Содержание

Конденсатор | Класс робототехники

Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой

C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад!  Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Внешний вид макета

Подключим Ардуино  к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается 🙁 Напряжение на нем близко к нулю.

С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!

Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.

Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.

Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.

Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.

К размышлению

Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.

Вконтакте

Facebook

Twitter

Как обозначаются (маркируются) конденсаторы на схемах: маркировка конденсаторов

Конденсаторы доступны в различных исполнениях и для разных применений. При этом встречаются отличные условные графические обозначения конденсаторных элементов на электросхемах. Кроме того, применяется маркировка на самих деталях.

Различные типы конденсаторных элементов

О конденсаторе

Базовая структура конденсатора имеет простое объяснение. Между двумя конденсаторными пластинами имеется диэлектрик, изолирующий две проводящие поверхности. Таким образом, конденсатор представляет собой пассивное устройство, способное хранить электрозаряд.

Конденсаторные пленки, диэлектрик и конструкция в значительной мере определяют свойства конденсатора, а именно возможность сохранять заряд, который пропорционален напряжению, приложенному к его пластинам. Эта пропорциональность, получившая название емкости, считается существенной особенностью конденсатора.

Технологически конденсаторы можно подразделить на три типа:

  • электростатические;
  • электролитические;
  • другие электрохимические устройства (двойнослойные).

Применение конденсатора зависит от вида и предназначения схемы. Буферный конденсаторный элемент используется для перехвата пиковых нагрузок. Применяются эти элементы в фильтрах для подавления помех и построения резонансных схем.

Условные обозначения конденсаторов

Разработаны системы УГО (условных графических обозначений) для конденсаторов в РФ (ГОСТ 2.728-74) и общемировые стандарты (IEEE 315-1975).

Обозначение различных конденсаторов на схеме показывает их тип и главные характеристики.

Конденсатор с постоянной емкостью

Делятся на два основных типа:

  • поляризованные;
  • неполярные.

Малогабаритные неполяризованные конденсаторные элементы могут быть подсоединены в любом направлении. Существуют различные типы, но керамические являются наиболее широко распространенными и подходящими для большинства целей.

На электросхемах обозначаются парой коротких параллельных линий, перпендикулярных соединительным схемным линиям. Рядом часто размещается величина емкости элемента.

Обозначение конденсатора с постоянной емкостью

Важно! Иногда в иностранных схемах встречается обозначение MFD. Это не мегафарады, а μF.

Возможные единицы емкости:

  • микро (μ) означает 10 в -6 степени фарад;
  • нано (n) – 10 в -9 степени фарад;
  • пико (р) – 10 в -12 степени фарад.

На поверхность самого конденсатора тоже наносится значение емкости. Часто оно указано без обозначений единиц, особенно на маленьких элементах. Например, 0,1 – это 1 мкФ = 100 нФ.

Иногда написание единиц используется вместо десятичной точки. Если встречается обозначение 4n7, это значит 4,7 нФ.

Код номера конденсатора

Цифровой код часто применяется на маленьких элементах, где печать затруднена:

  • первые два числа – начальные цифры значения ёмкости;
  • третья показывает число нулей, а сама величина измеряется в пФ;
  • буквы могут означать допуски и номинальное напряжение.

Например:

  • 102 означает 1000 пФ, а не 102 пФ;
  • 472J – это 4700 пФ (J свидетельствует о 5-процентном допуске).

Важно! Неполярные конденсаторы обычно имеют ёмкость менее 1 мкФ.

Поляризованные конденсаторы

Конденсаторные элементы такого типа должны быть подключены с учетом полюсов. На схеме это показано символом «+». На самом приборе указывается нанесением маркировки, которая идентифицирует «плюс». Для деталей цилиндрической формы обычно более длинный вывод является «плюсом». Поляризованные конденсаторы не повреждаются при паяльных работах.

Поляризованные конденсаторы

Электролитические конденсаторы – наиболее широко используемый тип поляризованного конденсаторного элемента. Они доступны в двух исполнениях:

  • цилиндрические, с обоими выводами на одном конце;
  • осевые, с выводами на каждом конце.

Цилиндрические, как правило, немного меньше и дешевле.

Реальные размеры таких элементов достаточно большие, чтобы четко наносить на них значение емкости, номинального напряжения и указывать «плюсовой» вывод. Поэтому их легко идентифицировать.

Важно! При включении в обратном направлении элементы могут повредиться и даже взорваться, поэтому необходимо четко придерживаться полярности.

Номинальное напряжение электролитических конденсаторов довольно низкое. При отсутствии четких требований лучше выбирать деталь с номиналом, несколько большим напряжения схемы.

Электролитический конденсаторный элемент на схемах может указываться в трех вариантах, представленных на рисунке.

Обозначение поляризованных конденсаторов

Танталовые конденсаторы

Конденсаторы из тантала поляризованы и имеют низкое пробивное напряжение. Они обладают очень малыми габаритами, используются в особых ситуациях, где важен размер.

На последних моделях танталовых конденсаторных элементов указывается значение емкости, напряжения и «плюсовой» вывод. Более старые модели имеют систему цветового кода, которая условно обозначает емкость.

Код состоит из двух полос сверху элемента (для двух цифр) и цветового пятна, обозначающего количество нулей. Соответствие цветовых значений для конкретных емкостей определяется по таблицам. Пятно серого цвета означает, что емкостное значение в мкФ надо умножить на 0,01, белого – на 0,1. Нижняя полоса около конденсаторных выводов дает значение напряжения:

  • желтая – 6,3 В;
  • черная – 10 В;
  • зеленая – 16 В;
  • синяя – 20 В;
  • серая – 25 В;
  • белая – 30 В;
  • розовая – 35 В.

Важно! «Плюсовой» контакт находится всегда с правой стороны элемента, если разместить его цветовым пятном к себе.

Танталовые конденсаторы

Переменные конденсаторы

Этот тип конденсаторных элементов главным образом применяется в радиосхемах. Элемент состоит из двух систем дисков. Одна – закреплена стационарно, другая – может поворачиваться, входя в промежутки между стационарными дисками. Переменные детали обладают маленькими емкостями, 100-500 пФ, и не используются в электросхемах синхронизации из-за малой емкостной величины и ограниченных пределов доступных значений. Вместо них применяются обычные конденсаторы с фиксированными значениями емкости и переменные резисторы.

Обозначение переменных конденсаторов

На схеме переменные конденсаторы представлены конденсаторным символом, перечеркнутым наклоненной стрелкой, а вместо точной емкостной величины написаны пределы ее изменения.

Конденсаторы-триммеры

Разновидность переменных конденсаторных элементов – триммеры, это миниатюрные детали с переменной емкостью. Они монтируются непосредственно на печатной плате, а емкостная величина изменяется только в период настройки схемы. Поэтому их еще именуют подстроечными. Регулирование производится с помощью отвертки.

Обозначение подстроечного конденсатора

Емкостное значение триммера обычно меньше 100 пФ. На электросхеме триммер указан, как переменный конденсатор со стрелкой, только стрелка вместо острия имеет перпендикулярную черту. Рядом пишется диапазон изменения емкости.

Ионистор

Ионистор называют суперконденсатором. Он представляет собой двухслойный элемент с относительно высокой емкостью (0,22-10 Ф). Структура суперконденсатора отличается от структуры обычной электролитической детали. В двойном слое на границе раздела между поверхностью электрода и электролитом образуется зона неподвижных носителей заряда, где энергия хранится, как электростатическое поле, в отличие от химической энергии электролитического конденсаторного элемента. Так как пограничный слой чрезвычайно тонкий, а поверхность электрода велика, достигается большая емкость, что делает суперконденсатор пригодным для использования в качестве ИП.

Ионистор и его обозначение

Температурный коэффициент конденсатора

Температурный коэффициент (ТКЕ) отражает, как изменяется емкость, измеренная при 20°С, при температурных изменениях. Есть элементы с линейными и нелинейными зависимостями.

Важной для практики является рабочая температура элемента. Она оказывает значительное влияние на срок его службы. Определяется конструктивным исполнением конденсатора. Например, электролитические конденсаторы больше подвержены температурному влиянию, чем керамические.

Видео

Оцените статью:

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

Рис. 181. Заряд и разряд конденсатора

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным.

В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться.

При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь.

В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора.

Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе.

Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Устройство конденсаторов и их применение в технике.

В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184).

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями.

Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается).

Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе.

На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин.

В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине).

Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается.

По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186).

Рис. 186. Устройство конденсатора переменной емкости

Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов.

Конденсаторы можно соединять последовательно и параллельно. При последовательном соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3

эквивалентное емкостное сопротивление

XCэк= XC1 + XC2 + XC3

результирующее емкостное сопротивление

Cэк = C1 + C2 + C3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Включение и отключение цепей постоянного тока с конденсатором.

При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc.

При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б).

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств.

Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору.

Рис. 190. Кривая пилообразного напряжения

Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

Соединение конденсаторов.

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:


Параллельное соединение


Принципиальная схема параллельного соединения


Последовательное соединение


Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

С1 – ёмкость первого;

С2 – ёмкость второго;

С3 – ёмкость третьего;

СN – ёмкость N-ого конденсатора;

Cобщ – суммарная ёмкость составного конденсатора.

Как видим, при параллельном соединении ёмкости нужно всего-навсего сложить!

Внимание! Все расчёты необходимо производить в одних единицах. Если выполняем расчёты в микрофарадах, то нужно указывать ёмкость C1, C2 в микрофарадах. Результат также получим в микрофарадах. Это правило стоит соблюдать, иначе ошибки не избежать!

Чтобы не допустить ошибку при переводе микрофарад в пикофарады, а нанофарад в микрофарады, необходимо знать сокращённую запись численных величин. Также в этом вам поможет таблица. В ней указаны приставки, используемые для краткой записи и множители, с помощью которых можно производить пересчёт. Подробнее об этом читайте здесь.

Ёмкость двух последовательно соединённых конденсаторов можно рассчитать по другой формуле. Она будет чуть сложнее:

Внимание! Данная формула справедлива только для двух конденсаторов! Если их больше, то потребуется другая формула. Она более запутанная, да и на деле не всегда пригождается .

Или то же самое, но более понятно:

Если вы проведёте несколько расчётов, то увидите, что при последовательном соединении результирующая ёмкость будет всегда меньше наименьшей, включённой в данную цепочку. Что это значить? А это значит, что если соединить последовательно конденсаторы ёмкостью 5, 100 и 35 пикофарад, то общая ёмкость будет меньше 5.

В том случае, если для последовательного соединения применены конденсаторы одинаковой ёмкости, эта громоздкая формула волшебным образом упрощается и принимает вид:

Здесь, вместо буквы M ставиться количество конденсаторов, а C1 – его ёмкость.

Стоит также запомнить простое правило:

При последовательном соединении двух конденсаторов с одинаковой ёмкостью результирующая ёмкость будет в два раза меньше ёмкости каждого из них.

Таким образом, если вы последовательно соедините два конденсатора, ёмкость каждого из которых 10 нанофарад, то в результате она составит 5 нанофарад.

Не будем пускать слов по ветру, а проверим конденсатор, замерив ёмкость, и на практике подтвердим правильность показанных здесь формул.

Возьмём два плёночных конденсатора. Один на 15 нанофарад (0,015 мкф.),а другой на 10 нанофарад (0,01 мкф.) Соединим их последовательно. Теперь возьмём мультиметр Victor VC9805+ и замерим суммарную ёмкость двух конденсаторов. Вот что мы получим (см. фото).


Замер ёмкости при последовательном соединении

Ёмкость составного конденсатора составила 6 нанофарад (0,006 мкф.)

А теперь проделаем то же самое, но для параллельного соединения. Проверим результат с помощью того же тестера (см. фото).


Измерение ёмкости при параллельном соединении

Как видим, при параллельном соединении ёмкость двух конденсаторов сложилась и составляет 25 нанофарад (0,025 мкф.).

Что ещё необходимо знать, чтобы правильно соединять конденсаторы?

Во-первых, не стоит забывать, что есть ещё один немаловажный параметр, как номинальное напряжение.

При последовательном соединении конденсаторов напряжение между ними распределяется обратно пропорционально их ёмкостям. Поэтому, есть смысл при последовательном соединении применять конденсаторы с номинальным напряжением равным тому, которое имеет конденсатор, взамен которого мы ставим составной.

Если же используются конденсаторы с одинаковой ёмкостью, то напряжение между ними разделится поровну.

Для электролитических конденсаторов.

При соединении электролитических конденсаторов (электролитов) строго соблюдайте полярность! При параллельном соединении всегда подключайте минусовой вывод одного конденсатора к минусовому выводу другого,а плюсовой вывод с плюсовым.


Параллельное соединение электролитов


Схема параллельного соединения

В последовательном соединении электролитов ситуация обратная. Необходимо подключать плюсовой вывод к минусовому. Получается что-то вроде последовательного соединения батареек.


Последовательное соединение электролитов


Схема последовательного соединения

Также не забывайте про номинальное напряжение. При параллельном соединении каждый из задействованных конденсаторов должен иметь то номинальное напряжение, как если бы мы ставили в схему один конденсатор. То есть если в схему нужно установить конденсатор с номинальным напряжением на 35 вольт и ёмкостью, например, 200 микрофарад, то взамен его можно параллельно соединить два конденсатора на 100 микрофарад и 35 вольт. Если хоть один из них будет иметь меньшее номинальное напряжение (например, 25 вольт), то он вскоре выйдет из строя.

Желательно, чтобы для составного конденсатора подбирались конденсаторы одного типа (плёночные, керамические, слюдяные, металлобумажные). Лучше всего будет, если они взяты из одной партии, так как в таком случае разброс параметров у них будет небольшой.

Конечно, возможно и смешанное (комбинированное) соединение, но в практике оно не применяется (я не видел ). Расчёт ёмкости при смешанном соединении обычно достаётся тем, кто решает задачи по физике или сдаёт экзамены 🙂

Тем же, кто не на шутку увлёкся электроникой непременно надо знать, как правильно соединять резисторы и рассчитывать их общее сопротивление!

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Расчет конденсатора для пуска двигателя, схема подключения

  1. Главная
  2. Электрические машины
  3. Конденсатор для пуска двигателя

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор - вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже - С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный - С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов - аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви - пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая - напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

схема “звезда”:

Рабочая емкость = 2800*Iном.эд/Uсети

схема “треугольник”:

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном - это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети - напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются - пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Компоненты часть 1, Х конденсаторы. Конденсаторы. Обзоры конденсаторов. Технические характеристики и особенности конденсаторов

Этой статьей я бы хотел начать цикл о различных электронных компонентах, диодах, конденсаторах, резисторах, варисторах и т.д.
Компонентов очень много, все они разные и меня не покидает ощущение, что пока я закончу о них рассказывать, уже выпустят что-то новое 🙂
А начну я с конденсаторов Х типа, тем более что эта статья будет являться дополнением к моей предыдущей статье, о Y конденсаторах.

Вообще все эти статьи будут как бы дополнением к видео. Я не пишу сценариев, рассказываю обычно просто то, что знаю, потому возможны некоторое оговорки или расхождение с текстовой версией. Но я постараюсь чтобы таких расхождений было как можно меньше.
В цикле я буду рассказывать не только о самих компонентах, а и о том, в каких цепях электронных схем их лучше применять и почему, а также возможно рассказывать о вариантах замены.
Также если вам интересны какие-то определенные компоненты, то постараюсь такие видео готовить в первую очередь. Потому буду рад комментариям и вопросам.

Х конденсаторы обычно используются совместно с Y конденсаторами. Так уж сложилось, что оба типа применяются в качестве помехоподавляющих элементов фильтров. Хотя конечно оба типа вполне могут использоваться независимо.

Выглядят они как небольшие брусочки разных цветов, обычно серого, синего или желтого цветов. На каждом обязательно должна присутствовать соответствующая маркировка.

В электрической сети достаточно ВЧ помех и пульсаций, потому задача Х конденсатора максимально блокировать их, по сути замыкая через себя. То же самое касается и помех со стороны блока питания. На схеме показан путь помехи и как она попадает к конденсатору.
На схеме слева виден резистор с сопротивлением 560кОм. Этот резистор нужен для того, чтобы разрядить конденсатор после выключения питания. Если его не поставить, а после обесточивания БП коснуться контактов вилки питания, то может ударить током. Не сильно, но неприятно. Когда-то мне приносили видеокамеру JVC, там Бп так умел "кусаться".

Конденсаторы Х типа отличаются от обычных тем, что:
1. Лучше работают при постоянном сетевом напряжении
2. Выдерживают всплески высокого напряжения
3. Не склонны к самовозгоранию.

В принципе их можно заменить на обычные конденсаторы, но это крайняя мера, а кроме того устанавливаемые конденсаторы должны быть рассчитаны на напряжение минимум 630 Вольт. Вам могут сказать, что можно поставить на 400 и так делали много раз и работало, не слушайте, 630 минимум!
Потому правильно ставить те, что на фото слева.

Особенно внимательно надо относиться к импортным (читай - китайским) конденсаторам. Слева на фото конденсаторы красного цвета. Я неоднократно видел их в разорванном виде, а ведь они вполне могли бы устроить и пожар.

Немного о маркировке.
X1 – Используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4кВ.
X2 – Самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250В, выдерживают всплеск до 2.5кВ.
Y1 – Работают при номинальном сетевом напряжении до 250В и выдерживают импульсное напряжение до 8кВ
Y2 – Самый распространенный тип, может быть использован при сетевом напряжении до 250В и выдерживает импульсы в 5кВ

Небольшая подсказка
1. Конденсаторы Y типа можно использовать вместо конденсаторов X типа, но нельзя использовать конденсаторы X типа вместо конденсаторов Y типа.
2. Конденсаторы Y типа имеют обычно намного меньшую емкость, чем конденсаторы X типа.
3. Если для конденсаторов X типа чем больше емкости, тем лучше, то емкость конденсаторов Y типа нужно выбирать как можно меньшей. Типичное значение 2.2нФ уже прилично бьется, если прикоснуться к выходу БП и к заземленному предмету одновременно.

При выборе емкости с Х конденсаторами все просто, чем больше, тем лучше. Для применения в обычных (бытовых) устройствах использовать можно любой класс.

Иногда конденсаторы Y типа могут иметь корпус как у конденсаторов Х типа,будьте внимательны, когда их используете.

Кроме того, как я написал выше, конденсаторы Y типа можно использовать вместо Х типа, мало того, иногда указывается даже двойная маркировка. Причем даже конденсатор Y2 можно смело применять вместо Х1.
Слева предположительно правильный конденсатор, но так как маркировки Y нет, то лучше не применять его, по крайней мере вместо межобмоточного.

Вы конечно спросите, почему вообще Х, Y, а не например W и Z. попробую объяснить мое видение принципа маркировки.
На плате конденсатор Х типа ставится так, как показано на схеме, т.е. по одной дорожке он подключается ко входу, а по другой к выходу. Обусловлено это тем, чтобы минимизировать длину проводников, так как ток всегда идет по кратчайшему пути.

Но если мы наведем эти проводники посильнее, то увидим, что включение Х конденсатора напоминает букву Х, а Y конденсаторов, соответственно букву Y.
Я не буду утверждать, что так и задумывалось, но выглядит вполне логично 🙂

Для примера как эти конденсаторы выглядят в реальных блоках питания.
Слева Бп от спутникового тюнера, справа от монитора. В первом случае применены конденсаторы до дросселя и после, во втором только до. Первый вариант немного лучше справляется с помехами, но во втором есть дополнительный дроссель, снижающий уровень помех.

Дроссель виден чуть левее и ниже конденсатора. Х конденсатор применен класса Х2, емкость 0.22мкФ.

Вот для примера другой блок питания, от компьютера.

Здесь на входе стоит также конденсатор класса Х2 и также имеющий емкость 0.22мкФ, но в данном случае это не более чем совпадение, так как у Бп спутникового тюнера конденсаторы имеют емкость 0.1мкФ.

А вот те необычные конденсаторы Y типа, о которых я писал выше. Я раньше не обращал внимание, что они выполнены в таком необычном для них корпусе, заметил буквально недавно.
Кстати, слева на плате видна маркировка производителя БП, Astec. В свое время он производил очень качественные блоки питания, их вы могли также видеть в виде зарядных устройств для телефонов (например Сименс). Но потом этот производитель ушел с рынка бытовой техники, очень жаль, качество их продукции было на очень высоком уровне. Мало того, они производили даже свои микросехемы.

Кстати насчет блоков питания, впрочем и не только блоков питания. Как я писал, конденсаторы Х класса очень надежны, потому перед тем как выбросить старый блок питания, посмотрите, возможно их оттуда можно выпаять, скорее всего они будут исправны.
Но вообще, всякие БП и прочие устройства являются хорошими поставщиками деталей, особенно если деталь нужна в одном-двух экземплярах. Иногда даже удобно так и хранить их в не разобранном виде.
Например ниже узел дежурного источника питания, вполне можно выпаять все компоненты и получить маломощный БП 5/12 Вольт для питания чего нибудь ардуино подобного.

Или вот выходной узел. Здесь можно смело брать магнитопроводы для всяких преобразователей напряжения и фильтров, весьма удобно. Особенно может быть полезен дроссель групповой стабилизации.
Электролитические конденсаторы также могут пригодиться, но если БП "китайский", то лучше их не использовать, часто там стоит хлам.

Ну и раз уж я завел речь о фильтрах питания, то покажу фильтр из какого-то советского монитора (предположительно), нашел сегодня на балконе.
Видна большая железная коробка, на торце два предохранителя (в импульсных БП лучше ставить именно парами), и неожиданно вполне стандартный современный разъем питания.

Когда я его разобрал, то меня ждал шок, все в стиле типичного китайского ширпотреба, большой корпус и внутри три детали, при чем три в буквальном смысле слова, дроссель, конденсатор и резистор.

По прикидкам блок питания, который был подключен после фильтра, имел мощность 100-150 Ватт. Сейчас в корпус таких габаритов спокойно влезет блок питания вместе с фильтром. На фото для сравнения БП мощностью 100 Ватт.

Ну и в некоторых БП попадаются такие вот удобные фильтры. Здесь также три детали, дроссель, конденсатор и резистор. Перепаять разъем на входной и вполне можно использовать, компактно, эффективно и бесплатно.

На этом все, остальное можно увидеть в видео. Как я и говорил, буду рад идеям, вопросам и комментариям, ведь куда приятнее когда есть обратная связь со зрителем и читателем 🙂

Схема Подключения Электродвигателя Через Конденсатор

Затем мотор работает как асинхронный двигатель на основной обмотке. Расчет емкости должен производиться с учетом номинальной мощности ЭД.


Найти требуемую емкость опытным путем — самое правильное решение.

Для запуска электромашины этого типа, может быть использован пусковой резистор. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока.
Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.



При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Подключается все просто, на толстые провода подается в. Они играют роль шунтов, однако действую не мгновенно.

Эти соединения и будут выводами двигателя для подключения к электропитанию. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Различные виды двигателей использовались для испытаний на пригодность выполнять функции генератора. В документации описаны способы подключения конденсаторов для реверсирования двигателя.

Подключение конденсатора. Как подключить конденсатор к электродвигателю. Схема.

Подключение

Но тогда параметры элементов цепи, которые зависят от мощности и схемы соединения обмоток будет необходимо менять, что не очень удобно в эксплуатации. Модель с мощностью 3 кВт будет стоить уже около 10 тыс. Подключение производится по этой схеме. Подключение трехфазного двигателя по схеме треугольник Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Для возможности работы электродвигателя в однофазной сети вольт необходимо для начала его обмотки переключить на схему треугольник.

Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

Называют их конденсаторными.

Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.

Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности.
Подключение 3-фазного двигателя в сеть 220В через пусковой и рабочий конденсаторы

Навигация по записям

Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Заключение Асинхронники на В широко применяются в быту. В качестве основы для статора и ротора используется электротехническая сталь

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей.

Принцип схемы там очень прост — изменение направления тока в рабочей обмотке С1-С2. А они есть не у всех, даже у электриков. От однофазной сети трехфазные устройства работают с помощью емкостных или индуктивно-емкостных цепей, сдвигающих фазу. Последний предназначен для отключения дополнительной обмотки от источника питания после запуска.

Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Применение этого типа однофазных двигателей, как правило, ограничивается прямым приводом таких нагрузок, как вентиляторы, воздуходувки или насосы, которые не требуют высокого пускового крутящего момента. Главную функцию берут на себя рабочие конденсаторы.

Принцип действия и схема запуска


Конденсаторы, которые находятся в цепи, могут быть заряжены. Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД. И во многих случаях электрооборудование приводится в движение трехфазными двигателями.

Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно Установка и подбор компонентов Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно распределительная коробка на корпусе электродвигателя. Сразу же заниматься расчетами схемы подключения не имеет смысла.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего. Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Подключается все просто, на толстые провода подается в.
подключение двигателя 380 на 220 вольт

Для чего нужен конденсатор

Например, если ток равен 1. Подключение трехфазного двигателя к однофазной сети Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть.

В качестве кнопки так же можно использовать обычный выключатель. Как правильно подобрать конденсаторы Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент.

Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. На какой из них разницы нет, направление вращения от этого не зависит.

Мы не будем изменять направление тока в той или иной обмотке. Трехфазные агрегаты на практике получили большее распространение, чем однофазные. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Еще по теме: Составление сметы и плана электромонтажных работ

Это тоже одна из разновидностей обмоток. При подключении двигателя к однофазной сети, ток по обмоткам течет, но вращающегося магнитного поля нет, ротор не крутится. Она всегда работает короткое время и служит для запуска двигателя. Напряжение на них может достигать больших значений.

Первая задача решается «прозваниванием» всех проводов тестером замером сопротивления. Принцип действия используется в насосном оборудовании, холодильных установках, воздушных компрессорах и т. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. Статор электродвигателя.

На этом все. Через щели в корпусе внутрь устройства втянуты сторонние вещества.

Коллекторный двигатель же двигатель от стиральной машины подключить очень просто. Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого. Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Были сделаны выводы, что скорость вращения ротора прибора, который используется в качестве генератора, не зависит от напряжения, которое подано на питающую однофазную сеть. Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе.
Как подключить электродвигатель на 220 вольт.

Как работают конденсаторы | HowStuffWorks

В некотором смысле конденсатор немного похож на батарею. Хотя они работают совершенно по-разному, конденсаторы и батареи хранят электрическую энергию . Если вы прочитали «Как работают батареи», то знаете, что у батареи есть две клеммы. Внутри батареи химические реакции производят электроны на одном выводе и поглощают электроны на другом выводе. Конденсатор намного проще, чем батарея, поскольку он не может производить новые электроны - он только хранит их.

В этой статье мы точно узнаем, что такое конденсатор, для чего он нужен и как он используется в электронике. Мы также рассмотрим историю конденсатора и то, как несколько человек помогли сформировать его развитие.

Внутри конденсатора клеммы соединяются с двумя металлическими пластинами , разделенными непроводящим веществом, или диэлектриком . Конденсатор легко сделать из двух кусков алюминиевой фольги и листа бумаги. Это не будет особенно хороший конденсатор с точки зрения его емкости, но он будет работать.

Теоретически диэлектриком может быть любое непроводящее вещество. Однако для практических применений используются специальные материалы, которые лучше всего подходят для функции конденсатора. Слюда, керамика, целлюлоза, фарфор, майлар, тефлон и даже воздух - вот некоторые из используемых непроводящих материалов. Диэлектрик определяет, какой это конденсатор и для чего он лучше всего подходит. В зависимости от размера и типа диэлектрика, некоторые конденсаторы лучше подходят для высокочастотных применений, а некоторые - для высоковольтных применений.Конденсаторы могут быть изготовлены для любых целей, от самого маленького пластикового конденсатора в вашем калькуляторе до сверхконденсатора, который может питать пригородный автобус. НАСА использует стеклянные конденсаторы, чтобы помочь разбудить схемы космического шаттла и помочь развернуть космические зонды. Вот некоторые из различных типов конденсаторов и способы их использования.

  • Воздух - Часто используется в схемах настройки радио
  • Майлар - Чаще всего используется для схем таймера, таких как часы, сигнализация и счетчики
  • Стекло - Подходит для приложений высокого напряжения
  • Керамика - Используется для высокочастотных целей, таких как антенны, X- рентгеновские аппараты и аппараты МРТ
  • Суперконденсатор - питает электрические и гибридные автомобили

В следующем разделе мы более подробно рассмотрим, как именно работают конденсаторы.

Учебное пособие по конденсаторам: работа и использование в схемах

Конденсаторы

- один из наиболее часто используемых компонентов электронной схемы. Будет справедливо сказать, что практически невозможно найти работающую схему без использования конденсатора. Это руководство написано, чтобы дать хорошее представление о работе конденсаторов и их использовании в практических схемах. В этом руководстве рассматриваются три важных вопроса о конденсаторах, которые могут возникнуть у новичка.

  1. Что такое конденсатор?
  2. Работа конденсатора?
  3. Как использовать конденсаторы в схемах?

К концу этого руководства вы лучше поймете принцип работы конденсаторов.Также из этого туториала Вы узнаете, как использовать конденсатор в практических схемах. Вы можете ознакомиться с предыдущим учебным пособием «Резисторы: работа и использование в схемах»

.

ЧТО ТАКОЕ КОНДЕНСАТОР:

Конденсатор - один из пассивных компонентов (не может генерировать энергию самостоятельно) в электронике. Этот конденсатор способен накапливать в нем электрический заряд, что приводит к развитию напряжения или, другими словами, потенциальной энергии на его выводах. Проще говоря, это похоже на аккумулятор, но он может сохранять заряд только временно.Чтобы сделать вещи интересными, он по-разному реагирует на постоянный ток (постоянный ток) по сравнению с переменным током (переменный ток). Мы объясним это далее в разделе «Работа с конденсатором», а теперь давайте посмотрим, как устроен конденсатор.

ВНУТРИ КОНДЕНСАТОРА:

Конструкция конденсатора довольно проста. Он состоит из двух проводящих пластин, подобных тем, что показаны на диаграмме выше (пластина 1 и пластина 2), где эти две пластины разделены небольшим расстоянием и с изоляторами между ними, также известными как диэлектрики.Это очень похоже на сэндвич, где у нас есть две проводящие пластины и изолирующий материал или диэлектрик, зажатый между ними.

Каждая крышка имеет определенную емкость. Мы уже знаем, что конденсатор способен накапливать электрический заряд на своих пластинах. Эта емкость определяет максимальное количество заряда, которое он может хранить. Чем больше пластины и меньше расстояние между ними, тем выше будет значение емкости. Эта емкость определяется формулой

.

C = Q / V

, где Q - количество заряда, а V - напряжение, приложенное к нему.

ФАРАДОВ:

Таким образом, каждый конденсатор имеет определенное значение емкости. Единица измерения емкости измеряется в фарадах. Когда мы указываем значение емкости как 1 фарад, это означает, что конденсатор удерживает заряд в 1 кулон на своих проводящих пластинах, когда на его выводы подается одно напряжение.

РАБОТА КОНДЕНСАТОРА:

А теперь пора глубже погрузиться в работу конденсатора. Как указано выше, конденсатор действует иначе, чем переменный и постоянный ток.

КОНДЕНСАТОР ПОСТОЯННОГО ТОКА:

Давайте сначала рассмотрим DC и посмотрим, как он реагирует на DC.Первоначально конденсатор будет в разряженном состоянии, что означает, что на его пластинах будет нулевой заряд. Когда на его клеммы подается постоянное напряжение, ток течет и заряжает его. Первоначальный поток этого зарядного тока через конденсатор будет очень высоким. Это приводит к накоплению положительного заряда на одной пластине и отрицательного заряда на другой пластине. По мере увеличения заряда на пластинах конденсатора зарядный ток постепенно уменьшается из-за накопления заряда на пластинах конденсатора, и он сопротивляется протеканию тока.Также заряд, накопленный на пластинах, создает разность потенциалов на пластинах.

Поток зарядного тока продолжает заряжать конденсатор до тех пор, пока развиваемое напряжение не сравняется с приложенным к нему напряжением. В этот момент зарядный ток перестает течь из-за развиваемого напряжения на конденсаторе. В этом случае конденсатор полностью заряжен положительным зарядом на одной пластине, а эквивалентный отрицательный заряд существует на другой. Напряжение, развиваемое на конденсаторе, обычно обозначается как Vc.Конденсатор будет удерживать это напряжение Vc до тех пор, пока на нем не появится напряжение. Как только подача напряжения прекращается, через конденсатор начинает течь разрядный ток. В этот момент напряжение Vc начинает падать, и заряд, накопленный на его пластинах, уменьшается.

Через некоторое время ток разряда замедляется, в этот момент скорость, с которой также замедляется падение напряжения. Через некоторое время напряжение конденсатора Vc достигнет нуля, и заряд, накопленный на его пластинах, станет нулевым.Это состояние называется состоянием разряда конденсатора. Теперь вы можете понять причину, по которой мы сравнили конденсатор с батареей.

КОНДЕНСАТОР С AC:

Как было сказано ранее, конденсатор по-разному реагирует при подаче переменного напряжения. При подаче постоянного напряжения конденсатор заряжается только в одном направлении. Однако, когда применяется переменный ток, конденсатор заряжается и разряжается поочередно в зависимости от его частоты. И поэтому с переменным напряжением конденсатор будет продолжать пропускать ток через него бесконечно, в отличие от постоянного тока, где конденсатор блокирует ток по прошествии определенного периода времени.

Здесь интересно то, что зарядный ток и ток разряда через конденсатор при воздействии переменного напряжения зависят от изменения напряжения, приложенного к его пластинам. Ток, протекающий в конденсаторе при подаче переменного тока, имеет тенденцию опережать напряжение на 90 °. Взгляните на график ниже.

Предположим, что на конденсатор подается переменное напряжение, начальное напряжение будет минимальным, а в этот момент зарядный ток будет максимальным, как вы можете видеть на приведенном выше графике.Когда напряжение достигнет своего пикового значения, зарядный ток будет равен нулю. После достижения пикового значения напряжение начнет уменьшаться, и ток разряда также начнет течь от конденсатора. Когда напряжение переменного тока достигает нулевого значения, завершая положительный полупериод сигнала, ток разряда будет максимальным. Как только сигнал начинается с отрицательного цикла, ток разряда постепенно начинает уменьшаться и достигает нуля, когда напряжение достигает максимума в отрицательном полупериоде. Таким образом, мы можем сделать вывод, что ток опережает напряжение на 90 'или напряжение отстает от тока на 90 ° в цепях переменного тока.Обычно это описывается как не совпадающие по фазе напряжение и ток.

РЕАКТИВНОСТЬ ЕМКОСТИ:

Еще одна важная вещь, которую нужно знать о конденсаторах в цепях переменного тока, заключается в том, что они обеспечивают сопротивление току, протекающему в цепях переменного тока. Это относится к реактивному сопротивлению, а точнее к емкостному сопротивлению. Это реактивное сопротивление определяется формулой

.

Xc = 1 / 2πFC или 1 / ωC (ω = 2πF)

Из приведенной выше формулы мы можем вывести, что емкостное реактивное сопротивление уменьшается с увеличением частоты сигнала переменного тока и емкости конденсатора.Когда частота сигнала высока или близка к Inifinity, реактивность будет близка к нулю. Здесь конденсатор действует как идеальный проводник. Кроме того, когда частота сигнала переменного тока становится меньше или близка к нулю, реактивное сопротивление будет очень высоким, и оно будет действовать как очень большое сопротивление или разрыв цепи для входящего сигнала.

ПРИМЕНЕНИЕ КОНДЕНСАТОРА:

Теперь, когда мы поняли, что такое конденсатор и как он работает. Давайте перейдем к самому важному разделу этой статьи «Применение конденсатора».

РАЗЪЕМНЫЙ КОНДЕНСАТОР:

Это конденсаторы, которые очень важно использовать во всех цифровых схемах. В идеале для работы цифровых ИС или микросхем требуется стабильное напряжение. Любые всплески или колебания напряжения могут привести к неработоспособности микросхемы, а иногда микросхема может быть разрушена. Именно здесь в игру вступает развязывающий конденсатор. Это конденсаторы, которые обычно устанавливаются рядом с микросхемами, соединяющими выводы VCC и GND микросхемы, как показано на приведенной выше принципиальной схеме.

Когда схема включена, развязка Конденсатор начинает заряжаться через Vcc и прекращает зарядку, когда напряжение Конденсатора достигает подаваемого напряжения. В этот момент, когда есть колебания напряжения питания, конденсатор будет подавать питание на ИС в течение короткого периода времени, чтобы поддерживать стабильное напряжение на ИС. Также при скачке входного напряжения питания конденсатор начинает заряжаться до нового напряжения питания. Это при этом поддерживает стабильное напряжение на входе IC1. В больших схемах с большим количеством ИС часто советуют использовать большой конденсатор рядом с источником питания и малый конденсатор рядом с каждой ИС, используемой в цепи.Большой конденсатор будет обеспечивать стабильное напряжение по всей цепи. Маленькие колпачки удовлетворяют потребности используемых с ними микросхем.

КОНДЕНСАТОР МУФТЫ:

Мы видели, что развязывающие конденсаторы используются для блокировки колебаний напряжения или, другими словами, они помогают блокировать сигналы переменного тока, поскольку колебания или падение напряжения являются формой сигнала переменного тока, поскольку напряжение сигнала изменяется со временем. Конденсатор связи, с другой стороны, блокирует сигнал постоянного тока, позволяя при этом проходить сигналу переменного тока.Другими словами, эти конденсаторы используются для соединения или связи входного сигнала переменного тока со следующим этапом схемы путем блокировки нежелательных сигналов постоянного тока.

Эти конденсаторы широко используются в усилителях и аудио приложениях, где нас интересуют только сигналы переменного тока. Возьмем, к примеру, звуковую цепь, питаемую от источника постоянного тока напряжением 9 В. Схема принимает голосовой ввод с микрофона, и этот голосовой ввод (сигнал переменного тока) является нашей достопримечательностью. Существует большая вероятность того, что сигнал постоянного тока от источника питания 9 В может смешаться с этим входным голосовым сигналом.И чтобы исключить этот элемент постоянного тока из нашего голосового входа, используется конденсатор связи C1 (показанный на схеме выше), где он блокирует сигнал постоянного тока и пропускает сигнал с переменной частотой. Помните, мы узнали, что конденсатор предлагает очень высокое сопротивление или блокирует сигнал постоянного тока.

Не только постоянный ток, при правильном выборе значений конденсатора мы можем успешно блокировать нежелательные низкие частоты и разрешать только желаемые высокие частоты. Это регулируется реактивным сопротивлением конденсатора, которое задается формулой Xc = 1 / 2πFC (мы видели это ранее в этом руководстве).Помните, мы уже знаем, что конденсатор обеспечивает высокую реактивность на низких частотах, тогда как для высоких частот значение реактивного сопротивления будет низким. Поэтому для того, чтобы конденсатор связи допускал низкочастотные сигналы, нам необходимо использовать конденсаторы более высоких значений, а для высокочастотных сигналов будет достаточно более низких значений конденсаторов.

ФИЛЬТРЫ:

Это схемные блоки, используемые для фильтрации нежелательных частот из входного сигнала. Конденсаторы являются неотъемлемой частью конструкции фильтров наряду с резисторами и индукторами.Фильтры имеют расширенные функциональные возможности, чем разделительные конденсаторы. В основном есть три разных типа фильтров, о которых вам нужно знать.

ФИЛЬТР НИЗКОГО ПРОХОДА:

Фильтры нижних частот используются для разрешения частотных составляющих ниже частоты среза и блокируют частотные составляющие выше этой. Вот как это работает, когда входящий сигнал имеет низкую частоту. Конденсатор демонстрирует высокое реактивное сопротивление (высокое сопротивление) по сравнению с резистором. Следовательно, напряжение на конденсаторе будет очень высоким по сравнению с падением напряжения на резисторе.Таким образом, мы получим входящий сигнал без ослабления или с низким затуханием. Между тем, когда входящий сигнал имеет высокую частоту, реактивное сопротивление конденсатора будет низким. Таким образом, падение напряжения на резисторе будет очень большим по сравнению с напряжением конденсатора, что не позволит сигналу достичь следующего каскада.

ФИЛЬТР ВЫСОКОГО ПРОХОДА:

Это фильтры, которые пропускают только сигнал с частотами выше частоты среза и блокируют сигнал с более низкими частотами. Здесь происходит то, что входящий сигнал имеет низкую частоту. Конденсатор демонстрирует высокое реактивное сопротивление и действует как разомкнутая цепь для сигнала.С другой стороны, когда входящий сигнал высокочастотного конденсатора показывает низкое реактивное сопротивление (сопротивление). Это очень мало по сравнению с резистором R1. Здесь падение напряжения на конденсаторе будет очень минимальным по сравнению с резистором, что позволяет выводить высокочастотный сигнал без ослабления или с низким затуханием.

БАНДПАСНЫЙ ФИЛЬТР:

Это комбинация фильтров верхних и нижних частот. Этот фильтр пропускает только сигнал определенной полосы частот и блокирует сигнал за пределами этого диапазона частот.Этот тип фильтра в идеале должен иметь две частоты среза: верхнюю и нижнюю частоту среза. Этот фильтр блокирует сигнал, частота которого меньше нижней частоты среза и выше верхней частоты среза. Как вы можете видеть в приведенной выше схеме, она построена с использованием фильтров высоких и низких частот. Комбинация из них позволит использовать только полосу частот между верхними и нижними частотами среза и блокирует сигнал за пределами этих частот.

ЦЕПИ ГРМ:

Из того, что мы видели до сих пор, мы знаем, что при использовании конденсатора с постоянным током требуется время для зарядки и достижения приложенного напряжения.Эти схемы синхронизации используют эту характеристику конденсатора и используют ее для создания необходимых временных задержек. Но здесь, наряду с конденсатором, вместе с ним используется резистор для управления скоростью зарядки конденсатора, что, в свою очередь, влияет на временную задержку.

Показанная выше схема представляет собой RC-схему синхронизации, в которой на конденсатор C1 подается постоянный источник постоянного напряжения 9 В. Задержка времени, генерируемая с помощью этой схемы, задается с помощью постоянной времени T. Постоянную времени можно рассчитать по формуле

T = RC

Конденсатору требуется 5Т или 5-кратная постоянная времени для полной зарядки.Таким образом, применение вышеуказанного значения резистора и конденсатора в этом уравнении даст 5 секунд задержки по времени. Пятисекундная задержка для достижения конденсатором напряжения питания 9 В на его выводах с момента включения питания.

5 зуб. = 5 x R x C

= 5 x 10 кОм x 100 мкФ

Время задержки = 5 сек.

Интересная вещь происходит за работой этой схемы, чтобы генерировать требуемую задержку времени. Чтобы понять это, давайте взглянем на кривую зарядки на графике конденсатора.

На приведенном выше графике показано соотношение между напряжением, током и временем, затрачиваемым на зарядку конденсатора. В момент времени t = 0 конденсатор будет в разряженном состоянии, и на цепь будет подаваться постоянное напряжение. После подачи напряжения зарядный ток течет через конденсатор, накапливая одинаковые и противоположные заряды на пластинах. Это приводит к увеличению напряжения конденсатора Vc. В начале зарядный ток будет максимальным. Конденсатор будет заряжен на 63% от напряжения питания, когда время достигнет постоянной T, которая отмечена 1 на графике выше.

В связи с вышеупомянутой схемой T будет составлять 1 секунду, и к тому времени напряжение конденсатора будет 63% от 9 В, что составляет 5,67 В. И из графика вы можете вывести на 5T (постоянная времени), конденсатор будет заряжен до подаваемого напряжения, полностью остановив ток зарядки. Теперь говорят, что конденсатор полностью заряжен.

Используя уравнение 5T = 5RC, вы можете зафиксировать значения конденсатора и резистора, чтобы заставить эту RC-цепь генерировать требуемую временную задержку для любого приложения.

БАК ИЛИ НАСТРОЕННЫЕ ЦЕПИ:

Цепи этого типа чаще всего используются в радиопередатчиках, приемниках и приложениях выбора частоты. Конденсатор работает вместе с индуктором в этих цепях, чтобы выполнять свою работу. Цепи Tank или Tuned будут использоваться, когда нам нужно сгенерировать сигнал или получить сигнал определенной частоты из сложного сигнала с несколькими частотными компонентами в нем, и именно отсюда произошло слово «Tuned». Элементы в этой цепи C и L могут быть настроены в соответствии с нашими потребностями.

Работа вышеуказанной схемы основана на реактивном сопротивлении как конденсатора, так и индуктора. Как и конденсатор, индуктор демонстрирует реактивное сопротивление. Но в отличие от конденсатора индуктор демонстрирует высокое реактивное сопротивление к высокочастотным сигналам, тогда как конденсатор демонстрирует высокое реактивное сопротивление к низкочастотным сигналам. Этот контур резервуара будет построен таким образом, чтобы реактивное сопротивление обоих элементов конденсатора и индуктора было одинаковым на частоте, тем самым достигая резонанса. В резонансе этот контур резервуара способен генерировать сигналы заданной частоты или принимать сигналы этой частоты.

Вот как это работает: когда конденсатор, подключенный к этой схеме, заряжен, он накапливает заряды между пластинами. Затем ток от конденсатора переместится в индуктор, который, в свою очередь, создаст вокруг него магнитное поле. Это приводит к истощению зарядов на пластинах, и напряжение на них падает до нуля. Индуктор имеет свойство сопротивляться изменению протекания через него тока. Как только ток от конденсатора прекращается, магнитное поле индуктора схлопывается, позволяя току течь через цепь.Этот ток достигает конденсатора и снова заряжает его, создавая заряды на его пластинах и вырабатывая на нем напряжение. Этот цикл продолжает повторяться снова и снова, генерируя сигналы резонансной частоты. Мы также можем использовать эту схему для извлечения сигналов этой частоты из сложного сигнала.

СВОДКА О КОНДЕНСАТОРАХ:

  1. Конденсаторы состоят из двух параллельных пластин, разделенных изолирующей средой или диэлектриками.
  2. Конденсаторы накапливают энергию в виде электрического заряда, в результате чего на пластинах возникает напряжение.
  3. Количество заряда, которое он может хранить на своей пластине, определяется его значением емкости.
  4. Он позволяет сигналу постоянного тока проходить только в течение определенного периода времени, позволяя сигналу переменного тока проходить бесконечно.
  5. Обладает высоким реактивным сопротивлением (сопротивлением) низкочастотным сигналам и низким реактивным сопротивлением высокочастотным сигналам.
  6. Конденсаторы
  7. чаще всего используются в усилителях, фильтрах, источниках питания, трансиверах и т. Д.

Это в основном о конденсаторе и его работе.Надеюсь, что это руководство будет информативным и даст вам представление о его работе и использовании в практических схемах. Я также хотел бы добавить, что есть другие приложения Capacitor, которые мы не рассмотрели в этом руководстве. Но здесь я рассмотрел самые важные приложения.

В ближайшее время мы опубликуем руководство по другим компонентам. Подпишитесь на нашу рассылку новостей и следите за нами через каналы социальных сетей, чтобы получать регулярные обновления с нашего веб-сайта. Если у вас есть какие-либо вопросы относительно конденсаторов, оставьте их в поле для комментариев ниже, я буду рад ответить на ваши вопросы.

Цепи постоянного тока

, содержащие резисторы и конденсаторы

1. Устройство синхронизации в системе стеклоочистителей прерывистого действия автомобиля основано на постоянной времени RC и использует конденсатор емкостью 0,500 мкФ и переменный резистор. В каком диапазоне должен изменяться R для достижения постоянной времени от 2,00 до 15,0 с?

2. Кардиостимулятор срабатывает 72 раза в минуту, каждый раз, когда конденсатор емкостью 25,0 нФ заряжается (батареей, включенной последовательно с резистором) до 0.632 от его полного напряжения. В чем ценность сопротивления?

3. Продолжительность фотографической вспышки связана с постоянной времени RC , которая составляет 0,100 мкс для определенной камеры. (а) Если сопротивление импульсной лампы составляет 0,0400 Ом во время разряда, каков размер конденсатора, обеспечивающего его энергию? (б) Какова постоянная времени зарядки конденсатора, если сопротивление зарядки составляет 800 кОм?

4. Конденсатор емкостью 2,00 и 7,50 мкФ можно подключать последовательно или параллельно, как и конденсатор емкостью 25 мкФ.0- и резистор 100 кОм. Вычислите четыре постоянные времени RC , которые можно получить при последовательном соединении полученной емкости и сопротивления.

5. После двух постоянных времени, какой процент конечного напряжения, ЭДС, находится на первоначально незаряженном конденсаторе C , заряженном через сопротивление R ?

6. Резистор 500 Ом, незаряженный конденсатор 1,50 мкФ и ЭДС 6,16 В соединены последовательно. а) Каков начальный ток? (b) Что такое постоянная времени RC ? (c) Каков ток через одну постоянную времени? (d) Какое напряжение на конденсаторе после одной постоянной времени?

7.Дефибриллятор сердца, используемый на пациенте, имеет постоянную времени RC 10,0 мс из-за сопротивления пациента и емкости дефибриллятора. (a) Если дефибриллятор имеет емкость 8,00 мкФ, каково сопротивление пути, проходящего через пациента? (Вы можете пренебречь емкостью пациента и сопротивлением дефибриллятора.) (B) Если начальное напряжение составляет 12,0 кВ, сколько времени потребуется, чтобы упасть до 6,00 × 10 2 В?

8. У монитора ЭКГ постоянная времени RC должна быть меньше 1.00 × 10 2 мкс, чтобы иметь возможность измерять изменения напряжения за небольшие промежутки времени. (а) Если сопротивление цепи (в основном из-за сопротивления груди пациента) составляет 1,00 кОм, какова максимальная емкость цепи? (б) Будет ли сложно на практике ограничить емкость до значения, меньшего, чем значение, указанное в (а)?

9. На рис. 7 показано, как истекающий резистор используется для разряда конденсатора после отключения электронного устройства, что позволяет человеку работать с электроникой с меньшим риском поражения электрическим током.а) Что такое постоянная времени? (b) Сколько времени потребуется, чтобы снизить напряжение на конденсаторе до 0,250% (5% от 5%) от его полного значения после начала разряда? (c) Если конденсатор заряжен до напряжения В 0 через сопротивление 100 Ом, рассчитайте время, необходимое для повышения до 0,865 В 0 (Это примерно две постоянные времени)

Рисунок 7.

10. Используя точную экспоненциальную обработку, найдите, сколько времени требуется, чтобы разрядить конденсатор емкостью 250 мкФ через резистор 500 Ом до 1.00% от исходного напряжения.

11. Используя точную экспоненциальную обработку, найдите, сколько времени требуется для зарядки первоначально незаряженного конденсатора 100 пФ через резистор 75,0 МОм до 90,0% от его конечного напряжения.

12. Integrated Concepts Если вы хотите сфотографировать пулю, летящую со скоростью 500 м / с, то очень короткая вспышка света, производимая разрядом RC через импульсную лампу, может ограничить размытие. Предполагая, что перемещение на 1,00 мм за одну постоянную RC является приемлемым, и учитывая, что вспышка приводится в действие конденсатором емкостью 600 мкФ, каково сопротивление в импульсной лампе?

13. Integrated Concepts Мигающая лампа в рождественской серьге основана на разряде конденсатора RC через его сопротивление. Эффективная продолжительность вспышки составляет 0,250 с, в течение которых она дает в среднем 0,500 Вт при среднем 3,00 В. а) Какую энергию она рассеивает? б) Сколько заряда проходит через лампу? (c) Найдите емкость. (г) Какое сопротивление лампы?

14. Integrated Concepts Конденсатор емкостью 160 мкФ, заряженный до 450 В, разряжается через 31.Резистор 2 кОм. (а) Найдите постоянную времени. (b) Рассчитайте повышение температуры резистора, учитывая, что его масса составляет 2,50 г, а его удельная теплоемкость [латекс] 1,67 \ frac {\ text {кДж}} {\ text {кг} \ cdotº \ text {C}} \\ [/ latex], учитывая, что большая часть тепловой энергии сохраняется за короткое время разряда. (c) Рассчитайте новое сопротивление, предполагая, что это чистый углерод. (d) Кажется ли это изменение сопротивления значительным?

15. Необоснованные результаты (a) Рассчитайте емкость, необходимую для получения постоянной времени RC , равной 1.00 × 10 3 с резистором 0,100 Ом. б) Что неразумного в этом результате? (c) Какие допущения ответственны?

16. Создай свою проблему Рассмотрим вспышку фотоаппарата. Постройте задачу, в которой вы вычисляете размер конденсатора, который накапливает энергию для лампы-вспышки. Среди факторов, которые необходимо учитывать, - это напряжение, приложенное к конденсатору, энергия, необходимая для вспышки, и соответствующий заряд, необходимый для конденсатора, сопротивление импульсной лампы во время разряда и желаемая постоянная времени RC .

17. Создайте свою проблему Рассмотрим перезаряжаемый литиевый элемент, который будет использоваться для питания видеокамеры. Постройте задачу, в которой вы вычисляете внутреннее сопротивление ячейки во время нормальной работы. Кроме того, рассчитайте минимальное выходное напряжение зарядного устройства, которое будет использоваться для зарядки литиевого элемента. Среди факторов, которые следует учитывать, - ЭДС и полезное напряжение на клеммах литиевого элемента, а также ток, который он должен обеспечивать в видеокамере.

Что такое конденсатор? - Основы схемотехники

Конденсатор - это электрический компонент, используемый для хранения энергии в электрическом поле.Он имеет два электрических проводника, разделенных диэлектрическим материалом, которые накапливают заряд при подключении к источнику питания. Одна пластина получает отрицательный заряд, а другая - положительный.

Конденсатор не рассеивает энергию, в отличие от резистора. Его емкость характеризует идеальный конденсатор. Это количество электрического заряда на каждом проводнике и разность потенциалов между ними. Конденсатор отключает ток в цепях постоянного и короткого замыкания в цепях переменного тока.Чем ближе два проводника и чем больше площадь их поверхности, тем больше его емкость.

Общие типы конденсаторов

  • В керамических дисковых конденсаторах в качестве диэлектрического материала используется керамика. Керамический конденсатор заключен в капсулу с двумя выводами, которые выходят снизу и образуют диск. Керамический дисковый конденсатор не имеет полярности и подключается в любом направлении на печатной плате. В керамических конденсаторах относительно высокая емкость достигается при небольшом физическом размере из-за их высокой диэлектрической проницаемости.Его значение колеблется от пикофарад до одной или двух микрофарад, но его номинальное напряжение относительно низкое.

Трехзначный код, напечатанный на их корпусе, используется для определения емкости конденсатора в пикофарадах. Буквенные коды используются для обозначения их значения допуска, например: J = 5%, K = 10% или M = 20%. Например, керамический дисковый конденсатор выше с маркировкой 154 указывает на то, что имеется 15 и 4 нуля пикофарад, или 150 000 пФ (150 нФ).


Значение допуска керамического дискового конденсатора
  • Электролитические конденсаторы часто используются, когда требуются большие значения емкости.Они обычно используются для уменьшения пульсаций напряжения или для приложений связи и развязки. Электролитические конденсаторы изготовлены из двух тонких пленок алюминиевой фольги с оксидным слоем в качестве изолятора. Они поляризованы и при неправильном подключении могут выйти из строя или взорваться. Этот тип конденсатора имеет большой допуск, но плохо работает на высоких частотах.
Конденсатор электролитический
  • Танталовые конденсаторы обычно используются для средних значений емкости.Их лучше всего использовать, когда имеют значение размер и производительность, но они обычно не имеют высоких рабочих напряжений и не обладают очень высокой допустимой нагрузкой по току. Танталовые конденсаторы поляризованы и могут взорваться под нагрузкой. У них очень низкая терпимость к обратному смещению.
Маркировка танталовых конденсаторов с выводами Маркировка танталовых конденсаторов SMD

Маркировка танталовых конденсаторов SMD обычно состоит из трех цифр. Последний - множитель, а первые два - значащие цифры.Его значения указаны в пикофарадах. Таким образом, танталовый конденсатор SMD, показанный выше, имеет значение 47 x 10 6 пФ, что соответствует 47 мкФ.

Маркировка танталовых конденсаторов SMD Танталовые конденсаторы

также могут иметь прямую маркировку, как показано на рисунке выше.

  • Серебряные слюдяные конденсаторы используются во многих радиочастотных цепях, таких как генераторы и фильтры. Серебряная слюда дает очень высокие характеристики с жесткими допусками, но с небольшими изменениями температуры.В нем используются серебряные электроды, которые наносятся непосредственно на слюду. Несколько слоев помогают получить требуемый уровень емкости, и на эту емкость влияет площадь, покрытая электродами.
Серебряный слюдяной конденсатор
  • В пленочных конденсаторах в качестве диэлектрика используется тонкая пластиковая пленка. Пленочные конденсаторы используются во многих приложениях из-за их стабильности, низкой индуктивности и низкой стоимости. Они не поляризованы, поэтому подходят для сигналов переменного тока и питания. Они также сделаны с очень точными значениями емкости и сохраняют ее дольше, чем любой другой тип конденсатора.
Пленочный конденсатор
  • Конденсаторы переменной емкости - это конденсаторы с емкостью, которую можно изменять в зависимости от требований к определенному диапазону значений. Переменные конденсаторы состоят из металлических пластин. Среди этих пластин одна неподвижная, а другая подвижная. Емкость Thier может составлять от 10 до 500 пикофарад. Эти переменные резисторы находят множество применений, например, для настройки LC-цепей в радиоприемниках, для согласования импеданса в антеннах и т. Д.Есть два типа переменных конденсаторов - подстроечный конденсатор и подстроечный конденсатор.
Конденсатор настройки

Каркас в этом конденсаторе обеспечивает поддержку конденсатора, сделанного из слюды, и находящегося в нем «статора». С помощью вала ротор стремится вращаться, когда статор неподвижен. Когда пластины подвижного ротора входят в неподвижный статор, емкость, возможно, достигает максимального уровня. В противном случае значение емкости будет минимальным.

Подстроечный конденсатор

Конденсатор этого типа имеет три вывода.Один соединен с неподвижной частью, другой - с частью, которая отвечает за движение, называемое поворотным, а другой вывод является общим.

Поляризованные и неполяризованные конденсаторы

Когда дело доходит до хранения и разгрузки, оба они работают по одному и тому же принципу. Однако есть много факторов, которые отличают их друг от друга.

  • Различные диэлектрики - Диэлектрик - это материал между двумя пластинами конденсатора. В поляризованных конденсаторах в качестве диэлектрика используется электролит, что дает им большую емкость, чем у других конденсаторов того же объема.Однако полярные конденсаторы, произведенные из разных материалов и процессов электролита, будут иметь разные значения емкости. Использование полярных и неполяризованных конденсаторов зависит от обратимых свойств диэлектрика.
  • Различные конструкции - чаще всего используются электролитические конденсаторы круглой формы; квадратные конденсаторы встречаются редко. Существуют также невидимые конденсаторы или распределенные конденсаторы, которые нельзя игнорировать в устройствах высокой и промежуточной частоты.
  • Условия использования и использование - внутренние материалы и конструкции обеспечивают большую емкость и высокочастотные характеристики полярных конденсаторов, что делает их очень подходящими для фильтров источников питания и т.п. Однако есть полярные конденсаторы с хорошими высокочастотными характеристиками - танталовый электролизный, который обычно не используется из-за своей дороговизны.
  • Различная производительность - Максимальная производительность - одно из основных требований при выборе конденсатора.Если в источнике питания телевизора в качестве фильтра используется металлооксидный пленочный конденсатор, емкость и выдерживаемое напряжение должны соответствовать требованиям фильтра; внутри корпуса можно установить только блок питания. Следовательно, в фильтре можно использовать только полярные конденсаторы, а полярная емкость необратима. Обычно электролитические конденсаторы имеют емкость более 1 МФ; лучше всего использовать для связи, развязки, фильтрации источника питания и т. д. Неполярные конденсаторы, как правило, менее 1 MF, что включает только резонанс, связь, выбор частоты, ограничение тока и т. д.Однако существуют также высоковольтные неполярные конденсаторы большой емкости, которые в основном используются для компенсации реактивной мощности, фазового сдвига двигателя и фазового сдвига мощности преобразования частоты.
  • Различная емкость - конденсаторы одинакового объема имеют разную емкость в зависимости от их диэлектриков.

Общее использование конденсаторов

  • Связь по переменному току / блокировка по постоянному току - компонент позволяет только сигналам переменного тока проходить от одного участка цепи к другому, блокируя любое статическое напряжение постоянного тока.Они обычно используются для разделения компонентов переменного и постоянного тока в сигнале. В этом методе необходимо убедиться, что полное сопротивление конденсатора достаточно низкое. Номинальное напряжение конденсатора должно быть больше пикового напряжения на конденсаторе. Обычно конденсатор может выдерживать напряжение питающей шины с некоторым запасом для обеспечения надежности.
  • Развязка источника питания - Конденсатор используется для развязки одной части схемы от другой.Развязка выполняется, когда входящий линейный сигнал проходит через трансформатор и выпрямитель; результирующая форма волны не является гладкой. Оно варьируется от нуля до пикового напряжения. При применении к цепи маловероятно, что это сработает, потому что обычно требуется постоянное напряжение.
  • Фильтрация шума переменного тока от цепей постоянного тока - Любые сигналы переменного тока, которые могут быть в точке смещения постоянного тока, шине питания или других узлах, которые должны быть свободны от конкретного изменяющегося сигнала, должны быть удалены конденсатором.Он также должен выдерживать напряжение питания, подавая и поглощая уровни тока, возникающие из-за шума на рельсе.
  • Фильтрация аудиосигнала - необходимо учитывать ВЧ характеристики конденсатора. Эта производительность может отличаться на более низких частотах. Здесь обычно используются керамические конденсаторы, поскольку они имеют высокую частоту собственного резонанса, особенно конденсаторы для поверхностного монтажа, которые очень малы и не имеют выводов, которые могут вызвать какую-либо индуктивность.

Что такое суперконденсаторы?

Он также известен как двухслойный электролитический конденсатор или ультраконденсатор. Суперконденсатор может хранить большое количество энергии. В частности, от 10 до 100 раз больше энергии на единицу массы или объема по сравнению с электролитическими конденсаторами. Он имеет более низкие пределы напряжения, которые перекрывают разрыв между электролитическими конденсаторами и аккумуляторными батареями.

Некоторые общие области применения суперконденсаторов

  • Ветряные турбины - суперконденсаторы помогают сгладить скачкообразную подачу энергии ветром.
  • Двигатели, приводящие в движение электромобили, работают от источников питания, рассчитанных на сотни вольт, а это означает, что для хранения нужного количества энергии в типичном рекуперативном тормозе необходимы сотни последовательно соединенных суперконденсаторов.
  • Электрические и гибридные транспортные средства - суперконденсаторы используются в качестве временных накопителей энергии для рекуперативного торможения, при этом энергия транспортного средства, как правило, тратится впустую при остановке, ненадолго сохраняется, а затем повторно используется, когда он снова начинает движение.

Суперконденсаторы и кривая разряда батареи

Кривая разряда батареи экспоненциальная. Как видите, экспоненциальный разряд обеспечивает стабильную мощность до конца. Энергия остается высокой на протяжении большей части заряда, а затем быстро падает по мере истощения заряда .

Кривая разряда суперконденсатора линейная. Как видите, линейный разряд не позволяет полностью использовать энергию. Он обеспечивает самую высокую мощность в начале .


Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

Какова роль конденсатора в цепях переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет местами свои заряды по мере того, как ток меняется, и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единица измерения его емкости в системе СИ - Фарад «Ф», где Фарад - большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба накапливают электрическую энергию. Конденсатор - гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы могут быть полезны для накопления заряда и быстрого разряда в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента для различных типов конденсатора приведен ниже:

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость - это способность конденсатора накапливать в нем заряд. На емкость влияют несколько факторов.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора в электронной схеме:

  • Конденсатор в серии
  • Конденсатор параллельно
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Связанный пост: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку до тех пор, пока конденсатор полностью не разрядится.

Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость - это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда к его клемме подключен источник питания на один вольт.

Математически

Уравнение емкости:

C = Q / V

Где,

  • C = емкость в фарадах (F)
  • Q = электрический заряд в кулонах
  • V = Напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения - объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

Связанные сообщения:

Конденсаторы в серии

Как последовательно соединить конденсаторы?

Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже:

При последовательном соединении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от пластины соседнего конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q T = Q + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной схемы, мы применим Закон Кирхгофа о напряжении (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th no.конденсаторов, соединенных последовательно,

Для двух последовательно соединенных конденсаторов формула будет иметь вид

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость приведенная выше схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14,7

C T = 3,19 мкФ

Конденсаторы параллельно

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключается к источнику, как вы можете видеть на изображении ниже,

Когда вы подключаете конденсаторы параллельно, общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как,

I = C (dV / dt)

Итак,

Решив приведенное выше уравнение

C T = C 1 + C 2 + C 3

И для n th no.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Связанные сообщения:

Полярный и неполярный конденсатор
Неполярный конденсатор: (используется в системах переменного и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и на их емкость не влияет изменение полярности.

Полярный конденсатор: (используется только в цепях и системах постоянного тока)

Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода в сети переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и мы обсудим несколько вариантов использования конденсатора в сетях переменного тока ниже.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле к нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

Асинхронные двигатели с расщепленной фазой:

Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе, чтобы поймать это поле.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Есть много преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он обеспечивает реактивную мощность, которая ранее передавалась из энергосистемы, следовательно, снижает потери и повышает эффективность системы.

Конденсаторы в цепи переменного тока

Как подключить конденсатор в цепи переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки.

И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за непрерывного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как:

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

Как мы знаем, I = dQ / dt и Q = CV

И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

V = V m Sin wt

Итак, I m = d (CV m Sin wt ) / dt

I m = C * V m Cos wt * w (после дифференцирования)

I m = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I m = 1 / wC (где w = 2π f и V m / I m = X C )

Емкостное реактивное сопротивление (X C ) =

Теперь, для расчета емкостного реактивного сопротивления вышеуказанной схемы

X C = 1 / [2π (50 Гц) (10 -6 F)]

XC = 3183.09 Ом

Связанное сообщение: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока
Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование - преобразование источника питания переменного тока в постоянный при выпрямлении (например, в мостовом выпрямителе). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивое состояние с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока), чтобы сгладить и отфильтровать эти пульсации и колебания, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения в системе и потребляемого тока нагрузки.

Конденсатор развязки:

Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземляется разделительным конденсатором и не влияет на работу другой схемы.

Конденсатор связи:

Как мы знаем, Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, чтобы его реактивное сопротивление было минимизировано на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как RC-фильтры) для разделения сигналов переменного и постоянного тока и устранения пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое напряжение переменного тока после выпрямления.

Вы также можете прочитать:

Серия

и параллельные конденсаторные схемы

Разница между Кулоном и Фарадом

Раньше переходя к последовательным и параллельным цепям конденсаторов, сначала посмотрите на разница между кулоном и фарадом, потому что многие люди запутаться в определении разницы между кулоном и Фарад.

Электрический заряд измеряется в кулонах. Один кулон (1С) равен равно количеству заряда, передаваемого за одну секунду Текущий одного Ампера (1А).

Емкость является способность тела или устройства накапливать электрический заряд. Емкость измеряется в фарадах (Ф). Устройство с большим Емкость (96F) сохранит большой заряд.Точно так же устройство с малой емкостью (1F) будет хранить небольшая сумма заряда.

серии конденсаторная цепь

А последовательный конденсатор схема - это электронная схема, в которой все конденсаторы подключаются друг за другом по одному и тому же пути, поэтому что к каждому конденсатору протекает одинаковый заряд или ток.

общая емкость цепи последовательного конденсатора получается как сложение обратных величин (1 / C) значений емкости отдельных конденсаторов, а затем взяв обратную величину Общая.

Для Например, если три конденсатора соединены последовательно. Тогда общая емкость цепи


Все ток или заряд, протекающий через первый конденсатор, другого пути нет.Следовательно, он также должен проходить через второй конденсатор, третий конденсатор, четвертый конденсатор и т. д. на.

Пример:

А Схема последовательного конденсатора показана на рисунке ниже. В схема состоит из трех конденсаторов, которые включены в последовательный и источник постоянного напряжения.

емкости из трех конденсаторов: C 1 = 2F, C 2 = 4F, C 3 = 6F и напряжение постоянного тока = 10 В.

Как как показано на рисунке, положительный полюс батареи постоянного тока подключается к правой боковой пластине конденсатора С 3 отрицательная клемма батареи постоянного тока подключена к левая боковая пластина конденсатора С 1 .

Когда а напряжение приложено к цепи, отрицательные заряды в правой боковой пластине конденсатора С 3 находятся притянул к плюсовой клемме аккума.Это вызывает Недостаток отрицательных зарядов в правой боковой пластине C 3 . В итоге правая боковая пластина конденсатора С 3 заряжен положительно.

Аналогично, в положительные заряды в левой боковой пластине конденсатора С 1 притягиваются к отрицательной клемме аккумулятора. Этот вызывает нехватку положительных зарядов в левой боковой пластине из С 1 .В результате левая боковая пластина конденсатор С 1 заряжен отрицательно.

отрицательные заряды в левой боковой пластине конденсатора С 1 отталкивать отрицательные заряды в правой боковой пластине конденсатор С 1 . Это вызывает отрицательные заряды. сток с правой боковой пластины конденсатора С 1 к левой боковой пластине конденсатора С 2 .Как В результате правая боковая пластина конденсатора С 1 оказывается положительно заряжена и левая боковая пластина конденсатора С 2 заряжен отрицательно.

отрицательные заряды в левой боковой пластине конденсатора С 2 отталкивать отрицательные заряды в правой боковой пластине конденсатор С 2 .Это вызывает отрицательные заряды. сток с правой боковой пластины конденсатора С 2 к левой боковой пластине конденсатора С 3 . Как В результате правая боковая пластина конденсатора С 2 оказывается положительно заряжена и левая боковая пластина конденсатора С 3 заряжен отрицательно.

Таким образом, все три конденсатора заряжаются.

ср знайте, что ток означает поток заряда. С того же ток течет через все три конденсатора, поэтому каждый конденсатор будет держать такой же заряд. Это означает, что если один конденсатор держит заряд 2C, тогда остальные конденсаторы тоже держит такой же заряд 2С.

Так если вы обнаружите заряд на одном из конденсаторов, у вас нашел заряд на всех оставшихся конденсаторах.

В чтобы найти заряд на каждом конденсаторе, сначала нам нужно найти общую емкость или эквивалентную емкость.

общая емкость эквивалентного конденсатора


Автор используя формулу C = Q / V, легко найти заряд хранится на эквивалентном конденсаторе.


Начисление на каждого физ. конденсаторы, подключенные последовательно, такие же, как заряд на эквивалентном конденсатор.

Итак, так как заряд на эквивалент конденсатор был 10,91 кулонов, заряд на каждой из отдельные конденсаторы, включенные последовательно, будут иметь 10,91 кулонов.

Следовательно,

Плата за C 1 = 10.91 C

Заряд на C 2 = 10.91 C

Заряд на C 3 = 10.91 C

Однако в цепи последовательного конденсатора напряжение на каждом индивидуальный конденсатор разный.

ср легко найти напряжение на каждом отдельном конденсаторе по формуле C = Q / V

емкость и заряд на каждом отдельном конденсаторе известны. Итак, мы нужно найти неизвестное напряжение.

В = Q / C

напряжение на конденсаторе (C 1 ) составляет В 1 = Q / C 1 = 10,91 / 2 = 5,455 В

напряжение на конденсаторе (C 2 ) составляет В 2 = Q / C 2 = 10,91 / 4 = 2,727 В

напряжение на конденсаторе (C 3 ) составляет В 3 = Q / С 3 = 10.91/6 = 1,818 В

полное напряжение в цепи последовательного конденсатора равно сумма всех отдельных напряжений, сложенных вместе.

Т.е. V = V 1 + V 2 + V 3 = 5,455 + 2,727 + 1,818 = 10 В

Параллельный конденсаторная цепь

А параллельная конденсаторная схема - это электронная схема, в которой все конденсаторы соединены бок о бок в разных пути, чтобы тот же заряд или ток не проходили через каждый конденсатор.

Когда на параллельную цепь подается напряжение, каждый конденсатор получит другой заряд. Конденсатор с высоким емкость получит больший заряд, тогда как конденсатор с чем меньше емкость, тем меньше будет заряда. Например, восьмерка Фарадный конденсатор (8F) получит больше заряда, чем четыре фарада конденсатор (4Ф) попадает.

Путь конденсаторы параллельно будет увеличиваться размер пластин конденсатора без увеличения расстояния между ними. Итак, общая емкость параллельной конденсаторной цепи получается просто суммируя значения емкости отдельных конденсаторы.

Пример:

А Схема параллельного конденсатора показана на рисунке ниже.В схема состоит из трех конденсаторов, которые включены в параллельный и источник постоянного напряжения.

Если Значения трех конденсаторов: C 1 = 8F, C 2 = 4F, C 3 = 2F и батарея постоянного тока = 10 В, тогда

общая емкость составляет C T = C 1 + C 2 + С 3 = 8 + 4 + 2 = 14F

В принципиальная схема, нижние обкладки трех конденсаторов напрямую подключены к положительной клемме аккумулятора а верхние обкладки трех конденсаторов непосредственно подключен к отрицательной клемме аккумуляторной батареи.Следовательно, напряжение на всех трех конденсаторах одинаковое, что составляет равно напряжению АКБ постоянного тока (10 В).

Однако в параллельной цепи конденсаторов заряд сохраняется на каждом конденсатор будет другим.

Автор используя формулу емкости, легко найти заряд хранится на каждом конденсаторе.

И.е. C = Q / V

Q = C × V

заряд, накопленный на конденсаторе (C 1 ), составляет Q 1 = С 1 × V = 8 × 10 = 80 С

заряд, накопленный на конденсаторе (C 2 ), составляет Q 2 = С 2 × V = 4 × 10 = 40 С

Заряд, накопленный на конденсаторе (C 3 ), составляет Q 3 = C 3 × V = 2 × 10 = 20 С

Общий заряд, хранящийся в параллельном конденсаторная цепь равна сумме всех отдельных заряды конденсатора складываются.

Т.е. Q T = Q 1 + Q 2 + Q 3 = 80 + 40 + 20 = 140 C


Конденсаторы и RC-цепи

Конденсаторы и RC-цепи Авторские права © Майкл Ричмонд.Эта работа находится под лицензией Creative Commons License.
  • При параллельном подключении конденсаторов эквивалент емкость
                   Ceq = C1 + C2 + C3 + ...
     
  • Если конденсаторы расположены последовательно, эквивалент емкость
                    1 1 1 1
                   --- = --- + --- + --- + ...
                   Ceq C1 C2 C3
     
  • Объединение конденсаторов и резисторов в цепь вырабатывает изменяющийся во времени ток .Шкала времени, в течение которой ток (или заряд на конденсатор или напряжение на конденсаторе) изменяется.
                 постоянная времени = R * C (секунды)
     
  • Величины в RC-цепи изменяются экспоненциально , что означает сначала быстро, затем все медленнее и медленнее. Значения изменяются на один и тот же мультипликативный коэффициент (например, 1/2). через каждый равный шаг времени.
  • При зарядке конденсатора в RC-цепи
                                                   -t / RC
                 заряд конденсатора = Co * (1 - e)
    
                                             -t / RC
                 ток в цепи = Io * e
     
  • Как разряжается конденсатор в RC-цепи,
                                             -t / RC
                 заряд конденсатора = Co * e
    
                                             -t / RC
                 ток в цепи = Io * e
     

Просмотр графа 1


Viewgraph 2


Viewgraph 3


Viewgraph 4


Viewgraph 5


Viewgraph 6


Viewgraph 7


Viewgraph 8


Viewgraph 9


Viewgraph 10


Viewgraph 11


Viewgraph 12


Обзор 13


Viewgraph 14


Viewgraph 15


Viewgraph 16


Viewgraph 17


Viewgraph 18

Авторские права © Майкл Ричмонд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *