Содержание

Самодельное автоматическое зарядное на 12В

Вот очень простая и интересная схема несложной зарядки для 12 В свинцово-кислотных, в том числе гелевых аккумуляторов. Имеется автоматический режим — по окончании процесса светодиод мигает, когда батарея заряжена. А плохой АКБ устройство определяет соответствующим образом и не заряжает.

Схема простого зарядного на 12 вольт

Чтоб зарядить свинцовый аккумулятор небольшой ёмкости, в несколько ампер, потребуется зарядное устройство, схема которого предлагается для самостоятельного изготовления. Зарядка может полностью зарядить любой 12 вольтовый аккумулятор ёмкостью до 5 А/ч и держать его заряженным в течение нескольких месяцев. Рисунок печатной платы примерно такой:

Чтоб было понятнее, условно разделим всю принципиальную схему на отдельные модули. Устройство не включается, пока аккумулятор не подключен через клеммы, как показано на схеме. Кнопка Push нужна для запуска схемы при абсолютно разряженной батарее. Это действие включает транзистор. Сопротивление между коллектором и эмиттером уменьшается и загорается светодиодный индикатор. Электрический потенциал к нижней части схемы идет через диод, Уэ-катод тиристора и через два резистора по 1,8 Ом включенных параллельно.

Тиристор включается в течение каждого полупериода напряжения, и ток течет в батарею. Напряжение также падает на двух низкоомных резисторах и подается на конденсатор 47 мкФ. Он заряжается и включает транзистор BC547. Транзистор лишает тиристор напряжения управляющего электрода и он выключается. Энергия конденсатора поступает в транзистор, но через короткое время она уже не сможет удержать транзистор включенным.

Транзистор выключается, тиристор включается и подает еще один импульс тока от заряжаемую батарею. В процессе заряда батареи, ее напряжение увеличивается, это контролирует блок «монитор напряжения». Работает он так: учитывая что напряжение на батарее увеличивается до 13,5 В, каждый резистор будет иметь некоторое падение напряжения на нем, соответствующее сопротивлению резистора. Диод будет иметь постоянное падение 0,7 В. Напряжение через стабилитрон будет 10 В. Это оставляет 0,6 В между базой и эмиттером транзистора. Такого напряжения достаточно, чтобы открыть транзистор. А значит зарядка отключается.

Схема предназначена для тока заряда до 400 мА. Максимальное значение определяется резисторами 1R8. Они не позволяют превысить более 900 мА в течение половины цикла. При желании, можно слабый тиристор MCR100 заменить на BT136 — который держит до 10 А. Когда аккумулятор полностью заряжен, индикатор LED начнет мигать. Мигание создаёт резистор 2k2 и конденсатор 47 мкФ, подключенный к блоку монитору напряжения.

Зарядите полностью аккумулятор и когда напряжение достигает 13.4 В, подстройте регулятор так, чтобы светодиод мигал. Схема не включится совсем, если напряжение аккумулятора менее 4-х вольт. Но если аккумулятор хороший, а просто был полностью разряжен, вы можете вручную запустить процесс при подключении аккумулятора и нажатия кнопки.

Если аккумулятор не заряжается даже после того, как вы нажали кнопку, не тратьте на него время — скорее всего он уже вообще не будет заряжаться. Таким образом это зарядное устройство идеально подходит для определения того, может ли вообще батарея быть заряжена. Для этого просто подключите АКБ к зарядному устройству и контролируйте напряжение на батарее. Если оно остается на уровне менее 8 В даже после некоторого времени, батарея неисправно и уже вряд-ли когда-то зарядится вообще.

Схема автоматического зарядного устройства 12В » Паятель.Ру


Устройство предназначено для поддержания, в заряженном состоянии аккумуляторной батареи 6СТ-9 (номинальное напряжение 12V), которая используется для питания автомобильной СВ-радиостанции за пределами автомобиля. Батарея 6СТ-9 — кислотная, мотоциклетная, емкостью 9 А/час, отличается от автомобильной тем, что значительно меньше и легче.


Опытные автомобилисты знают, что если аккумулятором длительное время не пользоваться он может прийти в негодность.

Поскольку, в конкретном случае, автомобильная СВ-радиостанция в основном работает как стационарная, а в летнее время и для работы с лодки, то система питания построена таким образом: основной источник питания рации это 6СТ-9, во время стационарной работы к этой батареи подключается зарядное устройство, которое включается автоматически при помощи автомата, описанного в этой статье. Таким образом, батарея работает круглый год на режиме “заряд-разряд”, то есть в нормальном режиме, на который она рассчитана.

Пока напряжение на аккумуляторной батареи G1 более 11 V напряжение на точке соединения R5 и R6 лежит в пределах логической единицы и на выходе триггера Шмитта D1.1-D1.2 будет единица. Единица инвертируется элементом D1.3 и на вход транзисторного ключа на VT1 и VT2 поступает ноль. Транзисторы закрыты, реле Р1 обесточено и его контакты разомкнуты. Зарядное устройство отключено от электросети.

Как только напряжение на батареи станет 11V и ниже, напряжение в точке соединения R5 и R6 станет ниже порогового и будет восприниматься микросхемой как логический ноль. На выходе элемента D1.2 установится так же ноль, и, под действием R1, напряжение на входе D1.1 станет еще ниже.

На выходе элемента D1.3 будет логическая единица. Это приведет к открыванию транзисторного ключа на VT1 и VT2, далее сработает реле, и его контакты включат зарядное устройство. Аккумулятор начнет заряжаться, и напряжение на нем станет постепенно расти.

Теперь триггер Шмитта находится в устойчивом нулевом состоянии, и он переключится в единичное только тогда, когда напряжение на G1 будет более 13,5 V. В этот момент зарядное зарядное устройство выключится, и будет снова включено только после того, как напряжение на G1 упадет до 11 V и ниже.

Такой режим удобен еще и тем, что позволяет для питания рации, потребляющей ток во время передачи до 10А, использовать сетевой источник (в качестве зарядного устройства), выдающий ток 1-1.5А, и напряжение 15V, при условии, что суммарное время передачи за 12 часов не более 1 часа.

Микросхема D1 питается от подконтрольной батареи, чтобы её изменение напряжения не оказывапо влияние на триггер Шмитта, питание на D1 поступает через параметрический стабилизатор на VD1 и R4. Диод VD2 (Д243) служит препятствием для разрядки батареи через цепи выключенного зарядного устройства.

Микросхему K561ЛA7 можно заменить на любую микросхему К561, К1561 или К176, содержащую не менее 3-х инверторов (К561ЛЕ5, К561ЛН2, К561ЛА9 и т.п.). Стабилитрон VD1 — любой маломощный стабилитрон на напряжение 7… 10 V. Каскад на транзисторах VT1 и VT2 можно заменить одним составным транзистором КТ972.

Реле Р1 — стандартное реле от монтажного блока автомобиля ВАЗ-08-099 (тип 3747.10 или аналогичное). Можно использовать и другое реле с обмоткой на 8-12V и достаточно мощными контактами. Диод Д243 можно заменить на любой другой диод с максимальным прямым током не ниже 3 А.

В качестве зарядного устройства можно использовать зарядное устройство для зарядки автомобильных аккумуляторов, переключенное на ток до 1 -1,5 А, или любой сетевой нестаби-лизированный источник питания, выдающий напряжение +14..16V при токе не ниже 1 А.

Настройка. Нужно отключить зарядное устройство и аккумулятор, вместо аккумулятора подключить лабораторный источник питания с регулируемым выходным напряжением. Поочередно подстраивая R6 и R2, и изменяя напряжение источника от 11 до 16 V, нужно добиться, чтобы реле Р1 включалось при уменьшении напряжения от 14 V до 11 V, а выключалось, при последующем увеличении напряжения до 13,5 V.

Это устройство можно использовать для автоматической зарядки более мощной автомобильной батареи, применив другой VD2, на соответствующий ток зарядки.

Выбор схемы зарядного устройства для автомобильного аккумулятора: простые и сложные схемы

Любой автолюбитель знает, сколько неприятностей может доставить аккумулятор, не работающий в штатном режиме. Гарантированно безотказно он может проработать минимум 5 лет при условии, что водитель постоянно следит за его состоянием. Но ситуации, когда аккумуляторная батарея (АКБ) перестаёт выполнять свои функции, случаются довольно часто. Причин может быть довольно много, начиная от неисправностей в системе электроснабжения автомобиля и заканчивая длительным простоем авто в тяжёлых погодных условиях, чаще всего на холоде.

Поэтому к выбору подзарядки АКБ автолюбители, не желающие тратить деньги в специальных сервисных центрах, должны подойти с большой ответственностью.

Виды зарядных устройств

Перед приобретением зарядного устройства (ЗУ) автолюбитель должен знать, что торговля предлагает ЗУ двух основных видов:

  • устройства зарядно-предпусковые;
  • зарядно-пусковые ЗУ.

Первый вид предназначен только для подзарядки аккумуляторных батарей.

При подключении клемм АКБ проводами с клещевидными зажимами к выходу устройства осуществляется подзарядка аккумулятора.

Используя зарядно-пусковые ЗУ можно осуществлять как обычную подзарядку аккумулятора, так и запуск двигателя вращением стартера без подключения аккумуляторной батареи.

Основные критерии выбора

Критериями могут служить рабочие параметры. К ним относятся:

  • максимальное выходное напряжение;
  • максимальный нагрузочный ток.

Максимальное напряжение для зарядки 12- вольтовых кислотных батарей (с учётом падения напряжения на проводах и клеммах АКБ) 15,5 В. При выборе такого ЗУ в конце зарядки напряжение аккумулятора составит порядка 14,5 В.

Максимальный ток выбирается исходя из номинальной ёмкости АКБ.

Для кислотных аккумуляторов действует простое соотношение между ними:

Imax =0,1 C ном.

Для щелочных батарей:

Imax =0,25Сном.

C ном — мощность АКБ, выраженная в Ампер-часах (А-ч).

Выбрав ЗУ с Imax =10А, можно зарядить любой автомобильный аккумулятор.

Классификация зарядных устройств

ЗУ можно классифицировать по схемным решениям, по элементной базе, используемой при их проектировании, по принципам преобразования переменного тока в постоянный. Исходя из этого, можно выделить две группы устройств зарядки аккумуляторов:

  • трансформаторные ЗУ;
  • импульсные устройства зарядки.

В устройствах первой группы используется мощный силовой трансформатор.

В импульсных устройствах зарядки осуществляется преобразование тока сети в последовательность импульсов высокой частоты.

Трансформаторные ЗУ

В трансформаторных ЗУ используются мощные электронные компоненты. Они могут выдерживать перегрузки (в разумных пределах), справляются с ситуациями ошибочного подключения к клеммам АКБ. В ЗУ самодельного изготовления такого типа не всегда присутствуют все компоненты, необходимые для стабильной и безопасной зарядки аккумуляторов. К необходимым компонентам схемы зарядки относятся:

  • трансформаторный блок питания;
  • стабилизатор тока зарядки;
  • токовый регулятор заряда АКБ;
  • устройство защиты от коротких замыканий;
  • устройства индикации параметров.

В простых «самоделках» регулятором тока часто выступают проволочные реостаты с ручным управлением, лампы ближнего и дальнего света автомобиля, которые облают в некоторой степени свойством термосопротивлений. С увеличением силы тока через спираль лампы её сопротивление возрастает. Таким образом, величина тока как бы поддерживается на постоянном уровне. На элементах таких схем выделяется большая тепловая мощность. КПД этих ЗУ невелик. Элементы устройств, собранных по таким схемам, пожароопасны, и их надёжность оставляет желать лучшего.

В некоторых схемах используют набор конденсаторов разной ёмкости. Они вручную включаются по очереди последовательно с первичной обмоткой понижающего трансформатора. Обладая ёмкостным сопротивлением, они понижают величину входного напряжения. Уменьшается напряжение в понижающей обмотке трансформатора и величина тока заряда аккумуляторной батареи. Нагрев элементов в этих схемах меньше, а их КПД возрастает.

Диоды в выпрямительном мосту должны быть подобраны по величине тока заряда батареи. Ток через них должен быть больше максимального зарядного тока. Они обычно устанавливаются на пластинчатые металлические радиаторы, отводящие от диодов избыток тепла и предотвращающие их перегрев.

Более совершенные конструкции предусматривают возможность их автоматического отключения от нагрузки при полной зарядке АКБ. Такие схемные решения позволяют не бояться обрывов в цепи нагрузки и коротких замыканий в ней.

В «продвинутых» схемах для регулирования зарядного тока используют тиристоры. Напряжение на управляющем электроде, определяющее степень открывания прибора, через который протекает ток зарядки, устанавливается вручную переменным резистором схемы. Его ось выведена на переднюю панель устройства зарядки.

В качестве устройств индикации параметров зарядки выступают стрелочные амперметры, включаемые последовательно в цепь нагрузки и вольтметры, контролирующие напряжение на клеммах аккумуляторных батарей. В последних моделях ЗУ стрелочные индикаторы постепенно заменяют цифровыми. Схема усложняется, так как необходимо питать и элементы электронной индикации.

Схема автоматического зарядного устройства для аккумуляторов 12 В позволяет подключать ЗУ к сети при подсоединении проводов с клещевидными зажимами к АКБ. По окончании заряда, когда ток уменьшается до величины срабатывания компаратора схемы, контакты реле размыкаются, светодиод сигнализирует об окончании процесса зарядки и ЗУ отключается от сетевого напряжения.

Импульсные устройства

Устройства этого класса, как и трансформаторные ЗУ, ставят перед собой задачу — восстановление работоспособности аккумуляторных батарей при их частичном или полном разряде. Но схемные решения, использованные в них, основываются на применении современной базы.

Для того чтобы избавиться от мощных силовых понижающих трансформаторов, в импульсных ЗУ переменное сетевое напряжение (50 Герц) преобразуется в переменное напряжение импульсной формы высокой частоты. Это высокочастотное напряжение с помощью импульсного трансформатора доводится до значений, необходимых для зарядки АКБ. Затем оно выпрямляется и фильтруется. Частота преобразования обычно около 50 килогерц, размеры трансформатора, который в основном определяет размеры устройства, минимизируются.

Повышенные требования в ЗУ импульсного типа предъявляются к уровню помех, создаваемых генераторами этих устройств. Для этих целей в схемах используют высокочастотные дроссели. Трансформаторы выполнены в виде обмоток на ферритовых кольцах. Импульсные диоды имеют небольшие размеры.

Если представить общую схему устройства в виде отдельных составных частей, то она будет включать в себя:

  • блок сетевого выпрямителя;
  • блок преобразователя;
  • импульсный трансформатор;
  • блок контроля зарядки;
  • приборы индикации параметров.

В устройствах импульсной зарядки можно использовать один из способов восстановления работоспособности батарей:

  • постоянным током;
  • напряжением постоянной величины;
  • комбинированным способом.

Последний из них позволяет на разных этапах процесса использовать как первый, так и второй способы. При разряженном аккумуляторе необходимо его подзарядить постоянным током до определённого предела. После этого включается режим стабилизации напряжения при уменьшающемся токе заряда.

Импульсные ЗУ можно разделить, в свою очередь, на ручные, требующие самостоятельного регулирования напряжения и силы тока, автоматические, в которых процесс регулируется программным путём, и полуавтоматы.

Сравнение ЗУ разных классов

Надо заметить, что как одни, так и другие устройства зарядки аккумуляторов обладают рядом преимуществ и недостатков. Рассмотрев каждый класс и сравнив их между собой, можно прийти к окончательному выводу о приобретении того или иного устройства.

Трансформаторные зарядные устройства

Среди достоинств трансформаторных ЗУ можно отметить такие: простота конструкции, которую может повторить радиолюбитель не очень высокого класса, надёжность, проверенная временем, доступность элементов схемы, отсутствие сетевых и радиопомех.

Из недостатков можно отметить: значительный вес и габариты, невысокий коэффициент полезного действия из-за потерь в металлических сердечниках трансформаторов.

Импульсные ЗУ

Достоинствами этих устройств являются: небольшой вес из-за отсутствия железа сетевых трансформаторов и радиаторов силовых элементов, высокий (до 98%) КПД, большие допуски на частоту и напряжение питающей сети, большое количество элементов защиты и автоматизации процесса зарядки АКБ.

К недостаткам относятся следующие: отсутствие гальванической развязки от питающей сети, наличие широкого спектра гармоник, требующее принимать дополнительные схемные решения для их подавления.

Постепенно всё большее число автолюбителей, стремящихся обезопасить себя от неприятных ситуаций, связанных с неисправностями аккумуляторных батарей, выбирают зарядные устройства импульсного класса.

Автоматическое зарядное устройство на 6 А своими руками

Всем любителям самодельных девайсов привет. Хотел бы представить на ваш суд зарядное устройство, которое недавно сделал для своей старенькой BMW (точнее для её аккумулятора 60 А).

Схема автоматического зарядного устройства на 6 А

Плата, спроектированная в первоисточнике, была слишком сложной, поэтому разработал свою, более простую.

Вот некоторые данные по деталям, которые могут быть полезны при повторении ЗУ:


  1. Трансформатор 150VA 220 / 18 В
  2. Мост диодный 25 A на 1000 В
  3. Резисторы: R1 0,69 Ом 50 Вт; R1 2,2 Ом 50 Вт
  4. Предохранители: 220 В, 5А; на выходе для защиты аккумуляторной батареи 10 А.

Тиристор BT-151 на радиаторе прикрученном к корпусу, нагревается слабо — до 40 градусов. Мостовой выпрямитель нагревается сильнее. Резистор R1 (собран из двух) такой горячий, что можно сделать из него радиатор на зиму. Тут использовал 50 Вт, потому что 10 Вт были совсем уж горячими. Корпус, к которому привинчены эти резисторы, локально не нагревается более чем до 70 градусов при длительном максимальном токе в 6 А.

Первый переключатель слева включает источник питания — трансформатор, второй — резистор R1 и третий переключатель другой R1 (резисторы R1 могут работать параллельно).

Провода сильноточных цепей имеют поперечное сечение 2,5 мм2, за исключением проводов, идущих к батарее, которые длинной 3 м и имеют поперечное сечение 4 мм2.

Первоначально трансформатор питал галогенное освещение 11,5 В, домотал катушку и все было закреплено лентой, пропитанной эпоксидной смолой. Корпус зарядки от поврежденного дешманского выпрямителя из Китая.

Все поверхности, через которые проходят тепловые потоки, смазаны силиконовой термопастой. Блок должен работать снаружи и в гараже, поэтому попытался по максимуму защитить от влаги, покрасив плату электроизоляционным лаком и используя термоусадочные трубки.

Зарядное устройство прекрасно заряжает, оно на самом деле работает до 14,4 В, а затем снова включается при 13,2 В (так его отрегулировал). Стоимость сборки может быть вообще околонулевой, если имеются основные детали (тиристор и трансформатор).

 

Размер составляет около 95 x 47 мм, прежде всего дал пол ватта всем резисторам. BC177 сменил на BC307. Кроме того, подготовил место и колодки с отверстиями для двух силовых резисторов (R1), первое даже для разных размеров этого резистора (несколько отверстий на выбор). Неизвестно, подходят ли винтовые разъемы для такого уровня токовой нагрузки, но есть смысл снабдить плату разъемами, чтобы не было необходимости паять провода непосредственно к печатной плате. Пусть это будет модуль который легко собирать и разбирать.

Более сложный вариант зарядного устройства для автомобильных 50-60 А аккумуляторов смотрите тут.


Схемы самодельных зарядных для авто аккумулятора. Обзор схем зарядных устройств автомобильных аккумуляторов

У каждого автомобилиста наступал в жизни момент, когда, повернув ключ в замке зажигания не происходило абсолютно ничего. Стартер не проворачивался, а как следствие – машина не заводилась. Диагноз простой и ясный: аккумуляторная батарея полностью разряжена. Но имея под рукой даже самое простое с выходным напряжением 12 В, можно в течение одного часа восстановить АКБ и поехать по своим делам. Как сделать такое устройство своими руками, описано далее в статье.

Как правильно заряжать аккумуляторную батарею

Перед тем как сделать зарядное устройство для аккумулятора своими руками, следует узнать основные правила относительно его правильной зарядки. Если их не соблюдать, то ресурс батареи резко уменьшится и придётся покупать новую, так как восстановить аккумулятор практически невозможно.

Чтобы установить правильный ток, следует знать простую формулу: ток заряда равен току разряда батареи за период времени равный 10-ти часам. Это означает, что ёмкость АКБ следует разделить на 10. Например, для АКБ, ёмкостью 90 А/ч, необходимо установить ток заряда равный 9 Ампер. Если поставить больше, то произойдёт быстрый нагрев электролита и могут быть повреждены свинцовые соты. При меньшей силе тока понадобится очень много времени до полного заряда.

Теперь необходимо разобраться с напряжением. Для АКБ, разность потенциалов которых составляет 12 В, напряжение заряда не должно превышать 16.2 В. Это означает, что для одной банки напряжение должно быть в пределах 2.7 В.

Самое основное правило правильного заряда АКБ: не перепутать клеммы, во время присоединения батареи. Неправильно подключённые клеммы получили название переполюсовке, что приведёт к немедленному вскипанию электролита и окончательному выходу из строя аккумулятора.

Необходимые инструменты и расходные материалы

Сделать качественное зарядное устройство своими руками можно только в случае, если под этими самыми руками будут находиться приготовленные инструменты и расходные материалы.

Перечень инструментов и расходных материалов:

  • Мультиметр. Должен находится в инструментальной сумке каждого автомобилиста. Пригодится не только при сборке зарядного, но и в дальнейшем, при ремонте. Стандартный мультиметр включает в себя такие функции как измерение напряжения, силы тока, сопротивления и прозвонка проводников.
  • Паяльник. Достаточно мощности в 40 или 60 Вт. Слишком мощный паяльник брать нельзя, так как высокая температура приведёт к порче диэлектриков, например, в конденсаторах.
  • Канифоль. Необходима для быстрого увеличения температуры. При недостаточном прогреве деталей, качество пайки будет слишком низким.
  • Олово. Основной скрепляющий материал, используется для улучшения контакта двух деталей.
  • Термоусадочная трубка. Более новый вариант старой изоленты, легка в использовании и обладает лучшими диэлектрическими качествами.

Конечно, всегда под рукой должны находится такие инструменты как плоскогубцы, плоская и фигурная отвёртка. Собрав все вышеперечисленные элементы, можно приступать к сборке зарядного устройства для аккумуляторной батареи.

Последовательность изготовления зарядки на основе импульсного блока питания

Зарядка для аккумуляторов своими руками должна быть не только надёжной и качественной, но и обладать небольшой стоимостью. Поэтому нижеприведённая схема подходит идеально, для достижения подобных целей.

Готовая зарядка на основе импульсного источника питания

Что потребуется:

  • Трансформатор электронного типа от китайского производителя Tashibra.
  • Динистор КН102. Зарубежный динистор имеет маркировку DB3.
  • Силовые ключи MJE13007 в количестве двух штук.
  • Диоды КД213 в количестве четырёх штук.
  • Резистор, с сопротивлением не менее 10 Ом и мощностью 10 Вт. При установке резистора меньшей мощности, он будет постоянно греться и очень скоро выйдет из строя.
  • Любой трансформатор обратной связи, которые могут находится в старых радиоприёмниках.

Разместить схему можно на любой старой плате или купить для этого пластину недорого диэлектрического материала. После сборки схемы её необходимо будет спрятать в металлическом корпусе, который можно изготовить из простой жести. Схема должна быть изолирована от корпуса.

Пример зарядного устройства, смонтированного в корпусе старого системного блока

Последовательность изготовления зарядного устройства своими руками:

  • Переделать силовой трансформатор. Для этого следует размотать его вторичную обмотку, так как импульсные трансформаторы Tashibra дают только 12 В, что очень мало для автомобильного АКБ. На место старой обмотки следует намотать 16 витков нового сдвоенного провода, сечение которого не будет меньше 0.85 мм.Новая обмотка изолируется, и поверх неё наматывается следующая. Только теперь необходимо сделать всего 3 витка, сечение провода – не менее 0.7 мм.
  • Смонтировать защиту от короткого замыкания. Для этого понадобится тот самый резистор на 10 Ом. Его следует впаять в разрыв обмоток силового трансформатора и трансформатора обратной связи.

Резистор как защита от короткого замыкания

  • С помощью четырёх диодов КД213 спаять выпрямитель. Диодный мост простой, может работать с током высокой частоты, и его изготовление происходит по стандартной схеме.

Диодный мост на основе КД213А

  • Делаем ШИМ-контроллер. Необходим в зарядном устройстве, так как контролирует все силовые ключи в схеме. Его можно сделать самостоятельно, используя полевой транзистор (например, IRFZ44) и транзисторы обратной проводимости. Для этих целей идеально подходят элементы типа КТ3102.

ШИМ=контроллер высокого качества

  • Произвести стыковку основной схемы с силовым трансформатором и ШИМ-контроллера. После чего получившуюся сборку можно закреплять в самостоятельно сделанном корпусе.

Данное зарядное устройство достаточно простое, не требует больших затрат при сборке, обладает маленьким весом. Но схемы, сделанные на основе импульсных трансформаторов нельзя отнести к категории надёжных. Даже самый простой стандартный силовой трансформатор будет выдавать более стабильные показатели чем импульсные устройства.

При работе с любым зарядным устройством следует помнить, что нельзя допускать переполюсовки. Данная зарядка защищена от подобного, но всё же перепутанные клеммы сокращают срок службы аккумуляторной батареи, а резистор переменного типа в схеме позволяет контролировать ток заряда.

Простое зарядное устройство своими руками

Для изготовления данной зарядки потребуются элементы, которые можно найти в отслужившем телевизоре старого типа. Перед их монтажом в новую схему, детали необходимо проверить с помощью мультиметра.

Основной деталью схемы является силовой трансформатор, который можно найти не везде. Его маркировка: ТС-180-2. Трансформатор такого типа имеет 2 обмотки, напряжение которых составляет 6.4 и 4.7 В. Чтобы получить необходимую разность потенциалов, эти обмотки следует соединить последовательно – выход первой соединить со входом второй посредством пайки или обыкновенного клеммника.

Трансформатор типа ТС-180-2

Также понадобятся диоды типа Д242А в количестве четырёх штук. Так как данные элементы будут собраны в мостовую схему, потребуется отвод излишнего тепла от них во время работы. Поэтому также необходимо найти или приобрести 4 радиатора охлаждения для радиодеталей, площадью не менее 25 мм2.

Осталась только основа, для которой можно взять пластину из стеклотекстолита и 2 предохранителя, на 0.5 и 10А. Проводники допускается использовать любого сечения, только входной кабель должен быть не менее 2.5 мм2.

Последовательность сборки зарядного устройства:

  1. Первым элементом в схеме необходимо собрать диодный мост. Собирается он по стандартной схеме. Места выводов должны быть опущены вниз, а все диоды надо разместить на радиаторах охлаждения.
  2. От трансформатора, с выводов 10 и 10′ провести 2 провода ко входу диодного моста. Теперь следует немного доработать первичные обмотки трансформаторов, а для этого припаять между выводами 1 и 1′ перемычку.
  3. Припаять входные проводе к выводам 2 и 2′. Входной провод можно сделать из любого кабеля, например, от или любого отслужившего бытового прибора. Если же в наличии есть только провод, то к нему необходимо присоединить вилку.
  4. В разрыв провода, идущего до трансформатора, следует установить предохранитель, рассчитанный на 0.5А. В разрыв плюсового, который пойдёт непосредственно на клемму АКБ – предохранитель на 10А.
  5. Минусовой провод, идущий от диодного моста, припаивают последовательно к обыкновенной лампе, рассчитанной на 12 В, мощностью не более 60 Вт. Это поможет не только контролировать зарядку аккумулятора, но и ограничить зарядный ток.

Все элементы данного зарядного устройства можно разместить в жестяном корпусе, также сделанном своими руками. Пластину стеклотекстолита закрепить болтами, а трансформатор смонтировать прямо на корпус, предварительно разместив между ним и жестью такую же стеклотекстолитовую пластину.

Игнорирование законов электротехники может привести к тому, что зарядное устройство будет постоянно выходить из строя. Поэтому заранее стоит распланировать мощность зарядки, в зависимости от которой и собирать схему. Если превысить мощность цепи, то должной зарядки АКБ не будет, если не будет превышения рабочего напряжения.

Зарядное устройство для автомобильных аккумуляторов.

Ни для кого не ново, если скажу, что у любого автомобилиста в гараже должно быть зарядное устройство для аккумуляторной батареи. Конечно, его можно купить в магазине, но, столкнувшись с этим вопросом, пришел к выводу, заведомо не очень хорошее устройство по приемлемой цене брать не хочется. Встречаются такие, у которых ток заряда регулируется мощным переключателем, который добавляет или уменьшает количество витков во вторичной обмотке трансформатора, тем самым увеличивая или уменьшая зарядный ток, при этом прибор контроля тока в принципе отсутствует. Это наверно самый дешевый вариант зарядника заводского исполнения, ну а толковый девайс стоит не так уж и дешево, цена прямо-таки кусается, поэтому решил найти схему в интернете, и собрать ее самому. Критерии выбора были такие:

Простая схема, без лишних наворотов;
– доступность радиодеталей;
– плавная регулировка зарядного тока от 1 до 10 ампер;
– желательно чтобы это была схема зарядно-тренировочного устройства;
– не сложная наладка;
– стабильность работы (по отзывам тех, кто уже делал данную схему).

Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Все типично: трансформатор, мост (VD8, VD9, VD13, VD14), генератор импульсов с регулируемой скважностью (VT1, VT2), тиристоры в качестве ключей (VD11, VD12), узел контроля заряда. Несколько упростив эту конструкцию, получим более простую схему:

На этой схеме нет узла контроля заряда, а остальное – почти то же самое: транс, мост, генератор, один тиристор, измерительные головки и предохранитель. Обратите внимание, что в схеме стоит тиристор КУ202, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор. Трансформатор – ватт на 150, а можно использовать ТС-180 от старого лампового телевизора.

Регулируемое зарядное устройство с током заряда 10А на тиристоре КУ202.

И еще одно устройство, не содержащее дефицитных деталей, с током заряда до 10 ампер. Оно представляет собой простой тиристорный регулятор мощности с фазоимпульсным управлением.

Узел управления тиристором собран на двух транзисторах. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора. Диод VD1 служит для защиты управляющей цепи тиристора от обратного напряжения. Тиристор, также как и в предыдущих схемах, ставится на хороший радиатор, или на небольшой с охлаждающим вентилятором. Печатная плата узла управления выглядит следующим образом:

Схема не плохая, но в ней есть некоторые недостатки:
– колебания напряжения питания приводят к колебанию зарядного тока;
– нет защиты от короткого замыкания кроме предохранителя;
– устройство дает помехи в сеть (лечится с помощью LC-фильтра).

Зарядно-восстанавливающее устройство для аккумуляторных батарей.

Это импульсное устройство может заряжать и восстанавливать практически любые типы аккумуляторов. Время заряда зависит от состояния батареи и колеблется в пределах 4 – 6 часов. За счет импульсного зарядного тока происходит десульфатация пластин аккумулятора. Смотрим схему ниже.

В этой схеме генератор собран на микросхеме, что обеспечивает более стабильную его работу. Вместо NE555 можно использовать российский аналог – таймер 1006ВИ1 . Если кому не нравится КРЕН142 по питанию таймера, так ее можно заменить обычным параметрическим стабилизатором, т.е. резистором и стабилитроном с нужным напряжением стабилизации, а резистор R5 уменьшить до 200 Ом . Транзистор VT1 – на радиатор в обязательном порядке, греется сильно. В схеме применен трансформатор со вторичной обмоткой на 24 вольта. Диодный мост можно собрать из диодов типа Д242 . Для лучшего охлаждения радиатора транзистора VT1 можно применить вентилятор от компьютерного блока питания или охлаждения системного блока.

Восстановление и зарядка аккумулятора.

В результате неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, и он выходит из строя.
Известен способ восстановления таких батарей при заряде их “ассимметричным” током. При этом соотношение зарядного и разрядного тока выбрано 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.


Рис. 1. Электрическая схема зарядного устройства

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000…18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости (см. рис. 2). Последняя буква в обозначении транзистора может быть любой.


Рис. 2. Электрическая схема зарядного устройства

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.
Резисторы применены такие R1 типа С2-23, R2 – ППБЕ-15, R3 – С5-16MB, R4 – ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.
обратного напряжения.

Какой провод лучше использовать от зарядного устройства до аккумулятора.

Конечно, лучше брать гибкий медный многожильный, ну а сечение нужно выбрать из расчета какой максимальный ток будет проходить по этим проводам, для этого смотрим табличку:

Если вас интересует схемотехника импульсных зарядно-восстановительных устройств с применением таймера 1006ВИ1 в задающем генераторе – прочтите эту статью:

Доброго времени суток господа радиолюбители! В этой статье хочу описать сборку несложного зарядного устройства. Даже совсем простого, потому что оно не содержит ничего лишнего. Ведь часто усложняя схемы мы снижаем её надёжность. В общем тут будет рассмотрено пару вариантов таких простейших автомобильных зарядных, которые можно спаять любому, кто хоть раз чинил кофемолку или менял выключатель в коридоре)) По своему опыту могу предположить что оно будет полезным каждому, кто имеет хоть какое-то отношение к технике или электронике. Давно меня посетила идея собрать простейшее зарядное устройство для АКБ своего мотоцикла, так как генератор иногда попросту не справляется с зарядкой последнего, особенно тяжело ему приходится зимним утром, когда нужно завести его со стартера. Конечно многие будут говорить что с кик стартера много проще, но тогда АКБ можно вообще выкинуть.

Электрическая схема самодельного зарядного


Что нужно для того, чтоб АКБ зарядился? Источник стабильного тока, который бы не превышал некоторое безопастное значение. В простейшем случае им будет обычный сетевой трансформатор. Он должен выдавать на вторичке такой ток, который нужен для стандартного зарядного режима (1/10 ёмкости аккумулятора). И если в начале зарядного цикла нагрузка начнёт тянуть ток бОльшего значения – произойдёт просадка напряжения на выходной обмотке трансформатора, а значит ток снизится. Есть два варианта выпрямителей:


Последняя схема позволит менять значение зарядного тока, за счёт изменения напряжения на АКБ. Если вы не доверяете трансформатору, то функцию стабилизатора тока можно возложить на обычную автомобильную лампочку 12 вольт.

В общем для себя решил сделать зарядку довольно мощной, как основу взял трансформатор ТС-160 от советского лампового телека, перемотал под свои нужды, на выходе вышло 14 вольт на 10 ампер, что позволяет заряжать АКБ достаточно большой ёмкости, в том числе любые автомобильные.

Корпус для зарядного устройства


Корпус был собран из цинковой жести, так как хотел сделать как можно проще.


Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела.


Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом – КРВС-3510 , благо они не много стоят:


В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов.


Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент.


Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ.


Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик !.)

Обсудить статью АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.


Если схема для повторения Вам показалась сложной, то можно собрать более , работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.


Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты


от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение . При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ


при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.


Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.


Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.


Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от блока питания компьютера) для подачи питающего напряжения.

Силовые диоды зарядного устройства закреплены с помощью двух прижимных планок к радиатору внутри корпуса. Для этого в задней стенке корпуса сделано прямоугольное отверстие. Такое техническое решение позволило к минимуму свести количество выделяемого тепла внутри корпуса и экономии места. Выводы диодов и подводящие провода распаяны на незакрепленную планку из фольгированного стеклотекстолита.

На фотографии вид самодельного зарядного устройства с правой стороны. Монтаж электрической схемы выполнен цветными проводами, переменного напряжения – коричневым, плюсовые – красным, минусовые – проводами синего цвета. Сечение проводов , идущих от вторичной обмотки трансформатора к клеммам для подключения аккумулятора должно быть не менее 1 мм 2 .

Шунт амперметра представляет собой отрезок высокоомного провода константана длиной около сантиметра, концы которого запаяны в медные полоски. Длина провода шунта подбирается при калибровке амперметра. Провод я взял от шунта сгоревшего стрелочного тестера. Один конец из медных полосок припаян непосредственно к выходной клемме плюса, ко второй полоске припаян толстый проводник, идущий от контактов реле Р3. На стрелочный прибор от шунта идут желтый и красный провод.

Печатная плата блока автоматики зарядного устройства

Схема автоматического регулирования и защиты от неправильного подключения аккумулятора к зарядному устройству спаяна на печатной плате из фольгированного стеклотекстолита.


На фотографии представлен внешний вид собранной схемы. Рисунок печатной платы схемы автоматического регулирования и защиты простой, отверстия выполнены с шагом 2,5 мм.


На фотографии выше вид печатной платы со стороны установки деталей с нанесенной красным цветом маркировкой деталей. Такой чертеж удобен при сборке печатной платы.


Чертеж печатной платы выше пригодится при ее изготовлении с помощью технологии с применением лазерного принтера.


А этот чертеж печатной платы пригодится при нанесении токоведущих дорожек печатной платы ручным способом.

Шкала стрелочного прибора милливольтметра В3-38 не подходила под требуемые измерения, пришлось начертить на компьютере свой вариант, напечатал на плотной белой бумаге и клеем момент приклеил сверху на штатную шкалу.

Благодаря большему размеру шкалы и калибровки прибора в зоне измерения, точность отсчета напряжения получилась 0,2 В.

Провода для подключения АЗУ к клеммам аккумулятора и сети

На провода для подключения автомобильного аккумулятора к зарядному устройству с одной стороны установлены зажимы типа крокодил, с другой стороны разрезные наконечники. Для подключения плюсового вывода аккумулятора выбран красный провод, для подключения минусового – синий. Сечение проводов для подключения к устройству аккумулятора должно быть не менее 1 мм 2 .


К электрической сети зарядное устройство подключается с помощью универсального шнура с вилкой и розеткой, как применяется для подключения компьютеров, оргтехники и других электроприборов.

О деталях зарядного устройства

Силовой трансформатор Т1 применен типа ТН61-220, вторичные обмотки которого соединены последовательно, как показано на схеме. Так как КПД зарядного устройства не менее 0,8 и ток заряда обычно не превышает 6 А, то подойдет любой трансформатор мощностью 150 ватт. Вторичная обмотка трансформатора должна обеспечить напряжение 18-20 В при токе нагрузки до 8 А. Если нет готового трансформатора, то можно взять любой подходящий по мощности и перемотать вторичную обмотку. Рассчитать число витков вторичной обмотки трансформатора можно с помощью специального калькулятора .

Конденсаторы С4-С9 типа МБГЧ на напряжение не менее 350 В. Можно использовать конденсаторы любого типа, рассчитанные на работу в цепях переменного тока.

Диоды VD2-VD5 подойдут любого типа, рассчитанные на ток 10 А. VD7, VD11 – любые импульсные кремневые. VD6, VD8, VD10, VD5, VD12 и VD13 любые, выдерживающие ток 1 А. Светодиод VD1 – любой, VD9 я применил типа КИПД29. Отличительная особенность этого светодиода, что он меняет цвет свечения при смене полярности подключения. Для его переключения использованы контакты К1.2 реле Р1. Когда идет зарядка основным током светодиод светит желтым светом, а при переключении в режим подзарядки аккумулятора – зеленым. Вместо бинарного светодиода можно установить любых два одноцветных, подключив их по ниже приведенной схеме.

В качестве операционного усилителя выбран КР1005УД1, аналог зарубежного AN6551. Такие усилители применяли в блоке звука и видео в видеомагнитофоне ВМ-12. Усилитель хорош тем, что не требует двухполярного питания, цепей коррекции и сохраняет работоспособность при питающем напряжении от 5 до 12 В. Заменить его можно практически любым аналогичным. Хорошо подойдут для замены микросхемы, например, LM358, LM258, LM158, но нумерация выводов у них другая, и потребуется внести изменения в рисунок печатной платы.

Реле Р1 и Р2 любые на напряжение 9-12 В и контактами, рассчитанными на коммутируемый ток 1 А. Р3 на напряжение 9-12 В и ток коммутации 10 А, например РП-21-003. Если в реле несколько контактных групп, то их желательно запаять параллельно.

Переключатель S1 любого типа, рассчитанный на работу при напряжении 250 В и имеющий достаточное количество коммутирующих контактов. Если не нужен шаг регулирования тока в 1 А, то можно поставить несколько тумблеров и устанавливать ток заряда, допустим, 5 А и 8 А. Если заряжать только автомобильные аккумуляторы, то такое решение вполне оправдано. Переключатель S2 служит для отключения системы контроля уровня зарядки. В случае заряда аккумулятора большим током, возможно срабатывание системы раньше, чем аккумулятор зарядится полностью. В таком случае можно систему отключить и продолжить зарядку в ручном режиме.

Электромагнитная головка для измерителя тока и напряжения подойдет любая, с током полного отклонения 100 мкА, например типа М24. Если нет необходимости измерять напряжение, а только ток, то можно установить готовый амперметр, рассчитанный на максимальный постоянный ток измерения 10 А, а напряжение контролировать внешним стрелочным тестером или мультиметром, подключив их к контактам аккумулятора.

Настройка блока автоматической регулировки и защиты АЗУ

При безошибочной сборке платы и исправности всех радиоэлементов, схема заработает сразу. Останется только установить порог напряжения резистором R5, при достижении которого зарядка аккумулятора будет переведена в режим зарядки малым током.

Регулировку можно выполнить непосредственно при зарядке аккумулятора. Но все, же лучше подстраховаться и перед установкой в корпус, схему автоматического регулирования и защиты АЗУ проверить и настроить. Для этого понадобится блок питания постоянного тока, у которого есть возможность регулировать выходное напряжение в пределах от 10 до 20 В, рассчитанного на выходной ток величиной 0,5-1 А. Из измерительных приборов понадобится любой вольтметр, стрелочный тестер или мультиметр рассчитанный на измерение постоянного напряжения, с пределом измерения от 0 до 20 В.

Проверка стабилизатора напряжения

После монтажа всех деталей на печатную плату нужно подать от блока питания питающее напряжение величиной 12-15 В на общий провод (минус) и вывод 17 микросхемы DA1 (плюс). Изменяя напряжение на выходе блока питания от 12 до 20 В, нужно с помощью вольтметра убедиться, что величина напряжения на выходе 2 микросхемы стабилизатора напряжения DA1 равна 9 В. Если напряжение отличается или изменяется, то DA1 неисправна.

Микросхемы серии К142ЕН и аналоги имеют защиту от короткого замыкания по выходу и если закоротить ее выход на общий провод, то микросхема войдет в режим защиты и из строя не выйдет. Если проверка показала, что напряжение на выходе микросхемы равно 0, то это не всегда означает о ее неисправности. Вполне возможно наличие КЗ между дорожками печатной платы или неисправен один из радиоэлементов остальной части схемы. Для проверки микросхемы достаточно отсоединить от платы ее вывод 2 и если на нем появится 9 В, значит, микросхема исправна, и необходимо найти и устранить КЗ.

Проверка системы защиты от перенапряжения

Описание принципа работы схемы решил начать с более простой части схемы, к которой не предъявляются строгие нормы по напряжению срабатывания.

Функцию отключения АЗУ от электросети в случае отсоединения аккумулятора выполняет часть схемы, собранная на операционном дифференциальном усилителе А1.2 (далее ОУ).

Принцип работы операционного дифференциального усилителя

Без знания принципа работы ОУ разобраться в работе схемы сложно, поэтому приведу краткое описание. ОУ имеет два входа и один выход. Один из входов, который обозначается на схеме знаком «+», называется неинвертирующим, а второй вход, который обозначается знаком «–» или кружком, называется инвертирующим. Слово дифференциальный ОУ означает, что напряжение на выходе усилителя зависит от разности напряжений на его входах. В данной схеме операционный усилитель включен без обратной связи, в режиме компаратора – сравнения входных напряжений.

Таким образом, если напряжение на одном из входов будет неизменным, а на втором изменятся, то в момент перехода через точку равенства напряжений на входах, напряжение на выходе усилителя скачкообразно изменится.

Проверка схемы защиты от перенапряжения

Вернемся к схеме. Неинвертирующий вход усилителя А1.2 (вывод 6) подключен к делителю напряжения, собранного на резисторах R13 и R14. Этот делитель подключен к стабилизированному напряжению 9 В и поэтому напряжение в точке соединения резисторов, никогда не изменяется и составляет 6,75 В. Второй вход ОУ (вывод 7) подключен ко второму делителю напряжения, собранному на резисторах R11 и R12. Этот делитель напряжения подключен к шине, по которой идет зарядный ток, и напряжение на нем меняется в зависимости от величины тока и степени заряда аккумулятора. Поэтому и величина напряжения на выводе 7 тоже будет, соответственно изменятся. Сопротивления делителя подобраны таким образом, что при изменении напряжения зарядки аккумулятора от 9 до 19 В напряжение на выводе 7 будет меньше, чем на выводе 6 и напряжение на выходе ОУ (вывод 8) будет больше 0,8 В и близко к напряжению питания ОУ. Транзистор будет открыт, на обмотку реле Р2 будет поступать напряжение и оно замкнет контакты К2.1. Напряжение на выходе также закроет диод VD11 и резистор R15 в работе схемы участвовать не будет.

Как только напряжение зарядки превысит 19 В (это может случится только в случае, если от выхода АЗУ будет отключен аккумулятор), напряжение на выводе 7 станет больше, чем на выводе 6. В этом случае на выходе ОУ напряжение скачкообразно уменьшится до нуля. Транзистор закроется, реле обесточится и контакты К2.1 разомкнутся. Подача питающего напряжения на ОЗУ будет прекращена. В момент, когда напряжение на выходе ОУ станет равно нулю, откроется диод VD11 и, таким образом, параллельно к R14 делителя подключится R15. Напряжение на 6 выводе мгновенно уменьшится, что исключит ложные срабатывания в момент равенства напряжений на входах ОУ из-за пульсаций и помех. Изменяя величину R15 можно менять гистерезис компаратора, то есть напряжение, при котором схема вернется в исходное состояние.

При подключения аккумулятора к ОЗУ напряжения на выводе 6 опять установится равным 6,75 В, а на выводе 7 будет меньше и схема начнет работать в штатном режиме.

Для проверки работы схемы достаточно изменять напряжение на блоке питания от 12 до 20 В и подключив вольтметр вместо реле Р2 наблюдать его показания. При напряжении меньше 19 В, вольтметр должен показывать напряжение, величиной 17-18 В (часть напряжения упадет на транзисторе), а при большем – ноль. Желательно все же подключить к схеме обмотку реле, тогда будет проверена не только работа схемы, но и его работоспособность, а по щелчкам реле можно будет контролировать работу автоматики без вольтметра.

Если схема не работает, то нужно проверить напряжения на входах 6 и 7, выходе ОУ. При отличии напряжений от указанных выше, нужно проверить номиналы резисторов соответствующих делителей. Если резисторы делителей и диод VD11 исправны, то, следовательно, неисправен ОУ.

Для проверки цепи R15, D11 достаточно отключить одни из выводов этих элементов, схема будет работать, только без гистерезиса, то есть включаться и отключаться при одном и том же подаваемом с блока питания напряжении. Транзистор VT12 легко проверить, отсоединив один из выводов R16 и контролируя напряжение на выходе ОУ. Если на выходе ОУ напряжение изменяется правильно, а реле все время включено, значит, имеет место пробой между коллектором и эмиттером транзистора.

Проверка схемы отключения аккумулятора при полной его зарядке

Принцип работы ОУ А1.1 ничем не отличается от работы А1.2, за исключением возможности изменять порог отключения напряжения с помощью подстроечного резистора R5.

Для проверки работы А1.1, питающее напряжение, поданное с блока питания плавно увеличивается и уменьшается в пределах 12-18 В. При достижении напряжения 15,6 В должно отключиться реле Р1 и контактами К1.1 переключить АЗУ в режим зарядки малым током через конденсатор С4. При снижении уровня напряжения ниже 12,54 В реле должно включится и переключить АЗУ в режим зарядки током заданной величины.

Напряжение порога включения 12,54 В можно регулировать изменением номинала резистора R9, но в этом нет необходимости.

С помощью переключателя S2 имеется возможность отключать автоматический режим работы, включив реле Р1 напрямую.

Схема зарядного устройства на конденсаторах


без автоматического отключения

Для тех, кто не имеет достаточного опыта по сборке электронных схем или не нуждается в автоматическом отключении ЗУ по окончании зарядки аккумулятора, предлагаю упрощенней вариант схемы устройства для зарядки кислотных автомобильных аккумуляторов. Отличительная особенность схемы в ее простоте для повторения, надежности, высоком КПД и стабильным током заряда, наличие защиты от неправильного подключения аккумулятора, автоматическое продолжение зарядки в случае пропадания питающего напряжения.


Принцип стабилизации зарядного тока остался неизменным и обеспечивается включением последовательно с сетевым трансформатором блока конденсаторов С1-С6. Для защиты от перенапряжения на входной обмотке и конденсаторах используется одна из пар нормально разомкнутых контактов реле Р1.

Когда аккумулятор не подключен, контакты реле Р1 К1.1 и К1.2 разомкнуты и даже если зарядное устройство подключено к питающей сети ток не поступает на схему. Тоже самое происходит, если подключить ошибочно аккумулятор по полярности. При правильном подключении аккумулятора ток с него поступает через диод VD8 на обмотку реле Р1, реле срабатывает и замыкаются его контакты К1.1 и К1.2. Через замкнутые контакты К1.1 сетевое напряжение поступает на зарядное устройство, а через К1.2 на аккумулятор поступает зарядный ток.

На первый взгляд кажется, что контакты реле К1.2 не нужны, но если их не будет, то при ошибочном подключении аккумулятора, ток потечет с плюсового вывода аккумулятора через минусовую клемму ЗУ, далее через диодный мост и далее непосредственно на минусовой вывод аккумулятора и диоды моста ЗУ выйдут из строя.

Предложенная простая схема для зарядки аккумуляторов легко адаптируется для зарядки аккумуляторов на напряжение 6 В или 24 В. Достаточно заменить реле Р1 на соответствующее напряжение. Для зарядки 24 вольтовых аккумуляторов необходимо обеспечить выходное напряжение с вторичной обмотки трансформатора Т1 не менее 36 В.

При желании схему простого зарядного устройства можно дополнить прибором индикации зарядного тока и напряжения, включив его как в схеме автоматического зарядного устройства.

Порядок зарядки автомобильного аккумулятора


автоматическим самодельным ЗУ

Перед зарядкой снятый с автомобиля аккумулятор необходимо очистить от грязи и протереть его поверхности, для удаления кислотных остатков, водным раствором соды. Если кислота на поверхности есть, то водный раствор соды пенится.

Если аккумулятор имеет пробки для заливки кислоты, то все пробки нужно выкрутить, для того, чтобы образующиеся при зарядке в аккумуляторе газы могли свободно выходить. Обязательно нужно проверить уровень электролита, и если он меньше требуемого, долить дистиллированной воды.

Далее нужно переключателем S1 на зарядном устройстве выставить величину тока заряда и подключить аккумулятор соблюдая полярность (плюсовой вывод аккумулятора нужно подсоединить к плюсовому выводу зарядного устройства) к его клеммам. Если переключатель S3 находится в нижнем положении, то стрелка прибора на зарядном устройстве сразу покажет напряжение, которое выдает аккумулятор. Осталось вставить вилку сетевого шнура в розетку и процесс зарядки аккумулятора начнется. Вольтметр уже начнет показывать напряжение зарядки.

Даже при полностью исправном автомобиле рано или поздно может сложиться ситуация, когда потребуется от внешнего источника – долгая стоянка, случайно оставленные включенными габаритные огни и так далее. Владельцам же старой техники необходимость в регулярной подзарядке аккумулятора известна прекрасно – тому виной и саморазряд «уставшей» батареи, и повышенные токи утечек в электроцепях, в первую очередь – в диодном мосту генератора.

Можно приобрести готовое зарядное устройство: они выпускаются во множестве вариантов и легко доступны. Но кому-то может показаться, что изготовить зарядное устройство для автомобильного аккумулятора своими руками будет интереснее, а кого-то возможность сделать ЗУ буквально из подручного материала и выручит.

Полупроводниковый диод+лампочка

Неизвестно, кому первому пришла в голову идея заряжать аккумулятор подобным образом, но это как раз тот случай, когда зарядить аккумулятор можно буквально подручными средствами . В этой схеме источником тока служит электрическая сеть 220В, диод нужен для преобразования переменного тока в пульсирующий постоянный, а лампочка служит токоограничительным резистором.

Расчет этого зарядного устройства так же прост, как и его схема:

  • Ток, протекающий через лампу, определяется исходя из ее мощности как I=P/U , где U – напряжение в сети, P – мощность лампы. То есть для лампы в 60 Вт ток в цепи составит 0,27 А.
  • Так как диод срезает каждую вторую полуволну синусоиды, реальный средний ток нагрузки будет с учетом этого равен 0,318*I .
ПРИМЕР: Используя лампу 100 Вт в такой схеме, мы получим средний ток зарядки аккумулятора в 0,15А.

Как видно, даже при использовании мощной лампы ток нагрузки получается небольшим, что позволит использовать любой распространенный диод, например 1N4004 (такие обычно идут в комплекте с сигнализациями, стоят в блоках питания маломощной техники и так далее). Все, что нужно знать для сборки такого устройства – это то, что полоска на корпусе диода обозначает его катод. Этот контакт подсоедините к положительному полюсу батареи.

Не подсоединяйте это устройство к аккумулятору, если он не снят с автомобиля, во избежание повреждения бортовой электроники высоким напряжением!

Подобный вариант изготовления представлен на видео

Выпрямитель

Это ЗУ несколько сложнее. Такая схема используется в самых дешевых фабричных устройствах :

Для изготовления зарядного устройства потребуется сетевой трансформатор с выходным напряжением не менее 12,5 В, но и не более 14. Часто берется советский трансформатор типа ТС-180 из ламповых телевизоров, имеющий две накальные обмотки на напряжение 6,3 В. При их последовательном соединении (назначение клемм указано на корпусе трансформатора) мы получим как раз 12,6 В. Для выпрямления переменного тока со вторичной обмотки применен диодный мост (двухполупериодный выпрямитель). Его можно как собрать из отдельных диодов (например, Д242А из того же телевизора), либо купить готовую сборку (KBPC10005 либо ее аналоги).

Диоды выпрямителя будут ощутимо нагреваться, и для них придется сделать радиатор из подходящей алюминиевой пластины. В этом плане использование диодной сборки гораздо удобнее – пластина крепится винтом к ее центральному отверстию на термопасту.

Ниже приведена схема назначения выводов наиболее распространенной в импульсных блоках питания микросхемы TL494:

Нас интересует цепь, связанная с ножкой 1. Просматривая соединенные с ней дорожки на плате, найдите резистор, соединяющий эту ножку с выходом +12 В. Именно он задает выходное напряжение 12-вольтовой цепи блока питания.

РадиоДом – Сайт радиолюбителей

Выпрямительные диоды в зарядных приспособлениях могут быть выведены из строя при случайном замыкании выходных клемм либо неверном включении АКБ. Обычное средство защиты – плавкие предохранители, но для возобновления работоспособности прибора в этом потребуется замена спаленного предохранителя новым, которого как традиционно в нужный момент под рукою нет. Приходится ставить “жучок”, чем ещё более снижается защищённость зарядного устройства.

Добавлено: 07.10.2018 | Просмотров: 23440 | Зарядное устройство

Зарядное устройство (ЗУ) обеспечивает условия заряда, близкие к оптимальным. Основным его отличием данной схемы от остальных является то, что сравнение напряжения на заряжаемой батарее с образцовым происходит в течение отрезка времени, при котором через батарею не протекает зарядный ток (при зарядном токе по напряжению на батарее затруднительно судить о степени её заряда). Сравнение происходит в начале каждого положительного полупериода, пока тиристор VS1 ещё закрыт.

Добавлено: 07.10.2018 | Просмотров: 15612 | Зарядное устройство

Устройство с электронным управлением зарядным током, выполнено на базе тиристорного фазоимпульсного регулятора мощности. Оно не содержит редкие радиокомпоненты, при заведомо рабочих деталях не требует налаживания. Зарядное устройство позволяет заряжать АКБ током от 0 до 10 ампер, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы и просто блока питания на все случаи жизни.

Добавлено: 24.09.2018 | Просмотров: 36153 | Зарядное устройство

Устройство в условиях хранения аккумулятора в зимнее время позволяет автоматом подключать его на зарядку при понижении напряжения и также автоматом отключать зарядку при достижении напряжения, соответственного полностью заряженному аккумулятору. Схема обеспечивает 2 режима работы — ручной и автоматический.

Добавлено: 01.07.2018 | Просмотров: 10659 | Зарядное устройство

Схемы зарядных устройств для автомобильных АКБ довольно распространены и каждая обладает своими достоинствами и недостатками.  Большинство простейших схем зарядных устройств построено по принципу регулятора напряжения с выходным узлом, собранным на тиристорах или мощных транзисторах. Эти схемы обладают существенными недостатками – ток заряда непостоянен и зависит от достигнутого на АКБ напряжения.

Добавлено: 27.06.2018 | Просмотров: 6483 | Зарядное устройство

При зарядке автомобильных АКБ производители рекомендуют поддерживать средний зарядный ток на постоянном уровне. Обычно в стабилизаторах тока в качестве регулирующего элемента используют транзистор, но в процессе работы на нем рассеивается большая мощность, снижая КПД устройства и в связи с этим приходится применять огромные радиаторы.

Добавлено: 25.06.2018 | Просмотров: 8155 | Зарядное устройство

В статье представлена схема автомобильного зарядного устройства для мобильного телефона работающего от прикуривателя автомобиля. Схема данного устройства типовая и может немного отличатся у отдельных производителей. При включении зарядного устройства в гнездо прикуривателя без телефона, горит зеленый светодиод (G).

Добавлено: 25.03.2018 | Просмотров: 3617 | Зарядное устройство

Правильное соблюдение режима эксплуатации аккумуляторных батарей (АКБ), и главное, режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку АКБ производят током, значение которого можно определить по формуле: I=0,1*Q. Где I – средний зарядный ток в амперах., а Q – паспортная электрическая емкость АКБ в ампер-часах. Например, АКБ ёмкостью 70 ампер-час заряжают током не более 7 ампер.

Добавлено: 25.03.2018 | Просмотров: 16722 | Зарядное устройство

Описываемое зарядное устройство было разработано для восстановления и заряда АКБ автомобилей и мотоциклов. Его главная особенность — это импульсный ток заряда, что положительно сказывается на времени и качестве регенерации АКБ. В новой разработке использована схема на составных тиристорах, расширена полоса регулирования, не требуются мощные охлаждающие теплоотводы.

Добавлено: 11.03.2018 | Просмотров: 17987 | Зарядное устройство

Схема зарядного устройства для автомобильного АКБ с выходным плавно регулируемым напряжением от 2 до 20 вольт с током до 6 ампер. Снабжен стабилизатором. Состоит из сетевого понижающего трансформатора на 200 Вт, зарубежная микросхема TL494CN и ключ на транзисторе КТ825.

Добавлено: 09.12.2017 | Просмотров: 12126 | Зарядное устройство

Зарядное устройство 6-12 вольт для аккумуляторов

Автоматическое зарядное устройство для аккумуляторов своими руками.
Сравнительно недавно на рынке источников автономного питания появились герметичные кислотно-свинцовые аккумуляторы . По сравнению с другими аккумуляторами (никель-кадмиевыми, нель-марганцевыми) они имеют большую емкость и более низкую цену. Их используют в источниках бесперебойного питания персональных компьютеров, охранных, измерительных системах и других электронных приборах. Чаще всего применяют аккумуляторы емкостью 1,5…17 а/ч на напряжение 6в  или 12в. Именно на такие аккумуляторы и рассчитано предлагаемое зарядное устройство.
Принципиальная схема зарядного устройства на микросхеме L200c, стабилизаторе напряжения и тока показана на рис. 4.1.

Принципиальная схема зарядного устройства на L200c, стабилизаторе напряжения и тока показана на рис. 4.1.
Своей простоте схема обязана применению микросхемы регулируемого стабилизатора напряжения и тока L200 . Используется микросхема L200CV (L200CH), L200c datasheet.
В нем имеются цепи ограничения тока, мощности, защита от перегрева и защита от перенапряжения на входе (до 60 В). Выходной ток микросхемы до 2 А, выходное напряжение может быть установлено в диапазоне 2,85…36 В. Микросхема отличается высокой надежностью, нужно очень постараться, чтобы вывести ее из строя.
Микросхема стабилизатора в основном включена по типовой схеме, рекомендованной фирмой-изготовителем . Диод VD5 защищает полностью заряженный аккумулятор от разряда через цепи микросхемы. Светодиод HL1 является индикатором включения зарядного устройства в сеть. Ключ VT1, R4, R7, управляющий светодиодом HL2, служит для контроля за процессом зарядки аккумулятора. Учитывая, что величина падения напряжения на резисторах R3 и R6 недостаточна для открывания кремниевого транзистора, в качестве VT1 должен быть использован германиевый. Светодиод HL2 горит во время зарядки аккумулятора и гаснет после ее окончания. Конденсатор СЗ обеспечивает устойчивую работу зарядного устройства, цепочка Rl, С1,
подключенная параллельно первичной обмотке трансформатора Т1, гасит переходные процессы в момент выключения зарядного устройства из сети, тем самым повышая его надежность.
Заряд аккумулятора ведется током 0,1Q, где Q — емкость аккумулятора в\А-ч. Резистором R3 выставляется необходимый зарядный ток. Разряженный аккумулятор заряжается неизменным током, при этом напряжение на его клеммах растет. Делители R9, R5 (R8,115 для 6-вольтовых аккумуляторов) позволяют установить порог прекращения зарядки аккумулятора. Для 12-вольтовых аккумуляторов рекомендуется выбрать, значения напряжения в пределах 14,5…15 В, а для б-вольтовых — 7,25…7,5 В. При этом на входе опорного напряжения (вывод 4 микросхемы) должно быть напряжение около 2,77 В (2,64…2,86 В). Точное значение напряжения срабатывания выставляется соответствующим подстроечным резистором — R8 или R9.
В процессе зарядки аккумулятора зарядный ток протекает через цепочку низкоомных резисторов R3, R6, одним из которых — переменным R3 — выставляют требуемый ток Величина зарядного тока в амперах определяется выражением:где U52 = 0,45 В (0,38…0,52 В) — напряжение между выводами 5 и 2 микросхемы DAI; R3, R6 — сопротивления резисторов в Ом.
Микросхема DA1 снабжена радиатором с площадью охлаждающей поверхности около 300 см2. Транзистор VT1 — любой германиевый, на напряжение коллектор — эмиттер не менее 20 В. Кроме указанного на схеме, подойдут МП20, МП21, МП25, МП26 с любыми буквенными индексами. В качестве диодов VD1—VD4 можно применить Д231, Д242, Д247 и им подобные; VD5 типа КД208А, КД213. В процессе работы зарядного устройства нагрев диодов незначителен, тем не менее для повышения надежности под-диоды подложены небольшие пластины из дюралюминия толщиной 3 мм. Конденсатор С1 типа К78-2, К73-17 на рабочее напряжение не ниже 600 В; С2 — типа К50-35 или аналогичный импортного производства, СЗ — К10-17, К73-17. Резисторы МЛТ, МОН, С5-16В мощностью, указанной на принципиальной схеме. Подстроечные резисторы R8, R9 типа СПЗ-39А, переменный резистор R3 типа ППБ-2В мощностью не менее 2 Вт. Выключатели SA1., SA2 — МТ-2, МТ-3. Трансформатор питания типа ΤΉ46-220-50. Основная часть деталей зарядного устройства размещена на печатной плате из односторонне фольгированного стеклотекстолита толщиной 2 мм.


Налаживание устройства несложно. Сначала резисторами RB, R9 выставляют необходимые выходные напряжения на клеммах устройства. Отметим, что коммутацию двухпозиционным переключателем SA2 производят до включения устройства в сеть. Затем к/ выходу устройства подключают нагрузку — резистор сопротивлением около
10 Ом. мощностью 2S…30 Вт. Последовательно с нагрузкой включают амперметр. В режиме заряда 12-вольтовых батарей проверяют необходимый диапазон выходного тока и градуируют ручку переменного резистора R3.

Рис. 4.4. Размещение элементов на печатной плате

Убеждаются в точности градуировки в режиме 6-вольвых аккумуляторов, для чего сопротивление нагрузочного резистора уменьшают вдвое.
При работе с зарядным устройством до включения устройства в сеть и подключения аккумулятора переключателем SA2 выбирают тип заряжаемого аккумулятора (6 В или 12 В), а с помощью резистора R3 выставляют зарядный ток по приведенному выше соотношению. Затем с соблюдением полярности подключают аккумулятор и включают устройство в сеть. С целью ускорения зарядки некоторые изготовители аккумуляторов рекомендуют устанавливать зарядный ток исходя из соотношения 0,2…0,25Q.
Здесь резисторы Rl—R6 задают максимальный зарядный ток. Резистор R1, обеспечивающий ток 0,2 А, включен постоянно, а переключателем SA1 параллельно ему подключаются резисторы R2—R6 в зависимости от выбранного диапазона.
В заключение следует отметить, что после окончания зарядки зарядный ток не превышает нескольких миллиампер (практически близок к току саморазряда аккумулятора) и в этом состоянии устройство может находиться неограниченное время.
В том случае, если номенклатура заряжаемых аккумуляторов невелика, можно изготовить зарядное устройство на фиксированные зарядные токи. Вместо резисторов R3 и R6 включают цепь, показанную на рис. 4.5.


Рис. 4.5. Дискретное переключение зарядного тока

P.S/По материалам В. Мосягин, Серия «СОЛОН – РАДИОЛЮБИТЕЛЯМ»

Автоматическое зарядное устройство

Схема проектов

Свинцово-кислотная батарея

является самой популярной. Хотя они очень большого размера. Но у них есть преимущество: дешево, легко купить. Если вам нужна долгая жизнь. Вам следует использовать приведенную ниже схему автоматического зарядного устройства.

Наилучшая зарядка
Обычно эти типы батарей могут работать в течение 3-4 лет при правильной зарядке. Меня тошнит каждый раз, когда батарея выходит из строя раньше положенного срока. Я не хочу, чтобы ты был похож на меня.Не делайте этого!

  • Перегрев зарядки
    Главное, аккум не любит горячий ! Ни в коем случае не используйте и не храните их в слишком жарком месте. ИЛИ, если во время использования может произойти короткое замыкание или большой ток, используйте их, они будут слишком горячими. Во время зарядки не происходит быстрой зарядки большим током и высоким напряжением.
  • Только постоянное напряжение!
    Мы должны заряжать их только постоянным током.
  • Зарядка от перенапряжения
    Обычно производитель аккумуляторов указывает соответствующее напряжение.
    Мы должны использовать заряд постоянного напряжения.
    —12 В, максимальное напряжение батареи 14,8 В, режим ожидания – 13,8 В
    —6 В, максимальное напряжение батареи 7,5 В, использование режима ожидания – 6,8 В
  • Быстрая зарядка сильным током
    Но горячая –
    Таким образом, вы должны использовать начальный ток менее 30 %. Например, аккумулятор 12В / 7Ач у вас должен начальный ток меньше 2А. Если мы используем 1А, батарея будет заряжаться примерно на 7 часов.
  • Недолго
    Кроме того, если вы заряжаете его слишком долго.Аккумулятор тоже сильно нагрелся. Таким образом, когда аккумулятор полностью заряжен, прекратите его зарядку.

Эти две цепи помогают облегчить вашу жизнь.

Простая схема автоматического зарядного устройства

Это первая автоматическая схема зарядного устройства. Мы используем концепцию схемы: без использования микросхем и сложных устройств. Используйте существующие продукты, чтобы получить больше преимуществ.

Мы можем использовать эту схему для всех батарей. Просто нужно понимать требования к зарядке аккумулятора.

  • Предназначен для аккумуляторов 12 В. Но если вы уже понимаете принцип работы. Я считаю, что вы определенно можете адаптироваться к батарее 6V или другим.
  • Вам следует использовать входное напряжение 15 В или в 1,5 раза больше напряжения батареи.
  • Самое важное —Должен использовать ток зарядного устройства 10% от тока батареи. Например аккумулятор 2,5 Ач. Используйте зарядный ток 0,25А. На полную загрузку уйдет 10-12 часов.

Как это работает

Прежде всего, я думаю: «Когда… зарядить? И когда остановиться? »

Обычно мы должны заряжать аккумулятор, если напряжение ниже 12.4В. Затем напряжение аккумулятора повышается и максимальное напряжение составляет 14,4 В. Она полна. Нам нужно отключить ток зарядки.

Во-вторых, нам нужно использовать схему компаратора.

Я часто использую операционные усилители IC, такие как LM339, LM311, LM324, LM301. Но иногда мы не можем их купить.

И это наша работа только в простом стиле.

Вначале мы изучаем основной принцип работы электронных компонентов.

Знакомьтесь, стабилитрон

Мне нравится использовать диод, стабилитрон, они оба являются клапанами для электрических токов.Ток будет течь в одном направлении. Но стабилитрон подключен обратно. Затем он блокирует ток, пока напряжение не превысит определенный уровень.

Пробую их проверить с стабилитроном 12 вольт ток через него будет протекать при напряжении выше 12В.

Итак, я использую стабилитрон для обнаружения напряжения выше 13 В для управления системой останова зарядного устройства.

Реле и батарея отключения SCR

Затем я использую реле для управления током в батарее. Потому что дешево и легко используется.

Далее я использую SCR для использования в качестве переключателя быстрого управления.

Простое зарядное устройство с автоматическим отключением аккумуляторов

Приходит посмотреть на схему. Использую от аккумулятора 12В 7Ач и ниже. Значит ток зарядки 2А.

Итак, я использую трансформатор 2А, 12В в нерегулируемом источнике питания. Под нагрузкой или при зарядке – от 13 до 15 В постоянного тока.

Допустим, напряжение АКБ 12,4В. Реле не работает. Зарядный ток непрерывно протекает через аккумулятор.

Пока напряжение АКБ не поднимется до 13,8В. Начинает иметь ток, протекающий через стабилитрон к смещению SCR1.

SCR1 работает. Затем также запускается воспроизведение, втягивайте NO и C.

Значит, на батарею нет тока.

Как установить и использовать

Вы можете посмотреть видео ниже Я его тестирую. Этот проект всегда будет отключать аккумулятор. Когда на нем падает напряжение 13,6 В.

После этого загорится светодиод LED2 (желтый).Пока реле выдергивает из контакта NC-C. Который отсутствует ток к батарее и напряжение ниже.

Затем вы можете снова зарядить, нажав SW2 для сброса, снова зарядите их.

Сильноточная зарядка

Если вы хотите зарядить сильноточную батарею. Например, аккумулятор на 45Ач. Вы должны использовать ток менее 5А. И ток менее 15А.

Также необходимо использовать сильноточный источник питания. Компоненты внутри находятся под высоким током.Например трансформатор 10A-15A, диоды невесты 25A, реле 20A и многое другое.

Думаю, эта схема не подходит для сильноточного аккумулятора. Потому что это может быть ошибка зарядки. Вам нужно использовать заряд постоянного напряжения в режиме ШИМ.

Автоматическое отключение зарядного устройства 12 В от источника питания SCR

Схема выше может быть ошибочной и ее трудно настроить. Я предлагаю автоматическое зарядное устройство для сухой батареи с использованием SCR для батареи 12 В. Кроме того, он использует батарею на 6 В. Это похоже на приведенную выше схему. Стабилитрон и SCR являются основными частями.Но вместо реле работает SCR. SCR работает в импульсном режиме постоянного тока на фильтрах с конденсатором.

Как работает эта схема

Как схема ниже. Для начала, AC220V будет течь к трансформатору, чтобы преобразовать его в 15 вольт. Затем перейдите к мостовому диоду к выпрямителю переменного тока в постоянный импульс 15 В. LED1 – индикатор питания схемы.

Начало работы SCR1. Потому что 15 В течет к R3, чтобы ограничить ток, чтобы уменьшиться и течь через диод D5.

Он защищает обратное напряжение перед смещением на вывод G SCR1.

Когда SCR1 проводит ток, направьте 15 В через провод K к положительной клемме аккумуляторной батареи.

В идеале, SCR1 будет проводить ток и очень быстро останавливать ток попеременно с частотой 100 Гц.

Так как напряжение 15 В от мостового диода является двухполупериодным выпрямителем. Итак, выходная частота 50 Гц + 50 Гц. Ток этой функции представляет собой непрерывную положительную половину синусоидальной волны.

Который отличается от напряжения с конденсаторным фильтром, гладким, как прямая линия.

Значит, SCR1 не проводит ток все время. Когда есть положительное напряжение для смещения на выводе G.

Так как форма волны напряжения является импульсом постоянного тока, а не плавной.

SCR перестанет проводить ток. Если отключение – это не положительное напряжение.

Затем сигнал положительного напряжения снова поступает на SCR1. Он снова начнет проводить токи, это было перевернуто с частотой 100 Гц.

Контроль уровня заряда батареи

Для начала положительное напряжение батареи проходит через R2 для уменьшения тока.И C1 будет фильтровать ток для сглаживания.

Во-вторых, ток течет через VR1, чтобы разделить напряжение. Затем стабилитрон ZD1 пропускает перенапряжение на вывод G SCR2.

Регулируем уровень VR1 для установки полной батареи. До тех пор, пока напряжение на отрицательном полюсе ZD1 не станет больше 6,8 В или около 7,3 В.

После этого ZD1 является потоком коллапса напряжения насыщения на подводящий провод G SCR2. Это заставляет SCR2 проводить ток. By R4 – помощник в необычайно стабильной работе SCR2.

Когда SCR2 работает, возникает отрицательное напряжение, ведущее от K к A. Это приводит к свечению светодиода LED2.

И в то же время SCR1 перестанет проводить ток.


Распиновка TO-220 и TO-92 SCR

Так как вывод G SCR1 получает отрицательное напряжение от SCR2. В случае, если батарея имеет более низкое напряжение, напряжение на отрицательном полюсе ZD1 ниже 6,8 В.

Это приводит к тому, что вывод G SCR2 не получает положительного напряжения. Но он может получить только отрицательное напряжение через R4, в результате SCR2 не проводит ток.

Список деталей
Резисторы 0,5 Вт 5%
R1, R5: 2 кОм
R2: 1,5 кОм
R3: 560 Ом
R4: 10 кОм
VR1: 10 кОм Потенциометр
C1: 100 мкФ 25 В электролитический конденсатор
SCR1: 2N EC103 или 2N5060SCR
ZD1: 6,8V 1W
D1-D4: 1N5404_Diode
D5: 1N4002_Diode
LED1, LED2: 5M LED по вашему желанию
PCB и другие и т. Д.

Как сделать и установить после

  • все компоненты готовы. Затем мы успешно припаяли его к печатной плате, как показано на следующем рисунке.Например, у прибора положительный – отрицательный. Правильная ли полярность?


Компоновка компонентов зарядного устройства для сухих аккумуляторов


Точка пайки зарядного устройства для сухих аккумуляторов


Полная сборка всех деталей на печатной плате


Аккумулятор полностью 12 В 2.5A

    На первом этапе найдите полное напряжение аккумулятора и подключите его к цепи с соблюдением полярности.
  • Подайте переменный ток 220 В.Затем поверните VR1 по часовой стрелке, пока светодиод 2 не погаснет.
  • Для медленного вращения VR1 по часовой стрелке, пока не загорится светодиод 2, затем немедленно остановитесь. Не вращайте слишком много.
  • Принцип работы LED2 загорится, когда напряжение батареи достигнет полного. Итак, в первый раз аккумулятор должен быть полностью заряжен.

Примечание:
Извините, я не могу показать вам схему печатной платы. Но можно использовать перфорированную доску .

Пожалуйста, посмотрите видео ниже, чтобы лучше понять этот проект.

Модификация схемы

Эта схема может изменять напряжение батареи 3-х размеров 6В, 9В, 12В. Мы можем поменять каждое значение детали как аккуратный заряженный аккумулятор.

В обычной цепи мы используем аккумулятор на 12 В. Например, смотрите на корпусе аккумулятор заявлен как 12В 20Ач. Смысл в том, что он может питать токи 20 ампер в час.

Когда вы знаете, что напряжение на аккумуляторе заряжено, теперь мне нужно выбрать трансформатор, который будет использоваться. Используемые трансформаторы тока можно выбрать от 3А.

  • Аккумулятор 6В ; Напряжение выходного трансформатора: 9 В; -Напряжение стабилитронов: 3,3 В ; —R3 и R5: 1K
  • батарея 9V ; Напряжение выходного трансформатора: 12В; -Напряжение стабилитронов: 4,7В ; —R3 и R5: 1,5K
  • Аккумулятор 12 В ; Напряжение выходного трансформатора: 15В; – Напряжение стабилитронов: 6,8В ; —R3 и R5: 2K

Нажмите, чтобы узнать больше:


Свинцово-кислотное зарядное устройство 6 В или 12 В
Easy Many схемы легко для вас

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ EMAIL

I0006 Всегда старайтесь сделать Electronics Learning Easy .

Простые схемы зарядного устройства 12 В с автоматическим отключением

Установка позволяет сделать простое зарядное устройство 12 В отличного качества, с помощью которого вы можете заряжать автомобильные аккумуляторы на 12 В и сухие аккумуляторы. применяется в системах сигнализации.

Его функционирование кажется автоматическим, учитывая, что всякий раз, когда он подключается к батарее, он в конечном итоге будет работать только в том случае, если батарея разряжена, и будет автоматически извлекаться, когда батарея полностью заряжена.

Устройство приводится в действие трансформатором, вторичная обмотка которого обычно составляет 14-15 Вольт и имеет ток не менее 3 Ампер.

Подстроечный резистор TR1 настроен так, чтобы на выходе зарядного устройства батареи было напряжение около 14,4 В без нагрузки.

Абсолютный максимальный ток распределения составляет 3 ампера, поэтому НЕ пытайтесь заряжать батареи емкостью более 36 Ач. Лучше всего использовать это устройство для питания зарядного устройства для системы охранной сигнализации с аккумулятором в режиме ожидания.

Во время установки следует обратить внимание на то, чтобы подключать аккумулятор с соблюдением полярности.
При построении компонентов осторожно придерживайтесь конфигурации схемы.

Печатная схема, ВХОД АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА 14-15 Вольт при ТОКЕ зарядки МАКС.3 АМПЕР

Список деталей для цепи автоматического зарядного устройства автомобильного аккумулятора 12 В:

Все резисторы –
1/4 Вт, если не указано иное.

Rl-470 Ом
R2 = 10 K
R3 = 270 Ом
TR1 = подстроечный резистор 10 К.
Cl = 1000 мкФ 25 В.
DZ1 = 5,1 вольт lWzener.
T1 = 2N2218
T2 = 2N3055-BDW21C
1C1 = UA741
PT1 = KBL04 / 01
1 Гнездо 8 контактов.
1 Радиатор для Tl.
1 Радиатор для T2.

Простое зарядное устройство 12 В с индикатором заряда батареи

Это простая схема зарядного устройства 12 В со схемой индикатора представляет собой схему интеллектуального зарядного устройства. Вы можете идеально использовать преимущества этой схемы для таких приложений, как инверторы, портативные зарядные устройства и т. Д. Эта конструкция дополнительно включает в себя двойную систему индикации в виде индикатора заряда батареи и зуммера низкого заряда батареи.Преимущество этого индикатора заключается в том, что зуммер уведомляет вас, когда аккумулятор необходимо зарядить. Эта схема, несомненно, помогает в повседневной зарядке аккумулятора.

Как работает простая схема зарядного устройства
– Цепь зарядки создается вокруг регулятора напряжения IC 7815 и пары транзисторов BC 547 BJT.
– Основной вход 230 В или 110 В может быть сначала понижен через понижающий трансформатор, после чего он может быть выпрямлен и отфильтрован.
– Это постоянное напряжение затем подается на регулятор напряжения IC 7815 ;. Выход регулируется на уровне 15 В
для зарядки подключенной аккумуляторной батареи 12 В на выходе регулятора напряжения. И он начинает заряжать аккумулятор, как только появляется основное питание.
– Каждый раз, когда напряжение батареи падает ниже определенного значения, светодиод 1 перестает светиться, и начинает звучать зуммер, указывая на то, что батарея разряжена и требует подзарядки.

Спецификация
-трансформатор (230В до 15В или 110В T0 15В)
-позиционный выпрямитель (1N4007 x 4)
-конденсатор (470 мкФ, 50В)
– Регулятор напряжения IC 7815
Аккумулятор 12В

Цепь зарядного устройства | Полный проект DIY Electronics

Большинство зарядных устройств прекращают зарядку батареи, когда она достигает максимального зарядного напряжения, установленного схемой.Эта схема зарядного устройства для аккумулятора 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального напряжения зарядки зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора при этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.

Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение – 13.От 6 до 13,8 В. Для безопасной работы и во избежание перезарядки аккумулятора, напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.

Схема зарядного устройства 12 В

Рис.1: Схема зарядного устройства 12 В

Принципиальная схема абсорбирующего и поплавкового зарядного устройства 12 В показана на рис. 1. Он построен на понижающем трансформаторе X1, регулируемом регуляторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2). и несколько других компонентов.Используемый в этой схеме трансформатор с первичной обмоткой 230 В переменного тока на вторичный трансформатор 15–0–15 В с током 1 А снижает сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.

Базовая схема представляет собой регулируемый источник питания, использующий LM317, с контролем на выходе путем изменения сопротивления на регулировочном штыре 1. Для LM317 требуется хороший радиатор. LM358 – это усилитель двойного действия, который используется для контроля перезарядки аккумулятора.Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). Устанавливая напряжение зарядки, снимите перемычку и после калибровки снова подключите ее.

Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и отрегулируйте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться. Настройте потенциометр VR1 на 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.

С этими настройками TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к использованию. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2). Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.

Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится на плавающем напряжении (13,6 В), и его можно держать в этом режиме зарядки вечно.

Строительство и испытания

Односторонняя печатная плата для цепи абсорбирующего аккумулятора 12 В и плавающего зарядного устройства показана на рис. 2, а схема ее компонентов – на рис. 3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).

Рис. 2: Печатная плата схемы зарядного устройства 12В Рис.3: Компонентная компоновка печатной платы

Загрузите печатную плату и компоновку компонентов в формате PDF: щелкните здесь

Поместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 – VR3 и т. Д. На корпусе коробки.

Примечания EFY

  1. Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
  2. Подключите аккумулятор, соблюдая полярность.
  3. Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.

Фаяз Хассан, менеджер металлургического завода в Висакхапатнам, Висакхапатнам, интересуется проектами микроконтроллеров, мехатроникой и робототехникой.

Эта статья была впервые опубликована 26 июня 2016 г. и обновлена ​​13 августа 2019 г.
Схема автоматического зарядного устройства

для аккумулятора 12 В и 6 В

Описание:

В этом проекте по электронике я объяснил, как сделать схему автоматического зарядного устройства для любой батареи на нулевой плате.Вы можете легко сделать эту схему зарядного устройства с автоматическим отключением для зарядки аккумулятора 12 В или аккумулятора 6 В.

Сначала вы должны установить напряжение отключения, затем вы можете подать питание 220 В или 110 В переменного тока на входе и подключить аккумулятор 12 В на выходе.

Зарядка автоматически прекратится, когда напряжение на батарее превысит заданное значение напряжения отключения.

Схема автоматического зарядного устройства

Схема очень проста. Вы можете легко сделать этот проект с некоторыми базовыми электронными компонентами.

Компоновка печатной платы для цепи автоматического зарядного устройства

Загрузите компоновку печатной платы, затем распечатайте ее на странице формата A4. Пожалуйста, проверьте размер печатной платы во время печати, он должен быть таким же, как указано.

Необходимые компоненты:

  1. Резистор 1 кОм 1/4 Вт (2 шт.)
  2. Потенциометр 10 кОм (1 шт.)
  3. Резистор 10 кОм 1/4 Вт (1 шт.)
  4. Конденсатор 10 мкФ 35 В (1 шт.)
  5. Конденсатор 1000 мкФ 35 В (1 шт. )
  6. 1N4007 Диод (1 шт.)
  7. 1N5408 Диоды (5 шт.)
  8. Светодиод 1.5V (2no)
  9. BC547 NPN Transistor (1no)
  10. 12V SPDT Relay (для 6V используйте реле 5V)
  11. Разъемы
  12. 15V 2A понижающий трансформатор
  13. Zero PCB or Cardboard

Обучающее видео для автоматической резки Off Charger

В обучающем видео я показал все шаги по созданию схемы зарядного устройства с автоматическим отключением батареи. Поэтому, пожалуйста, посмотрите видео, чтобы лучше понять.

Как сделать печатную плату автоматического зарядного устройства

Шаги по созданию схемы автоматического зарядного устройства на печатной плате

  1. Распечатайте макет печатной платы и приклейте его на акриловый лист или картон

  2. Просверлите отверстия для компонентов как показано на схеме

  3. Подключите все компоненты, как показано на схеме

  4. Припаяйте эти компоненты, как показано на схеме

  5. Теперь печатная плата зарядного устройства с автоматическим отключением готова

Установка напряжения отключения

Теперь, чтобы установить напряжение отключения, вы должны подключить источник переменного тока постоянного тока ко входу постоянного тока и подключить мультиметр (вольтметр) на стороне батареи, как показано .

Например, чтобы установить напряжение отключения на 13 В, вы должны подать 13 В на входе постоянного тока.

Затем поверните потенциометр, пока не загорится красный светодиод.

После установки напряжения отключения отключите переменный источник постоянного тока и подключите понижающий трансформатор ко входу переменного тока, как показано на принципиальной схеме.

Соблюдайте меры безопасности при работе с питанием 220 или 110 В.

Наконец, зарядное устройство с автоматическим отключением готово.

Подключите свинцово-кислотный аккумулятор со стороны аккумулятора (согласно схеме.)

Затем подайте напряжение 220 В или 110 В, загорится зеленый светодиод, что указывает на то, что аккумулятор заряжается.

Когда напряжение на батарее пересекает напряжение отключения, реле выключается, и батарея отключается от источника питания.

Пожалуйста, поделитесь своими отзывами об этом мини-проекте, а также дайте мне знать, если у вас возникнут какие-либо вопросы.

Вы также можете подписаться на на нашу информационную рассылку , чтобы получать больше таких полезных проектов электроники по электронной почте.

Надеюсь, вам понравились эти проекты. Спасибо за уделенное время.

555 Универсальное автоматическое зарядное устройство

В этой схеме мы делаем универсальное автоматическое зарядное устройство 555. С помощью этой схемы можно заряжать любые типы аккумуляторных батарей с напряжением от 6 до 24 В. Максимальный выходной ток этой цепи составляет 10 А.

Эту схему также можно модифицировать для зарядки аккумуляторов с напряжением ниже 6 В. Для этого вам нужно будет изменить значение стабилитрона на 2.4-2,5В. Выберите источник питания, который по крайней мере на 1,5–3 В превышает напряжение недостаточного заряда аккумулятора. А ток блока питания нужно подбирать по 1/10 АХ АКБ. Если вы хотите зарядить аккумулятор 6 В 10 Ач, используйте источник питания постоянного тока 7,5 В и 1 А.

Компоненты оборудования

1 1 Принципиальная схема

Рабочее пояснение

Мы используем микросхему таймера 555, которая подключена как компаратор для определения напряжения батареи.Переменный резистор 100 кОм используется для установки точки срабатывания. Точка срабатывания установит точку напряжения, при которой вы хотите, чтобы аккумулятор прекратил заряжаться и отключился от цепи.

Точка срабатывания должна быть установлена ​​в соответствии с типом батареи, батарея на 6 В показывает 7,2 В на цифровом мультиметре, когда она полностью заряжена при подключенном источнике питания. Таким образом, точка срабатывания для батареи 6 В должна быть 7,2 В.

Регулировка цепи

  • Возьмите регулируемый блок питания и установите напряжение 14.4 В, если вы используете 12 В, потому что при полной зарядке 12 В на цифровом мультиметре отображается 14,4 В.
  • Снимите блок питания и аккумулятор, подключенный к цепи, и поместите этот регулируемый блок питания вместо аккумулятора.
  • Отрегулируйте регулируемый резистор, пока не загорится светодиод.
  • Снимите регулируемый источник питания, подключите фактический источник питания и аккумулятор в цепи.
  • Теперь, когда аккумулятор полностью зарядится, он автоматически отключится от источника питания и загорится светодиод.
  • Та же процедура будет применяться для батарей с другим напряжением. Напряжение в регулируемом источнике питания будет установлено в соответствии с напряжением батареи, отображаемым на цифровом мультиметре при полной зарядке.

Зарядное устройство для герметичных свинцово-кислотных аккумуляторов (SLA), 12 В, 1300 мА, с защитой от короткого замыкания: автомобильная промышленность

Обычно я не из тех, кто дает восторженные отзывы, но это маленькое зарядное устройство работает отлично. У меня есть несколько известных зарядных устройств. Однако бывают случаи, когда они просто отказываются заряжать батареи, напряжение которых упало ниже определенного уровня.Иногда такая осторожность оправдана, но не всегда. В моем случае я просто заменил батарейки в блоке резервного питания для кого-то. Через несколько недель они заметили, что блок резервного питания от батареи выключен и не включается. Оказалось, что вышел из строя сам блок резервного питания. Он продолжал работать до тех пор, пока не разрядились батареи, и оставался таким в течение нескольких недель. Это не очень хорошо для батарей SLA, но это тоже не конец света. зная, что батареи на самом деле были совершенно новые, я вытащил их, чтобы зарядить на своем стенде.Я уже знаю, что из соображений осторожности мои громкие зарядные устройства просто откажутся заряжать батареи при таком низком уровне заряда. Вот где сияет эта маленькая жемчужина зарядного устройства. Это осторожно, но не параноидально. Если батарея SLA очень разряжена и не закорочена, она попытается зарядить ее. Это именно то, что мне нужно было сделать в данном случае.

Несколько советов, если вы пытаетесь зарядить батареи с очень низким уровнем заряда SLA (герметичные свинцово-кислотные).
!!! Я не профессионал … Следующее не является инструкцией … Используйте на свой страх и риск !!!
!!! Заряжайте только батареи, которые, как вы знаете, находятся в хорошем состоянии… Неисправные или закороченные батареи могут взорваться !!!

Первый совет:

Зарядное устройство нагревается.Корпус представляет собой простую подгонку давления. Он легко разбирается. Сделайте перфорированный непроводящий корпус и направьте на него вентилятор … просто говорю … Горячая электроника – это недолговечная электроника …

Второй совет:

Когда вы подключаете это зарядное устройство к батареям с очень низким зарядом, оно загорается зеленым светом, как батареи уже заряжен. Это нормально. Чтобы вернуть к жизни полностью разряженный аккумулятор, требуется некоторое время. Оставьте это на время. Если аккумулятор действительно исправен, индикатор в конечном итоге станет красным, что означает, что он заряжается.Теперь вам просто нужно подождать, пока индикатор снова не станет зеленым и вы все зарядитесь.

Иногда некоторые батареи заряжаются дольше обычного. В этом случае я проверяю аккумулятор на наличие физических признаков неисправности. Если аккумулятор горячий или его боковые стороны вздулись или деформировались… НЕМЕДЛЕННО ПРЕКРАТИТЕ ЗАРЯДКУ! Аккумулятор неисправен. Пометьте его как таковой и отнесите в центр утилизации.

Если аккумулятор холодный или теплый на ощупь, и боковые стороны аккумулятора не вздуваются и не деформируются, я позволяю ему продолжать зарядку.Прежде чем я это сделаю, я отключаю зарядное устройство и проверяю его вручную, чтобы узнать уровень заряда. Для этого я использую следующий тестер:

Затем вы можете снова зарядить, нажав SW2 для сброса, снова зарядите их.

Сильноточная зарядка

Если вы хотите зарядить сильноточную батарею. Например, аккумулятор на 45Ач. Вы должны использовать ток менее 5А. И ток менее 15А.

Также необходимо использовать сильноточный источник питания. Компоненты внутри находятся под высоким током.Например трансформатор 10A-15A, диоды невесты 25A, реле 20A и многое другое.

Думаю, эта схема не подходит для сильноточного аккумулятора. Потому что это может быть ошибка зарядки. Вам нужно использовать заряд постоянного напряжения в режиме ШИМ.

Автоматическое отключение зарядного устройства 12 В от источника питания SCR

Схема выше может быть ошибочной и ее трудно настроить. Я предлагаю автоматическое зарядное устройство для сухой батареи с использованием SCR для батареи 12 В. Кроме того, он использует батарею на 6 В. Это похоже на приведенную выше схему. Стабилитрон и SCR являются основными частями.Но вместо реле работает SCR. SCR работает в импульсном режиме постоянного тока на фильтрах с конденсатором.

Как работает эта схема

Как схема ниже. Для начала, AC220V будет течь к трансформатору, чтобы преобразовать его в 15 вольт. Затем перейдите к мостовому диоду к выпрямителю переменного тока в постоянный импульс 15 В. LED1 – индикатор питания схемы.

Начало работы SCR1. Потому что 15 В течет к R3, чтобы ограничить ток, чтобы уменьшиться и течь через диод D5.

Он защищает обратное напряжение перед смещением на вывод G SCR1.

Когда SCR1 проводит ток, направьте 15 В через провод K к положительной клемме аккумуляторной батареи.

В идеале, SCR1 будет проводить ток и очень быстро останавливать ток попеременно с частотой 100 Гц.

Так как напряжение 15 В от мостового диода является двухполупериодным выпрямителем. Итак, выходная частота 50 Гц + 50 Гц. Ток этой функции представляет собой непрерывную положительную половину синусоидальной волны.

Который отличается от напряжения с конденсаторным фильтром, гладким, как прямая линия.

Значит, SCR1 не проводит ток все время. Когда есть положительное напряжение для смещения на выводе G.

Так как форма волны напряжения является импульсом постоянного тока, а не плавной.

SCR перестанет проводить ток. Если отключение – это не положительное напряжение.

Затем сигнал положительного напряжения снова поступает на SCR1. Он снова начнет проводить токи, это было перевернуто с частотой 100 Гц.

Контроль уровня заряда батареи

Для начала положительное напряжение батареи проходит через R2 для уменьшения тока.И C1 будет фильтровать ток для сглаживания.

Во-вторых, ток течет через VR1, чтобы разделить напряжение. Затем стабилитрон ZD1 пропускает перенапряжение на вывод G SCR2.

Регулируем уровень VR1 для установки полной батареи. До тех пор, пока напряжение на отрицательном полюсе ZD1 не станет больше 6,8 В или около 7,3 В.

После этого ZD1 является потоком коллапса напряжения насыщения на подводящий провод G SCR2. Это заставляет SCR2 проводить ток. By R4 – помощник в необычайно стабильной работе SCR2.

Когда SCR2 работает, возникает отрицательное напряжение, ведущее от K к A. Это приводит к свечению светодиода LED2.

И в то же время SCR1 перестанет проводить ток.


Распиновка TO-220 и TO-92 SCR

Так как вывод G SCR1 получает отрицательное напряжение от SCR2. В случае, если батарея имеет более низкое напряжение, напряжение на отрицательном полюсе ZD1 ниже 6,8 В.

Это приводит к тому, что вывод G SCR2 не получает положительного напряжения. Но он может получить только отрицательное напряжение через R4, в результате SCR2 не проводит ток.

Список деталей
Резисторы 0,5 Вт 5%
R1, R5: 2 кОм
R2: 1,5 кОм
R3: 560 Ом
R4: 10 кОм
VR1: 10 кОм Потенциометр
C1: 100 мкФ 25 В электролитический конденсатор
SCR1: 2N EC103 или 2N5060SCR
ZD1: 6,8V 1W
D1-D4: 1N5404_Diode
D5: 1N4002_Diode
LED1, LED2: 5M LED по вашему желанию
PCB и другие и т. Д.

Как сделать и установить после

  • все компоненты готовы. Затем мы успешно припаяли его к печатной плате, как показано на следующем рисунке.Например, у прибора положительный – отрицательный. Правильная ли полярность?


Компоновка компонентов зарядного устройства для сухих аккумуляторов


Точка пайки зарядного устройства для сухих аккумуляторов


Полная сборка всех деталей на печатной плате


Аккумулятор полностью 12 В 2.5A

    На первом этапе найдите полное напряжение аккумулятора и подключите его к цепи с соблюдением полярности.
  • Подайте переменный ток 220 В.Затем поверните VR1 по часовой стрелке, пока светодиод 2 не погаснет.
  • Для медленного вращения VR1 по часовой стрелке, пока не загорится светодиод 2, затем немедленно остановитесь. Не вращайте слишком много.
  • Принцип работы LED2 загорится, когда напряжение батареи достигнет полного. Итак, в первый раз аккумулятор должен быть полностью заряжен.

Примечание:
Извините, я не могу показать вам схему печатной платы. Но можно использовать перфорированную доску .

Пожалуйста, посмотрите видео ниже, чтобы лучше понять этот проект.

Модификация схемы

Эта схема может изменять напряжение батареи 3-х размеров 6В, 9В, 12В. Мы можем поменять каждое значение детали как аккуратный заряженный аккумулятор.

В обычной цепи мы используем аккумулятор на 12 В. Например, смотрите на корпусе аккумулятор заявлен как 12В 20Ач. Смысл в том, что он может питать токи 20 ампер в час.

Когда вы знаете, что напряжение на аккумуляторе заряжено, теперь мне нужно выбрать трансформатор, который будет использоваться. Используемые трансформаторы тока можно выбрать от 3А.

  • Аккумулятор 6В ; Напряжение выходного трансформатора: 9 В; -Напряжение стабилитронов: 3,3 В ; —R3 и R5: 1K
  • батарея 9V ; Напряжение выходного трансформатора: 12В; -Напряжение стабилитронов: 4,7В ; —R3 и R5: 1,5K
  • Аккумулятор 12 В ; Напряжение выходного трансформатора: 15В; – Напряжение стабилитронов: 6,8В ; —R3 и R5: 2K

Нажмите, чтобы узнать больше:


Свинцово-кислотное зарядное устройство 6 В или 12 В
Easy Many схемы легко для вас

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ EMAIL

I0006 Всегда старайтесь сделать Electronics Learning Easy .

Простые схемы зарядного устройства 12 В с автоматическим отключением

Установка позволяет сделать простое зарядное устройство 12 В отличного качества, с помощью которого вы можете заряжать автомобильные аккумуляторы на 12 В и сухие аккумуляторы. применяется в системах сигнализации.

Его функционирование кажется автоматическим, учитывая, что всякий раз, когда он подключается к батарее, он в конечном итоге будет работать только в том случае, если батарея разряжена, и будет автоматически извлекаться, когда батарея полностью заряжена.

Устройство приводится в действие трансформатором, вторичная обмотка которого обычно составляет 14-15 Вольт и имеет ток не менее 3 Ампер.

Подстроечный резистор TR1 настроен так, чтобы на выходе зарядного устройства батареи было напряжение около 14,4 В без нагрузки.

Абсолютный максимальный ток распределения составляет 3 ампера, поэтому НЕ пытайтесь заряжать батареи емкостью более 36 Ач. Лучше всего использовать это устройство для питания зарядного устройства для системы охранной сигнализации с аккумулятором в режиме ожидания.

Во время установки следует обратить внимание на то, чтобы подключать аккумулятор с соблюдением полярности.
При построении компонентов осторожно придерживайтесь конфигурации схемы.

Печатная схема, ВХОД АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА 14-15 Вольт при ТОКЕ зарядки МАКС.3 АМПЕР

Список деталей для цепи автоматического зарядного устройства автомобильного аккумулятора 12 В:

Все резисторы –
1/4 Вт, если не указано иное.

Rl-470 Ом
R2 = 10 K
R3 = 270 Ом
TR1 = подстроечный резистор 10 К.
Cl = 1000 мкФ 25 В.
DZ1 = 5,1 вольт lWzener.
T1 = 2N2218
T2 = 2N3055-BDW21C
1C1 = UA741
PT1 = KBL04 / 01
1 Гнездо 8 контактов.
1 Радиатор для Tl.
1 Радиатор для T2.

Простое зарядное устройство 12 В с индикатором заряда батареи

Это простая схема зарядного устройства 12 В со схемой индикатора представляет собой схему интеллектуального зарядного устройства. Вы можете идеально использовать преимущества этой схемы для таких приложений, как инверторы, портативные зарядные устройства и т. Д. Эта конструкция дополнительно включает в себя двойную систему индикации в виде индикатора заряда батареи и зуммера низкого заряда батареи.Преимущество этого индикатора заключается в том, что зуммер уведомляет вас, когда аккумулятор необходимо зарядить. Эта схема, несомненно, помогает в повседневной зарядке аккумулятора.

Как работает простая схема зарядного устройства
– Цепь зарядки создается вокруг регулятора напряжения IC 7815 и пары транзисторов BC 547 BJT.
– Основной вход 230 В или 110 В может быть сначала понижен через понижающий трансформатор, после чего он может быть выпрямлен и отфильтрован.
– Это постоянное напряжение затем подается на регулятор напряжения IC 7815 ;. Выход регулируется на уровне 15 В
для зарядки подключенной аккумуляторной батареи 12 В на выходе регулятора напряжения. И он начинает заряжать аккумулятор, как только появляется основное питание.
– Каждый раз, когда напряжение батареи падает ниже определенного значения, светодиод 1 перестает светиться, и начинает звучать зуммер, указывая на то, что батарея разряжена и требует подзарядки.

Спецификация
-трансформатор (230В до 15В или 110В T0 15В)
-позиционный выпрямитель (1N4007 x 4)
-конденсатор (470 мкФ, 50В)
– Регулятор напряжения IC 7815
Аккумулятор 12В

Цепь зарядного устройства | Полный проект DIY Electronics

Большинство зарядных устройств прекращают зарядку батареи, когда она достигает максимального зарядного напряжения, установленного схемой.Эта схема зарядного устройства для аккумулятора 12 В заряжает аккумулятор при определенном напряжении, то есть напряжении поглощения, и после достижения максимального напряжения зарядки зарядное устройство изменяет выходное напряжение на напряжение холостого хода для поддержания аккумулятора при этом напряжении. Напряжение абсорбции и плавающее напряжение зависят от типа батареи.

Для этого зарядного устройства установлены напряжения для герметичной свинцово-кислотной (SLA) батареи 12 В, 7 Ач, для которой напряжение поглощения составляет от 14,1 В до 14,3 В, а плавающее напряжение – 13.От 6 до 13,8 В. Для безопасной работы и во избежание перезарядки аккумулятора, напряжение поглощения выбрано как 14,1 В, а плавающее напряжение выбрано как 13,6 В. Эти значения должны быть установлены в соответствии с указаниями производителя батареи.

Схема зарядного устройства 12 В

Рис.1: Схема зарядного устройства 12 В

Принципиальная схема абсорбирующего и поплавкового зарядного устройства 12 В показана на рис. 1. Он построен на понижающем трансформаторе X1, регулируемом регуляторе напряжения LM317 (IC1), компараторе операционного усилителя LM358 (IC2). и несколько других компонентов.Используемый в этой схеме трансформатор с первичной обмоткой 230 В переменного тока на вторичный трансформатор 15–0–15 В с током 1 А снижает сетевое напряжение, которое выпрямляется диодами D1 и D2 и сглаживается конденсатором C1. Это напряжение подается на вход LM317 для регулирования.

Базовая схема представляет собой регулируемый источник питания, использующий LM317, с контролем на выходе путем изменения сопротивления на регулировочном штыре 1. Для LM317 требуется хороший радиатор. LM358 – это усилитель двойного действия, который используется для контроля перезарядки аккумулятора.Конденсатор C4 должен быть как можно ближе к выводу 1 IC2. Перемычка J1 используется для калибровки (настройки). Устанавливая напряжение зарядки, снимите перемычку и после калибровки снова подключите ее.

Для начальной настройки снимите перемычку J1, выключите S2, включите S1 и отрегулируйте потенциометр VR2, чтобы получить 13,6 В в контрольной точке TP2. Отрегулируйте потенциометр VR3 так, чтобы светодиод 2 начал светиться. Настройте потенциометр VR1 на 0,5 В (разница 14,1 В и 13,6 В) в контрольной точке TP1. Настройте VR2 на 14,1 В в контрольной точке TP2.

С этими настройками TP2 должен показывать 14,1 В при низком напряжении в контрольной точке TP3 и 13,6 В при высоком напряжении в контрольной точке TP3. Подключите перемычку J1. Теперь зарядное устройство готово к использованию. Подключите заряжаемый аккумулятор 12 В (BUC), соблюдая полярность, к CON2. Включите S2; один из светодиодов вне LED2 и LED3 загорится (скорее всего, это будет LED2). Если ни один из них не загорается, проверьте соединения; батарея могла быть разряжена. Включите S1 для зарядки. Полностью заряженный аккумулятор будет обозначен свечением светодиода LED3.

Не беспокойтесь, если вы забудете выключить зарядное устройство. Зарядное устройство находится на плавающем напряжении (13,6 В), и его можно держать в этом режиме зарядки вечно.

Строительство и испытания

Односторонняя печатная плата для цепи абсорбирующего аккумулятора 12 В и плавающего зарядного устройства показана на рис. 2, а схема ее компонентов – на рис. 3. Соберите схему на печатной плате, за исключением трансформатора X1 и заряжаемой батареи (BUC).

Рис. 2: Печатная плата схемы зарядного устройства 12В Рис.3: Компонентная компоновка печатной платы

Загрузите печатную плату и компоновку компонентов в формате PDF: щелкните здесь

Поместите печатную плату в небольшую коробку. Закрепите клемму аккумулятора на передней части коробки для подключения BUC. Подключите переключатели S1 и S2, потенциометры VR1 – VR3 и т. Д. На корпусе коробки.

Примечания EFY

  1. Выключите S2 или отсоедините клеммы аккумулятора, чтобы избежать ненужной разрядки аккумулятора, когда он не заряжается, то есть когда S1 выключен.
  2. Подключите аккумулятор, соблюдая полярность.
  3. Корпус IC1 не должен быть заземлен, поэтому используйте изоляцию.

Фаяз Хассан, менеджер металлургического завода в Висакхапатнам, Висакхапатнам, интересуется проектами микроконтроллеров, мехатроникой и робототехникой.

Эта статья была впервые опубликована 26 июня 2016 г. и обновлена ​​13 августа 2019 г.
Схема автоматического зарядного устройства

для аккумулятора 12 В и 6 В

Описание:

В этом проекте по электронике я объяснил, как сделать схему автоматического зарядного устройства для любой батареи на нулевой плате.Вы можете легко сделать эту схему зарядного устройства с автоматическим отключением для зарядки аккумулятора 12 В или аккумулятора 6 В.

Сначала вы должны установить напряжение отключения, затем вы можете подать питание 220 В или 110 В переменного тока на входе и подключить аккумулятор 12 В на выходе.

Зарядка автоматически прекратится, когда напряжение на батарее превысит заданное значение напряжения отключения.

Схема автоматического зарядного устройства

Схема очень проста. Вы можете легко сделать этот проект с некоторыми базовыми электронными компонентами.

Компоновка печатной платы для цепи автоматического зарядного устройства

Загрузите компоновку печатной платы, затем распечатайте ее на странице формата A4. Пожалуйста, проверьте размер печатной платы во время печати, он должен быть таким же, как указано.

Необходимые компоненты:

  1. Резистор 1 кОм 1/4 Вт (2 шт.)
  2. Потенциометр 10 кОм (1 шт.)
  3. Резистор 10 кОм 1/4 Вт (1 шт.)
  4. Конденсатор 10 мкФ 35 В (1 шт.)
  5. Конденсатор 1000 мкФ 35 В (1 шт. )
  6. 1N4007 Диод (1 шт.)
  7. 1N5408 Диоды (5 шт.)
  8. Светодиод 1.5V (2no)
  9. BC547 NPN Transistor (1no)
  10. 12V SPDT Relay (для 6V используйте реле 5V)
  11. Разъемы
  12. 15V 2A понижающий трансформатор
  13. Zero PCB or Cardboard

Обучающее видео для автоматической резки Off Charger

В обучающем видео я показал все шаги по созданию схемы зарядного устройства с автоматическим отключением батареи. Поэтому, пожалуйста, посмотрите видео, чтобы лучше понять.

Как сделать печатную плату автоматического зарядного устройства

Шаги по созданию схемы автоматического зарядного устройства на печатной плате

  1. Распечатайте макет печатной платы и приклейте его на акриловый лист или картон

  2. Просверлите отверстия для компонентов как показано на схеме

  3. Подключите все компоненты, как показано на схеме

  4. Припаяйте эти компоненты, как показано на схеме

  5. Теперь печатная плата зарядного устройства с автоматическим отключением готова

Установка напряжения отключения

Теперь, чтобы установить напряжение отключения, вы должны подключить источник переменного тока постоянного тока ко входу постоянного тока и подключить мультиметр (вольтметр) на стороне батареи, как показано .

Например, чтобы установить напряжение отключения на 13 В, вы должны подать 13 В на входе постоянного тока.

Затем поверните потенциометр, пока не загорится красный светодиод.

После установки напряжения отключения отключите переменный источник постоянного тока и подключите понижающий трансформатор ко входу переменного тока, как показано на принципиальной схеме.

Соблюдайте меры безопасности при работе с питанием 220 или 110 В.

Наконец, зарядное устройство с автоматическим отключением готово.

Подключите свинцово-кислотный аккумулятор со стороны аккумулятора (согласно схеме.)

Затем подайте напряжение 220 В или 110 В, загорится зеленый светодиод, что указывает на то, что аккумулятор заряжается.

Когда напряжение на батарее пересекает напряжение отключения, реле выключается, и батарея отключается от источника питания.

Пожалуйста, поделитесь своими отзывами об этом мини-проекте, а также дайте мне знать, если у вас возникнут какие-либо вопросы.

Вы также можете подписаться на на нашу информационную рассылку , чтобы получать больше таких полезных проектов электроники по электронной почте.

Надеюсь, вам понравились эти проекты. Спасибо за уделенное время.

555 Универсальное автоматическое зарядное устройство

В этой схеме мы делаем универсальное автоматическое зарядное устройство 555. С помощью этой схемы можно заряжать любые типы аккумуляторных батарей с напряжением от 6 до 24 В. Максимальный выходной ток этой цепи составляет 10 А.

Эту схему также можно модифицировать для зарядки аккумуляторов с напряжением ниже 6 В. Для этого вам нужно будет изменить значение стабилитрона на 2.4-2,5В. Выберите источник питания, который по крайней мере на 1,5–3 В превышает напряжение недостаточного заряда аккумулятора. А ток блока питания нужно подбирать по 1/10 АХ АКБ. Если вы хотите зарядить аккумулятор 6 В 10 Ач, используйте источник питания постоянного тока 7,5 В и 1 А.

Компоненты оборудования

S.no. Компонент Значение Количество
1 Аккумулятор 1
2 IC NE555
4 Транзистор 2N3906 1
5 Реле 1
6 905 905 905 905 905 905 905 905 905 905 905 905 Стабилитрон 3.3 В 1
8 Резистор 1 кОм, 10 кОм, 8,2 кОм, 470 Ом, 100 кОм 2, 1, 1, 1, 1
9 Конденсатор
10 LED 1
11 Переключатель 1
12 Блок питания
1 1 Принципиальная схема

Рабочее пояснение

Мы используем микросхему таймера 555, которая подключена как компаратор для определения напряжения батареи.Переменный резистор 100 кОм используется для установки точки срабатывания. Точка срабатывания установит точку напряжения, при которой вы хотите, чтобы аккумулятор прекратил заряжаться и отключился от цепи.

Точка срабатывания должна быть установлена ​​в соответствии с типом батареи, батарея на 6 В показывает 7,2 В на цифровом мультиметре, когда она полностью заряжена при подключенном источнике питания. Таким образом, точка срабатывания для батареи 6 В должна быть 7,2 В.

Регулировка цепи

  • Возьмите регулируемый блок питания и установите напряжение 14.4 В, если вы используете 12 В, потому что при полной зарядке 12 В на цифровом мультиметре отображается 14,4 В.
  • Снимите блок питания и аккумулятор, подключенный к цепи, и поместите этот регулируемый блок питания вместо аккумулятора.
  • Отрегулируйте регулируемый резистор, пока не загорится светодиод.
  • Снимите регулируемый источник питания, подключите фактический источник питания и аккумулятор в цепи.
  • Теперь, когда аккумулятор полностью зарядится, он автоматически отключится от источника питания и загорится светодиод.
  • Та же процедура будет применяться для батарей с другим напряжением. Напряжение в регулируемом источнике питания будет установлено в соответствии с напряжением батареи, отображаемым на цифровом мультиметре при полной зарядке.

Зарядное устройство для герметичных свинцово-кислотных аккумуляторов (SLA), 12 В, 1300 мА, с защитой от короткого замыкания: автомобильная промышленность

Обычно я не из тех, кто дает восторженные отзывы, но это маленькое зарядное устройство работает отлично. У меня есть несколько известных зарядных устройств. Однако бывают случаи, когда они просто отказываются заряжать батареи, напряжение которых упало ниже определенного уровня.Иногда такая осторожность оправдана, но не всегда. В моем случае я просто заменил батарейки в блоке резервного питания для кого-то. Через несколько недель они заметили, что блок резервного питания от батареи выключен и не включается. Оказалось, что вышел из строя сам блок резервного питания. Он продолжал работать до тех пор, пока не разрядились батареи, и оставался таким в течение нескольких недель. Это не очень хорошо для батарей SLA, но это тоже не конец света. зная, что батареи на самом деле были совершенно новые, я вытащил их, чтобы зарядить на своем стенде.Я уже знаю, что из соображений осторожности мои громкие зарядные устройства просто откажутся заряжать батареи при таком низком уровне заряда. Вот где сияет эта маленькая жемчужина зарядного устройства. Это осторожно, но не параноидально. Если батарея SLA очень разряжена и не закорочена, она попытается зарядить ее. Это именно то, что мне нужно было сделать в данном случае.

Несколько советов, если вы пытаетесь зарядить батареи с очень низким уровнем заряда SLA (герметичные свинцово-кислотные).
!!! Я не профессионал … Следующее не является инструкцией … Используйте на свой страх и риск !!!
!!! Заряжайте только батареи, которые, как вы знаете, находятся в хорошем состоянии… Неисправные или закороченные батареи могут взорваться !!!

Первый совет:

Зарядное устройство нагревается.Корпус представляет собой простую подгонку давления. Он легко разбирается. Сделайте перфорированный непроводящий корпус и направьте на него вентилятор … просто говорю … Горячая электроника – это недолговечная электроника …

Второй совет:

Когда вы подключаете это зарядное устройство к батареям с очень низким зарядом, оно загорается зеленым светом, как батареи уже заряжен. Это нормально. Чтобы вернуть к жизни полностью разряженный аккумулятор, требуется некоторое время. Оставьте это на время. Если аккумулятор действительно исправен, индикатор в конечном итоге станет красным, что означает, что он заряжается.Теперь вам просто нужно подождать, пока индикатор снова не станет зеленым и вы все зарядитесь.

Иногда некоторые батареи заряжаются дольше обычного. В этом случае я проверяю аккумулятор на наличие физических признаков неисправности. Если аккумулятор горячий или его боковые стороны вздулись или деформировались… НЕМЕДЛЕННО ПРЕКРАТИТЕ ЗАРЯДКУ! Аккумулятор неисправен. Пометьте его как таковой и отнесите в центр утилизации.

Если аккумулятор холодный или теплый на ощупь, и боковые стороны аккумулятора не вздуваются и не деформируются, я позволяю ему продолжать зарядку.Прежде чем я это сделаю, я отключаю зарядное устройство и проверяю его вручную, чтобы узнать уровень заряда. Для этого я использую следующий тестер:

Третий совет:

у меня были батарейки

хотеть заряжать вечно. Когда я отключаю их от зарядного устройства и проверяю, они говорят, что заряжены на 100%. Ясно, что что-то не так, иначе они бы загорелись зеленым светом от зарядного устройства.Я упоминаю об этом, потому что это может случиться с вами, используя это зарядное устройство. Я не знаю, есть ли что-то необычное в зарядном устройстве или в аккумуляторе. Батареи не деформируются и не нагреваются при зарядке, и они не перезаряжаются, поэтому я продолжаю их использовать, и они работают нормально.

Страница не найдена – Express Kitchens

Переключить навигацию

  • Главная страница блога
  • Экспресс-кухня для дома

Искать:

Недавние сообщения

  • Раздача подарков на День матери Express Kitchens 2021
  • Серая мебель – новая нейтральная и самая горячая тенденция на кухне в продаже!
  • Почему стоит выбрать темные шкафы для кухни своей мечты?
  • Виртуальный дизайн кухни: Кухня вашей мечты на расстоянии одного звонка
  • Идеальный индивидуальный стол для вашего домашнего офиса

Недавние комментарии

  • Кен Вайнер о подарках на кухню Express Kitchens в День матери!
  • Gerry Spagnuolo on Как выбрать лучшую столешницу для кухни своей мечты?
  • Shaylee Packer: 3 шага к выбору правильных кухонных шкафов
  • Builders Hamilton NZ: 3 шага к выбору правильных кухонных шкафов
  • Adam Golightly: 3 шага к выбору правильных кухонных шкафов

Archives

  • April 2021
  • Март 2021 г.
  • Февраль 2021
  • Декабрь 2020
  • Ноябрь 2020
  • мая 2020
  • Апрель 2020
  • Февраль 2020
  • января 2020
  • Декабрь 2019
  • Ноябрь 2019
  • Октябрь 2019
  • Сентябрь 2019
  • августа 2019
  • июль 2019
  • июнь 2019
  • мая 2019
  • Апрель 2019
  • Февраль 2019
  • января 2019
  • Декабрь 2018
  • Ноябрь 2018
  • Октябрь 2018
  • Сентябрь 2018
  • августа 2018
  • июль 2018
  • июнь 2018
  • Март 2018
  • Февраль 2018
  • Январь 2018
  • Ноябрь 2017
  • Октябрь 2017
  • Апрель 2017
  • Февраль 2017
  • января 2017
  • Декабрь 2016
  • Ноябрь 2016
  • Октябрь 2016
  • Июль 2016
  • Июнь 2016
  • мая 2016
  • Апрель 2016
  • Март 2016
  • Февраль 2016
  • Январь 2016
  • Декабрь 2015
  • Ноябрь 2015
  • Октябрь 2015
  • Сентябрь 2015
  • Август 2015
  • июнь 2015
  • Апрель 2015
  • Март 2015
  • Декабрь 2014
  • Ноябрь 2014
  • Октябрь 2014
  • Сентябрь 2014
  • Август 2014

Категории

  • Шкафы
  • Торжества
  • Награда компании
  • Шкафы на заказ
  • Вакансий
  • Новости
  • Акции и специальные предложения
  • Testi
  • Без категории

Meta

S.no. Компонент Значение Количество
1 Аккумулятор 1
2 IC NE555
4 Транзистор 2N3906 1
5 Реле 1
6 905 905 905 905 905 905 905 905 905 905 905 905 Стабилитрон 3.3 В 1
8 Резистор 1 кОм, 10 кОм, 8,2 кОм, 470 Ом, 100 кОм 2, 1, 1, 1, 1
9 Конденсатор
10 LED 1
11 Переключатель 1
12 Блок питания