Содержание

Принципиальные электрические схемы дизельных электростанций



Принципиальная электрическая схема агрегата АД-20М (см. рис.1).

Стационарные агрегаты АД-20М предназначены для питания силовой и осветительной нагрузки при параллельной и автономной работе. В силовую цепь включены обмотки генераторов ОС, цепи компаундирующего трансформатора ТТП, трансформатор статизма ТС, реактор PN, автоматический выключатель АВ1, трансформаторы тока ТТ1-ТТ3, три нагрузочные линии ШГ1 (подключение резервного генератора), ШГ2 и ШГЗ (подключение нагрузки мощностью до 50% мощности генератора). Линии ШГ2 и ШГЗ включаются через автоматические выключатели АВ2 и АВЗ и специальные разъемы. В схеме предусмотрено автоматическое регулирование напряжения с помощью фазного компаундирования и электромагнитного корректора напряжения КН. Схема обеспечивает точность поддержания напряжения ±2% при изменении нагрузки от 0 до 100%, а также при изменении частоты в пределах 48-52 Гц и ±1% при неизменной нагрузке в пределах от 0 до 100%.

Рис.1. Принципиальная схема дизель-генератора АД-20М

Для контроля за работой генератора в схеме предусмотрены вольтметр V для измерения линейных напряжений с переключателем ПП1, амперметр А для измерения токов трех фаз с переключателем ПП2, ваттметр W и частотомер Hz. В схеме имеется также прибор постоянного контроля изоляции ПКИ-1, а для электробезопасного обслуживания установлено реле РБП.

Для параллельной работы с другими ДЭС или агрегатами в схеме имеется трансформатор ТС с резистором СРС и выключателем ВЗ для шунтирования этого резистора при автономной работе генератора. Уставка напряжения выставляется резистором РУ.

В схеме предусмотрены цепи синхронизации с лампами 4ЛС и 5ЛС и резисторами R1-R2, сигнализации положения с лампами 6ЛС-10ЛС, питающимися через конденсаторы С1-С5, и цепи блокировки с реле РБ и выпрямительным мостом Д17-Д20.

Через автоматический выключатель АВ4 и вилку В происходит соединение с другим генератором для параллельной работы.

Рис.2. Принципиальная схема электростанции ЭСДА-30.
а – схема силовой части ДЭС;
б – схема управления ДЭС.

Принципиальная электрическая схема передвижной ДЭС типа ЭСДА-30 (рис.2).

Передвижная ДЭС типа ЭСДА-30 автоматизирована по 1-й степени и предназначена для питания силовой и осветительной нагрузки. В схему силовой части агрегата входят обмотки генератора с резонансной статической системой возбуждения, корректор напряжения на полупроводниковых элементах КН, блок параллельной работы БПР с трансформатором тока, трансформаторы тока для измерительных цепей и выводы отходящих линий с автоматическими выключателями: генератора АВГ, резервной сети АВС и нагрузки АВ1.

В схеме предусмотрена автоматическая система регулирования напряжения с помощью схемы компаундирования и полупроводникового корректора напряжения. Схема обеспечивает точность регулирования напряжения ±1% номинального значения при изменении нагрузки от 0 до 100%.

Для контроля за работой генератора предусмотрены вольтметр V, амперметр А, киловаттметр KW, частотомер Hz и переключатели ПА и ПВ. Постоянный контроль изоляции осуществляется прибором ПКИ. Цепи синхронизации с выключателем ВС и лампой позволяют включать генератор на параллельную работу с сетью и другими агрегатами. Схема предусматривает пуск агрегата со щита управления кнопкой КнП и его остановку кнопкой КнО, автоматическую остановку агрегата в аварийном режиме с работой сигнализации и ручную систему подогрева двигателя.

Перед запуском включают выключатели батареи ВБ, приборов ВП, реле питания РК, систему подогрева двигателя с панели управления подогревателем (свеча накаливания СН, топливный клапан ТК, электродвигатель Д). На период пуска выключатель защиты ВЗ выключается. После пуска двигателя кнопкой КУМ осуществляется увеличение частоты вращения двигателя с помощью изменения положения рейки топливного насоса, на которую действует электродвигатель постоянного тока ДНО.

При достижении номинальной частоты вращения двигателя включается нагрузка с помощью автоматов АВГ и AB1. В случае необходимости нормальная остановка агрегата производится кнопкой КнО, но перед этим необходимо отключить выключатель автомата АВГ (снимается нагрузка генератора) и выключатель ВЗ (отключается защита двигателя). Кнопкой КнО подается питание на обмотку соленоида закрытия топлива СЗТ, который действует на рейку топливного насоса. Подача топлива в двигатель прекращается, и он останавливается.

При понижении давления масла в системе смазки, повышении температуры воды в охлаждающей системе или разносе двигателя срабатывает соответствующее реле (РДМ, РКО или РТВ) и подается сигнал на реле РЗ, которое воздействует на соленоид воздушной захлопки СЗВ, останавливает двигатель и отключает автомат АВГ, снимая нагрузку с генератора; одновременно работает аварийная световая сигнализация.

Принципиальная электрическая схема стационарной ДЭС типа АСДА-100 с устройством КУ-67М (рис.3).

Схема силовой части агрегата и автоматической системы регулирования напряжения, за небольшим исключением, аналогична схеме ЭСДА-30. К шинам панели ПР-1 через автоматы 1В-4В подключены кабели, питающие потребителей электроэнергии агрегата.

Для контроля параметров генератора предусмотрены амперметр, вольтметр, частотомер и ваттметр. Устройство КУ-67М обеспечивает автоматизацию по 1-й степени, в том числе дистанционный пуск и остановку дизеля, включение генератора на обесточенные шины и на параллельную работу, отключение генератора, защиту и сигнализацию дизеля и генератора.

Для нормального пуска дизеля (рис.3,6) поворотом переключателя 1К в положение “Больше” приводят во вращение электродвигатель ДР, который выводит рейку топливного насоса в положение, соответствующее промежуточной частоте вращения дизеля (определяется настройкой микровыключателя В2), при этом загорается лампа 7ЛK. Когда рейка достигает определенного положения, микровыключатель В2 срабатывает и останавливает двигатель ДР, лампа 7ЛK гаснет. Нажатием кнопки КП замыкают цепь контактора 2К, включают маслопрокачивающий насос ДМ. Когда давление масла в масляной магистрали дизеля достигает значения настройки датчика давления масла 1ДДМ, последний срабатывает, замыкая цепь лампы 3ЛK и реле 2РИ, которое своими контактами замыкает цепь включения стартера.

Дизель запускается. По импульсу от зарядного генератора замыкается цепь реле удавшегося запуска 1РИ. Лампа ЗЛК гаснет, загорается лампа 2Л3.

Дизель прогревается при промежуточной частоте вращения; при достижении рабочей температуры воды датчик 1ДТВ размыкает цепь лампы 2Л3 и она гаснет, а контакты 1ДТВ шунтируют микропереключатель В2. Поворотим ключа 1КУ в положение “Больше” повторно включают электродвигатель ДР; загорается лампа 7ЛК. Двигатель ДР включается микровыключателем ВЗ, который настроен на максимальную частоту вращения холостого хода дизеля.

При экстренном пуске дизеля включают выключатель Т1, шунтирующий микропереключатель В1, а все остальные операции осуществляют, как и при нормальном пуске дизеля.

Рис.3,а. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М

Для включения генератора на обесточенные шины (см. рис.3,а):

выбирают ручной или автоматический режим регулирования напряжения и переключают ТВ1, при автономной работе переключатель ставят в положение “Без статизма”;

включают автоматический выключатель 2АВ и подготавливают схему включения электродвигательного привода автоматического выключателя генератора. Напряжение на эту схему подается со сборных шин через размыкающие контакты РПН, а при отсутствии напряжения на шинах – от возбужденного генератора через замыкающие контакты РПН. После разворота генератора до номинальной частоты вращения нажатием кнопки КнВ в течение 2-3 с подают начальное возбуждение от аккумуляторной батареи на зажимы ротора генератора. Генератор возбуждается;

напряжение при ручном регулировании устанавливают с помощью резистора СУ, при автоматическом – резистора СУН;

поворотом ключа 2КУ в положение “Включено” замыкают цепь реле РУ. Срабатывая, оно замыкает свои контакты в цепи электродвигателя привода автоматического выключателя. Автоматический выключатель генератора включается. Загорается лампа 1ЛК, а лампа 1ЛЗ гаснет.

Рис. 3,б. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М.
Схема автоматики ДЭС.

Для включения генератора на параллельную работу:

переключатель ТВ1 устанавливают в положение “Параллельная работа”, ТВ2 – в положение “Статизм”, а переключатель Т4 – в положение “Медленно”, что обеспечит уменьшение скорости нарастания частоты вращения дизеля при синхронизации генератора;

запускают дизель и сопротивлением СУН устанавливают на генераторе напряжение, равное напряжению сети. Генератор на параллельную работу включается невозбужденным. Для этого включают выключатель ТЗ, шунтирующий обмотку возбуждения генератора;

после того как напряжение генератора упадет до значения, близкого остаточному, поворотом ключа 1КУ в положение “Больше” подают импульс на включение автоматического выключателя генератора В. Реле РП срабатывает, самоблокируется и замыкает цепи реле ИРЧ;

при достижении генератором частоты вращения, близкой к синхронной, реле ИРЧ срабатывает и включает промежуточное реле синхронизации РПС. Своими контактами реле РПС замыкает цепь включения электродвигательного привода автоматического выключателя генератора;

генератор включается в сеть недовозбужденным, так как его обмотка возбуждения замкнута накоротко контактами выключателя гашения поля ВГП. После включения генераторного автомата обесточивается ВГП и размыкает свои контакты, шунтирующие обмотку возбуждения генератора;

генератор возбуждается и втягивается в синхронизм. Лампа 1ЛK загорается. Выключатель Т4 переключают в положение “Быстро”, и генератор набирает нагрузку. Для нормальной остановки дизеля: отключают поворотом переключателя 2КУ автоматический выключатель генератора В, а поворотом переключателя 1КУ (В положение “Меньше”) замыкают цепь обмотки левого вращения электродвигателя ДР, при этом рейка топливного насоса выводится в положение, соответствующее промежуточным оборотам дизеля;

дизель охлаждается до температуры настройки датчика 2ДТВ, который, срабатывая, размыкает цепь лампы 6Л3 и шунтирует микропереключатель В2;

повторным поворотом переключателя 1КУ рейка выводится в положение, соответствующее нулевой частоте вращения дизеля. Электродвигатель ДP выключается микропереключателем B1. Дизель останавливается.

Схемой предусмотрены защита и контроль работы дизеля при перегреве воды и масла, понижении давления масла и разносе.

При срабатывании датчика контролируемого параметра замыкается цепь выходного реле защиты 1P3 и срабатывает соответствующее указательное реле. Контакт реле 1РЗ замыкает цепи табло “Авария” и звукового сигнала (при замкнутом положении выключателя Т2). Другой контакт реле 1РЗ замыкает цепь независимого расцепителя автоматического выключателя генератора и отключает его.

Рейка топливного насоса автоматически выводится на нулевую частоту вращения. Дизель останавливается.

При срабатывании защиты от разноса одновременно с отключением генератора срабатывает автоматическое стоп-устройство дизеля АСУ. Для предотвращения ложного срабатывания защиты от понижения давления масла в цепь соответствующего сигнального реле включается контакт реле 1РИ, который контролирует запуск дизеля. Таким образом, контроль за понижением давления масла осуществляется только в том случае, если дизель запущен и контакт 1РИ замкнут.

Рис.4. Принципиальная схема дизель-генератора АСДА-100 полупроводниковыми блоками автоматики

Принципиальная электрическая схема АСДА-100, автоматизированного по 3-й степени (рис.

4).

В схеме синхронный генератор со статической системой возбуждения показан в свернутом виде. На рис.4 показана силовая схема АСДА-100. Элементы блоков и автоматики показаны свернутом виде. Силовая цепь и цепи регулирования напряжения генератора состоят из резонансной статической системы возбуждения, корректора напряжения (на схеме не показан), блока управления параллельной работой БУ с трансформатором ТТ1, автоматического выключателя генератора АГ и сети АС, контакторов КФГ и КФС, предназначенных для дистанционной автоматической коммутации силовой цепи, реверсивного двигателя ДУН, регулирующего с помощью сопротивления СУН уставку напряжения, трансформаторов тока ТТ2-ТТ7 для питания цепей измерения тока, блока датчика мощности и частоты ДМЧ и блока контроля мощности БКМ.

Контроль и измерение параметров генератора производятся амперметром А, ваттметром W, частотомером Hz, вольтметром V.

Переключатель ВВ позволяет производить измерения на различных фазах (А,В,С) с использованием одного прибора.

При ручной синхронизации ненагруженного электроагрегата с сетью переключатель синхроноскопа ВСх устанавливают в положение I. В этом случае сигнальная лампа ЛC1 включена контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов Th2 и ТН2 и находится под напряжением биений с амплитудой, изменяющейся от нуля до двойного значения напряжения вторичных обмоток этих трансформаторов. Частота биений равна разности частот синхронизируемых источников питания. Выключатель статизма ВС устанавливается во включенное положение и шунтирует часть сопротивления RП2 в блоке управления БУ. Сопротивлением установки напряжения СУН напряжение синхронизируемого электроагрегата устанавливается равным напряжению сети, а кнопками изменения частоты вращения двигателя устанавливается частота генератора, равная частоте сети. Включение электроагрегата на параллельную работу с сетью осуществляется контактором фидера генератора КФГ путем замыкания контактов кнопки включения контактора генератора в момент погасания сигнальной лампы ЛC1.

При ручной синхронизации нагруженного электроагрегата с сетью переключатель синхроноскопа BC устанавливается в положение III. При этом лампа синхроноскопа ЛС1 подключается контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов ТН1 и ТНЗ и находится под напряжением биений. Напряжение и частота генератора устанавливаются, как и при ручной синхронизации ненагруженного электроагрегата с сетью. Включение нагруженного электроагрегата на параллельную работу с сетью осуществляется контактором фидера сети КФС.

Цепи собственных нужд получают питание от генераторного фидера через автоматический выключатель АСН. К собственным нуждам электроагрегата относятся устройства и цепи оперативного питания, поддержания горячего резерва, дозаправки масла и т.д.

Питание схемы автоматического управления осуществляется блоком питания. Основным источником постоянного напряжения является кремниевый выпрямительный агрегат со стабилизирующим напряжением, а резервным – аккумуляторные батареи.

Поддержание дизеля в состоянии горячей готовности производится электронагревателем ТЭН, расположенным в поддоне (водяной полости) масляного бака.

Питание на электронагреватель ТЭН подается через контакты контактора электронагревателя КЭП и предохранитель.

Контакторы КЭП включаются автоматически датчиком температуры охлаждающей жидкости, выходные контакты которого замыкаются при снижении температуры до +37°С и размыкаются при повышении ее до +45°С.

Дозаправка расходного масляного бака производится электронасосом, двигатель которого получает питание через контакты контактора заправки масла КЗМ и предохранители.

Включение контактора КЗМ осуществляется вручную кнопкой или автоматически с помощью реле заправки масла. При снижении уровня масла реле включает контактор КЗМ, а при повышении уровня масла отключает его. Аналогично работает и топливозакачивающий насос ДЗТ.

Пуск и остановку АСДА-100 осуществляют автоматически или дистанционно нажатием кнопки “Пуск” или “Стоп”.

Схема предусматривает также автоматическое включение АСДА-100 на параллельную работу по методу точной синхронизации с помощью блоков автоматики.

Автономно работающий АСДА-100 поддерживает частоту тока с точностью 50±0,5 Гц независимо от нагрузки. Для поддержания частоты в заданных пределах служит система коррекции частоты, состоящая из датчиков частоты и магнитных усилителей.

Схема АСДА-100 обеспечивает защиту при следующих аварийных режимах: отключение автомата генератора, неудачный пуск и разнос двигателя, отсутствие возбуждения на генераторе, падение давления масла, перегрев дизеля и т. д. В этих случаях по сигналу соответствующего реле срабатывает реле аварии и выдает команду на остановку дизеля с одновременной выдачей сигнала.



Схемы подключения резервного дизель-генератора

Резервный дизельный генератор чаще всего подключается по стандартной схеме. Отличия в вариантах подключения могут быть в зависимости от выходного напряжения, на которое рассчитан электрогенератор (однофазное или трёхфазное), от наличия или отсутствия панели автоматического включения резерва (АВР), от типа места расположения блока контроля состояния внешней сети (в панели АВР или в панели управления автономной электростанции).

Ниже приведена однолинейная электрическая схема подключения генераторной установки с панелью АВР:

На данной схеме указаны следующие элементы:

  • Дизель-генератор. Резервная дизельная электростанция.
  • АВР сеть – ДГ. Панель автоматического включения резерва, которая осуществляет переключение питания нагрузки между внешней сетью и дизельной электростанцией.
  • QS. Перекидной рубильник линии «обводного канала» (байпас). Данный рубильник осуществляет переключение питания нагрузки напрямую от сети, исключая из цепи энергоснабжения панель АВР. Эта опция не является обязательной для схемы резервного электропитания, но она очень удобна, так как позволяет отключить панель АВР (например для ремонта) без необходимости длительного отключения нагрузки.
  • Панель управления. Панель управления дизель-генератором.
  • Щит ЩРдг. Электрощитовая, в которой расположены автоматические выключатели нагрузок, которые резервируются от автономного генератора.
  • QF1. Выходной автоматический выключатель генераторного агрегата.
  • QF2. Автоматический выключатель для защиты кабеля собственных нужд. Обычно устанавливается в электрощитовой.
  • Силовой кабель. Данный кабель прокладывается между резервным генератором и панелью АВР. По нему на нагрузки передаётся электроэнергия, которую вырабатывает дизель-генератор. Со стороны генераторного агрегата силовой кабель подключается непосредственно на клеммы выходного автоматического выключателя (QF1). С другой стороны силовой кабель подключается на соответствующие клеммы панели АВР.
  • Кабель управления. Данный кабель прокладывается между резервной электростанцией и панелью АВР. Предназначение кабеля управления (сигнального кабеля) меняется в зависимости от места расположения блока контроля внешней сети. Данный блок осуществляет контроль наличия внешней сети, контроль соответствия качества основного энергоснабжения заданным параметрам (по напряжению и частоте), даёт команды на запуск и остановку генератора электричества, а также управляет переключением панели АВР. Если блок контроля внешней сети расположен на панели АВР, то по кабелю управления от панели АВР на генератор дизельный поступает сигнал о запуске или остановке. Если же блок контроля внешней сети расположен в панели управления автономной электростанции, то по данному кабелю осуществляется управление переключения панели АВР. В последнем случае, от внешней сети на электрогенератор необходимо проложить дополнительный кабель (не показан на приведенной выше электрической схеме), который подключается на панель управления, и по которому осуществляется контроль наличия и качества основного энергоснабжения.
  • Кабель собственных нужд. Данный кабель прокладывается от генераторной установки в электрощитовую. Когда дизельная электростанция не работает, по данному кабелю осуществляется питание автоматического подогрева охлаждающей жидкости двигателя и автоматического подзаряда аккумуляторных батарей от внешней сети. Необходимо помнить, что кабель собственных нужд должен быть защищён отдельным автоматическим выключателем, который на схеме показан как QF2.

Очень часто на объекте есть два независимых ввода от основного энергоснабжения, что повышает отказоустойчивость системы электропитания в целом. В данном случае, дизельные генераторы подключаются аналогичным способом, как и в приведённой выше схеме, только между двумя сетевыми вводами добавляется ещё одна панель АВР (АВР сеть – сеть на однолинейной схеме ниже).

Однако, не всегда генераторы дизельные резервируют все нагрузки на объекте. Часто, потребителей разделяют на группы в зависимости от их критичности (например по величине финансовых потерь в случае их отключения от электропитания). Наименее критичной является группа нагрузок («Потребители 1 категории» на схеме ниже), которая питается только от внешней сети, и её энергоснабжение резервируется переключением между двумя сетевыми вводами. Более критичные нагрузки выделяются в так называемую «Особую группу 1 категории». Помимо двух сетевых вводов данных потребителей также резервируют дизельные электростанции (ДЭС), которые запускаются в случае пропадания основного энергоснабжения по обоим вводам. Самые важные нагрузки, для которых не приемлемо даже секундное прерывание в электропитании, выделяются в «Критическую группу». Потребителей «Критической группы» резервируют не только электрогенераторы, но и источники бесперебойного питания (ИБП), которые включаются последовательно в электрическую цепь и обеспечивают отсутствие пропадания энергоснабжения на время запуска резервной электростанции.

Если Вы планируете покупать дизель генераторы или источники бесперебойного питания рекомендуем Вам обратится к специалистам ОАО Энергомаш для правильного подбора оборудования и построения надёжной схемы энергоснабжения.

Оригинал статьи

Дизель-генератор 24 кВт Perkins, инструкция по запуску, принципиальная схема, проверка.

Артикул: ADP-20С-Т400-1РГ
Цена: по запросу
Наличие: доступно под заказ

Дизель-генератор Perkins серии ADP-20 (мощностью 24 кВт и частотой 50 Гц) предназначены для получения трехфазного электрического тока напряжением 400 В.
В качестве основных источников электроснабжения дизель-генератор 24 кВт ADP-20 применяется для автономных объектов (буровые установки и рабочие площадки, аварийные и спасательные службы, коттеджные поселки и частные дома, дизель-электрические машины, вахтовые поселки и т.п.).
В качестве резервных источников электроснабжения дизель генератор Perkins могут применяться на объектах, требующих повышенной надёжности энергоснабжения (телекоммуникационные компании, интернет-провайдеры, центры обработки и хранения данных, аэропорты и вокзалы, офисные здания и т.п.).

На нашем сайте вы можете выбрать и купить дизель-генератор 24 кВт Perkins, цена предоставляется по запросу. Проверка дизель-генератора и его испытания проходят в заводских условиях в соответствии с ГОСТ. Инструкция по запуску дизель-генератора так же как и принципиальная схема предоставляется в комплекте тех.документации на дизель-генератор.

Соответствие стандартам:
Дизель-генератор 24 кВт серии ADP сертифицированы, и соответствуют ГОСТ Р 53174-2008. Климатическое исполнение – УХЛ.

Базовое исполнение дизель генератора 24 кВт ADP-20:
Двигатель Perkins 1103A-33G с зарядным генератором и стартером, генератор Mecc Alte ECO28-2L/4 с AVR DSR, (Marelli Motori MJB 160 MA4, Leroy Somer LSA 42.2 M7, Marathon Electric 283CSL1506, БГ-30-4, ГС-250-20/4, Engga), стальная рама, система газовыхлопа с глушителем шума, система впуска с воздушным фильтром, система топливоподачи с топливным баком на 90 л. и топливными фильтрами, механизм управления топливным насосом высокого давления, система охлаждения с водяным радиатором и крыльчаткой вентилятора обратного тока, система охлаждения масла с маслянным радиатором, пульт управления первой степени автоматизации СУЭМ-20-1, устройство останова двигателя на базе соленоида, Устройство подрегулировки ТНВД, комплект ЗИП, комплект эксплуатационной документации. Специальное исполнение подразумевает демонтаж пульта управления для установки системы автоматики заказчика.

Основные технические характеристики:

Наименование параметра Значение
Основная мощность (длител.), кВт/кВА 24/30
Резервная мощность, кВт/кВА 26,4/33
Напряжение, В 400
Модель двигателя Perkins 1103A-33G
Частота вращения вала двигателя, об/мин 1500
Расход топлива, л/ч
   – при 100% нагрузки 9,2
Базовая модель генератора Mecc Alte ECO28-2L/4
Род тока переменный трехфазный
Частота тока, Гц 50
Номинальный коэффициент мощности 0,8
Номинальный ток, А 43,2
Заправочные емкости, л:
   – топливный бак, л 90
Время автономной работы при 100 % мощности, ч 8.8
Габаритные размеры (ДхШхВ), мм 1543 х 860 х 1290

Габаритный чертеж на Дизель-генератор 24 кВт Perkins


Схема подключения дизельного генератора (параллельное подключение дгу)

Компания «Cистемотехника» занимается производством и продажей энергетического оборудования.

Оказываем комплексные услуги по поставке, монтажу и обслуживанию систем бесперебойного электроснабжения по оптимальным ценам в Москве.

Обычно одиночные дизельные генераторы, которые используются в целях резервирования энергоснабжения ЦОД, имеют мощность не выше 2,5 мВА. Но если возникает необходимость в повышении мощностей, то с 500 кВА уже можно объединить ДГУ в параллель. Т.е. десятки установок будут работать в системе.


Перейдите в наш каталог, чтобы узнать, что представляют из себя дизельные генераторы 400 кВт >>

При минимальных нагрузках задействуются не все ДГУ, а только необходимое количество. Рост нагрузок заставляет работать остальные ДГУ. Процесс подключения или отключения осуществляется в автоматическом режиме. Минусом можно назвать то, что на обслуживание подобной системы требуются довольно серьезные средства.

Эксперты в этой области считают выбор параллельной системы наиболее уместным для использования в проектах, в которых нагрузка может варьироваться в очень широком диапазоне. В такой системе величина минимальной нагрузки не должна быть ниже 25% всей мощности. Параллельный комплекс имеет ряд преимуществ именно для крупных компаний и предприятий, так как позволяет избежать издержек, связанных с неудачным запуском генераторов или плановым (экстренным) техническим обслуживанием. В любом из этих случаев остальные генераторы будут обеспечивать необходимый уровень мощности.

Рисунок – Пример схемы параллельного подключения ДГУ

Основная проблема данного комплекса заключается в управлении и мониторинге отдельных элементов системы. Для данных целей используются специальные пульты управления, которые предлагает абсолютное большинство производителей. Помимо вышеописанного способа обеспечения высокой мощности энергоснабжения существует еще один. Этим способом является создание независимых систем, которые будут направлены на разные группы потребителей. Данный вариант уместен тогда, когда энергоснабжение объекта осуществляется с помощью нескольких трансформаторных подстанций, т.е. отдельный ввод резервируем собственным ДГУ.


Ознакомьтесь с примерами популярных моделей дизельных генераторов >>

Схема регулирования мощности дизель-генератора

Тепловозные дизели и дизель-генераторы типа Д49 оборудуются всережимными регуляторами. Совместно с тепловозной системой управления эти регуляторы обеспечивают управление частотой вращения и нагрузкой дизелей. В серийном производстве нашли применение две основные системы регулирования частоты и мощности для тепловозов: с электропередачей и с гидропередачей.

На тепловозах с электропередачей современных типов система регулирования построена таким образом, что машинист, устанавливая контроллер на ту или иную позицию, задает одновременно дизелю определенную частоту вращения и определенное выдвижение реек топливных насосов. Поскольку цикловая подача топлива на данной частоте вращения определяется выдвижением реек, то при неизменных внешних условиях (температура, давление, влажность) этому выдвижению реек на установившемся режиме соответствует определенный вращающий момент дизеля. При заданной частоте вращения вала это означает, что дизель на данной позиции контроллера имеет определенную (с некоторыми возможными отклонениями) мощность. По значениям этих параметров, соответствующих каждой позиции контроллера, можно построить тепловозную характеристику.

На дизеле установлен и приводится в действие от его вала объединенный регулятор частоты вращения и мощности (рис. 83), включающий регулятор частоты РЧ, механизм управления частотой МУЧ и регулятор мощности РМ с индуктивным датчиком ИД. Генератор Г приводится во вращение от вала дизеля Д и работает на нагрузку Н. Возбудитель В также приводится во вращение от вала дизеля. Регулятор частоты РЧ поддерживает заданную контроллером К через механизм управления частотой МУЧ частоту вращения вала дизеля, воздействуя тягой управления ТУ на рейки топливных насосов высокого давления Т.

Регулятор мощности РМ сравнивает положение тяги ТУ с положением исполнительного органа МУЧ и в случае их взаимного несоответствия приводит в движение индуктивный датчик ИД. Сигнал этого датчика складывается в автомате управления нагрузкой АУН с сигналом от блока задания возбуждения БЗВ.

Величина сигнала БЗВ определяется частотой электрического тока, вырабатываемого возбудителем В, которая пропорциональна частоте вращения вала дизеля. Автомат управления нагрузкой АУН управляет возбуждением генератора Г, задавая ток возбуждения, пропорциональный сумме сигналов от блока задания возбуждения и индуктивного датчика. Система рассчитана таким образом, что основную часть нагрузки определяет БЗВ, а сигнал ЯД догружает дизель до требуемого значения, меняя его нагрузку в сравнительно небольших пределах. При этом он компенсирует нечувствительность БЗР к изменениям нагрузки. В зависимости от конкретных особенностей того или иного типа тепловоза ИД вступает в работу, начиная с той или иной позиции контроллера. На более низких позициях возбуждение тягового генератора обеспечивает только сигнал БЗВ.

Рис. 83. Схема регулирования частоты и мощности тепловозного дизель-генератора

⇐ | Схемы систем охлаждения | | Тепловозные дизели типа Д49 | | Объединенный регулятор частоты и мощности типа 7РС | ⇒

Дизель-генераторная установка (ДГУ) – Что такое Дизель-генераторная установка (ДГУ)?

Электромеханическое устройство, состоящее из дизельного двигателя, электрогенератора и схемы управления

Дизель-генераторная установка (ДГУ) – это электромеханическое устройство, состоящее из дизельного двигателя, электрогенератора и схемы управления.

ДГУ обеспечивают автономное питание (гарантированное электроснабжение) критичной нагрузки.

Они предназначены для работы в качестве постоянных или резервных источников электроэнергии, способных функционировать в течение длительного периода времени (от нескольких часов до нескольких суток в зависимости от емкости топливного бака).

Дизель-генераторы можно разделить на маломощные однофазные, а также средние, мощные и сверхмощные трехфазные устройства.

Они могут быть как в открытом исполнении для установки внутри помещений, так и в различных защитных кожухах.

Управление работой современных ДГУ осуществляется с помощью встроенных контроллеров (микропроцессорных или аппаратных).

Они способны автоматически запускать двигатель при авариях сетевого напряжения и останавливать его при восстановлении электроснабжения, выдерживая при этом заданные временные интервалы.

Главная схема управления, расположенная в панели управления ДГУ, контролирует параметры входной сети и генератора, подает команды на панель переключения нагрузки и в цепи старта/остановки ДГУ.

Автоматическая панель переключения нагрузки (АППН) или автомат ввода резерва (АВР) осуществляют переключение нагрузки со входной питающей линии на дизель-генератор и обратно по команде контроллера.

Комплексная система, состоящая из дизель-генераторной установки и источника бесперебойного питания, позволяют обеспечить мощную нагрузку бесперебойным электропитанием в течении длительного времени.

Необходимо заметить, что комплексная система бесперебойного питания, состоящая из следующих устройств: стабилизатор + ДГУ или стабилизатор + ДГУ + ИБП, позволяет существенно экономить дизельное топливо за счёт улучшения качества сетевого напряжения и как следствия уменьшения числа стартов ДГУ.

Как правило, дизель-генераторные установки могут использовать в 2х ситуациях:

  • когда необходим источник постоянного бесперебойного электроснабжения. Такая ситуация возникает тогда, когда другие источники электроснабжения вблизи вашего объекта отсутствуют. В этой ситуации нужен источник автономного бесперебойного электроснабжения. Такие генераторы необходимы: на строительных площадках; в местах размещения открытых торговых точек; при проведении культурно-массовых мероприятий под открытым небом; в вахтовых поселках; в геолого-разведывающей и добывающей промышленности;

  • когда необходим источник аварийного электроснабжения. В этом случае на объекте эксплуатации может быть постоянное электроснабжение от существующей поблизости ЛЭП, но подача электроэнергии происходи со сбоями. Именно для поддержания работы объекта при перебоях с подачами электроснабжения и нужны аварийные генераторы. Они позволяют обеспечить бесперебойную работу вашего объекта независимо от основных источников электроснабжения.

 

Схема АВР 380В с ДГУ

В данной статье, речь пойдет о схеме АВР на напряжение 380 В от трех независимых источников питания, в качестве третьего источника питания предусматривается дизель генераторная установка (ДГУ).

Питание потребителей от трех независимых источников питания предусматривается для потребителей 1-й категории особой группы, когда необходима бесперебойная работа для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров в соответствии с ПУЭ 7-издание пункт 1.2.18.

Особенностью данной схемы является то, что при отключенных обоих вводах, в случае аварии или вручную были отключены вводы, например для проверки (ремонта) электрооборудования, производится автоматический запуск ДГУ и подключение к нему нагрузки. При восстановлении напряжения на любом из вводов, происходит автоматическое переключение в исходное состояние. На рис.1 представлена схема АВР с ДГУ выполненная на контакторах в однолинейном изображении.

Рис.1 – Схема АВР с ДГУ на контакторах в однолинейном изображении

Принцип работы АВР

В нормальном режиме, питание потребителей напряжением 380В осуществляется от Ввода 1 или Ввода 2 через общий силовой контактор КМ3, который включается через определенную выдержку времени с помощью реле времени КТ1, делается это для того, чтобы питание осуществлялось при наступлении устойчивого режима работы.

Наличие напряжения на каждом из вводом контролируется реле контроля напряжения KV1 и KV2. Переключатель SA1 служит для выбора приоритетного ввода. При наличии напряжения на обоих вводах, первым подключится тот ввод у которого выбран приоритет (положение «1» – первый ввод, положение «0» – оба ввода отключены, положение «2» – второй ввод).

Рис.2 – Схема электрическая принципиальная АВР с ДГУ на контакторах

Принцип работы АВР с основными вводами (Ввод 1 и Ввод 2)

Например при исчезновении напряжения на Вводе 1, срабатывает реле контроля напряжения KV1 и размыкает своими контактами, цепь питания контактора КМ1. При наличии напряжения на Вводе 2, контакты реле KV2 замкнуты и если контактор КМ1 находится в отключенном состоянии, то сработает контактор КМ2, при этом контактор КМ3 находится во включенном состоянии и напряжение потребителям подается через замкнутые силовые контакты контакторов КМ1 и КМ3.

Аналогично выполняется АВР для Ввода 2.

Принцип работы АВР с ДГУ

При пропадании напряжения на основных вводах: Ввод 1 и Ввод 2, происходит замыкание цепи управления генератором, размыкание цепи питания силового контактора КМ3. После того, как генератор запустится и реле контроля напряжения KV3 замкнет свой выходной контакт, начинается отсчет времени с помощью реле времени с задержкой на включение KT2, необходимый для стабилизации выходных параметров генератора. По окончании отсчета, цепь питания контактора КМ4 замыкается и подключается питание генератора.

При восстановлении напряжения на каком либо из основных вводов. Например восстановилось напряжение на Вводе 1, в этом случае срабатывает реле контроля напряжения KV1 и своими контактами замыкает цепь питания контактора КМ1. При этом выходные контакты контактора КМ1 замыкаются и подается питание на реле времени с задержкой на включение KT1.

После окончания отсчета времени, реле времени КТ1 замыкает цепь питания промежуточное реле KL3, которое в свою очередь замыкает цепь питания катушки контактора КМ3 и размыкает цепь питания контактора КМ4, после того как контактор КМ4 отключится, сработает КМ3 и через замкнутые силовые контакты контакторов КМ1 и КМ3 подается напряжение потребителям от основного Ввода 1.

Также рекомендую вам ознакомится со схемой АВР на три ввода с секционным контактором.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

509 Превышен предел пропускной способности

509 Превышен предел пропускной способности Сервер временно не может обслуживать ваш запрос из-за того, что владелец сайта достиг своего ограничение пропускной способности.Пожалуйста, попробуйте позже.

Принципиальная схема дизельного генератора

Контекст 1

… V * – установка мгновенного значения напряжения, V r – номинальное напряжение микросети, Q r – номинальная выходная реактивная мощность генератора и Q * – измеренная фактическая выходная реактивная мощность. Коэффициент спада напряжения обозначается n. Характеристика спада напряжения, приведенная в (2), показана на рис. 2. На этом рисунке минимальное и максимальное допустимые напряжения в системе представлены как V min и V max соответственно.Коэффициент падения напряжения можно рассчитать, используя номинальную выходную реактивную мощность генератора, а также минимальный и максимальный уровни напряжения. Регуляторы падения частоты и напряжения, указанные в (1) и (2), могут использоваться в каждом управляемом генераторе для поддержания частоты и напряжения микросети в пределах указанных стандартов. Однако нераспределяемые генераторы в микросети работают в режиме отслеживания максимальной мощности, чтобы увеличить преимущества возобновляемых источников энергии. В этой статье взаимодействие между различными типами DG в автономной микросети исследуется с помощью стратегий управления спадом, учитывающих переходные характеристики и возможность динамического разделения мощности.Предполагается, что микросеть может состоять только из инерционных источников или только из неинерциальных источников, либо из того и другого. Влияние используемого контроля спада также учитывается во время синхронизации DG в микросети. III. ИССЛЕДОВАНИЯ ПО ЭКСПЛУАТАЦИИ M ICROGRID Рассмотрим систему микросетей, показанную на рис. 3. Два DG, DG1 и DG2, подключены к шинам BUS-1 и BUS-3 соответственно. Реальная и реактивная мощность на выходе DG1 и DG2 обозначается P 1, Q 1 и P 2, Q 2 соответственно. Автоматические выключатели DG используются для синхронизации и изоляции.Две нагрузки, load1 и load2, подключены к шинам BUS-2 и BUS-4. Параметры системы приведены в таблице 1. Следует отметить, что каждый DG и нагрузка в микросети подключаются через короткий отрезок линии. Микросетка моделируется в PSCAD для моделирования. При моделировании микросетей рассматриваются два типа ДГ: инерционные и неинерционные. Падения частоты и напряжения используются для управления и распределения выходной реальной и реактивной мощности каждого РГ в микросети. В зависимости от условий нагрузки контроллер спада рассчитывает рабочую частоту для каждого ДГ.Коэффициенты спада для каждого ДГ выбираются для управления частотой в пределах изохронного частотного диапазона (здесь оно выбрано как ± 0,25 Гц) и напряжением в пределах ± 6% от номинального значения при распределении активной и реактивной мощности между нагрузками пропорционально емкости ДГ. . Следует отметить, что основная цель – изучить переходное поведение источников в микросети. Поэтому не было предпринято никаких попыток восстановить частоту до номинального значения путем вертикального смещения линии спада с использованием более медленного контура управления.Рассмотрены три тематических исследования для анализа взаимодействия между различными типами ОГ с использованием обычных характеристик контроля спада, приведенных в Разделе II. Дизель-генератор выбран для представления инерционного ДГ, в то время как трехфазный преобразователь, питаемый от идеального источника постоянного напряжения, выбран для представления неинерциального источника. В первом случае анализируется поведение инерциальных ДГ. Далее представлен ответ микросети с неинерциальными ДГ. Наконец, считается, что как инерционные, так и неинерционные DG предлагают лучшие стратегии контроля падения для гибридной микросети.Показано взаимодействие между DG во время синхронизации и изменения нагрузки. Результаты моделирования для трех упомянутых выше случаев представлены ниже. В данном исследовании предполагается, что DG1 и DG2 являются инерционными источниками на базе дизель-генераторов. Каждый генератор состоит из двигателя внутреннего сгорания (ВС), соединенного с синхронным генератором. Принципиальная схема дизельного генератора показана на рис. 4. Двигатель внутреннего сгорания интегрирован с регулятором для регулирования выходной скорости вала двигателя путем регулирования количества топлива, подаваемого в двигатель.После активации спада частоты дизельного генератора двигатель внутреннего сгорания поддерживает требуемую частоту вращения выходного вала до значения, требуемого спадом. Также дизель-генератор снабжен возбудителем и регулятором напряжения для управления выходным напряжением на клеммах. Требуемое значение регулируемого напряжения может быть установлено в зависимости от падения напряжения. Дизель-генераторы были смоделированы с соответствующей динамикой компонентов в PSCAD. Параметры для моделирования двигателя внутреннего сгорания и генератора получены от производителя [18].Параметры первого дизель-генератора (т.е. ДГ1) приведены в Приложении-А. Из результатов экспериментов и моделирования, полученных в микросети, подключенной к дизель-генератору, очевидно, что существуют колебания частоты и реальной мощности во время переходных процессов из-за реакции регулятора [14]. Поэтому в этом разделе исследуется динамический отклик только дизельных генераторов. Для анализа синхронизации генератора предполагается, что DG1 подключен к системе, питающей как нагрузку 1, так и нагрузку 2, в то время как микросеть работает в автономном режиме.Затем DG2 синхронизируется с микросетью с помощью выключателя CB DG2. Во время синхронизации величина напряжения входящего генератора (то есть DG2) регулируется до значения, равного PC. Затем фазовый угол DG2 и частота регулируются, чтобы соответствовать значениям на ПК. Далее выключатель DG2 замыкается в точке перехода напряжения через нуль. В моделировании DG2 подключается к микросети через 26,593 с после выполнения условий синхронизации. После подключения DG2 оба DG работают по падению частоты и напряжения, распределяя мощность нагрузки в микросети.Распределение активной и реактивной мощности до и после подключения DG2 показано на рис. 5. Можно видеть, что DG2 начинает подавать активную и реактивную мощность после подключения. Изменение настройки частоты DG на основе спада (т.е. частоты, рассчитанной из уравнения спада) показано на рис. 6. Непосредственно перед синхронизацией DG1 поддерживает частоту микросети в режиме управления спадом, а частота DG2 настраивается на частоту ПК. (т.е. равна частоте спада DG1) для целей синхронизации.Однако после подключения DG2 его частота меняется на частоту без нагрузки, поскольку в момент подключения реальная выходная мощность равна нулю. Затем DG2 начинает подавать активную мощность, вызывая постепенное уменьшение частоты спада. С другой стороны, реальная выходная мощность DG1 постепенно уменьшается по мере того, как DG2 вводит мощность в микросеть. Наконец, система переходит в устойчивое состояние примерно через 12 секунд. Коэффициенты спада, приведенные в таблице 1, выбираются для обеспечения мощности нагрузки, пропорциональной мощности ДГ.В установившемся режиме отношение реальной выходной мощности между двумя ДГ составляет 1,25. Это соответствует соотношению номинальных мощностей этих двух DG, приведенному в таблице 1. Выходные токи DG1 и DG2 во время и после синхронизации показаны на рис. 7. Из рис. 4 и 5, переходные колебания можно увидеть в сигналах частоты и активной мощности после подключения DG2 к микросети. Колебания системы дополнительно демонстрируются выходными токами ДГ, показанными на рис. 7. Эти ДГ инжектируют токи с немного разными частотами, пока не будет достигнута точка спада установившегося состояния.Основная причина этих колебаний – более медленный отклик регулятора этих инерционных генераторов. Выходная скорость / частота каждого генератора не может быть мгновенно изменена в соответствии со значением, запрошенным из спада частоты. Кроме того, из-за отсутствия одного сильного источника (например, энергосистемы) в изолированной микросети эти частотные колебания проявляются более сильно. В этой конфигурации микросети два дизель-генератора разделены небольшим отрезком линии, который дополнительно ограничивает демпфирующие колебания.Поэтому предлагается способ минимизировать колебания при синхронизации генератора с помощью регулятора спада. Предлагаемый контроллер спада используется только во время синхронизации входящего генератора (т. Е. Для DG2). Следует отметить, что используется только существующее регулирование демпфирования дизельных генераторов, а конкретный контроллер демпфирования не реализован. Предлагаемое управление спадом достигается путем изменения настройки частоты входящего генератора с частоты ПК на частоту спада с постоянной времени характеристики регулятора в генераторе.Затем можно реализовать характеристику плавного перехода через спад, изменив (1) …

Причины и предотвращение пониженного напряжения в дизельном генераторе

Вы столкнетесь с проблемой после использования дизельного генератора в течение определенного периода времени, например, необычного шума, задержки запуска, снижения скорости и т. Д. Эти проблемы называются проблемой пониженного напряжения в дизельном генераторе.

В этой статье мы поговорим о пониженном напряжении, почему это происходит и как с этой проблемой справиться.Мы надеемся, что это очень поможет вам в решении этой проблемы, если вы с ней столкнетесь. Как работает генератор и как им пользоваться, узнайте здесь.

Причины пониженного напряжения

Обычно на прогрев генератора требуется немного времени. Если произойдет пониженное напряжение или падение напряжения, это будет нормальным явлением, если это произойдет до запуска двигателя. Специалисты рекомендуют игнорировать падение напряжения выше 8 вольт.

Однако генератору с воздушным охлаждением требуется меньше времени для прогрева генератора, чем генератору с водяным охлаждением.Тем не менее, есть определенные причины, по которым может произойти пониженное напряжение. Это,

  • Если скорость первичного двигателя генератора слишком низкая, произойдет падение / пониженное напряжение.
  • Иногда выпрямительные диоды выходят из строя по необычной причине, связанной с генератором. В этом случае произойдет пониженное напряжение.
  • Если петля тока возбуждения будет слишком большой, то это произойдет.
  • Иногда электромеханическая щетка выпадает из нейтрального положения.Более того, если пружина будет выдерживать слишком низкое давление, произойдет пониженное напряжение.
  • Замыкание на землю в обмотке возбуждения – наиболее частая причина пониженного напряжения. Другая причина – короткое замыкание в обмотке возбуждения или статора.
  • Если поверхность контакта щетки мала и соединение плохое, то произойдет падение напряжения.
  • Плохая циркуляция топлива – важная причина падения напряжения.
  • Настройка АРН и неисправный контроль топлива.

Более того, разряженная батарея, плохие соединения, неисправная проводка – вероятная причина проблем с пониженным напряжением в дизельном генераторе.См. Вид генератора от генераторной компании.

Предотвращение пониженного напряжения в дизельном генераторе

Если нет ложного отключения, то вы должны проверить регулировку распределительного устройства, если оно находится в правильном положении на самых первых шагах.

Если вы чувствуете, что в генераторе происходит падение напряжения, проверьте генераторную установку, поддерживает ли она одинаковую скорость в нагруженном и ненагруженном состоянии. Обычно частота вращения генератора составляет 1500 об / мин для 50 Гц и 1800 об / мин для 60 Гц.Если все в порядке, значит проблема в другом.

Однако, если генераторная установка поддерживает скорость в нагруженном и ненагруженном состоянии, а падение напряжения по-прежнему происходит, проблема может заключаться в регуляторе напряжения.

Следующим шагом может быть проверка электрической перегрузки. Потому что перегрузка может привести к нестабильности скорости и создать проблему пониженного напряжения. Регулятор двигателя, недостаток воздуха для горения, износ двигателя – вот возможные места, где можно найти решение.

Для преодоления пониженного напряжения замените топливо на масло и воду отдельно.Никогда не перегружайте генератор, чем используется номинальная нагрузка генератора. Это снизит эффективность генератора, а также станет причиной пониженного напряжения. Регулярно ремонтируйте и заменяйте три фильтра на генераторе. Это защитит генератор.

Все дело в недостатках и предотвращении пониженного напряжения в дизель-генераторе. Пониженное напряжение снижает эффективность генератора. Так что не нагружайте генератор лишней нагрузкой.

Дизельный генератор

– обзор

ПРИМЕР II: ЭКСПЛУАТАЦИЯ ВЕТРА / АККУМУЛЯТОРА / ДИЗЕЛЬНОЙ СИСТЕМЫ

В качестве второго примера работа ветряной / аккумуляторной / дизельной системы оптимизирована с учетом стратегии управления дизельным генератором.Спрос на энергию имеет постоянный дневной график со средним значением 8,75 кВт. Потребляемая мощность составляет 7 кВт с 0 до 8 часов, 14 кВт с 8 до 19 часов и 0 кВт с 19 до 24 часов. Система включает ветряную турбину мощностью 75 кВт, аккумуляторную батарею на 150 кВтч для хранения энергии и дизельный генератор мощностью 25 кВт в качестве резервного генератора. Система расположена в Де Кой, прибрежном районе в Нидерландах, где потенциальная годовая выработка энергии ветряной турбиной составляет около 135 МВтч / год (= средняя мощность 15 кВт).

Дизель-генератор может быть включен в систему различными способами:

(i)

Генератор только напрямую подает энергию на нагрузку.Когда почасовая потребность в нагрузке превышает энергию, производимую ветряной турбиной, плюс энергию, которую могут обеспечить батареи, дизельный генератор восполняет разницу. Дизель-генератор подключен к шине переменного тока системы (генератор переменного тока). Поскольку максимальная потребляемая нагрузка (14 кВт) меньше номинальной мощности дизельного генератора (25 кВт), он всегда работает с частичной нагрузкой. В этой конфигурации дизельный генератор не используется для зарядки аккумуляторов.

(ii)

Дизель-генератор может подавать энергию непосредственно на нагрузку, а также заряжать батареи.Поскольку ожидается, что большая часть произведенного дизельного генератора будет храниться в батареях, используется дизельный генератор, который подсоединен к шине постоянного тока системы (генератор постоянного тока). В этой стратегии дизельный генератор может работать с полной нагрузкой, что дает преимущество более высокой топливной эффективности.

Дизель-генератор будет запущен, когда уровень заряда (SOC) аккумуляторов упадет ниже определенного предварительно заданного значения (переключатель низкого уровня). Если дизельный генератор работает, он будет остановлен, когда батареи будут заряжены до заданного уровня (высокий уровень переключения) или если выработка энергии ветряной турбиной превышает потребность в нагрузке.

Выключатель низкого уровня может быть установлен чуть выше минимального допустимого уровня заряда батареи. Оптимальный выбор переключателя высокого уровня является менее простым и зависит, среди прочего, от схемы нагрузки. Если установлено относительно низкое значение (например, 50% SOC), дизель-генератор может часто работать только в течение короткого времени, что увеличивает расход топлива и может вызвать неудобства. Если переключатель высокого уровня установлен на высокий уровень (например, 90% SOC), батареи не могут накапливать много дополнительной энергии в случае, если ветряная турбина должна производить избыточную энергию.Это увеличивает расход топлива и сокращает время работы от аккумулятора. Выбор может быть сделан на основе расчетов моделирования, в которых дизельный генератор был подключен к шине переменного тока, работающей с частичной нагрузкой, и подключен к шине постоянного тока, работающей с полной нагрузкой.

Минимальное и максимальное допустимые значения SOC аккумулятора составляли 30% и 95% от емкости аккумулятора. Уровень переключения низкого уровня, при котором запускается дизель-генератор, был установлен на 35% от емкости батареи, тогда как уровень переключения высокого уровня был впоследствии установлен на 50%, 70% и 90% SOC.Период моделирования составил один год. Был использован тип дизельного генератора по умолчанию SOMES. Экономические допущения можно найти в таблице 1.

В таблице 2 показаны результаты моделирования. Можно заметить, что нехватка энергии и затраты на электроэнергию почти равны для всех прогонов моделирования. Дефицит энергии никогда не становится нулевым, поскольку предполагалось, что дизельный генератор недоступен в течение 5% времени моделирования из-за технического обслуживания и ремонта.

Таблица 2.Различное моделирование запускается с системой ветер / аккумулятор / дизель-генератор.

дизель-генератор высокое переключение (%) Дефицит энергии (%) покрытие ветром (%) цикл хранения расход топлива (л) наработка дизельное топливо количество дизельного топлива пусков электр. затраты ($ / кВтч)
AC 1,4 72 90 13000 3626 500 0.27
DC 50 1,2 70 167 7800 967 286 0,25
DC 8100 1016 160 0,25
DC 90 1,1 67 156 8500 1058 95 0138 90.25

Очевидно, что доля общей нагрузки, которая покрывается возобновляемой энергией, максимальна в случае дизельного генератора переменного тока, поскольку дизельный генератор используется только для восполнения разницы между спросом на энергию и поставкой от ветра турбина и батареи. Однако количество часов работы генератора переменного тока велико (40% времени моделирования), а работа с частичной нагрузкой приводит к высокому расходу топлива.

Использование дизельного генератора в качестве генератора постоянного тока с полной нагрузкой с переключателем высокого уровня на 50% SOC сокращает количество часов работы на 75%, расход топлива на 35% и увеличивает количество циклов батарей с От 90 до примерно 160 (для сравнения, для предполагаемой батареи экономически оптимальное количество годовых циклов составляет 100).Когда настройка переключателя высокого уровня повышается с 50 до 90%, вклад энергии ветра в покрытие потребности в нагрузке уменьшается лишь незначительно с 70 до 67%, что связано с регулярной суточной нагрузкой. Соответственно увеличивается доля дизель-генератора с 29 до 32%.

Таким образом, с переключателем высокого уровня, установленным на 50% вместо 90%, экономия расхода топлива и общего времени работы дизельного генератора составляет 10%. С другой стороны, количество пусков дизеля увеличивается на 100%.

Причины проблемы перенапряжения в дизельном генераторе – Статьи Блог

Причины проблемы перенапряжения в дизельном генераторе

Термин «перенапряжение» означает, что значение напряжения в энергосистеме превышает ожидаемое или расчетное значение. Каждая энергосистема имеет собственное значение напряжения, от которого система будет работать. Но если он превысит, то он разрушится, так как полупроводник превысит их номиналы.

Итак, перенапряжение – проблема как в энергосистеме, так и в дизельном генераторе. Мы сообщим вам, почему возникает проблема перенапряжения в дизельном генераторе и как ее предотвратить. Надеюсь, это вам очень поможет. Чтобы узнать о генераторе или выбрать генератор, посетите nevecorporation.com

Причины перенапряжения в дизель-генераторе

Причин перенапряжения в генераторе множество. Их,

  • Если частота вращения двигателя генератора нестабильна, то есть слишком высокая, тогда напряжение значительно возрастет.
  • Если рабочая нагрузка превышает КПД генератора, то напряжение будет нестабильным.
  • Иногда мешают компоненты регулятора напряжения. В этом случае напряжение увеличивается.
  • В дизельном генераторе циркуляция топлива может быть нестабильной, что является еще одной причиной нестабильного напряжения.
  • При слишком большом зазоре активной зоны в шунтирующем реакторе дизель-генератора возникает перенапряжение.
  • Из-за регулирования давления напряжение увеличивается. Однако регулирование давления происходит из-за короткого замыкания магнитного реостата.
  • Кроме того, внезапная потеря нагрузки – еще одна причина перенапряжения.

Эти причины такие же, как у газогенератора.

Причина перенапряжения в силовой / электрической системе

В основном, существует два типа перенапряжения: внешнее и внутреннее перенапряжение. Внешнее перенапряжение возникает из-за молнии и атмосферных изменений. В то время как внутреннее перенапряжение происходит из-за внутреннего рабочего состояния системы.

Внутренние перенапряжения делятся на перенапряжение промышленной частоты, рабочее перенапряжение и резонансное перенапряжение.

Нарушение изоляции: Нарушение изоляции является частой причиной перенапряжения. Нарушение изоляции происходит, когда возникает проблема с заземлением проводника. Это означает, что если нет изоляции между землей и землей, происходит нарушение изоляции. Потому что один конец проводника должен быть заземлен, чтобы ток мог идти вниз.

Резонансы: , если индуктивное сопротивление и емкостное сопротивление в энергосистеме равны, тогда возникают резонансы, и резонанс является хорошей причиной перенапряжения.Конденсатор системы и электрическая индукционная петля образуют резонансную петлю, которая вызывает высокое перенапряжение, имеет сильное воздействие и длительную работу.

Скачки в энергосистеме: Перенапряжения случаются также из-за плохой регулировки источника питания неравномерно. Это серьезно повредит электронный компонент.

Молния: Существует множество внутренних проблем, которые являются причиной перенапряжения. Однако молния является внешней причиной перенапряжения. Молния вызывает скачки перенапряжения наивысшей величины и наносит серьезный вред системе.Таким образом, каждая энергосистема должна быть защищена устройством защиты от напряжения.

Заземление дуги: в трехфазной системе электроснабжения, если есть спорадическая дуга, когда линия к заземлению проводится, то возникает дугообразное заземление. Таким образом, изменения токовой нагрузки и напряжения вызывают короткие живые колебания или перенапряжение, что приводит к серьезной проблеме, такой как выход из строя системы или оборудования, подключенного к системе.

Итак, это все о причине перенапряжения как дизельного генератора, так и энергосистемы.Надеюсь, эта статья окажется для вас полезной. Вот некоторая связанная статья о том, как подключить генератор к дому без переключателя.

Что такое генераторные диоды и для чего они нужны?

по chris@pkwydigital.com 20. ноября 2018 04:14

Диоды – небольшая, но важная часть вашего дизельного генератора. Генератор работает путем преобразования механической энергии в электрическую в генераторе переменного тока.Внутри генератора переменного тока магнитное поле (перемещаемое механической энергией) преобразует механическую энергию в электрическую.

Что такое генераторные диоды?

Диоды – это устройства, помещенные в электрическую цепь постоянного тока. Они позволяют току легко двигаться в одном направлении, но не в другом. Когда диод вставлен в цепь таким образом, что позволяет току течь через цепь, он смещен в прямом направлении, а когда диод блокирует ток от завершения цепи, он смещается в обратном направлении.Как объясняет All About Circuits, «диод можно рассматривать как переключатель:« замкнут »при прямом смещении и« разомкнут »при обратном смещении».

Что делают диоды в генераторе переменного тока?

Диоды используются в процессе выпрямления или преобразования переменного тока в постоянный. Это возможно, потому что диоды пропускают ток только в одном направлении. Переменный ток, или переменный ток, включает в себя ток, текущий как вперед, так и назад, создавая полную синусоидальную волну. Постоянный или постоянный ток движется только в одном направлении.Блокируя половину синусоидальной волны переменного тока, диоды эффективно преобразовывают ток в постоянный ток.

Этот процесс необходим для работы генератора переменного тока, поскольку магнитное поле зависит от мощности постоянного тока. Выход переменного тока возбудителя должен быть преобразован в мощность постоянного тока, прежде чем его можно будет использовать для выработки электроэнергии. Этот процесс происходит в автоматическом регуляторе напряжения генераторной установки. Регулятор согласовывает выходную мощность возбудителя с необходимой выходной мощностью, поэтому генератор не вырабатывает больше мощности, чем необходимо в данный момент.Это помогает предотвратить износ компонентов, в том числе диодов генератора.

Диоды в автоматическом стабилизаторе напряжения собраны в группу, называемую выпрямительными диодами. Имеется равное количество диодов с прямым и обратным смещением. Это позволяет генераторам использовать обе половины синусоидальной волны переменного тока. Когда мощность течет в одном направлении, она проходит через диоды с прямым смещением. Другая половина синусоидальной волны тока проходит через диоды с обратной связью. Вместе выпрямительные диоды позволяют магнитному полю использовать всю мощность переменного тока для выработки электричества, а не только половину мощности переменного тока.

60b9269c-6c8c-4dee-b6e3-dc934808d90b | 2 | 4.5

Теги:

Генератор

Цепь автоматического регулятора оборотов

для дизельных генераторов

В посте обсуждается схема регулятора оборотов дизельного генератора для лодок, использующая метод ШИМ, а также простую схему шунтирования симистора. Идея была предложена мистером Дэйвом.

Цели и требования схемы

  1. Я с интересом просматривал ваш веб-сайт электронных схем и был бы признателен, если бы вы прокомментировали следующее. лодки, частота вращения этого двигателя НЕ регулируется, и ее трудно установить на правильную частоту вращения, чтобы поддерживать генератор на правильной частоте вращения для выходной мощности 50 Гц.
  2. Можно ли преобразовать эту переменную ЧАСТОТУ переменного тока 220 В в 220 В постоянного тока с помощью моста выпрямитель, а затем преобразовать его обратно в 220 В 50 Гц
  3. Это решит серьезную проблему для тех из нас, у кого есть небольшие лодки, на которых нет места или которые могут нести дополнительную нагрузку другого морского дизельного двигателя, генератор способен мощностью 4 кВА
  4. Ваши комментарии будут оценены

Конструкция

Запрошенная схема управления частотой вращения дизель-генератора может быть выполнена либо b Если использовать метод ШИМ или то же самое может быть реализовано с помощью схемы автоматического шунтирующего регулятора, давайте разберемся с двумя аналогами из следующего объяснения:

Первая идея, как указано выше, использует схему полного моста инвертора IRS2453 и подключенную IC 555 Каскад ШИМ-контроллера для предполагаемого управления числом оборотов на выходе дизель-генератора.

Конструкция выглядит довольно простой, в которой сеть диодного моста преобразует входное 220 В в напряжение шины постоянного тока 330 В для полной мостовой драйверной сети, которая, в свою очередь, преобразует его в прямоугольную волну 220 В переменного тока через соответствующие 4 N-канальных двухтактных сеть MOSFET.
Поскольку этот выходной сигнал представляет собой прямоугольный выходной сигнал 330 В постоянного тока, он соответствующим образом обрабатывается с помощью секции ШИМ IC 555 в требуемый выходной синусоидальный сигнал переменного тока 220 В. Настройка ШИМ обеспечивает фиксированный выходной сигнал 220 В, который, как можно ожидать, будет относительно стабильным без колебаний.

Использование метода шунтирования симистора

Несмотря на точность, приведенная выше концепция выглядит довольно сложной и сложной по сравнению со следующей схемой контроллера дизельного генератора на основе простого симисторного шунта:

Вышеупомянутая схема была первоначально разработана для управления двигателем VAWT ветряной мельницы.

Добавить комментарий

Ваш адрес email не будет опубликован.