Содержание

Как происходит подача электроэнергии в наши дома

Ни для кого не секрет, что электричество в наш дом попадает от электростанций, являющихся основными источниками электроэнергии.

Однако между нами (потребителями) и станцией может быть сотни километров и через все это дальнее расстояние ток должен каким-то образом передаваться с максимальным КПД.

В этой статье мы, собственно, и рассмотрим, как передается электроэнергия на расстоянии к потребителям.

Маршрут транспортировки электричества

Итак, как мы уже сказали, начальной точкой является электрическая станция, которая, собственно, и генерирует электроэнергию. На сегодняшний день основными видами электростанций являются гидро- (ГЭС), тепло- (ТЭС) и атомные (АЭС). Помимо этого бывают солнечные, ветровые и геотермальные эл. станции.

Далее от источника электричество передается к потребителям, которые могут находиться на дальних расстояниях. Чтобы осуществить передачу электроэнергии, нужно повысить напряжение с помощью повышающих трансформаторов (напряжение могут повысить вплоть до 1150 кВ, в зависимости от расстояния).

Почему электроэнергия передается при повышенном напряжении? Все очень просто.

 Вспомним формулу электрической мощности — P=UI, тогда если передавать энергию к потребителю, то чем выше напряжение на линии электропередач — тем меньше ток в проводах, при той же потребляемой мощности.

Благодаря этому можно строить ЛЭП с большим напряжением, уменьшив сечение проводов, по сравнению с ЛЭП с низшим напряжением. Значит и сократятся расходы на строительство — чем тоньше провода, тем они дешевле.

Соответственно от станции электричество передается на повышающий трансформатор (при необходимости), а после этого с помощью ЛЭП осуществляется передача электроэнергии на ЦРП (центрально распределительные подстанции). Последние, в свою очередь, находятся в городах или в близком расстоянии от них. На ЦРП происходит понижение напряжения до 220 или же 110 кВ, откуда электроэнергия передается к подстанциям.

Далее напряжение еще раз понижают (уже до 6-10 кВ) и происходит распределение электрической энергии по трансформаторным пунктам, именуемым также ТП.

К трансформаторным пунктам электричество может передаваться не по ЛЭП, а подземной кабельной линией, т.к. в городских условиях это будет более целесообразно.

Дело в том, что стоимость полосы отчуждения в городах достаточно высокая и более выгодно будет прокопать траншею и заложить кабель в ней, нежели занимать место на поверхности.

От трансформаторных пунктов электроэнергия передается к многоэтажным домам, постройкам частного сектора, гаражному кооперативу и т.д. Обращаем ваше внимание на то, что на ТП напряжение еще раз понижается, уже до привычных нам 0,4 кВ (сеть 380 вольт).

Если кратко рассмотреть маршрут передачи электроэнергии от источника к потребителям, то он выглядит следующим образом: электростанция (к примеру, 10 кВ) – повышающая трансформаторная подстанция (от 110 до 1150 кв) – ЛЭП – понижающая трансформаторная подстанция – ТП (10-0,4 кВ) – жилые дома.

Вот таким способом электричество передается по проводам в наш дом. Как вы видите, схема передачи и распределения электроэнергии к потребителям не слишком сложная, все зависит от того, насколько большое расстояние.

  • Наглядно увидеть, как электрическая энергия поступает в города и доходит до жилого сектора, вы можете на картинке ниже:
  • Более подробно об этом вопросе рассказывают эксперты:

Как электричество поступает от источника к потребителю

Что еще важно знать

Также хотелось пару слов сказать о моментах, которые пересекаются с этим вопросом. Во-первых, уже достаточно долго проводятся исследования на тему того, как осуществить передачу электроэнергии без проводов.

Существует множество идей, но самым перспективным на сегодняшний день решением является использование беспроводной технологии WI-Fi.

Учёные из Вашингтонского университета выяснили, что этот способ вполне реален и приступили к более подробному исследованию вопроса.

Во-вторых, на сегодняшний день по ЛЭП передается переменный ток, а не постоянный.

Это связано с тем, что преобразовательные устройства, которые сначала выпрямляют ток на входе, а потом снова делают его переменным на выходе, имеют достаточно высокую стоимость, что экономически не целесообразно.

Однако все же пропускная способность линий электропередач постоянного тока в 2 раза выше, что также заставляет думать над тем, как ее более выгодно осуществить.

Вот мы и рассмотрели схему передачи электричества от источника к дому. Надеемся, вам стало понятно, как передается электроэнергия на расстоянии к потребителям и почему для этого используют высокое напряжение.

Будет интересно прочитать:

Электрический ток, откуда он берется и как добирается до наших домов?

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века.

Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством.

Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы.

Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих.

Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили.

В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Что такое электрический ток, откуда он берется и как добирается до наших домов?

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку.

Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги.

Можно легко провалиться в подвал или яму.

А за городом на природе, освещаемой только светом звезд?

Ночное освещение улицы,  pixabay.com

Удалять жару из офисов, куда с трудом добрался, без электричества тоже нечем. Можно, конечно, открыть окна и обвязать голову мокрым полотенцем, но надолго ли это поможет. Качающим воду насосам тоже нужно электричество, или придется регулярно ходить с ведром на ручную колонку.

Кофе в офисе? Забудьте! Только если всем сразу и не часто, чтобы дым от сгорающего угля не отравил рабочую атмосферу. Или за дополнительную денежку получать из соседнего трактира.

Отправить письмо в соседний офис? Надо взять бумагу, написать письмо от руки, затем ножками отнести его. На другой конец города? Вызываем курьера. В другую страну? А вы знаете, сколько это будет стоить? К тому же ответа не ждите ранее полугода из соседних стран и от года до пяти из-за океана.

Вернулись домой, надо зажечь свечи. Читать при них – мучение для глаз, поэтому придется заняться чем-то другим. А чем? ТВ нет, компьютеров нет, смартфонов – и тех нет, ибо нечем их запитать. Лежи на лавке и гляди в потолок! Хотя рождаемость точно повысится.

К этому следует добавить, что все пластмассы и удобрения сейчас получают из природного газа на заводах, где крутятся тысячи моторов, приводимых в движение всё тем же электричеством.

Отсюда список доступных удобрений сильно укорачивается до тех, которые можно приготовить из природного сырья в чанах, размешивая в них ядовитую жижу лопатками с ручным, водяным или паровым приводом.

Как результат, сильно сжимается объем производимых продуктов.

О пластмассах – забудьте! Эбонит – наше высшее счастье из длинного списка. А из металлов самым доступным становится чугун. Из медицины на сцену в качестве главного орудия снова выступают стетоскоп и быстро ржавеющий скальпель. Остальное канет в Лету.

Продолжать можно долго, но идея должна быть уже понятна. Нам нужно электричество. Мы можем выжить без него, но что это будет за жизнь! Так откуда же появилось это волшебное электричество?

Открытие электричества

Все мы знаем физическую истину, что ничто никуда бесследно не исчезает, а только переходит из одного состояния в другое.

С этой истиной столкнулся греческий философ Фалес Милетский в VII веке до н. э.

обнаружив электричество как вид энергии, натирая кусок янтаря шерстью.

Часть механической энергии при этом перешла в электрическую и янтарь (на древнегреческом «электрон») электризовался, то есть приобрел свойства притягивать легкие предметы.

Этот вид электричества сейчас называют статическим, и он нашел себе широкое применение, в том числе в системах очистки газов на электростанциях.

Но в Древней Греции ему не нашлось применения и, если бы Фалес Милетский не оставил после себя записей о своих экспериментах, мы бы никогда не узнали, кто был тот первый мыслитель, заостривший свое внимание на виде энергии, являющейся едва ли не самой чистой среди всех, с которыми мы знакомы по настоящий день. Ею также наиболее удобно управлять.

Сам термин «электричество» – то есть «янтарность» – ввел в употребление Уильям Гилберт в 1600 году. С этого времени с электричеством начинают широко экспериментировать, пытаясь разгадать его природу.

Как результат, с 1600 по 1747 годы последовала череда увлекательных открытий и появилась первая теория электричества, созданная американцем Бенджамином Франклином. Он ввел понятие положительного и отрицательного заряда, изобрел молниеотвод и с его помощью доказал электрическую природу молний.

Далее в 1785 происходит открытие закона Кулона, а в 1800 году итальянец Вольта изобретает гальванический элемент (первый источник постоянного тока, предшественник нынешних батарей и аккумуляторов), представлявший собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. С появлением этого, стабильного по тем временам, источника электричества новые и важнейшие открытия быстро следуют одно за другим.

Майкл Фарадей, читающий рождественскую лекцию в Королевском институте. Фрагмент литографии,  republic.ru

В 1820 году датский физик Эрстед обнаружил электромагнитное взаимодействие: замыкая и размыкая цепь с постоянным током, он заметил цикличные колебания стрелки компаса, расположенной вблизи проводника. А в 1821 году французский физик Ампер открыл, что вокруг проводника с переменным электрическим током образуется переменное электромагнитное поле.

Это позволило уже Майклу Фарадею в 1831 году открыть электромагнитную индукцию, описать уравнениями электрическое и магнитное поле и создать первый электрогенератор переменного тока. Фарадей вдвигал катушку с проводом в намагниченный сердечник и в результате в обмотке катушки появлялся электрический ток.

Фарадей также придумал первый электродвигатель – проводник с электрическим током, вращающийся вокруг постоянного магнита.

Всех участников «гонки за электричеством» невозможно упомянуть в этой статье, но результатом их усилий явилась доказуемая экспериментом теория, детально описывающая электричество и магнетизм, в соответствии с которой мы производим сейчас всё, что требует электричества для своего функционирования.

Постоянный или переменный ток?

В конце 1880-х годов, еще до появления мировых стандартов на производство, распределение и потребление промышленной электроэнергии, разразилась битва между сторонниками использования постоянного и переменного тока. Во главе противостоящих друг другу армий встали Тесла и Эдисон.

Оба были талантливыми изобретателями. Разве что Эдисон обладал куда более развитыми способностями к бизнесу и к моменту начала «войны» успел запатентовать множество технических решений, в которых использовался постоянный ток (в то время в США постоянный ток являлся стандартом по умолчанию; постоянным называется ток, направление которого не меняется по времени).

Но была одна проблема: в те времена постоянный ток было очень трудно трансформировать в более высокое или низкое напряжение.

Ведь если сегодня мы получаем электроэнергию напряжением 240 вольт, а наш телефон требует 5 вольт, мы втыкаем в розетку универсальную коробочку, которая преобразует что угодно во что угодно в нужном нам диапазоне, используя современные транзисторы, управляемые крошечными логическими схемами с изощренным программным обеспечением. А что можно было сделать тогда, когда до изобретения самых примитивных транзисторов оставалось еще 70 лет? И если по условиям электрических потерь требовалось повысить напряжение до 100’000 вольт, чтобы доставить электроэнергию на расстояние 100 или 200 километров, любые столбы Вольта и примитивные генераторы постоянного тока оказывались бессильны.

Понимая это, Тесла выступал за переменный ток, трансформация которого в любые уровни напряжения не представляла труда и в те времена (переменным считается ток, величина и направление которого периодически меняются со временем даже при неизменном сопротивлении этому току; при частоте сети 50Гц это происходит 50 раз в секунду). Эдисон же, не желая терять патентные отчисления себе, развернул кампанию по дискредитации переменного тока. Он уверял, что этот вид тока особо опасен для всего живого, и в доказательство публично убивал бродячих кошек и собак, прикладывая к ним электроды, соединенные с источником переменного тока.

Эдисон проиграл битву, когда Тесла предложил за 399’000 долларов осветить весь город Буффало против предложения Эдисона сделать то же за 554’000 долларов.

В день, когда город осветился электричеством, полученным от станции, расположенной у Ниагарского водопада и вырабатывающей именно переменный ток, компания General Electric выкинула постоянный ток из рассмотрения в своих будущих бизнес-проектах, полностью поддержав своим влиянием и деньгами переменный ток.

Томас Эдисон (США), Рис.: cdn.redshift.autodesk.com

Может показаться, что переменный ток навсегда завоевал мир. Однако у него имеются наследственные болячки, растущие из самого факта переменности. Прежде всего это электрические потери, связанные с потерями в индуктивной составляющей проводов ЛЭП, которые используются для передачи электроэнергии на большие расстояния.

Эти потери в 10-20 раз превышают возможные потери в тех же самых ЛЭП в случае протекания по ним постоянного тока.

Плюс сказывается повышенная сложность синхронизации узлов энергосистемы (для пущего понимания, скажем, отдельных городов), ведь для этого требуется не только выровнять напряжения узлов, но и их фазу, ибо переменный ток представляет собой волну синусоиды.

Отсюда видна и значительно большая приверженность к «качаниям» узлов по отношению к друг другу, когда напряжение-частота начинают меняться вверх-вниз, на что обычный потребитель обращает внимание, когда у него в квартире мигает свет.

Обычно это предвестник конца совместной работы узлов: связи между ними рвутся и какие-то узлы оказываются с дефицитом энергии, что ведет к снижению в них частоты (т.е.

к снижению скорости вращения тех же электродвигателей и вентиляторов), а какие-то с избытком энергии, приводящем к опасному повышению напряжения по всему узлу, включая наши розетки с подключенными к ним устройствам. А при достаточно большой длине ЛЭП, что, к примеру, критично для РФ, начинают проявляться и другие портящие настроение электрикам эффекты.

Не вдаваясь в детали, можно указать, что передавать электроэнергию переменного тока по проводам на сверхдальние расстояния становится трудно, а иногда и невозможно. Для сведения, длина волны частотой 50 Гц составляет 6000 км, и при приближении к половине этой длины – 3000 км – начинают сказываться эффекты бегущих и стоячих волн плюс эффекты, связанные с резонансом.

Эти эффекты отсутствуют при использовании постоянного тока. А значит, повышается стабильность работы энергосистемы в целом.

Принимая это во внимание, а также то, что компьютеры, светодиоды, солнечные панели, аккумуляторы и многое другое используют для своей работы именно постоянный ток, можно заключить: война с постоянным током еще не проиграна.

Современным преобразователям постоянного тока на любые используемые сегодня мощности и напряжения осталось совсем немного, чтобы сравняться в цене с привычными человечеству трансформаторами переменного тока. После чего, видимо, начнется триумфальное шествие по планете уже постоянного тока.

 itc.ua

Как происходит подача электроэнергии в наши дома | Инвертор, преобразователь напряжения, частотный преобразователь

Подача электроэнергии в многоквартирные и личные дома.

Электроэнергия вырабатывается на электростанции, дальше передается по ВЛЭП (высоковольтные полосы электропередач), позже попадает на городские и районные РЭС.

После РЭС электричество попадает на ТП (трансформаторные подстанции), где снижается до нужных нам 380/220 Вольт. И вот эти самые 380/220 вольт мы и получаем в конечном итоге у себя дома. Вот последнюю ступень мы и разглядим более тщательно.

На трансформаторной подстанции происходит снижение напряжения с 6кВ либо10кВ, зависимо от трансформатора, до 380В/220В. В трансформаторной подстанции, как и в обычном трансформаторе, есть две части- высочайшая и низкая.

Дальше, от трансформаторной подстанции под землей к дому прокладывают кабеля. Обычно, прокладывают два кабеля — основной и запасный, на случай аварии. В доме находится ГРЩ (главный распределительный щит) либо ВРУ (вводно-распределительное устройство).

В этажных распределительных щитах находятся приборы учета электроэнергии, автоматические выключатели. Зависимо от проекта, в щите на каждую квартиру предвидено два и поболее автоматических выключателя.

В ближайшее время, многие, делая ремонт в квартире, создают полную подмену проводки.

Для более комфортного и неопасного эксплуатирования электроприборов, устанавливают в квартире собственный, отдельный щит, где происходит рассредотачивание всей нагрузки через большее количество автоматов.

В таком случае, в этажном распределительном щите остается только доучетный автомат соответственного номинала и прибор учета (счетчик).

Подача электроэнергии в личный сектор происходит малость по другой схеме. Если в городских критериях все коммуникации (кабеля) проводят под землей, то сельской местности, почти всегда, питание трансформаторных подстанций осуществляется по ЛЭП.

На трансформаторы подается высокое- 6(10) кВ напряжение, дальше по проводам на личный сектор от трансформатора уходит уже низкое (относительно)-380/220В напряжение.

Приблизительно так смотрится схема подачи электроэнергии в наши дома.

Как электричество попадает в дом

Как электричество попадает в наши дома и квартиры? В этой статье  доступно простым языком, рассмотрена схема энергоснабжения частного дома и квартиры в многоэтажном доме. Рассмотрим две типовых схемы подачи электроэнергии в наши дома и квартиры.

1. Типовая схема подачи электроэнергии в частный дом.

В частном секторе электроэнергия от трансформаторной подстанции по воздушным линиям электропередач подается к домам потребителей.

От линии электропередач электроэнергия по проводам подается на герметичный бокс, который устанавливается на столбе или на фасаде дома. В боксе устанавливается вводной автоматический выключатель, к которому подключаются провода от воздушной линии.

После вводного автомата устанавливается прибор учета электроэнергии — электрический счетчик. Бокс пломбируется от возможности постороннего доступа энерго-обслуживающей организацией.

От бокса со счетчиком электроэнергия по кабелю подается в дом, где обычно устанавливают внутренний электрический щит.

В этом электрощите устанавливаются аппараты защиты: автоматические выключатели, устройства защитного отключения (УЗО) и другие модульные устройства.  К ним подключаются различные группы потребителей: электроплиты, водонагреватели, кондиционеры, розетки для подключения приборов, светильники.

Автоматические выключатели защищают цепи потребителей от токов короткого замыкания и перегрузок, а также позволяют при необходимости отключить конкретную электрическую цепь для проведения ремонтных работ.

2. Схема подачи электроэнергии в многоэтажных домах.

В многоэтажных домах подача электроэнергии происходит немного по другой схеме.

От трансформаторной подстанции электроэнергия подается к главному распределительному щиту ГРЩ здания, который обычно устанавливается в щитовой здания. Электрические кабели обычно прокладывают под землей.

От главного распределительного щита питающие кабели заводятся в каждый подъезд и по специальным этажным стоякам подводятся к этажным распределительным щитам, которые устанавливаются на каждом этаже в этажных коридорах.

В этажных распределительных щитах устанавливаются вводные автоматические выключатели и счетчики электроэнергии отдельно на каждую квартиру. Количество счетчиков такое же, как и количество квартир на этаже.

Групповые автоматические выключатели могут устанавливаться как в этажном распределительном щите, так и в отдельно вынесенном квартирном электрощите, который чаще всего устанавливается в прихожей квартир.

В общем случае схема электрической сети квартиры или дома будет выглядеть, как на схеме ниже.

  • Электроэнергия от внешней электросети подается на вводной автоматический выключатель.
  • После него подключается счетчик электроэнергии.
  • После счетчика подключаются групповые автоматические выключатели, через которые подключаются потребители — бытовые приборы: электроплиты, водонагреватели, кондиционеры, светильники и др.
  • Для большей наглядности посмотрите видео: Как электроэнергия попадает в дома и квартиры.
  • Интересные статьи по теме:
  • Как выбрать квартирный электрощит?
  • Электрощит своими руками.
  • Автоматические выключатели УЗО дифавтоматы — подробное руководство.
  • Номиналы групповых автоматов превышают номинал вводного?
  • Работа УЗО при обрыве нуля.
  • Почему УЗО выбирают на ступень выше?
  • Почему в жару срабатывает автоматический выключатель?
  • Менять ли автоматический выключатель, если его «выбивает»?

Как электричество попадает к нам в дом. От электростанции до квартиры

Электроэнергия является неотъемлемой частью нашей жизни. Каждый день мы, не задумываясь, используем множество бытовых электроприборов, не говоря уже о производстве. А откуда берется так необходимая нам электроэнергия? Ответ на этот вопрос знают даже дети: ее производят электростанции.

А вот как она поступает от электростанции к нам, потребителям, знают не все. На этот вопрос мы постараемся ответить в нашей статье. Итак, начнем с электростанций. Все знают основные виды электростанций: АЭС, ГЭС, ТЭС.

Многие наверняка слышали о существовании дизельных генераторных установок и миниэлектростанций, которые все чаще используются на строительных площадках, в качестве защиты от обесточивания в больницах, а также могут обеспечить электроэнергией частный дом и т. д. В Европе для получения электроэнергии используют также энергию ветра и солнечную энергию.

Ученые всего мира также работают над альтернативными видами электроэнергии, такими как реакция синтеза, электростанции на биомассе. В нашей стране на сегодняшний день основными источниками электроэнергии являются АЭС, ГЭС и ТЭС. Более половины электроэнергии производят тепловые электростанции.

Чаще всего такие электростанции располагаются в местах добычи топлива. В городах могут также использоваться теплоэлектроцентрали, которые обеспечивают город не только электроэнергией, но и горячей водой и теплом. Наиболее дешевую электроэнергию производят гидроэлектростанции. Атомные электростанции – наиболее современные.

Одним из важнейших преимуществ является тот факт, что они не привязаны к источнику сырья, а, следовательно, могут быть размещены практически в любом месте. АЭС также не загрязняют окружающую среду, при условии учета всех природных факторов и выполнения требований к их постройке.

Но вот у нас есть электростанция, которая производит электроэнергию. Что же происходит дальше? А дальше электроэнергия с электросъёмных шин и кабелей подаётся в электрическую часть электростанции, которая бывает открытого, закрытого и комбинированного типа.

В электрочасти находится диспетчерский пункт управления электростанцией, автоматизированная система управления технологическим процессом (АСУ ТП), коммутационные аппараты, релейная защита, контрольно — измерительные приборы и сигнализации, высоковольтные повышающие и понижающие трансформаторы, высоковольтные выключатели, сборные шины и автотрансформаторы.

После преобразования энергии электричество подаётся на высоковольтную линию электропередач (ВЛЭП). Линии электропередач, предназначенные для транспортировки электроэнергии на большие расстояния, должны иметь большую пропускную способность и малые потери, и состоят из проводов, опор, крепёжной арматуры, грозозащитных тросов, а также вспомогательных устройств.

По своему назначению ЛЭП подразделяются на сверхдальние, магистральные и распределительные. Основными элементами воздушных линий электропередач являются металлические опоры, которые устанавливаются на определенном расстоянии друг от друга. Они бывают анкерными, промежуточными и угловыми.

Анкерные опоры устанавливают в начале и конце линии электропередач, а также в местах перехода инженерных сооружений или естественных преград. Промежуточные опоры устанавливаются на прямых участках и предназначены для поддержки проводов с допустимым провисанием 6-8 метров в населённой местности, и 5-7 метров — в не населённой.

Угловые опоры устанавливаются на углах поворота линии электропередач. Специальные транспозиционные опоры устанавливаются для изменения порядка расположения проводов на опорах, а так же для ответвления проводов от магистральной линии ВЛЭП.

Для передачи электроэнергии в высоковольтных линиях электропередач применяются неизолированные провода, изготовленные из алюминия и сталеалюминия следующих марок: АН, АЖ, АКП (алюминиевые) и ВЛ, АС, АСКС, АСКП, АСК (сталеалюминевые).

Провода к опорам крепятся при помощи поддерживающих или натяжных изоляторов, которые монтируются на опору подвесным способом, и крепёжной арматуры. В свою очередь изоляторы бывают фарфоровые, с покрытием из глазури, стеклянные, из закалённого стекла, и полимерные, из специальных пластических масс. Для защиты линии электропередач от молнии на опорах натягиваются грозозащитные тросы, устанавливаются разрядники, а опоры заземляются. Так как линия обычно тянется на большое расстояние, то во избежание потерь напряжения используются промежуточные подстанции с повышающими трансформаторами.

Для дальнейшего распределения электроэнергии к магистральным ВЛЭП подключаются распределительные подстанции, которые в свою очередь раздают электроэнергию на понижающие подстанции. При распределении электроэнергии от подстанции к КТП может использоваться 2 типа прокладки кабелей: воздушный и под землей.

При воздушной прокладке обычно используют алюминиевые или сталемедные неизолированные провода, которые подвешиваются на опорах. При подземной прокладке используется силовой кабель с медными или алюминиевыми токопроводящими жилами и броней, которая обеспечивает надежную защиту от механических воздействий.

К кабелям такого типа относятся марки, предназначенные для эксплуатации на напряжение до 35 кВ, например АСБл или СБЛ (6-10 кВ), ПвПБВ или АПвПгТ (10-35 кВ).

Если трансформаторная подстанция находится на большом расстоянии, то использование силового кабеля будет экономически не выгодным, в таком случае используется воздушная прокладка.

От понижающей подстанции по линиям электропередач энергия распределяется между КТП, которые разделяются на мачтовые и киосковые (проходные и тупиковые). Комплектные трансформаторные подстанции осуществляют понижение напряжения с 10(6) до 0,4 кВ переменного тока частотой 50 Гц и предназначены для подачи электроэнергии в частные дома, отдельные населенные пункты или небольшие промышленные объекты. В мачтовых трансформаторных подстанциях ввод и вывод кабеля осуществляется при помощи воздушных линий. КТП киоскового типа служат для тех же целей, но устанавливаются в простейшую бетонную площадку и имеют серьезное преимущество – они позволяют осуществлять ввод и отвод, как воздушным путем, так и под землей.

Для отвода воздушных линий используется самонесущие алюминиевые изолированные провода СИП, которые подвешиваются на деревянных или бетонных опорах при помощи монтажной арматуры.

Такой способ прокладки распределительной линии используется в частных секторах, гаражных кооперативах или там где необходимо запитать большое количество потребителей находящихся на некотором расстоянии друг от друга.

Для прокладки подземных линий используется силовой кабель с алюминиевыми или медными жилами, с изоляцией из различных материалов, экранированный, бронированный, с защитным покровом или без него. В зависимости от способа прокладки могут использоваться различные марки кабеля.

Для прокладки в специальных двустенных гофрированных трубах могут использоваться силовые кабели без защитного покрова и брони, такие, как АВВГ или ВВГ. Для прокладки в траншеях используются кабели с броней и защитными покровами, которые имеют хорошую защиту от физического и механического воздействия.

Это такие кабели как АВБбШв и ВБбШв (с броней и защитным покровом) или АВВБГ и ВВБГ (с броней без защитного покрова). Кроме того, в зависимости от характера блуждающих токов, могут использоваться силовые кабели с различными видами экранов, которые предназначены для прокладки, как в траншеях, так и в защищенных трубах. К таким кабелям относятся марки АПвЭгП или АПвАШв.

От трансформаторной подстанции электроэнергия по выбранным проводам передается на распределительные пункты, которые находятся в специально отведенных для этого комнатах (щитовых).

В щитовых устанавливаются распределительные устройства, которые не только обеспечивают передачу электроэнергии в квартиры, но также осуществляют запитку этажного и аварийного освещения, лифтов, систем вентиляции, кондиционирования и систем безопасности.

Распределение от электрощитовой до этажных щитов, осуществляется при помощи кабелей, которые согласно условиям пожарной безопасности должны не распространять горение и иметь низкие показатели дымо и газовыделения. К таким маркам кабелей можно отнести АВВГнг-LS (алюминиевые токопроводящие жилы), ВВГнг-LS (медные жилы).

Для прокладки магистральной линии используется лоток лестничный и специальные крепежные скобы, которые обеспечивают сохранность кабеля на весь срок службы. Кроме того, для подвода питания от щитовой на этажные щиты может применяться шинопровод, который имеет ряд плюсов по сравнению с кабельной магистральной линией.

К ним можно отнести удобство монтажа (секции без особых проблем собираются и монтируются в нишу), меньшие габариты по сравнению с кабельной линией (секции состоят из медных или алюминиевых шин, которые зачищены металлическим корпусом), удобство дальнейшей эксплуатации. И, наконец, от этажных щитов электроэнергия поступает на счетчик либо щит учетно-распределительный щит квартиры.

 

Передача электроэнергии

Передача электрической энергии — технология передачи энергии от мест генерирования к местам потребления. Передача электроэнергии осуществляется посредством электрических сетей, в состав которых входят преобразователи, линии электропередачи и распределительные устройства.

История

Линии электропередач в Германии

Возможность передачи электроэнергии на расстояние впервые обнаружил Стивен Грей в 1720-е годы. В опытах Грея заряд передавался по шёлковому проводу на расстояние до 800 футов[1]

До конца XIX века электричество использовалось только поблизости от мест генерации. Это, в свою очередь, ограничивало степень использования доступных ресурсов, так как большие мощности для местного производства не требовались.

С изобретением электрического освещения необходимость передачи электричества на большие расстояния стало актуальной проблемой, так как освещение требовалось в первую очередь в крупных городах, удалённых от источников энергии[2].

В 1873 году Фонтен впервые продемонстрировал генератор и двигатель постоянного тока, связанные проводом длиной 2 км. В 1874 году Ф. А. Пироцкий осуществил передачу электроэнергии мощностью 6 л. с.

на расстояние 1 км, а в 1876 году повторил опыт, используя в качестве проводника рельсы Сестрорецкой железной дороги длиной 3,5 км. В конце 1870-х — начале 1880-х Д. А. Лачинов показал, что потери энергии при передаче имеют обратную зависимость от напряжения, а П. Н. Яблочков и И. Ф.

Усагин создали первые трансформаторы, что позволило Усагину на Всероссийской выставке в Москве в 1882 году продемонстрировать первую высоковольтную систему передачи электроэнергии, включавшую повышающий и понижающий трансформаторы и линию электропередачи.

В том же году на Мюнхенской выставке опыт передачи постоянного электрического тока напряжением до 2000 В на расстояние 60 км продемонстрировал Марсель Депре, при этом потери составили 78 %[2].

Прорывом в передаче электроэнергии на большие расстояния стал опыт М. О. Доливо-Добровольского на международной электротехнической выставке во Франкфурте-на-Майне в 1891 году, в ходе которого энергия от установки на реке Неккар в городе Лауффен была передана во Франкфурт по трёхфазной линии на 175 км.

Энергия передавалась при напряжении 15200 В, преобразование осуществлялось с помощью трёхфазных трансформаторов. КПД линии достигал 80,9 %, а передаваемая мощность — более 100 л. с., использованных для работы электрического двигателя и освещения. Опыт способствовал внедрению трёхфазного переменного тока и высоковольтных систем передачи.

К 1910 году в США появились первые линии 110 кВ, в 1923 — 220 кВ, в то же время началось внедрение высоковольтных линий в Европе[2].

Передачи энергии на постоянном токе, в первую очередь, по системе Тюри, имела некоторое распространение в начале XX века, в частности, функционировали линия в Батуми протяжённость 10 км и линия Мутье-Лион протяжённостью 180 км, но в конце концов они были демонтированы и заменены линиями переменного тока[2].

Схема передачи

В настоящее время применяются схемы передачи, в которые входят[3]:

  • электрический генератор;
  • повышающий трансформатор;
  • линия электропередачи;
  • понижающий трансформатор.

Схемы делятся на блочные, связанные и полусвязанные[4]

Классификация

По типу линии электропередач[5]:

  • магистральные;
  • межсистемные. {2}}{Z_{0}}}}

    • где

      U

      {displaystyle U}

      — напряжение, В;

      Z

      0

      {displaystyle Z_{0}}

      — волновое сопротивление, Ом.

    • Например, для линии 110 кВ пропускная способность составляет 30 МВт
    • Пропускную способность снижают потери энергии[8], другим ограничением является устойчивость параллельной работы синхронных машин, находящихся на концах линии[9].

    Примечания

    1. Храмов Ю. А. Грей Стефен (Gray Stephen) // Физики: Биографический справочник / Под ред. А. И. Ахиезера. — Изд. 2-е, испр. и дополн. — М.: Наука, 1983. — С. 91. — 400 с. — 200 000 экз. (в пер.)
    2. 1 2 3 4 Крачковский, 1953, с.

      6—12.

    3. ↑ Крачковский, 1953, с. 23—24.
    4. ↑ Крачковский, 1953, с. 24.
    5. 1 2 Крачковский, 1953, с. 22.
    6. ↑ Крачковский, 1953, с. 23.
    7. ↑ Крачковский, 1953, с. 27.
    8. ↑ Крачковский, 1953, с. 28.
    9. ↑ Крачковский, 1953, с. 31.

    Литература

    • Крачковский Н. Н. Передача электрической энергии на дальние расстояния / Отв. ред. академик А. В. Винтер. — М.: Издательство Академии наук СССР, 1953.
    • Герасименко А. А., Федин В. Т. Передача и распределение электрической энергии: Учебное пособие. — 2-е. — Ростов-на-Дону: Феникс, 2008. — 715 с. — (Высшее образование).

    См. также

    • Распределение электроэнергии
    Для улучшения этой статьи желательно:
    • Проставить для статьи более точные категории.
    • Добавить иллюстрации.

    Пожалуйста, после исправления проблемы исключите её из списка параметров. После устранения всех недостатков этот шаблон может быть удалён любым участником.

    Урок 12. преобразование и передача электроэнергии - Естествознание - 11 класс

    Естествознание, 11 класс

    Урок 12. Преобразование и передача электроэнергии

    Перечень вопросов, рассматриваемых в теме:

    • Какие способы передачи энергии на расстояние существуют?
    • Чем обусловлены потери энергии при передаче?
    • Чем выгоден каждый способ передачи электроэнергии?
    • Как уменьшить потери при передаче электроэнергии?

    Глоссарий по теме:

    Электромагни́тная инду́кция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении во времени магнитного поля или при движении материальной среды в магнитном поле.

    Правило Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей.

    Закон электромагнитной индукции (закон Фарадея).

    Какова бы ни была причина изменения магнитного потока, охватываемого замкнутым проводящим контуром, возникающая в контуре Э.Д.С. индукции определяется формулой:

    Первичной обмоткой называется та, на которую подается исходное напряжение от какого-либо источника переменного тока. Вторичная обмотка – обмотка, которая служит источником питания для потребителя. Обычно первичную обмотку обозначают индексом 1, а вторичную – индексом 2.

    Трансформатор (от лат.transformare — «превращать, преобразовывать») — статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

    Основная и дополнительная литература по теме урока:

    Обязательная литература:

    1. Александров, А. П. Атомная энергетика и научно-технический прогресс / А.П. Александров. - М.: Наука, 2015. - 272 c.
    2. Арутюнян, А. А. Основы энергосбережения / А.А. Арутюнян. - М.: Энергосервис, 2016. - 600 c.
    3. Демидов, В. И. Тепла Вам и света / В.И. Демидов. - М.: Лицей, 2009. - 254 c.

    Дополнительные источники:

    1. https://moiinstrumenty. ru/elektro/obmotka-transformatora.html
    2. Якобсон, И.А. Испытания переключающих устройств силовых трансформаторов / И.А. Якобсон. - М.: Наука, 2006. - 56 c

    Теоретический материал для самостоятельного изучения

    В современном мире трудно представить себе даже несколько минут без электричества. Многие жизненно важные приборы, а также бытовая техника потребляют электроэнергию. Проблема передачи электроэнергии на различные расстояния: от маленьких деревень до многомиллионных городов до сих пор остается актуальной. Как это осуществить с минимальными потерями и наиболее эффективно?

    Развитие цивилизации и научно-технический прогресс, связанный с использованием двигателей, потребовал решения не только задач производства энергии, но также задачи передачи энергии на расстояние. С давних пор известно два способа передачи топлива для двигателей: транспортный и более экономичный – трубопроводный, применяемые до сих пор. Но самый эффективный способ – по проводам. Французский физик М. Депре построил первую линию электропередачи в 1880 г. Однако, и этот способ не позволяет избежать потерь, связанных с нагревом подводящих проводов.

    При простейшем способе передачи, когда источник электроэнергии (электрогенератор) связан проводами с потребителем, процесс передачи можно изобразить схемой, приведенной на Рис. 1

    Рис.1

    Обозначая полезную потребляемую мощность (мощность на нагрузке) через Wн, а паразитную мощность, идущую на нагревание проводов через Wп, получим для них выражения:

    Wн = I2Rн

    Wп = I2Rп

    Из этих формул видно, что отношение мощностей равно отношению сопротивлений.

    Чтобы уменьшить потери сопротивление подводящих проводов стараются сделать как можно меньше. Провода делают из хорошо проводящего материала – в основном из алюминия или меди и достаточно толстыми.

    Уменьшить потери энергии в проводах по сравнению с энергией, которую нужно передать, можно, если уменьшить ток, текущий в проводах, по сравнению с током, который течет в приборах потребителя. Сделать это позволяет трансформатор, принцип действия которого основан на взаимопреобразовании электрического и магнитного полей. Трансформатор, история применения которого насчитывает почти полтора века, все это время служит человечеству верой и правдой. Его назначение — преобразование напряжения переменного тока. Это одно из немногих устройств, КПД которого может достигать почти 100%.

    Самый простой трансформатор — это сердечник из ферромагнитного материала с большой магнитной проницаемостью (например, из электротехнической стали) и две намотанных на него обмотки (рис. 2). При пропускании через первичную обмотку переменного тока силой I1 в сердечнике возникает меняющийся магнитный поток Ф, которым пронизывается как первичная, так и вторичная обмотка.

    В каждом из витков этих обмоток находится одинаковая по численному значению ЭДС индукции. Таким образом, отношения ЭДС в обмотках и витков в них одинаковы. На холостом ходу (I2 = 0) напряжения на обмотках практически равны ЭДС индукции в них, следовательно, для напряжений также выполняется соотношение:

    U1 / U2 ≈ N1 / N2, где

    N1 и N2 — число витков в обмотках.

    Отношение U1 / U2 называют еще коэффициентом трансформации (k). Если U1 < U2, трансформатор называют повышающим, при U1 > U2 — понижающим (рис 2). У первого трансформатора коэффициент трансформации больше, а у второго — меньше единицы. Поскольку КПД трансформатора близок к 100%, мощность в цепи первичной обмотки приблизительно равна мощности в цепи вторичной обмотки:

    U1I1=U2I2

    Следовательно, ток во вторичной обмотке меньше, чем ток в цепи потребителя. Так как потери на нагрев проводов в линии электропередачи пропорциональны , уменьшение тока в проводах линии электропередачи позволяет уменьшить потери энергии.

    Один и тот же трансформатор, в зависимости от того к которой обмотке прикладывается, а с какой снимается напряжение, может быть как повышающим, так и понижающим.

    Рис 2. Повышающий трансформатор (k < 1)

    Рис 3. Понижающий трансформатор (k > 1)

    При U2>>U1, U2>>U3 и, соответственно, I2<<I1, I2<<I3 потери электроэнергии на нагрев проводов значительно уменьшаются.

    Но и трансформаторы не идеальные устройства. Реальные трансформаторы, работающие в системе передачи электроэнергии достаточно сложны и внутри их помимо полезного, возникают и вредные токи, снижающие эффективность передачи.

    Поэтому не прекращаются поиски усовершенствования выработки и передачи электроэнергии.

    Рис.4 Устройство трансформатора

    Рис.5. Сверхпроводники

    Выводы:

    • Передача энергии на расстояние в виде электроэнергии является в настоящее время наиболее удобным и дешевым способом передачи энергии.
    • Использование трансформаторов и увеличение напряжения в проводах линий электропередачи, позволяет существенно снизить потери энергии при передаче электроэнергии.
    • Ученые постоянно работают над проблемой сбережения энергии при ее передаче, например, использование сверхпроводников. Но многие проекты находятся еще на стадии разработки.

    Примеры и разбор решения заданий тренировочного модуля:

    Задание 1: Подчеркните правильные ответы: «Чтобы уменьшить потери сопротивление подводящих проводов стараются сделать как можно __________. Провода делают из хорошо проводящего материала – в основном из ________ или ее сплавов и достаточно_________».

    Варианты ответов: больше, меньше, стали, меди, толстыми, тонкими.

    Правильный вариант: Чтобы уменьшить потери сопротивление подводящих проводов стараются сделать как можно меньше. Провода делают из хорошо проводящего материала – в основном из меди или ее сплавов и достаточно толстыми.

    Задание 2: Решите кроссворд.

    По горизонтали
    2
    . статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком-либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты, называют....

    3. обмотка, на которую подается исходное напряжение от какого-либо источника переменного тока.

    По вертикали
    1.обмотка, которая служит источником питания для потребителя.

    Правильный вариант:

    Передача электроэнергии на большие расстояния

     

    Передача новостей на большие расстояния всего пару сотен лет назад казалась чем-то из области фантастики. Время почтовых голубей, издревле использовавшихся римлянами, персами, и египтянами, прошло после изобретения телеграфной связи. С уверенностью можно сказать, что с передачей энергии на большие дистанции в те же периоды истории дела обстояли гораздо хуже. Проводники с высоким сопротивлением, низкое напряжение, серьезная коммерческая борьба за использование постоянного тока – лишь некоторые из факторов, тормозивших развитие электрических систем и сетей.

    Ни для кого не секрет, что энергетику можно назвать достаточно консервативной отраслью. Если сравнивать скорость развития тепло- и электроэнергетики с прогрессом в информационных технологиях за одинаковые периоды времени, то разница чувствуется особенно резко. Окружающие нас сенсорные дисплеи с ультравысоким разрешением, искусственный интеллект, повсеместный и универсальный доступ к сети Интернет заметно развились с начала этого столетия. Однако опоры линий электропередачи (ЛЭП) до сих пор несут на себе тысячи километров сталеалюминиевыех проводов, перегрузки предотвращаются автоматическими выключателями, не сильно изменившимися за последние 70 лет. Суперпроводники, работающие при комнатной температуре, так и остались артефактами на страницах научных журналов и научно-популярной литературы. Чем же вызвана кажущаяся неповоротливость энергетики? Какие факторы на это влияют? И как вообще происходит передача электроэнергии на большие расстояния? Обо всем по порядку.

    Как отмечалось выше, исторически сложилось, что изначально сторонников передачи электричества с использованием постоянного тока было больше. Такой перевес не был обусловлен точными расчетами, имела место пропаганда в СМИ и реклама. Почему же сейчас в контексте передачи электроэнергии мы слышим лишь о переменном токе?

    Все начинается с электростанций. И для производителей, и для потребителей электроэнергии экономически выгодно иметь один централизованной источник энергии, а не множество разрозненных. От таких центров питания финансово целесообразно прокладывать ЛЭП к потребителям. Как известно, мощность (а в каждый момент времени по проводам передается именно мощность) равна произведению напряжения на ток. Для получения одной и той же мощности можно либо увеличить ток и снизить напряжение, либо сделать наоборот.

    Случай с низким напряжением и высоким током очень неэффективный, при такой стратегии потери электроэнергии на длинных ЛЭП могут составлять 60 и более процентов. Случай с высоким напряжением и низким током гораздо более выгодный. При использовании постоянного тока увеличение уровня напряжения составляет серьезную проблему, а вот с переменным этого добиться очень просто. Трансформаторы – это электрические машины, преобразующие электрическую мощность с низкого напряжения в мощность с высоким напряжением. Чем длиннее ЛЭП, тем под более высоким напряжением находятся ее провода. Кроме того, бесчисленное количество заводов и предприятий используют электродвигатели. Двигатели постоянного тока в сравнении с двигателями переменного тока безусловно проигрывают: их КПД ниже, в них больше трущихся частей, их конструкция сложнее. Поэтому большинство электродвигателей в мире – это двигатели переменного тока.

    Теперь, зная ответ на вопрос, почему победа осталась за переменным током, можно взглянуть на энергосистему с большей высоты. Различные электростанции в разных уголках планеты производят электричество. Говоря упрощенно, от электрогенераторов на станциях провода тянутся к трансформаторной подстанции (ТП), повышающей напряжение до 35, 110, 330, или 750 кВ. Провода на опорах оттуда тянутся к потребителям – в города и на заводы, где напряжение снова понижается на понижающих ТП до уровня, необходимого потребителю. Это напряжения в 0.4, 1, 10 кВ. Точка, в которой соединяются две и более ЛЭП, называется электрической подстанцией. Таким образом различные электростанции одной страны связываются в одну энергосистему, а энергосистемы разных стран – в объединенную энергосистему.

    Трансформатор на подстанции

    Передача энергии на большие расстояния – это всегда вопрос компромисса. Что выгоднее: строить новую электростанцию или прокладывать ЛЭП от существующих станций на огромное расстояние? Например, суммарная протяженность ЛЭП в Беларуси на начало 2019 года составляла почти 280 000 км. Где и как строить линию электропередачи? При монтаже опор огромное значение играет рельеф местности и характер грунта, а также наличие населенных пунктов, дорог и деревьев.

    От потребляемой мощности зависит напряжение сети. От мощности, напряжения, и, как ни странно, погоды зависит выбор проводов, изоляторов и опор. При строительстве энергоемких предприятий надо решить: питаться от существующей подстанции или монтировать ТП в цеху? В целом при строительстве объектов решается вопрос о категории электроснабжения, то есть нужно ли прокладывать резервные линии и если да, то сколько? Отдельный и сложный вопрос представляет собой устойчивость энергосистемы, то есть ее способность функционировать, когда пропадает питание от электростанций или ЛЭП вследствие запланированного ремонта или аварии.  

    Ротор турбогенератора

    На данный момент принимается множество решений для модернизации энергосистем, например, привычные провода заменяют на алюминиевые с композитным тросом вместо стального. Это уменьшает провис проводов, увеличивает безопасную зону вокруг ЛЭП и их надежность. В целом же человечество еще не вышло на революционно новые методы производства и передачи электроэнергии.

    Пожалуй, можно сказать, что в современном мире электроэнергетика находится на третьем месте после воздуха и воды. Миллионы километров проводов и кабелей смонтированы, огромные генераторы (диаметром до 16 метров) прочно закреплены на земной поверхности, это и объясняет вынужденную неповоротливость и стратегическую важность высоковольтной электроэнергетики.

    Для обслуживания и проверки ЛЭП и электрических сетей существуют лаборатории электрофизических измерений. К таким, например, относится компания «ТМРсила-М», имеющая многолетний опыт работы в энергетике и сформированная из опытных специалистов.

     

    11.3. Передача электроэнергии переменным током

    11.3. Передача электроэнергии переменным током

    Значительный прогресс в технологии передачи электрической энергии на большие расстояния был достигнут в середине 80-х годов XIX века с началом использования переменного тока. Было установлено, что получение тока высокого напряжения непосредственно от динамо-машины переменного тока достигается значительно легче, чем от динамо-машины постоянного тока. Кроме того, необходимое высокое напряжение электропередачи можно получать не в самой динамо-машине, а посредством повышающего трансформатора, что значительно проще и эффективнее. При этом в конце электропередачи может быть установлен понижающий трансформатор для обратного понижения напряжения.

    Первый опыт электропередачи переменным током был осуществлен Л.Голардом (1850– 1888) в 1884 г. в Турине. В этом опыте были использованы трансформаторы, которые повышали напряжение до 2 кВ. Длина линии составляла 40 км и по ней передавалась мощность 20 кВт. В конце 80-х годов XIX века крупнейшие установки однофазного переменного тока были построены в России и Украине. В Одессе (1887 г.) от сети переменного тока напряжением 2000 В через трансформаторы питались электролампы в Оперном театре и в частных домах. В том же году в Царском Селе (ныне г. Пушкин) под Петербургом началась эксплуатация электростанции постоянного тока. Протяженность воздушной сети была 64 км. В 1890 г. станция и воздушная сеть были реконструированы и переведены на однофазный переменный ток напряжением 2000 В. Царское Село (по свидетельству современников) было первым городом в Европе, который освещался исключительно электричеством.

    Рис. 11.2. Линия передачи однофазного переменного тока в Портленде (1889 г.)

     

    С 1882 г. начали строиться генераторы английского инженера Дж. Гордона (1852–1893). В 1885 г. венгерскими электротехниками О. Блати, М. Дери и К. Циперновским был разработан промышленный трансформатор с замкнутой магнитной системой, который стал выпускаться заводом в Будапеште. Это открыло возможность получать необходимое высокое напряжение в начале электропередачи на повышающем трансформаторе вне динамомашины, что оказывалось проще и эффективней. При этом в конце электропередачи низкое напряжение у потребителей можно было получать за счет установки понижающего трансформатора.

    Рис. 11.3. Конструкция первичной станции в Лауфене на Неккаре

    В 1889 г. в США была построена линия промышленной электропередачи однофазного тока протяженностью 28 км от гидростанции до осветительных установок в г. Портленде. На гидростанции были установлены 19 генераторов, каждый из которых питал 100 ламп по отдельной линейной цепи, так как синхронизация генераторов еще не производилась. Из рис. 11.2 легко понять, насколько неэкономичными при таких условиях оказывались электрические сети, на сооружение которых расходовались колоссальные количества проводниковой меди и изоляторов.

    Небольшое немецкое местечко Лауфен, расположенное на берегу реки Неккар, сыграло значительную роль в истории развития электротехники. В нем был цементный завод, снабжаемый значительным количеством водяной энергии от близлежащего водопада. При этом завод мог использовать лишь небольшую ее часть. Дирекция завода, зная об удачных опытах по передаче электрической энергии на большие расстояния, решила, что существует возможность продавать избыток своей водяной энергии промышленному Франкфурту-на-Майне, расположенному на расстоянии 175 км от Лауфена, в форме электрического тока. Оскар Миллер – создатель всей этой по тем временам грандиозной системы передачи электрической энергии – предложил использовать трехфазный переменный ток, о котором в то время только начинали говорить, на что и получил согласие заводской дирекции.

    Конструкция первичной станции в Лауфене на Неккаре показана на рис. 11.3, а схема электропередачи Лауфен – Франкфурт-наМайне приведена на рис. 11.4.

    Рис. 11.4. Схема электропередачи Лауфен–Франкфурт-на-Майне (1891 г.): Г – синхронный генератор; Т1и Т2– трансформаторы

    Напряжение электропередачи Лауфен – Франкфурт-на-Майне с 15 кВ было вскоре повышено до 30 кВ. В 1901 г. в США на р. Миссури была построена электропередача напряжением 50 кВ, а к 1903 г. предельное напряжение возросло до 60 кВ, передаваемая мощность – до 17 тыс. кВт (Ниагара – Буффало), а дальность достигла 350 км.

    В 1891 г. система была введена в эксплуатацию. Для получения электрической энергии были установлены три водяные турбины по 300 л.с., соединенные передаточным редуктором с динамо-машиной переменного тока (рис. 11.5). Линия состояла из трех медных проволок, подвешенных на столбах высотой 8 м при помощи особой конструкции из фарфоровых изоляторов. По проводам передавался переменный ток напряжением в 8500 В, получаемый с помощью первичного повышающего трансформатора. Во Франкфурте-на-Майне в конце электропередачи напряжение понижалось до 65 В и использовалось для питания электродвигателей и ламп накаливания. Коэффициент полезного действия такой электропередачи достигал 75%.

    Вся дальнейшая история развития линий электропередачи вплоть до конца XX века сопровождалась увеличением напряжения, передаваемых мощностей и протяженности линий. На первом этапе преобладающей по важности проблемой было уменьшение потерь в линиях, что требовало повышения напряжения.

    Дальнейший рост номинального напряжения линий электропередачи ограничивался возможностями использовавшихся в то время штыревых изоляторов, не позволявших поднять напряжение выше 70 кВ. Только изобретение в начале ХХ века подвесных изоляторов позволило резко увеличить применявшееся напряжение, и уже в 1908–1912 гг. в Америке и Германии были построены первые линии электропередачи переменного тока напряжением 110 кВ.

    Дополнительное затруднение на пути роста номинального напряжения возникло в связи с увеличением потерь на корону (коронный разряд с поверхности проводов). Теоретические исследования показали, что уменьшить потери можно путем увеличения действительного либо «электрического» диаметра провода. Первое направление привело к применению алюминиевых, сталеалюминиевых и полых проводов большего диаметра. Второе направление (предложенное В.Ф. Миткевачем в 1910 г.) привело к применению расщепленных фаз, состоящих из нескольких проводов.

    Удачное завершение Лауфенского проекта, доказавшего принципиальную техническую возможность передачи электрической энергии на большие расстояния, обратило на себя внимание электротехников во всем мире, стремившихся решить сложную техническую задачу использования огромного количества дешевой водяной энергии и в первую очередь энергии падающей воды.

    В 1889 г., т.е. еще до осуществления Лауфенского проекта, созданная в США компания приобрела права на использование энергии Ниагарского водопада в размере 450 тыс. л.с. с американской и канадской сторон. Полученная электрическая энергия распределялась по заводам, расположенным в районе г. Ниагары, а также использовалась для городского электрического освещения. Часть электрической энергии направлялась по специально сооруженной линии электропередачи в г. Буффало, для чего предварительно напряжение повышалось до 22000 В с помощью трансформаторов.

    Рис. 11.5. Динамомашина переменного тока

    Общая информация о передаче электрической энергии

    Акционерное Общество «Объединенные региональные электрические сети Владимирской области» - территориальная сетевая организация, которая оказывает услуги по передаче электрической энергии с использованием объектов электросетевого хозяйства и которая соответствует утвержденным Правительством Российской Федерации критериям отнесения владельцев объектов электросетевого хозяйства к территориальным сетевым организациям. Услуги по передаче электрической энергии это комплекс организационных и технологически связанных мероприятий, в том числе по оперативно-диспетчерскому управлению, которые обеспечивают передачу электрической энергии через объекты электросетевого хозяйства в соответствии с требованиями установленными законодательством РФ в электроэнергетике.

    Стоимость услуг по передаче электрической энергии определяется исходя из тарифа на услуги по передаче электрической энергии и объема оказанных услуг по передаче электрической энергии.

    На территории Владимирской области применяется «котловой» способ расчета тарифа на услуги по передаче электроэнергии, суть которого состоит в том, что тарифы на услуги по передаче электрической энергии на одном уровне напряжения устанавливаются одинаковыми для всех потребителей услуг, расположенных на территории региона и принадлежащих к одной группе, независимо от того, к сетям какой организации они присоединены.

    На территории Владимирской области действует котловая схема расчетов между субъектами розничного рынка электроэнергии и мощности - «Котел сверху», при которой все энергосбытовые организации региона в интересах обслуживаемых ими потребителей электрической энергии оплачивают ПАО «МРСК «Центра и Приволжья» филиал «Владимирэнерго» услугу по передаче электрической энергии по единым котловым тарифам .

    В свою очередь «держатель котла» производит расчет с территориальными сетевыми организациями по индивидуальным тарифам утвержденным Департаментом цен и тарифов Администрации Владимирской области.


    Схема котла

    Схема взаимодействия субъектов розничного рынка

    Передача электричества без потерь ⋆ Geoenergetics.ru

    На самых первых этапах появления электростанций для тех, кто их разрабатывал и строил, все было просто и незатейливо – вот тут строим электростанцию, а вот здесь будет здание, в котором будет гореть свет, работать станки. Один производитель электроэнергии и один потребитель, нужно только решить проблему с разводкой электричества между розетками да выключателями.  Но такой схема оставалась очень недолго, поскольку она «страдала» сразу по двум логическим предпосылкам.

    Развитие электротехники позволяло наращивать мощность электростанций – они были способны генерировать электроэнергии куда больше, чем требовалось единственному потребителю. Но и потребителю, который получал электроэнергию только из одного источника, тоже было неуютно, поскольку любая авария на электростанции мгновенно приводила к полному обесточиванию. Поскольку блок «логика» в мозговой аппарат физиков, инженеров, конструкторов встроен намертво, в нашей с вами реальности схема «один источник – один потребитель» исчезла раз и навсегда. Энергосистема даже, скажем, федерального округа нашей страны, гораздо более наворочена, а в масштабах всей России сложность ещё увеличивается. Как известно, с увеличением сложности любой технической системы снижается её отказоустойчивость, однако с энергосистемой не просто не так, а ровно наоборот.

    От простого — к сложному, все более надежному

    Строить у каждого, даже небольшого, городка свою электростанцию, конечно, прикольно. И раньше, во времена до ГОЭРЛО, всё именно так и было, но уже в то время схема электроснабжения простой не была – у каждой электростанции внутри города потребителей было куда как больше одного, то есть уже тогда энергетики разрабатывали и конструировали те самые подстанции и трансформаторные «будки», о которых мы уже говорили. Но с ростом масштабов потребности в энергии, с ростом промышленности, со строительством новых поселков и городов схема «одна электростанция – один город» работать перестала. Во-первых, несмотря на всю простоту, вариант питания каждого объекта от одной электростанции очень ненадёжен. Случись что непосредственно на электростанции – без электричества останется целый город, поскольку больше взять энергию негде. Снова на полную мощность включился блок «логика» в головах энергетиков-проектировщиков, подсказавший единственно возможное решение: необходимо объединить несколько электростанций, построенных в разных местах, в общую систему, связать их мощными линиями электропередачи и от этой системы питать потребителей. При таком раскладе остановка любой электростанции влечет за собой только снижение наличной мощности системы, но полного отключения не будет. Такой же эффект проявляется и при любой аварии или плановом отключении на линиях электропередачи. Достаточно просто изменить схему подачи напряжения по оставшимся линиям, и потребители ничего не заметят. Если коротко, несмотря на рост сложности системы энергообеспечения, вот парадокс, растёт и надёжность.

    В идеале все генерирующие мощности всей страны желательно объединить в единую энергосистему. Это дает колоссальное преимущество, как по резервированию источников энергии, так и по многообразию вариантов подачи энергии потребителям. В России именно так всё и устроено, при этом стоит помнить о том, что устроено рационально, логично – система электроснабжения проектировалась и создавалась во времена плановой экономики, когда энергетики точно знали, где, сколько и каких промышленных потребителей возникнет в ближайшую пятилетку, когда проблемы землеотведения решались в десятки раз быстрее, чем теперь. Еще одно достоинство, которым мы пользуемся со времен планового развития экономики – наличие резервных мощностей на электростанциях, которые создавались не только на случай плановых ремонтов, но и для того, чтобы надежно страховаться от всяческого рода ЧП. Строительством электростанций командовало соответствующее министерство, для специалистов которого вопрос о зарабатывании прибыли за счет продажи электроэнергии волновал крайне незначительно, поскольку прибыль снималась в конце производственных цепочек, энергетики должны были выполнять главные для них задачи – гарантировать энергообеспеченность и ее надежность. Обратная сторона этой «медали» — то, что об энергосбережении в те времена думали на уровне лозунгов,  опыт последних лет показывает, что «агитация рублем» действует куда как более результативно.

    Единая Энергосистема РФ имеет и ещё одну интересную особенность, на которую обычно не обращают внимания, но о которой немало лет думали специалисты Энергетического института, который в 1930 году создал и более четверти века возглавлял Глеб Максимилианович Кржижановский, главный инициатор разработки плана ГОЭЛРО.  Наша страна очень велика, она занимает целых 12 часовых поясов, когда на востоке полночь, на западе полдень. Нетрудно понять, что потребление электроэнергии сильно зависит от времени суток: обычно пик потребления и расхода мощности приходится на утро и вечер. Единая Энергосистема позволяет компенсировать пиковые нагрузки: скажем, вечером на Дальнем Востоке перетоком мощности из европейской части страны, и наоборот. В результате все электрохозяйство работает без перегрузок, в штатном режиме, с относительно постоянной производительностью. Особенно важно это для генерирующих мощностей, электроэнергия на которых вырабатывается со стабильным расходом, без бросков в нагрузке. Еще одно следствие того, что ЕЭС СССР разрабатывалась и создавалась именно по такой схеме – то, что в стране не требовалось строить дополнительные генерирующие мощности, предназначенные для того, чтобы успешно проходить часы пиковых нагрузок. Зачем нужна электростанция, которая будет работать только утром и вечером, когда меня надежно страхуют электростанции соседних часовых поясов? Итог одновременного использования достижений энергетики как науки, роста технологий, логики и планового характера развития экономики был парадоксален: самая северная страна мира имела самую дешевую в мире электроэнергию.

    Возвращение экономики рыночной, приватизация заводов, фабрик, сельскохозяйственных предприятий, закрытие немалой их части и бессистемное появление новых, состоявшееся в 90-х годах минувшего века, лишило Россию этого конкурентного преимущества. Для ЕЭС, конечно, была важна не форма собственности того или иного предприятия, а его стабильная, предсказуемая работа, которая в то время исчезла полностью. Итог – разбалансировка системы, которую удалось в той или иной мере восстановить только в результате реформы ЕЭС. Эта реформа была не неким «абсолютным злом», а суровой необходимостью. Другой вопрос, что мы имеем в результате, но это уже совсем другая история.

    Очевидно, что электростанции выгодно строить в местах, где есть или источник энергии для них (горючее топливо или река) и/или мощный потребитель, например, завод по производству алюминия, «жрущий» электроэнергию для своих технологических процессов в чудовищных объёмах. Кроме того, электростанция по возможности должна как можно более мощной, поскольку вырабатываемая ею электроэнергия в этом случае получается наиболее дешевой. Подавать электричество потребителям потребуется, как мы уже говорили выше, с помощью линий электропередачи, с учетом масштабов России эти линии иногда могут иметь протяженность в сотни и даже тысячи километров. Как же передать энергию на такие расстояния, по возможности максимально надёжно и с минимальными потерями?

    Мало произвести – нужно уметь передать

    Существует несколько способов передачи электрической энергии на расстояния. Например, бесконтактным способом, с помощью электромагнитной индукции. Носителем энергии в этом случае является электромагнитное поле — электрический ток в катушке источника преобразуется в электромагнитную энергию, которая в катушке приемника преобразуется обратно в электрический ток. Данный способ имеет и преимущества, и недостатки. Основным преимуществом является отсутствие физического носителя для энергии – проводники как таковые отсутствуют. Но такая технология имеет крайне существенный недостаток: низкий КПД, поскольку энергия очень сильно рассеивается по пути от источника к приемнику (убывает пропорционально квадрату расстояния между ними), и, стало быть, эффективна только на очень небольших расстояниях. Примером использования такой технологии может служить беспроводная зарядка для мобильного телефона или индукционная электроплита. В обоих случаях источник и приёмник расположены практически вплотную. Как нетрудно понять, для передачи энергии на большие расстояния такой способ не годится, для этого требуется носитель, по которому пойдет электрический ток.

    Линии электропередачи

    Носителем может быть проводник, чаще всего металл, у которого должно быть как можно меньшее внутреннее сопротивление электрическому току. Если сопротивление проводника будет сколь-нибудь заметным, то такой проводник будет нагреваться, то есть передаваемая энергия станет тратиться попусту, а это недопустимо. Наименьшим сопротивлением и, соответственно, наибольшей проводимостью из всех известных на данном этапе широко распространенных материалов является медь, кабели и провода из этого красного металла известны всем. Однако использовать медь для протяженных линий электропередачи невыгодно: медь тяжелая и достаточно дорогая. Поэтому самым удобным материалом, идущим на изготовление проводов ЛЭП (линий электропередач), является алюминий. Да, его проводимость хуже, чем у меди, зато алюминий дешевле и гораздо легче. Увы, алюминий мягок и не так прочен, как медь, да к тому же покрыт оксидной плёнкой, которая является пусть очень слабенькой, но электроизоляцией. Но эти недостатки можно компенсировать, не тратя на это значительные средства. Прочность проводов повышают, делая их кручеными из пучка тонких жил и добавляя в середину такого пучка одну или несколько стальных проволок, в местах контактов алюминий густо смазывают чем-нибудь жирным, например, техническим вазелином или консистентной смазкой, прямо под слоем смазки зачищают металлической щёткой и сразу же скрепляют контактное соединение. Оксидная плёнка без доступа воздуха не образуется, и это резко снижает сопротивление в контактах.

    Нелишним будет напомнить, что электроэнергию можно передавать как по проводам воздушной линии, так и по кабелю. Под кабелем мы понимаем токонесущие жилы (как правило, алюминиевые), покрытые на всей длине кабеля индивидуальной изоляцией, и сверху укутанные общей оболочкой. Кабель обычно прокладывается в земле или под водой, однако иногда лёгкие кабели небольших сечений могут быть смонтированы и на опорах. Провода воздушных линий изоляцией не покрывают, это просто голый металл. От конструкций опор и друг от друга они отделяются изоляторами — фарфоровыми, стеклянными или полимерными. И воздушные линии (ВЛ), и кабельные (КЛ) имеют как преимущества, так и недостатки. ВЛ очень легко контролировать — все ее части, кроме фундаментов опор, находятся на виду. Как правило, ВЛ в габаритах своих конструкций мало ограничены, поэтому напряжение по ним можно передать любое, в том числе и очень высокое, надо только правильно изоляцию подобрать. Найти место повреждения на ВЛ просто, его видно сразу, ремонтировать провода также легче – достаточно их просто соединить. Да и повредить ВЛ вследствие того, что обычно они хорошо видимы, сложнее. С другой стороны, ВЛ – это достаточно высокие конструкции, а значит, подвержены ударам молний, поэтому на них в обязательном порядке должна иметься грозозащита. На мощных высоковольтных ВЛ даже специальный провод в верхних точках опор по всей длине трассы бывает натянут — именно для защиты от молний.  Кроме того, на ВЛ действует ветровая нагрузка, зимой еще и снеговая, обязательно учитывают то и другое, как и то, что вдоль каждой ЛЭП, идущей по лесу, необходимо устраивать просеки – для предупреждения риска падения деревьев на ЛЭП и для того, чтобы не возникали проблемы в случае лесных пожаров. Потребитель пошел избалованный, ему свет и ток в розетке нужен и в снег, и в дождь, и в бурю с ураганом. Что характерно – пока все в порядке, про электриков вспоминают, как говорится, раз в сто лет, а когда вспоминают по причине отсутствия электричества, то вспоминают словами такими красочными, что их и печатать-то нельзя, и только постоянные читатели Аналитического онлайн-журнала Геоэнергетика.ru каждое утро начинают со слов «Слава и почет энергетикам!».

    Прокладка кабельных линий под землёй

    КЛ обычно проложены в земле, потому ударам молний с ураганными ветрами не подвержены вообще. Однако напряжение в КЛ, как правило, ограничено. Достаточно распространены маслонаполненные кабели на 220 кВ, кабели на более высокое напряжение существуют, но они очень и очень дороги и используются в редчайших случаях, когда другие вариантов электроснабжения не существует. Один пример возникновения такой ситуации хорошо известен – после того, как Украина устроила «электрическую блокаду Крыма», наш полуостров был обеспечен материковой электроэнергией именно при помощи кабелей. Кроме того, трасса КЛ не видна, и, если нет ее точной привязки и соответствующей разметки, то КЛ легко повредить при проведении земляных работ. Такие проблемы, надо отметить, случаются сплошь и рядом, когда раскапывают какой-нибудь водопровод, и рвут ковшом экскаватора случайно оказавшийся в раскопе никому не известный кабель. Кабели, особенно высоковольтные, весьма сложны в ремонте, требуют применения специфических материалов и грамотных специалистов.

    В общем, способов, как именно передать электроэнергию, существует несколько, и какой из них предпочесть, решают те, кто занимается проектированием линий. Решают, разумеется, исходя из местных условий. Например, если на пути линии есть река, то нужно решить, как будет её переходить трасса ЛЭП. Возможно, хватит длины воздушного перехода, провода не будут сильно провисать , схлестываться ветром,  не порвутся от собственного веса, выдержат снеговые нагрузки.  Но, если река широкая, а передаваемый объем электроэнергии не слишком велик, то иногда вполне целесообразно использовать подводный кабель.

    Киловольты видны невооруженным глазом

    Мы определились, при помощи чего можно передать электроэнергию. А вот как это сделать, чтобы передать необходимое количество киловаттов, то есть мощности? Напоминаем формулу электрической мощности:

    Q = I x U

    То есть мощность прямо пропорциональна произведению напряжения на силу тока. И мы также выяснили, что при необходимости передать большую мощность, нужно повышать напряжение, а не силу тока – это экономически более выгодно, большие значения силы тока становятся причиной контрпродуктивного нагрева материала ЛЭП, а вот большие значения напряжения ничего подобного не вызывают. А если надо передать очень большую мощность? Скажем, суммарную энергию нескольких больших электростанций перекачать с востока на запад страны? Вариант имеется только один — надо повысить напряжение в линии до очень больших значений. ЛЭП – это не компактный электрогенератор, она мало ограничена габаритами, поэтому можно не очень-то беспокоиться о том, что изоляция получится весьма громоздкой.

    Где удобнее всего повышать напряжение? Всё верно, прямо на электростанции. Поэтому генераторы выдают свою мощность на специальные устройства – повышающие трансформаторы. Трансформатор, если кто забыл, это электромагнитный преобразователь, нужный для изменения величины напряжения и силы тока в ту или иную сторону. Трансформатор способен как повысить напряжение и/или силу тока, так и понизить, мощность передается через него практически без изменений, КПД трансформатора очень высок — доходит до 98%. Мощность в трансформаторе не изменяется, следовательно, исходя из упомянутой выше формулы, при повышении напряжения пропорционально уменьшается сила тока, и наоборот. Преобразование (трансформирование – отсюда и название этого устройства) энергии происходит в электромагнитной системе трансформатора. Это две катушки (обмотки), смонтированные на общем стальном сердечнике. Обмотки связаны друг с другом только с помощью электромагнитного поля, протекающего через сердечник, прямого электрического контакта не имеют, эффект повышения или понижения напряжения и силы тока получается за счёт разного количество витков в обмотках. Например, в обмотке, подключенной к генератору электростанции (она называется первичной обмоткой), 100 витков, а в обмотке (вторичной), подключенной к ошиновке, к линиям потребителей, 1100 витков. 1100/100 = 11 – это коэффициент трансформации данного устройства. И если генератор выдает на трансформатор 10 кВ, то на вторичной обмотке вот такого трансформатора мы получим 10 кВ х 11 = 110 кВ.

    Трансформатор

    С силой тока всё то же самое, но с точностью до наоборот: если генератор электростанции выдает на первичную обмотку трансформатора ток силой 1000 А, то на вторичной обмотке мы получим 1000 А : 11 = 91 А (примерно). Вот и вся арифметика. Ток, полученный на выходе из трансформатора вот с такими характеристиками, несмотря на огромное напряжение, легко коммутировать, то есть выключать и включать. Если увеличить число витков вторичной обмотки трансформатора до 5000, то коэффициент трансформации будет равен уже 50. В таком случае напряжение на вторичной обмотке трансформатора будет 10 кВ х 50 = 500 кВ, а сила тока уменьшится 1000 А : 50 = 20 А. Это совсем крошечная нагрузка, иногда и в наших квартирах больше бывает. Но не забываем, что напряжение-то у нас не 220 В, а 500 кВ, и, стало быть, при токе в 20 А в линии будет передаваться мощность 500 кВ х 20 А = 10 000 кВт! Неплохо, правда?

    Сделаем промежуточный вывод: электроэнергию на большие расстояния выгоднее передавать под очень высоким напряжением, какой тип линии использовать – КЛ или ВЛ – зависит от конкретных обстоятельств, но, как правило, высоковольтные линии строятся исключительно в виде ВЛ. В настоящее время типовое значение напряжения для магистральных линий электропередач составляет 500 кВ. Существуют магистральные ЛЭП с напряжением и в 750 кВ, и даже больше, но это большая редкость, ВЛ-500 экономически более целесообразны, сооружение их дешевле, чем ВЛ-750, и эксплуатация проще. Электроснабжение городов, не относящихся к числу наших мегаполисов, впрочем, таких высоких напряжений не требует, поскольку нагрузка города в 100-200 тысяч жителей не так велика, для них вполне хватает ЛЭП 110 или 220 кВ. Если коротко, то уровень напряжения ЛЭП выбирают из чисто экономических соображений: рассчитывается необходимая потребителям суммарная мощность, которую нужно подвести к данному городу, добавляется запас мощности на перспективу роста, после чего и определяется, на каком напряжении выгоднее всего построить ВЛ.

    ЛЭП в городе

    Высоковольтные линии электропередач между городами давно стали для нас привычной частью пейзажа, мы не часто пристально к ним присматриваемся. Однако есть минимальный набор знаний, который позволяет определить основную характеристику ВЛ – напряжение – невооруженным глазом. Как правило, ВЛ-110 и 220 кВ монтируются на бетонных одностоечных опорах. Напряжение в линии можно определить по количеству изоляторов в гирляндах, на которых подвешены провода. У ВЛ-110 каждый провод висит на гирлянде, состоящей из шести изоляторов, у ВЛ-220 провода подвешены на десяти изоляторах. Как правило, изоляторы используются стеклянные, и это далеко не случайность. Во время эксплуатации ВЛ может случиться пробой одного или двух изоляторов в гирлянде – от молнии или по грязи на поверхности. Остальные изоляторы могут быть исправными, и изоляция в целом не нарушена, поскольку класс изоляции выбирается с большим запасом. Стеклянные изоляторы удобны тем, что в случае пробоя их «шапки» разлетаются вдребезги, что позволяет легко с земли  это увидеть и оперативно принять меры. Фарфоровые и полимерные изоляторы даже после пробоя остаются целыми несмотря на то, что свою функцию уже не выполняют, и поэтому обнаружить пробой можно только непосредственно, вблизи. Электрики – они тоже люди, им хочется свою работу выполнять не только качественно, но и побыстрее, чтобы нервный потребитель поминал его тихим добрым словом не так долго и не так громко, знаете ли.

    Коронный разряд – это красиво

    Линии 330 кВ и выше отличить ещё проще. ВЛ-330 имеет два раздельных провода в каждой фазе, ВЛ-500 – три, это так называемые «расщепленные» провода. Сделано это для того, что на таких уровнях напряжения могут появиться вдоль проводов нежелательные эффекты в виде коронного разряда – электрики предпочитают знакомиться и наблюдать это замечательное, эффектно выглядящее явление в лабораторных условиях, а не на ЛЭП. Дело не в отсутствии любопытства или чувства прекрасного, а в странном, аномальном поведении руководителей, начальников электрокомпаний – коронный разряд на ВЛ мгновенно уничтожает их воспитанность, интеллигентность и чувство такта. Начальник обыкновенный в случае появления коронного разряда начинает выкрикивать бессвязные слова, размахивать руками, у них поднимается давление, они становятся опасны для себя и окружающих. Электрики с такой странной реакцией хорошо знакомы и предпочитают покинуть помещение подстанции и стремительно мчаться в направлении силовых выключателей, чтобы немедленно лишить питания ЛЭП, возомнившую о себе черт-те что и нацепившую на себя «корону». Как показывает практика, спустя короткое время после исчезновения «короны» к начальникам возвращается человеческий облик – с лиц сходит ярко-красный цвет, перестает покрываться испариной лысина, прекращают подергиваться конечности, и только тремор пальцев какое-то время напоминает о пережитом волнении.

    Коронный разряд на ЛЭП

    Коронный разряд – самостоятельный разряд в газе, может образоваться при наличии резко неоднородных электромагнитных полей на электродах с высокой кривизной поверхности. Линии электропередач – это гарантированно неоднородные электромагнитные поля, провод – та самая поверхность с высокой кривизной. Главное условие для начала разряда — вблизи острого края электрода должна присутствовать сравнительно более высокая напряженность электрического поля, чем на остальном пути между электродами, создающими разность потенциалов. Для воздуха в нормальных условиях (при атмосферном давлении), предельное значение электрической напряженности составляет 30 кВ/см, при такой напряженности на острие электрода уже появляется слабое свечение, напоминающее по форме корону. Вот почему такой газовый разряд называют коронным. Физики любопытны как дети и точно так же, по детски бесхитростны и наивны: видят корону при разряде, и бесхитростно нарекают разряд «коронным». Даже представлять не хочется, на что мог бы оказаться горазд физик, воспитанный фармокологами…

    С физической точки зрения ничего загадочного в коронном разряде нет. К примеру, в предгрозовую пору воздух ионизируется без участия человека, сам по себе. Ион, напомним – это атом, «потерявший» свой или «укравший» чужой электрон и это, конечно, форменное безобразие. В нормальном, порядочном атоме, числе электронов строго равно числу протонов в его ядре, что и обеспечивает окружающим нас многочисленным химическим веществам электрическую нейтральность. А перед грозой в атмосферном воздухе носятся потерявшие свой атом свободные электроны в поисках хоть какого-нибудь прибежища. А тут рядом – провод с электротоком, и электрон с приличным ускорением несется к нему, сломя голову. Встретится ему на пути нейтральный атом – этот «спортсмен» ионизирует и его, увлекая в свое движение дополнительные электроны, в результате возле острия – провода – образуется целая лавина заряженных частиц. Существовать коронный разряд после своего образования может достаточно долго, и все то время, которое он длится, ВЛ будет терять огромное количество переносимой ею электроэнергии.

    Способы борьбы с коронным разрядом известны, их условно можно разделить на «активные» и «пассивные», в первом случае требуется непосредственное участие человека, во втором этого не требуется – это защита, профилактика, действующая всегда, причем сама по себе.  Толстый проводник расщепляют на два-три идущих параллельно тонких, чтобы уменьшить локальные напряжения и не дать «короне» образоваться в принципе. Толщина таких расщепленных проводов всегда подобрана с особой тщательностью: сечение проводов ВЛ-110 равно минимум 95 квадратным мм, для ВЛ-220 – 240 квадратных миллиметров. Если, несмотря на эти предосторожности, «корона» все же умудрилась образоваться, в дело вступает «предохранитель №2» — анти-коронные кольца, металлические тороиды. Его задача – аккуратно распределить градиент электрического поля, чтобы его максимальные значения были ниже порога «короны». Если «корона» обойдет и эту защиту, то ее разрушительный эффект придется именно на это кольцо, а не приведет к тому, что из строя начнет выходить дорогостоящее оборудование на подстанциях. Сгорит кольцо – да и ладно, электрики новое повесят.

    Анти-коронные кольца

    Из прочих подробностей — номинальные (то есть максимально допустимые) значения напряжения в высоковольтных ВЛ, «бегущих» по России, имеют фиксированный ряд: 6, 10, 35, 110, 150, 220, 330, 500, 750 кВ. Данное требование определяется соответствующим ГОСТом для унификации оборудования и упрощения проектных решений, разброд и шатания недопустимы. Такие номиналы напряжения в линиях используются на данный момент в России повсеместно. Ещё одна важная деталь: имеется в виду переменный трехфазный ток.

    При всем богатстве выбора фаз у электротока всегда три

    Надеемся, что об отличии переменного и постоянного тока рассказывать нет необходимости, это не только изложено в школьном курсе физики, но и неоднократно повторено на страницах нашего журнала. Почему же используется именно переменный ток? Дело в том, что его очень легко изменять – увеличивать или уменьшать напряжение, сохраняя при этом заданную величину мощности. И устройства, обеспечивающее возможность таких изменений – трансформаторы – для подобных изменений крайне просты. Для изменения параметров постоянного тока требуются особые ухищрения, а любое особое ухищрение стоит особых денег, которых, как известно нет, но нам и без них велено держаться. Стало быть, всё решает та самая пресловутая экономика.

    С трехфазным током немного сложнее. Для передачи однофазного тока требуется как минимум два провода – «фаза» и «нуль». Трехфазный ток передается по трём проводам, все они являются фазными. То есть в схеме появляется ещё один, «лишний» провод, и нулевой провод отсутствует вообще. Напряжение передается по всем трём проводам со стандартной для России частотой 50 Гц, только его колебания сдвинуты в каждой фазе относительно соседних на 120 градусов. Саркастическая фраза «сдвиг по фазе» растёт именно отсюда, а без юмора, зато с чувством, толком и расстановкой об этом уже подробно рассказывал на страницах Геоэнергетики Дмитрий Таланов.

    Что даёт такая схема? Во-первых, более полно используется материал проводов: нагрузка передаётся по всем трём проводникам одновременно, а не по одному, как в однофазных системах. Во-вторых, тот самый сдвиг по фазе позволяет получить так называемое вращающееся магнитное поле, что очень упрощает конструкцию и генераторов, и электродвигателей. Например, типовой асинхронный двигатель на трёхфазный переменный ток не имеет никаких дополнительных устройств (коллектора и щёток) для передачи напряжения на вращающийся ротор, которые изнашиваются. А ещё у асинхронного мотора очень просто изменить направление вращения ротора, просто поменяв порядок подключения фаз в его обмотках, для любого электропривода это крайне важное свойство. Учение Михаила Осиповича Доливо-Добровольского всесильно, потому что оно верно: везде и повсюду в мире используется система передачи электроэнергии в виде трёхфазного переменного тока, меняются только номиналы напряжения и основные частоты. Например, в США у конечных потребителей (в квартирах и домах) используется напряжение 110 В частотой 60 Гц, в России – 220 В и 50 Гц, но в целом такие детали на общую картину влияют мало.

    Поскольку в генерации и передачи энергии используется переменный ток фиксированной частоты, то в энергосистеме остро проявляется одна интересная проблема: все генерирующие мощности должны работать синфазно, то есть выдавать напряжение в ЛЭП строго в одной фазе, синхронно, не раньше и не позже. Другими словами, синусоида напряжения на электростанции Дальнего Востока должна полностью совпадать с синусоидой напряжения, выдаваемого электростанцией Подмосковья. Если появится даже малейший рассинхрон, в энергосистеме возникнут серьезные проблемы, вплоть до коротких замыканий. Пытливый читатель на этом месте уже может вспомнить, сколько в России электрогенераторов на электростанциях, и какого масштаба задача должна решаться. И она успешно решается — с помощью самых разнообразных технических и организационных ухищрений. Например, генераторы электростанций должны включаться в нагрузку строго на определенной частоте вращения роторов и строго в определенный момент. Самое занимательное – эта проблема решалась в годы создания ЕЭС СССР, когда в обиходе слова «компьютер» и в помине не было, да и до появления аббревиатуры «ЭВМ» оставался десяток-другой лет. Попытайтесь совместить в голове сразу два этих факта: масштабы России, сложность ее энергосистемы и логарифмическая линейка с механическим арифмометром в качестве самых продвинутых вычислительных устройств. Попробовали? Тогда мы еще раз   напоминаем – эта задача была решена Энергетическим институтом под руководством Глеба Кржижановского, чье имя ЭНИН носит в наше время.

    Итак, подытожим сказанное. Сгенерированный на электростанции переменный трёхфазный ток повышается трансформаторами и выдаётся в объединенную энергосистему. С помощью высоковольтных линий ток подводится к потребителям, где понижается опять же трансформаторами до нужного значения и подается непосредственно на нагрузку – для освещения квартир или для выплавки стали. Наличие единой системы даёт массу преимуществ: это огромный централизованно управляемый организм, снабжающий страну энергией, притом достаточно отказоустойчивый, имеющий достаточное количество резервных мощностей на случай ЧП любых масштабов.

    Перспективы постоянного тока

    А теперь, «на закуску», немного интересных подробностей. Как это ни странно, постоянный ток также имеет перспективы в смысле передачи энергии на большие расстояния. Данный род тока обладает в несколько раз большей плотностью энергии в единице сечения проводника. Другими словами, по проводнику фиксированного сечения, скажем, 240 квадратных мм, постоянным током можно передать раза примерно в четыре большую мощность, чем переменным, без нагрева проводника. Связано это с так называемым поверхностным эффектом: если переменный ток электромагнитными силами вытесняется к поверхности проводника, а внутри провода напряжение может отсутствовать вообще, то постоянный ток занимает всю площадь сечения проводника. Поэтому такой ток вполне может применяться в энергосистеме.

    Тут, правда, есть проблема: постоянный ток нужно передавать с высоким напряжением, точно так же, как это делается в случае тока переменного, поскольку формула мощности действует и в этом случае. Разумеется, способы преобразования переменного тока в постоянный (выпрямления) и наоборот (инвертирования) существуют, но в нашем случае придётся выпрямлять, а потом инвертировать переменный ток очень высокого напряжения. Соответственно, имеет место чисто технологическая трудность: придётся создавать выпрямитель или инвертор прямо-таки циклопических размеров. Тем не менее, работы в этом направлении велись и ведутся, в последнее время особенно активно в Европе.

    О том, как это связано со все более настойчивыми попытками развивать ВИЭ-сектор электрогенерации, мы еще обязательно расскажем. Кроме этого, нового направления, постоянный ток очень широко используется на транспорте. Именно постоянным током «питаются» трамваи, троллейбусы и метро, а также достаточно большие участки железных дорог РФ. Но и об этом – не в этот раз.

     

    Подготовлено в соавторстве с Борисом Марцинкевичем

    Схемы передачи электроэнергии в подземных горных выработках

    Страница 70 из 91

    ЭЛЕКТРОСНАБЖЕНИЕ ПРИЕМНИКОВ В ПОДЗЕМНЫХ ГОРНЫХ ВЫРАБОТКАХ § 1, ТИПОВЫЕ СХЕМЫ ПЕРЕДАЧИ ЭЛЕКТРОЭНЕРГИИ
    На современных шахтах применяют два основных способа передачи электроэнергии в подземные выработки. При первом способе все подземные электроприемники получают питание по кабелям, проложенным по стволу. При втором способе электроприемники, расположенные в пределах околоствольного двора, получают питание аналогичным образом, а все остальные потребители электрической энергии получают питание по кабелям, проложенным в скважинах или в вентиляционных шурфах.
    Выбор схемы электроснабжения зависит от многих факторов, основными из которых являются следующие: глубина залегания полезного ископаемого и крепость слагающих пород; общие размеры и способ вскрытия месторождения; количество одновременно разрабатываемых горизонтов, количество и разбросанность участков, применяемая система разработки; количество и мощность электроприводов основных потребителей электроэнергии; величина применяемого напряжения.
    В общем случае рекомендуется применение первого способа передачи электроэнергии в подземные выработки, но при глубине залегания до 300 м и обоснованной технико-экономической целесообразности допускается использование второго способа.
    Любая из принятых схем должна обеспечивать бесперебойное питание всех потребителей первой категории и безопасность при эксплуатации в подземных выработках, учитывать перспективное развитие горных работ, быть экономически выгодной как при устройстве, так и при техническом обслуживании. Последнее требование может не быть определяющим, так как для условий работы, в шахте главным являются надежность и безопасность.
    При любом способе передачи электроэнергии в подземные выработки на всех угольных и сланцевых шахтах, согласно ПБ, применяют кабели только с медными жилами. ЕПБ допускают применение кабелей как с медными, так и с алюминиевыми жилами, за исключением шахт, опасных по газу или пыли.
    Максимальное напряжение в подземных выработках шахт не должно превышать 6 кВ и только в отдельных случаях с разрешения Госгортехназдора СССР допускается использовать напряжение 10 кВ.
    Принципиальная схема электроснабжения при передаче электроэнергии через ствол показана на рис. 90.

    Рис. 90. Принципиальная схема передачи электроэнергии через ствол


    Рис. 91. Принципиальные схемы питания электроэнергией через скважины:
    а — от КТПН напряжением ниже 1 000 В; б — от КРУН напряжением выше 1000 В

    Электроэнергия от КРУ ГПП минимум по двум кабелям подается на вводные КРУ центральной подземной подстанции (ЦПГТ). На поверхности кабели прокладывают в траншеях до устья ствола, а перед вводом кабелей в ствол устраивают специальные окна в шейке ствола на глубине не менее 1 м от поверхности. При этом должна исключаться возможность соприкосновения с металлическими конструкциями надшахтных сооружений.
    Подвеска кабелей в стволе должна производиться с помощью хомутов, скоб или иных приспособлений, разгружающих кабель от действия собственного веса.. Приспособления должны иметь такую конструкцию, чтобы при эксплуатации не происходило проскальзывание напусков или петель и не повреждалась защитная оболочка кабеля. Расстояние между местами закрепления кабеля с проволочной броней не должно превышать в вертикальных стволах 7 м, а в наклонных стволах 5 м.
    Ввод кабелей в ЦПП выполняют через трубный или специально пройденный ходок. Для прокладки необходимо применять специальные кабели, пропитанные нестекающей массой, с минимальным сечением жил 35 мм2 и максимальным сечением 240 мм2.
    РУ-6 (10) кВ должно состоять из КРУ, скомплектованных в две рабочие секции шин, на каждую из которых подается питание от вводных КРУ. При количестве вводов больше двух в ЦПП устанавливают два самостоятельных двухсекционных РУ-6 (10) кВ.
    Через КРУ отходящих фидеров ЦПП электроэнергия поступает к электродвигателям напряжением 6 кВ (насосы центрального водоотлива, подземные подъемные установки, стационарные ленточные конвейеры) и к ПУПП участков. Если расстояние до данных потребителей превышает 1 км, то электроэнергия вначале поступает на распределительные подземные пункты высшего напряжения (РПП-6).
    Трансформаторы ПУПП понижают напряжение до 0,69— 1,2 кВ для питания соответствующих потребителей. В РПП—0,66— 1,14 кВ устанавливают осветительные трансформаторы и пусковые агрегаты, в которых напряжение с 0,66—1,14 кВ снижается до 0,133 кВ для питания осветительной сети и ручного электроинструмента.
    Кабели, проложенные через скважины, могут подавать электроэнергию напряжением до 1000 В и выше 1000 В. В первом случае на поверхности около скважины устанавливают КТПН, а в подземных выработках около скважины располагают РПП напряжением 660 В. Во втором случае на поверхности устанавливают КРУН, а в подземных выработках ПУПП или РПП-6.
    Кабель, прокладываемый в скважине, крепят через каждые 2,5 м к стальному тросу, имеющему пятикратный запас прочности. В одной скважине допускается прокладка не более двух кабелей.
    Принципиальные схемы подачи электроэнергии в подземные выработки через скважины приведены на рис. 91. Если горные работы ведутся вблизи вентиляционных шурфов, то кабели прокладывают через шурфы.
    К основным преимуществам электроснабжения подземных выработок через ствол относятся: использование готовых стационарных выработок; удобство монтажа и систематического контроля за кабелями; возможность централизованного контроля за эксплуатацией кабельных сетей напряжением выше 1000 В и эксплуатацией ПУПП подземных выработок.
    К недостаткам следует отнести: большую емкость кабельной сети напряжением 6 кВ, что увеличивает опасность поражения электрическим током; значительные по величине мощности к. з., что вызывает необходимость установки реакторов; значительные потери напряжения при большой протяженности кабельных линий, в результате чего приходится принимать большее сечение жил кабелей, чем рассчитанное по другим критериям; высокую стоимость протяженной кабельной сети 6 кВ.
    К достоинствам питания через скважины относятся: снижение величины емкостных токов в сетях напряжением выше 1000 В; сокращение количества ниш для установки оборудования РПП-6 и ПУПП; снижение протяженности и стоимости кабельных сетей и электрооборудования высшего напряжения.
    Недостатками этого способа питания являются: затраты на периодическое бурение скважин и монтаж кабелей; затраты на приобретение, монтаж с последующей потерей обсадных труб в скважинах, пройденных по неустойчивым породам; затраты на сооружение и трудности обслуживания воздушных ЛЭП и электрооборудования поверхности, которое может располагаться на значительном расстоянии от промплощадок шахт. Особенно этот недостаток ощутим в ненастную погоду.
    Схемы подачи электроэнергии через ствол широко распространены на шахтах угольной промышленности страны. Исключение составляют шахты Подмосковного бассейна, часть шахт Караганды, Кузбасса, Урала, сланцевые шахты Эстонии, где применяют питание через скважины.

    Основы системы передачи электроэнергии

    Электроэнергия после выработки на генерирующих станциях (ТЭЦ, ГЭС, АЭС и т. Д.) Передается потребителям для использования. Это связано с тем, что генерирующие станции обычно расположены далеко от центров нагрузки. Сеть, которая передает и доставляет электроэнергию от производителей к потребителям, называется системой передачи . Эта энергия может передаваться в форме переменного или постоянного тока. Традиционно переменный ток используется уже много лет, но HVDC (постоянный ток высокого напряжения) быстро набирает популярность.

    Однолинейная схема системы электропередачи переменного тока

    Типичная однолинейная диаграмма, представляющая поток энергии в данной энергосистеме, показана ниже:

    Электроэнергия обычно (или обычно) вырабатывается на 11 кВ на генерирующих станциях в Индии и Европе. Хотя в некоторых случаях напряжение генерации может быть выше или ниже. Генераторы, которые будут использоваться на электростанциях, доступны от 6 кВ до 25 кВ от некоторых крупных производителей. Это генерирующее напряжение затем повышается до 132 кВ, 220 кВ, 400 кВ или 765 кВ и т. Д.Повышение уровня напряжения зависит от расстояния, на которое должна передаваться мощность. Чем больше расстояние, тем выше будет уровень напряжения. Повышение напряжения должно уменьшить потери I 2 R в , передающем мощность (при повышении напряжения ток уменьшается на относительную величину, так что мощность остается постоянной, и, следовательно, потери I 2 R также уменьшает). Эта ступень называется первичная передача .

    Напряжение на приемной станции понижено до 33 кВ или 66 кВ. Вторичная передача линии выходят из этой приемной станции для подключения подстанций, расположенных вблизи центров нагрузки (города и т. Д.).

    Напряжение снова снижено до 11 кВ на подстанции. Напрямую с этих подстанций можно питать крупных промышленных потребителей напряжением 11кВ. Также от этих подстанций выходят фидеры. Этот этап называется первичным распределением .

    Фидеры представляют собой воздушные линии или подземные кабели, по которым мощность передается близко к точкам нагрузки (конечным потребителям) на расстояние до пары километров.Наконец, напряжение понижается до 415 В с помощью распределительного трансформатора, установленного на опоре, и подается на распределительные устройства. Снабжение конечных потребителей осуществляется по обслуживающей магистрали от дистрибьюторов. Вторичное распределение Система состоит из фидеров, распределителей и обслуживающей сети.

    Различные типы систем трансмиссии

    1. Однофазная система переменного тока
      • Однофазная двухпроводная
      • однофазный, два провода с заземлением средней точки
      • однофазный, трехпроводный
    2. Двухфазная система переменного тока
      • Двухфазная, трехпроводная
      • двухфазный, четырехпроводный
    3. Трехфазная система переменного тока
      • Трехфазная, трехпроводная
      • трехфазный, четырехпроводный
    4. Система постоянного тока
      • Двухпроводная система постоянного тока
      • Два провода постоянного тока с заземлением средней точки
      • Трехпроводный DC
    Передача электроэнергии также может осуществляться с использованием подземных кабелей.Но строительство подземной линии электропередачи обычно обходится в 4-10 раз больше, чем строительство воздушной линии эквивалентного расстояния. Однако следует отметить, что стоимость строительства подземных линий электропередачи сильно зависит от местных условий. Кроме того, стоимость необходимого проводящего материала является одной из самых значительных затрат в системе передачи. Поскольку стоимость проводника составляет большую часть общей стоимости, ее необходимо учитывать при проектировании. При выборе системы передачи учитываются различные факторы, такие как надежность, эффективность и экономичность.Обычно используется воздушная система передачи.

    Основные элементы ЛЭП

    По экономическим соображениям для передачи электроэнергии широко используется трехфазная трехпроводная воздушная система. Ниже приведены основные элементы типичной энергосистемы.
    • Проводники: три для одинарной линии и шесть для двухцепной линии. Проводники должны быть подходящего размера (т. Е. Сечения). Это зависит от его текущей емкости.Обычно используются проводники ACSR (алюминиевый сердечник, армированный сталью).
    • Трансформаторы: Повышающие трансформаторы используются для повышения уровня напряжения, а понижающие трансформаторы используются для его понижения. Трансформаторы позволяют передавать мощность с более высоким КПД.
    • Линейные изоляторы: для механической поддержки линейных проводов и их электрической изоляции от опорных башен.
    • Опорные башни: для поддержки линейных проводов, подвешенных в воздухе над головой.
    • Защитные устройства: для защиты системы передачи и обеспечения надежной работы. К ним относятся заземляющие провода, пламегасители, автоматические выключатели, реле и т. Д.
    • Регуляторы напряжения: для поддержания напряжения в допустимых пределах на принимающей стороне.

    Передача электроэнергии - Energy Education

    Рис. 1. Линии электропередачи высокого напряжения используются для передачи электроэнергии на большие расстояния. [1]

    Передача электроэнергии - это процесс доставки произведенной электроэнергии - обычно на большие расстояния - в распределительную сеть, расположенную в населенных пунктах. [2] Важной частью этого процесса являются трансформаторы, которые используются для повышения уровней напряжения, чтобы сделать возможной передачу на большие расстояния. [2]

    Система электропередачи, объединенная с электростанциями, системами распределения и подстанциями, образует так называемую электрическую сеть . Сеть удовлетворяет потребности общества в электроэнергии и является тем, что передает электроэнергию от ее генерации до конечного использования. Поскольку электростанции чаще всего располагаются за пределами густонаселенных районов, система передачи должна быть довольно большой.

    Линии электропередач

    Линии электропередачи или линии передачи, такие как показанные на Рисунке 1, транспортируют электроэнергию с места на место. Обычно это электричество переменного тока, поэтому повышающие трансформаторы могут повышать напряжение. Это повышенное напряжение обеспечивает эффективную передачу на расстояние 500 и менее километров. Есть 3 типа линий: [3]

    • Воздушные линии имеют очень высокое напряжение, от 100 кВ до 800 кВ, и обеспечивают большую часть передачи на большие расстояния.Они должны быть высокого напряжения, чтобы минимизировать потери мощности на сопротивление.
    • Подземные линии используются для транспортировки электроэнергии через населенные пункты, под водой или почти везде, где нельзя использовать воздушные линии. Они менее распространены, чем воздушные линии из-за потерь, связанных с теплом, и более высокой стоимости.
    • Линии субпередачи несут более низкие напряжения (26 кВ - 69 кВ) на распределительные станции и могут быть надземными или подземными.
    Рисунок 2.2 \ times R [/ математика]

    где

    • [math] I [/ math] - ток в амперах
    • [math] R [/ math] - сопротивление в Ом.

    Выше было упомянуто, что линии высокого напряжения уменьшают эту потерянную мощность. Этот факт можно объяснить, посмотрев на передаваемую мощность [математика] P_ {транс} = 1 \ умножить на V [/ математика]. По мере увеличения напряжения ток должен пропорционально уменьшаться, поскольку мощность остается постоянной. Например, если напряжение увеличивается в 100 раз, ток должен уменьшиться в 100 раз, и результирующая потеря мощности будет уменьшена на 100 2 = 10000.Однако есть предел, заключающийся в том, что при чрезвычайно высоких напряжениях (2000 кВ) электричество начинает разряжаться, что приводит к большим потерям. [3] При распределении электроэнергии и в США, по оценкам EIA, около 6% электроэнергии теряется. [5]

    Для дальнейшего чтения

    Для получения дополнительной информации см. Соответствующие страницы ниже:

    Список литературы

    1. ↑ Wikimedia Commons [Online], Доступно: http: // commons.wikimedia.org/wiki/File:Ligne_haute-tension.jpg
    2. 2,0 2,1 Р. Пейнтер и Б. Дж. Бойделл, «Передача и распределение энергии: обзор» в Введение в электричество , 1-е изд., Верхняя Сэдл-Ривер, Нью-Джерси: Пирсон, 2011, глава 25, сек. .1, стр 1095-1097
    3. 3,0 3,1 3,2 Р. Пейнтер и Б. Дж. Бойделл, «Линии передачи и подстанции» в журнале Введение в электричество , 1-е изд., Верхняя Сэдл-Ривер, Нью-Джерси: Пирсон, 2011, гл.25, сек. 3, с. 1102-1104
    4. ↑ EIA, Canada Week: Интегрированная электрическая сеть повышает надежность для США, Канада [Online], Доступно: http://www.eia.gov/todayinenergy/detail.cfm?id=8930
    5. ↑ EIA. (27 мая 2015 г.). Потери электроэнергии [Онлайн]. Доступно: http://www.eia.gov/tools/faqs/faq.cfm?id=105&t=3

    Планирование передачи электроэнергии в штате Миннесота

    Как работает система электропередачи

    Типовые конструкции линий электропередачи Как надежная электроэнергия доходит до вас

    Линии передачи представляют собой комплекты провода, называемые проводниками, по которым передается электроэнергия от генерирующих установок. к подстанциям, которые поставляют электроэнергию потребителям.На электростанции электроэнергия «повышена» до нескольких тысяч вольт трансформатором и доставлен в ЛЭП. На многочисленных подстанциях в системе передачи трансформаторы выходят из строя мощность к более низкому напряжению и доставить его к распределительным линиям. Распределение Линии передают электроэнергию на фермы, дома и предприятия. Тип трансмиссии конструкции, используемые для любого проекта, определяются характеристиками трасса линии электропередачи, включая рельеф и существующую инфраструктуру.

    Типовые конструкции линий электропередачи

    • Высоковольтные (230 кВ, 345 кВ, 400 кВ (постоянный ток), 500 кВ (постоянный ток):

    Настоящее время в Миннесоте высоковольтная система обычно состоит из 230 кВ. и 345 кВ. Также есть две линии постоянного тока (DC), одна 400 кВ и один на 500 кВ.

    Конструкции обычно представляют собой стальные решетчатые башни, деревянные H-образные рамы. или однополюсная сталь. (фото каждого ниже).

    • Нижний системы передачи напряжения:

    Системы 161 кВ и 115 кВ отвечают за передачу мощности от более крупная система передачи и генерирующий объект на всей территории государственный. Некоторые крупные промышленные потребители могут обслуживаться напрямую от 161 кВ. и системы 115 кВ.

    Конструкции 161 кВ и 115 кВ обычно однополюсные. строения от 70 до 95 футов высотой.

    Системы от 69 кВ до 23 кВ передают мощность на распределительные подстанции.Они также обеспечивают связь с некоторыми из более удаленных и малонаселенных районы в большой Миннесоте. Многие мелкие и сельские промышленные потребители получают питание напрямую от этих систем.

    Конструкции обычно представляют собой однополюсные башни, построенные из дерева. или стальной и колеблется от 50 до 70 футов в высоту.

    Трансмиссия Номинальное напряжение: +/- 400 кВ HVDC
    Тип: Башня
    Типичная высота башни:
    145-180 футов

    Типичная ширина полосы отвода:
    160-180 футов

    Трансмиссия Номинальное напряжение: 500 кВ
    Тип: Башня
    Типичная высота башни:
    90-150 футов
    Типичная ширина полосы отвода:
    160-200 футов

    Трансмиссия Номинальное напряжение: 345 кВ
    Тип: Double Ckt Pole
    Типичная высота башни:
    115-150 футов

    Типичная ширина полосы отвода:
    140-160 футов

    Трансмиссия Номинальное напряжение: 230 кВ
    Тип: H-образная рама
    Типичная высота башни:
    60-90 футов

    Типичная ширина полосы отвода:
    100-160 футов

    Трансмиссия Номинальное напряжение: 161 кВ
    Тип: , однополюсный
    Типичная высота башни:
    70-95 футов
    Типичная ширина полосы отвода:
    100-150 футов

    Трансмиссия Номинальное напряжение: 115 кВ
    Тип: , однополюсный
    Типичная высота башни:
    55-80 футов

    Типичная ширина полосы отвода:
    90-130 футов

    Трансмиссия Номинальное напряжение: 69 кВ
    Тип: , однополюсный
    Типичная высота башни:
    50-70 футов
    Типичная ширина полосы отвода:
    70-100 футов

    Как надежное электричество доходит до вас


    Кооперативы по производству и передаче электроэнергии (G&T), подобно Great River Energy, эксплуатируют объекты по производству электроэнергии.В паре электростанции, топливо (уголь, атомная энергия или биомасса) нагревает воду до производить пар и приводить в движение турбину. В турбине внутреннего сгорания топливо (газ или масло) сжигается, а горячий газ приводит в движение турбину. Ветровая гидро- и солнечная другие формы производителей энергии.


    Высоковольтные
    линии передачи


    Трансформаторы на электростанции повышают напряжение до напряжения передачи (69 кВ, 115 кВ, 230 кВ, 500 кВ, 765 кВ), поэтому он может перемещаться на большие расстояния по высоковольтным линиям электропередачи.G&T эксплуатируют эти линии, которые переносят электроэнергию от генерирующие станции к местам использования электроэнергии.

    ПОДСТАНЦИЯ ПЕРЕДАЧИ
    Трансформаторы снижают электрическую энергию до более низкого напряжения (69 кВ, 34 кВ) что делает его пригодным для доставки больших объемов на короткие расстояния.

    МЕСТНАЯ РАСПРЕДЕЛИТЕЛЬНАЯ ПОДСТАНЦИЯ
    Трансформаторы снижают электрическую энергию до более низкого напряжения (69 кВ, 34 кВ) что делает его пригодным для доставки больших объемов на короткие расстояния.

    Крупный промышленный пользователь
    В большинстве отраслей требуется от 2400 до 4160 вольт для работы тяжелого оборудования.У них обычно есть собственная подстанция на объекте.

    Распределение линии
    Линии местных электрических кооперативов несут электричество к трансформаторам которые снижают уровни мощности до 120/240 или 120/208 вольт для использования в школах, фермы, малые предприятия и дома.

    Передача электроэнергии


    Передача электроэнергии на большие расстояния является одной из основных проблем электрического века.Цели, над которыми работали инженеры по направлению остались прежними, несмотря на то, что многое другое изменилось года.

    1. КПД - транспортный электрический мощность на расстояние с минимальными потерями
    2. Безопасность - транспортная мощность через городские и сельские районы, сводящие к минимуму вред людям и животным.
    3. Стоимость - используйте минимальное сырье материалы и строительные / эксплуатационные расходы возможны
    4.Надежность - создать систему который не уязвим для ударов молний, ​​солнечных вспышек, землетрясений, ледяные бури, ураганы и система может «исцелить» себя, когда происходят перебои в работе, изолируя проблемные места.

    Ниже: простая иллюстрация электросети, показывающая высокое напряжение. перешел на фидерные линии

    Начиная с первой мощности на большие расстояния передача в Мюнхен, Германия в 1882 году, люди совершали все ошибки возможно и извлек из этого урок.Инженеры все еще пытаются решить очень сложные проблемы, такие как контроль затрат и устойчивость к солнечным вспышкам который мог бы вывести из строя власть во всем мире.

    Есть четыре способа транспортировки электрических мощность:



    Высокое напряжение переменного тока

    Максимум распространенный в мире метод, при этом используются алюминиевые проводники со стальным центр поддержки. Линии подвешены высоко выше земли. Чем выше напряжение, тем больше электромагнитный поле, создаваемое вокруг провода

    Ниже: простая модель системы распределения переменного тока.Мощность ступенчатая до 345 кВ, понижен до 69 кВ и в конечном итоге оказывается в доме на 220 вольт. Трансформаторы изменяют напряжение, а конденсаторы и катушки индуктивности синхронизировать форму волны. Влияние индуктивности и изменяющихся нагрузок может привести к рассинхронизации формы сигнала переменного тока, что приведет к потере эффективных коробка передач.

    Вверху: HVDC облегчает пересечение водоемов. Дания и Великобритания зависят от Подключение HVDC к материку, чтобы их системы оставались частью более крупных сетка.

    Высокое напряжение постоянного тока

    Это может быть более эффективным, чем кондиционер, и технология для твердых Государственные системы HVDC являются относительно новыми. HVDC был первой формой Передача на большие расстояния Эти линии не находятся в конфигурации «сети» которые могут равномерно распределять мощность в сети, но системы HVDC представляют собой единую междугородная линия, соединяющая основные сети. Сети HVDC пересекают Китай, США и Европа, соединяющие основные географические области.HVDC особенно полезно для соединения островов, таких как Великобритания и Япония, так как он может уйти под вода.


    Вверху: поперечное сечение сверхпроводящего ленточного провода. Сверхпроводящий провод разработан инженерами специально для данного использования.

    Сверхпроводники

    Если мы используем сверхпроводящие проводники при сверхнизких температурах, мы можем доставлять электроэнергию по подземным кабелям практически без потерь. К сожалению, эта технология пока не является рентабельной.Короткий экспериментальный линии были введены в Олбани, штат Нью-Йорк и других местах в Японии и Германия.

    Беспроводная передача энергии

    Можно передавать энергию по беспроводной сети. Никола Однако Tesla и Исследовательская лаборатория General Electric экспериментировали с этим. это непрактично по ряду причин. Это крайне неэффективно проходит через воздух, и это смертельно опасно для таких животных, как птицы проходя через мощные лучи.Вряд ли эта технология когда-либо будет полезен, особенно с учетом того, что мы продвигаемся вперед с HVDC, достижение впечатляющего уровня эффективности.

    Тестирование:

    Инженеры работали в специальных лабораториях для проверки устойчивости. на освещение, шорты, ЭМИ-бомбардировку. Многие инженеры Эдисона Tech Center, в течение многих лет проводивший собеседование, обнаружил, что тестирование достаточно удовлетворительная карьера.

    Первый шаг в понимании передачи энергии - это поведение проводов и электромагнетизма.

    Узнайте о деталях «трансмиссии» электросети:


    Грозовые разрядники
    Трансформаторы
    Изоляторы
    Регуляторы напряжения
    Шунтирующие конденсаторы
    Провода
    Метры

    Источники:
    John D. Harnden Jr. Edison Tech Center.
    Интервью с Майком Морлангом. Энергетическая ассоциация Сан-Мигель. 2014
    Интервью с Марком Бенцем и Карлом Роснером. Технический центр Эдисона. 2008 г.

    Как работают коробки передач | Американская Трансмиссионная Компания

    Электроэнергия доставляется в дома, школы, больницы, предприятия и промышленность через интегрированную систему генерирующих станций, линий электропередач и подстанций.Линии передачи, которые состоят из тяжелых кабелей, натянутых между высокими башнями, переносят электроэнергию оттуда, где она вырабатывается, в районы, где она необходима. Сеть передачи позволяет передавать большие объемы энергии на большие расстояния.

    Как электричество подается в ваш дом:

    Электроэнергия вырабатывается коммунальными предприятиями и другими производителями энергии на различных типах электростанций, ветряных и солнечных электростанциях. Электроэнергия «повышается» или преобразуется в более высокое напряжение на подстанциях до того, как она попадает в сеть высоковольтных линий электропередачи.Электроэнергия из передающей сети снижается до более низкого напряжения на подстанциях, а затем электрические распределительные компании подают электроэнергию в дома и предприятия.

    Поколение

    Электроэнергия вырабатывается на различных типах электростанций, ветряных и солнечных электростанций коммунальными предприятиями и независимыми производителями энергии.

    Трансмиссия

    Жизненно важное звено между производством электроэнергии и ее использованием, линии электропередачи несут электричество высокого напряжения на большие расстояния от электростанций до населенных пунктов.Это то, что делает ATC.

    Распределение

    Электроэнергия по линиям электропередачи снижена до пониженного напряжения на подстанции. Затем дистрибьюторские компании переносят электроэнергию на ваше рабочее место и дом.

    Межсоединения обеспечивают надежность

    Поскольку электроэнергию нельзя хранить, ее необходимо генерировать, передавать и распределять в тот момент, когда она необходима. Сеть передачи высокого напряжения является жизненно важным связующим звеном между электростанциями, производящими электроэнергию, и людьми, которые в ней нуждаются.

    На заре электрификации электростанции были небольшими и вырабатывали электричество для непосредственных районов. По мере роста спроса на электроэнергию коммунальные предприятия строили более крупные и более эффективные электростанции и разрабатывали системы передачи для передачи энергии на большие расстояния к большему количеству потребителей на более обширных территориях.

    Для повышения эффективности и надежности были подключены региональные передающие системы, позволяющие перетекать электроэнергию из одного региона в другой, что также снизило затраты за счет предоставления большего количества путей, по которым могла бы течь основная поставка электроэнергии.Сегодняшняя «сеть» передачи электроэнергии отражает этот региональный подход к оптовой транспортировке электроэнергии.

    Объекты передачи и передачи электроэнергии



    Объекты передачи и передачи электроэнергии

    Передача электроэнергии - это процесс транспортировки электроэнергии к потребителям на большие расстояния. Для некоторых новых солнечных электростанций могут потребоваться новые объекты передачи электроэнергии.

    Электротрансмиссия

    Передача электроэнергии - это процесс, с помощью которого большие объемы электроэнергии, произведенной на электростанциях, таких как промышленные солнечные установки, транспортируются на большие расстояния для последующего использования потребителями. В Северной Америке электроэнергия отправляется с электростанций в сеть передачи Северной Америки , обширную сеть линий электропередач и связанные с ними объекты в США, Канаде и Мексике. Из-за большого количества энергии и свойств электричества передача обычно происходит при высоком напряжении (69 кВ или выше).Электроэнергия обычно поставляется на подстанцию ​​ недалеко от населенного пункта. На подстанции электричество высокого напряжения преобразуется в более низкое напряжение, подходящее для использования потребителями, а затем доставляется конечным пользователям по (относительно) низковольтным линиям распределения электроэнергии.

    Для недавно построенных солнечных электростанций , если не было подходящих передающих сооружений, потребовались бы новые линии передачи и связанные с ними сооружения. Строительство, эксплуатация и вывод из эксплуатации высоковольтных линий электропередачи и связанных с ними объектов создадут ряд экологических воздействий.Тип и величина воздействий, связанных со строительством, эксплуатацией и выводом из эксплуатации линии электропередачи, будут варьироваться в зависимости от типа и размера линии, а также от длины линии электропередачи и множества других факторов, специфичных для площадки.

    К основным узлам высоковольтных линий электропередачи и сопутствующим объектам относятся:

    Передаточные башни

    Башни передачи являются наиболее заметным компонентом системы передачи электроэнергии.Их функция состоит в том, чтобы изолировать проводники высокого напряжения (линии электропередач) от окружающей среды и друг от друга. Существуют различные конструкции башен, которые обычно используют открытую решетку или монополь, но обычно они очень высокие (башня на 500 кв может иметь высоту 150 футов с поперечинами шириной до 100 футов), металлические конструкции.


    Передаточные башни
    Увеличить нажмите
    Проводники (линии электропередач)

    Проводники - это линии электропередач , по которым электричество подается в сеть и через нее к потребителям.Как правило, на опору для каждой электрической цепи натянуто несколько проводов. Проводники состоят в основном из скрученных металлических жил, но более новые проводники могут включать керамические волокна в матрицу из алюминия для дополнительной прочности при меньшем весе.

    Подстанции

    Очень высокие напряжения, используемые для передачи электроэнергии, преобразуются в более низкие напряжения для использования потребителями на подстанциях . Подстанции различаются по размеру и конфигурации, но могут занимать несколько акров; они очищены от растительности и обычно засыпаны гравием.Обычно они огорожены, и к ним ведет постоянная подъездная дорога. В общем, подстанции включают в себя множество конструкций, проводов, ограждений, освещения и других элементов, которые создают «промышленный» вид.


    Подстанция
    Увеличить

    Щелкните фото ниже, чтобы просмотреть интерактивную панораму.


    Подстанция на фотоэлектрическом объекте - интерактивная панорама. Источник: Аргоннская национальная лаборатория
    Право проезда (полосы отвода)

    Полоса отчуждения для коридора электропередачи включает земельных участков, зарезервированных для линии электропередачи и связанных с ней объектов, необходимых для облегчения технического обслуживания и предотвращения риска пожаров и других аварий.Он обеспечивает запас прочности между высоковольтными линиями и окружающими конструкциями и растительностью. Некоторая расчистка растительности может потребоваться по соображениям безопасности и / или доступа. Полоса отвода обычно состоит из местной растительности или растений, выбранных по благоприятным моделям роста (медленный рост и низкая зрелая высота). Однако в некоторых случаях подъездные дороги составляют часть полосы отвода и обеспечивают более удобный доступ для автомобилей для ремонта и инспекции. Ширина полосы отвода изменяется в зависимости от номинального напряжения линии от 50 футов.примерно до 175 футов или более для линий 500 кВ.


    РЯД трансмиссии
    Нажмите для увеличения
    Подъездные пути

    Маршруты доступа к сооружениям линий электропередачи как для строительства, так и для обслуживания линий обычно требуются и могут быть вымощены или гравием. Для строительства подъездной дороги может потребоваться очистка от растительности и / или реконструкция земли. Дополнительные временные дороги также могут потребоваться на этапах строительства и вывода из эксплуатации проекта линии электропередачи.

    Для получения дополнительной информации

    Более подробная информация об электрической передаче и подробные описания компонентов передающего устройства представлены в следующем техническом отчете.

    Электроэнергетическая система - производство, передача и распределение электроэнергии

    Типовая схема системы электроснабжения (производство, передача и распределение электроэнергии) и элементы системы распределения

    Что такое электроэнергетическая система?

    Электроэнергетическая система или электрическая сеть известна как большая сеть электростанций, подключенных к потребителям нагрузки .

    Как хорошо известно, « Энергия не может быть создана или уничтожена , но только может быть преобразована из одной формы энергии в другую форму энергии». Электрическая энергия - это форма энергии, при которой мы передаем эту энергию в виде потока электронов. Итак, электрическая энергия получается путем преобразования различных других форм энергии. Исторически сложилось так, что мы делали это с помощью химической энергии, используя элементы или батареи.

    Однако, когда произошло изобретение генератора, это стало методом сначала преобразовать некоторую форму энергии в механическую форму энергии, а затем преобразовать ее в электрическую форму энергии с помощью генератора.Генераторы вырабатывают два типа мощности переменного и постоянного тока. Тем не менее, 99% существующих энергосистем используют генераторы переменного тока.

    Электроэнергия значительно выросла за два столетия благодаря гибкости, которую она обеспечивает при ее использовании. Разнообразие использования привело к монотонному росту спроса. Однако по мере увеличения нагрузки или спроса практически одно требование остается неизменным. То есть мы должны сгенерировать количество, требуемое для нагрузки, в этот самый момент, потому что это большое количество не может быть сохранено для удовлетворения такого высокого объема спроса.

    Следовательно, выработка электроэнергии происходит одновременно с тем, как мы ее используем. К тому же наш спрос всегда меняется. Следовательно, с ней меняется и поколение. Помимо меняющегося спроса, различается и тип потребляемого нами тока. Эти вариации ставят множество ограничений и условий. Это причина сложных и больших диспетчерских по всей энергосистеме.

    Сеть из линий между генерирующей станцией (электростанцией) и потребителем электроэнергии можно разделить на две части.

    • Система передачи
    • Система распределения

    Мы можем изучить эти системы в других категориях, таких как первичная передача и вторичная передача , а также первичная распределительная и вторичная распределительная . Это показано на рисунке 1 ниже (однолинейная или однолинейная схема типовой схемы энергосистемы переменного тока).

    Необязательно, чтобы все ступени, которые засеваются на фиг.1, должны быть включены в другие схемы питания.Может быть разница. Например, во многих схемах нет вторичной передачи, в других (малых) схемах энергосистемы нет передачи энергии, а есть только распределение.

    Основная цель электроэнергетической системы - получить электроэнергию и сделать ее безопасной для точки нагрузки, где она используется в пригодной для использования форме. Это осуществляется в пять этапов, а именно:

    1. Генерирующая станция
    2. Первичная передача
    3. Вторичная передача
    4. Первичная распределительная
    5. Вторичная распределительная

    Следующие части типовой схемы электроснабжения показаны на рисунке 1.

    Рис. 2: Типовая схема системы электроснабжения переменного тока (производство, передача и распределение)

    После этих пяти уровней энергия должна быть доступна в указанной форме с точки зрения величин напряжения, частоты и постоянства. Генерация означает преобразование формы энергии в электрическую. Передача подразумевает транспортировку этой энергии на очень большие расстояния с очень высокой величиной напряжения. Кроме того, распределение удовлетворяет потребности потребителей на сертифицированном уровне напряжения, и это осуществляется по фидерам.Питатели - это маленькие-маленькие куски груза, физически распределенные в разных местах.

    Похожие сообщения:

    Давайте объясним все вышеперечисленные уровни один за другим.

    Генерирующая или генерирующая станция

    Место, где электроэнергии, вырабатываемой параллельно соединенными трехфазными генераторами / генераторами, называется генерирующей станцией (т. Е. Электростанцией).

    Обычная мощность электростанции и генерирующее напряжение могут составлять 11 кВ , 11.5 кВ 12 кВ или 13 кВ . Но с экономической точки зрения целесообразно увеличить производимое напряжение с (11 кВ, 11,5 кВ или 12 кВ) до 132 кВ , 220 кВ или 500 кВ или более (в некоторых странах до 1500 кВ ) путем пошагового увеличения. трансформатор (силовой трансформатор).

    Генерация - это часть энергосистемы, в которой мы преобразуем некоторую форму энергии в электрическую. Это источник энергии в энергосистеме. Он работает все время.Он вырабатывает электроэнергию при разных уровнях напряжения и мощности в зависимости от типа станции и используемых генераторов. Максимальное количество генераторов вырабатывает мощность при уровне напряжения около 11кВ-20кВ . Повышенный уровень напряжения приводит к увеличению требуемого размера генератора и, следовательно, к стоимости.

    В настоящее время мы используем следующие генерирующие станции в основном по всему миру: -

    1. Тепловая электростанция
    2. Гидроэлектростанция Hydel
    3. Атомная электростанция
    4. Дизельная электростанция
    5. Газовая электростанция
    6. Солнечная электростанция
    7. Приливная электростанция
    8. Ветряная электростанция.И т. Д.

    С помощью этих электростанций мы вырабатываем электроэнергию на разных уровнях напряжения и в разных местах в зависимости от типа электростанции. Они используются для разных целей, а именно.

    • Установка базовой нагрузки : - Когда установка используется для обработки потребности в базовой нагрузке в системе
    • Установка пиковой нагрузки : - Когда установка предназначена для обработки потребности в пиковой нагрузке в системе

    Соответственно, установка рассчитана на то, чтобы выдерживать нагрузку.Эта категоризация важна для качества электроэнергии. Также важно, что мощность должна генерироваться в тот же момент, когда нагрузка принимает мощность. Итак, поскольку мы знаем тип нагрузки и примерный размер нагрузки на станции, выбирается другой тип генерирующей станции.

    Например; Тепловая установка, установка Hydel, атомная установка, солнечная установка, ветряная установка и приливная установка выбраны для обработки базовой нагрузки на систему, тогда как газовые установки, дизельные установки используются для обработки пиковой нагрузки.Это в основном определяется характером времени, которое им требуется в процессе начала подачи энергии. Установки с базовой нагрузкой требуют больше времени для выдачи мощности, тогда как установки с пиковой нагрузкой должны запускаться очень быстро, чтобы удовлетворить спрос.

    Связанное сообщение: Почему кабели и линии передачи электроэнергии не закреплены на электрических столбах и опорах передачи?

    Первичная передача

    Электроснабжение (в 132 кВ , 220 кВ , 500 кВ или больше) передается в центр нагрузки по трехфазному трехпроводному соединению ( 3 фазы - 3 провода , также известному как Соединение треугольником ) система воздушной передачи.

    Поскольку уровень генерируемого напряжения составляет около ( 11-20 ) кВ , а спрос находится на различных уровнях напряжения и в очень удаленных от электростанции местах. Например, генерирующая станция может генерировать напряжение 11 кВ, но центр нагрузки находится на расстоянии 1000 км друг от друга и на уровне 440 В .

    Следовательно, для доставки электроэнергии на такое большое расстояние необходимо устройство, которое сделает это возможным.Следовательно, система передачи необходима для доставки электроэнергии. Это стало возможным благодаря использованию линий передачи разной длины. Практически во всех случаях это воздушные линии электропередачи. Некоторые исключения случаются, когда необходимо пересечь океан. Затем возникает необходимость использовать подземные кабели.

    Но по мере того, как система росла и требовалась нагрузка, задача в этом процессе становилась очень сложной. При низком уровне напряжения величина тока, протекающего по линии при высокой нагрузке, больше, и, следовательно, падение напряжения из-за сопротивления и реактивного сопротивления линии передачи очень велико.Это приводит к большим потерям в линиях передачи и снижению напряжения на стороне нагрузки.

    Это влияет на стоимость системы и работу оборудования, используемого потребителями. Таким образом, трансформатор используется для повышения уровня напряжения на определенные значения в диапазоне от 220 кВ до 765 кВ . Это делает текущее значение меньше для той же нагрузки, которая будет иметь более высокие значения тока при определенной нагрузке. Текущее значение можно рассчитать по формуле: -

    Где = действующее значение линейного напряжения

    = действующее значение линейного тока

    * обозначает сопряжение вектора.

    Повышенный спрос и ограничение местоположения генерирующей станции сделали возможным потребность в очень сложной системе, называемой «Grid». Эта система объединяет несколько генерирующих станций, генерирующих напряжение на разных уровнях, которые соединяются вместе как комбинированная система.

    Это позволяет системе работать с различными центрами нагрузки, и это обеспечивает отличную систему с более высокой надежностью. В настоящее время эта система выросла до размеров страны. Еще одна система, которая используется сейчас, - это использование HVDC.HVDC используется для больших расстояний и иногда используется для соединения двух сетей с разными уровнями напряжения или частоты. HVDC также обеспечивает более низкие потери на коронный разряд, меньшие помехи связи, устранение индуктивного эффекта и устранение рабочей частоты.

    Линии передачи различаются по размерам. Этот размер определяет его характеристики и поведение в системе. Например, в длинных линиях передачи напряжение на стороне потребителя становится выше своего номинального значения в условиях небольшой нагрузки из-за преобладающей емкостной природы линий передачи.

    Вторичная передача

    Удаленная от города территория (окраина), соединенная линиями с приемными станциями, называется вторичной передачей . На приемной станции уровень напряжения понижается понижающими трансформаторами до 132 кВ, 66 или 33 кВ , и электроэнергия передается по трехфазной трехпроводной ( 3 фазы - 3 провода ) воздушной сети в разные подстанции .

    Первичное распределение

    На подстанции уровень напряжения вторичной передачи ( 132 кВ, 66 или 33 кВ ) снижен до 11 кВ с понижением на преобразуется в .

    Как правило, электроснабжение обеспечивается тем потребителям с большой нагрузкой (коммерческое электроснабжение промышленных предприятий), где потребность составляет 11 кВ, от линий, на которые подается напряжение 11 кВ (в трехфазной трехпроводной воздушной системе), и они создают отдельную подстанцию ​​для контролировать и использовать тяжелую энергию в промышленности и на заводах.

    В остальных случаях для потребителей с большей нагрузкой (в крупных масштабах) потребность составляет до 132 кВ или 33 кВ. Таким образом, электроснабжение обеспечивало их напрямую вторичной передачей или первичным распределением (в 132 кВ, 66 кВ или 33 кВ), а затем понижало уровень напряжения с помощью понижающих трансформаторов на их собственной подстанции для использования (т.е. для электрической тяги и т. д.).

    Когда линии электропередачи приближаются к центрам спроса, уровень напряжения снижается, чтобы сделать его практичным для распределения в различных местах нагрузки. Таким образом, мощность берется из сети и снижается до 30-33кВ , в зависимости от мест, куда она подается. Затем он передается на подстанции. Например, напряжение системы на уровне подстанции в Индии составляет 33 кВ .

    Связанные сообщения:

    На подстанциях предусмотрено множество механизмов управления, чтобы сделать подачу электроэнергии управляемым и непрерывным процессом без особых помех.Эти подстанции подают питание на более мелкие блоки, называемые « Feeders ». Это осуществляется с помощью « воздушных линий » или « подземных кабелей ». Эти фидеры находятся в городах или деревнях, или это может быть какая-то группа предприятий, которая берет энергию от подстанции и преобразует ее уровень напряжения в соответствии с ее собственным использованием.

    Для домашнего использования , напряжение дополнительно снижается до 110–230 В ( фаза на землю ) для использования людьми с другим коэффициентом мощности.Совокупный объем спроса - это нагрузка на всю систему, и она должна быть сгенерирована в этот момент.

    В зависимости от схемы распределительной сети она подразделяется на радиальную или кольцевую. Это придает системе разную степень надежности и стабильности. Все эти системы защищены с помощью различных схем защиты, включая автоматические выключатели, реле, ограничители молнии, заземляющие провода и т. Д.

    Многие измерительные и чувствительные элементы также связаны, такие как «Трансформатор тока» и « Трансформатор потенциала », а также измерения на всех уровнях. места от подстанций до фидеров до мест потребителей.

    Вторичное распределение

    Электроэнергия передается (от первичной распределительной линии, например, 11 кВ) на распределительную подстанцию, известную как вторичное распределение . Данная подстанция расположена вблизи бытовых и потребительских территорий, где уровень напряжения понижен до 440В понижающими трансформаторами .

    Эти трансформаторы называются Распределительные трансформаторы , трехфазная четырехпроводная система (3 фазы - 4 провода, также известные как Соединение звездой ).Таким образом, между любыми двумя фазами и 230 В ( однофазное питание ) между нейтралью и фазным (живым) проводом имеется 400 Вольт (трехфазная система питания) .

    Жилая нагрузка (например, вентиляторы, освещение, телевизор и т. Д.) Может быть подключена между одной фазой и нулевым проводом, а трехфазная нагрузка может быть подключена непосредственно к трехфазным линиям.

    Короче говоря, вторичное распределение электроэнергии можно разделить на три части, такие как фидеры, распределители и линии обслуживания (подробности ниже).

    Связанное сообщение:

    Комбинированный процесс энергосистемы

    Вся структура энергосистемы состоит из источника (генерирующая станция), передачи (передача и распределение) и нагрузки (потребителя). Задачи: -

    • Номинальное напряжение и частота до центров нагрузки.
    • Надежность системы, обеспечивающая непрерывную подачу электроэнергии.
    • Гибкость системы, обеспечивающая доступность питания при различных уровнях напряжения
    • Более быстрое устранение неисправностей, чтобы система работала хорошо в течение более длительного времени и увеличивалась срок ее службы
    • Стоимость электроэнергии должна быть как можно ниже
    • в системе должно быть как можно ниже.
    Рис. 3: Комбинированный процесс в энергосистеме

    Все эти цели достигаются за счет использования различных комплектов генерирующих станций, систем передачи, систем распределения и повышенного качества оборудования безопасности.

    В любой момент наша нагрузка меняется в разной степени. Следовательно, чтобы следовать за спросом, поколение должно измениться и догнать спрос. Для этого существует множество механизмов управления, таких как регулирующий клапан на тепловых станциях, регулирующие стержни на атомных станциях, которые изменяют количество вырабатываемой энергии. И для этой цели существует набор мер, направленных на передачу спроса на генерирующую станцию. Это PLC, SCADA, волоконно-оптическая связь, GSM-связь и т. Д.

    Кроме того, в энергосистеме используются некоторые методы оценки состояния для прогнозирования потребности в нагрузке в различные моменты времени. Это помогает определить количество энергии, которое необходимо произвести в нужное время. Теперь, с появлением новых технологий, очень многообещающим является использование «мягких вычислений» для управления работой энергосистемы. Кроме того, он сопровождается различным программным обеспечением и численными методами. Следовательно, можно констатировать, что этапы, на которых работает энергосистема, следующие: -

    • Изменение потребности в нагрузке
    • Связь между подстанцией и генерирующей станцией
    • Операции управления на генерирующих станциях
    • Непрерывная оценка изменений на подстанции востребован

    Современная энергосистема работает и буквально обрабатывает такое большое количество электроэнергии с помощью этих четырех основных этапов.Чем лучше регулируется подаваемая мощность, тем выше будет качество электроэнергии, потому что качество энергии - это просто поддержание номинального значения напряжения и частоты в каждом месте. Эта цель достигается только тогда, когда вся система работает в постоянной координации и эффективности.

    Поскольку наша нагрузка меняется от состояния с небольшой нагрузкой до состояния с высокой нагрузкой, подстанция связывается с генерирующей станцией, чтобы увеличить выработку электроэнергии, и продолжает проверять требования, чтобы обеспечить непрерывную подачу электроэнергии.

    Обмен данными осуществляется в соответствии с величиной нагрузки и стоимостью, задействованной в процессе. Более того, это увеличение спроса затем подтверждается генерирующей станцией путем изменения мощности, потребляемой генератором. Кроме того, от генерирующей станции до центров нагрузки существуют различные уровни (а именно, передача и распределение).

    Таким образом, для обеспечения качества и надежности электроэнергии используется множество устройств для эффективного выполнения различных механизмов управления, включая системы управления неисправностями, системы повышения коэффициента мощности, системы измерения и т. Д.

    Все эти операции выполняются непрерывно в любой энергосистеме по всему миру, чтобы обеспечить возможность и эффективность подачи энергии. С увеличением спроса произошло увеличение изобретений различных устройств.

    Кроме того, доходы, полученные от распределения электроэнергии, сделали возможным дальнейшее изобретение и использование новых технологий. Это позволяет нам использовать энергию в такой простой форме, тогда как на самом деле многие сложные операции выполняются постоянно.

    ниже представляет собой полную типичную схему системы электроснабжения переменного тока, другими словами, вся история, приведенная выше на рис. 4.

    Щелкните изображение, чтобы увеличить

    Рис. 4: Типовая схема системы электроснабжения (производство, передача и распределение электроэнергии). Электроэнергия)

    Элементы системы распределения

    Вторичное распределение можно разделить на три части следующим образом.

    1. Фидеры
    2. Дистрибьюторы
    3. Сервисные линии или сервисная сеть

    Связанная должность: Проектирование системы заземления в сети подстанции

    Рис. 5: Элементы распределительной системы
    Фидеры

    Те линий электропередач, которые соединяют генерирующую станцию ​​(электростанцию) или подстанцию ​​с распределителями, называются фидерами .Помните, что ток в фидерах (в каждой точке) постоянный, а уровень напряжения может быть разным. Ток, протекающий в фидерах, зависит от размера проводника. Рис. 5.

    Распределители

    Те ленты, которые извлекаются для подачи электроэнергии к потребителям или линиям, от которых потребители получают прямое электроснабжение, известны как распределители, как показано на рис. 5. Ток различается в каждой секции. У распределителей при этом напряжение может быть таким же.Выбор распределителей зависит от падения напряжения и может быть рассчитан на различный уровень падения напряжения. Это потому, что потребители должны получать номинальное напряжение в соответствии с правилами и конструкцией.

    Полезно знать: основное различие между фидером и распределителем состоит в том, что ток в фидере такой же (в каждой секции), с другой стороны, напряжение одинаково в каждой секции распределителя

    Соответствующий пост : Техническое обслуживание трансформатора - силовые трансформаторы Техническое обслуживание, диагностика и мониторинг

    Сервисные линии или сервисная сеть

    Обычный кабель, который подключается между распределителями и потребительским терминалом нагрузки, называемый сервисной линией или сервисной сетью.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *