Содержание

Схемы зарядных устройств для аккумуляторов

Предлагаемое зарядное устройство предназначено для заряда аккумуляторов напряжением до 28 В и емкостью не более 20 А · ч, а также подзаряда аккумуляторов емкостью до 3000 А · ч.

Подзаряд аккумуляторов (компенсационный заряд) необходим в тех случаях, когда аккумуляторы длительное время не эксплуатируются. В результате саморазряда аккумуляторы разряжаются примерно на 1% за сутки (для разных типов аккумуляторов норма саморазряда своя). Компенсационный ток заряда можно рассчитать по приближенной формуле ImA*0,5С (С — емкость аккумулятора, А · ч), исходя из указанной нормы саморазряда 1 % за сутки и зарядки на 20% большей, чем саморазряд. К примеру, для аккумуляторов емкостью 60 А · ч компенсационный ток заряда составит 30 mA. Следует заметить, что при высокой температуре саморазряд аккумулятора больше в связи с увеличением плотности электролита.

В инструкциях по эксплуатации свинцовых стартерных аккумуляторов, если они длительное время не эксплуатируются, рекомендуется заряжать их 1 раз в месяц или же держать на постоянном подзаряде. Лучше — второй вариант, так как при этом аккумулятор всегда готов к эксплуатации. На предприятиях, где используются резервные дизель-генераторы для стартерных аккумуляторов, применяется именно второй вариант.

В разработанном зарядном устройстве (рис.1) заряд производится стабильным током. Стабилизация тока происходит за счет включения балластных конденсаторов в цепь выпрямительного моста. Идея применения конденсатора как балластного сопротивления не новая, однако обычно конденсаторы включают в первичную обмотку силового трансформатора, а это приводит к тому, что устройство нельзя включать без нагрузки (при обрыве в цепи нагрузки происходят переходные процессы, и на обмотке силового трансформатора появляется высокое напряжение, что приводит к выходу из строя его или балластных конденсаторов).

Со вторичной обмотки (две обмотки включены последовательно) силового трансформатора Т1 переменный ток через один или несколько включенных параллельно конденсаторов С1 …С11 поступает на мостовой выпрямитель на диодах VD6…VD9, а с выхода выпрямителя через тиристор VS2, амперметр РА1 и предохранитель FU2 — на клемму “+” аккумулятора. Клемма аккумулятора подсоединяется к мостовой схеме непосредственно.

Управляющее напряжение для открывания тиристора VS2 формируется выпрямителем на диодах VD1…VD4 от отдельной обмотки трансформатора. В “ручном” режиме тиристор VS1 закрыт, и положительное напряжение через резисторы R3 и R6 поступает на управляющий электрод тиристора VS2. Тиристор открывается и пропускает зарядный ток в аккумулятор. Необходимый ток задается коммутацией включателей SA2…SA11. К примеру, чтобы получить зарядный ток 140 mA, необходимо замкнуть SA4 и SA6.

В режиме “автомат” замыкается SA12. При этом напряжение с аккумулятора через последовательно включенные светодиод HL3 и стабилитрон VD10 подается на управляющий электрод тиристора VS1. При заряде и увеличении напряжения на аккумуляторе до 14,5 В “пробивается” стабилитрон VD10, зажигается светодиод HL3 и открывается тиристор VS1, который дальше остается в открытом состоянии, шунтируя цепь управления тиристора VS2. Тиристор VS2 также закрывается по окончании очередной полуволны сетевого напряжения и падении напряжения на аноде до нуля. Заряд аккумулятора прекращается.

Свечение светодиода HL2 сигнализирует о включении зарядного устройства в сеть, светодиода HL1 — о наличии тока заряда (компенсационного заряда), a HL3 — о прекращении заряда.

Работу зарядного устройства можно проверить в “ручном” режиме без аккумулятора, соединив накоротко выходные клеммы и по показаниям амперметра РА1 оценить ток заряда. Настройка зярядного устройства сводится к проверке показаний вольтметра, подключенного к аккумулятору. В момент автоматического откпючения заряда 12-вольтового аккумулятора на нем должно быть напряжение порядка 14,5 В.

Если возникает необходимость увеличить порог срабатывания, то последовательно со светодиодом HL3 включается германиевый диод (Д7Г) либо кремниевый (Д226Б). Падение напряжения на германиевом диоде будет 0,5 В, а на кремниевом— 0,7…1 В. Полярность включения диода такая же, как и светодиода HL3. Для уменьшения порога срабатывания необходимо заменить стабилитрон VD10 (Д814Д на Д814Г).

В качестве силового трансформатора Т1 использован трансформатор ТС90-1. Первичные обмотки включены полностью (две обмотки на 127 В последовательно). Таким образом, трансформатор может свободно выдерживать напряжение 254 В и совершенно не греется даже при круглосуточной работе при напряжении в сети 220 В. Можно использовать также унифицированный трансформатор типа ТПП295, который обеспечивает выходное напряжение 40,4 В (две обмотки по 20,2 В включены последовательно) при токе 1,84 А и 20 В (четыре обмотки по 5 В включены последовательно) при токе 1,84 А. Данный трансформатор также можно включить в облегченном режиме, соединив последовательно первичные обмотки на 127 В. Выходные напряжения при этом понизятся до 36 и 18 В соответственно.

Если исключить схему автоматического отключения аккумулятора и ограничить емкость заряжаемых аккмуляторов до 4 А · ч с напряжением до 28 В, то схема зарядного устройства значительно упрощается (рис.2). Это зарядное устройство можно применять и для подзаряда аккумуляторов емкостью до 360 А · ч. Амперметр в данной схеме практически не нужен, поскольку ток заряда (компенсационного заряда)определяется по замкнутым включателям SA2…SA7. Индикация заряда осуществляется светодиодом HL1.

Для упрощенной схемы подобрать силовой трансформатор еще проще. Здесь подойдет любой понижающий трансформатор для питания низковольтных электропаяльников на 36 В или на 42 В. Возможно также применение унифицированных трансформаторов типа ТАН2, ТАН14, которые имеют по две обмотки на 40 В и обеспечивают ток 0,2 А. Эти обмотки можно включить параллельно для умощ-нения. В этих трансформаторах есть также возможность включить первичные обмотки последовательно, но не по стандартной схеме (110 В+110 В), а по “полной” (127В+127В). При этом выходное напряжение понизится до 36 В. Подойдет также и трансформатор ТС90-1, который применялся в предыдущей схеме (рис.1). Схема на рис.2 приведена как раз с использованием трансформатора ТС90-1.

Предложенные схемы зарядных устройств безопасны в эксплуатации, имеют высокую надежность и экономичность в связи с тем, что на балластных конденсаторах активная мощность не расходуется.

Источник: Радиомир  Автор: Д.С.Бабын, пгт. Кельменцы Черновицкой обл.

Похожие радиосхемы и статьи:

Схема и описание устройства для подзарядки автомобильных аккумуляторов

 

Схема и описание простого самодельного подзарядного устройства для 12 вольтовых автомобильных аккумуляторов.


Для того чтобы длительное хранение не приводило к порче аккумуляторной батареи ее нужно постоянно поддерживать в заряженном состоянии. Заводы изготовители рекомендуют заряжать аккумуляторы током, равным 0,1 от номинальной емкости (т.е. для 6СТ-55 ток зарядки будет 5,5 А), но это годится только для быстрой зарядки “посаженной” батареи.

Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0,1. ..0,3 А (для 6СТ-55).

Если хранящийся аккумулятор, периодически, примерно раз в месяц, ставить на такую подзарядку на 2 – 3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации, даже через несколько лет такого хранения (проверено практически).

На рисунке показана простая схема самодельного”подзарядного” устройства.

Нажмите на рисунок для просмотра.

Схема подзарядного устройства представляет собой простой бестрансформаторный источник питания, выдающий постоянное напряжение 14,4 В, при токе до 0,4 А.

Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от электросети поступает на мостовой выпрямитель VD1 – VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 гасит избыток напряжения и ограничивает ток до величины не более 0,4 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения.

Аккумуляторная батарея подключается параллельно VD5.

При саморазрядке батареи до напряжения ниже 14,4 В начинается ее “мягкая” зарядка слабым током, причем величина этого тока находится в обратной зависимости от напряжения на аккумуляторе. Но в любом случае (даже, при коротком замыкании) не превышает 0,4 А. При зарядке батареи до напряжения 14,4 В зарядный ток прекращается вовсе.

В устройстве использованы: конденсатор С1 – бумажный БМТ или любой неполярный на 3…5 мкФ и напряжение не ниже 300 В, С2 – К50-3 или любой электролитический на 100 – 500 мкФ, на напряжение не ниже 16 В; диоды выпрямителя VD1 – VD4 – Д226, КД105, КД208, КД209 и т.п.; стабилитрон Д815Е или другие на напряжение 14…14,5 В при токе не ниже 0,7 А.

Все устройство для подзарядки можно собрать в корпусе от сгоревшего сетевого адаптера для телевизионной игровой приставки. К аккумулятору оно подключается при помощи длинного кабеля (телефонный двухпроводный кабель) с большими “крокодилами” на концах.

При эксплуатации устройств подобного типа необходимо соблюдать правила безопасности при работе с электроустановками.

Читать далее – Схема автоматического зарядно-десульфатирующего устройства

Популярные схемы зарядных устройств:

Схема тиристорного зарядного устройства

Десульфатирующее зарядное устройство

Простое зарядное устройство

Схема автомата включения-выключения зарядного устройства


Автоматическое зарядное устройство для автомобильных аккумуляторов

Источники питания

 

В статье описано зарядное устройство для автомобильных аккумуляторов, позволяющее устанавливать зарядный ток до 10 А и автоматически отключать зарядку аккумулятора при достижении установленного напряжения на нем. В статье приведены принципиальные схемы, рисунки монтажа деталей, печатной платы, конструкции устройства и дана методика его наладки.

 

Большинство зарядных устройств позволяет устанавливать только требуемый ток заряда. В простых устройствах этот ток поддерживается в ручном режиме, а в части устройств он поддерживается автоматически стабилизаторами тока. При использовании таких устройств необходимо следить за процессом зарядки аккумулятора до предельно допустимого напряжения, что требует соответствующего времени и внимания. Дело в том, что перезаряд аккумулятора приводит к кипению электролита, что сокращает срок его эксплуатации. Предлагаемое зарядное устройство позволяет устанавливать ток заряда и автоматически отключать его при достижении установленной величины напряжения

Зарядное устройство построено на базе промышленного выпрямителя типа ВСА-6К (можно использовать любой выпрямитель подходящей мощности), преобразующего переменное напряжение 220 В в фиксированные постоянные напряжения 12 В и 24 В, которые переключаются пакетным переключателем. Выпрямитель рассчитан на ток в нагрузке до 24 А и не содержит сглаживающего фильтра.

Для заряда аккумуляторных батарей выпрямитель дополнен электронной схемой управления, позволяющей устанавливать необходимый ток заряда и величину номинального напряжения отключения зарядного устройства от аккумуляторной батареи при достижении полной зарядки.

Зарядное устройство, в основном, предназначено для зарядки автомобильных аккумуляторов напряжением 12 В и зарядным током до 10 А, а также может использоваться для других целей. Для зарядки указанных аккумуляторов используется выпрямленное напряжение 24 В, а для аккумуляторов напряжением 6 В – напряжение 12 В. Сглаживающий фильтр к выходу выпрямителя подключать нельзя, т. к, тиристор может закрываться только при достижении напряжения ноля, а открываться в нужный момент схемой управления.

Рис.1 Схема силовой части зарядного устройства

Принципиальная схема подключения выпрямителя ВСА-6К к плате электронной схемы управления и к внешним элементам приведена на рис.1. Выводы зарядного устройства для подключения аккумуляторной батареи соединены со штатными клеммами лицевой панели выпрямителя ХЗ и Х4. Для использования фиксированных постоянных напряжений 12 В или 24 В при использовании устройства в других целях штатные выводы выпрямителя подключены к винтовым клеммам XI и Х2, расположенным на изоляционной планке рядом с предохранителем FU2, которые закрыты съемной крышкой правой боковой стенки аппарата.

Вольтметр выпрямителя соединен с клеммами подключения аккумуляторной батареи. Амперметр остается включенным в общую цепь «+» и измеряет как ток заряда аккумулятора, так и ток нагрузки, подключаемой к клеммам X1 и Х2. Напряжение на схему управления подается только при подключенной аккумуляторной батарее.

Поступающие в продажу аккумуляторные батареи, обычно, заряженные и залитые электролитом или сухозаряженные без электролита. Они требуют только до-зарядки до номинальной емкости. Эксплуатируемые автомобильные аккумуляторы также требуют дозарядки после техобслуживания или длительного простоя. Если случится необходимость формовать и заряжать аккумулятор с «нуля», то первоначально его необходимо подзарядить от источника с фиксированным напряжением 12 В через реостат, которым выставляется требуемый зарядный ток. После достижения напряжения на аккумуляторе порядка 10 В дальнейшие операции можно производить, подключив его к клеммам ХЗ, Х4.

Для последующего описания работы зарядного устройства следует кратко напомнить, что кислотные аккумуляторные батареи, которые используются в легковых автомобилях, содержат шесть банок. При достижении напряжения на банке 2,4 В начинается газовыделение взрывоопасной кислородно-водородной смеси, что свидетельствует о полной зарядке батареи. Газовыделение разрушает активную массу, содержащуюся в свинцовых аккумуляторных пластинах, поэтому для обеспечения максимального срока службы аккумулятора напряжение на каждом его элементе в среднем не должно превышать 2,3 В, учитывая также то, что внутренние сопротивления элементов и напряжения на них могут несколько отличаться друг от друга. В итоге это соответствует максимальному напряжению батареи 13,8 В, при котором зарядное устройство должно автоматически отключиться.

 Работа устройства

Принципиальная схема управления приведена на рис. 2, монтаж деталей показан на рис.З, а печатная плата – на рис.4. Схема управления состоит из усилителя постоянного напряжения на транзисторах VT1, VT2 , VT3 и схемы с аналогом однопереходного транзистора на VT4 и VT5, которая управляет тиристором VS1 для установки необходимого зарядного тока. Применение аналога вместо обычного однопереходного транзистора (например, КТ117А-Г) выгодно тем, что выбором транзисторов и резисторов R9 – R1 1 можно подбирать необходимые его характеристики.

При напряжении на аккумуляторе меньше 13,8 В транзистор VT3 закрыт, а VT2 и VT1 открыты. На вывод 6 платы управления поступают положительные полуволны напряжения с диодного моста выпрямителя, которые накладываются на постоянное напряжение аккумулятора и через открытый VT1, VD1, R8 подаются на тиристорный регулятор тока.

Рис.2 Схема управления

Он работает следующим образом: напряжение с R8 поступает на базу VT4 и через регулятор установки зарядного тока R12 на конденсатор С1.

В начальный момент VT4 и VT5 закрыты.

При заряде С1 до напряжения срабатывания аналога однопереходного транзистора с эмиттера VT5 подается импульс на управляющий электрод тиристора, который открывается и замыкает цепь заряда аккумулятора. При этом С1 быстро разряжается через низкое сопротивление открытого аналога однопереходного транзистора. При поступлении следующего импульса процесс повторяется. Чем меньше величина сопротивления R12 (рис.1), тем быстрее заряжается С1 и открывается VS1, в результате чего он дольше находится в открытом состоянии, и тем больше зарядный ток. Свечение VD1 сигнализирует о зарядке аккумулятора.

При достижении напряжения на аккумуляторе 13,8 В, что соответствует его полной зарядке, транзистор VT3 открывается, а VT2 и VT1 закрываются, напряжение на схеме управления тиристором исчезает, заряд аккумулятора прекращается и гаснет светодиод VD1.

Наладка устройства

Наладка зарядного устройства выполняется при открытой его лицевой панели и заключается в установке напряжения отключения зарядного тока. Для этого необходимо вольтметр класса точности не хуже 1,5 подключить к аккумулятору, убедиться в наличии на нем напряжения не менее 10,8 В (разряд кислотного аккумулятора напряжением 12 В до напряжения ниже 10,8 В не допускается), установить зарядный ток (величиной 0,1 емкости аккумулятора), а движок подстроечного резистора R5 установить в среднее положение и начать зарядку. Если зарядное устройство отключилось при напряжении на аккумуляторе меньше 13,8 В, то движок резистора R5 необходимо повернуть на некоторый угол против часовой стрелки до зажигания светодиода и продолжить зарядку до 13,8 В, а если устройство не отключилось при этом напряжении – повернуть движок по часовой стрелке до отключения устройства. При этом светодиод должен погаснуть. На этом наладка схемы заканчивается и лицевая панель устанавливается на свое место. Для дальнейшей эксплуатации зарядного устройства необходимо заметить, какое положение стрелки штатного вольтметра соответствует напряжению 13,8 В, чтобы не пользоваться дополнительным вольтметром.

Рис.З

Рис.4

Рис.5

Конструктивно плата управления, тиристор с охладителем, светодиод VD1 и переменный резистор R12 установки зарядного тока закреплены на внутренней стороне лицевой панели (рис.5) Радиатор тиристора закреплен на панели с применением двух текстолитовых полосок. К одной он прикреплен двумя винтами М3 с потайной головкой, а другая служит изоляционной прокладкой. Плата управления закреплена дополнительной гайкой на выводе амперметра, который не должен касаться ее печатных дорожек.

В заключение следует отметить, что данное устройство может обеспечить зарядный ток до 24 А при установке более мощного тиристора и предохранителя FU2 на ток 25 А.

Анатолий Журенков

Литература

1. С. Елкин Применение тринисторных регуляторов с фазоимпульсным управлением // Радиоамматор. – 1998.-№9.-С.37-38.

2. В. Воевода Простое тринисторное зарядное устройство // Радио. – 2001. – № 11. – С.35.

Смотрите так же: Зарядные устройства

 

 


Универсальный выпрямитель для зарядки аккумуляторов с электронным регулированием

Универсальный выпрямитель для зарядки аккумуляторов
с электронным регулированием

Первая конструкция. Выпрямитель (рис. 1) собран по мостовой схеме на четырех диодах Д1—Д4 типа Д305. Сила зарядного тока регулируется при помощи мощного транзистора Т1, включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор — эмиттер транзистора. Зарядный ток при этом можно изменять от 25 мА до 6 А при напряжении на выходе выпрямителя от 1,5 до 14 В.

Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 16 см2. Первичная обмотка рассчитана на включение в сеть с напряжением 127 В (выводы 1—2) или 220 В (выводы 1—3) и содержат 350+325 витков провода ПЭВ 0,35, вторичная обмотка—45 витков провода ПЭВ 1,5. Транзистор Т1 устанавливают на металлическом радиаторе, площадь поверхности которого должна быть не менее 350 см.кв с обеих сторон пластины при толщине ее не менее 3 мм.

Вторая конструкция. Схема, приведенная на рис. 2, отличается от предыдущей тем, что с целью увеличения максимального тока до 10 А транзисторы Т1 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5—Д6.

При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение 1, 12-вольтовых — в положение 2. Обмотки трансформатора содержат следующее количество витков: 1а—328 витков провода ПЭВ 0,85; 1б— 233 витка провода ПЭВ 0,63; II—41+41 виток провода ПЭВ 1,87; III —7+7 витков провода ПЭВ 0,63. Сердечник — УШ35 Х 55.

Бастанов В.Г.
“300 практических советов”, М.,1986г.

Как сделать зарядку для аккумулятора в домашних условиях?

Проблемы с аккумуляторами — не такое уж редкое явление. Для восстановления работоспособности необходима дозарядка, но нормальная зарядка стоит приличных денег, а сделать ее можно из подручного «хлама». Самое главное — найти трансформатор с нужными характеристиками, а сделать зарядное устройство для автомобильного аккумулятора своими руками — дело буквально пары часов (при наличии всех необходимых деталей). 

Блок: 1/4 | Кол-во символов: 420
Источник: https://elektroznatok.ru/oborudovanie/zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora-svoimi-rukami

Немного теории об аккумуляторах

Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

Как узнать состояние батареи

Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

  • 12.6…12.7 В — полностью заряжена;
  • 12.3…12.4 В — 75%;
  • 12.0…12.1 В — 50%;
  • 11.8…11.9 В — 25%;
  • 11.6…11.7 В — разряжена;
  • ниже 11.6 В — глубокий разряд.

Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

Правильная зарядка

Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

  • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
  • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

Блок: 2/4 | Кол-во символов: 2988
Источник: https://pochini.guru/tehnika/zaryadnoe-ustroystvo

Устройство самоделки

Итак, для сборки зарядного устройства нам потребуются следующие элементы:

  • Силовой трансформатор. Идеально подойдет деталь из старого телевизора. Обычно устанавливаются трансформаторы ТС-180-2, поэтому его мы и рассмотрим в статье.
  • Стеклотекстолитовая пластина.
  • Диоды Д242А – 4 шт., можно использовать изделия другой маркировки, но они обязательно должны быть рассчитаны на ток более 10 А.
  • Радиаторы для диода – 4 шт., площадь по 25 см2 (а лучше 32 см2).
  • Разборная электрическая вилка.
  • Медные провода сечением не меньше, чем 2,5 мм2
  • Предохранитель на 10 А и 0,5 А.
  • Паяльник.

Подготовив все материалы можно переходить к самому процессу сборки автомобильного ЗУ.

Блок: 2/4 | Кол-во символов: 683
Источник: https://samelectrik.ru/kak-sdelat-zaryadnoe-ustrojstvo-dlya-akkumulyatora.html

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Блок: 3/24 | Кол-во символов: 845
Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

Автоматические ЗУ для автомобильных аккумуляторов

Неопытным водителям лучше всего подойдет автоматическое зарядное устройство для автомобильного аккумулятора. Оно имеет ряд функций и защит, которые известят Вас о неправильном подключении полюсов и запретят подачу электрического тока.

Некоторые устройства рассчитаны на измерение емкости и уровня заряда аккумулятора, поэтому их применяют для зарядки аккумуляторных батарей любого типа.

Электрические схемы автоматических устройств содержат специальный таймер, благодаря которому можно осуществлять несколько различных циклов: полную зарядку, быструю подзарядку и восстановление аккумулятора. После завершения процесса устройство проинформирует об этом и отключит нагрузку.

Очень часто из-за неправильной эксплуатации аккумулятора на его пластинах образуется сульфитация. Цикл заряда-разряда не только избавляет батарею от появившихся солей, но и продлевает срок ее службы.

Не смотря на низкую цену современных ЗУ, случаются моменты, когда под рукой не оказывается должной зарядки. Поэтому вполне реально сделать зарядное устройство для автомобильного аккумулятора своими руками. Рассмотрим несколько примеров самодельных устройств.

Блок: 3/7 | Кол-во символов: 1184
Источник: https://za-rulem.org/tehobsluzhivanie/uhod/kak-sdelat-zaryadnoe-ustrojjstvo.html

Варианты самодельных зарядных устройств для АКБ

Перед тем как приступать к разработке зарядного устройства для АКБ, важно понимать, что такой аппарат является самоделкой и может негативно влиять на срок службы аккумулятора. Однако иногда такие аппараты попросту необходимы, так как позволяют существенно сэкономить деньги на приобретении заводских устройств. Рассмотрим, из чего же можно изготовить зарядные аппараты своими руками для аккумуляторов и как это сделать.

Зарядка из лампочки и полупроводникового диода

Этот способ зарядки актуален при таких вариантах, когда нужно завести автомобиль на севшем аккумуляторе в домашних условиях. Для того чтобы это сделать, понадобятся составляющие элементы для сборки аппарата и источник переменного напряжения 220 В (розетка). Схема самодельного зарядного устройства для автомобильного аккумулятора содержит следующие элементы:

  1. Лампа накаливания. Обычная лампочка, которая ещё именуется в народе как «лампа Ильича». Мощность лампы влияет на скорость заряда аккумулятора поэтому чем больше этот показатель, тем быстрее можно будет завести мотор. Оптимальный вариант – это лампа мощностью 100-150 Вт.
  2. Полупроводниковый диод. Элемент электроники, главным предназначением которого является проведение тока только в одну сторону. Необходимость данного элемента в конструкции зарядки заключается в том, чтобы преобразовывать переменное напряжение в постоянное. Причём для таких целей понадобится мощный диод, который сможет выдержать большую нагрузку. Использовать можно диод, как отечественного производства, так и импортный. Чтобы не покупать такой диод, его можно найти в старых приёмниках или блоках питания.
  3. Штекер для подключения в розетку.
  4. Провода с клеммами (крокодилы) для подключения к АКБ.

Это важно! Перед сборкой такой схемы нужно понимать, что всегда имеется риск для жизни, поэтому следует быть предельно внимательными и осторожными.

Схема подключения зарядного устройства из лампочки и диода к АКБ

Включать штекер в розетку следует только после того, как вся схема будет собрана, а контакты заизолированы. Чтобы избежать возникновения тока короткого замыкания, в цепь включается автоматический выключатель на 10 А. При сборке схемы важно учесть полярность. Лампочка и полупроводниковый диод должны быть включены в цепь плюсовой клеммы аккумулятора. При использовании лампочки в 100 Вт, будет поступать зарядный ток величиной 0,17 А на АКБ. Для зарядки аккумулятора на 2 А понадобится заряжать его на протяжении 10 часов. Чем больше мощность лампы накаливания, тем выше значение зарядного тока.

Это важно! Не рекомендуется использовать лампы накаливания мощностью более 200 Вт, так как диод может сгореть от перегрузки. Оптимальный вариант мощности ламп – это 60-150 Вт.

Заряжать таким устройством полностью севший аккумулятор не имеет смысла, а вот подзарядить при отсутствии заводского ЗУ — вполне реально.

Зарядное устройство для АКБ из выпрямителя

Этот вариант также относится к категории простейших самодельных зарядных устройств. В основу такого ЗУ входят два основных элемента – преобразователь напряжения и выпрямитель. Существует три вида выпрямителей, которые заряжают устройство следующими способами:

  • постоянный ток;
  • переменный ток;
  • ассиметричный ток.

Выпрямители первого варианта заряжают аккумулятор исключительно постоянным током, который очищается от пульсаций переменного напряжения. Выпрямители переменного тока подают пульсирующее переменное напряжение на клеммы аккумулятора. Ассиметричные выпрямители имеют положительную составляющую, а в качестве основных элементов конструкции используются однополупериодные выпрямители. Такая схема имеет лучший результат по сравнению с выпрямителями постоянного и переменного тока. Именно его конструкция и будет рассмотрена далее.

Для того чтобы собрать качественное устройство для зарядки АКБ, понадобится выпрямитель и усилитель тока. Выпрямитель состоит из следующих элементов:

  • предохранитель;
  • мощный диод;
  • стабилитрон 1N754A или Д814А;
  • выключатель;
  • переменный резистор.

Электрическая схема ассиметричного выпрямителя

Для того чтобы собрать схему, понадобится использовать предохранитель, рассчитанный на максимальный ток в 1 А. Трансформатор можно взять от старого телевизора, мощность которого не должна превышать 150 Вт, а выходное напряжение составлять 21 В. В качестве резистора нужно взять мощный элемент марки МЛТ-2. Выпрямительный диод должен быть рассчитан на ток не менее 5 А поэтому оптимальный вариант – это модели типа Д305 или Д243. В основу усилителя входит регулятор на двух транзисторах серии КТ825 и 818. При монтаже транзисторы устанавливаются на радиаторы для улучшения охлаждения.

Сборка такой схемы выполняется навесным способом, то есть на очищенной от дорожек старой плате располагаются все элементы и подключаются между собой с помощью проводов. Её преимуществом является возможность регулировки выходного тока для зарядки АКБ. Недостатком схемы является необходимость найти необходимые элементы, а также правильно их расположить.

Простейшим аналогом представленной выше схемы является более упрощённый вариант, представленныё на фото ниже.

Упрощённая схема выпрямителя с трансформатором

Предлагается воспользоваться упрощённой схемой с применением трансформатора и выпрямителя. Кроме того, понадобится лампочка на 12 В и 40 Вт (автомобильная). Собрать схему не составит труда даже новичку, но при этом важно обратить внимание на то, что выпрямительный диод и лампочка должны быть расположены в цепи, которая подаётся на минусовую клемму АКБ. Недостатком такой схемы является получение пульсирующего тока. Чтобы сгладить пульсации, а также снизить сильные биения, рекомендуется воспользоваться схемой, которая представлена ниже.

Схема с диодным мостом и сглаживающим конденсатором уменьшает пульсации и снижает биение

Зарядное устройство из блока питания компьютера: пошаговая инструкция

В последнее время популярностью пользуется такой вариант автомобильной зарядки, который можно изготовить самостоятельно, воспользовавшись компьютерным блоком питания.

Первоначально понадобится рабочий блок питания. Для таких целей подойдёт даже блок, имеющий мощность 200 Вт. Он выдаёт напряжение 12 В. Его будет недостаточно, чтобы зарядить АКБ, поэтому немаловажно повысить это значение до 14,4 В. Пошаговая инструкция изготовления ЗУ для АКБ из блока питания от компьютера выглядит следующим образом:

  1. Первоначально выпаиваются все лишние провода, которые выходят из блока питания. Оставить нужно только зелёный провод. Его конец нужно припаять к минусовым контактам, откуда выходили чёрные провода. Делается эта манипуляция для того, чтобы при включении блока в сеть, сразу запускалось устройство.

    Конец зелёного провода необходимо припаять к минусовым контактам, где находились чёрные провода

  2. Провода, которые будут подключаться к клеммам аккумулятора, необходимо припаять к выходным контактам минуса и плюса блока питания. Плюс припаивается на место выхода жёлтых проводов, а минус на место выхода чёрных.
  3. На следующем этапе необходимо реконструировать режим работы широтно-имульсной модуляции (ШИМ). За это отвечает микроконтроллер TL494 или TA7500. Для реконструкции понадобится нижняя крайняя левая ножка микроконтроллера. Чтобы к ней добраться, необходимо перевернуть плату.

    За режим работы ШИМ отвечает микроконтроллер TL494

  4. С нижним выводом микроконтроллера соединены три резистора. Нас интересует резистор, который соединён с выводом блока 12 В. Он отмечен на фото ниже точкой. Этот элемент следует выпаять, после чего измерить значение сопротивления.

    Резистор, обозначенный фиолетовой точкой, необходимо выпаять

  5. Резистор имеет сопротивление около 40 кОм. Он подлежит замене на резистор с иным значением сопротивления. Чтобы уточнить величину необходимого сопротивления, требуется первоначально к контактам удалённого резистора припаять регулятор (переменный резистор).

    На место удалённого резистора припаивают регулятор

  6. Теперь следует устройство включить в сеть, предварительно подключив к выходным клеммам мультиметр. Изменяется выходное напряжение при помощи регулятора. Нужно получить значение напряжения в 14,4 В.

    Выходное напряжение регулируется переменным резистором

  7. Как только значение напряжения будет достигнуто, следует выпаять переменный резистор, после чего измерить полученное сопротивление. Для вышеописанного примера его значение составляет 120,8 кОм.

    Полученное сопротивление должно составлять 120,8 кОм

  8. Исходя из полученного значения сопротивления, следует подобрать аналогичный резистор, после чего запаять его на место старого. Если найти резистор такой величины сопротивления не удаётся, то можно подобрать его из двух элементов.

    Последовательная пайка резисторов суммирует их сопротивление

  9. После этого проверяется работоспособность устройства. По желанию к блоку питания можно установить вольтметр (можно и амперметр), что позволит контролировать напряжение и ток зарядки.

Общий вид зарядного устройства из блока питания компьютера

Это интересно! Собранное ЗУ имеет функцию защиты от тока короткого замыкания, а также от перегрузки, однако оно не защищает от переполюсовки, поэтому следует припаивать выводящие провода соответствующего цвета (красный и чёрный), чтобы не перепутать.

При подключении ЗУ к клеммам АКБ будет подаваться ток около 5-6 А, что является оптимальным значением для устройств ёмкостью 55-60А/ч. На видео ниже показано, как сделать ЗУ для АКБ из блока питания компьютера с регуляторами напряжения и тока.

Блок: 4/6 | Кол-во символов: 9336
Источник: https://carnovato.ru/zaryadnye-ustrojstva-svoimi-rukami/

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Блок: 4/4 | Кол-во символов: 1605
Источник: https://pochini.guru/tehnika/zaryadnoe-ustroystvo

Правила эксплуатации

Недостаток самодельного зарядного устройства для аккумулятора 12В заключается в том, что после полной зарядки АКБ автоматическое отключение прибора не происходит. Именно поэтому Вам придется периодически поглядывать на табло, чтобы вовремя выключить его. Еще один важный нюанс – проверять ЗУ «на искру» категорически запрещается.

Среди дополнительных мер предосторожности следует выделить такие:

  • при подключении клемм следите за тем, чтобы не перепутать «+» и «-», иначе простое самодельное зарядное устройство для АКБ выйдет из строя;
  • подключение к клеммам нужно осуществлять только в выключенном положении;
  • мультиметр должен иметь шкалу измерения свыше 10 А.

Мастер-класс по созданию более сложной модели

Вот, собственно, и все что хотелось рассказать Вам о том, как правильно сделать зарядное устройство для автомобильного аккумулятора своими руками. Надеемся, что инструкция была для Вас понятной и полезной, т.к. этот вариант является одним из простейших видов самодельной зарядки для АКБ!

Также читают:

Наглядный пример готового изделия

Мастер-класс по созданию более сложной модели

Нравится()Не нравится()

  • Инструкция по сборке хорошего удлинителя

  • Как сделать USB вентилятор из подручных средств?

  • Показать ещё

    Блок: 4/4 | Кол-во символов: 1449
    Источник: https://samelectrik.ru/kak-sdelat-zaryadnoe-ustrojstvo-dlya-akkumulyatora.html

    Как избежать 2-х ошибок при зарядке аккумуляторной батареи

    Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

    1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
    2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

    Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

    Самое простое зарядное устройство для АКБ

    Блок: 5/24 | Кол-во символов: 663
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Виды зарядных устройств

    Разработано большое количество схем автомобильных зарядных устройств, использующих разные элементные базы и принципиальный подход. По принципу действия приборы заряда разделяются на две группы:

    1. Пуско-зарядные, предназначенные для запуска двигателя при нерабочем аккумуляторе. Кратковременно подавая на клеммы аккумулятора ток большой величины, происходит включение стартера и запуск двигателя, а в дальнейшем заряд батареи происходит от генератора автомобиля. Они выпускаются только на определённое значение тока или с возможностью выставления его величины.
    2. Предпусковые зарядные, к клеммам аккумуляторной батареи подключаются выводы с устройства и подаётся ток длительное время. Его значение не превышает десяти ампер, в течение этого времени происходит восстановление энергии батареи. В свою очередь, они разделяются: на постепенные (время зарядки от 14 до 24 часов), ускоренные (до трёх часов) и кондиционирующие (около часа).

    По своей схемотехники выделяются импульсные и трансформаторные устройства. Первого вида используют в работе высокочастотный преобразователь сигнала, характеризуются малыми размерами и весом. Второго вида в качестве основы используют трансформатор с выпрямительным блоком, просты в изготовлении, но обладают большим весом и низким коэффициентом полезного действия (КПД).

    Выполнено зарядное устройство для автомобильных аккумуляторов своими руками или приобретено в торговой точке, требования, предъявляемые к нему одинаковы, а именно:

    • стабильность выходного напряжения;
    • высокое значение КПД;
    • защита от короткого замыкания;
    • индикатор контроля заряда.

    Одной из главных характеристик прибора заряда является величина тока, которым заряжается батарея. Правильно зарядить аккумулятор и продлить его рабочие характеристики получится только при подборе нужного его значения. При этом важна и скорость заряда. Чем больше ток, тем выше и скорость, но высокое значение скорости приводит к быстрой деградации аккумулятора. Считается, что правильным значением тока будет величина равная десяти процентам от ёмкости батарейки. Ёмкость определяется как величина тока, отдаваемая АКБ за единицу времени, измеряется она в ампер-часах.

    Блок: 3/4 | Кол-во символов: 2161
    Источник: https://chebo.pro/avto/avtomobilnoe-zaryadnoe-ustrojstvo-svoimi-rukami-prostye-shemy.html

    Схема 100% рабочего ЗУ на 12 вольт


    ЗУ на 12 вольт

    Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

    Необходимые компоненты:

    1. dc-dc понижающий преобразователь.
    2. Амперметр.
    3. Диодный мост КВРС 5010.
    4. Концентраторы 2200 мкФ на 50 вольт.
    5. трансформатор ТС 180-2.
    6. Предохранители.
    7. Вилка для подключения к сети.
    8. «Крокодилы» для подключения клемм.
    9. Радиатор для диодного моста.

    Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

    Блок: 6/24 | Кол-во символов: 966
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Как заряжать аккумулятор от самодельного устройства

    Отдельно следует разобраться в вопросе о том, как же правильно заряжать аккумулятор самодельным зарядным устройством. Для этого рекомендуется придерживаться следующих рекомендаций:

    1. Соблюдение полярности. Лучше лишний раз проверить полярность самодельного устройства мультиметром, нежели «кусать локти», потому что причиной выхода из строя АКБ стала ошибка с проводами.
    2. Не проверять АКБ при помощи замыкания контактов. Такой способ только «убивает» устройство, а не оживляет его, как указывается во многих источниках.
    3. Включать устройство в сеть 220 В следует только после того, как выводные клеммы будут подключены к аккумулятору. Аналогичным образом осуществляется и отключение устройства.
    4. Соблюдение техники безопасности, так как работа осуществляется не только с электричеством, но и с аккумуляторной кислотой.
    5. Процесс зарядки АКБ необходимо контролировать. Малейшая неисправность может стать причиной серьёзных последствий.

    Исходя из вышеуказанных рекомендаций, следует сделать вывод о том, что самодельные устройства хоть и являются приемлемыми, но всё же не способны заменить заводские. Изготавливать самодельную зарядку не безопасно, особенно если вы не уверены в том, что сможете это правильно сделать. В материале представлены самые простые схемы реализации зарядных устройств для автомобильных аккумуляторов, которые всегда будут полезны в хозяйстве.

    Блок: 6/6 | Кол-во символов: 1404
    Источник: https://carnovato.ru/zaryadnye-ustrojstva-svoimi-rukami/

    Схема ЗУ Рассвет 2

    Схема ЗУ Рассвет 2

    Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

    Блок: 7/24 | Кол-во символов: 601
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Заключение

    На создание самого простого зарядного устройства, которое не будет портить Ваш аккумулятор, потребуется немало технических знаний. Сейчас на рынке представлен широкий выбор зарядок с большим функционалом и простым интерфейсом для работы.

    Поэтому при возможности лучше иметь при себе надежное устройство с гарантией того, что аккумуляторная батарея не будет подвергаться риску и продолжит стабильную работу.

    Взгляните на это видео. На нем показан еще один способ быстро зарядить АКБ своими руками.

    Блок: 7/7 | Кол-во символов: 510
    Источник: https://za-rulem.org/tehobsluzhivanie/uhod/kak-sdelat-zaryadnoe-ustrojjstvo.html

    1 схема умного ЗУ

    Умное ЗУ

    Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

    Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

    Блок: 8/24 | Кол-во символов: 811
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема промышленного ЗУ


    Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

    Блок: 9/24 | Кол-во символов: 304
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема инверторного устройства

    Инверторный вид

    Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

    Блок: 10/24 | Кол-во символов: 450
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 электросхема ЗУ электроника

    Схема Электроника

    Блок: 11/24 | Кол-во символов: 48
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема мощного ЗУ


    Мощное ЗУ

    Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

    Блок: 12/24 | Кол-во символов: 493
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    2 схемы советского ЗУ

    Советское ЗУ

    Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

    К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

    Блок: 13/24 | Кол-во символов: 724
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Электрон 3М

    Схема Электрон 3М

    Блок: 14/24 | Кол-во символов: 30
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Простейшее ЗУ с использованием адаптера

    В роли источника постоянного тока здесь выступает приспособленный 12-вольтовый адаптер. На этот случай схема зарядного устройства для автомобильного аккумулятора не потребуется.

    Главное учесть важную особенность – напряжение источника питания должно быть равным напряжению самого аккумулятора, в противном случае батарея не будет заряжаться.

    Конец провода адаптера обрезается и оголяется до 5 см. Далее провода с разноименными зарядами отдаляются друг от друга на 40 см. Затем на конец каждого провода одевается «крокодил» (тип зажимов), каждый из которых должен отличаться по цвету, чтобы избежать путаницы с полярностью. Зажимы последовательно подключают к аккумулятору («от плюса к плюсу», «от минуса к минусу») и после этого включают адаптер.

    Сложность заключается только в выборе правильного источника питания. Также стоит обратить внимание на то, что в процессе аккумулятор может перегреться. В таком случае нужно прервать зарядку на некоторое время.

    Ксеноновая лампа один из лучших источников света для авто. Узнайте, какой штраф за ксенон перед тем, как его устанавливать.

    Установить парктроник сможет каждый желающий. Убедиться в этом можно на этой странице. Переходите и узнайте, как установить парктроник самому.

    Многими водителями доказано, что полицейский радар «Стрелка» не прощает ошибок. По этой ссылке /tuning/elektronika/radar-detektor-protiv-strelki.html можно узнать, какие радар-детекторы смогут уберечь водителя от штрафа.

    Блок: 5/7 | Кол-во символов: 1498
    Источник: https://za-rulem.org/tehobsluzhivanie/uhod/kak-sdelat-zaryadnoe-ustrojjstvo.html

    1 самая простая схема на автоматическое ЗУ для авто АКБ

    Простая схема

    Блок: 16/24 | Кол-во символов: 70
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема на тиристорное ЗУ

    Схема

    Блок: 18/24 | Кол-во символов: 32
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 упрощенная схема с сайта Паяльник

    Схема

    Блок: 19/24 | Кол-во символов: 42
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема на интеллектуальное ЗУ

    Интеллектуальное ЗУ

    Блок: 20/24 | Кол-во символов: 51
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Новые схемы 2017 и 2018 года

    Новые схемы

    Блок: 22/24 | Кол-во символов: 52
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    1 схема на китайское ЗУ

    Схема

    Блок: 23/24 | Кол-во символов: 30
    Источник: https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html

    Кол-во блоков: 39 | Общее кол-во символов: 39753
    Количество использованных доноров: 8
    Информация по каждому донору:
    1. https://pochini.guru/tehnika/zaryadnoe-ustroystvo: использовано 2 блоков из 4, кол-во символов 4593 (12%)
    2. https://carnovato.ru/zaryadnye-ustrojstva-svoimi-rukami/: использовано 2 блоков из 6, кол-во символов 10740 (27%)
    3. https://elektroznatok.ru/oborudovanie/zaryadnoe-ustrojstvo-dlya-avtomobilnogo-akkumulyatora-svoimi-rukami: использовано 2 блоков из 4, кол-во символов 770 (2%)
    4. https://elektro220v.ru/akkumulyatory/11-primerov-shemy-na-zaryadnoe.html: использовано 19 блоков из 24, кол-во символов 8124 (20%)
    5. https://za-rulem.org/tehobsluzhivanie/uhod/kak-sdelat-zaryadnoe-ustrojjstvo.html: использовано 4 блоков из 7, кол-во символов 4560 (11%)
    6. https://autoot.ru/zaryadnoe-ustroystvo-avtomobilnogo-akkumulyatora-svoimi-rukami.html: использовано 3 блоков из 7, кол-во символов 4627 (12%)
    7. https://chebo.pro/avto/avtomobilnoe-zaryadnoe-ustrojstvo-svoimi-rukami-prostye-shemy.html: использовано 2 блоков из 4, кол-во символов 4207 (11%)
    8. https://samelectrik.ru/kak-sdelat-zaryadnoe-ustrojstvo-dlya-akkumulyatora.html: использовано 2 блоков из 4, кол-во символов 2132 (5%)

    БЕСТРАНСФОРМАТОРНЫЕ ВЫПРЯМИТЕЛИ ДЛЯ ЗАРЯДКИ АККУМУЛЯТОРОВ

    БЕСТРАНСФОРМАТОРНЫЕ ВЫПРЯМИТЕЛИ ДЛЯ ЗАРЯДКИ АККУМУЛЯТОРОВ На главную

    Наиболее выгодными и удобными источниками питания портативных (карманных) приемников являются герметизированные никель-кадмиевые аккумуляторы, которые отличаются высокой удельной емкостью, большой механической прочностью, малым внутренним сопротивлением и, главное, возможностью многократного,их применения после зарядки. Рассчитанные на большое число циклов «заряд-разряд», аккумуляторы имеют длительный срок службы.

    Рис. 42. Схема однополупериодного ЗУ

    Заряжать аккумуляторы можно от любого источника постоянного напряжения, обеспечивающего требуемую величину зарядного тока. Для аккумуляторов типа Д-0,06, Д-0,12, Д-0,2 и им подобным при 15-часовом режиме заряда зарядный ток составляет 10% от емкости аккумулятора. Таким образом, зная емкость аккумулятора, легко определить рекомендуемый заводом-изготовителем зарядный ток. Так, например, для аккумуляторов типа Д-0,06 емкостью 60 мА часов зарядный ток равен 6 мА; аналогично, для аккумуляторов типа Д-0,12 — 12 мА, а типа Д-0,2 — 20 мА и т. д.

    Рис. 43. Схема однополу-периодного ЗУ с безваттным сопротивлением

    Чтобы не испортить аккумуляторы при заряде, необходимо строго соблюдать полярность включения и не превышать рекомендуемый зарядный ток. Не следует также разряжать аккумуляторы до напряжения ниже 0,7 В на один элемент.

    Простейшая схема выпрямителя для зарядки аккумуляторной батареи от сети переменного тока приведена на рис. 42. Он собран по обычной однополупериодной схеме на диоде Д1. При включении такого выпрямителя в сеть переменного тока через резисторы R1 и R2, диод Д1 и, следовательно, через аккумулятор Б1 протекает ток заряда, величина которого ограничена сопротивлением резисторов R1 и R2. В частности, значения сопротивлений резисторов, указанные на схеме рис. 42, позволяют использовать это устройство для зарядки аккумуляторов типа 7Д-0,1. Переключатель В1 позволяет включать выпрямитель в сеть переменного тока с напряжением 127 и 220 В.

    Рис. 44. Схема двухполупериодного ЗУ с безваттным сопротивлением

    Конструктивно подобные выпрямители для зарядки аккумуляторов оформляют обычно в виде приставок к приемникам, известных под названием «зарядные устройства» (ЗУ).

    Рис. 45. Схема двухполупериодного ЗУ на двух диодах

    Недостатком простейшего ЗУ (оно используется в приемниках «Сокол», «Алмаз» и других) является его низкая экономичность, обусловленная рассеиванием мощности на активном сопротивлении. Более того, нагрев резисторов приводит к повышению температуры окружающей среды и корпуса, в котором монтируется ЗУ, что, в свою очередь, уменьшает величину допустимого обратного напряжения диода Д1 и снижает надежность устройства в целом.

    Поэтому большее распространение получили ЗУ, в которых в качестве ограничительного сопротивления используется емкость (а точнее — реактивное сопротивление) конденсатора. Принципиальная схема одного из таких устройств приведена на рис. 43. Безусловное достоинство этого ЗУ — его высокая экономичность: активная мощность здесь практически не расходуется. Отметим, что среднее значение зарядного тока через аккумулятор Б1 определяется в схеме рис. 43 емкостью конденсатора С1. Таким образом, регулируя (подбирая) емкость этого конденсатора, можно целенаправленно изменять величину зарядного тока.

    При конструировании такого ЗУ следует иметь в виду, что использовать в качестве реактивного сопротивления можно только неполярные конденсаторы, предназначенные для работы в цепях переменного тока; например, бумажные типов КБГ-И, КБГ-М, БМ и т. п. При необходимости отдельные конденсаторы соединяют между собой параллельно или последовательно. Рабочее напряжение конденсатора С1 должно быть не менее 35Q и 600 В для напряжений сети 127 и 220 В соответственно. Это замечание, кстати, относится и к другим устройствам, использующим конденсаторы в качестве гасящих резисторов (см. ниже).

    На рис. 44 приведена схема ЗУ, которое используется для зарядки аккумуляторов 7Д-ОД в приемниках «Селга». В этом устройстве выпрямитель собран по мостовой схеме на диодах Д1 — Д4. Для обеспечения необходимого зарядного тока используются конденсаторы С1 (КБГ), С2 (МБТ) сравнительно небольшой емкости, что является преимуществом этой схемы по сравнению с предыдущей. При напряжении сети 127 В оба конденсатора соединяются параллельно переключателем В1. Резистор R1 ограничивает амплитуду импульсов тока в цепи нагрузки. Резистор R2 образует цепь разряда конденсаторов С1 и С2 после отключения ЗУ от сети.

    Для зарядки аккумуляторов типа 2Д-0.1 можно воспользоваться ЗУ, схема которого приведена на рис. 45. Здесь использован двухполупериодный выпрямитель на диодах Д1 и Д2. Функции гасящих сопротивлений выполняют последовательно включенные конденсаторы С1 и С2. При работе ЗУ от сети напряжением 127 В конденсатор С1 замыкается переключателем В1. Такая схема переключения сетевого напряжения позволяет использовать в ЗУ конденсаторы, рассчитанные на меньшие рабочие напряжения. Резисторы R2 и R3 ограничивают импульсы тока через аккумулятор по амплитуде и, кроме того, сопротивление этих резисторов определяет среднее значение зарядного тока. Так, изменяя величину сопротивления указанных резисторов ЗУ (см. рис. 45), можно использовать для зарядки аккумуляторов Д-0,06; Д-0,1; 2Д-0,06; 2Д-0.1 и ЗД-0,06.

    Рассмотренные выше ЗУ монтируют на гетинаксовых платах, размеры которых определяются типом используемых деталей. Плату заключают в корпус из диэлектрика, оформленный, как правило, в виде штепсельной вилки. Такая вилка включается в сетевую розетку, а соединение с аккумулятором производится с помощью электрического двухпроводного шнура, выполненного из гибкого многожильного провода и заканчивающегося разъемом для подключения аккумулятора. В корпусе, где располагаются детали ЗУ, следует предусматривать вентиляционные отверстия для отвода тепла, а диоды во избежание перегрева необходимо располагать возможно дальше от резисторов.

    И.И.Андрианов
    Сайт создан в системе uCoz
    Сайт создан в системе uCoz

    Схемы простых выпрямителей для зарядки аккумуляторов

    September 16, 2012 by admin Комментировать »

       Первая конструкция. Выпрямитель (рис. 26) собран по мостовой схеме на четырех диодах Д1—Д4 типа Д305. Сила зарядного тока регулируется при помощи мощного транзистора 77, включенного по схеме составного триода. При изменении смещения, снимаемого на базу триода с потенциометра R1, изменяется сопротивление цепи коллектор — эмиттер транзистора. Зарядный ток при этом можно изменять от 25 мА до 6 А при напряжении на выходе выпрямителя от 1,5 до 14 В.

       Резистор R2 на выходе выпрямителя позволяет устанавливать выходное напряжение выпрямителя при отключенной нагрузке. Трансформатор собран на сердечнике сечением 16 см2. Первичная обмотка рассчитана на включение в сеть с напряжением 127 В (выводы 1—2) или 220 В (выводы 1—3) и содержат 350+325 витков провода ПЭВ 0,35, вторичная обмотка — 45 витков провода ПЭВ 1,5. Транзистор 77 устанавливают на металлическом радиаторе, площадь поверхности которого должна быть не менее 350 см” с обеих сторон пластины при толщине ее не менее 3 мм.

       Рис, 26. Принципиальная электрическая схема выпрямителя (первая конструкция)

       Рис. 27. Принципиальная электрическая схема выпрямителя (вторая конструкция)

       Вторая конструкция. Схема, приведенная на рис. 27, отличается от предыдущей тем, что с целью увеличения максимального тока до 10 А транзисторы 77 и Т2 включены параллельно. Смещение на базы транзисторов, изменением которого регулируется зарядный ток, снимается с выпрямителя, выполненного на диодах Д5—Д6. При зарядке 6-вольтовых аккумуляторов переключатель устанавливается в положение /, 12-вольтовых — в положение 2. Обмотки трансформатора содержат следующее количество витков: Іа—328 витков провода ПЭВ 0,85; 16 — 233 витка провода ПЭВ 0,63; II — 41+41 виток провода ПЭВ 1,87; III — 7+7 витков провода ПЭВ 0,63. Сердечник — УШ35 X 55.

    Описание схемы зарядного устройства

    Схема выпрямителя
    Схема двухполупериодного выпрямителя с диодным мостом используется для схемы выпрямителя, которая преобразует переменный ток в постоянный. Даже если переменное напряжение на входе меняется на положительное и отрицательное, напряжение, которое прикладывается к нагрузке, всегда будет положительным диодным мостом. Напряжение, подаваемое на нагрузку, не является чистым постоянным током. Это называется пульсацией напряжения.
    В этой схеме, чтобы уменьшить пульсации напряжения, конденсатор подключен к нагрузке параллельно.Даже если напряжение, выходящее из диодного моста, становится небольшим, постоянное напряжение, прикладываемое к нагрузке, стабилизируется за счет разряда электричества, накопленного в конденсаторе.
    AC100V сбрасывается на AC24V с трансформатором. В случае переменного тока напряжение отображается в среднеквадратичном значении. Если оно изменится на напряжение постоянного тока, оно станет около 30В постоянного тока.

    Схема управления напряжением
    Это схема, которая контролирует максимальное напряжение заряда, чтобы предотвратить перезарядку аккумулятора.
    Для цепи управления используется 3-контактный регулируемый регулятор (LM317).
    Левый рисунок – это основная схема регулятора. Напряжение между Vout и ADJ фиксировано и стандартно составляет 1,25 В.
    Управление выходным напряжением осуществляется по значению R2.
    Выходное напряжение (Vout) рассчитывается по следующей формуле.
    Vout = 1,25 (1 + R2 / R1) + I ADJ (R2)
    I ADJ – это ток, который течет с вывода Adj и составляет несколько 10 А. Следовательно, этим можно пренебречь.
    В LM3xx есть условие определения сопротивления для управления напряжением. Это регулирование нагрузки. Для нормальной работы устройства требуется ток нагрузки 10 мА или более. Поэтому рекомендуется установить значение R1 на 120 Ом или меньше.

    R1 в этой цепи установлен на 100 Ом. R2 в приведенном выше объяснении превращается в VR1 + R2 схемы.
    В реальной цепи R2 составляет 560 Ом, а VR1 – 2 кОм.
    Если VR1 равен 0 Ом, выходное напряжение будет следующим.
    Vout = 1.25 (1 + 560/100) = 1,25 x 6,6 = 8,25 В
    Если VR1 составляет 2 кОм, выходное напряжение будет следующим.
    Vout = 1,25 (1 + 2,560 / 100) = 1,25 x 25,6 = 32 В
    Следовательно, выходное напряжение этой цепи можно регулировать в диапазоне от 8 В до 32 В.
    Поскольку за этой цепью вставлена ​​цепь управления током, конечное выходное напряжение зарядного устройства снижается на 2-3 В.

    Цепь управления током
    7805 – это микросхема для обеспечения равномерного напряжения включения. Однако на этот раз эта ИС используется как цепь, которая обеспечивает постоянство тока.
    Левый рисунок нарисован в стиле управления напряжением, чтобы облегчить понимание.
    Даже если он изменяет входное напряжение, 7805 работает так, что напряжение между клеммой заземления (G) и выходной клеммой (O) может быть установлено на 5 В. Если резистор R3 подключен между O-G, ток, протекающий в R3, будет установлен на I = 5 В / R3. Следовательно, ток, протекающий в R3, становится фиксированным.
    Поскольку ток, который течет в R3, течет также в нагрузку, если значение R3 не изменяется, ток, который течет в нагрузку, фиксируется.И наоборот, если R3 изменяется, ток, протекающий в нагрузку, изменяется.

    Эта цифра представляет собой схему, использованную на этот раз.
    Сначала я определился со стоимостью R3. В этом зарядном устройстве, поскольку максимальный ток установлен на 500 мА, в качестве R3 он составляет 5 В / 0,5 А = 10 Ом. Когда ток 500 мА протекает через резистор 10 Ом, потребляемая мощность резистора составляет I 2 xR = 0,5 2 A x 10 Ом = 2,5 Вт. Я использую цементный резистор 5 Вт из соображений безопасности.
    Затем я вычислил значение VR2.Я предполагал, что ток контролируется не менее 80 мА. Следовательно, R3 + VR2 составляет 5 В / 0,08 А = 62,5 Ом. R3 был 10 Ом, поэтому значение VR2 было установлено на 50 Ом. Когда ток 80 мА протекает на 50 Ом, потребляемая мощность резистора составляет 0,08 2 x 50 = 0,32 Вт. Я использую переменный резистор 2 Вт из соображений безопасности.
    Также можно использовать LM317 для цепи управления током. Однако есть ошибка. В LM317 напряжение между O-G составляет 1,25 В. В этом случае сопротивление для установки значения тока 500 мА равно 1.25 В / 0,5 А = 2,5 Ом. Это 15,6 Ом для 80 мА. По сравнению с 7805 это небольшая величина. Текущее управление станет затруднительным, если принять во внимание погрешность сопротивления.
    Более того, если используется стабилизатор с высоким выходным напряжением, потребляемая мощность резистора для управления увеличится еще больше. Например, когда используется регулятор на 12 В, сопротивление для создания тока 500 мА составляет 12 В / 0,5 А = 24 Ом. А электрическая мощность, потребляемая резистором, составляет 6Вт. По вышеуказанной причине я использую 7805 для текущего контроля.

    R4 и C3 могут не иметь необходимости. В этой схеме используется диод для предотвращения обратного тока от батареи. Что касается диода, уточнены состояние ВКЛ (состояние, при котором ток течет) и состояние ВЫКЛ (состояние, при котором ток не течет). Если напряжение батареи повышается при зарядке и становится выше, чем напряжение зарядного устройства, ток не будет течь из зарядного устройства. Затем по этой причине напряжение батареи падает, и ток снова начинает течь от зарядного устройства. Он будет колебаться, если такое произойдет на короткое время.Итак, чтобы подавить резкую смену напряжения зарядного устройства, я поставил С3. R4 ставится для разряда C3. Однако похоже, что на самом деле напряжение батареи меняется не так быстро. Поэтому считаю, что это удовлетворительно, даже если C3 и R4 не использовать.

    Выходная цепь

    В качестве выходной цепи этого зарядного устройства используются вольтметр, амперметр и диод предотвращения обратного тока.
    Поскольку некоторый ток течет также и в вольтметр, его следует поставить впереди амперметра.
    Диод предотвращения обратного тока предназначен для защиты от обратного протекания тока к зарядному устройству от батареи при отключении 100 В переменного тока, когда зарядное устройство подключено к аккумулятору.

    Выпрямители / зарядные устройства – JEMA Energy

    Эксплуатация Принципы

    Выпрямитель преобразует переменный ток (AC) в постоянный (DC). Его обычная функция – заряжать аккумуляторы и поддерживать их в оптимальном состоянии, одновременно обеспечивая питание постоянного тока для других нагрузок.Следовательно, важно, чтобы при работе устройство учитывало, какие батареи оно питает (Pb или NiCd).

    Он работает автоматически и непрерывно оценивает состояние и температуру батарей, а также другие параметры системы, чтобы гарантировать стабильное напряжение и низкий уровень пульсаций.

    Он может включать маневры отключения нагрузки для завершения автономной работы, термомагнитное распределение, локализацию неисправностей, анализаторы сети и т. Д.

    Пределы и уровни заряда аккумулятора

    В герметичных свинцово-кислотных аккумуляторах используются только два уровня тока (плавающий и зарядный), тогда как для открытых свинцово-кислотных и никель-кадмиевых аккумуляторов используются три уровня: плавающий, быстрая зарядка и глубокая зарядка.

    • Поплавок: для поддержания уже заряженного аккумулятора в зависимости от температуры.
    • Быстрая зарядка: Выполняется в кратчайшие сроки, чтобы восстановить емкость, потерянную аккумулятором во время разрядки; при ограниченном токе и конечном напряжении стабилизированного заряда.
    • Глубокий заряд или деформация: Периодическое ручное управление для выравнивания элементов батареи; при ограниченном токе и конечном напряжении стабилизированного заряда. Сделано в вакууме.

    Переход от плавающего режима к быстрой зарядке и наоборот:

    • Автоматически: когда ток выше указанного значения внезапно поглощается, регулируется.И наоборот, после того, как поглощаемый ток упадет.
    • Вручную (необязательно): нажатие локальной / удаленной кнопки.

    Общие характеристики прибора

    • Автоматический выпрямитель в сборе
    • Высокий коэффициент мощности на входе, до 0,9
    • Высокая стабильность выходного напряжения, пульсации до 0,1% RMS
    • Высокая производительность, простота и надежность
    • Может использоваться параллельно с другими устройствами

    Схема зарядного устройства батареи с использованием SCR – работа и недостатки

    Для зарядки батареи требуется небольшое количество постоянного или переменного напряжения.Таким образом, чтобы зарядить любую батарею, предположим, что требуется вход переменного тока, тогда сначала входной сигнал переменного тока должен быть ограничен, затем отфильтрован для удаления шума и отрегулирован так, чтобы напряжение, полученное после этого, можно было использовать для зарядки батареи.

    Однако не только это: после того, как аккумулятор полностью зарядится, цепь должна быть отключена, чтобы не происходила дальнейшая нежелательная зарядка.

    Зарядное устройство , действует как источник для управления и защиты цепей подстанции в нормальных рабочих условиях.Создание зарядного устройства с использованием SCR оказалось большим преимуществом по сравнению с сегодняшним днем.

    Потребность в зарядном устройстве по сравнению с силовой электроникой?

    Потребность в системах зарядных устройств малой мощности со временем значительно увеличилась из-за того, что использование портативных приборов и оборудования связи быстро растет со временем. Таким образом, зарядка мобильных устройств стала проблемой, и для ее решения используются зарядные устройства.

    Теперь вы, должно быть, думаете о , как зарядное устройство может подавать питание на батарею.

    Как правило, зарядное устройство для батареи подает электрический ток в батарею, так что элементы внутри батареи могут накапливать энергию, которая проходит через нее. Для аккумулятора в основном существует два режима зарядки .

    Первый – это с быстрой зарядкой , который применяется к новым или неиспользованным аккумуляторам. В то время как другой – это плавающая зарядка , которая применяется к находящимся в эксплуатации аккумуляторным батареям, где питание нагрузки необходимо для компенсации небольшого заряда, который батарея теряет в течение срока службы.

    Зарядное устройство на базе SCR

    Зарядное устройство на базе SCR использует принцип переключения тиристора для получения определенной выходной мощности. Схема включает в себя трансформатор, выпрямитель и схему управления в качестве основных элементов.

    Как мы уже обсуждали в начале, для зарядки аккумулятора требуется небольшое входное напряжение переменного или постоянного тока. Итак, элементы схемы помогают обеспечить необходимое напряжение для зарядки аккумулятора.

    Работа цепи зарядного устройства батареи с использованием SCR

    На рисунке ниже представлена ​​схема зарядного устройства с тиристором:

    Здесь в качестве входа подается сигнал переменного напряжения величиной 230 В, 50 Гц, а нагрузка представляет собой аккумулятор на 12 В, который необходимо заряжать.

    Следующие элементы схемы:

    • Электропитание переменного тока
    • Понижающий трансформатор
    • Выпрямительная схема
    • SCR
    • Стабилитрон как регулятор напряжения
    • Заряжаемый аккумулятор

    Давайте теперь разберемся, как работает данная схема.

    Итак, первоначально Источник питания 230 В переменного тока подается на понижающий трансформатор, который преобразует высокое напряжение, подаваемое на входе первичной обмотки, в низкое напряжение, которое получается на выходе вторичной обмотки. Итак, здесь напряжение, полученное на другой стороне трансформатора, составляет 15 В относительно нейтрали.

    Из схемы ясно видно, что трансформатор соединяется со схемой выпрямителя, следовательно, выходной сигнал трансформатора поступает на схему выпрямителя.Поскольку у нас есть входной сигнал переменного тока, давайте разберемся, как работает схема выпрямителя, когда применяются две половины сигнала переменного тока.

    Первоначально, когда подается положительная половина входного сигнала переменного тока, тогда диод D 1 в приведенной выше конфигурации будет смещен в прямом направлении и будет проводить, однако D 2 будет в состоянии обратного смещения, поэтому не будет проводить . И наоборот, когда подается отрицательная половина входного переменного тока, тогда D 1 не будет проводить, но D 2 будет в проводящем состоянии, это ясно показано в представлении формы сигнала, приведенном ниже:

    Итак, выпрямительная схема будет обеспечивать выпрямленный выход i.е., постоянное напряжение на выводе P.

    Здесь мы использовали стабилитрон с пробивным напряжением 10 В в качестве регулятора напряжения для регулирования уровня напряжения цепи. Следовательно, на клемме Q будет 10 В из-за наличия стабилитрона.

    Поскольку напряжение на клеммах P, которое представляет собой не что иное, как выпрямленное напряжение, сравнительно больше, чем на клемме Q, это приводит к прямому смещению SCR, позволяя ему проводить, и благодаря этому ток начнет протекать через нагрузку i.е., аккумулятор 12 В . И мы уже обсуждали в начале, что когда ток течет через батарею, клетки, находящиеся внутри нее, накапливают энергию. Таким образом заряжается аккумулятор.

    Однако, если выпрямленное напряжение меньше, чем напряжение на клеммах на Q, тогда автоматически SCR перейдет в состояние обратного смещения, при его отключении ток через батарею больше не будет протекать.

    Таким образом, можно сказать, что здесь SCR действует как переключатель, который регулирует напряжение, подаваемое на аккумулятор.Теперь возникает вопрос: , как только батарея будет полностью заряжена, как будет работать схема .

    Итак, в основном, что происходит в цепи, так это то, что выпрямленное напряжение здесь составляет 15 В, поэтому, как только батарея полностью заряжается (предположим, что она достигает 14,5 В), оставшегося значения напряжения на клемме P будет недостаточно, чтобы вызвать дальнейшую проводимость. через тиристор, потому что теперь выпрямленное напряжение будет меньше, чем напряжение на клемме Q. Это не позволит току достигать батареи дальше, и в результате цепь зарядки будет деактивирована.

    В основном, это сравнение выпрямленного напряжения и зарядного потенциала производится с помощью схемы компаратора. Как только потенциал заряда упадет ниже определенного значения, цепь зарядки автоматически активируется, и снова начнется зарядка аккумулятора.

    Здесь следует отметить, что значение напряжения пробоя стабилитрона и трансформатора в цепи зависит от зарядного потенциала аккумулятора. Таким образом, потенциал, при котором будет заряжаться аккумулятор, будет определять значение этих двух параметров схемы.

    Недостатки схемы зарядного устройства с использованием SCR

    1. Зарядка занимает довольно много времени.
    2. Схема выпрямителя для преобразования переменного тока в постоянный, не устраняет пульсации переменного тока, поскольку здесь отсутствует схема фильтра.
    3. Процесс зарядки и разрядки идет медленно из-за наличия однополупериодного выпрямителя.
    4. Подходит только для зарядки аккумуляторов с малой и средней емкостью в ампер-часах.

    Речь идет о схеме зарядки аккумулятора с использованием SCR.

    Разработка индивидуальной схемы зарядного устройства

    Я разработал и опубликовал множество схем зарядного устройства на этом веб-сайте, однако читатели часто путаются при выборе правильной схемы зарядного устройства для своих индивидуальных приложений. И я должен подробно объяснить каждому из читателей, как настроить данную схему зарядного устройства для их конкретных нужд.

    Это отнимает много времени, так как это то же самое, что я должен время от времени объяснять каждому из читателей.

    Это побудило меня опубликовать этот пост, в котором я попытался объяснить стандартную конструкцию зарядного устройства аккумулятора и то, как настроить его несколькими способами в соответствии с индивидуальными предпочтениями с точки зрения напряжения, тока, автоматического отключения или полуавтоматических операций.

    Правильная зарядка аккумулятора имеет решающее значение

    Три основных параметра, которые требуются всем аккумуляторам для оптимальной и безопасной зарядки:

    1. Постоянное напряжение.
    2. Постоянный ток.
    3. Автоматическое отключение.

    Итак, по сути, это три основных момента, которые необходимо применить для успешной зарядки аккумулятора, а также убедиться, что это не влияет на срок службы аккумулятора.

    Несколько расширенных и дополнительных условий:

    Управление температурой.

    и Пошаговая зарядка.

    Два вышеуказанных критерия особенно рекомендуются для литий-ионных аккумуляторов, в то время как они могут быть не столь важны для свинцово-кислотных аккумуляторов (хотя нет никакого вреда в их реализации для тех же самых)

    Давайте разберемся с вышеуказанными условиями поэтапно и посмотрите, как можно настроить требования в соответствии со следующими инструкциями:

    Важность постоянного напряжения:

    Все батареи рекомендуется заряжать при напряжении, которое может быть примерно на 17-18% выше, чем напряжение батареи, указанное на принтере. , и этот уровень не должен сильно увеличиваться или колебаться.

    Таким образом, для батареи 12 В это значение составляет около 14,2 В, которое не следует сильно увеличивать.

    Это требование называется требованием постоянного напряжения.

    При наличии большого количества микросхем стабилизаторов напряжения на сегодняшний день создание зарядного устройства с постоянным напряжением занимает считанные минуты.

    Самыми популярными среди этих микросхем являются LM317 (1,5 ампер), LM338 (5 ампер), LM396 (10 ампер). Все это микросхемы регуляторов переменного напряжения, которые позволяют пользователю устанавливать любое желаемое постоянное напряжение в любом месте от 1.От 25 до 32 В (не для LM396).

    Вы можете использовать микросхему LM338, которая подходит для большинства батарей для достижения постоянного напряжения.

    Вот пример схемы, которую можно использовать для зарядки любой батареи от 1,25 до 32 В с постоянным напряжением.

    Схема зарядного устройства постоянного напряжения

    Варьирование потенциометра 5 кОм позволяет установить любое желаемое постоянное напряжение на конденсаторе C2 (Vout), которое может использоваться для зарядки подключенного аккумулятора по этим точкам.

    Для фиксированного напряжения вы можете заменить R2 на фиксированный резистор, используя эту формулу:

    VO = VREF (1 + R2 / R1) + (IADJ × R2)

    Где VREF = 1,25

    Поскольку IADJ слишком мал его можно игнорировать

    Хотя может потребоваться постоянное напряжение, в местах, где напряжение от входной сети переменного тока не слишком сильно меняется (вполне приемлемо повышение / понижение на 5%), можно полностью исключить указанную выше схему и забыть о ней. коэффициент постоянного напряжения.

    Это означает, что мы можем просто использовать трансформатор с правильными номиналами для зарядки аккумулятора, не учитывая условия постоянного напряжения, при условии, что входная сеть достаточно надежна с точки зрения его колебаний.

    Сегодня, с появлением устройств SMPS, вышеупомянутая проблема полностью становится несущественной, поскольку все SMPS являются источниками питания постоянного напряжения и обладают высокой надежностью с учетом своих характеристик, поэтому, если доступен SMPS, указанная выше схема LM338 может быть определенно устранена.

    Но обычно SMPS поставляется с фиксированным напряжением, поэтому в этом случае его настройка для конкретной батареи может стать проблемой, и вам, возможно, придется выбрать универсальную схему LM338, как описано выше … или если вы все еще хотите Во избежание этого вы можете просто изменить саму схему SMPS для получения желаемого зарядного напряжения.

    В следующем разделе поясняется разработка индивидуальной схемы управления током для конкретного выбранного зарядного устройства.

    Добавление постоянного тока

    Как и параметр «постоянное напряжение», рекомендуемый зарядный ток для конкретной батареи не должен сильно увеличиваться или колебаться.

    Для свинцово-кислотных аккумуляторов скорость зарядки должна составлять примерно 1/10 или 2/10 от напечатанного значения Ач (ампер-часов) аккумулятора.это означает, что если батарея рассчитана, скажем, на 100 Ач, то ее зарядный ток (ампер) рекомендуется на уровне 100/10 = минимум 10 ампер или (100 x 2) / 10 = 200/10 = 20 ампер максимум, это значение должно не увеличивать, желательно для поддержания нормального состояния батареи.

    Однако для литий-ионных или липоаккумуляторных батарей критерий совершенно другой, для этих аккумуляторов скорость зарядки может быть такой же высокой, как и их скорость в ампер-часах, что означает, что если спецификация AH литий-ионной батареи составляет 2,2 Ач, то можно заряжать он на том же уровне, что и на 2.2 ампера. Здесь не нужно ничего делить и заниматься какими-либо вычислениями.

    Для реализации функции постоянного тока снова становится полезным LM338, который может быть настроен для достижения параметра с высокой степенью точности.

    Приведенные ниже схемы показывают, как ИС может быть сконфигурирована для реализации зарядного устройства с регулируемым током.


    Убедитесь, что ознакомились с этой статьей , которая предоставляет отличную и настраиваемую схему зарядного устройства.


    Схема зарядного устройства с постоянным и постоянным током

    Как обсуждалось в предыдущем разделе, если входная сеть достаточно постоянна, вы можете игнорировать правую часть LM338 и просто использовать левую схему ограничителя тока с либо трансформатор, либо SMPS, как показано ниже:

    В приведенной выше схеме напряжение трансформатора может быть рассчитано на уровне напряжения батареи, но после выпрямления оно может быть немного выше указанного напряжения зарядки батареи.

    Этой проблемой можно пренебречь, поскольку подключенная функция контроля тока заставит напряжение автоматически понижать избыточное напряжение до безопасного уровня напряжения зарядки аккумулятора.

    R1 можно настроить в соответствии с потребностями, следуя инструкциям, представленным ЗДЕСЬ.

    Диоды должны иметь соответствующий номинал в зависимости от зарядного тока и предпочтительно должны быть намного выше, чем указанный уровень зарядного тока.

    Настройка тока для зарядки аккумулятора

    В приведенных выше схемах указанная микросхема LM338 рассчитана на ток не более 5 А, что делает ее пригодной только для аккумуляторов до 50 Ач, однако у вас могут быть батареи с гораздо более высоким номиналом в порядка 100 AH, 200 AH или даже 500 AH.

    Для них может потребоваться зарядка при более высоких скоростях тока, которых может не хватить для одного LM338.

    Чтобы исправить это, можно модернизировать или улучшить ИС, добавив больше ИС параллельно, как показано в следующем примере статьи:

    Схема зарядного устройства 25 А

    В приведенном выше примере конфигурация выглядит немного сложной из-за включения операционного усилителя. , однако небольшая работа показывает, что на самом деле микросхемы могут быть добавлены напрямую параллельно для увеличения выходного тока, при условии, что все микросхемы установлены на общем радиаторе, см. диаграмму ниже:

    Любое количество микросхем может быть добавлено в показанный формат для достижения любого желаемого предела тока, однако для получения оптимального отклика от конструкции необходимо обеспечить две вещи:

    Все микросхемы должны быть установлены на общем радиаторе, и все резисторы ограничения тока (R1) должны быть фиксируется с точно совпадающим значением, оба параметра необходимы для обеспечения равномерного распределения тепла между ИС и, следовательно, равного распределения тока на выходе для подключенной батареи .

    До сих пор мы узнали, как настроить постоянное напряжение и постоянный ток для конкретного приложения зарядного устройства.

    Однако без автоматического отключения схема зарядного устройства может быть неполной и небезопасной.

    До сих пор в наших уроках по зарядке аккумулятора мы узнали, как настроить параметр постоянного напряжения при создании зарядного устройства, в следующих разделах мы попытаемся понять, как реализовать автоматическое отключение при полной зарядке для обеспечения безопасной зарядки аккумулятора. подключенный аккумулятор.

    Добавление автоматического отключения в зарядное устройство

    В этом разделе мы узнаем, как можно добавить автоматическое отключение в зарядное устройство, что является одним из наиболее важных аспектов в таких схемах.

    Простой каскад автоматического отключения может быть включен и настроен в выбранную схему зарядного устройства путем включения компаратора операционного усилителя.

    Операционный усилитель может быть расположен так, чтобы обнаруживать повышение напряжения батареи во время ее зарядки и отключать напряжение зарядки, как только напряжение достигает полного уровня заряда батареи.

    Возможно, вы уже видели эту реализацию в большинстве схем автоматического зарядного устройства, опубликованных на данный момент в этом блоге.

    Концепцию можно полностью понять с помощью следующего пояснения и показанной имитации схемы в формате GIF:

    ПРИМЕЧАНИЕ: Пожалуйста, используйте замыкающий контакт реле для входа зарядки, а не показанный замыкающий контакт. Это гарантирует, что реле не будет дребезжать при отсутствии батареи. Чтобы это работало, также не забудьте поменять местами входные контакты (2 и 3) друг с другом .

    В приведенном выше эффекте моделирования мы видим, что операционный усилитель настроен как датчик напряжения батареи для определения порогового значения перезарядки и отключения питания батареи, как только это обнаруживается.

    Предустановка на выводе (+) ИС настраивается таким образом, что при полном напряжении батареи (здесь 14,2 В) контакт № 3 приобретает более высокий потенциал, чем вывод (-) ИС, который фиксируется опорным сигналом. напряжение 4,7В с стабилитроном.

    Вышеупомянутый источник «постоянного напряжения» и «постоянного тока» подключается к цепи и аккумуляторной батарее через замыкающий контакт реле.

    Первоначально напряжение питания и аккумулятор отключены от цепи.

    Во-первых, разряженный аккумулятор может быть подключен к цепи, как только это будет сделано, операционный усилитель обнаружит потенциал, который ниже (10,5 В, как предполагается здесь), чем уровень полного заряда, и из-за этого загорится КРАСНЫЙ светодиод. горит, указывая на то, что уровень заряда аккумулятора ниже полного.

    Затем включается входной зарядный источник питания 14,2 В.

    Как только это будет сделано, напряжение на входе мгновенно упадет до напряжения батареи и достигнет 10.Уровень 5В.

    Начинается процедура зарядки, и аккумулятор начинает заряжаться.

    По мере увеличения напряжения на клеммах аккумулятора во время зарядки, напряжение на контакте (+) также соответственно увеличивается.

    И в тот момент, когда напряжение батареи достигает полного входного уровня, то есть уровня 14,3 В, контакт (+) также пропорционально достигает 4,8 В, что чуть выше, чем напряжение на контакте (-).

    Это мгновенно заставляет выходной сигнал операционного усилителя повышаться.

    КРАСНЫЙ светодиод погаснет, а зеленый светодиод загорится, указывая на действие переключения, а также на то, что аккумулятор полностью заряжен.

    Однако то, что может произойти после этого, не показано в приведенном выше моделировании. Мы узнаем это из следующего объяснения:

    Как только реле сработает, напряжение на клеммах батареи быстро упадет и восстановится до некоторого более низкого уровня, так как батарея 12 В никогда не будет постоянно поддерживать уровень 14 В и будет пытаться достичь 12.Отметка 8V примерно.

    Теперь, из-за этого условия, напряжение на контакте (+) снова будет падать ниже опорного уровня, установленного контактом (-), что снова побудит реле выключиться, и процесс зарядки будет снова инициирован. .

    Это включение / выключение реле будет продолжать циклически повторяться, издавая нежелательный «щелкающий» звук из реле.

    Чтобы избежать этого, необходимо добавить в схему гистерезис.

    Это достигается путем установки резистора высокого номинала на выходе и выводе (+) ИС, как показано ниже:

    Добавление гистерезиса

    Добавление указанного выше резистора гистерезиса предотвращает колебания реле ВКЛ / ВЫКЛ при пороговые уровни и фиксирует реле до определенного периода времени (до тех пор, пока напряжение батареи не упадет ниже допустимого предела этого значения резистора).

    Резисторы большего номинала обеспечивают меньшие периоды фиксации, в то время как резисторы меньшего номинала обеспечивают более высокий гистерезис или более высокий период фиксации.

    Таким образом, из приведенного выше обсуждения мы можем понять, как правильно сконфигурированная схема автоматического отключения батареи может быть спроектирована и настроена любым любителем для его предпочтительных характеристик зарядки батареи.

    Теперь давайте посмотрим, как может выглядеть вся конструкция зарядного устройства, включая постоянное напряжение / ток, установленное вместе с вышеуказанной конфигурацией отключения:

    Итак, вот готовая индивидуальная схема зарядного устройства, которую можно использовать для зарядки любой желаемой батареи после настраивая его, как описано во всем нашем руководстве:

    • Операционный усилитель может быть IC 741
    • Предустановка = 10k, предустановка
    • , оба стабилитрона могут быть = 4.7 В, 1/2 Вт
    • стабилитрон = 10 кОм
    • Светодиодные и транзисторные резисторы также могут быть = 10 кОм
    • Транзистор = BC547
    • реле диод = 1N4007
    • реле = выбрать соответствие напряжения батареи.

    Как заряжать батарею без каких-либо из вышеперечисленных средств

    Если вам интересно, можно ли заряжать батарею, не подключая какие-либо из вышеупомянутых сложных схем и частей? Ответ – да, вы можете безопасно и оптимально заряжать любую батарею, даже если у вас нет ни одной из вышеупомянутых схем и деталей.

    Прежде чем продолжить, было бы важно знать несколько важных вещей, которые требуются батарее для безопасной зарядки, а также то, что делает такие важные параметры «автоматическое отключение», «постоянное напряжение» и «постоянный ток».

    Эти функции становятся важными, когда вы хотите, чтобы аккумулятор заряжался с максимальной эффективностью и быстро. В таких случаях вы можете захотеть, чтобы ваше зарядное устройство было оснащено многими расширенными функциями, как предложено выше.

    Однако, если вы готовы согласиться с тем, что полный уровень заряда вашей батареи немного ниже оптимального, и если вы готовы предоставить еще несколько часов для завершения зарядки, то, безусловно, вам не потребуются какие-либо рекомендуемые функции. такие как постоянный ток, постоянное напряжение или автоматическое отключение, вы можете забыть обо всем этом.

    Обычно аккумулятор не следует заряжать расходными материалами, мощность которых превышает номинал аккумулятора, указанный в печати, это очень просто.

    Это означает, что ваша батарея рассчитана на 12 В / 7 Ач, в идеале вы никогда не должны превышать полную скорость заряда выше 14,4 В, а ток выше 7/10 = 0,7 ампер. Если эти две скорости поддерживаются правильно, вы можете быть уверены, что ваша батарея в надежных руках и никогда не пострадает ни при каких обстоятельствах.

    Поэтому, чтобы обеспечить выполнение вышеуказанных критериев и зарядить аккумулятор без использования сложных цепей, просто убедитесь, что входной источник питания, который вы используете, рассчитан соответствующим образом.

    Например, если вы заряжаете аккумулятор на 12 В / 7 Ач, выберите трансформатор, который вырабатывает около 14 В после выпрямления и фильтрации, а его ток рассчитан примерно на 0,7 ампер. То же правило может быть применимо и к другим батареям пропорционально.

    Основная идея здесь – поддерживать параметры зарядки немного ниже максимально допустимого значения. Например, аккумулятор 12 В может быть рекомендован для зарядки на 20% выше указанного значения, то есть 12 x 20% = 2.4 В выше 12 В = 12 + 2,4 = 14,4 В.

    Поэтому мы стараемся поддерживать это значение немного ниже на уровне 14 В, что может не заряжать аккумулятор до оптимальной точки, но будет просто полезно для чего угодно, на самом деле, поддержание значения немного ниже увеличит срок службы аккумулятора, позволяя гораздо больше заряда / циклы разряда в долгосрочной перспективе.

    Аналогичным образом, поддержание зарядного тока на уровне 1/10 от напечатанного значения Ач гарантирует, что аккумулятор заряжается с минимальным напряжением и рассеиванием, что продлевает срок службы аккумулятора.

    Окончательная установка

    Простая установка, показанная выше, может универсально использоваться для безопасной и оптимальной зарядки любой батареи при условии, что вы дадите достаточно времени для зарядки или пока стрелка амперметра не опустится почти до нуля.

    Конденсатор фильтра 1000 мкФ на самом деле не нужен, как показано выше, и его устранение фактически увеличило бы срок службы батареи.

    Есть еще сомнения? Не стесняйтесь выражать их в своих комментариях.

    Источник: зарядка аккумулятора

    Долговечный и усовершенствованный выпрямитель зарядного устройства для аккумулятора на сертифицированных продуктах

    О продуктах и ​​поставщиках:
     Выберите из обширного ассортимента высокопроизводительного, оригинального, надежного и мощного выпрямителя для зарядного устройства   на Alibaba.com для различных жилых и коммерческих нужд. Все продукты, предлагаемые на сайте, имеют высокое качество и сертифицированы регулирующими органами. Продукты, перечисленные на сайте, не только ориентированы на производительность, но и чрезвычайно долговечны, могут выдерживать все виды суровых условий эксплуатации и обеспечивать стабильную производительность на протяжении многих лет. Ведущие поставщики и оптовые торговцы , поставщики и оптовые торговцы на нашем сайте, предлагают эти продукты по невероятным ценам и с огромными скидками.

    Разнообразная коллекция этих невероятных выпрямителей для зарядного устройства включает различные разновидности продуктов, которые могут включать и управлять всеми типами бытовой и коммерческой техники. Эти продукты являются энергоэффективными и, следовательно, помогают сэкономить на счетах за электроэнергию. Эти расходные материалы являются экологически чистыми, а также имеют варианты с покрытием из никеля, меди, стали и золота. Эти продукты оснащены модернизированными функциями, такими как защита от перегрева, защита от перегрузки, контроль напряжения, термостойкость и многое другое, в зависимости от продуктов.

    Зарядное устройство, выпрямитель , выпрямитель , предлагаемое на Alibaba.com, имеют разную мощность и разряды высокой интенсивности. Эти продукты имеют принудительное воздушное охлаждение и гибкий режим управления, режим внешнего управления и многое другое. Они используются в таких приложениях, как водородные лампы, холодильники, инверторы, телевизоры, выпрямители, генераторы, плоские светодиодные панели и многое другое.

    Просмотрите различные выпрямители для зарядного устройства на Alibaba.com и покупайте эти продукты по доступной цене. Эти продукты также имеют УФ-регулируемые режимы питания и могут быть настроены по индивидуальному заказу. На некоторых моделях предусмотрен большой ЖК-экран для мониторинга состояния.

    Что это такое? Как это работает?

    Начнем с того, что ваше самое ценное имущество не могло бы функционировать без выпрямителя: нет, это не ваш телефон, а его зарядное устройство. Зарядное устройство вашего телефона и, если на то пошло, большинство ваших домашних электронных устройств работают не от источника переменного тока – переменного тока, вырабатываемого электростанциями, а затем подаваемого в ваш дом через кабели передачи, – а от источника постоянного тока: постоянный ток, который неизменно течет в одном направлении.

    Выпрямитель – это схема, встроенная в ваше устройство, которая преобразует беспокойный источник переменного тока, поступающий в ваш дом, в постоянный источник постоянного тока, чтобы ваши устройства могли нормально работать. Однако как выпрямитель достигает этого выпрямителя ?

    Диод

    Диод – одно из первых детей полупроводниковой революции. Устройство представляет собой две пластины из полупроводников, склеенных друг с другом. Однако полупроводники различаются по своим свойствам: один обеднен электронами или имеет избыток положительных зарядов или дырок, в то время как другой наполнен электронами и, следовательно, демонстрирует избыток отрицательных зарядов.Вместе они составляют так называемое соединение PN.

    Основное назначение диода, в отличие от резистора, состоит в том, чтобы позволить току течь в одном направлении. Ток через диод будет течь только тогда, когда его положительный полупроводник или анод , подключен к положительной клемме батареи, а его отрицательный полупроводник или катод , подключен к отрицательной клемме батареи. При перекрестном соединении клемм ток подавляется.

    Диод лежит в основе выпрямителя, где выпрямитель использует свои свойства для выполнения своего предназначения.

    Rectification

    Прежде всего, резко снижается напряжение переменного тока, так как трехзначное напряжение поджарит ваш тостер или зарядное устройство. Это достигается с помощью трансформатора или регулятора напряжения. Уменьшенный источник переменного тока затем подается на устройство, где его сначала встречает выпрямитель. Выпрямитель преобразует переменный ток в постоянный, а затем передает его в основную схему устройства.

    Выпрямитель может генерировать источник постоянного тока либо путем выпрямления только одного цикла (положительного или отрицательного) источника переменного тока, либо выпрямляя их оба. Первый поэтому называется полуволновым выпрямителем, поскольку он выпрямляет только половину формы волны питания, а второй называется двухполупериодным выпрямителем, поскольку он выпрямляет обе половины или всю форму волны.

    Полупериодный выпрямитель

    Мощность переменного тока уменьшается с помощью трансформатора и подается на эту конкретную конфигурацию диодов.Конфигурация исправит только положительные циклы формы волны:

    Положительный полуволновой выпрямитель

    Во время положительного цикла положительный заряд получается на верхнем узле, а отрицательный заряд получается на нижнем узле. Теперь, поскольку диод пропускает ток только тогда, когда анод (треугольник) подключен к положительной клемме, а катод (стержень) подключен к отрицательной клемме, оба диода в конфигурации будут проводить во время положительной клеммы. цикл.Таким образом, на нагрузку подается ток: положительный цикл повторяется на его выходной форме волны.

    Однако, когда источник переменного тока меняется, полярность на узлах меняется: теперь верхний узел заряжен отрицательно, а нижний узел заряжен положительно. Диоды перекрестно соединены, и ток перестает течь. Когда ток не достигает нагрузки, выходной сигнал для отрицательного цикла представляет собой линию, отслеживающую ось X, отображающую течение времени, но не ток.

    Напряжение на нагрузке после выпрямления

    Отрицательный цикл может быть исправлен (за счет положительного цикла, конечно), если немного повозиться с конфигурацией диодов:

    Отрицательный полуволновой выпрямитель

    Конфигурация так что нагрузка будет испытывать ток во время отрицательного цикла, более конкретно, когда отрицательный заряд получен на верхнем узле, а положительный заряд получен на нижнем узле.Конечно, будучи полуволновым выпрямителем, ток подавляется, когда ток меняется и полярности меняются. Поскольку этот выпрямитель исправляет только отрицательные циклы, его выходной сигнал будет выглядеть следующим образом:

    Напряжение на нагрузке после выпрямления

    Однако можно наблюдать неровные формы сигналов: две волны производительности, разделенные нежелательной полостью бездействия или непродуктивность. Форму сигнала можно «сгладить» с помощью большого фильтрующего конденсатора. Конденсатор накапливает энергию в течение производственного цикла и высвобождает ее в течение непродуктивного цикла до начала следующего производственного цикла.Затем он снова накапливает энергию, и весь цикл повторяется. Результатом является соединение долины – постоянный однонаправленный источник постоянного тока.

    Тем не менее, преобразование крайне неэффективно: почему мы должны тратить половину всей энергии? Почему бы нам не использовать каждую унцию?

    Полнопериодный выпрямитель

    Один выпрямитель выпрямляет только положительные половины, а другой – только отрицательные. Так как же разработать выпрямитель, который последовательно выпрямляет обе половины? Просто объединив два выпрямителя!

    Full Wave Rectifier

    Схема выглядит запутанной и поэтому автоматически становится сложной и запутанной.Однако его функция, напротив, удивительно проста. Внимательно изучите схему, и вы увидите, что это буквально комбинация двух полуволновых выпрямителей, описанных выше.

    Первый однополупериодный выпрямитель проводит в течение положительного цикла, а второй полуволновый выпрямитель проводит в течение отрицательного цикла. Поскольку ток проходит через нагрузку в течение обоих циклов, в форме выходного сигнала не обнаруживается пустот. Это непрерывный ряд холмов или след энергии.

    Конечно, между холмами есть зазоры, но они намного уже, чем зазоры в форме выходного сигнала полуволнового выпрямителя. Мы можем устранить эти небольшие несоответствия, опять же, с помощью большого фильтрующего конденсатора. Сглаженная форма волны – еще более стабильный, энергоэффективный и высококачественный источник постоянного тока.

    Что такое зарядное устройство для выпрямителя?

    Что такое зарядное устройство для выпрямителя:

    Выпрямитель преобразует изменяющийся ток (AC) в постоянный (DC).Его обычная функция – заряжать аккумуляторы и поддерживать их в оптимальном состоянии, одновременно обеспечивая питание постоянного тока для других нагрузок. Следовательно, важно, чтобы при работе устройство учитывало, какие батареи оно питает (Pb или NiCd). Он работает автоматически и непрерывно оценивает состояние и температуру батарей и другие параметры системы, чтобы гарантировать стабильное напряжение и низкий уровень пульсаций. Он может включать маневры отключения нагрузки для завершения автономной работы, термомагнитное распределение, локализацию неисправностей, анализаторы сети и т. Д.

    Схема зарядного устройства выпрямителя:


    Вот принципиальная схема простой и понятной цепи зарядного устройства 12 В со схемой. Эта схема может использоваться для зарядки всех типов аккумуляторных батарей 12 В. Схема представляет собой не что иное, как блок питания 12 В постоянного тока с амперметром для контроля зарядного тока. Два диода образуют двухполупериодный выпрямитель с отводом по центру. Конденсатор фильтрует выход выпрямителя для получения чистого выхода 12 В.

    Отличие трансформатора от выпрямительного зарядного устройства:

    Трансформатор в основном используется для повышения или понижения основного источника питания. Выпрямитель используется для преобразования переменного тока (AC) или напряжения в постоянный ток (DC) или напряжение.

    Почему выбрать зарядное устройство для выпрямителя?

    Зарядное устройство для промышленных выпрямителей предназначено для подачи безопасного и стабилизированного постоянного тока в службы, которые в силу его характеристик требуют надежного и бесперебойного питания в случае возможного сбоя питания в сети.Он используется во всех приложениях, где требуется источник постоянного тока.

    Промышленные источники питания основаны на промышленном выпрямителе, который отличается своей выносливостью и надежностью и предназначен для питания критических зарядов постоянного тока или для зарядки любых типов аккумуляторов. Промышленные источники питания основаны на стандартизированных технологиях преобразователей мощности SCR и IGBT, что обеспечивает высокую надежность, эффективность и рентабельность. Это безопасное оборудование с цифровой технологией управления, которое адаптируется к любому типу и технологии батарей, любому напряжению и току.Он предназначен для подачи постоянного тока в критические приложения, где заряд не должен иметь гармонических искажений, электрически изолирован от источника питания и должен находиться под постоянным напряжением.

    Мы хотим знать, что вы думаете об этой теме. Есть ли другая информация о зарядном устройстве для выпрямителя, по вашему мнению? Какое зарядное устройство вас интересует? Пожалуйста, отправьте нам ваше ценное сообщение ниже.

    Добавить комментарий

    Ваш адрес email не будет опубликован.