вызовут значительные повреждения и создадут источник возгорания, даже не достигнув уровня, необходимого для активации устройства защиты от сверхтоков.

ВОПРОС № 2 - Есть ли опасность при эксплуатации незаземленной системы на 480 В на старом производственном предприятии? Следует ли заземлить систему?

Основная опасность при работе незаземленной системы 480 В и заключается в том, что при замыкании на землю единственным индикатором, который у вас будет, являются три лампочки. Напряжение на незаземленных фазах увеличится до 480 В относительно земли, напряжение на заземленном проводе составит 0 В относительно земли .

В этой системе единственный способ указать наличие замыкания на землю - это когда два индикатора имеют большую яркость, чем индикатор неисправности фазы. Чтобы определить место замыкания на землю, вы должны включить каждый выключатель фидера, пока все три индикатора снова не загорятся с одинаковой яркостью.

Как только это будет сделано, вы продолжите работу по этому фидеру, пока не найдете неисправность . Звучит очень легко сделать, но в реальном мире оказывается очень сложно.

Установка обычно не заземлена, потому что она работает постоянно, и следует избегать изоляции из-за замыкания на землю ! К сожалению, это означает определение места замыкания на землю.Единственный способ определить место замыкания на землю - это включить и выключить выключатели фидера.

Это то, чего вы пытаетесь избежать. Таким образом, в конце концов, замыкание на землю остается в системе, потому что нет простого способа его локализовать. Это опасно, потому что любое обслуживание, выполняемое в системе в заземленном состоянии, зависит от полного линейного потенциала по отношению к земле.

Хорошая новость в том, что решение есть! Незаземленные объекты можно легко преобразовать в объекты с заземлением с высоким сопротивлением, а обнаружение и локализация замыкания на землю могут быть выполнены без прерывания подачи электроэнергии.

ВОПРОС № 3 - Какое воздействие, если таковое имеется, на движущееся оборудование, спроектированное для электростанции с плавающим заземлением или незаземленной вторичной обмоткой, оказывает на станцию, имеющую полностью заземленную систему? На мой взгляд, это не должно иметь значения, но я могу ошибаться.

В вашем случае (от незаземленной системы до глухозаземленной) нет, не имеет значения. Однако, если вы пошли другим путем (от SG к системе UNG), то да, это имело бы значение. При нормальной работе это, скорее всего, не имеет значения.

Однако при замыкании на землю это произойдет. В незаземленной системе напряжение поврежденной фазы падает до потенциала земли (или ~ 0 В) , а неповрежденные фазы повышаются до межфазного напряжения относительно земли.

Например, система 480 В будет иметь фазное напряжение ~ 277 В во время нормальной работы, поэтому она должна работать нормально. Тем не менее, замыкание на землю на одной фазе приводит к повышению ее напряжения до 0 В , а на двух других фазах повышается с 277 В до 480 В, фаза-земля.

Так как этого не происходит в системе с глухим заземлением, все, что рассчитано только на 300 В между фазой и землей, взорвется , например TVSS, VFD, счетчики и т. Д.

ВОПРОС № 4 Какое напряжение вы бы прочитали если вы подключили провода от L1, L2 или L3 к земле 460-вольтовой трехфазной системы питания переменного тока, подключенной по схеме Y?

Если система с Y-соединением надежно заземлена , вы увидите 266В между линией и землей . Если система с Y-соединением не заземлена или заземлена с высоким сопротивлением и в системе нет замыкания на землю, вы также читаете 266V.В случае неисправности одной фазы, неисправная фаза будет показывать низкое напряжение около 0, а две другие фазы будут показывать около 460 В.

Ссылка // Заземление через сопротивление - вопросы и ответы отраслевым экспертам от iGard

Промышленное оборудование | Основы заземления и подключения

Бенджамин Д. Миллер, ЧП 1 марта 2000 г.

Ключевые концепции

Проводники должны быть подключены к сервисному шкафу и подключены к заземленному электроду.

Заземленный провод и заземляющий провод оборудования нельзя менять местами.

Соединительные перемычки обеспечивают надежное электрическое соединение между токопроводящими частями.

Национальный электротехнический кодекс (NEC) определяет заземление как «соединение с землей или каким-либо проводящим телом, которое служит вместо земли». Склеивание определяется как «постоянное соединение металлических частей для образования токопроводящей дорожки». Хотя соединение может применяться к деталям при любом напряжении, предполагается, что соединенные детали находятся под потенциалом земли.

Системное заземление

Когда есть нейтраль, она всегда заземлена; например, центр трансформатора на 208 или 440 В, соединенный звездой, или центральный ответвитель одной ветви трансформатора, соединенного треугольником 230 В. Для систем без нейтрали местом на земле может быть любая точка. Трехпроводные системы с соединением в треугольник, хотя и не распространены, существуют с заземленным одним углом.

Существуют исключения из заземления для критически важных систем, таких как системы жизнеобеспечения здравоохранения, которые должны оставаться под напряжением и рассчитаны на то, чтобы выдерживать одиночный отказ без отключения.В этих случаях используются незаземленные системы электропитания, но они содержат устройства обнаружения замыкания на землю, которые выдают предупреждение при возникновении сбоя.

В данной статье предполагается заземленная система питания (рис. 1).

Рис. 1. Схема заземления для типичной электрической системы показывает терминологию, определенную NEC.

Заземленный рабочий провод, заземленный провод (и) и заземляющий провод (и) оборудования соединены вместе в кожухе сервисного оборудования; и также подключены к заземляющему электроду.Этим заземляющим электродом может быть подземная водопроводная труба, конструктивный элемент или изготовленный заземляющий стержень; и во многих случаях состоит из нескольких из них, связанных вместе. Это единственное место, где система должна быть заземлена.

Важно понимать разницу между заземленным проводом и заземляющим проводом оборудования. Заземленный провод , обычно называемый нейтралью, является нормальным проводником цепи с током к заземленной стороне источника питания и всегда белого или естественного серого цвета.Заземляющий провод оборудования соединен со всем оголенным металлом и пропускает ток только в случае неисправности, за исключением обычных небольших токов утечки. Он может быть голым, но если он изолирован, он всегда зеленый или зеленый с желтыми полосами.

Оба этих проводника подключены к заземлению системы питания на служебном входе, но они выполняют совершенно разные функции, и их нельзя менять местами. Они также никогда не должны соединяться друг с другом или с землей нигде, кроме служебного входа.

Требования к заземлению в пределах объекта охватываются статьей 250 NEC . Новое приложение E было добавлено в код 1999, код , который содержит перекрестную ссылку на соответствующие номера разделов в версии 1996 года. Все ссылки здесь относятся к 1999 Код . Раздел 250-2 (d) описывает характеристики пути короткого замыкания следующим образом: «Путь тока короткого замыкания должен быть постоянным и электрически непрерывным, должен быть способен безопасно переносить максимальное замыкание, которое может возникнуть на нем, и должен иметь достаточно низкий импеданс, чтобы облегчить работа устройств максимального тока в аварийных условиях.Заземление не должно использоваться в качестве единственного заземляющего проводника оборудования или пути тока короткого замыкания ».

Основные концепции

Невозможно даже начать охватывать все подробные требования Кодекса , касающиеся заземления и заземления. Вместо этого будут рассмотрены базовые концепции, лежащие в основе них, поскольку после их освоения становится намного проще понять и применять требования Кодекса .

Ток короткого замыкания из незаземленного питающего проводника течет по пути с наименьшим полным сопротивлением обратно к заземленному питающему проводу.Поскольку существует переменный ток, используется термин импеданс, а не сопротивление, что становится особенно важным для длинных проводов или систем с большей пропускной способностью, где индуктивные эффекты могут быть значительными. Если существует несколько путей, ток разделяется, причем наибольший ток проходит через наименьшее сопротивление.

Рис. 2. Напряжение повреждения зависит от тока повреждения и сопротивления заземления.

Для ограничения напряжения короткого замыкания до безопасного уровня требуется путь заземления с низким сопротивлением.Напряжение в месте замыкания на землю относительно земли можно определить по току короткого замыкания и импедансу цепи заземления (рис. 2). Например, при токе короткого замыкания 100 А полное сопротивление заземления 0,1 Ом будет давать 10 В в месте короткого замыкания. Если импеданс заземления увеличится до 1 Ом, например, из-за корродированной клеммы, напряжение в месте повреждения увеличится до 100 В, что будет опасно.

Для протекания достаточного тока короткого замыкания и срабатывания устройства защиты цепи необходим путь заземления с низким сопротивлением.Максимальный протекающий ток короткого замыкания определяется по напряжению холостого хода и общему сопротивлению контура (рис. 3). Импеданс контура - это сумма всех импедансов в неисправной цепи, включая трансформатор питания, незаземленные проводники и цепь заземления. Например, импеданс контура 1 Ом в цепи 120 В позволит протекать 120 А, что приведет к очень быстрому срабатыванию устройства защиты цепи. Если бы импеданс увеличился до 5 Ом, ток снизился бы до 24 А, что могло бы протекать бесконечно по 30-амперной цепи.

Рис. 3.

Заземляющий путь должен выдерживать максимально допустимый ток короткого замыкания. Очевидно, что если цепь заземления размыкается при возникновении неисправности, то она не может выполнять свою функцию.

Земля - ​​плохой проводник. Его сопротивление значительно зависит от типа почвы, влажности и температуры. Он не может надежно обеспечить необходимый заземляющий тракт с низким сопротивлением. Поэтому необходимо использовать металлические проводники.

Заземление оборудования

Все открытые нетоковедущие проводники, включая кабельные каналы, кабелепровод, арматуру и корпуса, должны быть заземлены.Заземляющие проводники оборудования могут быть проводами, металлическими кабелепроводами, электрическими трубками или гибкими кабелепроводами с утвержденными фитингами. Все концевые заделки проводов должны быть одобренного механического типа или сварными. Сечение заземляющих проводов первоначально выбирается в соответствии с таблицей 250-122 NEC, исходя из номинала максимальной токовой защиты цепи. Их необходимо увеличить выше этих размеров, если размеры проводников цепи увеличены по сравнению с их стандартными размерами (например, для уменьшения падения напряжения) на такое же соотношение площадей, что и проводники цепи.

Заземляющий провод всегда должен проходить вместе с другими проводниками цепи, которую он защищает, поскольку магнитное взаимодействие между проводниками приводит к снижению импеданса. Хотя в качестве заземляющего проводника можно использовать кабелепровод или металлическую трубку, он создает цепь с более высоким импедансом и менее надежен, чем провода, из-за более низкой проводимости и резьбовых соединений. По возможности следует использовать медные провода для заземления.

Склеивание

Соединительные перемычки используются для обеспечения надежного электрического соединения между отдельными проводящими частями и могут состоять из провода, оборудования, кабелепровода или фитингов.Все фитинги, которые используются для склеивания, должны быть одобрены для применения национально признанным агентством и иметь соответствующую маркировку, а также должны быть правильно установлены.

Некоторые особые ситуации соединения

- Неметаллический кабелепровод, фитинги или коробки могут прервать цепь заземления через кабелепровод. Вокруг них должна быть установлена ​​перемычка, чтобы гарантировать, что отдельные части электрически соединены.

- Эксцентричные или концентрические уменьшающие заглушки на большинстве существующих коробок не могут надежно пропускать ток короткого замыкания, поскольку маленькие выступы, которые соединяют их с коробкой, будут действовать как предохранители и плавятся.Между кабелепроводом и коробкой необходимо использовать перемычки. Некоторые коробки теперь доступны с одобренными уменьшающими заглушками, для которых не требуются перемычки, и отмечены для их идентификации.

- Краска и другие непроводящие покрытия предотвращают контакт между корпусом и фурнитурой. Хороший контакт должен быть получен путем соскабливания покрытия, использования одобренных фитингов или перемычек.

- Для гибкого кабелепровода и фитингов, не одобренных для заземления, требуется перемычка.

- Требования к склеиванию оборудования, поставляемого на заводе, выполняются производителем. Методы могут включать в себя перемычки (рис. 4), чистый контакт металл-металл, звездообразные шайбы для прокалывания непроводящих покрытий и заземляющие проводники в шнурах питания. При техническом обслуживании или ремонте оборудования их необходимо заменять должным образом.

Фиг.4

- Если есть сомнения относительно наличия надежного электрического соединения, следует использовать перемычку.

Качество электроэнергии

С распространением чувствительного электронного и компьютеризированного оборудования, а также производителей гармоник, таких как твердотельные накопители, проблема электрического «шума» приобрела гораздо большее значение. Шум состоит из более высоких частот и, следовательно, имеет более высокий импеданс от цепи заземления. Гораздо большее внимание к деталям, таким как размер заземляющего проводника и целостность всех перемычек, необходимо для обеспечения низкоомного пути для помех.Медные провода обязательны. Идеально хорошее заземление может оказаться совершенно неэффективным для устранения шума.

NEC касается только аспектов безопасности наземной системы, а не влияния на работу компьютеров или другого оборудования. Хотя идеальным устройством для чувствительного компьютера может быть изолированный провод заземления к отдельному заземляющему электроду, этот подход явно нарушает код , код , поскольку путь повреждения должен проходить через землю.Одним из возможных решений является изолированный провод заземления, проложенный непосредственно к вспомогательному оборудованию, без промежуточных соединений (рис. 5). Хотя кабелепровод изолирован от нагрузочного оборудования для предотвращения паразитных токов, он все же должен быть подключен к системе заземления. Иногда требуются другие, более сложные механизмы.

Рис. 5.

Тестирование

При анализе наземных систем важно использовать надлежащее испытательное оборудование и правильно понимать и интерпретировать показания.Например, очень популярным испытательным оборудованием является тестер розеток, состоящий из трех неоновых ламп в съемном корпусе. Хотя это устройство указывает на проблемы, такие как перевернутая проводка или обрыв провода, оно бесполезно для индикации целостности цепи заземления. Поскольку для зажигания неоновой лампы требуется всего несколько миллиампер, полное сопротивление земли в тысячи Ом дает «нормальный» показатель. Та же проблема возникает, если между линией и землей используется вольтметр с высоким сопротивлением. Он считывает почти полное линейное напряжение даже при очень высоком сопротивлении заземления.

Типичный импеданс цепи заземления должен составлять 0,25 Ом или меньше, а цепи с большей емкостью - намного меньше. Стандартный мультиметр не может быть использован для измерения этого, поскольку он не дает точных показаний сопротивления ниже 1 Ом, и на него сильно влияет сопротивление измерительных проводов. Вместо этого следует использовать омметр с низким сопротивлением, который может измерять менее 1 миллиом (1/1000 Ом) и может точно указывать сопротивление проводов, соединений и других компонентов на пути заземления.Хотя технически он измеряет сопротивление постоянному току, а не импеданс переменного тока (который всегда равен или больше), он все же дает очень полезную индикацию состояния системы заземления.

Доступны тестеры импеданса заземления, которые измеряют фактическое сопротивление переменного тока заземляющей проводки. Тестер импеданса контура переменного тока при подключении к системе, находящейся под напряжением, показывает не только импеданс всего контура на переменном токе, но и величину тока короткого замыкания, который может возникнуть в точке измерения.

Для измерения эффективного сопротивления заземляющих электродов необходимо использовать тестер сопротивления заземления, предназначенный для этой цели.В них обычно используются три или четыре зонда, закопанных в землю, для измерения тока и разности потенциалов, и на них сильно влияет расположение зондов относительно проверяемого электрода. Производители этих инструментов предоставляют информацию и проводят обучение по правильным методам нанесения.

Для оборудования, подключенного через шнур, тот же измеритель низкого сопротивления может использоваться для измерения сопротивления между заземляющим проводом шнура питания и корпусом оборудования, которое обычно должно быть равно 0.1 Ом или меньше. В идеале это измерение следует проводить при испытательном токе 25 А в соответствии с процедурами IEC. Эта сумма не только гарантирует, что соединение существует, но и может надежно проводить ток короткого замыкания. Доступны тестеры, которые выполняют этот тест на 25 ампер с помощью коротких импульсов тока, предотвращая любое случайное повреждение тестируемого оборудования.

Правильное заземление и соединение обеспечивают безопасность и надежность системы. Большинство ситуаций можно решить, применяя основные принципы, описанные выше.Результаты стоят затраченных усилий и могут спасти жизни.

- Отредактировал Джозеф Л. Фощ, старший редактор, 630-320-7135, [email protected]

Почему большинство систем переменного тока заземлены от источника

- Системные напряжения стабилизированы.

- Разность потенциалов на изоляционных материалах ограничена.

- Минимизированы напряжения, возникающие при замыкании на землю.

- Предусмотрен путь для токов короткого замыкания, позволяющий срабатывать защитным устройствам цепи.

Раздел 26 Электрооборудование 0526 Заземление и соединение - Физические объекты

1 Общий

1,1

Все заземляющие проводники должны быть изолированы и помещены в кабельный канал.

1,2

Все заземляющие провода должны быть «ЗЕЛЕНЫМИ».

1,3

Использование неизолированных проводов недопустимо, за исключением тех случаев, когда они расположены в фундаменте здания или где иное указано в Руководстве консультанта или в объеме работ.

1,4

Справочный раздел 27 Спецификации связи для требований к заземлению электросвязи.

2 питателя

2,1

Обеспечьте отдельный изолированный «ЗЕЛЕНЫЙ» заземляющий провод в каждом кабелепроводе. Прикрепите проводник к каждому концу закрывающей металлической дорожки качения.

3 отводных канала

3,1

Обеспечьте отдельный изолированный «ЗЕЛЕНЫЙ» заземляющий провод в каждом ответвлении цепи.

3.1,1

Для каждой электрической системы (208 В, 240 В, 480 В и т. Д.) Обеспечьте отдельный «ЗЕЛЕНЫЙ» провод, идущий от панели источника, для каждой системы в кабелепроводе.

4 Автобусный канал

4,1

Все концы фланцев шинопровода (при подсоединении кабеля) должны иметь заземляющую шину соответствующего размера с наконечником (при необходимости) для подключения к шине заземления оборудования в распределительных щитах, а также к «XO» в горловине силового трансформатора.

5 Панели панелей

5,1

Все щиты и распределительные щиты должны иметь шину заземления оборудования.

6 отдельно производных систем

6,1

Отдельно производные системы должны быть заземлены в соответствии с NEC

.

6,2

Если выводится нейтральный проводник, провод заземляющего электрода должен быть проложен к основной шине системы заземляющих электродов здания, общей системной шине заземляющих электродов или, как одобрено Purdue Engineering, к ближайшему доступному эффективно заземленному конструктивному элементу или эффективно заземленной металлической воде трубка.

6.2.1

Шина системы заземляющих электродов главного здания

6.2.2

Система заземляющих проводов с общим электродом, спроектированная в соответствии с описанием в NEC 250.30 (A) (4) 2008 года для таких приложений, должна быть предусмотрена в каждом помещении с электрооборудованием, содержащем оборудование вспомогательного уровня распределения. Изучите предлагаемые места с Purdue Engineering.

6.2.3

В некоторых случаях шина заземления прибора может быть установлена ​​в определенных электрических помещениях. Проверяйте с Purdue Engineering для каждого проекта.Система заземления прибора должна быть отдельной (без гальванической развязки), за исключением случаев, когда она подключена к системной шине заземляющего электрода здания.

6.2.4

Ближайший доступный эффективно заземленный элемент конструкции

6.2.5

Металлический заземляющий электрод для водопроводной трубы, как указано в NEC 250.30 (A) (1) 2008 года.

Примечание: Этот метод заземления должен утверждаться Purdue в индивидуальном порядке.

6,3

В некоторых случаях в некоторых электрических помещениях может быть установлена ​​система заземления приборов.Проверяйте с Purdue Engineering для каждого проекта. Система заземления прибора должна быть отделена от системы электрического заземления, за исключением случаев, когда она подключена к системной шине заземляющего электрода главного здания. Эта система предназначена для корпусного или статического заземления чувствительного электронного оборудования, а не для электрических соединений системы. Изучите предлагаемые места с Purdue Engineering.

7 Система заземляющих электродов

7,1

В главном электрическом помещении здания установите медную шину достаточной длины 1/4 на 4 дюйма (минимум два фута), чтобы она действовала в качестве точки подключения системы заземляющих электродов для всех заземляющих электродов, как описано в NEC 250.52 A. Шина должна быть способна принимать наконечники NEMA с 2-мя отверстиями. Эту шину следует называть шиной системы заземляющих электродов здания. На каждом проводе, оканчивающемся на нем, должна быть прикреплена этикетка, обозначающая противоположный конец проводника (т. Е. Заземление Ufer).

7,2

Все соединения должны быть выполнены с помощью экзотермической сварки Cadweld, внесенной в список UL.

7,3

Стержни заземления должны иметь длину 10 футов и диаметр дюйма.

8 корпусов для обслуживания трансформаторов в главном кампусе

8.1

Сетевые трансформаторы, обслуживающие здания главного кампуса, считаются отдельно производными системами. Соединение нейтрали будет происходить только на трансформаторе.

8,2

Перемычка заземления оборудования (стороны питания) будет проложена от X0 трансформатора здания к шине заземления первого средства отключения здания. Этот проводник будет непрерывным и представляет собой один кусок провода без промежуточных стыков. (Исключение: когда фидером от трансформатора является шинопровод, допускается использование заводских шинных соединений (в шинной шине, служащей перемычкой на стороне питания).

8,3

Размер должен быть основан на NEC или 12,5 процента от наибольшего фазового проводника, в зависимости от того, что больше.

8,4

Трансформаторы должны быть соединены двумя заземляющими проводниками 4/0 AWG от контура заземления вокруг трансформатора.

8.4.1

Завершите заземляющие проводники, используя наконечники NEMA с 2-мя отверстиями в трансформаторе и экзотермическую сварку в контуре заземления.

8.4.2

Заземлите проводники на прямоугольные площадки заземления возле основания трансформатора: один находится в отсеке ВН, а другой - в отсеке НН.

8,5

Кроме того, каждый трансформатор должен иметь один провод заземляющего электрода (GEC) от системы заземления трансформатора (состоящей из заземляющего кольца и заземляющих стержней, окружающих трансформатор) до клеммы «X0» трансформатора. Размер GEC должен соответствовать NEC, но не менее 4/0 AWG без покрытия.

Здания для обслуживания 9 генераторов в главном кампусе

9,1

Генераторы, обслуживающие здания главного кампуса, могут быть, а могут и не быть отдельно производными системами.Проконсультируйтесь с инженером-электриком Purdue о предпочтениях в каждой установке.

9,2

Для отдельно созданных генераторов соединение нейтрали будет происходить только на генераторе.

9.2.1

Для генераторов, которые являются отдельно производными системами, соединительная перемычка оборудования (стороны питания) будет проложена от X0 генератора к шине заземления первого средства отключения. Этот проводник будет непрерывным и представляет собой один кусок провода без промежуточных стыков.

9.2.2

Размер должен быть основан на NEC или 12,5 процента от наибольшего фазового проводника, в зависимости от того, что больше.

9.2.3

Кроме того, каждый генератор должен иметь один GEC (провод заземляющего электрода) от системы заземления генератора (состоящей из заземляющего кольца и заземляющих стержней, окружающих генератор) до клеммы «X0» генератора. Размер GEC должен соответствовать NEC, но не менее 4/0 AWG для обеспечения механической прочности.

9,3

Если генераторы не являются отдельно производными системами, убедитесь, что нейтраль и земля не соединены.

9,4

Генераторы

должны быть соединены двумя заземляющими проводниками 4/0 AWG от контура заземления вокруг генератора. Оба заземляющих проводника 4/0 должны заканчиваться (наконечниками с отверстиями NEMA 2) на каждой из прямоугольных площадок заземления рядом с основанием корпуса генератора.

10 Заземление здания

10,1

По усмотрению A / E и по согласованию с Purdue Engineering, здания должны быть окружены неизолированным многожильным медным проводом соответствующего размера.

10.1.1

Проводник должен быть заглублен за пределами фундамента здания и ниже линии возможного промерзания, но не менее чем на 36 дюймов ниже уровня готовой конструкции.

10.1.2

А (10 футов) десятифутовый заземляющий стержень, сваренный медной сваркой, должен быть установлен в каждом углу и с интервалами от 100 до 150 футов вдоль стен здания.

10.1.3

Контур заземления должен быть подключен к основному заземляющему электроду здания.

10,2

Все заземления должны быть подключены к контуру заземления.Контур заземления должен быть подключен к основному заземляющему электроду здания.

10,3

Все открытые колонны здания должны быть подключены к этому контуру заземления.

10,4

Скрытые колонны здания должны быть заземлены с интервалом от 50 до 75 футов вокруг здания.

10,5

Все соединения заземляющих проводов с колоннами, заземляющими стержнями и т. Д. Должны выполняться экзотермической сваркой, внесенной в список UL, или утвержденными для механических соединений обжимом.

11 Уфер Заземление

11.1

Системы заземления Ufer должны соответствовать Статье 250 Раздела III NEC. Фундаментная арматура подключается к колонне здания и контуру заземления. Контур заземления должен быть подключен к основному заземляющему электроду здания. Все соединения заземляющих проводов с колоннами, фундаментной арматурой, другими заземляющими проводниками и т. Д. Должны выполняться экзотермической сваркой, внесенной в список UL.

11,2

Всегда должен присутствовать внешний электрод, чтобы предотвратить повреждение фундамента, которое может возникнуть в результате высоких токов замыкания.

12 Триада и другие устройства заземляющих стержней

12,1

Если установлены два или более заземляющих стержня, расстояние должно быть как минимум в два раза больше длины стержня между любыми двумя соседними заземляющими стержнями.

13 Типовая схема заземления

13,1

Ниже приведена схема заземления типичного трансформатора с одной контактной площадкой, как отдельно производной системы. Это предпочтительный метод заземления Университета Пердью. Адаптировать по мере необходимости для конкретного приложения и согласовать с требованиями Division 33 Utilities.

Эффективное заземление оборудования | EPG Companies Inc.

Запрос о заземлении оборудования

Эта статья Криса К. Клерономоса
из ECOS Electronics Corporation

Эффективное заземление оборудования

Схема заземления оборудования

Качество электропроводки и заземления на объекте, содержащем чувствительное электронное оборудование, является одним из наиболее важных и наименее понятных аспектов электроэнергетических систем.Правильно спроектированные и обслуживаемые системы электропроводки и заземления необходимы для обеспечения безопасности персонала и защиты данных и телекоммуникационного оборудования. Эффективное заземление создает электрическую среду, которая приводит к низким уровням электрических шумов и повышает безопасность и производительность чувствительного электронного оборудования. Качество заземления и проводки следует рассматривать с точки зрения всей системы. Система заземления объекта состоит из системы заземления и системы заземления оборудования.Кроме того, система молниезащиты и система эталонных сигналов играют роль в общей защите и производительности. По мере распространения электронных нагрузок в промышленных энергосистемах возрастают проблемы, связанные с мощностью. Электропитание и заземление чувствительного оборудования вызывает все большую озабоченность у проектировщиков промышленных энергосистем. К сожалению, это беспокойство часто возникает после запуска, когда электронные устройства начинают выходить из строя.

Определения заземления

В контексте электрических систем слово «земля» обычно заставляет людей думать о подключении к водопроводной трубе или заземляющему стержню.Национальный электрический кодекс определяет заземление как проводящее соединение, будь то намеренное или случайное между электрической цепью или оборудованием и землей или каким-либо проводящим телом, которое служит вместо земли. Заземленный определяется как «подключенный к земле или к какому-либо проводящему телу, которое служит вместо земли». Обратите внимание, что фраза «или какое-нибудь проводящее тело, которое служит вместо земли» появляется в определениях для заземления и заземления. Это означает, что заземление может быть установлено без подключения к земле, пока выполняется подключение к «некоторому проводящему телу, которое служит вместо земли».Чтобы четко понимать назначение заземления электрических систем и оборудования, предмет заземления необходимо разделить на две категории: заземление и заземление оборудования. Люди часто путают эти два. Такая путаница может привести к неправильному применению методов заземления и заземления оборудования, а также к созданию системы, которая будет дорогостоящей, неэффективной и даже небезопасной. Различные компоненты оборудования и систем заземления показаны на Рисунке 1 ниже.

Система заземления

Основное назначение системы заземления - защита электрической системы и оборудования от повышенных напряжений, вызванных молнией и случайным контактом с системами более высокого напряжения.Заземление также предотвращает накопление статических зарядов на оборудовании и материалах.

Дополнительное назначение заземления - установить опорную точку нулевого напряжения для системы. Эта цель важна для обеспечения надлежащей работы чувствительного электронного и коммуникационного оборудования.

В системе заземляющих электродов сопротивление состоит из трех компонентов: (а) сопротивления электрода и соединений с ним, (б) контактного сопротивления электрода с прилегающей землей и (в) сопротивления земли. окружающий электрод.Большая часть сопротивления исходит от земли, окружающей электрод. Таким образом, удельное сопротивление почвы вокруг электрода является ключевым фактором, определяющим сопротивление системы.

Удельное сопротивление почвы сильно различается, на него влияют влажность и температура. Существует три стратегии, которые могут помочь преодолеть высокое удельное сопротивление почвы: (а) загнать электрод глубже, (б) использовать несколько электродов, соединенных вместе, или (в) обработать почву. Удвоение глубины любого электрода снизит сопротивление системы примерно на 40%.Однако во многих областях из-за коренных пород или других почвенных условий может оказаться невозможным продвинуть электрод на желаемую глубину.

Если глубокое введение электрода нецелесообразно, можно использовать несколько электродов, соединенных параллельно. Однако несколько электродов обычно подчиняются закону параллельных резисторов. Таким образом, чтобы добиться снижения сопротивления на 50%, электроды должны быть разнесены на расстояние, примерно в десять-двадцать раз превышающее их глубину вбивания, что непрактично. Размещение электродов на расстоянии, вдвое превышающем их глубину, приводит к снижению сопротивления примерно на 40% каждый раз, когда количество электродов удваивается.

Если глубокое вбивание или использование нескольких электродов нецелесообразно, рассмотрите возможность химической обработки почвы для снижения сопротивления. Выкопайте траншею диаметром от трех до четырех футов вокруг электрода и заполните ее солью (например, сульфатом магния, сульфатом меди или каменной солью). Примечание: используйте этот метод только после того, как исчерпаете все остальные. Поскольку обработка почвы может привести к загрязнению местного водоснабжения, прежде чем продолжить, получите разрешение соответствующих природоохранных органов.

Одним из преимуществ обработки почвы для снижения сопротивления является то, что она сводит к минимуму сезонные колебания. Недостатком является то, что соль будет постепенно рассеиваться и потребует замены. Второй недостаток заключается в том, что коррозия электродов может происходить при определенных условиях почвы и влажности.

Система заземления оборудования

Заземление оборудования выполняет несколько функций. Во-первых, это основной способ защиты персонала от поражения электрическим током. Во-вторых, это наиболее важное общее звено для всех электронных компонентов системы передачи данных, телекоммуникаций или управления технологическими процессами.По этой причине неэффективное заземление оборудования приводит к тому, что оборудование работает при разных опорных электрических напряжениях заземления. Эти различия в напряжении между компонентами или узлами системы нарушают качество потока данных и могут привести к полной остановке сети. Когда промышленное оборудование для управления технологическими процессами испытывает внезапную необъяснимую остановку системы, вероятно, существует проблема с заземлением. Исследовательский институт электроэнергетики (EPRI) заявляет, что «более 80% всех отказов электронных систем, которые связаны с аномалиями питания, на самом деле являются результатом ошибок электропроводки или заземления или вызваны другими нагрузками на предприятии заказчика.”

Эффективное заземление оборудования преследует несколько целей:

  1. Свести к минимуму появление любых напряжений на корпусах оборудования. Это обеспечивает защиту от серьезных ударов или поражения электрическим током персонала, контактирующего с корпусом.
  2. Обеспечивает преднамеренный путь с достаточной допустимой нагрузкой по току и низким импедансом для обеспечения быстрой срабатывания максимальной токовой защиты схемы в условиях замыкания на землю.
  3. Установить и поддерживать точку отсчета нулевого напряжения в месте расположения чувствительного электронного оборудования, которая будет способствовать надлежащим условиям подземного замыкания.

В Разделе 250-51 Национального электротехнического кодекса (NEC) обсуждается эффективное заземление. NEC утверждает, что эффективный путь заземления - путь к земле от цепей, оборудования и металлических кожухов для проводников - должен;

  1. Будьте постоянными и непрерывными.
  2. Обладает способностью безопасно проводить любой ток короткого замыкания, который может быть наложен на него.
  3. Имеют достаточно низкий импеданс, чтобы ограничить напряжение относительно земли и облегчить работу защитных устройств в цепи.

NEC также сообщает:

  1. Заземление не должно использоваться в качестве единственного заземляющего проводника оборудования.

Для достижения поставленных целей система заземления оборудования должна соответствовать всем требованиям четырех кодов. Несоблюдение всех четырех требований означает отсутствие эффективного заземления; система небезопасна.

Защита от сбоев

Правильно установленная система заземления оборудования защищает персонал от поражения электрическим током, а оборудование - от повреждений или разрушения в результате неисправностей или электрических помех.

Установите проводники заземления оборудования с достаточной емкостью и низким сопротивлением по всей системе распределения переменного тока, чтобы устройства максимального тока (предохранители и автоматические выключатели) срабатывали незамедлительно при возникновении замыкания на землю. По всей распределительной системе заземляющие провода оборудования должны проходить в том же кабелепроводе или кабелепроводе, что и питающие провода. NEC - разделы 250-51, 250-91 (b) и другие - требует этого, чтобы гарантировать пути с низким импедансом для токов короткого замыкания.

Когда происходит замыкание на землю, следующие сегменты системы заземления должны пропускать практически весь ток замыкания:

  • Провод заземления оборудования (защитное заземление)
  • Перемычка основная склеивающая
  • Заземленный провод (нейтраль) от вспомогательного оборудования до нейтрали трансформатора

Следующий сегмент системы заземления не должен пропускать ток повреждения:

  • Провод заземляющего электрода (заземлитель)
  • Заземляющий электрод (заземляющий электрод).

Эффективное заземление обеспечивает мгновенное срабатывание устройства максимального тока при замыкании на землю. Когда происходит случайный контакт между электрическим проводником под напряжением и металлической рамой или шкафом, на раму или шкаф подается то же напряжение, что и на провод под напряжением. Чтобы мгновенно устранить это напряжение, система заземления оборудования должна обеспечивать путь с низким импедансом от корпуса или шкафа под напряжением к нулевому потенциалу, переходу опорного заземления в служебное оборудование или к вторичной обмотке отдельно созданной системы.

Эффективное заземление

На рисунке 2 ниже показана типичная цепь 120 В переменного тока, работающая в нормальных условиях. Система заземляющих электродов устанавливает опорное напряжение нулевого напряжения на главной панели, в то время как система заземления оборудования расширяет этот опорный сигнал нулевого напряжения от главной панели до металлического корпуса (шкафа) оборудования.

В нормальных условиях эксплуатации ток нагрузки течет по горячим и нейтральным проводникам, а по заземляющему проводнику оборудования ток не течет.Провод заземления оборудования к корпусу оборудования расширяет опорное нулевое напряжение, установленное заземляющим электродом на основном обслуживающем оборудовании. Поддержание нулевого напряжения на корпусе оборудования защищает оператора от поражения электрическим током. Заземление оборудования также обеспечивает опорное напряжение нулевого напряжения для логических цепей оборудования.

На рисунке 3 ниже показана та же цепь 120 В переменного тока в условиях замыкания на землю. Когда происходит замыкание на землю, заземляющий провод оборудования становится обратным каналом для тока короткого замыкания, который течет обратно к источнику.Кожух оборудования будет иметь ударное напряжение, в результате чего ток будет течь через тело оператора до тех пор, пока автоматический выключатель не сработает и не откроет цепь. Следовательно, необходим путь с низким импедансом, так как ток короткого замыкания вызывает мгновенное срабатывание автоматического выключателя.

Время срабатывания устройства максимального тока зависит от протекания тока через устройство. Чем выше сила тока, тем меньше время работы. Высокое сопротивление в проводе заземления оборудования снижает уровень тока короткого замыкания и увеличивает время работы устройства.В этом состоянии оператор подвергается длительному и опасному электрошоку, который может привести к летальному исходу. Достаточно низкий импеданс заземляющего проводника увеличивает ток короткого замыкания и сокращает время срабатывания устройства максимального тока. Это значение импеданса никогда не должно превышать абсолютное максимальное значение в один (1) Ом. Важно отметить, что это показание (в омах) является импедансом, а не сопротивлением. Следовательно, его измерение требует использования тестера импеданса (переменного тока), который измеряет импеданс проводника от точки испытания до основной электрической сети, при этом точно диагностируя другие проблемы с проводкой в ​​цепи.Не используйте омметр или цифровой мультиметр (DMM).

Тестеры розеток

, цифровые вольтметры и цифровые мультиметры широко используются неверно при тестировании систем питания переменного тока для количественной оценки импеданса. Хотя цифровые мультиметры способны количественно определять значения сопротивления постоянному току, они не могут измерять импеданс в электрических системах переменного тока. Импеданс - это векторная сумма сопротивления, индуктивного реактивного сопротивления и емкостного реактивного сопротивления. При проверке импеданса не предполагайте какой-либо конкретной связи между реактивным сопротивлением и сопротивлением.В цепи переменного тока сопротивление и импеданс не равны.

Уровень безопасности персонала, защиты оборудования и производительности оборудования напрямую зависит от полного сопротивления заземляющего проводника оборудования. При обеспечении максимальной токовой защиты в условиях замыкания на землю система заземляющих электродов не играет никакой роли в работе системы заземления оборудования. Попытка использовать систему заземляющих электродов для достижения целей безопасности системы заземления оборудования может оказаться фатальной.

Самым важным, но часто упускаемым из виду этапом установки электронного оборудования является плановая проверка электрической проводки и системы заземления, питающей электронное оборудование. Без такой проверки необнаруженные проблемы могут проявляться в виде периодических неисправностей и отказов.

Рекомендации, которым необходимо следовать

В таблицах 1 и 2 показаны максимально допустимые сопротивления заземляющих или нейтральных проводников. Указанные значения соответствуют требованиям стандартов NEC, Canadian Electric Code и IEEE.Используя соответствующие испытательные инструменты, всегда проверяйте, что качество заземляющих или нейтральных проводов соответствует допустимым значениям импеданса. Если измерения показывают чрезмерное сопротивление, немедленно примите меры, чтобы найти и устранить неисправность, а также затянуть все соединения. Некоторые обстоятельства могут потребовать изменения маршрута проводников.

Целью использования специализированных инструментов является точное и быстрое обнаружение ошибок проводки, проводников низкого качества (с высоким сопротивлением) и других проблем, вызывающих проблемы с безопасностью и производительностью оборудования.Максимально допустимое значение импеданса для безопасности персонала для цепи на 15 А составляет 1 (один) Ом, а для характеристик оборудования - четверть (0,25) Ом. По мере увеличения номиналов автоматического выключателя значения импеданса становятся ниже.

Следуя рекомендациям IEEE Emerald Book, Рекомендуемая практика для питания и заземления чувствительного электронного оборудования, вы можете повысить безопасность персонала и производительность оборудования. Сделайте следующие шаги:

  1. Проведите проверочный тест проводки.Измерьте все напряжения, ток, чередование фаз, баланс нагрузки, полное сопротивление заземляющего проводника оборудования, полное сопротивление нейтрали и наличие необходимого соединения нейтраль-земля на обслуживающем оборудовании.
  2. Проверка на наличие ошибок проводки на интересующей панели или розетке. Проверьте отсутствие соединений, в том числе обрывов проводов заземления оборудования, обрывов нейтрали и обрывов фаз.
  3. Проверка на ненадлежащие соединения, в том числе с обратной фазой / нейтралью или обратной нейтралью / заземлением оборудования.
  4. Тест на плохое качество соединений, который также можно определить при измерениях напряжения и импеданса.

При визуальном осмотре спросите следующее:

  1. Панель предназначена только для обслуживания электронного оборудования?
  2. Используется ли провод надлежащего размера для проводников фидера и ответвительной цепи?
  3. Размер нейтрали фидера составляет 200% от диаметра провода токоведущих проводов?
  4. Проложен ли изолированный провод заземления оборудования с фидерами?
  5. Установлены ли отдельные параллельные цепи для питания только электронных нагрузок?

Задокументируйте все результаты испытаний в отчете о сертификации объекта.Это станет эталоном для любого будущего тестирования. Приобретайте устройства для кондиционирования и защиты питания только после того, как убедитесь, что проводка и заземление объекта исправны и имеют высокое качество.

Составление четких и кратких спецификаций, охватывающих требования к заземлению чувствительного электронного оборудования, и дополнение этих спецификаций схемами минимизируют количество неправильных установок на вашем предприятии. Помните, выполняйте проверку и текущие испытания электропроводки и заземления с помощью тестеров сопротивления заземления.Это последний, важный шаг для обеспечения работоспособности локальных сетей и электронных систем, а также безопасности персонала.

Компоненты оборудования и системы заземления:

  • Заземленный проводник (нейтраль): Система или провод цепи, который намеренно заземлен.
  • Заземляющий проводник оборудования: Проводник, используемый для соединения не токоведущих металлических частей оборудования, кабельных каналов и других кожухов с заземленным проводом системы и / или проводником заземляющего электрода на обслуживающем оборудовании или в источнике отдельно выведенного система.
  • Перемычка основного заземления: Соединение между заземленным проводом (нейтралью) и проводом заземления оборудования (защитное заземление) на оборудовании служебного входа.
  • Провод заземляющего электрода (провод заземления): Проводник, используемый для соединения заземляющего электрода с проводом заземления оборудования (защитное заземление) и / или с заземленным проводом (нейтралью) на сервисном оборудовании или в источнике отдельно. производная система.
  • Электрод заземления: Токопроводящий (металлический) предмет, например стержень, пластина, труба и т. Д.утоплен в земле.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *