Содержание

ЭЛЕКТРОННЫЕ ЧАСЫ БУДИЛЬНИК

   Предлагаю для повторения схему простых электронных часов с будильником, выполненные на микроконтроллере типа PIC16F628A. Большим плюсом данных часов является светодиодный индикатор типа АЛС, для отображения времени. Лично мне порядком надоели всевозможные ЖКИ и хочется иметь возможность видеть время из любой точки комнаты в том числе в темноте, а не только прямо с хорошим освещением. Схема содержит минимум деталей и имеет отличную повторяемость. Часы испытаны на протяжении месяца, что показало их надежность и работоспособность. Думаю из всех схем в интернете, эта наиболее простая в сборке и запуске.


   Принципиальная схема электронных часов с будильником на микроконтроллере:


   Как видно из схемы часов, микроконтроллер является единственной микросхемой, используемой в данном устройстве. Для задания тактовой частоты используется кварцевый резонатор на 4 МГц. Для отображения времени использованы индикаторы красного цвета с общим анодом, каждый индикатор состоит из двух цифр с десятичными точками.

В случае использования пьезоизлучателя, конденсатор С1 – 100мкФ можно не ставить. 

   Можно применить любые индикаторы с общим анодом, лишь бы каждая цифра имела собственный анод. Чтоб электронные часы были хорошо видны в темноте и с большой дистанции – старайтесь выбрать АЛС-ки чем покрупнее. 


   Индикация в часах осуществляется динамически. В данный конкретный момент времени отображается лишь одна цифра, что позволяет значительно снизить потребление тока. Аноды каждой цифры управляются микроконтроллером PIC16F628A. Сегменты всех четырех цифр соединены вместе и через токоограничивающие резисторы R1 … R8 подключены к выводам порта МК. Поскольку засвечивание индикатора происходит очень быстро, мерцание цифр становится незаметным. 


   Для настройки минут, часов и будильника – используются кнопки без фиксации. В качестве выхода для сигнала будильника используется вывод 10, а в качестве усилителя – каскад на транзисторах VT1,2.
Звукоизлучателем является пьезоэлемент типа ЗП. Для улучшения громкости вместо него можно поставить небольшой динамик. 


   Питаются часы от стабилизированного источника напряжением 5В. Можно и от батареек. В часах реализовано 9 режимов индикации. Переход по режимам осуществляется кнопками “+” и “-“. Перед выводом на индикацию самих показаний, на индикаторы выводится короткая подсказка названия режима. Длительность вывода подсказки – одна секунда.


   Кнопкой “Коррекция” часы – будильник переводятся в режим настроек. При этом кратковременная подсказка выводится на пол секунды, после чего корректируемое значение начинает мигать. Коррекция показаний осуществляется кнопками “+” и “-“. При длительном нажатии на кнопку, включается режим автоповтора, с заданной частотой. Все значения, кроме часов, минут и секунд, записываются в EEPROM и восстанавливаются после выключения – включении питания.


   Если в течение нескольких секунд ни одна из кнопок не нажата, то электронные часы переходят в режим отображения времени. Нажатием на кнопку “Вкл/Выкл” включается или выключается будильник, это действие подтверждается коротким звуком. При включенном будильнике светится точка в младшем разряде индикатора. Думал куда бы пристроить часы на кухне, и решил вмонтировать их прямо в газовую плиту:) Материал прислал in_sane.

   Форум по электронным часам

   Форум по обсуждению материала ЭЛЕКТРОННЫЕ ЧАСЫ БУДИЛЬНИК



Схема электронных часов-будильника » Паятель.Ру


Электронные часы построены на основе комплекта микросхем К176ИЕ12, К176ИЕ13 и К176ИД2. Микросхемы очень хорошо работают с светодиодными семисегментными индикаторами, которые, хотя и недешевы, но отличаются высокой надежностью, и что самое главное не раздражают зрение как электролюминесцетные. Часы-будильник отсчитывают текущее время в часах и минутах, секунды индицируются одним светодиодом, который на табло размещается между разрядами часов и минут. Время будильника устанавливается в течении суток. При совпадении времени будильника и текущего времени включается музыкальный сигнал, один из восьми, который можно выбрать заранее.


Кроме срабатывания звукового сигнала часы-будильник могут включать любую нагрузку, питающуюся напряжением до 220В и имеющую мощность не более 100 Вт, это может быть радиоприемник, магнитофон, любой электроприбор не превышающий эту мощность.

Часы питаются от сети переменного тока 220В и от резервного источника на 9В (батарея типа “Кроны”). При отключении электроснабжения часы переходят на питание от резервного источника, при этом индикация, с целью экономии электроэнергии, отключается, а все остальные функции, включая и будильник (кроме выключателя электроприбора) сохраняются. Таким образом, даже если электричество отключили на сутки будильник прозвучит вовремя.

Еще одно преимущество — громкость будильника настолько высока, что разбудит даже самого крепко спящего человека.

Принципиальная схема показана на рисунке. Собственно часы-будильник собраны на микросхемах D1-D3 по упрощенной типовой схеме. Микросхема D1 К176ИЕ12 представляет собой формирователь временных последовательностей. Она содержит мультивибратор с кварцевым резонатором Q1 и два счетчика. Первый вырабатывает секундные и полсекундные импульсы, а также сдвинутые по фазе на четверть периода импульсы частотой 128 Гц для реализации динамической индикации. Второй счетчик имеет коэффициент пересчета 60 и служит для формирования минутных импульсов.

Микросхема D2 содержит счетчики часов и минут, а также ОЗУ будильника и формирователь сигнала будильника. Как только информация записанная в ОЗУ совпадает с текущем времени на выводе 7 D2 появляются пачки импульсов, которые в типовом включении должны поступать на пьезоизлучатель.

Установка текущего времени и будильника выполняется тремя кнопками S1-S3. При нажатии на S1 показания минут увеличиваются с частотой 2 Гц, при нажатии на S2 тоже самое происходит с показаниями часов. При нажатии S3 на индикацию выводится время установки будильника и при этом можно кнопками S1 и S2 установить время будильника.

D3 — дешифратор для индикаторов с семи-сегментным формированием цифр. Двоичный четырехразрядный код каждой цифры поступает на его входы “1-2-4-8”, при этом смена данных в соответствии с динамической индикацией производится импульсом, поступающим на его вывод 1.

На выходе дешифратора включены четыре семисегментных индикатора АЛС324Б. Одинаковые катодные выводы сегментов этих индикаторов соединены вместе. Таким образом, что один и тот же код поступает сразу на катоды всех четырех индикаторов. Выбор какой из индикаторов при этом будет светиться производится при помощи четырех транзисторных ключей VT2-VT5, на базы которых поступают импульсные последовательности частотой 128 Гц и скважностью 4, сдвинутые по фазе относительно друг друга на четверть периода.

Сигнал будильника выпрямляется диодом VD8 и на конденсаторе С10 появляется некоторое напряжение, которое поступает на транзисторный ключ на VT8 и открывает его. При этом ток протекает через обмотку электромагнитного реле Р1, его контакты приходят в движение и замыкают цепь нагрузки “Н” и цепь “коллектор-эмиттер” транзистора VT8.

Таким образом реле самоблокируется и остается во включенном состоянии даже тогда, когда сигнал будильника прекращается. Вывести реле из этого положения можно только кратковременным прекращением тока через него при помощи размыкающей кнопки S6.

Одновременно импульсы будильника поступают через конденсатор С7 на вход запуска (вывод 13) универсального музыкального синтезатора УМС8-08. Синтезатор запускается и импульсный сигнал с его выхода (вывод 1) поступает на транзисторный импульсный усилитель на VT6 и VT7. В коллекторной цепи VT7 включен динамический громкоговоритель.

В результате такого построения выходного каскада громкость звучания получается достаточно большой. При необходимости её снизить можно включением резистора на 20-100 Ом последовательно с динамиком. Отключается будильник при помощи выключателя SB1, который отключает динамик.

Питается УМС от параметрического стабилизатора на R18 и VD5. Тактовая частота на него поступает с вывода 14 D1 через С5. Кнопка S4 служит для ручного запуска синтезатора, a S5 для выбора мелодии которая должна будет исполняться.

Сетевой источник питания сделан на маломощном силовом трансформаторе Т1. Постоянное напряжение 12-15В с выхода мостового выпрямителя питает электромагнитное реле Р1. Схема часов питается от стабилизатора на VT9, вырабатывающего 10В. Резервный источник G1 подключается через диод VD6. Когда сетевое напряжение есть он защищен этим диодом и не используется. При отключении сетевого напряжения диод VD7 препятствует поступлению тока от G1 на светодиодные индикаторы.

Светодиодные индикаторы АЛС324Б можно заменить на любые другие семисегментные с общим анодом. Электромагнитное реле Р1 типа РЭС22 на напряжение 10-15В. Синтезатор УМС8-08 можно заменить на любой другой УМС из серии УМС8 и УМС7. Все транзисторы могут быть с любыми буквенными индексами. КТ 315 желательно заменить на КТ503.

Трансформатор Т1 готовый, на его вторичной обмотке имеется переменное напряжение 12В. Можно взять любой другой трансформатор с выходным напряжением 12-22В, при этом соответственно придется выбрать С11 на другое напряжение и реле, либо подключить реле через гасящий резистор.

Динамик любого типа, например от малогабаритного радиоприемника.

Часы на микросхеме КА1016ХЛ1 и светодиодных индикаторах

РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >

Часы на микросхеме КА1016ХЛ1 и светодиодных индикаторах



 

Каких только конструкций электронных часов не встретишь сегодня на просторах Интернета! В основном они собраны на микроконтроллерах, и кроме функций отображения времени и будильника могут ещё отображать дату, день недели, температуру и т.д., в том числе с различными визуальными эффектами. В качестве дисплея могут выступать светодиодные, люминесцентные, газоразрядные, жидкокристаллические индикаторы и даже механически вращающиеся поверхности накопителей на жёстких дисках и лопастей вентиляторов. Несмотря на доступность повторения таких конструкций появилось желание вдохнуть новую жизнь в старые часы на микросхеме КА1016ХЛ1, собранные когда-то из набора радиоконструктора “Старт 2035”, которые прослужили верой и правдой довольно длительное время.

К сожалению (или к счастью), используемый в них “подсевший” от времени люминесцентный индикатор УИ-4 уже не найти в продаже, поэтому придётся заменить его на что-то другое. Кроме того, часы такого класса ничего “не умеют”, кроме отображения текущего времени и работы примитивного будильника. В большинстве случаев этого, может быть, и достаточно. Но имеются и другие недостатки, такие как слишком большая яркость индикатора при слабом освещении и отсутствие резервного питания на случай отключения питающего напряжения.

Появилось желание ради спортивного интереса собрать часы на этой микросхеме, но на светодиодных индикаторах, с автоматической регулировкой их яркости и источником бесперебойного питания. Конечно, проще и дешевле было бы купить готовые часы, но захотелось выяснить, что же можно “выжать” из этой микросхемы. Ниже описано, что получилось в итоге.

Схема включения микросхемы КА1016ХЛ1 в целом не отличается от схем известных конструкций, описанных в книгах:  [В. Борисов. Электронные часы из деталей радиоконструктора. В помощь радиолюбителю. Выпуск 106. с.39-49]   и   [С.А.Бирюков. Электронные часы на МОП интегральных микросхемах. МРБ 1178. с.35-39]. Вариант применения светодиодных семисегментных индикаторов также был описан в статьях Автомобильные часы на микросхеме КА1016ХЛ1 и [В.Каравкин. Автомобильный будильник на ИМС КА1016ХЛ1. Радиоконструктор, 2011, N4, с.32,33]. Однако, вместо счетверённого светодиодного индикатора пришлось применить отдельные индикаторы 8016B с общим анодом (высотой символа 0,8 дюйма), а вместо инверторов К561ЛН2 – транзисторные ключи. В ходе экспериментов выяснилось, что микросхема КА1016ХЛ1 совмещает по времени импульсы управления сетками С1..С5 для различных разрядов, если в них отображаются одинаковые цифры. Поэтому, за счёт параллельного включения сегментов, такие разряды светятся слабее. Например, при отображении значения времени “22:20” цифры “2” будут светиться заметно слабее, чем цифра “0”. Первая версия часов так и работала, с цифровыми транзисторами VT1. .VT8 типа DTC114EE в качестве инверторов и всего 8 ограничительными катодными резисторами в их коллекторных цепях, однако через некоторое время описанный эффект начал сильно раздражать. Поэтому было решено разъединить катоды индикаторов резисторами R17..R44 (их теперь стало 28 штук). Но при этом максимально допустимый ток через транзисторные ключи VT1..VT8 увеличился до 4 раз (при отображении четырёх одинаковых цифр), и применение цифровых транзисторов с максимальным током 100 мА стало невозможным. Теперь вместо них установлены более мощные BC817 с внешними резисторами в базовых цепях R1..R16 (раньше эти резисторы были встроены в состав цифровых транзисторов). Такая доработка потребовала изготовления новой печатной платы (но на плате последней ревизии сохранена возможность установки 8 ограничительных резисторов вместо 28, что может быть полезным для экспериментов по подбору их номинала с целью получения требуемой яркости свечения – ведь 8 резисторов легче заменить, чем 28). Примерные номиналы ограничительных резисторов для индикаторов различных цветов приведены в таблице на принципиальной схеме (самые лучшие с точки зрения энергопотребления – ярко-зелёные индикаторы, худшие – красные). Резисторы R54..R57 добавлены для надёжного закрывания ключей VT1..VT8 и исключения паразитной подсветки сегментов.

Для управления яркостью индикаторов сначала планировалось использовать метод широтно-импульсной модуляции на основе таймера NE555 и фоторезистора. При уменьшении освещённости сопротивление фоторезистора увеличивалось, и возрастала скважность формируемых импульсов, которые управляли подачей питания на коллекторы анодных ключей VT9..VT12. Однако, при проверке этого метода оказалось, что импульсы с выхода таймера идут вразнобой с сеточными импульсами, и вместо регулировки яркости получается «мельтешение» разрядов, особенно при малой освещённости. Чтобы не усложнять уже и без того «навороченную» схему, регулировку яркости было решено сделать простым плавным изменением уровня питающего напряжения на коллекторах VT9..VT12 через мощный транзистор VT13 с достаточно большим коэффициентом усиления. За счёт импульсного характера управления индикаторами рассеиваемая узлом мощность оказалась незначительной. Но таймер всё равно пригодился – для управления миганием точек, так как штатный вывод 5 микросхемы КА1016ХЛ1 для этого непригоден также из-за особенностей формирования сеточных импульсов: точки средних индикаторов HL2 и HL3 зажигаются не одновременно, и этот эффект вдобавок зависит от комбинации отображаемых знаков.

За основу источника бесперебойного питания (UPS), показанного на основной схеме часов, взят Бесперебойник для часов, который показал наилучшие результаты по сравнению с другими конструкциями: Преобразователь напряжения 1,5 – 9 вольт и DC-DC преобразователь 1.2-9 вольт. Номиналы деталей изменены таким образом, чтобы обеспечить нормальное функционирование микросхемы КА1016ХЛ1. Резистор 2R2 закрывает транзистор 2VT1 при появлении внешнего питания, прерывая генерацию и исключая разряд аккумулятора. Последний подзаряжается через резистор 2R1, номинал которого зависит от ёмкости применённого аккумулятора (меньший номинал – для большей ёмкости). Вместо светодиода установлен обычный диод 2VD2, отключающий от аккумулятора лишние цепи при пропадании внешнего питания. Стабилитрон 2VD1 с напряжением стабилизации 2В служит для защиты от перенапряжения при работе без нагрузки с отсоединённым аккумулятором, ограничивая в этом режиме неконтролируемый рост напряжения на базе транзистора 2VT1 и, как следствие, выходного  напряжения преобразователя. В то же время стабилитрон практически не нагружает аккумулятор, когда он подключён. Микросхема КА1016ХЛ1 категорически отказывается работать при напряжении питания меньше 12 вольт, хотя в некоторых работах утверждается, что она работает при напряжении питания от 8 до 18 вольт. Замечено, что увеличение напряжения питания выше уровня 15 вольт, даже в виде импульсов, приводит к выводу микросхемы из строя. Поэтому выходное напряжение источника бесперебойного питания выбрано порядка 13,5..13,7 вольт при работе от аккумулятора и 14,5..14,7 вольт – при работе от внешнего питания, что гарантирует надёжную работу часов в любом режиме. Источник бесперебойного питания собран на отдельной плате вместе с дополнительными элементами блока питания, не показанными на основной схеме:

К таким дополнительным элементам относятся следующие дешёвые готовые модули: миниатюрный источник питания 220 AC – 5V 0,6A DC и преобразователь напряжения DC-DC MT3608, используемый для формирования напряжения 15В из напряжения 5В. Кроме того, на плате для питания часов предусмотрен разъём Micro USB (если планируется питание только через этот разъём, плату блока питания 5В можно не устанавливать).

Часы собраны на двух платах размером 100×50 мм, соединённых через втулки M3: на основной плате собственно часов и на плате блока питания с источником бесперебойного питания. Указанные размеры плат (не более 100 мм) позволяют недорого заказать их изготовление в Китае. Если плату блока питания ещё можно изготовить методом ЛУТ, то основную плату уже, наверное, не получится. Нужно заметить, что печатные платы и светодиодные индикаторы – самые дорогие элементы этой конструкции. Вид собранной основной платы часов снизу:

Некоторые радиоэлементы могут быть выводными и напаиваться на плату снизу, например: мощный ограничительный резистор R49, излучатель BA1 (можно использовать подходящий излучатель с сопротивлением катушки порядка 40 Ом или пьезоэлектрический, включив параллельно его выводам резистор номиналом 10 кОм), кварцевый резонатор ZQ1, подстроечный конденсатор C9, электролитический конденсатор C5:

На схеме предусмотрены элементы цепи сброса микросхемы VD6, VD7, C11, однако практика показала, что в них нет необходимости. Следует учитывать, что микросхема чувствительна к статическому напряжению, а также к остаткам флюса или другой жидкости (спирт, вода). Поэтому после монтажа перед включением плату нужно тщательно промыть и просушить феном для волос.

Для включения и выключения будильника можно использовать подходящий кнопочный выключатель с фиксацией или ползунковый. Тактовые кнопки управления используются с общей высотой 15,5 мм, но можно использовать и другие подходящие выключатели без фиксации или с фиксацией.

Для передней панели подойдёт прозрачное оргстекло толщиной 2 мм, в качестве задней панели – такой же материал или непрозрачный пластик. Можно обклеить оргстекло светлой тонирующей автомобильной плёнкой, но в этом случае яркость свечения индикаторов, возможно, придётся увеличивать.

Вид собранной основной платы спереди:

Вид сбоку:

Один из вариантов готовой конструкции спереди:

и сзади:

Для защиты от пыли сверху можно зафиксировать крышку из тонкого прозрачного материала, например, плёнки, используемой для ламинирования. Такой же материал удобно использовать для защитного кожуха на плате блока питания, ограничивающего доступ к высоковольтным цепям:

 

Вид платы блока питания сверху (показана старая версия платы, поэтому могут быть отличия):

и снизу:

Вместо перемычки 2J1 на плате блока питания можно использовать подходящий ползунковый переключатель:

Для проверки функционирования источника бесперебойного питания (пока без платы часов) нужно подключить предварительно заряженный аккумулятор (напряжение на нём должно быть не меньше 1,2..1,4 вольт), замкнув перемычку 2J1, и проконтролировать напряжение на выходе (U-рез; U+рез) – оно должно быть в указанных на схеме пределах. Затем подсоединить к контактам разъёма (U-рез; U+рез) нагрузку в виде резистора номиналом 10 кОм (выводы последнего можно вставить в отверстия гнездового разъёма) – выходное напряжение должно оставаться в допуске. Можно при этом проконтролировать напряжение на аккумуляторе – оно должно оставаться на уровне не ниже 1,2 вольт, т. е. не должно “проседать” под нагрузкой. Предел работоспособности наступает при напряжении на аккумуляторе меньше порядка 1В – в этом случае напряжение на выходе преобразователя становится меньше 12 вольт, и микросхема КА1016ХЛ1 перестаёт работать. При проведении тестового “прогона” источника бесперебойного питания с аккумулятором б/у неизвестной ёмкости (из старой переносной телефонной трубки) микросхема КА1016ХЛ1 проработала без сбоев 8 часов! Необходимо помнить, что соединять платы между собой нужно при отключённом аккумуляторе.

Органы управления часов:

При длительном отсутствии внешнего электропитания необходимо выключить источник резервного питания (UPS) перемещением движка переключателя вниз. После подачи питания перевести движок переключателя вверх.

Четыре экземпляра таких часов с разными цветами свечения индикаторов (показаны на фото в начале статьи), работают без проблем уже около года. В процессе монтажа таких часов можно отрабатывать навыки пайти SMD элементов, начиная с типоразмера 0603.

Во вложении: рисунки печатных плат в формате Sprint Layout и гербер-файлы для заказа на производстве.

 

 

 

Файлы:
Печатные платы

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Часы на газоразрядных индикаторах. Схема часов на газоразрядных индикаторах

Используя газоразрядные индикаторы, можно сделать очень интересные часы Nixie Clock. В этом плане у человека открывается много возможностей. Схемы для часов есть возможность использовать самые разнообразные. Дополнительно творческие люди могут подумать над интересным дизайном часов.

Некоторые считают, что газоразрядные лампы имеют множество недостатков, а потому лучше использовать люминесцентные аналоги, однако это заблуждение. В первом случае человек получает материал, который стабильно работает и не сильно перегревается. В то время как люминесцентные лампы довольно быстро выгорают, что является серьезной проблемой.

Важные элементы часов на индикаторах

Если не брать во внимание корпус устройства и непосредственно индикаторы, то основной деталью является микросхема. Именно она позволяет отображать в устройствах реальное время. Дополнительно в модель включаются транзисторы и конденсаторы. Для блоков питания в основном используются батареи. Трансформаторами, а также катушками индуктивности оснащаются далеко не все часы на газоразрядных индикаторах.

Как собрать ручные часы с транзисторами СВ303?

Часы на газоразрядных индикаторах набор транзисторов СВ303 включает биполярного типа. В первую очередь следует отметить то, что они практически не перегреваются во время работы. Если говорить о газоразрядных лампах, то их важно использовать новые, из магазина. В противном случае они в часах прослужат крайне мало. Для обозначения цифр чаще всего используют именно контакты.

Микросхема для управления обычно применяется серии К15554, а относится она к классу трехканальных, выводов на блок питания имеет два. Конденсаторы наручные часы на газоразрядных индикаторах в основном эксплуатируют именно с малой емкостью. В некоторых случаях можно встретить в устройствах стабилизаторы. В данной ситуации нагрузка с транзисторов значительно уберется. В качестве корпуса вполне реально использовать обычную коробку.

Схема устройств со стабилизаторами

Схема часов на газоразрядных индикаторах со стабилизаторами в обязательном порядке должна включать импульсные конвертеры. Необходимы они в устройствах для того, чтобы передавать сигнал от микросхемы. Конденсаторы стандартная схема часов на газоразрядных индикаторах предполагает емкостью не более 50 пФ. Транзисторы, в свою очередь, включаются биполярного типа.

Если рассматривать системы с тремя конденсаторами, то и выводов на микросхеме должно быть три. Предельное сопротивление транзисторы обязаны выдерживать 6 Ом. Если говорить о нагрузке тока, то она в часах в среднем составляет 74 А. В данном случае использовать двойные платы крайне не рекомендуется. Связано это с тем, что показатель выходного напряжения значительно возрастет. В результате человеку придется ставить предохранители.

Часы с использованием катушки индуктивности

Максимальную нагрузку катушки индуктивности способны выдерживать на уровне 5 А. Блок питания для их работы очень необходим. Непосредственно компиляционный процесс осуществляется в два этапа. В первую очередь к работе подключаются конденсаторы. В данном случае их используют только электролитического типа. На втором этапе попарно активизируются резисторы. Газоразрядные индикаторы в этой ситуации внутреннее сопротивление держат до 50 Ом. Чтобы обезопасить устройство, многие советуют использовать систему защиты, которая исключает короткие замыкания.

Модели на выпрямителях с индикаторами ИН-12Б

Индикаторы газоразрядные ИН-12Б с выпрямителями позволяют держать частоту в цепи на уровне 60 Гц. За счет этого напряжение на выходе не превышает 15 В. Стабилизаторы в платах, как правило, используются линейного типа. Защита от коротких замыканий в данном случае очень важна. Для того чтобы транзисторы могли выдерживать большое сопротивление, используют их с маркировкой РР200.

Биполярные элементы в часах, как правило, применяются редко. Непосредственно платы устанавливаются для часов серии К155. Тепловая проводимость у них довольно хорошая и в целом они отличаются отличными характеристиками. Преобразователи в системе используются довольно редко. В охлаждении резисторы в принципе не нуждаются, и это плюс. Газоразрядные индикаторы в этой ситуации сопротивление держат до 50 Ом.

Варианты с датчиками температуры

Часы на газоразрядных индикаторах с датчиками температуры позволяют контролировать основные элементы в цепи. Как правило, заранее очень сложно рассчитать тепловую нагрузку на определенную пару резисторов. В результате установленный предохранитель может ситуацию не спасти. Также от повышения температуры в часах страдают трансформаторы. Когда на вторичную обмотку подается большое напряжение, ее целостность может быть нарушена.

Часы с использованием преобразователей

Преобразователи в часах чаще всего используются самые обычные. В данном случае они позволяют в устройстве не устанавливать трансформатор. Однако минусы в таком случае также имеются, и их следует учитывать. В первую очередь недостаток преобразователей заключается в большом напряжении на входе, которое порой может превышать 16 В. Согласование всех уровней в такой ситуации значительно усложняется.

Переключение катодов может осуществляться с малой задержкой. Решить все эти проблемы можно при помощи микроконтроллеров. Специалисты советуют использовать их именно серии “Мега 8”. Для регулировки часов понадобится всего три кнопки. Некоторые перед началом сборки затрудняются в выборе светодиодов. На сегодняшний день наиболее подходящими принято считать элементы с красным цветом. Смотреться в конечном счете они в квартире будут просто изумительно. Для цифр в газоразрядных лампах, как всегда, используют контакты.

Система вентиляции в устройствах

Система вентиляции в часах может быть различной. Самым простым способом для охлаждения делателей устройства принято считать естественную вентиляцию при помощи отверстий на корпусе. Сделать их можно с двух сторон сразу. Важно при этом понимать, что больше всего в часах перегревается именно преобразователь. Учитывая это, перекрывать его платой в корпусе крайне не рекомендуется. Если рассматривать модели с блоками питания на 15 В, то максимальная температура преобразователей там составит примерно 40 градусов. Это является нормой, и нет никакой необходимости оснащать часы Nixie Clock куллером.

Схема часов с внутренними генераторами

Схемы на газоразрядных индикаторах с внутренними генераторами предполагают использование блоков питания на 30 В. Внутренне сопротивление в данном случае повысится до 2 Ом. Нагрузка максимум на транзисторы оказывается 5 А. Для выбора тактового сигнала нужно использовать микроконтроллеры. Точность хода тока зависит исключительно от кварца. Транзисторы простые схемы на газоразрядных индикаторах, как правило, предусматривают биполярного типа.

Датчики температуры устанавливаются довольно редко. Объясняется это тем, что в системе абсолютно не нужен трансформатор с вторичной обмоткой. В результате тепловая проводимость будет довольно низкая. Анодные ключи для портов применяются. Подходят они только для плат на три разъема. Микроконтроллеры серии “Мега 8” в данном случае будут уместными. Для прошивки платы необходим высокий порог мониторинга.

Часы на конденсаторах РР22

Часы на газоразрядных индикаторах на конденсаторах данного типа позволяют более стабильно передавать сигнал. Порог мониторинга в данном случае будет довольно высоким. Резисторы в часах используются только с сопротивлением не ниже 6 Ом. Напряжение на входе должно составлять не менее 6 В. Согласование уровней происходит только за счет переключения катодов.

Преобразователи для конденсаторов данного типа подходят серии “Степ Ап”. Дополнительно следует позаботиться о системе защиты, чтобы исключить случаи коротких замыканий. Микросхемы к конденсаторам используют только на два выхода. При этом портов может быть до пяти штук. Стабилизаторы для конденсаторов применяются в основном линейного класса. Предельное напряжение на входе должно минимум составлять 5 В.

Есть ли часы с двумя микросхемами

Часы на газоразрядных индикаторах с двумя микросхемами на сегодняшний день встречаются довольно редко. Необходимы они для более быстрой синхронизации процесса. В этом случае переключение катодов ламп осуществляется за считанные нс. Биполярные транзисторы для таких часов использоваться не могут. Минимальный уровень сопротивления в данном случае должен находится на уровне 50 Ом.

В свою очередь, транзисторы обязаны выдерживать напряжение тока в 30 А. Конвертеры в часах, как правило, устанавливают импульсного типа. За счет этого переключение на двоичный формат происходит быстро. Непосредственно согласование уровней происходит в микроконтроллере. Регулировать напряжение в устройстве можно за счет стабилизатора. Однако минимальная емкость конденсатора должна составлять 22 пФ.

Модели на предохранителях КА445

Данные предохранители по своему типу относятся к электролитическим. Предельную емкость они имеют ровно 10 пФ. В начале цепи они, как правило, располагаются перед транзисторами. Светодиоды в часах важно использовать с высокой пропускной способностью. На микросхеме должно быть предусмотрено как минимум три порта. При этом стабилизатор линейного типа припаивается обязательно. С высоким входным напряжением в значительной мере поможет справиться предохранитель.

Если исключить использование в часах преобразователя, то можно взять трансформатор с вторичной обмоткой. Устанавливается он перед блоком питания. Предохранители специалисты советуют использовать только плавкого типа. Прослужат они в часах довольно долго. Перед кварцами резисторы важно устанавливать с пределом 33 Ом. Блок питания должен быть рассчитан на 15 В. В результате предельная частота в системе будет колебаться в районе 60 Гц.

Ремонтируем Электронику 7-06К…: ker_laeda — LiveJournal


                       

Есть у меня в хозяйстве интересные часы Электроника-7-06К. Интересными их делают, пожалуй, два момента: размеры и «тёплое ламповое» исполнение 🙂 Ну, и плюс ко всему какой-никакой, а всё же раритет.

Часы не пылятся где-то в шкафу, а полностью и справны и трудятся, показывая текущее время.

Их цифры отлично видно с любого ракурса и они неплохо исполняют роль своеобразного ночника (кому как, но лично мне, тёмными зимними ночами, небольшая подсветка кажется удобной).

Кстати, часы весьма точны, если ответственно подойти к стабилизации питающего напряжения. На случай отключения эл. энергии у них имеется резервное питание от шести элементов типоразмера «D» (или А373, если по ГОСТу). Индикация, конечно, при питании от батареек, пропадает, но ход часов сохраняется. Ток потребления от батареек не более 2,5мА (по паспорту). Батареек хватает ооочень надолго. К примеру, данный комплект солевых батареек у меня отработал уже два года, и до сих пор жив.

И всё бы было хорошо, но однажды я обнаружил, что часы начали показывать какую-то ахинею, что-то вроде «67:00» и при этом перестала мигать секундная «точка».

Ну, думаю, наверно магнитная буря на марсе повлияла… сглючили. Ладно, не беда, на сто бед, как известно, один reset.

Перезапустил. Начал выставлять текущее время. Часы выставил, а вот, минуты ни в какую (точка, кстати, тоже мигать не начала)!

А, вот это, вот, уже плохо. Значить требуется хирургическое вмешательство.

Часы были в срочном порядке демонтированы и вскрыты. Попутно нашёл в интернете несколько вариантов сканов схем и паспорт.

Как, оказалось, найти в приемлемом качестве скан схемы оказалось невозможно (интересно, чем руководствуются люди, сканирующие потёртые электронные схемы размером с А3 в разрешении 300dpi и сохраняющие их в однобитном ЧБ!!?). Поэтому пришлось выбирать лучшее из худшего и для гарантии несколько вариантов.

Покурив мануал и поковырявшись немного во внутренностях, был немного удивлён. Если честно, почему-то всегда думал, что разобрав часы, увижу внутри что-то наподобие какой-нибудь КР145ИК1901, но заместо этого увидел внутри кучку десятичных счётчиков-дешифраторов (К176ИЕ3 и  К176ИЕ4) вкупе с микросхемой таймером (К176ИЕ12).

         

         

Принцип работы простой. Микросхема генератор генерирует ряд импульсов с периодичностью 0,5, 1 и 60 секунд.

Импульсы с периодом 1 с. отпирают транзистор, который включает индикатор секунд («точку») на лампе ИВ-4. Минутные импульсы подаются на вход первого счётчика-дешифратора К176ИЕ4, который управляет семисегментным индикатором единиц минут, набранным из ламп ИВ-26. Точнее сказать, управляет не самими лампами, а транзисторами, которые уже коммутируют нужные выводы ИВ-26.

Когда счётчик единиц минут доходит до 10, то он сбрасывается, и на его выходе «P» (пин 2) формируется импульс высокого уровня, который в свою очередь попадает на счётчик К176ИЕ3. Их разница с ИЕ4 только в том, что ИЕ3 считает не до 10, как ИЕ4, а до шести (правильно – это счётчик десятков минут). Так, досчитав до шести, он, в свою очередь «пинает» следующего в очереди, а именно счётчик единиц часов (ИЕ4). Со счётчиком десятков часов всё хитрее, тут уже используется не выходной пин 2, а пин 3, на нём формируется высокий уровень при счёте до двух. Это нужно, чтобы задействовать другой выход счётчика единиц часов (пин 3). Второе отличие ИЕ3 от ИЕ4 заключается в том, что на третьем пине последнего формируется высокий логический уровень при счёте до четырёх. Этим и достигается 24х часовой формат представления времени.

Тут я, кстати, нашёл первое различие «моего» варианта платы со скачанной схемой – это согласование выходных сигналов счётчика единиц часов с входом счётчика десятков часов. В моих часах была применена коммутация при помощи транзистора, а в схеме использовалась «логика» К176ЛА7. Это первая попавшаяся доработка, сделанная с целью удешевления конструкции, но будет и ещё одна.

Кстати о согласовании. Т.к. переключение триггеров счётчиков происходит по спаду импульсов положительной полярности на их входе, то выходы генератора К176ИЕ12 подключаются к ним не напрямую, а через своеобразный RC-фильтр (C9,R15; C?,R6, схема ниже), повешенный на +9 вольт.

Импульсы с периодом 0,5 секунд являются «установочными» и коммутируются кнопками установки часов и минут на входы соответствующих счётчиков для их переключения.

В моём случае отсутствовал ход часов, переключение минут и индикация секунд. Всё указывало на отсутствие указанных выше импульсов и, как следствие, неисправность микросхемы К176ИЕ12.

Буду анализировать сигналы, что куда приходит, а что нет.

Для удобства в ключевые места платы впаял проводки.

         

         

Для начала зацепился осциллографом ко входу счётчика единиц минут.

       

         

И ничего… Хм неужто и вправду ИЕ12?!

Следующее, что не мешало бы проверить – это генерацию установочных импульсов.

В этот раз зацепился осциллом прямо на соответствующий выход К176ИЕ12.

       

   

Всё в порядке импульсы есть…

Решил ещё раз проверить минутные импульсы, но уже непосредственно на выходе ИЕ12.

       

       

И тут оказывается всё в порядке. Странно…

А давай-ка я проверю, что на выходе «установочных» импульсов, но уже после RC цепочки.

         

       

Всё ясно! Теперь понятно, почему я не увидел минутных импульсов.

Они просто очень короткие и при больших интервалах выборок они просто не упевают отразиться на экране осциллографа. А при маленьких интервалах их просто не успеешь засечь, т.к. период достаточно большой.

       

       

По идее, их можно было бы увидеть, используя логический анализатор (типа такого), но, к сожалению, у меня его больше нет (дал попользоваться и не вернули). Ладно, поверим на слово, что на входе D2 они присутствуют.

Кстати, пока разбирался с прохождением «установочных» импульсов, нашёл ещё одно несоответствие в схеме устройства со схемой принципиальной.

       

       

На скане схемы (из паспорта часов) изображены двухпозиционные кнопки (установки минут и часов) без фиксации. Нормально замкнутый контакт при нажатии размыкается, блокируя прохождение импульсов хода, и подключает на вход счётчика импульсы «установочные». На практике же производитель ограничился кнопкой с нормально разомкнутым контактом и диодом.

Проверил ещё и секундные импульсы. И тут всё в порядке. Значит, с D1 проблем нет.

Выпаял транзистор, зажигающий лампу ИВ-4. Прозвонил. Транзистор дохлый.

Теперь всё встало на свои места. Это не одна неисправность, а две, от того и такое поведение часов.

Следуя простейшей логике, причина основной неисправности – это вышедшая из строя микросхема D2.

Выпаиваем старую.

       

     

Впаиваем новую.
       

 

Попутно заменил все старые электролиты. Громко сказано «все», на самом деле их там всего два 🙂 Один в блоке питания, второй в блоке коррекции.

       

       

Подаём питание… УРА! Часы завелись!

Можно собирать.

       

       

После сборки выставил текущее время и погонял сутки.

Всё работает как часы исправно. Можно отправлять в продакшн.

«Классические» часы на ИМС КМ155 и ИН-8-2: vitsserg — LiveJournal

Пару лет тому захотелось мне сделать часики на газоразрядных индикаторах. Только не на современном микроконтроллере, а обязательно по «классической» схеме, на микросхемах TTL  и, по возможности, в керамических корпусах. За основу взял известную схему из книги Бирюкова «Цифровые устройства на ИМС» (МРБ-1174). 

Порылся в «закромах», нашел почти все нужные микросхемы серии КМ155. Только делитель частоты решил сделать на КМ155ИЕ2 (микросхем К155ИЕ1 не нашлось, да и в керамике их вроде бы не было в принципе) и кварц не на 100 КГц, а на 1,0 МГц. Начал разводить плату, и даже сделал довольно много .

Но в это время на сайте «РадиоКот» увидел объявление о продаже готовой платы и набора деталей для подобных часов. Судя по фотографии, плата была просто шикарная:  заводская, двухсторонняя, с маской и шелкографией. Плюс на плате разведены блоки питания (DC-DC преобразователи) +5 В для ИМС и +180 В для индикаторов. Списался с автором и прикупил у него эту плату (последнюю).  Свою, естественно, после этого забросил… 

Как таковой полной принципиальной схемы этих часов нет. «Кусочки» схемы «надёрганы» из разных источников, всё это собрано «в кучу» и разведено на одной плате. Подход понятен – сам так несколько раз делал. 🙂 В основе – всё та же схема Бирюкова. Для подавления дребезга контактов кнопок «Установка часов» и «Установка минут» в схему добавлено два RS-триггера. Есть  «будильник», предусмотрена возможность установки малогабаритного реле для слаботочной нагрузки и твердотельного реле для управления мощной нагрузкой. В блоках питания применяются два преобразователя на LM2576. На одной ИМС собран стабилизатор +5 В для питания всех микросхем часов. На второй LM2576 – стабилизатор +12 В. Далее напряжение +12 В подаётся ещё на один преобразователь на микросхеме МС34063 (или NJM2360), который повышает его до +180 В для питания газоразрядных индикаторов. 

Пока шла посылка с платой, начал подбирать и докупать нужные детали. Довольно дефицитными оказались ИМС К155ИЕ1. Нашел 3 шт. в одном магазине и 2 шт. – в другом. LM2576 то же пришлось поискать. Плата рассчитана на установку 6 шт. индикаторов «ИН-8-2». Я же нашел у себя только 3 шт. Поэтому решил поставить их в разряды единиц часов и минуты.  В десятки часов – поставить «ИН-14». Размер цифр у них одинаковый, только колба выше и распиновка  другая. А в разряды секунд поставить «ИН-16». Это очень красивые маленькие индикаторы с «нормальной» цифрой «5». Подобрал и подходящий корпус – «Gainta-G717» (225х165х90мм).

Пришла, наконец-то, долгожданная посылка. Качество платы – выше всяких похвал! Сборку начал с установки «мелочёвки» и монтажа блоков питания. Микросхемы дешифраторов (КМ155ИД1) и задающего генератора (КМ155ЛА3) установил на панельки. 

Стабилизаторы +5 и +12 В заработали без проблем, только напряжения подрегулировал. А вот с «высоковольтным» пришлось повозиться. Оказалось-то все просто – установил резистор не совсем того номинала (нужно было 3К3, а поставил 1К2), т.к. фоторезистор в часах не используется. После его замены всё заработало, как нужно.

После отладки блоков питания запаял остальные детали. Вместо кнопок временно установил перемычки. Всё ещё раз проверил, отмыл плату и произвел первое включение. Заработали часы сразу. Но фото индикаторы светят «блёкло» – это из-за вспышки (индикатор десятков часов ещё не установлен). На самом деле они достаточно яркие. 

Далее вместо перемычек запаял кнопки управления часами. В качестве кнопок использовал «микрики» от советских тумблеров и кнопок (типа «КМ-1-1» иже с ними). Тут я столкнулся в полный рост с проблемой «дребезга контактов». Он у этих кнопок оказался настолько большим, что даже триггеры не спасали. Кнопки «Установка «0»» минут и секунд ещё как-то работали, а вот при нажатии кнопок «Установка часов» и «Установка минут» вместо увеличения значения на «1», выскакивали совершенно произвольные числа. Как я с этим не бился, но «победить» их не смог. Проблема решилась просто – поставил другие кнопки, такие же, как ставят в компьютерных корпусах на «Вкл» и «Сброс» (в «Чипе» подобные называются «PSM1-2-0»). Кнопки установил на макетной плате 20 х 80 мм и соединил с основной платой 10-проводным шлейфом.

Блок питания очень простой, нестабилизированный. Напряжение на  вторичной обмотке тороидального трансформатора 13,5 В, обмотка намотана проводом ПЭЛ-0,82 мм. Далее диодный мост GBU606 и электролит К-50-24 ёмкостью 4700,0 мкФ х 25 В. Блок питания смонтирован на макетной плате 120 х 80 мм и установлен в корпус на 2-х уголках. На задней стенке корпуса установлен выключатель питания и держатель предохранителя. Так же просверлил 4 отверстия диаметром 8,0 мм  для переключателей установки времени будильника. Не факт, что я буду их устанавливать, но «на всякий случай» подготовил.

Кстати, о будильнике. Всё же решил его проверить. Соединил перемычками выводы индикаторов со входами устройства совпадения, установил таким образом время «06:30». Вместо обмотки слаботочного реле установил светодиод с токоограничивающим резистором. Включил часы  – светодиод горит постоянно. Будильник в 06:30 «не срабатывает», т.к. он «сработан» постоянно и ни на что не реагирует. Начал разбираться – в чём причина. 

Выяснил, что уровни логического «0», которые должны приходить с выводов индикаторов, довольно высокие (порядка 1,1 В). Инверторы на D19 воспринимают их как «1» и просто не изменяют своё состояние. Возился долго, пока не вспомнил, что «когда-то  такое уже встречал». Полистал книгу Бирюкова, вскоре нашел ответ  – оказалось, нужно «минус» питания микросхемы D19 включить через диод (см. нарисовано красным). Добавил диод, после чего будильник заработал. Но «наоборот».  Т.е. реле все время включено и только в момент срабатывания будильника обесточивается на 1 минуту. 

В принципе, ничего сложного – просто сигнал с выхода D20 нужно инвертировать. Но на плате нет ни одного лишнего инвертора. Самое простое решение – поставить вместо D20 не КМ155ЛА2 (1 элемент 8И-НЕ), а КМ155ЛА1 (2 элемента 4И-НЕ) и второй элемент использовать как инвертор. Я сравнил их распиновку  – переделки будут небольшими, даже резать ничего не нужно, только добавить несколько перемычек на плате. Но, скорее всего, делать этого не буду, т.к. будильник мне в этих часах не нужен.

С помощью частотомера установил частоту кварцевого генератора, получилось 100000,4 Гц. Десятые доли Гц, это, конечно, здорово. 🙂 Но нужно посмотреть, какая точность часов будет на практике.  В качестве «эталона» используется сайт https://time100.ru

Плату установил в корпус на латунных стойках высотой 10 мм. Справа от основной платы устанавливается блок питания.

В передней панели вырезал прямоугольное отверстие 130 х 30 мм для индикаторов. Нужно бы их закрыть светофильтром, желательно грязно-зелёного (болотного) или жёлто-коричневого (цвет крепкого чая) цвета. Но пока такое стёклышко не нашел. Может, кто подскажет – где в СПб можно поискать такое небольшое стёклышко? 

Толкатели кнопок взял от какого-то старого видеорегистратора. Буду ли делать декоративную накладку на переднюю панель или нет — ещё не решил.

На сегодняшний день часы выглядят вот так:

Точность хода — отстают примерно на 27 сек за 30 дней, т.е. меньше 1 сек в сутки. Попробую ещё немного подрегулировать частоту генератора. 

В принципе,я доволен этими часиками. 🙂

Схема часов на микросхемах к176.

Электронные часы на интегральных микросхемах серии к155. Изменения в схеме

Продолжаем делать занимательные и интересные электронные поделки. Помните переходник, который раньше сделал для планарного микроконтроллера? На его основе хочу сделать электронные часы, схему не очень-то и выбирал, просто вбил в Google “простые часы на ATmega8 ” и взял первою простую схему без корректировки времени и других наворотов. Это оказалась схема… 🙂

Схема часов

Сама схема часов на рисунке, что мы на ней видим? Начнем с семисегментного четырёхразрядного индикатора с общим катодом (минусом), подключать индикатор можно и без резисторов – ничего страшного не станет. Дальше у нас сердце часов – микроконтроллер ATmega8. Это можно сказать народный микроконтроллер: низкая цена, богатый набор функций, всевозможные компараторы АЦП.

Так что часы заделать не составит труда, из органов управления у нас две кнопки без фиксации: первая настраивает часы, вторая для минут.

Точность хода удивила – за неделю отстали на пол минуты, наверное из-за часового кварца (выпаял его из материнской платы). Сам кварц часовой такой можно найти в любой технике.

ОК. Мы разобрались с принципиальной схемой, теперь прошивка – она находится в архиве и там же печатная плата для переходника. Фюзи которые нужно выставить: CKOPT, BOOTSZ1, BOOTSZ0, SUTO1, SUTO0, CKSEL3, CKSEL1, CKSEL0 . При выставлении бита CKOPT к часовому кварцу подключаются два внутренних конденсатора микроконтроллера. Это для . Корпус обязательно надо подпаять на минус (массу). Питание у меня 5 вольт. От более пониженного напряжения не запитывал, но теоретически часы корректно могут работать от 2.7 вольта до 5.6 вольт. Предупреждаю: 5.6 вольт критическое напряжение для микроконтроллера и его легко можно вывести из работоспособности. Для индикации взял два семизарядных трех сегментных LED индикатора с переходником – для управление нам нужно 11 проводков. Все это собрано навесом и дожидается достойного корпуса, когда придумаю какого именно. .. Думаю потом собрать часы посложнее. С вами был KALYAN.SUPER.BOS

Специализированная часовая микросхема К176ИЕ12. Эта микросхеме содержит в себе мультивибратор и два счетчика, при помощи которых можно получить набор стабильных импульсов, следующих с частотой 1 Гц (период – 1 секунда), 2 Гц, 1/60 Гц (период -1 минута) , 1024 Гц, а также четыре импульсных сигнала частотой 128 Гц, сдвинутых по фазе относительно друг друга на четверть периода. Типовая схема включения этой микросхемы показана на рисунке 2 (для простоты цепи питания не показаны, но плюс питания нужно подавать на 16-й вывод, а минус на 8-й).

Поскольку микросхема формирует все основные временные периоды для электронных часов, то чтобы обеспечить высокую точность, частота её задающего мультивибратора стабилизирована кварцевым резонатором Z1 на 32768 Гц. Это стандартный часовой резонатор, резонаторы на такую частоту применяются почти во всех электронных часах отечественного и зарубежного производства.

Подстроечные конденсаторы С2 и С3 могут отсутствовать, они нужны для очень точной установки хода часов. Обратите внимание на сопротивление резистора R1 – 22 Мегаома, вообще, сопротивление этого резистора может быть от 10 до 30 Мегаом (10-30 миллионов Ом)

С выхода мультивибратора, импульсы по внутренним цепям микросхемы поступают на её первый счетчик. Эпюры импульсов на его выходах показаны на рисунке 2 внизу. Видно, что на выходе S1 есть симметричные импульсы частотой 1 Гц, то есть период 1 секунда. Импульсы с этого выхода можно подать на вход счетчика секунд. Импульсы частотой 128 Гц служат для динамической индикации, но на этом занятии мы динамическую индикацию изучать не будем.

Второй счетчик микросхемы (верхний) имеет коэффициент деления 60, и он служит для получения импульсов частотой 1/60 Гц, то есть импульсов, следующих с периодом в 1 минуту. На вход этого счетчика (вывод 7) подают импульсы частотой 1 Гц (секундные), он их частоту делит на 60 и на его выходе получаются минутные импульсы.

Рис.3
Принципиальная схема электронных часов показана на рисунке 3. Микросхема D5 – это микросхема К176ИЕ12, она, в этих часах используется только как источник секундных и минутных импульсов. Часы построены по упрощенной схеме – без индикации секунд, только минуты и часы. Роль индикатора секунд выполняют два светодиода VD3 и VD4, которые мигают с частотой 1 Гц.

Кнопочные переключатели S1 и S2 служат для установки времени, нажимаем на S1 и показания счетчика минут будут меняться с частотой 1 Гц, нажимаем S2 и так же быстро будут меняться показания счетчиков часов. Таким образом, этими кнопками можно настроить часы на текущее время.

Рассмотрим работу схемы. Секундные импульсы с вывода 4 D5 поступают на вход её счетчика с коэффициентом деления 60 через вывод 7. На выходе этого счетчика (вывод 10) получаются импульсы, следующие с периодом в одну минуту. Эти импульсы через контакты не нажатой кнопки S1 поступают на вход С счетчика – дешифратора D1 – К176ИЕ4 (смотри занятие №10), который считает до десяти.

Через каждые десять минут на выходе Р этого счетчика формируется полный импульс переноса. Таким образом получается, что импульсы на выходе Р D1 следуют с периодом в 10 минут. Эти импульсы поступают на вход счетчика D2 – К176ИЕЗ (смотри занятие №10), который считает только до 6-ти.

В результате оба счетчика D1 и D2 считают, вместе взятые, до 60, и импульсы на выходе Р счетчика D2 будут следовать с периодом в один час. А индикаторы Н1 и Н2, будут, соответственно, показывать единицы и десятки минут.

Таким образом, на выходе Р D2 (вывод 2 D2) у нас получаются импульсы, следующие с периодом в один час. Эти импульсы через контакты кнопки S2, которая находится в ненажатом состоянии, поступают на вход счетчика единиц часов, выполненного на микросхеме D3 – К176ИЕ4. С выхода Р D3 импульсы, с периодом в 10 часов поступают на счетчик десятков часов на микросхеме D4 – К176ИЕ3.

Эти оба счетчика, вместе, могли бы считать до 60-ти, но в сутках всего 24 часа, поэтому их общий счет ограничен до 24-х. Сделано это таким образом: как мы знаем, из занятия №10, микросхемы К176ИЕ4 имеют вывод 3, на котором появляется единица в тот момент, когда число импульсов, поступивших на вход С счетчика достигает четырех. Микросхема К176ИЕ3 (занятие №10) имеет такой же вывод 3, но единица на нем появляется в тот момент, когда на вход С этой микросхемы поступает второй импульс.

Получается, что для того чтобы ограничить счет до 24-х нужно подать логическую единицу на входы R всех счетчиков в тот самый момент, когда на выводах 3 обоих счетчиков D3 и D4 будут единицы. Для этого служит схема, собранная на двух диодах VD1 и VD2 и резисторе R5. Логический уровень на входа R счетчиков зависит от соотношения сопротивлений резистора R5 и диодов VD1 и VD2.

Когда, на выводе 3 хотя бы одного из счетчиков D3 и D4 присутствует ноль, хотя бы один из этих диодов открыт и он, как бы, замыкает на минус питания вход R, и по этому на входах R получается логический нуль. Но когда будут единицы на выводах 3 и счетчика D3 и счетчика D4, тогда оба диода будут закрыты, и напряжение от плюса источника питания через R5 поступит на входы R счетчиков и установит их в нулевое состояние.

Установка времени производится кнопками S1 и S2. При нажатии на S1 вход С счетчика D1 переключается с вывода 10 D5 на вывод 4 D5, и на вход D1 вместо минутных импульсов подаются секундные, в результате показания индикаторов минут будут меняться с периодом в одну секунду. Затем, когда таким образом будет установлены нужные показания минут S1 отпускают и часы работают как обычно.

Точно так же устанавливается текущее время часов при помощи S2. При нажатии на S2 вход С D3 переключается с выхода Р D2 на выход S1 D5 и вместо часовых импульсов на вход С D3 поступают секундные.

Для питания часов используется сетевой адаптер от игровой приставки, или другой источник напряжением 7-10В. Диод VD5 служит для защиты микросхем от неправильного подсоединения источника.

Вероятно, любой радиолюбитель (особенно старшего поколения) согласится с тем, что электронные часы для него не просто самоделка, а полезное для всей семьи изделие. В начале своей радиолюбительской деятельности каждый радиолюбитель (и я, естественно, тоже) собрал по несколько часов. Но это было давно, когда электронные часы, причём даже в самом простом и примитивном корпусе, а то и вовсе без него, были чем-то удивительным…

Когда в середине 90-х годов промышленность выпустила набор “Старт”, в котором было всё необходимое для часов, включая печатную плату, бум по их изготовлению побил все рекорды. У нас в общежитии института радиоэлектроники часы без корпусов, собранные из него, висели на всех стенах.

Но те времена безвозвратно прошли. Сегодня торговля предлагает такой широкий выбор разнообразнейших часов что вроде ничего оригинального уже и не придумаешь. Про самодельный корпус, сравнимый с промышленным, я вообще промолчу. Изготовить его под силу далеко не каждому. Именно поэтому я больше не планировал браться ни за какие часы.

Однако около года назад я увидел в Интернете фотоснимок часов с газоразрядными индикаторами ИН-16 (рис. 1). Несмотря на то что такие индикаторы уже давно морально устарели, часы выглядели интересно, необычно и очень ностальгически. Взяться за изготовление подобных часов меня побудили три обстоятельства. Во-первых, интересный внешний вид. Во-вторых, корпус изготовить очень просто. А в-третьих, газоразрядные индикаторы у меня с давних пор были и предназначались именно для часов. Но тогда делать на них часы я не стал, потому что появился набор “Старт” с его большим и изумительным индикатором ИВЛ1-7/5, по сравнению с которым газоразрядные индикаторы выглядели неказистыми.

Рис. 1. Часы с газоразрядными индикаторами ИН-16

Но вот колесо истории совершило очередной поворот, часы на газоразрядных индикаторах стали считаться “ретро” и вошли в моду. Теперь магический оранжевый цвет и простая форма цифр газоразрядных индикаторов смотрятся оригинально, а в темноте даже завораживающе.

Естественно, возник вопрос – собирать часы на микроконтроллере или обычных часовых микросхемах? Конечно, часы на микроконтроллере обладают более широкими возможностями. Они могут показывать и год, и месяц, и день недели, могут иметь несколько будильников, управлять электроприборами и ещё много чего. Но поскольку я задумал “ретрочасы”, то решил, что будет правильно, чтобы они были “ретро” и внутри.

Несмотря на кажущуюся сложность, разработанные часы просты в изготовлении и налаживании, потому что собраны на специализированных “часовых” микросхемах. Эти микросхемы у многих лежат на полке – выбросить жалко, а применить некуда. Если же их нет в старых запасах, то они всё ещё имеются в продаже и стоят недорого. Высоковольтные транзисторы и диоды можно выпаять из неисправных энергосберегающих ламп. Поэтому стоимость комплекта деталей для таких часов минимальна. Повторить их могут практически все желающие.

Схемы часов на “часовых” микросхемах хорошо известны радиолюбителям. Но в известных конструкциях не предусмотрена индикация секунд, а часы и минуты отображаются на светодиодных или вакуумных люминесцентных индикаторах. Поэтому пришлось согласовать “часовые” микросхемы с газоразрядными индикаторами и добавить блок индикации секунд.

В результате получилось устройство, состоящее из четырёх плат: счёта времени (схема на рис. 2), индикации часов и минут (схема на рис. 3), высоковольтных ключей и питания (схема на рис. 4), счёта и индикации секунд (схема на рис. 5). Одноимённые входные и выходные цепи этих плат следует соединить между собой.

Рис. 2. Схема платы счёта времени

Рис. 3. Схема индикации часов и минут

Рис. 4. Схема высоковольтных ключей и питания

Рис. 5. Схема счёта и индикации секунд

Микросхемы К176ИЕ12 (DD2) и К176ИЕ13 (DD3) разработаны именно для совместной работы в часах. Не стану подробно описывать назначение всех выводов этих микросхем – эту информацию можно найти в десятках, если не сотнях источников. Остановлюсь только на некоторых, необходимых для понимания схемы часов и их налаживания начинающими радиолюбителями.

Микросхема DD2 вырабатывает секундные и минутные импульсы. Они поступают на микросхему DD3, которая содержит счётчики минут, часов и регистр памяти будильника с устройством включения звуковой сигнализации в заданное время.

К выводам 12 и 13 микросхемы DD2 подключён кварцевый резонатор ZQ1 на частоту 32768 Гцс элементами, необходимыми для работы с ним внутреннего генератора микросхемы. Такой резонатор так и называют – “часовой”. Конденсатор C1 необходим для точной подстройки частоты генератора, от которой зависит точность хода часов. На выводе 14 микросхемы DD2 эту частоту можно проконтролировать частотомером.

Входы начальной установки счётчиков микросхемы DD2 (выводы 5 и 9) соединены с соответствующим выходом (выводом 4) микросхемы DD3. При нажатии на кнопку коррекции времени SB1 сигнал с микросхемы DD3 обнулит эти счётчики. Он же через преобразователь уровня на транзисторе VT20 поступает на входы начальной установки счётчиков единиц секунд DD6 и десятков секунд DD8 (рис. 5).

Индикация часов и минут в рассматриваемом устройстве – динамическая. Это означает, что каждый индикатор включён только в том интервале времени, когда на выводах 13, 14, 15, 1 микросхемы DD3 установлен код цифры, которая должна отображаться именно на этом индикаторе. Сигналы с выводов 3, 1, 15, 2 микросхемы DD2, управляющие поочерёдным включением индикаторов HG1-HG4, поступают на высоковольтные ключи, собранные на транзисторах VT9-VT12, VT14, VT15, VT17, VT18 (см. рис. 4). Эти ключи подают высокое напряжение положительной полярности на аноды индикаторов. Но поскольку они инвертируют управляющие сигналы, их перед подачей на ключи необходимо инвертировать ещё раз. Для этого предназначены инверторы DD1.1 – DD1.4 (см. рис. 2).

На выводе 4 микросхема DD2 генерирует секундные импульсы, идущие на её же вход С (вывод 7). Эти же импульсы через преобразователь уровня на транзисторе VT19 (рис. 5) поступают на вход счётчика единиц секунд на микросхеме DD6. Сигнал с выхода 8 (вывода 11) этого счётчика поступает на вход счётчика десятков секунд на микросхеме DD8. Сигналы с выходов разрядов обоих счётчиков поданы на высоковольтные дешифраторы DD7, DD9 и далее на индикаторы HG5, HG6. Таким образом, индикация единиц и десятков секунд не динамическая, а статическая.

Секундные импульсы поданы и на вход высоковольтного ключа на транзисторе VT8, который управляет неоновой лампой HL1. В окончательной версии часов от мигающей каждую секунду точки я отказался, но не стал удалять соответствующий узел из схемы. Возможно, что кто-нибудь захочет, чтобы в его часах такая точка была.

У использованного мной варианта добавления к часам счётчика и индикатора секунд есть одна особенность. Поскольку счётчики К155ИЕ2 и К155ИЕ4 изменяют своё состояние по спадам входных импульсов, переключение секунд происходит на полсекунды позже, чем переключение минут счётчиком микросхемы DD3. Впрочем, это заметно лишь при смене 59-й секунды нулевой. Я не счёл это недостатком. Пусть думают, что так и должно быть, часы ведь не обычные, а “ретро”.

Вывод 6 микросхемы DD3 – вход сигнала коррекции показаний часов. Выход звукового сигнала будильника – вывод 7. С него сигнал поступает на усилитель мощности на транзисторах VT6 и VT7 и далее на излучатель звука HA1.

Как уже упоминалось, с выводов 13, 14, 15, 1 микросхемы DD3 код цифры поступает через преобразователи уровней (транзисторы VT1-VT4) на информационные входы запоминающего регистра – счетверённого D-триггера DD4. Запись в этот регистр происходит по сигналу с вывода 12 микросхемы DD3, прошедшему через преобразователь уровня на транзисторе VT5.

Для управления работой часов предназначены кнопки SB1-SB4 и кнопочный выключатель SA1 (им включают и выключают звуковой сигнал будильника). Кнопки SB2 и SB3 служат для установки соответственно минут и часов, а кнопка SB4 – для установки времени срабатывания будильника. При нажатой кнопке SB4 индикаторы показывают это время. Чтобы изменить его, необходимо нажимать на кнопки SB2 и SB3, не отпуская кнопку SB4.

Кнопка SB1 позволяет откорректировать показания часов, для чего её следует нажать за несколько секунд до фактического окончания текущего часа. При этом счёт времени прекратится. Внутренние счётчики минут и секунд микросхем DD2 и DD3, а также счётчики DD6 и DD8 будут обнулены. Если число минут в момент остановки было менее 40, значение в счётчике часов микросхемы DD3 не изменится, в противном случае оно увеличится на единицу. По сигналу точного времени кнопку SB1 следует отпустить, после чего счёт времени будет продолжен.

К сожалению, при нажатой кнопке SB1 остаётся включённой цифра на каком-либо индикаторе. Чтобы не усложнять часы, я не стал делать узел гашения всех индикаторов, посчитав, что это нельзя считать недостатком ретрочасов. Впрочем, в них можно добавить такой узел, собрав его по схеме, приведённой на рис. 24 в .

Как уже было отмечено, в предлагаемых часах индикация часов и минут – динамическая, а секунд – статическая. Чтобы яркость индикаторов HG5 и HG6 не отличалась от яркости индикаторов HG1-HG4, номиналы резисторов R25 и R26 в цепях анодов индикаторов HG5 и HG6 увеличены до 150 кОм.

Вследствие недостатка места в корпусе часов я выполнил их блок питания по бестрансформаторной схеме. Поэтому все детали часов находятся под напряжением сети. При их налаживании следует соблюдать особую осторожность .

Если при повторении конструкции в корпусе найдётся место для понижающего трансформатора, рекомендую применить трансформаторный блок питания. Вторичная обмотка трансформатора должна быть рассчитана на напряжение около 12 В при токе нагрузки 150…200 мА. При этом из схемы исключают конденсатор C8, резистор R9 и стабилитрон VD7.

Ещё один вариант – использовать выносной стабилизированный импульсный блок питания на 9 или 12 В. Такие блоки обычно по конструкции подобны зарядным устройствам для сотовых телефонов, их применяют повсеместно. При использовании блока питания на 12 В из схемы исключают конденсатор C8, резистор R9, диодный мост VD6 и стабилитрон VD7. Выходное напряжение блока питания, соблюдая полярность, подают на конденсатор C9. Если применён блок питания на 9 В, из схемы исключают, кроме перечисленных в предыдущем абзаце элементов, также транзистор VT13, резистор R14 и стабилитрон VD9, а анод диода VD10 соединяют с плюсовым выводом конденсатора C9.

Большая ёмкость конденсатора C10 позволяет часам идти ещё некоторое время после отключения напряжения в сети. Диод VD10 отсекает от конденсатора C10 другие цепи, позволяя ему расходовать запасённую энергию только на питание микросхем DD1-DD3. При указанной на схеме ёмкости 2200 мкФ часы продолжают работать более 10 мин. Этого вполне достаточно, чтобы не только предотвратить сбои показаний, но и, например, перенести часы из одной комнаты в другую. В статье имеются экспериментальные данные о зависимости продолжительности хода часов от ёмкости этого конденсатора.

Если всё-таки необходимо резервное питание, изучите статью – её автор предлагает несколько вариантов. А если не нравится звучание имеющегося в часах будильника, можно собрать другой по схемам из и . В есть даже вариант будильника на микросхеме музыкального синтезатора УМС .

На рис. 6 показаны печатные платы, на которых собраны часы. Их чертежи я не привожу, потому что и схема часов, и печатные платы неоднократно изменялись и дорабатывались. Например, когда я решил добавить в часы индикатор секунд, то не стал разрабатывать новую плату, а просто прикрепил дополнительную к имеющейся плате индикаторов часов и минут. Были изменения и в других платах. Поскольку часы делались в одном экземпляре, перерабатывать печатные платы с учётом изменений я не стал.

Рис. 6. Печатные платы, на которых собраны часы

Вместо микросхемы К176ИЕ12 можно использовать К176ИЕ18, но схема её включения отличается.

Вместо микросхемы К176ЛА7 в описанных часах допустимо применить К176ЛЕ5, причём никаких изменений схемы не потребуется. Только не забудьте, что такая замена станет невозможной, если будет решено делать узел гашения индикаторов по схеме из статьи .

Вместо счетверённого D-триггера К155ТМ7 можно использовать К155ТМ5. Применение микросхемы К155ТМ7 объясняется лишь тем, что она была у меня в наличии. Её я и установил в часы, оставив инверсные выходы триггеров свободными.

Многие детали можно взять из электронных балластов неисправных энергосберегающих ламп. Из него взят, например, малогабаритный оксидный конденсатор C7. Его ёмкость может лежать в пределах 2,2…10 мкФ. Применяемые в балластах транзисторы МЕ13003, MJE13005, MJE13007, MJE13009 можно использовать взамен КТ605А. Из отечественных транзисторов для их замены подойдут КТ604А. Можно также применить две транзисторные сборки К166НТ1А, что несколько усложнит разработку печатной платы, но зато уменьшит её габариты. Наконец, из неисправных балластов можно взять диоды 1N4007, которые заменят все диоды в часах (кроме стабилитронов). Из них же можно собрать и диодный мост вместо КЦ407А.

Из отечественных диодов в качестве замены диодов КД102Б подойдут дру гие маломощные кремниевые диоды с допустимым обратным напряжением 300 В и более, например, КД104А, КД105Б-КД105Д. Диоды КД102А в рассматриваемом случае могут быть заменены любыми маломощными кремниевыми диодами. Если позволяют размеры платы, вместо диодного моста КЦ407А можно применять КЦ402 или КЦ405 с любыми буквенными индексами.

Транзисторы КТ315Г и КТ361Г могут быть заменены транзисторами тех же серий с любыми буквенными индексами или другими кремниевыми маломощными транзисторами соответствующей структуры с допустимым напряжением коллектор-эмиттер не менее 15 В.

Вместо транзистора КТ815Г пригодны транзисторы серий КТ815, КТ817, КТ819 с любыми индексами. Однако транзисторы серии КТ819 из соображения габаритов лучше применять в пластмассовом корпусе (без индексаМ).

Поскольку на вход стабилизатора напряжения 5 В поступает напряжение 12 В, транзистор VT16 выделяет значительное количество тепла. Поэтому он должен иметь теплоотвод, который может быть любой конструкции. Например, алюминиевой пластиной толщиной несколько миллиметров и площадью не менее 15…20 см 2 . Кнопки SB1-SB4 – любые, умещающиеся в корпус часов. Вместо кнопочного выключателя SA1 можно с тем же условием применить любой движковый или рычажный выключатель. Звуковой излучатель HA1 – телефонный капсюль сопротивлением не менее 50 Ом. Если позволяет место в корпусе, можно использовать малогабаритную динамическую головку, подключив её через выходной трансформатор от любого транзисторного приёмника. При этом громкость сигнала будильника существенно возрастёт.

Гасящий конденсатор C8 составлен из трёх конденсаторов К73-17 ёмкостью 1 мкФ на постоянное напряжение 630 В, соединённых параллельно. Их можно расположить в любом свободном месте корпуса. Имейте в виду, что не все конденсаторы пригодны для работы в качестве гасящих. Например, нельзя применять конденсаторы БМ, МБМ, МБГП, МБГЦ-1, МБГЦ-2 . Если позволяют размеры корпуса, можно использовать конденсаторы МБГЧ или К42-19 на напряжение не менее 250 В или МБГО на напряжение не менее 400 В.

К изготовлению корпуса часов следует подойти со всей тщательностью, поскольку от него зависит впечатление, которое будут производить часы на друзей и знакомых. Далее я указываю размеры своих часов. Естественно, их можно менять.

Возьмите ровную, хорошо отполированную деревянную планку шириной 50 мм и толщиной 5 мм. Отпилите от неё две детали длиной по 200 мм и две детали длиной по 70 мм. Рекомендую использовать ножовку по металлу с более мелкими, чем у ножовки по дереву, зубьями. Постарайтесь пилить строго под прямым углом. Затем, применяя любой клей для дерева (например, ПВА), склейте каркас. Его внешние размеры – 200×80 мм.

Для изготовления светящегося дна необходима пластина органического стекла толщиной не менее 5 мм. Разметьте прямоугольник размером, как у получившегося каркаса, и также ножовкой по металлу, стараясь пилить строго под прямым углом и не останавливаясь, выпилите его. Отполируйте торцы пластины и приклейте получившееся дно к каркасу клеем “Момент”.

На задней стенке корпуса установите кнопки SB1-SB4 и выключатель SA1, просверлите в ней отверстия для держателя плавкой вставки FU1 и сетевого шнура. Не забудьте и про вентиляционные отверстия.

Самая ответственная часть работы – изготовление верхней крышки часов из тонированного стекла. Самостоятельно вырезать такую крышку, да ещё с отверстиями под индикаторы, сможет далеко не каждый, поэтому я рекомендую обратиться в ближайшую стекольную мастерскую. Они есть в любом, даже самом маленьком городе. Там вырезают стёкла для окон, зеркала, делают аквариумы. Просто принесите туда точные размеры крышки и точно укажите центры и диаметры отверстий под индикаторы.

Вполне удовлетворительный результат получится, если сделать крышку из органического стекла, но внешний вид часов будет несколько иным. Зато такую крышку можно изготовить и самому.

Особо стоит остановиться на деталях, которые придадут изготовленным часам ещё больший шарм. Это синие светодиоды подсветки индикаторов снизу и светодиодная лента жёлтого свечения, подсвечивающая заднюю кромку дна корпуса часов. Типов светодиодов и лент великое множество и можно применять практически любые. Если у кого-нибудь возникнет сомнение, что светодиоды должны быть именно синими, а лента именно жёлтой, не стану спорить. На вкус и цвет товарищей нет. Можно экспериментировать с любыми цветами или даже применить RGB-светодиоды и RGB-ленту с контроллерами, управляемыми дистанционно. Такие контроллеры можно приобрести в магазинах, торгующих электротоварами.

Светодиоды HL2-HL7 устанавливают под каждый из шести индикаторов. Они создают красивый синий светящийся ореол вокруг цифр и в верхней части индикаторов – этот эффект хорошо виден на фотоснимке внешнего вида часов (рис. 7). Светодиоды соединяют последовательно и подключают через гасящий резистор R24 к цепи +300 В. Подборкой этого резистора добиваются желаемой яркости свечения светодиодов. Применённые мной светодиоды имеют достаточную яркость уже при токе 2…3 мА, поэтому мощность, рассеиваемая резистором, не превышает 0,5 Вт.

Рис. 7. Ретрочасы в сборе

Конечно, безопаснее было бы питать светодиоды подсветки не высоким напряжением, а с выхода низковольтного выпрямителя – от конденсатора C9, соответственно уменьшив сопротивление резистора R24. Объясню, почему было решено питать их от высоковольтного, а не от низковольтного выпрямителя. Напряжение +300 В на плате индикаторов секунд уже имеется, а для питания светодиодов HL2-HL7 низким напряжением пришлось бы добавить ещё один провод.

Светодиодная лента состоит из параллельно соединённых секций длиной по 50 мм, в каждой из которых имеются соединённые последовательно два-три светодиода и резистор. Для использования в часах пригодна лента с напряжением питания 12 В. Отделите от неё отрезок длиной 200 мм (четыре секции) и приклейте его прозрачным клеем к задней кромке дна корпуса часов. Желаемую яркость свечения установите подборкой резистора R12. При этом следует помнить, что чем больше яркость свечения ленты, тем больший ток она потребляет и тем большей должна быть ёмкость гасящего конденсатора

C8. При ёмкости этого конденсатора 3 мкФ ток, потребляемый лентой, не должен превышать 60 мА, иначе напряжение на конденсаторе C9 опустится ниже 12 В, в результате чего транзистор VT13 выйдет из рабочего режима. При указанных на схеме номиналах лента в моих часах именно столько и потребляет и светит достаточно ярко, хотя напряжение на ней всего 9 В.

Литература

1. Алексеев С. Применение микросхем серии К176. – Радио, 1984, № 4, с. 25-28; № 5, с. 36-40; № 6, с. 32-35.

2. Осторожно! Электрический ток! – Радио, 2015, № 5, с. 54.

3. Никишин Д. Часы на светодиодных индикаторах КЛЦ202А. – Радио, 1998, № 8, с. 46-48.

4. Алексеев С. Электронные часы автолюбителя. – Радио, 1996, № 11, с. 46- 48.

5. Турчинский Д. Вместо обычного будильника – музыкальный. – Радио, 1998, № 2, с. 48, 49.

6. Дриневский В., Сироткина Г. Музыкальные синтезаторы серии УМС. – Радио, 1998, № 10, с. 85, 86.

7. Бирюков С. Расчёт сетевого источника питания с гасящим конденсатором. – Радио, 1997, № 5, с. 48-50.

Дата публикации: 27.02.2016


Мнения читателей
  • Андроид / 02.10.2018 – 12:09
    Схемное решение шикарное, но для себя думаю чуть подрезать (секунды) , а так все просто супер
  • Игорь Казанцев [email protected] / 23.04.2017 – 22:12
    Схема понравилась. Замечания:1)В качестве высоковольтных ключей можно применить оптроны типа TLP627A. С выводов микрухи к176ие12, без всяких инверторов, включаете светодиод оптрона, с выходом на общий плюс, через токоограничительный резистор в 1,5 ком. 2)Собрав простую мигалку – мультивибратор на 2-х транзисторах, можно добавить динамическую индикацию, по питанию, для секундных индикаторов, тоже на TLP627A. Отображение цифр остаётся статическим. Если можно, напишите Ваши соображения на мою электронную почту. В остальном, снимаю шляпу. Схема просто гениальная. Если её упростить, с использованием высоковольтных оптронов типа TLP627A, то это будет прорыв в технологии NIXIE. С уважением. Игорь Казанцев, г. Пермь

11.

СХЕМЫ СЕРИЙНЫХ ЭЛЕКТРОННЫХ ЧАСОВ НА МИКРОСХЕМАХ СЕРИИ К176

В настоящее время электронная промышленность выпускает значитель-ное количество настольных и автомобильных часов, различных по схемам, ис-пользуемым индикаторам и конструктивному оформлению. Некоторое пред-ставление о серийно выпускаемых часах дает табл. 2. Рассмотрим особенности серийных решений некоторых из указанных часов.

«Электроника 2-05» – настольные часы, показывающие часы и минуты с возможностью выдачи звукового сигнала. Принципиальная схема часов приведе-на на рис. 47. Она содержит 11 микросхем серии К176 и четыре микросхемы-серии К161, один транзистор и 38 других дискретных элементов. В индикаторе используются четыре лампы ИВ-12 и одна лампа ИВ-1 (для мигающего тире).

Таблица 2

Обозначение

Тип инди-катора

Источник питания

Выполняемые функции

«Электроника 3/1» (настольные)

ижкц-6/7

Автономный 6 В

Часы, минуты, секунды с под-светкой

«Электроника 16/7» (настольные)

ИЖКЦ-6/7

Автономный 3 В

Часы, минуты, день недели, опре-. деление числа месяца

«Электроника 6/11» (настольные)

ИВЛ1-7/5

Сеть 220 В

Часы, минуты, с выдачей авуково-, го сигнала в заданное время (функция будильника). Может выполнять функцию секундомера или таймера

«Электроника 6/14» (настольные)

ИВ-6

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника)

«Электроника 2-05

ИВ-12

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника). Возмож-ность изменения яркости свечения индикатора

«Электроника 2-06» (настольные)

ИВЛ 1-7/5

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника). Возмож-

ность изменения яркости свечения индикатора

«Электроника 2-07» (настольные с встроенным радио-приемником)

ИВЛ 1-7/5

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала,в заданное время (функция будильника). Включение радиоприемника в заданное вре-мя. Прием радиопрограммы в УКВ диапазоне на пяти фиксированных частотах в непрерывном или про-граммируемом режиме работы

«Электроника-12» (автомобильные)

АЛС-324Б

Бортсеть 12 В

Часы, минуты. Возможность изме-нения яркости и отключения ин-дикатора

Схема часов выполнена на микросхемах ИМС4, ИМС8, ИМС11 и отличается от обычной схемы двумя особенностями. Первая заключается в том, что вы-ходы дешифраторов микросхем К176ИЕЗ, К176ИЕ4 соединяются с сегментами-индикаторов через транзисторные ключи (микросхемы К161КН1). Это позволя-ет подавать на цифровые индикаторы напряжение 25 В, чем обеспечивается, более высокая яркость их свечения. Каждая микросхема К161КН1 имеет семь ключей. В часах использованы четыре таких микросхемы: 23 ключа коммути-руют сигналы дешифраторов, один ключ – сигнал частотой 1 Гц (мигающее ти-ре), один – сетку индикатора десятков часов (для выключения при индикации-цифры 0), один – для усиления сигнала 1024 Гц, подаваемого на динамическую-головку будильника, один – для развязки сигнала частотой следования 1 мин, подаваемого на контрольные выводы, один ключ – резервный.

Вторая особенность – система начальной установки времени часов. Для ус-тановки времени используется схема сигнального устройства. Переключатели 1 S 2 S 5 ставятся в положения, соответствующие требуемому времени, например-1200. По сигналу точного времени нажимается кнопка S 7 «Запись». При этом. все счетчики, в том числе сигнального устройства, устанавливаются в нулевое-состояние с помощью логических элементов 2И-НЕ ИМС7.1, ИМС7.2. После этого на схему часов вместо сигнала с частотой 1/60 Гц подается сигнал с частотой 32768 Гц. Даже при кратковременном нажатии кнопки S 7 счетчики; успевают «записать» нужное число, после чего срабатывает схема совпадения сигнального устройства (диоды VD 7 VD 10 и логический элемент 2ИЛИ-НЕ. ИМС5.2), которая прекращает поступление сигнала частотой 32768 Гц через ло-гический элемент 2И-НЕ ИМС6.4. На счетчики часов и сигнального устройства бу-дет в дальнейшем поступать сигнал с частотой 1/60 Гц (через элемент 2ИЛИ-НЕ ИМС6.1).

При включении питания все счетчики часов и сигнального устройства уста-навливаются в нуль с помощью схемы, собранной на транзисторе VT 1. При появлении напряжения на коллекторе транзистора и отсутствии напряжения на конденсаторе СЗ транзистор закроется. На выходе логического элемента 2И-НЕ ИМС7.2 появится положительный потенциал, который установит в 0 делители микросхемы К176ИЕ12. Одновременно через элемент 2И-НЕ ИМС7.1 установятся в 0 счетчики часов и сигнального устройства. При заряде конден-сатора СЗ через резистор R 7 транзистор откроется, на обоих входах элемента-ИМС7.2 появится положительный потенциал, а на выходе сигнал логического 0. Счетчики начнут работать.

Сигнальное устройство состоит из счетчиков часов и минут, переключателей-установки времени 52- – S 5, схем совпадения и звуковой сигнализации. Работа всех элементов сигнального устройства данных часов рассмотрена в § 7.

Питающее устройство состоит из сетевого трансформатора Т, обеспечиваю-щего переменное напряжение 1,2 В для питания цепей накала катодов ламп, а также напряжение 30 В для питания остальных элементов часов. После вы-прямления диодом VD 3 получается постоянное напряжение – 25 В, подаваемое-на катоды ламп. С помощью переключателя «Яркость» можно изменять яркость свечения индикаторов.

Из напряжения +25 В с помощью резистора R 4 и стабилитрона VD 5 соз-дается напряжение +9 В для питания микросхем. Для обеспечения работы ос-новной схемы часов при пропадании сети предусмотрено включение батареи G напряжением 6 – 9 В. Мощность, потребляемая часами, около 6 Вт.

«Электроника 2-06» – часы настольного типа с сигнальным устройством.

Рис. 48. Принципиальная схема часов «Электроника 2-06»

Принципиальная схема часов приведена на рис. 48. Она содержит три микро-схемы повышенного уровня интеграции серии К176, два транзистора и 36 дру-гих дискретных элементов. Индикатор – – плоский многоразрядный, катодолю-мннесцентный, с динамической индикацией ИВ Л1-7/5. Он имеет четыре цифры высотой 21 мм и две разделительные точки, расположенные вертикально.

Генератор секундных и минутных импульсов выполнен на микросхеме -ИМС1 К176ИЕ18. Кроме того, эта микросхема создает импульсы частотой сле-дования 1024 Гц (вывод 11), используемые для работы сигнального устройст-ва. Для создания прерывистого сигнала используются импульсы частотой следо-вания 2 Гц (вывод 6). Частота 1 Гц (вывод 4) создает эффект «мигания» раз-делительных точек.

Импульсы частотой следования 128 Гц, сдвинутые относительно друг друга по фазе на 4 мс (выводы 1, 2, 3, 15) подаются на сетки четырех цифр индика-тора, обеспечивая их последовательное свечение. Коммутация соответствующих счетчиков минут и часов осуществляется частотой 1024 Гц (вывод 11). Каж-дый импульс, подаваемый на сетки индикатора, равен по длительности двум периодам частоты 1024 Гц, т. е. сигнал, подаваемый на сетку со счетчиков, бу-дет дважды включен и выключен. Таким подбором частоты синфазных импуль-сов обеспечивается два эффекта: динамическая индикация и импульсная работа дешифратора и индикатора. Принцип динамической индикации подробнее рас-смотрен в § 1.

Интегральная микросхема ИМС2 К176ИЕ13 содержит счетчики минут и. часов основных часов, счетчики минут и часов для установки времени сигналь-ного устройства, а также коммутаторы для переключения входов и выходов» этих счетчиков. Выходы счетчиков через коммутатор подключаются к дешифра-тору двоичного кода в семиэлементный код индикатора. Этот дешифратор вы-полнен на микросхеме ИМСЗ К176ИДЗ. Выходы дешифратора подсоединяются к соответствующим сегментам всех четырех цифр параллельно.

При отжатой кнопке S 2 «Звонок» индикатор подключен к счетчикам ча-сов (для опознавания этого режима точка мигает с частотой 1 Гц). Нажав кноп-ку S 6 «Корр.», производят установку счетчиков часов (микросхема К176ИЕ13) и делителей генератора минутной последовательности импульсов (микросхема К176ИЕ18) в нулевое состояние. После отпускания кнопки S 6 часы будут работать как обычно. Затем нажатием кнопок S3 «Мин» и S 4 «Час» производят установку минут и часов текущего времени. В данном режи-ме возможно включение звукового сигнала.

При нажатой кнопке S 2 «Звонок» к дешифратору и индикатору подключа-ются счетчики сигнального устройства. В этом режиме также высвечивается че-тыре цифры, но мигающие точки гаснут. Нажав кнопку S 5 «Буд» и удерживая ее, нажимают последовательно на кнопки S3 «Мин» и S 4 «Час», устанавлива-ют необходимое время срабатывания сигнального устройства, наблюдая за показаниями индикатора.

Схема часов позволяет устанавливать пониженную яркость свечения инди-каторов с помощью кнопки S 1 «Яркость». Однако при этом следует помнить, что при пониженной яркости (кнопка S 1 нажата) включение звукового сигна-ла, а также установка времени часов и сигнального устройства невозможны.

Блок питания БП6-1-1 содержит сетевой трансформатор Т, создающий на-пряжение 5 В (со средней точкой) для питания накала катода индикатора и-напряжение 30 В для питания остальных цепей индикатора и микросхем. На-пряжение 30 В выпрямляется кольцевой схемой на четырех диодах (УД 10 VD 13), а затем с помощью стабилизатора на стабилитроне VD 16 относительно» корпуса создается напряжение +9 В для питания микросхем, а с помощью ста-билизатора на стабилитронах VD 14, VD 15 и транзистора VT 2 – напряжение +25 В (относительно катода) для питания сеток и анодов индикаторов. Мощ-ность, потребляемая часами, не более 5 Вт. Предусмотрено подключение резера-ного питания для сохранения времени часов при выключении сети. Может быть-использована любая батарея напряжением 6 В.

Автомобильные часы «Электроника-12». Часы позволяют определять вре-мя с точностью до 1 мин, изменять яркость свечения индикаторов, а также-выключать индикацию при длительной стоянке. Схема часов выполнена на вось-ми микросхемах и 29 транзисторах (рис. 49).


Рис. 49. Принципиальная схема автомобильных часов «Электроника-12»

Генератор секундных импульсов выполнен на интегральной микросхеме-ИМС1 и кварце на частоту 32768 Гц. Импульсы частотой следования 1 Гц используются для получения минутных импульсов, обеспечения работы «мига-ющей» точки, а также для установки времени.

Для получения минутных импульсов применяют микросхемы ИМС2„ ИМСЗ. Далее, с помощью микросхем ИМС4-ИМС7 производится счет минут и часов. Выходы дешифраторов этих микросхем через транзисторы VT 1 VT 25 подаются на светодиоды цифровых индикаторов. Транзисторы необходимы для согласования слаботочных выходов дешифраторов микросхем К176ИЕЗ,. К176ИЕ4 со светодиодами, требующими для получения нормальной яркости свечения тока около 20 мА.

Установка минут осуществляется подачей секундных импульсов на вход 4 микросхемы ИМС4 через контакты кнопки S3, установка часов – подачей се-кундных импульсов на вход 4 микросхемы ИМС6 с помощью кнопки S 2. Уста-новка состояния 0 делителей и счетчиков микросхем ИМС1 ИМС5 осуществля-ется с помощью кнопки S 4. В этом случае подвижный контакт кнопки подклю-чается к корпусу, что соответствует подаче на вход 8 логического элемента-ЗИ-НЕ (микросхема ИМС8 К176ЛА9) логического 0. Так как на два других входа 1 и 2 через резистор R 62 подается положительное напряжение источника питания, то на выходе 9 логического элемента появится положительный пере-пад, который произведет установку делителей и счетчиков в 0. Остальное время на выходе логического элемента будет напряжение, близкое к 0 В, что обеспе-чит нормальную работу микросхем.

Для установки счетчиков часов в состояние 0 при достижении числа 24 используются две другие логические схемы ЗИ-НЕ микросхемы ИМС8. Выво-ды 3 микросхемы ИМС6 и ИМС7 подаются на входы 3 и 5 логического элемен-та. На третий вход 4 постоянно поступают импульсы частотой следования 1 Гц. Так как логический элемент производит инверсию входных сигналов, то для получения положительного управляющего импульса используется второй логиче-ский элемент ЗИ-НЕ. На один его вход (11) подаются импульсы с выхода & первого логического элемента, а на два других (12 и 13) – положительное на-пряжение через резистор R 61. Поэтому на выходе 9 появятся секундные им-пульсы только в том случае, когда на выходах 3 микросхем ИМС6, ИМСТ будет положительное напряжение, что соответствует числу 24.

Питание светодиодов, а через них транзисторных ключей, осуществляется: через транзистор VT 29. В его базу включен переключатель S 5 «Яркость». Если подвижный контакт 2 переключателя замкнут с контактом 1, то на базу тран-зистора подается напряжение +8,5 В, транзистор будет открыт, на его эмитте-ре по отношению к корпусу будет напряжение +7,9 В, что обеспечит макси-мальную яркость свечения светодиодоз. Для уменьшения яркости (что увели-чивает срок службы индикаторов) переключатель ставится в другое положение. На базу транзистора VT 29 через резистор R 65 подается напряжение около 7 В, что приведет к уменьшению выходного напряжения до 6,5 В и снижения яр-кости свечения индикаторов.

Для выключения индикации переключателем S 1 на эмиттеры транзисторе» VT 1 VT 27 подается корпус вместо положительного напряжения, поступавше-го через резистор 12

Первой конструкцией на цифровых ИС, изготовляемой радиолюбителями, являются, как правило, электронные часы. На ИС серии К155 можно собрать часы, самые разнообразные по своим схемам. Одна из самых простых схем приведена на рис.
Часы включают в себя кварцевый генератор на ИС DD1 и кварцевом резонаторе Z1 на частоту 100 кГц, делитель частоты с коэффициентом деления 10s (DD2 – DD6), счетчики секунд (DD7, DD8), минут (DD9, DD10) и часов (DD11 – DD12), а также не показанные на рис. 40 дешифраторы и индикаторы. Интегральные микросхемы DD7, DD9, DD11 (К155ИЕ2) имеют коэффициент пересчета 10, а в ИС DD8 и DD10 (К155ИЕ4) для получения коэффициента деления 6 используются лишь первые три триггера, что обеспечивает необходимый для дешифраторов код 1 – 2 – 4.
Для пересчета на 24 в счетчике часов выходы 8 микросхем DD11 и DD12 подключены ко входам R этих же микросхем. При достижении состояния 4 ИС DD11 и состояния 2 ИС DD12 на обоих входах R этих счетчиков формируется уровень логической 1, и они переходят в нулевое состояние.
Выходы счетчиков секунд, минут и часов подключены ко входам дешифраторов, выходы дешифраторов – к соответствующим электродам индикаторов. В часах могут быть использованы самые разнообразные индикаторы и соответствующие им дешифраторы.
Эффектно выглядят электронные часы, если индикация секунд производится на индикаторах меньшего размера, чем индикация часов и минут. В этом случае индикаторы секунд меньше раздражают глаза своим постоянным; переключением. Хорошо смотрятся часы с газоразрядными индикаторами часов и минут и небольшими полупроводниковыми индикаторами секунд красного свечения, установленными между индикаторами часов и минут.
Для подключения полупроводниковых семисегментных индикаторов могут использоваться интегральные микросхемы преобразователей кода 1 – 2 – 4 – 8 в код семисегментного индикатора К514ИД1 и К514ИД2. Цоколевка этих микросхем одинакова.

Интегральная микросхема К514ИД1 служит для подключения индикаторов с общим катодом и содержит ограничительные резисторы, обеспечивающие выходной ток около 5 мА. Электроды индикатора, рассчитанного на указанный ток, подключают к выходам микросхемы, а общий катод соединяют с общим проводом.

Литература — С.А.БИРЮКОВ

ЦИФРОВЫЕ УСТРОЙСТВА
НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

© Издательство «Радио и связь», 1984

  • Похожие статьи

Войти с помощью:

Случайные статьи
  • 16.11.2014

    Данный усилитель подойдет в качестве усилителя для звуковой карты компьютера, маленького радиоприемника. Максимальная мощность усилителя 2Вт. Он содержит минимум элементов и прост в настройке. Источник — http://www.techlib.com/electronics/audioamps.html

  • 06.10.2014

    Перегрузочная способность по входному сигналу 7,5В, при настройке желательно иметь вольтметр с дБ-шкалой, а сигнал подавать с синусоидального генератора, либо воспользоваться генератором Г3-110 с нормированным выходом. Резистором TR1 производим настройку уровня сигнала (регулировка коэф. усиления). Переключатель S1 меняет интенсивность свечения светодиодов. Элементная база R1-2=10Kohm C1=100uF 25V D1-19=LED 3 or 5mm …

  • 24.09.2014

    Качество фото отпечатков в своей основе зависит от правильной выдержки времени при фотопечати. Но при колебаниях напряжения сети в пределах 15% сила света лампы фотоувеличителя может меняться до 40%. Для обеспечения качественной фото печати при колебаниях напряжения сети необходимо автоматически корректировать выдержку. Устройство показанное на рисунке позволяет стабилизировать выдержку и …Подробнее… 19.03.2015

    На рисунке показана схема простого мигающего светодиода работающего от сетевого напряжения. Когда напряжение на конденсаторе С1 становится больше 32В (напряжение пробоя), симметричный динистор (diac) DO-35 открывается и светодиод загорается, дальше процесс поворотятся. Цикл всей цепи зависит от сопротивления R1 и емкости С1. При сборке схемы будьте внимательный, в схеме присутствует сетевое …Подробнее…

Часы на транзисторе

| Журнал Nuts & Volts


После десятилетий наблюдения за проектами и схемами, использующими все более сложные интегральные схемы, я жажду более простых времен. В подростковом возрасте я построил увлекательные и чудесные схемы, используя всего несколько транзисторов. Реле, управляемое моим фонариком, могло управлять зуммером; музыка с моего кассетного плеера играла на моем радио с двухтранзисторной схемой; мой усилитель мог управлять динамиком. Эти схемы были взяты из пыльных книг для хобби, найденных в моей местной библиотеке, с названиями вроде «29 транзисторных схем» или «электронные схемы для хобби».”

Транзисторные часы

Чтобы вернуться в те славные дни, я решил создать цифровые часы, используя только транзисторы в качестве активных элементов. После нескольких лет «работы» (это было больше похоже на игру) окончательное количество деталей составляет 194 транзистора, 566 диодов, 400 резисторов и 87 конденсаторов. Посмотрите на Рисунок 1 .

РИСУНОК 1. Тактовая частота транзистора .


В этой статье будут объяснены схемы как на логическом, так и на транзисторном уровнях.Пора начинать …

Общая картина

Рисунок 2 показывает проект на уровне функциональных блоков. Источник питания (внизу слева) выпрямляет и фильтрует входящие девять вольт переменного тока, преобразуя их в девять вольт постоянного тока для работы схемы и тактовой частоты 60 Гц. Затем предварительный делитель делит 60 Гц на 10 и шесть, в результате получается тактовая частота 1 Гц. Часы с частотой 2 Гц также подключены к переключателям установки времени.

РИСУНОК 2. Блок-схема верхнего уровня.


1 Гц, которая также соответствует одной секунде на такт импульса, управляет счетчиком деления на 10, выходной сигнал которого составляет 10 секунд на импульс. Четыре бита счетчика декодируются в сигнал «один из 10», который управляет семисегментным дисплеем, показывающим секунды. Старший бит этого счетчика запускает следующий счетчик в цепочке: счетчик деления на шесть, показывающий десятки секунд. Далее следует пара счетчиков: ÷ 6 и ÷ 10, показывающих минуты и десятки минут. Счетчик деления на 12 дополняет часы, показывая часы.

Вьетнамки

Сердцем этих часов является двухтранзисторный триггер, показанный на , рис. 3 . Бистабильная схема на рис. 4 будет использоваться для объяснения работы триггера.

РИСУНОК 3. Toggle Flip-Flop.


РИСУНОК 4. Бистабильная схема.


Предположим, что транзистор Q1 находится в выключенном состоянии. Коллектор Q1 имеет высокий импеданс, поэтому R1 подтягивает выход A к высокому уровню.Ток протекает через R2 (ток B) в базу Q2, включая Q2, так что Q2 проводит и тянет выход B на землю. Ток не течет через R3 (ток A), поэтому Q1 выключен (что является исходным предполагаемым состоянием). Это одно из двух стабильных условий. Другое стабильное состояние – Q1 включен и Q2 выключен. Обратите внимание, что они оба не могут быть включены и оба не могут быть выключены.

Пора переключать!

Предположим предыдущее состояние с выключенным Q1 и включенным Q2. Выход A высокий; ток B течет в базу Q2, поэтому Q2 включен, а выход B низкий.Представьте, что ток B каким-то образом прерывается на мгновение. Q2 выключится, выход B начнет повышаться с помощью R4, и ток A начнет течь через R3 и C2. Q1 включится, на выходе A будет низкий уровень. Триггер «перевернулся» в другое состояние. Другими словами, он «переключился».

Снова рассмотрим Рисунок 3 . Два диода, соединяющие базы со входом, позволяют короткому отрицательному импульсу на мгновение «украсть» базовый ток на заднем фронте входа, вызывая переключение триггера.

Счетчики

Часы состоят из набора счетчиков. Счетчики, образованные цепочкой из n триггеров, дают двоичные счетчики пульсаций, способные делиться на 2n. Счетчик с четырьмя триггерами, естественно, считает от 0 до 15. Чтобы он считал от 0 до 9, требуется некоторая управляющая логика на входах переключения триггеров. Рисунок 5 показывает четыре триггера, логику и внутренние часы, управляющие каждым триггером для создания счетчика деления на 10.

РИСУНОК 5. Логика деления на 10.


Обратите внимание, что на счетчике 9 тактовая частота второго триггера маскируется логикой, заставляющей состояние 9 переходить в состояние 0, а не в состояние 10. Одним из недостатков этого подхода является то, что если счетчик переходит в состояние выше 9, чтобы вернуться в нужное русло, требуется несколько секунд.

Рисунок 6 – схема логической схемы транзистора счетчика деления на 10; обратите внимание на два затвора ИЛИ диода и три затвора И-ИЛИ на транзисторе.

РИСУНОК 6. Деление на 10 на транзисторах.


Декодеры

Выходные данные счетчиков декодируются в один из n, что означает, что счетчик деления на шесть управляет одной из шести строк; счетчик декад управляет одной из 10 линий; а счетчик часов ведет одну из 12 строк. Для каждого числового дисплея декодированные линии управляют диодной матрицей, которая реализует проводную функцию ИЛИ. На рисунках 7 и 8 показан семисегментный декодер в действии.

РИСУНОК 7. Семисегментный декодер.


РИСУНОК 8. Семисегментный декодер .


60 Гц Извлечение

Эти часы используют сигнал 60 Гц от энергетической компании в качестве временной основы. К сожалению, в сигнале мощности есть всплески от включения и выключения оборудования, и эти всплески могут вызвать срабатывание счетчиков и ошибочно увеличить время, если им разрешено распространиться на счетчики. Предыдущие попытки разместить аналоговый RC-фильтр нижних частот на частоте 60 Гц не предотвратили ошибочное опережение времени для всех скачков мощности.Я разработал фильтр нижних частот «кирпичной стены» с отсечкой около 100 Гц. Логика показана на рис. 9 , а имплантация транзистора – на рис. 10 .

РИСУНОК 9. Логика извлечения, 60 Гц.


РИСУНОК 10. Цепь экстракции, 60 Гц


Короче говоря, синусоидальная волна 60 Гц возводится в квадрат, импульс формируется с одного фронта, импульс разряжает конденсатор, который заряжается с расчетной скоростью, и напряжение конденсатора сравнивается с уровнем 60 Гц.Смысл всей этой сложной болтовни в том, что когда шумовой всплеск вызывает дополнительный импульс, он просто разряжает конденсатор и вызывает задержку фронта на выходе 60 Гц, так что шум влияет на рабочий цикл, а не на частоту. Вполне возможно, что длительный всплеск шума может удалить один цикл, но эта редкая вероятность имеет почти незаметный эффект потери 1/60 секунды. Имплантация транзистора на рисунке 10 показывает два четырехтранзисторных компаратора с гистерезисом и схему импульсного разрядника.

Строительство часов

В то время как вы можете построить эти часы на перфокартах, подключив отдельные компоненты, для более чем 2700 подключений вам потребуется – или, по крайней мере, вы должны. Рекомендуется построить часы с использованием доступной печатной платы. Полный комплект, включая плату, доступен в интернет-магазине Nuts & Volts . Интересным аспектом печатной платы является то, что руководство по размещению деталей не требуется – все напечатано на печатной плате.Проверьте стоимость деталей, показанных на рисунках , рисунках 11, и , 12, . Инструкции по сборке и советы по отладке находятся в онлайн-руководстве, расположенном в файле для загрузки ниже.

РИСУНОК 11. Часть печатной платы, показывающая шелкографию.


РИСУНОК 12. Загруженная секция.


Заключение

Надеюсь, вы узнали кое-что о нисходящем проектировании, переходе от блок-схемы к транзисторам, а также немного о счетчиках и триггерах.Если вы хотите добавить курс пайки, подумайте о постройке часов. Получившиеся в результате настенные часы станут отличным напоминанием о вашем времени и усилиях. NV


Коды резисторов.

Коды конденсаторов.


ПЕРЕЧЕНЬ ДЕТАЛЕЙ

Деталь Кол-во Описание
220 пФ 75 50 В PolyCap
0.1 мкФ 15 50 В PolyCap
0,01 мкФ 1 50 В PolyCap
0,01 мкФ 2 50 В PolyCap
6800 мкФ 1 Электролитический 25 Вольт
330 41 Резистор 1/4 Вт
1K 1 Резистор 1/4 Вт
10 К 224 Резистор 1/4 Вт
100 К 111 Резистор 1/4 Вт
1 мес. 2 Резистор 1/4 Вт
2N3904 165 NPN Транзистор
2N3906 17 PNP транзистор
1N4148 556 сигнальный диод
1N4002 4 Силовой диод
7 сегментов 6 Общий анод 0.8 дюймов LSD8161-11
Одиночный светодиод 4 3 мм красный светодиод
TermBlock 1 2 клеммы, шаг 0,1 дюйма
Переключатель 2 6 мм крепление для ПК
Стенка xfmr 1 Трансформатор переменного тока 9 В

Загрузки

Схема транзисторных часов


Руководство по сборке с руководством по поиску и устранению неисправностей
Часто задаваемые вопросы

Еще одни (дискретные) часы | Hackaday.io

Новый генератор работает хорошо, но очень чувствителен к напряжению блока питания. Изменение 0,1 В требует перенастройки триммеров.

Для сохранения точности частоты необходим очень хороший регулятор напряжения. Это единственное исключение из правила «без IC», которое я установил.


Первоначально я выбрал 2,5 В, потому что есть запас 0,5 В от входного источника питания 3 В, и его легко получить с помощью шунтирующего регулятора LM4041-ADJ (пара резисторов с одинаковыми значениями увеличивает 1.От 25 В до 2,5 В). Цель состоит в том, чтобы обеспечить стабильное, независимое от температуры напряжение для генератора, чтобы уменьшить долговременный дрейф. Но на практике это не так просто.

LM4041 требует 60 мкА и потребляет больше от шунтирующей операции. Это становится смешно, потому что генератор потребляет менее 40 мкА. Общий, энергопотребление увеличено более чем вдвое!


Одним из решений является использование стабилизатора напряжения в SOT23, например, хотя эти микросхемы предназначены для обработки большего тока, а абсолютная точность напряжения – это вторая мысль.Вместо этого я должен использовать опорное напряжение micropower 2,5 В!

Покопавшись в моей старой коллекции образцов (они были собраны, чтобы поэкспериментировать с точностью вольтметра), я обнаружил следующие части:

У меня также есть MAX6126, но это версия 4,096 В, и этот чип потребляет около 380 мкА.

Говоря о токе, 3 первых эталона имеют номинал около 100 мкА, что больше, чем у одного LM4041, но без проблем с расчетом последовательного резистора LM4041, который рискует потреблять еще больший ток при неправильном выборе, так что это эквивалентно.Нет риска потери регулирования, если входное напряжение упадет до опасно низкого уровня, а потребляемый ток будет почти постоянным.

MAX6002 имеет температуру 100 ppm / ° C, что слишком много, несмотря на самые низкие потребности в токе (45 мкА). У меня всего 2 образца, поэтому я не могу далеко уйти, и это исключено. То же самое для старшего брата MAX6102 (остался только 1 образец) с немного большей стабильностью, но также с большим током (90-120 мкА)

MCP1525 потребляет около 100 мкА (типично 90 мкА в соответствии с таблицей данных, около 80 мкА при 3 В при 25 мА). ° С).Темпко лучше (27 ppm тип. При полном диапазоне температур), и я получил 5 образцов, я могу пойти дальше, чем с Maxim.

В REF3125 осталось больше образцов (7) и он имеет лучшие характеристики дрейфа (15 ppm / ° C макс, 5 ppm при температуре окружающей среды). Важны и шумовые характеристики: 48 мкВ RMS от f = 10 Гц до 10 кГц, но об этом мы поговорим позже. Заявленный ток покоя составляет около 100 мкА (тип. При 25 ° C). Звучит отлично.

Теперь у более свежего REF3225 осталось 10 образцов, возможно потому, что раньше я мог бояться пакета SOT23-6.Он по-прежнему потребляет около 100 мкА, но обычно дрейф составляет 4 ppm / ° C. Это стабильно! Похоже, это победитель.

Если у вас есть лучшие предложения, свяжитесь со мной и / или пришлите мне образцы!


Другое дело – шум. Источники напряжения шумные . Я усвоил это на собственном горьком опыте для аудиопроекта, но здесь я не делаю УКВ-генератор со сверхнизким джиттером. Пока частота стабильна в течение длительного времени, я в порядке.

Итак, фильтровать или нет? Источник питания / вход должен быть отфильтрован с помощью ЖК-ячейки, чтобы помехи переключения не влияли на часы.Однако на выходе получается что-то другое. У меня есть соблазн перефильтровать его, но это, возможно, не самый эффективный подход. Шум может фактически помочь генератору запускаться быстрее, а опорный сигнал может реагировать на изменения нагрузки, что действительно может помочь.

Глядя на Рис.17 и Рис.18 таблицы данных REF3225, я хочу добавить небольшую емкостную нагрузку, чтобы сделать достаточно длинный «удар», который помогает при запуске.

Напротив, без конденсатора изменение нагрузки приведет к очень короткому всплеску, который не приведет к отскоку кварца.

Я думаю об этом, потому что цель – ускорить запуск, если нужно, с помощью внешнего устройства или кнопки. Мне еще предстоит поэкспериментировать …

Подробнее ”

Clock Pulse – обзор

9.1 Введение

Некоторые последовательные схемы управляются событиями, а не последовательностью тактовых импульсов. Например, цифровая тревога будет активирована событием, вызвавшим тревогу.В этом примере это событие управляет логикой, и поскольку события часто происходят нерегулярно, такая схема называется асинхронной последовательной схемой или, что более важно, схемой, управляемой событиями.

Асинхронные схемы также называют схемами основного режима. Основная характеристика схемы этого типа состоит в том, что только один вход может изменяться в любой момент времени. Одновременные изменения запрещены, поскольку, действительно, это изменения, которые могут иметь место до того, как схема достигнет стабильного состояния после предыдущего изменения.Это явно отличается от поведения синхронной последовательной схемы, где входы, изменяющиеся в произвольное время, разрешены, а изменения состояния активируются повторяющимся тактовым сигналом.

Асинхронная схема может существовать в двух условиях: стабильная и нестабильная. Общее состояние схемы в данный момент времени определяется логическими значениями входов и текущим состоянием схемы. Если следующее состояние совпадает с текущим, цепь находится в стабильном состоянии.Если, однако, вход изменяется, схема может перейти в нестабильное состояние, и через некоторое время переменные состояния примут свои новые значения, так что следующее состояние станет текущим состоянием, и стабильность будет восстановлена.

При проектировании асинхронных цепей проектировщик должен исключить возможность возникновения статических опасностей, динамических опасностей, существенных опасностей и скачков, чтобы избежать неисправности схемы. Этих проблем, за исключением статических опасностей, не существует в синхронных схемах, поскольку они всегда предназначены для достижения установившегося состояния до прихода следующего тактового импульса.Принимая во внимание трудности проектирования, возможно, главное преимущество асинхронных схем состоит в том, что они могут работать со своей собственной скоростью и не ограничены во времени, налагаемом на них повторяющимся синхросигналом.

Транзисторные двоичные часы | электроника

Я начал с гаджета и идеи.

Гаджет представлял собой большую (~ 12 x 12 дюймов) макетную плату, которую я купил когда-то, когда был ребенком. Он имел следы для 112 14-контактных DIP-розеток, каждый из которых имел по два отверстия для проводки.У него также были действительно большие толстые шины для блоков питания. У меня было два таких, и я хотел создать что-то крутое с мигающими лампочками, которое можно было бы повесить на стену.

Идея была основана на двоичных цифровых часах, которые я видел в доме друга. Мне нужны отдельные светодиоды для каждого бита для часов (1-12 => 4 бит), минут (0-59 => 6 бит) и секунд (0-59 => 6 бит). Я также хотел сделать это с дискретными транзисторами или как можно ближе к дискретным транзисторам; то есть никаких логических микросхем.

Для каждого бита мне нужен был один T-триггер – тот, который можно было устанавливать или сбрасывать, и имел «переключающий» вход, который заставлял бы его менять состояние с помощью импульса. Еще на нем пришлось погонять красивый яркий светодиод. Для этого мне понадобится много транзисторов. К счастью, у меня был большой запас массивов 5-NPN-транзисторов CA3045.

Я поискал подходящую схему и нашел отличную книгу полезных схем: «Электронные счетные схемы» Дж. Б. Дэнса. Эта конкретная схема, названная «Экономичная двоичная схема», выглядела бы наиболее многообещающей, если бы я поменял полярность источника питания, чтобы приспособить свои NPN (вместо PNP) транзисторы.

После долгих экспериментов с номиналами резисторов и конденсаторов я остановился на этой схеме для каждого триггера. Я буду использовать аббревиатуру прямоугольника в последующих схемах.

Затем мне нужно было связать их вместе и настроить для правильного сброса. Это связано с тем, что счетчики секунд и минут могут рассчитывать до 63, но мне нужно, чтобы они сбрасывались с 59 на 0, а счетчик часов должен сбрасываться с 11 на 1.

Первые секунды и минуты:

(Обратите внимание, что, хотя на рисунке указано «1 Гц» для основных часов, на самом деле это 2 Гц, так как отображение единиц в секундах является выходным сигналом триггера, поэтому его частота мигания составляет 1/2 входной частоты.Я не мог найти исходные файлы, чтобы исправить их; извините.)

Диоды и транзисторы сбрасывают счетчик, как только он достигает 60 (двоичное 111100). Если какой-либо из не-Q равен 1, то транзистор включен и счетчики не сброшены. Когда все не-Q равны 0 (когда соответствующие биты равны 1), транзистор выключен и счетчики сброшены. Таким образом, он считает от 0 до 59, а следующий счет на мгновение устанавливает его равным 60, вызывая очистку, и сразу же очистка возвращается к 0.

Я также добавил центральный переключатель SPDT для выбора между источником 1 Гц (для установки часов), отсутствием соединения (чтобы приостановить часы, ожидая, пока другие части не догонят его), и чистой строкой из предыдущей строки (чтобы запустить часы).

Затем часы – это сложно, так как вам нужно сбросить до 1, а не на 0, когда счетчик достигает 13. Триггер «1 часов» имеет вход «set» вместо «clear» – это та же схема, только подключен к Q2 в триггере.

При создании требовалось два CA3045 для каждого триггера. Вот как они были подключены на макетной плате:

И по состоянию на январь 2016 года это работает! На этом видео показано, как это происходит с 11:13:44 до 11:14:02.

Хорошо держит время. Пришлось только сменить на летнее время и из-за одного-двух глюков.

Часы

I. Проект.

Это произведение искусства под простым названием « Часы » не только выполняет то, что должно делать “отсчет времени” Но также и визуально экстраординарный.То, что вы видите, – это не только время, когда показывает, но все электронные части, которые вы найдете внутри микрочипа наручных часов, если вы обычно смотрите через микроскоп.

Что еще более необычно, так это то, что был изготовлен вручную. Тысячи частей, составляющих они спаяны в 3-х мерную структуру. Там не задействована электронная плата. Части связаны, чтобы удерживать себя и выявить сложность схемы через твердый проводка, которая соединяет их вместе, что дает визуально потрясающий результат.Симметрия и плотность его частей и взаимосвязей была единообразной по всей трассе. Каждый часть, из которой состоят часы, имеет свое предназначение. Если вы решите отключить одну часть схемы, часы больше не работают должным образом.

«Часы» имеют цифровые импульсы, протекающие внутри каждого провода и каждого одиночная часть. Эти синхронизированные импульсы, все разумно контролируется и проходит через каждую цепь, является двоичным “танец” сотен приходящих и уходящих битов информации из одного раздела в другой.Все работают в унисон, чтобы отображать течение времени.

II. Внешний вид.

«Часы» заключены в стеклянную раму и спроектированы для крепления на стене, как фоторамку.

На часах нет физических “кнопок” для отрегулируйте время. Поскольку стекло покрывает все произведение искусства, не было возможности отрегулировать время с помощью кнопок, что было просто решено путем наведения изящного магнита ручной работы над определенными точками над стеклянной рамой.Электро- магнитные микровыключатели внутри рамки реагируют на магнит и отрегулируйте время. Магнит для регулировки времени имеет хромированное покрытие. кончик ручки и ее магнитная сторона покрыты бархатом.

Устройство питается от внешнего адаптера 12 В постоянного тока, подключенного на обратной стороне рамы. Провода питания не видны на все в дизайне.

III. Внутренняя работа.

Художественная сложность часов ценится больше. как больше понимают об этом.Схема чрезвычайно сложный. Он состоит из скрытых секций, которые сложно распознать, потому что дизайн кажется единообразным. Чтобы вы поняли, почему все эти части необходимы, вот краткий обзор того, как этот шедевр работает.

Ссылка на часы, другими словами, сердцебиение этого часы идут от розетки переменного тока. Здесь, в Северной Америке, на розетки подается 120 Вольт, 60 циклов в секунду, называемых 60 Гц. Этот сигнал 60 Гц принимается часами и делится на шестьдесят, чтобы произвести импульс в 1 герц, что составляет один импульс в секунду.Та же схема, которая выполняет это деление, также используется для анимации кольца светодиодных фонарей вокруг цифры часов. Импульс в 1 Гц затем записывается на счетчик секунд, затем до счетчика десятков секунд, затем до минут и т. д. на, до десятков часов.

Делитель также состоит из нескольких частей, называемых счетчиками. и декодеры BCD. Счетчик можно использовать как разделитель, так как он может генерировать импульс, когда заданное количество импульсов подсчитано. Счетчик деления на 60 просто подсчитывает поступающих импульсов до 60 и генерирует импульс.Затем он сам себя сбрасывает и снова начинает отсчет.

Поскольку цифровые счетчики считают двоичными, то есть единицами и нулями, нам нужно преобразовать это в десятичное, что более полезно. Это работа декодеров BCD.

И, наконец, у нас есть схемы кодировщика сегментов. Их функция заключается в преобразовании десятичного представления времени от преобразователей BCD к визуальному представлению времени, который затем отображается на цифрах.

****

Впервые вы действительно можете увидеть из чего на самом деле состоят цифровые часы через красивое стекло фоторамка.

Как сделать электронные цифровые часы с помощью AT89C2051

Электронные цифровые часы – это обычно часы, которые представляют время в цифровом виде, в отличие от аналоговых часов, которые поставляются с механической установкой для отображения моментов времени. Цифровые часы нашли свое применение почти во всех сферах нашей жизни и используются во многих местах, таких как дома, больницы, школы, офисы и т. Д. Итак, в этой статье мы разработаем 4-битные электронные цифровые часы. с помощью контроллера Atmel AT89C2051.

Atmel AT89C2051 – это полностью статический КМОП-контроллер 24 МГц на базе 8051 с 15 линиями ввода-вывода, 2 таймерами / счетчиками, 6 прерываниями / 2 уровнями приоритета, аналоговым компаратором, выходами светодиодного привода, UART, двухуровневой программной блокировкой памяти, 2K Байт флэш-памяти, 128 байт встроенной оперативной памяти. Вы можете сделать эту схему на печатной плате, чтобы заказать печатные платы на заказ по удивительно низким ценам – 2 доллара за 5 печатных плат. Посетите: www.jlcpcb.com

Компоненты оборудования

Ниже приведены компоненты, необходимые для изготовления электронных цифровых часов DIT

. [inaritcle_1] Принципиальная схема

ступеней

Рабочее объяснение

Принцип работы этой схемы следующий. При подаче питания на схему через источник постоянного тока 5 В, выход коллектора через транзисторы PNP поступает на контакт P3 двунаправленного ввода / вывода.3. Это также устанавливает часы на 12:59 в начале каждого экземпляра. Двунаправленный вывод P1.0 – P1.7 служит входом для 7-сегментного дисплея, подключенного последовательно к блоку подтягивающих резисторов 1K.

Переключатели S1 и S2 могут использоваться для установки времени и будильника цифровых часов. схема требует непрерывного входного сигнала CLK с частотой 1 Гц для правильной работы 8051 IC, который обеспечивается с помощью кварцевого генератора, подключенного между X! & X2 вместе с конденсаторами 30 пФ.

Приложения

  • Они работают как важные часы в таких местах, как школы, библиотеки, офисы, дома, медицинские учреждения и т. Д.
  • Он также используется для установки таймеров и сигналов тревоги для важных событий.

См. Также: Схема простого таймера | Цепь указателя поворота велосипеда | Схема тестера микросхем 555

Двухтранзисторный атомный стандарт частоты

+

Двухтранзисторный Атомный эталон частоты

(см. Также версию CD4069)

Довольно амбициозное название, не правда ли? Что ж, следуйте рассуждениям: если вы уменьшите напряжение на двухтранзисторном мигалке до 1.5 вольт, усиление контура падает слишком низко для продолжительное мигание. (См. Схему ниже.) Но эта схема очень регенеративная и требуется лишь очень крошечный толчок, чтобы все заработало. Добавив короткий провод, всего несколько дюймов, к база PNP, цепь будет запущена в колебание электрическим полем переменного тока от электрическая мощность (50 или 60 Гц в большинстве мест). Если синхронизация резистора и конденсатора выбраны значения для колебаний около частоты линии, цепь будет мигать на эта скорость в идеальной синхронности.Теперь часть “Атомного эталона частоты”: частота линии является достаточно точной в любой момент времени – возможно, в пределах нескольких сотен PPM – но долгосрочная ошибка сохраняется на очень низком уровне, сравнивая частоту с национальными. стандарты времени, которые, конечно же, основаны на множестве элементарных стандартов! Итак, если вы разорвете генератор из настенных часов с батарейным питанием и замените его этой схемой, часы не будут показывать долговременную ошибку. Большинство настенных генераторов часов генерируют импульсы в один или два герца, чтобы управлять небольшим соленоидом, и эту схему можно настроить на работать на этой более низкой частоте за счет увеличения временного резистора.Низкая частота колебания будут синхронизированы с частотой сети. Регулировка может быть сложной и должен выполняться с установленной схемой в ее окончательном месте. Схема будет иметь склонность к переходу к разным коэффициентам деления, если они не отрегулированы идеально. Когда-то это работает, ничего нельзя изменить, включая длину антенны, иначе цепь будет прыгать делители. (Делите на 59 вместо 60, например.) Было бы более надежно добавить микросхему делителя частоты CMOS, чтобы получить более низкую частоту, но опытный любитель может заставить его работать, и с ним довольно весело играть.Регулировка схемы для получения линии частота без деления гораздо менее критична и более терпима к изменениям антенны, и т. д. Схема может использоваться даже для генерации кратных нечетных значений частоты сети. но регулировка довольно чувствительна.

Приблизительные значения R:
500к для 1 PPS
28k для 10 PPS
4k для 60 PPS

Используйте потенциометр для
экспериментирование или просто
окончательная регулировка.Это ckt.
может быть слишком продвинутым
для новичка так как это
требует небольшой “настройки”
опыт.

В показанной схеме используется пленочный конденсатор емкостью 4 мкФ, но другие значения будут работать, если синхронизация резистор меняется обратно пропорционально. Например, для конденсатора емкостью 1 мкФ потребуется резистор примерно в 4 раза больше. Если вы хотите смоделировать эту схему с помощью программы Spice, подключите источник напряжения 50 или 60 Гц, установленный примерно на 100 мВ, резистор 100 МОм и 100 Все конденсаторы пФ последовательно между землей и базой PNP для имитации электрическое поле.Для “реального” тестирования счетчик периодов трудно превзойти, но осциллограф с линейным запуском тоже подойдет.

Показана дополнительная цепь бустера, если требуются сильноточные импульсы, например, когда управляя соленоидом. Если импульс слишком короткий, добавьте резистор 10 кОм в базу NPN. Потребуется некоторая подстройка частоты.

Читатель спросил, есть ли другой способ получить частоту линии для тактирующий маленький микропроцессор.Я решил попробовать чрезвычайно высокий импеданс буферный усилитель, использующий резистор необычно высокого номинала и электрометр JFET:

Обычная неоновая лампа, такая как NE-2, может заменить резистор на 13 гигом. Они содержат крошечный кусочек радиоактивного материала, который делает неон слегка проводящим.

резистор стока выбран таким образом, чтобы он давал от 2,5 до 3 вольт на сток без подключенной антенны, и значение будет зависеть от характеристики конкретного полевого транзистора.Моему полевому транзистору требовалось около 68к. Слишком низкое значение и выходной сигнал будет слишком положительным и слишком высоким, а форма волны не достигнет 5 вольт.

Антенна представляет собой изолированный провод длиной около 5 дюймов в длину (13 см). Длина не критична, но более длинный провод даст сигнал большего размера, если необходимо. Питание подключается к верхней части вертикального резистора, сигнал снимается с нижней части этого резистора, а с левой стороны нижний резистор заземлен.

Корпус и вентиль этой металлической банки FET соединены вместе, но большинство электрометров JFET находится в трехпроводном корпусе TO92.

Форма волны огромна, если держать схему над рабочим столом:

Эта форма волны должна подходить для подачи непосредственно на высокий вход микропроцессора импеданса. Ноль вольт находится внизу экрана, поэтому форма волны достигает примерно 1 вольт, а верхняя часть зажимы формы сигнала чуть выше 5 вольт, где был установлен источник питания.Этот сигнал может управлять одним CMOS-затвором для создания прямоугольной волны с низким импедансом. В Схема отлично работает с резистором меньшего номинала, но чем меньше резистор, тем длиннее должна быть антенна для достижения того же размера сигнала. Неоновая лампа вместо затвора резистор работает отлично.

См. Также версию CMOS.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *