Содержание

Схема электрическая стабилизатора

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% .

Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора — использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе.

Необходимая и достаточная скорость вращения – около 1 оборота за 10 — 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже: 

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом

Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из — за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки ( в пределах 250 … 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно — трансформаторные стабилизаторы

Релейно — трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 … 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе.

При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле — схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы.
Ниже приведена принципиальная схема релейно — трансформаторного стабилизатора:

Схема цифрового релейно — трансформаторного стабилизатора на электромагнитных реле

Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников — так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора.

При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.

Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется , a VT2 — откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет. ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Схема стабилизатора напряжения – простой расчёт

Чаще всего радиотехнические устройства для своего функционирования нуждаются в стабильном напряжении, не зависящем от изменений сетевого питания и от тока нагрузки. Для решения этих задач используются компенсационные и параметрические устройства стабилизации.

Параметрический стабилизатор

Его принцип работы заключается в свойствах полупроводниковых приборов. Вольтамперная характеристика полупроводника – стабилитрона показана на графике.

Во время включения стабилитрона свойства подобны характеристике простого диода на основе кремния. Если стабилитрон включить в обратном направлении, то электрический ток сначала будет расти медленно, но при достижении некоторой величины напряжения наступает пробой. Это режим, когда малый прирост напряжения создает большой ток стабилитрона. Пробойное напряжение называют напряжением стабилизации. Во избежание выхода из строя стабилитрона, течение тока ограничивают сопротивлением. При колебании тока стабилитрона от наименьшего до наибольшего значения, напряжение не изменяется.

На схеме показан делитель напряжения, который состоит из балластного сопротивления и стабилитрона. К нему параллельно подключена нагрузка. Во время изменения величины питания меняется и ток резистора. Стабилитрон берет изменения на себя: меняется ток, а напряжение остается постоянным. При изменении резистора нагрузки ток изменится, а напряжение останется постоянным.

Компенсационный стабилизатор

Прибор, рассмотренный ранее очень простой по конструкции, но дает возможность подключать питание прибора с током, который не превышает наибольшего тока стабилитрона. Вследствие этого используют приборы, стабилизирующие напряжение, и получившие название компенсационных. Они состоят из двух видов: параллельные и последовательные.

Называется прибор по методу подключения элементу регулировки. Обычно используются компенсационные стабилизаторы, относящиеся к последовательному виду. Его схема:

Элементом регулировки выступает транзистор, соединенный последовательно с нагрузкой. Напряжение выхода равняется разности значения стабилитрона и эмиттера, которое составляет несколько долей вольта, поэтому считается, что выходное напряжение равно стабилизирующему напряжению.

Рассмотренные приборы обоих типов имеют недостатки: невозможно получить точную величину напряжения выхода и производить регулировку во время работы. Если нужно создать возможность регулирования, то стабилизатор компенсационного вида изготавливают по схеме:

В этом приборе регулировка осуществляется транзистором. Основное напряжение выдает стабилитрон. Если напряжение выхода повышается, база транзистора получается отрицательной в отличие от эмиттера, транзистор откроется на большую величину и ток возрастет. Вследствие этого, напряжение отрицательного значения на коллекторе станет ниже, так же как и на транзисторе. Второй транзистор закроется, его сопротивление повысится, напряжение выводов повысится. Это приводит к снижению напряжения выхода и возвращению к бывшему значению.

При снижении напряжения выхода проходят подобные процессы. Отрегулировать точное напряжение выхода можно резистором настройки.

Стабилизаторы на микросхемах

Такие устройства в интегральном варианте имею повышенные характеристики параметров и свойств, которые отличаются от подобных приборов на полупроводниках. Также они обладают повышенной надежностью, небольшими габаритами и весом, а также небольшой стоимостью.

Последовательный стабилизатор

  • 1 – источник напряжения;
  • 2 – Элемент регулировки;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – определитель напряжения выхода;
  • 6 – сопротивление нагрузки.

Элемент регулировки выступает в качестве изменяемого сопротивления, подключенного по последовательной схеме с нагрузкой. При колебании напряжения меняется сопротивление элемента регулировки так, что происходит компенсация таких колебаний. Воздействие на элемент регулировки производится по обратной связи, которая содержит элемент управления, источник основного напряжения и измеритель напряжения. Этот измеритель является потенциометром, с которого приходит часть напряжения выхода.

Обратная связь регулирует напряжение выхода, использующееся для нагрузки, напряжение выхода потенциометра становится равным основному напряжению. Колебания напряжения от основного создает некоторое падение напряжения на регулировке. Вследствие этого, измеряющим элементом в определенных границах можно осуществлять регулировку напряжения выхода. Если стабилизатор планируется изготовить на определенную величину напряжения, то измеряющий элемент создается внутри микросхемы с компенсацией температуры. При наличии большого интервала напряжения выхода, измеряющий элемент выполняется за микросхемой.

Параллельный стабилизатор

  • 1 – источник напряжения;
  • 2 –элемент регулирующий;
  • 3 – усилитель;
  • 4 – источник основного напряжения;
  • 5 – измерительный элемент;
  • 6 – сопротивление нагрузки.

Если сравнить схемы стабилизаторов, то прибор последовательного вида имеет повышенный КПД при неполной загрузке. Прибор параллельного вида расходует неизменную мощность от источника и выдает ее на элемент регулировки и нагрузку. Стабилизаторы параллельные рекомендуется использовать при неизменных нагрузках при полной загруженности. Стабилизатор параллельный не создает опасности при КЗ, последовательный вид при холостом ходе. При неизменной нагрузке оба прибора создают высокий КПД.

Стабилизатор на микросхеме с 3-мя выводами

Инновационные варианты схем стабилизаторов последовательного вида выполнены на 3-выводной микросхеме. Вследствие того, что есть всего лишь три вывода, их проще использовать в практическом применении, так как они вытесняют остальные виды стабилизаторов в интервале 0,1-3 ампера.

  1. U вх – необработанное напряжение входа;
  2. U вых –напряжение выхода.

Можно не использовать емкости С1 и С2, однако они позволяют оптимизировать свойства стабилизатора. Емкость С1 применяется для создание стабильности системы, емкость С2 нужна по той причине, что внезапное повышение нагрузки нельзя отследить стабилизатором. В таком случае поддержка тока осуществляется емкостью С2. Практически часто применяются микросхемы серии 7900 от компании Моторола, которые стабилизируют положительную величину напряжения, а 7900 – величину со знаком минус.

Микросхема имеет вид:

Для увеличения надежности и создания охлаждения стабилизатор монтируют на радиатор.

Стабилизаторы на транзисторах

На 1-м рисунке схема на транзисторе 2SC1061.

На выходе прибора получают 12 вольт, на напряжение выхода зависит прямо от напряжения стабилитрона. Наибольший допустимый ток 1 ампер.

При применении транзистора 2N 3055 наибольший допускаемый ток выхода можно повысить до 2 ампер. На 2-м рисунке схема стабилизатора на транзисторе 2N 3055, напряжение выхода, как и на рисунке 1 зависит от напряжения стабилитрона.

  • 6 В — напряжение выхода, R1=330, VD=6,6 вольт
  • 7,5 В — напряжение выхода, R1=270, VD = 8,2 вольт
  • 9 В — напряжение выхода, R1=180, Vd=10

На 3-м рисунке – адаптер для автомобиля – аккумуляторное напряжение в автомобиле равно 12 В. Для создания напряжения меньшего значения применяют такую схему.

схема, устройство и принцип действия

В любой сети напряжение не является стабильным и постоянно меняется. Зависит это в первую очередь от потребления электроэнергии. Таким образом, подключая приборы в розетку, можно значительно уменьшить напряжение в сети. В среднем отклонение составляет 10 %. Многие устройства, которые работают от электричества, рассчитаны на незначительные изменения. Однако большие колебания приводят к перегрузкам трансформаторов.

Как устроен стабилизатор?

Основным элементом стабилизатора принято считать трансформатор. Через переменную цепь он соединяется с диодами. В некоторых системах их имеется более пяти единиц. В результате они образуют мост в стабилизаторе. За диодами располагается транзистор, за которым устанавливается регулятор. Дополнительно в стабилизаторах имеются конденсаторы. Выключение автоматики осуществляется при помощи механизма замыкания.

Устранение помех

Принцип работы стабилизаторов построен на методе обратной связи. На первом этапе напряжение подается на трансформатор. Если его предельное значение превышает норму, то в работу вступает диод. Соединен он напрямую с транзистором по цепи. Если рассматривать систему переменного тока, то напряжение дополнительно фильтруется. В данном случае конденсатор исполняет роль преобразователя.

После того как ток пройдет резистор, он вновь возвращается на трансформатор. В результате номинальная величина нагрузки изменяется. Для устойчивости процесса в сети имеется автоматика. Благодаря ей конденсаторы не перегреваются в коллекторной цепи. На выходе сетевой ток проходит по обмотке через другой фильтр. В конечном счете напряжение становится выпрямленным.

Особенности сетевых стабилизаторов

Принципиальная схема стабилизатора напряжения данного типа представляет собой набор транзисторов, а также диодов. В свою очередь механизм замыкания в ней отсутствует. Регуляторы при этом имеются обычного типа. В некоторых моделях дополнительно устанавливается система индикации.

Она способна показать мощность скачков в сети. По чувствительности модели довольно сильно отличаются. Конденсаторы, как правило, в цепи имеются компенсационного типа. Система защиты у них отсутствует.

Устройства моделей с регулятором

Для холодильного оборудования востребованным является регулируемый стабилизатор напряжения. Схема его подразумевает возможность настройки прибора перед началом использования. В данном случае это помогает в устранении высокочастотных помех. В свою очередь электромагнитное поле проблем для резисторов не представляет.

Конденсаторы также включаются в регулируемый стабилизатор напряжения. Схема его не обходится без транзисторных мостов, которые соединяются между собой по коллекторной цепочке. Непосредственно регуляторы могут устанавливаться различных модификаций. Многое в данном случае зависит от предельного напряжения. Дополнительно учитывается тип трансформатора, который имеется в стабилизаторе.

Стабилизаторы “Ресанта”

Схема стабилизатора напряжения “Ресанта” представляет собой набор транзисторов, которые взаимодействуют между собой по коллектору. Для охлаждения системы имеется вентилятор. С высокочастотными перегрузками в системе справляется конденсатор компенсационного типа.

Также схема стабилизатора напряжения “Ресанта” включает в себя диодные мосты. Регуляторы во многих моделях устанавливаются обычные. Ограничения по нагрузке у стабилизаторов “Ресанта” есть. В целом помехи ими воспринимаются все. К недостаткам следует отнести высокую шумность трансформаторов.

Схема моделей с напряжением 220 В

Схема стабилизатора напряжения 220 В отличается от прочих устройств тем, что в ней имеется блок управления. Данный элемент соединяется напрямую с регулятором. Сразу за системой фильтрации имеется диодный мост. Для стабилизации колебаний дополнительно предусмотрена цепь из транзисторов. На выходе после обмотки располагается конденсатор.

С перегрузками в системе справляется трансформатор. Преобразование тока осуществляется им же. В целом диапазон мощности у данных устройств довольно высокий. Работать эти стабилизаторы способны и при минусовой температуре. По шумности они не отличаются от моделей других типов. Параметр чувствительности сильно зависит от производителя. Также на нее влияет тип установленного регулятора.

Принцип работы импульсных стабилизаторов

Схема электрическая стабилизатора напряжения данного типа схожа с моделью релейного аналога. Однако отличия в системе все же есть. Главным элементом в цепи принято считать модулятор. Занимается данное устройство тем, что считывает показатели напряжения. Далее сигнал переносится на один из трансформаторов. Там проходит полная обработка информации.

Для изменения силы тока имеется два преобразователя. Однако в некоторых моделях он установлен один. Чтобы справиться с электромагнитным полем, задействуется выпрямительный делитель. При повышении напряжения он снижает предельную частоту. Чтобы ток поступил на обмотку, диоды передают сигнал на транзисторы. На выходе стабилизированное напряжение проходит по вторичной обмотке.

Высокочастотные модели стабилизаторов

По сравнению с релейными моделями, высокочастотный стабилизатор напряжения (схема показана ниже) является более сложным, и диодов в нем задействуется больше двух. Отличительной особенность приборов данного типа принято считать высокую мощность.

Трансформаторы в цепи рассчитаны на большие помехи. В результате данные приборы способны защитить любую бытовую технику в доме. Система фильтрации в них настроена на различные скачки. За счет контроля напряжения величина тока может изменяться. Показатель предельной частоты при этом будет увеличиваться на входе, и уменьшаться на выходе. Преобразование тока в этой цепи осуществляется в два этапа.

Первоначально задействуется транзистор с фильтром на входе. На втором этапе включается диодный мост. Для того чтобы процесс преобразования тока завершился, системе требуется усилитель. Устанавливается он, как правило, между резисторами. Таким образом, температура в устройстве поддерживается на должном уровне. Дополнительно в системе учитывается источник питания. Использование блока защиты зависит от его работы.

Стабилизаторы на 15 В

Для устройств с напряжением 15 В используется сетевой стабилизатор напряжения, схема которого по своей структуре является довольно простой. Порог чувствительности у приборов находится на малом уровне. Модели с системой индикации встретить очень сложно. В фильтрах они не нуждаются, поскольку колебания в цепи незначительные.

Резисторы во многих моделях есть только на выходе. За счет этого процесс преобразования происходит довольно быстро. Входные усилители устанавливаются самые простые. Многое в данном случае зависит от производителя. Используются стабилизатор напряжения (схема показана ниже) этого типа чаще всего в лабораторных исследованиях.

Особенности моделей на 5 В

Для устройств с напряжением 5 В используют специальный сетевой стабилизатор напряжения. Схема их состоит из резисторов, как правило, не более двух. Применяют такие стабилизаторы исключительно для нормального функционирования измерительных приборов. В целом они являются довольно компактными, а работают тихо.

Модели серии SVK

Модели данной серии относятся к стабилизаторам латерного типа. Чаще всего их используют на производстве для уменьшения скачков от сети. Схема подключения стабилизатора напряжения этой модели предусматривает наличие четырех транзисторов, которые расположены попарно. За счет этого ток преодолевает меньшее сопротивление в цепи. На выходе у системы имеется обмотка для обратного эффекта. Фильтров в схеме предусмотрено два.

За счет отсутствия конденсатора процесс преобразования также происходит быстрее. К недостаткам следует отнести большую чувствительность. На электромагнитное поле прибор реагирует очень остро. Схема подключения стабилизатора напряжения серии SVK регулятор предусматривает, как и систему индикации. Напряжение максимум устройством воспринимается до 240 В, а отклонение при этом не может превышать 10 %.

Автоматические стабилизаторы “Лигао 220 В”

Для систем сигнализации является востребованным от компании “Лигао” стабилизатор напряжения 220В. Схема его построена на работе тиристоров. Использоваться данные элементы способны исключительно в полупроводниковых цепях. На сегодняшний день типов тиристоров существует довольно много. По степени защищенности они делятся на статические, а также динамические. Первый вид используется с источниками электричества различной мощности. В свою очередь динамические тиристоры имеют свой предел.

Если говорить про компании “Лигао” стабилизатор напряжения (схема показана ниже), то в нем имеется активный элемент. В большей степени он предназначен для нормального функционирования регулятора. Представляет он собой набор контактов, которые способны соединяться. Необходимо это для того чтобы увеличивать или уменьшать предельную частоту в системе. В других моделях тиристоров может иметься несколько. Устанавливаются они между собой при помощи катодов. В результате коэффициент полезного действия устройства можно значительно повысить.

Низкочастотные устройства

Для обслуживания устройств с частотой менее 30 Гц существует такой стабилизатор напряжения 220В. Схема его схожа со схемами релейных моделей за исключением транзисторов. В данном случае они имеются с эмиттером. Иногда дополнительно устанавливается специальный контроллер. Многое зависит от производителя, а также модели. Контроллер в стабилизаторе необходим для передачи сигнала на блок управления.

Для того чтобы связь была качественной, производители используют усилитель. Устанавливается он, как правило, на входе. На выходе в системе имеется обычно обмотка. Если говорить про предел напряжения в 220 В, конденсаторов можно найти два. Коэффициент передачи тока у таких устройств довольно низкий. Причиною этого принято считать малую предельную частоту, которая является следствием работы контроллера. Однако коэффициент насыщения находится на высокой отметке. Во многом это связано именно с транзисторами, которые устанавливаются с эмиттерами.

Зачем нужны феррорезонансные модели

Феррорезонансные стабилизаторы напряжения (схема показана ниже) используются на различных промышленных объектах. Порог чувствительности у них довольно высокий за счет мощных блоков питания. Транзисторы в основном устанавливаются попарно. Количество конденсаторов зависит от производителя. В данном случае это будет влиять на конечный порог чувствительности. Для стабилизации напряжения тиристоры не используются.

В данной ситуации с этой задачей способен справиться коллектор. Коэффициент усиления у них очень высокий благодаря прямой передаче сигнала. Если говорить про вольтамперные характеристики, то сопротивление в цепи поддерживается на уровне 5 МПа. В данном случае это оказывает положительное действие на предельную частоту стабилизатора. На выходе дифференциальное сопротивление не превышает 3 МПа. От повышенного напряжения в системе спасают транзисторы. Таким образом, перегрузок по току удается избежать в большинстве случаев.

Стабилизаторы латерного типа

Схема у стабилизаторов латерного типа отличается повышенным коэффициентом полезного действия. Входное напряжение при этом составляет в среднем 4 МПа. В данном случае пульсация выдерживается большой амплитуды. В свою очередь, выходное напряжение стабилизатора равняется 4 МПа. Резисторы во многих моделях устанавливаются серии “МР”.

Регулирование тока в цепи происходит постоянно и за счет этого предельную частоту удается понизить до отметки 40 Гц. Делители в усилителях данного типа работают сообща с резисторами. В итоге все функциональные узлы связаны между собой. Усилитель постоянного тока обычно устанавливается после конденсатора перед обмоткой.

Устройство и работа стабилизатора напряжения

Стабилизаторы напряжения в основном выпускаются в металлическом корпусе, который имеет прямоугольную форму. Устанавливать устройство можно двумя способами — на пол или монтировать в подвешенном состоянии на стену. Основные элементы оборудования устанавливаются на специальную платформу — шасси, которое имеет ограждающую конструкцию в виде металлического корпуса. Для того чтобы стабилизатор было легко переносить, производитель предусмотрел металлические ручки.

Как показано на картинке ниже, лицевая панель оборудования имеет ЖК-дисплей, который является индикатором рабочих показателей устройства, а также выводит информацию о входном и выходном напряжении. Также мы можем видеть, что имеется автоматический выключатель повышенной надежности с независимым расцеплением. Вы можете купить однофазный или трехфазный стабилизатор напряжения в Украине.

В верхней части устройства напряжения мы имеем:

Чтобы подключить устройство к сети, необходимо снять крышку, которая является защитой от касания к токоведущим элементам. Также съемная крышка предназначена для защиты от попадания внутрь металлических предметов, которые могут замкнуть контакты. Данную крышку необходимо снимать только при установке или снятии стабилизатора напряжения. В рабочем состоянии крышка должна закрывать клеммные соединения. Также она необходима для соблюдения правил транспортировки и хранения устройства.

Переключатель рабочих режимов «Стабилизация — Транзит» позволяет пользователю переводить устройство в разные режимы работы. Важно: переключать устройство в другой режим нужно только при отключении его от электрического питания. Это можно сделать при помощи автоматического выключателя на лицевой панели устройства.

Розетка для подключения внешней нагрузки на выходе с устройства. Необходимо подключать устройство, которое не превышает по мощности номинальное значение стабилизатора напряжения.

Для стационарного подключения стабилизатора к электрической сети используются клеммные соединения. Подключение стоит выполнять с соблюдением техники безопасности — выключением электрического тока в сети. Обязательно подключайте устройство в соответствии с надписями возле клемм: «Вход», «Выход, «Ф-фаза» и «0 — ноль».

Индикатор подключения устройства к сети представляет собой светодиод, который загорается при включенном автомате.

Вольтодобавочный стабилизатор напряжения конструктивно состоит из автотрансформатора, силовых ключей симисторного типа и электронного контролера. Во время работы электрооборудования электронный контролер осуществляет показатели электрического напряжения и его изменения как на входе, так и на выходе из устройства. Для того чтобы добавить или уменьшить напряжение, контроллер дает команду силовым ключам, которые выполняют переключение между обмотками автотрансформатора. Таким образом, удается получить стабильные показатели напряжения на выходе.

Установка стабилизатора напряжения

Чтобы выполнить установку электрооборудования, необходимо ознакомиться с устройством данного оборудования и прочитать наши рекомендации.

Стабилизатор устанавливается на пол или вешается на стену. Прежде всего, нужно определиться, какой вид монтажа подойдет вам для дальнейшего использования устройства. Если это стационарный метод, то лучше всего устройство закрепить на стене в непосредственной близости к центральному силовому автомату и счетчику электроэнергии.

Вводный автоматический выключатель должен быть аналогичной мощности переключателю на устройстве.

Подключение устройства

Для начала нужно открутить крепление защитной крышки и снять ее с устройства. Крышка расположена на верхней части корпуса стабилизатора. Следите за тем, чтобы металлические предметы (винты и шайбы) не упали внутрь устройства.

Необходимо выполнить подключение электрического кабеля в соответствии с надписями возле клеммных колодок. Будьте внимательны при подключении силового кабеля к стабилизатору. Если вы не умеете этого делать, то доверьте выполнение подключения профессиональному электрику. Стабилизатор напряжения имеет следующие клеммы:

  • «Ввод-фаза» — клемма расположена с крайней правой стороны.
  • «Ввод 0 – ноль» — клемма расположена рядом слева.
  • «Выход 0 – ноль» — клемма расположена слева от предыдущей.
  • «Выход — фаза» — крайняя слева клемма.

Чтобы выполнить подключение электрооборудования качественно, необходимо обеспечить плотный контакт электрического провода с колодками клемм. Также проверьте целостность изоляции проводов, расположенных рядом друг с другом, чтобы предотвратить короткое замыкание. Следите за тем, чтобы внутрь стабилизатора напряжения не попали посторонние металлические предметы — обрезки кабеля, винты, шайбы.

Особое внимание уделите выбору кабеля для подключения стабилизатора к электрической сети. Сечение жилы должно отвечать нагрузке в электрической сети и иметь запас прочности, что позволит избежать перегрева кабеля, его пробития и возникновения короткого замыкания. После того как клеммы хорошо обжаты, нужно провести установку защитной крышки на место.

Все, стабилизатор напряжения готов к первому запуску. Трехфазный стабилизатор напряжения подключается аналогичным способом по такой схеме:

В данном случае к электрической сети 380 вольт подключается 3 однофазных стабилизатора необходимой мощности, к которым подводится одна из фаз. Принцип подключения аналогичный предыдущему. Если вы не можете самостоятельно провести монтаж данного оборудования, то пригласите профессионального электрика.

Если у вас возникли вопросы по выбору стабилизаторов напряжения, его монтажу или техническому обслуживанию, то можете связаться со специалистами компании Vinur.com.ua. Также вы можете позвонить нам по телефону (044) 33-111-90 (Киев) или мобильным номерам: +38 (067) 218-85-71, +38 (050) 339-17-74.

Ремонт релейного стабилизатора напряжения | Электрик



Во многих квартирах особенно сельской местности в доме обязательно стоит стабилизатор.
Некоторые хозяева используют его для работы особо “чувствительной” техники, газовых котлов, холодильников и другой подобной бытовой техники.

Некоторые более заботливые владельцы, устанавливают стабилизатор “на весь дом”, такие стабилизаторы, как правило, обладают не малыми габаритами и весом и мощность их начинается от 7 – 10 кВт и больше.

Именно о таких стабилизаторах мы и поговорим в этой статье, а собственно о их ремонте и поиске неисправности, так как и каждая техника они выходят из строя.
В этой статье мы рассмотрим ремонт релейного стабилизатора известной китайской фирмы “Forte – ACDR – 10000” на 10кВт.

Но прежде чем приступить к ремонту, давайте разберемся в природе его устройства.
Релейный стабилизатор состоит из нескольких частей, собранных в единую систему:

Автоматический трансформатор – самая тяжелая его часть, это большой железный сердечник с несколькими обмотками соединенными по принципу автотрансформатора. Несколько концов толстого медного провода выходящих с трансформатора, коммутируются с помощью реле, количество которых зависит от обмоток и ступеней переключения.

Элементы управления – силовые элементы с помощью которых и осуществляется переключения обмоток и пуск с задержкой. В релейных стабилизаторах роль таких элементов выполняют реле, ну а в “моделях по дороже”, в роли таких элементов могут служить полупроводниковые элементы – симисторы которые имеют куда больший ресурс работы на “переключение”.

Блок управления – основная плата устройства с установленным на нее микропроцессором, с соответствующей прошивкой который запрограммирован на переключения и управления силовыми элементами (реле). При заранее определенных ступенях напряжения, переключаются соответствующие обмотки автотрансформатора. В случаях когда это не возможно, по причине поломки, выдается “ошибка” и стабилизатор пере запускается или отключается. Там же предусмотрена и схема задержки на включения (например 120 секунд).

Блок индикации и измерения напряжения – плата, как правило, установленная на лицевой панели  (крышке) стабилизатора. Там же, на ней установлены “цифровые индикаторы” или дисплей.
Кроме них, могут быть установлены и элементы управления, например включения “задержки”.

Стабилизатор постоянно сравнивает входной уровень напряжения с номинальным и “решает” либо добавить, либо уменьшить определенное количество вольт в “домашнюю” электросеть. Осуществляются такие решения подключением либо отключением (переключением) необходимых обмоток, в данном случае с помощью реле.

Во всех стабилизаторах существует система защиты которая проверяет входные и выходные напряжения, ток, температуру на соответствие номинальным значением и условиям эксплуатации. Защитные механизмы у каждого стабилизатора свои, но можно выделить несколько основных:

  • Пределы стабилизации (входное и выходное напряжение)

  • Отношение выходного напряжения к входному

  • Превышение тока нагрузки (перегрузка)

  • Перегрев трансформатора, превышение температуры внутри устройства

  • Невозможность “переключить” обмотку (при выходе из строя элементов управления)

Выполняем ремонт

Самой частой причиной поломки таких стабилизаторов являются реле, переключающие обмотки трансформатора. В следствие многоразовых переключений контакты реле могут выгорать, заклинивать, а может перегореть и самая катушка.

Если выходное напряжение исчезает или появляется индикация “ошибка” – необходимо проверить все реле. Сначала осмотрев внешне и если никаких видимых повреждений незаметно, то разобрать корпус каждого реле.
Сразу станет заметно какие контакты на сколько изношены, а где и вовсе сгоревшие.

В данном стабилизаторе, неисправность проявлялась в виде отключения стабилизатора по “ошибке” что сопровождалось звуковой индикацией. Отключался он не всегда, а только при сильно пониженном напряжение, но в приделах нормы стабилизации. – где то около 175 вольт. Отключался в независимости от нагрузки на выходе что явно отметало как причину общую перегрузку. Перед выключением слышно как несколько раз пощелкивают реле.

Как позже выяснилось, блок управления давал команду реле переключится на другую обмотку, но так как физически обмотки переключенными не были то и вылетала “ошибка” и стабилизатор попросту выключался.

Разобрав все пластмассовые крышки реле было обнаружено подгорание на двух реле, но в одном из них контактная площадка которая должна подключать обмотки, полностью выгорела и “контакт” был попросту невозможен, хоть реле и щелкало чтобы замкнуть пластины.

Мог еще произойти и такой случай при котором контакты могли б залипнуть друг к другу и в итоге несколько обмоток трансформатора окажутся короткозамкнутыми. Трансформатор начнет перегреваться и если не сработает защита то может и перегореть одна из обмоток автотрансформатора. Кстати говоря, подобная опасность присуща не только релейным стабилизаторам но и симисторным.

Очень часто в релейных стабилизаторах выходят из строя транзисторные ключи, которые в разных моделях стабилизаторов могут собираться на разных типах транзисторов. Когда при прозвоне радиоэлементов схемы были обнаружены неисправные “усилители”, их необходимо заменить на такие же по параметрам.

Профилактическая мера по восстановлению слегка подгоревших реле стабилизатора довольно простая и состоит из таких действий:

1. снимаем крышку реле
2. снимаем пружину, чтоб освободить подвижный контакт реле
3. каждый подвижный и неподвижный контакт нужно зачистить с помощью мелкой наждачки
4. промыть контактные площадки спиртом
5. после высыхания спирта, покрыть защитным средством KONTAKT S-61

При более сильном и значительном обгорание контактов реле и если нет возможности его заменить можно поступить следующим образом: по возможности почистить контакты реле (методом описанным выше) и поменять реле местами.
То – есть там где в стабилизатора самая часто используемая обмотка на которой постоянно обгорает реле, поставить “новое” реле, а “подуставшее” реле поставить на место того реле что сохранилось в хорошем состояние, там оно прослужит еще много времени.

В случае полного выгорания контактной площадки реле, его нужно заменить на новое.
Но когда нет времени ждать посылки с новым реле или есть желание попробовать восстановить обгоревшую часть пластины самостоятельно, можно поступить как сделал я.

В таких же соотношениях размеров, был вырезан кусок медной жилы которая была закреплена по всей длине пластины припоем, предварительно залудив жилу и саму пластину. Но так чтоб место контакта припадало все таки на медную часть, а не на припой.

При наличии мощной точечной сварки, все это лучше было сварить  для большей надежности на случай возможного нагрева пластины.
Но так как в данном устройстве реле было заменено и поставлено на место где не происходит обгорания, например на понижающую часть обмотки, то и беспокоится не о чем.

Другие неисправности

Кроме явных механических проблем с реле и выхода из строя “усилителей” представленных в виде ключевых транзисторов, могут встречаться и другие поломки уже на плате блока управления: холодная пайка, отслаивающиеся дорожки на плате, заусеницы в местах пайки, шарики от припоя и отхождения контактов в штырьковых соединениях – вот лишь малое что может послужить причиной неисправной работы стабилизатора.

Иногда встречается такая неполадка как хаотическое отображение сегментов на дисплее,в то же время может наблюдаться хаотическое включение реле. Частой причиной такого поведения есть “холодная пайка” кварцевого резонатора который работает на частоте 8 – 16 мегагерц, плохой его пропай ведет к неправильной работе микропроцессора.
По этому всю заднюю часть платы лучше сразу осмотреть по поводу плохой пайки, заусениц или шариков с припоя которые там часто бывают в виду быстрой пайки плат монтажниками которые ее собирают.

Затем можно осмотреть плату на дефекты радиоэлементов. Очень часто со временем электрические конденсаторы вздуваются и выходят из строя, выявить это будет не сложно. Их необходимо заменить на аналогичные.
Кроме того в стабилизаторе был выявлен клеммник с трещиной, который не мог обеспечить надежный контакт мощного силового кабеля. Такой клеммник ввиду невозможности создать достаточную затяжку провода, мог нагреваться и тем самим со временем еще и усугубить надежность контакта.

Диагностика


Но после ремонта стабилизатора или даже на этапе диагностики неисправности, возникает необходимость проверить работу устройства в разном диапазоне напряжений, как повышенных так и пониженных.

В мастерских для этих целей служит ЛАТР или лабораторный автотрансформатор регулируемого типа. Его подключают на вход проверяемого стабилизатора и уже изменяя напряжения на входе, имитируя перепады в сети, смотрят на поведение стабилизатора, справляется ли он с работой в номинальных (паспортных) пределах напряжения.

Но так как у меня нет соответствующего регулируемого автотрансформатора, то мы пошли немного другим путем. Была собрана определенная “схема”:

1. На входе стабилизатора, последовательно фазе была подключена лампочка примерно 60ват, мощность лампочки подбирается экспериментальным путем.

2. На выходе в роли нагрузки был подключен обычный сетевой шуруповерт или дрель (400 – 1000 Ват) с кнопкой плавной регулировки оборотов.

Во время работы шуруповерта на минимальных оборотах, лампочка которая включена на входе последовательно – не светится. Стабилизатор при этом запущен и работает без проблем.
Начинаем плавно увеличивать обороты шуруповерта, лампочка при этом светит все ярче.
Чем интенсивней яркость лампочки, тем больше проседает напряжение на входе стабилизатора, что естественно видно на индикации дисплея. Кроме того, при уменьшению напряжения на входе , слышно как переключаются обмотки трансформатора и щелкают реле.
Таким не хитрым способом можно проследить правильно ли работает стабилизатор, при условие что в вашей домашней же сети будет нормальное напряжение (220 – 240 вольт).

Как видим, отремонтировать стабилизатор напряжения можно и в домашних условиях. Ну или по крайней мере можно разобрать и определить поломанный узел и оценить стоимость работ по его восстановлению или замене. Предполагается что человек который приступит к ремонту стабилизатора, будет обладать базовыми знаниями в электричестве и электронике и будет иметь минимальный набор инструментов, паяльник, мультиметр и мелкий инструмент.
Следует быть осторожным работая с напряжением при диагностике и проверке работы.Все остальные работы по ремонту и замене производятся в обесточенном состояние.

Подключение трехфазного стабилизатора напряжения: схема и инструкция

Нестабильность сетевого напряжения питания характеризует системы электроснабжения многих регионов. Особенно актуальна эта проблема для районов, удаленных от крупных узлов генерации электроэнергии, напряжение в которые поступает по протяженным линиям электропередачи. Применение стабилизатора напряжения (СН) в таких ситуациях является лучшим решением, позволяющим обеспечить допустимые нормы параметров электропитания и обезопасить электрооборудование от скачков напряжения. Для дома вполне хватит устройства мощностью до 15 кВт. Если к объекту подведено три фазы, имеющие напряжение 380 вольт, необходимо подключить аппарат, рассчитанный на 3 фазы. О том, как выполнить подключение трехфазного стабилизатора напряжения для дома, мы расскажем далее.

Схемы монтажа

Конструктивно трехфазный стабилизатор, рассчитанный на напряжение 380 вольт, представляет собой три однофазных устройства, каждое из которых стабилизирует однофазное напряжение. Подключение стабилизатора, работающего в трехфазной сети, следует производить строго в соответствии с прилагаемой инструкцией, которую нужно тщательно изучить, прежде чем начинать монтаж. По способу подключения, встречаются два вида устройств. Схема включения этих устройств имеет различия. Трехфазный стабилизатор первого типа содержит три модуля на три клеммы, к которым производится подключение проводов. К этим клеммам следует подключить вход и выход фазного провода, а также нулевой провод, который является общим для ввода питания, трех модулей стабилизации и цепей питания нагрузки. Каждый модуль подключен к однофазной сети. Схема, иллюстрирующая подключение устройства этого типа приведена ниже:

Трехфазный стабилизатор на напряжение 380 вольт второго типа, также содержит в своем составе три однофазных стабилизатора, каждый из которых имеет четыре клеммы для подключения проводов. Кроме входа и выхода фазного провода, к модулям стабилизатора этого типа следует подключить также вход и выход нулевого провода. Таким образом, в этой схеме, нулевой провод ввода питания не связан с нулевым проводом стабилизированной электрической сети. Подключение стабилизатора такого типа показано на схеме ниже. Красным цветом нарисованы провода фазы, синим цветом – нулевые провода.

Также рекомендуем просмотреть видео, на котором предоставлена схема подключения стабилизатора напряжения к сети 380 Вольт:

Общие правила подключения

Трехфазный стабилизатор напряжения необходимо после распаковки подвергнуть внешнему осмотру и проверке на наличие механических и иных повреждений до того, как осуществлять его подключение. Если транспортировка изделия производилась при отрицательной температуре, следует выдержать прибор в помещении, где он будет установлен, необходимое количество времени, чтобы исчезла наледь, а также испарился конденсат на деталях.

Подключение прибора должно выполняться специалистом, обладающим необходимой квалификацией. Если в инструкции изложены требования к персоналу, осуществляющему подключение, их следует соблюсти. Требования, как правило, заключаются в наличии аттестации на определенную группу по электробезопасности. Само подключение трехфазного стабилизатора должно выполняться в строгом соответствии с электрической схемой, прилагающейся к изделию.

Вначале производится установка стабилизатора на место, где он будет функционировать. Аппарат должен устанавливаться в сухом помещении, где он не будет подвержен воздействию токопроводящей пыли. В процессе работы следует обеспечить доступ воздуха к вентиляционным отверстиям в кожухе устройства, для нормального охлаждения электрических элементов, которые содержит схема стабилизатора. Среда в месте, где производится установка стабилизатора, не должна содержать агрессивных веществ, способных разрушить изоляцию и металлические части прибора. Диапазон температуры окружающего воздуха, атмосферное давление и влажность должны соответствовать значениям, указанным в инструкции по эксплуатации. Необходимо помнить о том, что нарушение условий установки и эксплуатации влекут за собой отказ в гарантийном ремонте и обслуживании.

Подключение входных цепей питания, по которым подается сетевое напряжение, должно быть выполнено через переключатель (автоматический выключатель), номинальный ток которого выбирается по току нагрузки, подключенной к стабилизатору. Автоматический выключатель должен обеспечивать защиту от коротких замыканий токовой отсечкой, а также защитой от тока перегрузки, имеющей выдержку времени.

Цепи защитного заземления, выполненного в соответствии с ПУЭ, должны быть подключены к предназначенной для этого клемме. Трехфазный стабилизатор на напряжение 380 вольт, может нормально функционировать только при наличии нулевого провода, то есть, электрическая сеть, подводимая к устройству, должна быть четырехпроводной. Сечение проводников, которыми осуществляется подключение входных цепей, а также стабилизированных выходов, необходимо выбрать по току нагрузки. Для этого можно воспользоваться таблицей из ПУЭ. О том, как рассчитать сечение кабеля по току, мы рассказывали в отдельной статье.

Напоследок рекомендуем просмотреть видео, на котором наглядно показаны общие правила монтажа СН:

Вот по такой инструкции производится подключение трехфазного стабилизатора напряжения для дома. Надеемся, предоставленные советы и схемы монтажа помогли вам разобраться в вопросе!

Будет полезно прочитать:

Анализ электрической схемы стабилизатора напряжения

Стабилизатор напряжения – это схема питания или блок питания, который может автоматически регулировать выходное напряжение. Его функция заключается в стабилизации напряжения источника питания, которое сильно колеблется и не соответствует требованиям электрического оборудования в пределах установленного диапазона значений. Стабилизатор напряжения предназначен для обеспечения нормальной работы различных цепей или электрического оборудования при номинальном рабочем напряжении.

Крупногабаритные стабилизаторы напряжения в десятки и даже сотни киловатт используются для обеспечения рабочей мощности крупномасштабного экспериментального оборудования. Существуют также небольшие стабилизаторы переменного напряжения мощностью от нескольких ватт до нескольких киловатт, обеспечивающие качественное питание небольших лабораторий или бытовой техники.

В самом начале стабилизатор напряжения через биение реле стабилизировал напряжение. Когда напряжение в сети колеблется, активируется схема автоматической коррекции стабилизатора напряжения, чтобы активировать внутреннее реле и заставить выходное напряжение оставаться близким к установленному значению.Преимущество этой схемы состоит в том, что схема проста, но недостатком является то, что точность регулирования напряжения невысока, и каждое биение и смещение реле вызовут мгновенное прерывание подачи питания и искровые помехи.

Это вызовет серьезные помехи при чтении и записи компьютерного оборудования, а также может вызвать неправильные сигналы в компьютере. В тяжелых случаях жесткий диск будет поврежден.

Современные высококачественные малые стабилизаторы напряжения в основном используют метод угольных щеток с приводом от двигателя для стабилизации напряжения.Этот тип стабилизатора напряжения имеет небольшие помехи для электрического оборудования, а точность регулирования напряжения относительно высока. Это продукт без искажения формы волны.

Анализ принципиальной схемы стабилизатора напряжения

Схема стабилизации напряжения источника питания состоит из силового трансформатора T3, выпрямительных диодов VDl-VD4, конденсатора фильтра Cl-C3 и трехконтактных интегральных схем стабилизации напряжения ICl и IC2.

Схема сравнения входов состоит из резистора Rl, потенциометра RPl-RP9, конденсатора C6-Cl4 и Nl-Ng внутри интегральной схемы операционного усилителя lC3-1C5.

Цепь управления кодом состоит из интегральной схемы без затвора IC6-1C8, интегральной схемы затвора и без затвора IC9, глянцевого диода IC10 VD8-VDl5, резистора R4-R11, конденсатора Cl5-C22.

Выходная цепь компенсации состоит из интегральных схем электронного переключателя ICl (Sl-S4), IC17 (S5-S8), тиристоров VTl-VT8, главного компенсационного трансформатора Tl, вспомогательного компенсационного трансформатора T2, контактора переменного тока KM, вольтметра PV и амперметра. PA.

Схема защиты от перенапряжения / пониженного напряжения состоит из незатворного D9 в IC7, диодов VD5-VD7, резисторов R2, R3, транзистора V и реле K.

Относительно простой стабилизатор напряжения 220 В переменного тока может использовать электронное обнаружение и механическую регулировку. Сравнивая понижающее и выпрямленное напряжение постоянного тока 220 В со стандартным напряжением, полученным интегральной схемой стабилизатора напряжения, можно обнаружить, что при низком напряжении источника питания 220 В выпрямленное выходное напряжение постоянного тока относительно низкое по сравнению со стандартным. Напряжение. Если схема триодного переключателя приводится в действие для срабатывания реле, контакт реле заставляет регулирующий двигатель вращаться вперед. Затем однофазный трансформатор регулирования напряжения, приводимый в действие регулирующим двигателем, увеличивает напряжение источника питания до тех пор, пока разница между выходным напряжением постоянного тока схемы обнаружения и стандартным напряжением не станет меньше, чем напряжение проводимости схемы переключения. Реле отпускается и наддув закончен. Если 220 В слишком высокое, должна быть включена соответствующая цепь переключателя, чтобы двигатель регулирования реверсировал и понижал скорость.

Этот метод предназначен в основном для обнаружения цепи управления приводом.Используя различные регуляторы мощности или трансформаторы, можно просто изменить мощность регулятора. Однако точность этого метода стабилизации напряжения невысока и может достигать примерно 5%.

T1 – понижающий трансформатор переменного тока. Если вы хотите понизить напряжение 220 В переменного тока до более низкого напряжения, для этого выходного линейного регулируемого источника питания 12 В достаточно установить вторичное напряжение T1 на 14 В ~ 15 В.

Выпрямительный мост, состоящий из D1, D2, D3 и D4, может преобразовывать выходное переменное напряжение вторичной обмотки T1 в однонаправленное пульсирующее напряжение.

C1 и C2 – конденсаторы входного фильтра, которые могут преобразовывать однонаправленное пульсирующее напряжение в напряжение постоянного тока с небольшой пульсацией. Помимо пульсаций, это постоянное напряжение также будет изменяться с колебаниями напряжения сети, которое нестабильно.

C3 и C4 являются конденсаторами выходного фильтра, их основная функция – подавлять самовозбуждающиеся колебания, которые может создавать 7812, чтобы обеспечить его нормальную работу.

Создайте двухступенчатую схему стабилизатора питания от сети – весь дом

В этой статье мы узнаем, как сделать схему с двумя реле или двухступенчатым стабилизатором напряжения для управления и регулирования напряжения сети 220 В или 120 В с помощью простой схемы.

Введение

В этой схеме стабилизатора мощности одно реле подключено для выбора высокого или низкого уровня от трансформатора стабилизатора на некотором конкретном уровне напряжения; в то время как второе реле поддерживает нормальное сетевое напряжение включенным, но в момент колебания напряжения оно переключается и выбирает соответствующий отвод HOT через контакты первого реле.

Обсуждаемая здесь простая схема стабилизатора мощности очень проста в сборке и, тем не менее, способна обеспечить двухступенчатую коррекцию входной сети.

Простой метод преобразования обычного трансформатора в стабилизирующий трансформатор также обсуждался с использованием принципиальной схемы.

Работа схемы

Как показано на следующем рисунке, работу всей схемы можно понять с помощью следующих пунктов:

В основном идея здесь состоит в том, чтобы переключить реле №1 при двух разных крайних значениях сетевого напряжения (высоком и низком), которые считаются непригодными для данной техники.

Это переключение позволяет этому реле выбирать соответствующим образом согласованное напряжение от другого реле через свои замыкающие контакты.

Как подключить контакты реле

Контакты этого второго реле № 2 гарантируют, что оно выбирает подходящие напряжения от стабилизирующего трансформатора и поддерживает его готовность к реле № 1 всякий раз, когда оно переключается во время опасных уровней напряжения. При нормальном напряжении реле № 1 остается активным и выбирает нормальное напряжение через свои замыкающие контакты.

Транзисторы T1 и T2 используются как датчики напряжения. Реле №1 подключено к этой конфигурации на коллекторе Т2.

Пока напряжение в норме, Т1 остается выключенным. Следовательно, Т2 в этот момент остается включенным. Реле №1 активировано, и его замыкающие контакты подключают НОРМАЛЬНЫЙ ПЕРЕМЕННЫЙ ТОК к прибору.

Если напряжение имеет тенденцию к повышению, T1 медленно проводит, и на определенном уровне (определяемом настройкой P1) T1 полностью проводит и отключает T2 и реле №1.

Реле немедленно подключает к выходу скорректированное (пониженное) напряжение, подаваемое реле №2, через его замыкающие контакты.

Теперь, в случае низкого напряжения T1 и T2, оба перестанут проводить, давая тот же результат, что и выше, но на этот раз подаваемое напряжение от реле №2 к реле №1 будет высоким, так что на выходе будет получено требуемое значение. исправленный уровень напряжения.

Реле № 2 запитывается T3 на определенном уровне напряжения (согласно настройке P3) между двумя крайними значениями напряжения. Его контакты подключены к ответвлению трансформатора стабилизатора, так что он правильно выбирает желаемое напряжение.

Как собрать схему

Конструкция этой схемы очень проста. Это можно сделать, выполнив следующие действия:

Отрежьте небольшой кусок доски общего назначения (примерно 10 на 5 мм).

Начните сборку, сначала вставив транзисторы, оставив между ними достаточно места, чтобы остальные можно было разместить вокруг каждого из них. Припаяйте и отрежьте их выводы.

Затем вставьте остальные компоненты и соедините их друг с другом и с транзисторами с помощью пайки.Воспользуйтесь принципиальной схемой для их правильной ориентации и размещения.

Наконец, закрепите реле, чтобы завершить сборку платы.

Следующая страница посвящена конструкции трансформатора стабилизатора мощности и процедуре испытаний. После того, как эти процедуры будут завершены, вы можете интегрировать тестируемую схемную сборку в соответствующие трансформаторы.

Вся установка может быть помещена в прочный металлический корпус и установлена ​​для выполнения требуемых операций.
Список деталей

R1, R2, R3 = 1K, 1 / 4W,

P1, P2, P3 = 10K, ЛИНЕЙНЫЕ ПРЕДУСТАНОВКИ,

C1 = 1000uF / 25V

Z1, Z2, Z3 = 3V, 400 мВт ZENER DIODE ,

T1, T2, T3 = BC 547B,

RL1, RL2 = РЕЛЕ 12 В, SPDT, 400 Ом,

D1 – D4 = 1N4007,

TR1 = 0-12 В, 500 мА,

TR2 = 25 – 0-25 Вольт, 5 ампер. С РАЗЪЕМНЫМ ЦЕНТРОМ, ОБЩЕЙ ПЛАТЫ, МЕТАЛЛИЧЕСКИМ КОРПУСОМ, СЕТЕВЫМ ШНУРОМ, РОЗЕТКОЙ, ДЕРЖАТЕЛЕМ ПРЕДОХРАНИТЕЛЯ И Т.Д.

Как преобразовать обычный трансформатор в стабилизирующий трансформатор

Стабилизирующие трансформаторы обычно изготавливаются на заказ и не доступны в готовом виде на рынке.Поскольку от них требуется несколько выводов сетевого напряжения переменного тока (высокого и низкого), а также поскольку они являются специфическими для конкретного применения, становится очень трудно получить их готовыми.

Настоящая схема также нуждается в трансформаторе регулятора мощности, но для простоты конструкции может быть включен простой метод преобразования обычного трансформатора источника питания в трансформатор стабилизатора напряжения.

Как показано на рисунке, здесь нам необходим обычный трансформатор на 25-0-25 / 5 ампер.Центральный отвод должен быть разделен, чтобы вторичная обмотка могла состоять из двух отдельных обмоток. Теперь просто нужно подключить первичные провода к двум вторичным обмоткам, как показано на схеме.

Таким образом, следуя описанной выше процедуре, вы сможете успешно преобразовать обычный трансформатор в стабилизирующий трансформатор, что очень удобно для данного приложения.

Как настроить устройство

Для процедуры настройки вам потребуется переменный источник питания 0-24 В / 500 мА.Его можно выполнить с помощью следующих шагов:

Поскольку мы знаем, что колебания напряжения сети переменного тока всегда будут создавать пропорциональную величину колебаний напряжения постоянного тока от трансформатора, мы можем предположить, что для входных напряжений 210, 230 и 250 соответственно полученные эквивалентные напряжения постоянного тока должны быть 11,5, 12,5 и 13,5 соответственно.

Теперь установка соответствующих предустановок становится очень простой в соответствии с указанными выше уровнями напряжения.

  • Изначально отключите оба трансформатора TR1 и TR2 от цепи.
  • Держите ползунок P1, P2 и P3 примерно посередине.
  • Подключите внешний регулируемый источник питания к цепи. Отрегулируйте напряжение примерно до 12,5.
  • Теперь медленно начинайте регулировку P3, пока RL2 просто не активируется.
  • Уменьшите напряжение питания примерно до 11,5 В (при этом RL2 должен отключиться), отрегулируйте P1 так, чтобы RL1 просто отключился.
  • Постепенно увеличивайте подачу примерно до 13,5 – это должно заставить RL1 и RL2 включиться один за другим, указывая на правильность вышеуказанных настроек.
  • Теперь медленно отрегулируйте P2 так, чтобы RL1 снова отключился при этом напряжении (13,5).
  • Подтвердите указанные выше настройки, изменяя входное напряжение от 11,5 до 13,5 взад и вперед. Вы должны получить следующие результаты:
  • RL1 должен отключаться при уровнях напряжения 11,5 и 13,5, но должен оставаться активным между этими напряжениями. RL2 должен включаться при напряжении выше 12,5 и выключаться при напряжении ниже 12 В.

На этом процедура настройки завершена.

Окончательная конструкция этого блока регулятора мощности может быть завершена путем соединения испытанной схемы с соответствующими трансформаторами и сокрытия всей секции внутри хорошо вентилируемого металлического корпуса, как предложено на предыдущей странице.

(PDF) Проектирование и изготовление стабилизатора напряжения 220 В

22

Применение потенциометров:

Потенциометры редко используются для непосредственного управления значительными объемами мощности (более

ватт или около того). Вместо этого они используются для регулировки уровня аналоговых сигналов (например, регуляторы громкости

на аудиооборудовании) и в качестве управляющих входов для электронных схем. Например, диммер

использует потенциометр для управления переключением TRIAC и, таким образом, косвенно для управления яркостью

ламп. Потенциометры с предварительной настройкой широко используются в электронике везде, где необходимо выполнить регулировку

во время производства или обслуживания.

Управляемые пользователем потенциометры широко используются в качестве пользовательских элементов управления и могут управлять очень широким спектром функций

оборудования. Повсеместное использование потенциометров в бытовой электронике

уменьшилось в 1990-х годах, теперь более распространены поворотные энкодеры, кнопки вверх / вниз и другие цифровые элементы управления

.Однако они остаются во многих приложениях, таких как регуляторы громкости и датчики положения

. Потенциометры малой мощности, как линейные, так и поворотные, используются для управления звуковым оборудованием

, изменения громкости, затухания частоты и других характеристик звуковых сигналов.

«Логарифмический горшок» используется в качестве регулятора громкости в усилителях мощности звука, где его также называют «коническим звуковым горшком»

, поскольку амплитудная характеристика человеческого уха приблизительно равна

логарифмической шкале. Это гарантирует, что на регуляторе громкости, помеченном от 0 до 10, например, настройка 5

субъективно звучит вдвое громче, чем настройка 10. Также имеется антиблокировочный потенциометр или обратный звук

, который является просто конусом реверс логарифмического потенциометра. Он почти всегда используется в групповой конфигурации

с логарифмическим потенциометром, например, в регуляторе баланса звука.

Телевидение:

Раньше потенциометры использовались для управления яркостью, контрастностью и цветовым откликом изображения.Потенциометр

часто использовался для регулировки “вертикального удержания”, что влияло на синхронизацию

между внутренней схемой развертки приемника (иногда мультивибратором) и принятым сигналом изображения

, а также на другие вещи, такие как смещение несущей аудио-видео. , частота настройки (для

кнопочных комплектов

) и т. д.

Управление движением:

Потенциометры могут использоваться в качестве устройств обратной связи по положению для создания управления «замкнутым контуром»,

, например, в сервомеханизме. Этот метод управления движением, используемый в двигателе постоянного тока, представляет собой самый простой метод измерения угла или скорости

.

Простейшая схема стабилизатора сетевого напряжения

Стабилизатор напряжения – это устройство, которое можно использовать для обнаружения неподходящих уровней напряжения и их исправления для обеспечения достаточно стабильного выходного сигнала на выходе, к которому подключена нагрузка.
Здесь мы собираемся изучить конструкцию простого автоматического стабилизатора сетевого напряжения переменного тока, который может быть использован для вышеуказанной функции.

Как работает схема

Говоря о цифре, мы видим, что вся схема построена с помощью одного операционного усилителя IC 741. Он становится секцией управления всей конструкции.

Микросхема устроена как компаратор, все знают, насколько хорошо этот режим подходит для IC 741 и других операционных усилителей. Это два входа, соответствующим образом настроенные для заявленных процедур.

Вывод №2 ИС фиксируется до опорного уровня, создаваемого резистором R1 и стабилитроном, в то время как вывод №3 используется для выборки напряжения от трансформатора или источника питания.Это напряжение превращается в напряжение считывания для ИС и мгновенно пропорционально изменяющемуся входному переменному току нашей сети.

Предустановка используется для установки точки срабатывания или пороговой точки, при которой напряжение может считаться опасным или неправильным. Об этом мы и поговорим в разделе «Процесс создания».

Контакт № 6, который является выходом ИС, переходит в высокий уровень в момент, когда контакт № 3 достигает заданного значения и запускает фазу транзистора / реле.

В случае, если сетевое напряжение превышает определенный порог, неинвертирующая ИС идентифицирует это, и ее выход мгновенно становится высоким, активируя транзистор и реле для требуемых действий.

Реле, которое является реле типа DPDT, имеет свои контакты, подключенные к трансформатору, который может быть обычным трансформатором, улучшенным для выполнения функции стабилизирующего трансформатора.

Первичная и вторичная обмотки коррелированы таким образом, что посредством соответствующего переключения отводов трансформатор имеет способность добавлять или вычитать определенную величину сетевого напряжения переменного тока и генерировать последующую нагрузку, связанную с выходом.

Контакты реле правильно подключены к ответвлениям трансформатора для выполнения вышеуказанных действий в соответствии с командами, подаваемыми с выхода операционного усилителя.

Таким образом, если входное напряжение переменного тока имеет тенденцию повышать установленное пороговое значение, трансформатор вычитает некоторое напряжение и пытается отключить напряжение от достижения опасного уровня и наоборот в условиях низкого напряжения.

Принципиальная схема стабилизатора напряжения 220 В

Перечень деталей для ПРОСТОЙ ЦЕПИ АВТОМАТИЧЕСКОГО СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Для изготовления этой самодельной схемы автоматического стабилизатора напряжения сети вам потребуются следующие компоненты:
R1, R23 = 10K,
R1, R2 = 10K,
= 470K,
C1 = 1000 мкФ / 25 В
D1, D2 = 1N4007,
T1 = BC547,
TR1 = 0-12 В, 500 мА,
TR2 = 9-0-9 В, 5 А,
IC1 = 741,
Z1, Z2 = 4. 7 В / 400 мВт
Реле = DPDT, 12 В, 200 или более Ом,

Приблизительное выходное напряжение для данных входов

ВХОД —— ВЫХОД
200 В ——– 212 В
210 В – —— 222В
220В ——– 232В
225В ——– 237В
230В ——– 218В
240В ——– 228V
250V ——– 238V

Как настроить схему

Предлагаемую схему простого автоматического стабилизатора напряжения можно настроить с помощью следующих процедур:

Вначале не подключайте трансформаторы к схема.

Используя регулируемый источник питания, запитать цепь через C1, положительный вывод идет на вывод R1, а отрицательный – на линию катода D2.

Установите напряжение примерно на 12,5 и отрегулируйте предустановку так, чтобы выход IC просто становился высоким и запускал реле.

Теперь снижение напряжения примерно до 12 В должно привести к срабатыванию ОУ реле в исходное состояние или к обесточиванию его.

Повторите и проверьте действие реле, изменив напряжение с 12 до 13 вольт, что может привести к срабатыванию триггера реле соответственно.

Ваш начальный процесс завершен.

Теперь вы можете подключить оба трансформатора в подходящие места со схемой.

Ваша простая самодельная схема стабилизатора сетевого напряжения готова.

При настройке реле срабатывает в любой момент, когда входное напряжение превышает 230 вольт, доводя выходное напряжение до 218 вольт и сохраняет это расстояние постоянно, когда напряжение достигает более высоких уровней.

Когда напряжение снова падает до 225, реле обесточивается, повышая напряжение до 238 вольт, и сохраняет удар при дальнейшем падении напряжения.

Вышеупомянутое действие поддерживает выходное напряжение устройства в пределах от 200 до 250 вольт с колебаниями от 180 до 265 вольт.

Цепь стабилизатора напряжения

переменного тока с использованием 556 IC

Цепь стабилизатора напряжения переменного тока

с использованием 556 IC

Различные типы схем стабилизатора переменного напряжения уже были размещены на сайте bestengineeringprojects. com как

  1. Универсальный автомат автоматического отключения
  2. Цепь автоматического стабилизатора напряжения
  3. Схема защиты от перенапряжения

Представленная здесь схема представляет собой дешевый, универсальный и высокопроизводительный стабилизатор переменного напряжения с использованием двойного таймера IC 556 IC.Схема использует большинство функций двойного таймера IC 556, а именно четыре компаратора уровня напряжения, два сильноточных вывода / вывода, два разрядных транзистора и возможность обеспечения гистерезиса с помощью своих внутренних триггеров.

Цепи

Описание и работа схемы стабилизатора переменного напряжения с использованием 556 IC

Схема стабилизатора переменного напряжения построена на очень популярном двойном таймере IC 556. Напряжение сети переменного тока подается на первичный вход трансформатора X 1 .Выход вторичной обмотки 4 трансформатора X 1 , как показано на рисунке 1, выпрямлен для подачи питания на всю схему. Выход вторичной обмотки 3 выпрямляется для определения уровня сетевого напряжения. Стабилитрон ограничивает управляющие входы до 9 В и 4,5 В соответственно.

Когда напряжение в сети находится в диапазоне от 170 В до 205 В, напряжение на триггерных входах (контакты 6 и 8) меньше 4,5 В и, следовательно, установлены оба таймера. В этом случае оба реле находятся в обесточенном положении, и обе вторичные обмотки 1 и 2 трансформатора включены последовательно с сетью питания.Горит только индикатор BOOST.

При увеличении напряжения до 205 В напряжение на пороговом входе (контакт 2) достигает 9 В и таймер 1 (1/2 556) сбрасывается, что дополнительно активирует реле RL 1 , что приводит к появлению сетевого напряжения на выходе. Горит только светодиод NORMAL. Когда сетевое напряжение увеличивается до 240 В, напряжение на выводе 13 микросхемы IC 1 достигает 9 В и таймер 2 (1/2 556) сбрасывается, в результате чего реле RL 2 и вторичная обмотка 2 переключаются последовательно-противоположно с питание от сети и светится только светодиод BUCK.

Работа цепи стабилизатора переменного напряжения с использованием 556 IC

Когда входное напряжение уменьшается до 235 В, напряжение на входе триггера (контакт 8) достигает 4,5 В, таймер 2 устанавливается и реле RL 2 обесточивается. Когда вход снижается до 200 В, напряжение на входе триггера (вывод 6) достигает 4,5 В, и таймер 1 устанавливается, обесточивая RL 1 .

Стабилизатор откалиброван для последовательного переключения вторичной обмотки повышающей и понижающей вторичной обмоток с питанием от сети при соответствующем напряжении и для обеспечения гистерезиса, необходимого для предотвращения дребезга реле.Регулируемый источник питания используется для калибровки стабилизатора. Ползунки предустановок VR 2 и VR 4 удерживаются в крайних положениях, чтобы триггерный и пороговый входы были замкнутыми. Калибровка представлена ​​в таблице 1.

Первая предустановка VR 1 настраивается таким образом, что RL 1 получает напряжение 205 В, когда входные значения увеличиваются с нуля. Затем предварительно установленный VR 2 настраивается так, что RL 1 обесточивается при 200 В, когда входные сигналы уменьшаются с 205 В.Реле RL 2 должно активироваться при 240 В, когда входное напряжение увеличивается с нуля. Для этого настраивается пресет VR 3 . Наконец, RL 2 должен быть обесточен при 235 В при уменьшении входного напряжения с 240 В. Предварительная установка VR 4 используется для этой настройки.

Теперь оборудование откалибровано и готово к работе. Обратите внимание, что номинальная мощность трансформатора в ВА должна соответствовать защищаемому оборудованию.

Таблица 1: Калибровка
Входное напряжение сети (В) Режим Реле – 1 Реле – 2 Выходное напряжение (В)
170-205 ПОДДЕРЖКА ВЫКЛ. ВЫКЛ. 200–240
200–240 ОБЫЧНЫЙ НА ВЫКЛ. 200–240
235–270 БАК НА НА 209–240

ПЕРЕЧЕНЬ ДЕТАЛЕЙ ЦЕПИ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА

С ИСПОЛЬЗОВАНИЕМ 556 IC

Резистор (полностью ¼-ватт, ± 5% углерода)
R 1 , R 3 = 10 кОм

R 2 = 680 Ом

R 3 – R 5 = 1 кОм

VR 1 , VR 3 = 22 кОм

VR 2 , VR 4 = 10 кОм

Конденсаторы
C 1 , C 3 = 47 мкФ, 25 В (электролитический конденсатор)

C 2 = 470 мкФ, 25 В (электролитический конденсатор)

Полупроводники
IC 1 = LM556 (ИС с двойным таймером)

D 1 – D 4 = 1N4001

ZD 1 = 9 В, стабилитрон 250 мВт

Светодиод 1 – Светодиод 3 = Светодиод трех разных цветов

Разное
X 1 = 220 первичной обмотки на 4 вторичных трансформатора

SW 1 = переключатель ВКЛ / ВЫКЛ

RL 1 , RL 2 = Реле 12 В, 250 Ом

Блок-схема стабилизатора напряжения

, принцип работы, тип

Итак, в этой статье мы увидим функциональную блок-схему стабилизатора напряжения. Здесь вы найдете основную концепцию принципа работы стабилизатора, принципиальную схему стабилизатора м, типы стабилизаторов напряжения и т. Д.

Основная функция стабилизатора напряжения – обеспечение стабильного или установившегося напряжения на электрические и электронные компоненты. Техника. Стабилизатор напряжения постоянно обеспечивает стабильное напряжение на своем выходе, независимо от того, что он принимает на вход, стабильное или нестабильное напряжение.

Например, стабилизатор напряжения рассчитан на выход 230 В.Таким образом, он будет обеспечивать непрерывное выходное напряжение 230 В даже при входном напряжении 200 или 300 В.

Блок-схема и работа стабилизатора

Принцип работы стабилизатора напряжения очень прост, его основная функция – поддерживать стабильное выходное напряжение путем увеличения или уменьшения уровня напряжения в соответствии с нестабильным входным напряжением. Здесь вы можете увидеть блок-схему стабилизатора напряжения на рисунке ниже.

Как вы видите на приведенной выше блок-схеме, автотрансформатор является основной частью любого стабилизатора, с помощью которого можно увеличивать или уменьшать напряжение.

Также имеется электронная схема для определения колебаний входного напряжения и управления электромагнитным реле. Компаратор, который измеряет входное и выходное напряжение, сравнивает их и решает, сколько напряжения нужно уменьшить или увеличить, чтобы выходное напряжение оставалось постоянным.

Например, когда входное напряжение снизилось с нормального значения, компаратор обнаружит и подаст сигнал в схему переключения, чтобы включить электромагнитное реле, чтобы добавить больше напряжения от трансформатора.Таким образом, падение входного напряжения не повлияет на выходное напряжение, выходное напряжение останется постоянным на нормальном уровне.

Когда входное напряжение превышает нормальное значение, включается другое электромагнитное реле, так как оно понижает напряжение до нормального значения с помощью автотрансформатора, а выходное напряжение остается стабильным на нормальном значении.

Работа стабилизатора напряжения основана на двух операциях, одна из которых является понижающей, а другая – повышающей.

Когда входное напряжение низкое, стабилизатор добавляет больше напряжения, чтобы поддерживать постоянное выходное напряжение, что называется операцией повышения.

Когда входное напряжение превышает нормальное значение, стабилизатор снижает напряжение, чтобы поддерживать постоянное выходное напряжение, что называется понижающей операцией.

Типы стабилизаторов

В основном существует три типа стабилизаторов напряжения:

1. Типы реле Стабилизатор напряжения

2. Сервоуправляемый стабилизатор напряжения

3. Статический стабилизатор напряжения

В стабилизаторах напряжения релейного типа очень много электромагнитных реле есть и подключены к ответвлению трансформатора.Для контроля выходного напряжения они включались по очереди и поддерживали выходное напряжение.

В стабилизаторах релейного типа точная стабилизация напряжения невозможна.

В стабилизаторе с сервоуправлением серводвигатель используется для перемещения ответвителя на вторичной стороне трансформатора. Для поддержания уровня напряжения серводвигатель перемещает отвод или рычаг на вторичной обмотке трансформатора. Стабилизатор напряжения с сервоуправлением обеспечивает более точную стабилизацию напряжения, чем стабилизатор напряжения релейного типа.

Статический стабилизатор напряжения не имеет движущихся частей, он использует полупроводниковые устройства, такие как SCR, IGBT, микроконтроллер и т. Д. Для управления трансформатором для стабилизации напряжения. Статический стабилизатор напряжения обеспечивает большую точность стабилизации напряжения.

Спасибо, что посетили сайт. продолжайте посещать для получения дополнительных обновлений. Цепь стабилизатора переменного тока

с реле и дисплеем, водяная плата, बोर्ड – M.G.S Enterprises, Дели

Цепь стабилизатора переменного тока с реле и дисплеем, водяная плата, सर्किट बोर्ड – M. G.S Enterprises, Дели | ID: 22175480691

Спецификация продукта

Минимальное количество заказа 25

Описание продукта

Диапазон входного сигнала цепи стабилизатора переменного напряжения – от 140 до 280 вольт на выходе – от 195 до 245 вольт Нагрузочная способность – 1.Вход дисплея 5 тонн переменного тока (ip) Выход (op) Нагрузка (ld) High (hi) Low (lo) Tdr (обратный отсчет) Защита от повышенного, пониженного напряжения и перегрузки

Заинтересовал этот товар? Получите последнюю цену у продавца

Связаться с продавцом

Изображение продукта


О компании

Год основания 2015

Юридический статус Фирмы Физическое лицо – Собственник

Характер бизнеса Производитель

Количество сотрудников До 10 человек

Годовой оборот R. 50 лакх – 1 крор

IndiaMART Участник с апреля 2010 г.

GST07BNZPS2541h2ZE

Основана в году 2015 в Дели, Индия, we “M.G.S. Предприятия » – это единоличное предприятие , базирующееся в , которое является ведущим производителем платы управления стабилизатором , цифрового стабилизатора напряжения и т. Д. Наша продукция пользуется большим спросом благодаря своему первоклассному качеству и доступным ценам.Кроме того, мы гарантируем своевременную доставку этих продуктов нашим клиентам, благодаря чему мы приобрели огромную клиентскую базу на рынке. Вернуться к началу 1

Есть потребность?
Получите лучшую цену

1

Есть потребность?
Получите лучшую цену

.

Добавить комментарий

Ваш адрес email не будет опубликован.