Содержание

Самодельные ветрогенераторы из авто-генераторов

>

Ветряк из авто-генератора с двойным статором

Ветрогенератор от "Мото26", сделан из автомобильного генератора с двойным статором. Ветряк сделан для работы на акб 24 вольт, мощность в итоге 300ватт при ветре 9м/с. Подробности и фото в статье. >

Ветрогенератор своими руками

Практически полностью самодельный ветрогенератор, генератор которого изначально должен был быть из автомобильного генератора, но после того как корпус был сломан от генератора остался только статор, а корпус пришлось делать новый. >

Ветрогенератор из авто-генератора от Бычка

Генератор этого ветряка сделан из автомобильного генератора от гзузовика Бычек. Статор перемотан проводом 0,6 мм. Ротор полностью новый, был выточен у токоря по нужным размерам под купленные магниты 30*10*5мм. >

Простая передлка автомобильного генератора

Самая простая переделка автомобильного генератора на постоянные магниты. Генератор для этого ветряка делался из автогенератора, статор которого не подвергался изменениям, а вот ротор был оснащен неодимовыми магнитами. >

Генератор для ветряка из авто-генератора

Как просто и без особых усилий переделать автогенератор для самодельного ветрогенератора. Для переделки не-надо ни перематывать статор, не точить роторе под магниты. Вся переделка сводится к переключению фаз генератора, и оснащению ротора маленькими магнитиками для самовозбуждения ротора. >

Однолопастной винт для ветрогенератора

В продолжении усовершенствования ветрогенератора на этот раз было решено попробовать изготовить однолопастной винт и посмотреть какие приимущества он дает и какие недостатки присущи однолопастным винтам. Лопасть с противовесом имеет не жесткое крепление и может откланяться от оси вращения до 15 градусов. >

Ветрогенератор из тракторного генератора Г700

В этом ветрогенераторе в качестве генератора использован тракторный генератор с электровозбуждением. Генератор подвергся существенным изменениям, был перемотан статор более тонким проводом, а так-же домотала катушка ротора. Для этого ветряка винт был сделан из дюралюминия. Винт двухлопастной размахом 1,3м. >

Самодельный ветрогенератор для яхты

Самодельный ветрогенератор, генератор которого сделан из генератора мотоцикла ИЖ юпитер, Этот ветрогенератор специально создавался для эксплуатации на небольшой яхте, где должен был обеспечивать питанием навигационные приборы и мелкую электронику. >

Новый-второй ветрогенератор для яхты

В новом ветрогенераторе использовался статор от автомобильного генератора . Мощность нового ветряка теперь больше, диаметр винта также увеличился. Теперь ветрогенератор имеет новую защиту от сильного ветра , теперь винт не уходит в сторону, а опрокидывается, и хвост теперь не складывается, в общем подробности в статье.
>

Ветряки цветы из велосипедных динамок

Иньтересные и красивые ветряки, генераторы которых это велосипедные динамо втулки. Сделаны они в виде всяких цветов, подсолнухов, ромашек, и окрашены в соответствующие цвета, красиво смотрятся как элемент дизайна.

Ветрогенератор для дома своими руками смастерил тернопольский пенсионер

Несколько лет назад житель Тернополя Ярослав Бендас стал известным на всю Украину благодаря своей мини-электростанции. Однако мало кто знает о ее уникальности и значительном отличии от существующих аналогов. 73-летний изобретатель и сейчас пребывает в поиске рациональных идей, которые сразу же реализует. Одна из последних его работ - фонтан в форме Эйфелевой башни с подачей воды в циклическом замкнутом круге.

Даже при слабом ветре - два-три метра в секунду - домашняя ветроэлектростанция Ярослава Бендаса способна производить энергию. «Чтобы при ураганных ветрах ничего не перегорело, оснастил ветряк специальными тормозами, которые замедляют вращение лопастей до допустимого уровня», - рассказывает пенсионер.

Благодаря четырем специальным подставкам установка не деформирует крышу и не создает никаких вибраций, отмечает разработчик. В свое время на строительство самодельной ВЭС тернопольский рационализатор потратил около 300 долларов.

С тех пор семья изобретателя экономит значительные средства: использование газа в зимние месяцы уменьшилось наполовину - с 400 до 200 кубометров.

О своих интересных изобретениях украинский умелец рассказал изданию "Тернополь вечерний":

- Ярослав Николаевич, в чем основа вашей любви к электронике и вообще к технике. Вы специалист в этом деле или просто любитель?

- Это дело моей жизни. В свое время закончил общетехнический факультет Тернопольского пединститута. Долгое время работал на одном из крупнейших промышленных гигантов нашего края - ВО "Ватра". Последние 16 лет перед выходом на пенсию с этого предприятия продолжал трудовую деятельность в межшкольном учебно-производственном комбинате. Там преподавал детям теорию и практику по электротехнике. Сейчас уже и такого учебно-производственного учреждения нет, а тогда оно играл важную роль в профориентации учащихся. Выйдя на пенсию, занимаюсь любимым делом.

- Вы не только в Тернополе, но и на всю Украину известны своей мини-электростанцией. А до этого мастерили интересные вещи?

- До создания этой установки я придумал много разных приборов, которые были полезными в быту. В свое время занимался аквариумами, электрооборудованием для них, сделал автоматически раздвижные шторы и различные приспособления в собственном доме.

- А как вам пришла идея создать домашнюю мини-электростанцию. Это было потребностью в энергосбережении или предметом рационализаторской мысли?

- В свое время один приятель подарил мне генератор от передвижной киноустановки. Десять лет назад, когда я достраивал свой дом на улице Ломоносова, задумал использовать этот механизм с пользой. Для этого соорудил прочную плоскую крышу, на которой впоследствии установил почти полутонную конструкцию - большой ветряк на трехметровой мачте, оснащенный 8 лопастями с размахом крыльев 2 м 80 см.

Читайте также: Ветрогенератор для дома: особенности, которые нужно обязательно знать владельцу частной электростанции

- Сначала ветряк крутился в горизонтальном положении. Что заставило вас кардинально перестроить ветровую электроустановку?

Действительно, сначала так и было. Я хотел, чтобы электроустановка работала независимо от направления ветра. В таком положении, откуда бы ни дул ветер, лопасти все равно крутятся, но меня не устраивало небольшое количество оборотов и слабая мощность. А чтобы переоборудовать с горизонтального на вертикальное положение, надо было полностью переделать всю конструкцию. Но, как сделать, чтобы установка одновременно поворачивалась к ветру и крутилась? Для этого я приспособил задний мост от «Жигулей». Заглушив одну из полуосей, установил на ее место хвост. А вторую полуось применил для ветряка. Поэтому вертикальная ось идет к тонвалу, который начинает крутить, а передача идет к генератору.

Ваша ветровая электроустановка отличается от тех, что есть в серийном производстве в западных странах?

- Для ветровых установок необходим тихоходный генератор, который имеет небольшое количество оборотов, а у меня он - от кинопередвижки. Если его использовать для освещения, то необходимы аккумуляторы и преобразователи энергии. Для этого надо было затратить немалые средства. Я пошел другим путем. Использовал то, что генератор в зависимости от силы ветра производит электрический ток определенного напряжения. Поставил тэны в обогревательный котел, параллельно использую для отопления дома природный газ и энергию с электроустановки. Если генератор работает, тэны соответственно производят напряжение, температура воды поднимается, и подача газа автоматически выключается. Я только устанавливаю необходимую температуру. Когда пользовался исключительно газом для отопления своего дома, то при сильных морозах использовал почти по 400 кубометров голубого топлива в месяц, а теперь использование газа уменьшилось наполовину. Для семейного бюджета это существенная экономия.

Ярослав Николаевич, то есть вы уже десять лет размышляете над проблемой энергосбережения для отопительных устройств?

- Тогда эта тема не была столь актуальной, но уже намечалось подорожание энергоносителей. И надо было думать, как решить эту проблему в отдельно взятом доме. И выгода от мини-электростанции очевидна. За рубежом, особенно в прибрежных зонах Франции, Нидерландов, Германии, Испании, Португалии - довольно много ветряных мельниц. Поставят их 50 или 100 и работают они как единая энергосистема. Почему наша промышленность не выпускает такие генераторы? Их можно эффективно использовать на дачных участках, в частных домах в городе или в деревне, на различных туристических объектах.

- Сделав уникальную ветровую электроустановку, вы не остановились в поисках рационализаторских идей. Недавно вы смастерили фонтан в виде Эйфелевой башни. Расскажите, пожалуйста, о своем очередном творении?

- Я не могу сидеть без дела. В прошлом году идею создать небольшой фонтан у дома мне подкинула дочь, но потом сама же отказалась от замысла. Мол, для функционирования фонтана необходимо задействовать водопровод, а это большие финансовые затраты. Я решил эту проблему другим способом. Заливаю два ведра воды, которая циркулирует в системе. Когда она частично испаряется, доливаю необходимое количество воды.

- Какой принцип у этой циркуляции?

- Я сделал диафрагменный насос, который под давлением качает воду, забирая ее из бачка и подавая наружу. Подачу через редуктор осуществляет низкоэнергозатратный электрический моторчик. Вода снова стекает в бачок и дальше идет по кругу. Эта конструкция хоть и уже работает более месяца, еще не завершена.

- Что-то планируете в ней доработать?

- Сейчас под водяным напором движется мяч. Хочу, чтобы там крутилось колесо или двигалась какая-то фигурка. Планирую также облагородить это место насаждениями и декоративной травой. Люди, которые проходят мимо моего дома, заглядываются на фонтан. А я хочу, чтобы он радовал их глаз.

- Ярослав Николаевич, ваши родные утверждают, что у вас ненужных вещей не бывает?

- Дочка часто упрекает, зачем мне столько барахла? А я считаю, что рано или поздно из него что-то сделаю полезное. Многие вещи люди просто выбрасывают, не зная, что их еще можно с пользой применить. У меня была незадействованная ванна, которую, наполнив водой, установил на крыше. Подсоединил к водоснабжению и в теплое время есть бесплатный душ. Видеоголовка от старой камеры и различные электронные устройства применил в системе видеонаблюдения за собственным подворьем. Старое электронное оборудование использую как для создания различного напряжения и пайки, так и управления антеннами для телевидения. Каждую вещь можно где-то приспособить и она принесет пользу.

Читайте также: 80-летний украинский инженер сконструировал ветряк по собственному проекту

А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

Понравилась статья? Поделитесь ею и будет вам счастье!

Самодельный ветряк, ветряная установка своими руками

Приветствую всех любителей помастерить, предлагаю к рассмотрению инструкцию по изготовлению ветрогенератора на основе автомобильного генератора. Хороша такая конструкция тем, что на автомобильном

Читать далее

Приветствую всех любителей помастерить, предлагаю к рассмотрению инструкцию по изготовлению простого ветрогенератора с нуля. Таким генератором можно заряжать аккумулятор для дальнейшего

Читать далее

Приветствую всех любителей самоделок и тех, кто просто заглянул на сайт в поисках интересных идей для творчества. Наверняка многим из вас частенько приходилось испытывать неудобства, связанные с

Читать далее

Привет сегодня я поделюсь с вами своим опытом по созданию ветряков или не опытом а историями попыток создания ветряков. Ну пожалуй приступим к созданию. Надо Для начала нам понадобилось из

Читать далее

Решил собрать небольшой ветряк, посмотреть, пощупать, сколько он выдает крутящего момента. В будущем планируется сделать подобный более крупный ветряк с небольшим генератором, а потом может и с

Читать далее

С развитием технологий, альтернативная энергетика все больше входит в жизнь современного общества. Солнечная энергетика, ветрогенераторы, гидрогенераторы и даже геотермальное отопление для

Читать далее

Эй,диджей поставь мой компакт-диск, да? /Народная мудрость/ Наверное самый маленький в мире действующий ветряк с генератором. А не поставить ли нам за окна мини-турбинки для нужной генерации?

Читать далее

Для питания изготовленной аккумуляторной светодиодной лампы, описание которой приведено на сайте, был изготовлен и используется по настоящее время, ветрогенератор на базе двигателя постоянного тока

Читать далее

Если вас волнует вопрос получения альтернативной энергии, можете собрать для себя вот такой вот простой ветрогенератор. Основная часть используемых запчастей – это детали от велосипеда. С помощью

Читать далее

Если у вас сломался корпус гироскутера не спешите его выбрасывать. После небольшой переделки из него можно сделать ветрогенератор. Именно его и попробовал сделать автор-самодельщик. Что из этого

Читать далее

Такая конструкция ветряка позволяет вырабатывать энергию из ветра независимо от направления, с которого ветер дует. Лопасти ветряка представляют собой своего рода паруса. Собирается все из доступных

Читать далее

Уважаемые посетители сайта «В гостях у Самоделкина» из представленного автором мастер-класса вы узнаете, как можно самостоятельно сделать полноценный флюгер и установить его на конек вашего дома для

Читать далее

Есть множество случаев, когда проживая за городом, Вам может понадобиться небольшое количество электроэнергии для питания маломощного устройства. Например, для работы компактной метеостанции,

Читать далее

Для привода ветрового генератора изготовлена турбина роторного типа с вертикальной осью вращения. Этот тип ротора очень прочен и долговечен, имеет относительно небольшую скорость вращения и легко

Читать далее

Самодельные ветрогенераторы своими руками: вертикальные, горизонтальные

Устройство ветрогенератора



Принцип устройства самодельного ветрогенерагора очень прост: к пропеллеру, расположенному в вертикальной или горизонтальной плоскости, подключается редуктор, который передает крутящий момент генератору. Для преобразования постоянного тока, вырабатываемого генератором, в переменный служит инвертор, который соединен с аккумуляторной батареей. Она накапливает производимое установкой электричество, которое затем может использоваться для тех или иных нужд.

Современные ветроустановки оснащаются генераторами, в конструкции которых используются магниты из сплавов редко-земельных металлов, что позволяет избавиться от щеток. Такие генераторы не только просты и эксплуатации (основная проблема стандартных генераторов — щетки: именно они нуждаются в регулярном осмотре и обслуживании) и имеют длительный срок работы, но и сразу дают на выходе трехфазный ток.

Как собрать ветрогенератор своими руками

Чтобы сэкономить, можно собрать самодельные ветрогенераторы своими руками. Существует много готовых технологических решений, начиная от довольно простых, не требующих особых умений, и заканчивая весьма сложными, с которыми не справиться без навыков электротехнических работ.

Например, популярна следующая модель ветроустановки на постоянных магнитах.

Статор генератора состоит из девяти катушек, каждая из которых имеет 40 витков. Для изготовления катушек применяется провод диаметром 1,3 мм. Катушки соединяются между собой последовательно. Ротор состоит из 12 магнитов на каждой половине.

Собирают и обычные самодельные горизонтальные ветроустановки, изготавливаемые по принципу ветряных мельниц. Лопасти пропеллера делают из металлического ведра или бочки - вырезают с помощью болгарки. Лопасти немного отгибают - это предохранит установку от резких порывов ветра. Необходимый размер лопастей зависит от скорости ветра и от аэродинамических характеристик устройства.

Фото: схема ветрогенератора с горизонтальной осью вращения: 1 — ротор; 2 — низкоскоростной вал; З — редуктор; 4 генератор; 5 — контроллер; 6 — ветрометр; 7— флюгер; 8 — высокоскоростной вал; 9 — корпус; 10— мачта; 11— тормоз; 12— вращение двигателя: 13— диски вращения; 14— лопасти.

Схема монтажа электрооборудования для самодельного ветрогенератора: 1 - винт на корпус; 2- стойка; З - штепсель; 4 - осветительные лампы энергосберегающего типа; 5- распределительный щиток.

С чего начать?

Следует заметить, что при самостоятельной сборке ветроустановки не так-то просто достичь высоких аэродинамических характеристик. Но недостаток аэродинамики можно компенсировать увеличением числа лопастей.

Для ветроустановки не рекомендуется использовать автомобильные аккумуляторы: они не приспособлены к подобным условиям работы и требуют постоянного обслуживания. Кроме того, они довольно взрывоопасны.

При изготовлении ветрогенератора своими руками следует приобретать специальные аккумуляторы с герметическими корпусами. Срок их службы - около 10 лет, а единственный недостаток - высокая цена (в два-три раза дороже автомобильных аккумуляторов). Зато не возникает проблем с эксплуатацией и обслуживанием.

Основная сложность при изготовлении горизонтального ветрогенератора своими руками - необходимость в тщательной балансировке. Кроме того, в случае непогоды такая установка может опрокинуться, сломаться: в домашних условиях нелегко добиться того, чтобы она оказалась полностью приспособлена ко всем неожиданностям, особенно к шквальному ветру.

Гораздо проще собрать ветроустановку с вертикальной осью вращения. Она не требует такой балансировки, способна работать при любом направлении ветра, для нее не нужна высокая мачта - устройство можно расположить на невысоких опорах. А лопасти легко изготовить из металлической бочки.

Фото: Ветрогенератор с вертикальной осью вращения с лопастями, изготовленными из металлической бочки.


Установив такое самодельное устройство около оживленной трассы, можно увеличить мощность: ветрогенератор будет получать дополнительный ветер за счет набегающей воздушной волны от проезжающих автомобилей.

Мощность самодельного ветрогенератора возрастает с увеличением размера лопасти, так что, если вам требуется мощный ветрогенератор, просто возьмите бочку побольше. Для того чтобы изготовить цилиндрическое ветроколесо, необходимо сделать прорези на боковой поверхности бочки, а затем аккуратно отогнуть передние и задние кромки под нужным углом. Количество лопастей может быть любым, начиная с двух.

Изготовление лопастей из бочки.


Изготовление ветроколеса из бочки: а - ветроколесо из одной бочки: б - ветроколесо из двух бочек.


Если вы никогда не сталкивались с подобными работами, прежде чем резать бочку, потренируйтесь на консервной банке: форма такая же и вы сможете экспериментальным путем подобрать нужное количество лопастей и угол их изгиба, оптимальные для скорости ветра в вашем регионе.

Для передачи энергии в подобной ветроустановке можно использовать велосипедную цепь или обрезиненный ролик. Мотоциклетный или велосипедный генератор отлично сочетается с таким устройством.

Умельцы придумали множество вариантов, позволяющих извлечь электричество из ветроустановки. Так, возбудитель генератора на постоянных магнитах монтируется на днище бочки или на оси ветроколеса, организуется кривошипный механизм с поршневым или мембранным насосом, применяются даже пьезоэлементы.

Самодельный ветрогенератор: особенностью конструирования, монтажа и эксплуатации

Вопросы изготовления ветрогенераторов в домашних условиях поднимаются практически на каждом энергетическом форуме в сети. Пользователей больше всего интересуют конструкции ветрогенераторов, которые можно было бы собрать самостоятельно, и электрические параметры уже собранного ветряка, проанализировав которые можно сделать вывод о пригодности той или иной модели самодельного ветрогенератора для своих нужд. В статье рассмотрим основные этапы проектирования и сборки ветрогенератора в домашних условиях.

Исходные данные для проектирования ветрогенератора это мощность установки, тип и конструкция ветрогенератора. Мощность ветряка зависит от энергопотребления (количества одновременно подключенных электроприборов к сети) и количества аккумуляторных батарей для запаса энергии. Если ветрогенератор необходим для обеспечения бесперебойного отопления или подогрева воды, то его мощность необходимо существенно завышать, что непременно скажется и на конструкции лопастей, мачты и самого электрического генератора.

Горизонтальный ветрогенератор: типы, основные особенности
Ветрогенераторы парусного типа: устройство, основные характеристики

В качестве оценки параметров будущего ветрогенератора приведем пример ветряка компании AVIC W-HR2: мощность 2кВт; диаметр лопастей 3м; высота мачты 8м. Для установки такого ветрогенератора потребуется достаточно мощный фундамент и грузоподъемный кран для монтажа всей конструкции. Приняв за постоянные величины КПД редуктора (0,9) и электрического генератора (0,8), а также с учетом коэффициента использования ветра 0,35 и скорости ветра в 4м/с, при самостоятельном проектировании ветряка можно воспользоваться следующей таблицей:

В приведенной таблице отображена зависимость мощности ветрогенератора от диаметра крыльчатки генератора и количества лопастей на ней. При увеличении скорости ветра с сохранением параметров количества и размеров лопастей, мощность ветрогенератора будет увеличиваться пропорционально скорости потока ветра в кубе: при скорости ветра 8м/с (увеличение в 2 раза) мощность увеличиться в 8 раз.

Изготовление лопастей для ветрогенератора из ПВХ труб, аллюмния, стекловолокна

Количество и размеры лопастей ветрогенератора определяют конструктивные особенности ветряка. Двухлопастные ветряки существенно увеличивают нагрузку на центральную ось генератора, мачту и элементы ее крепления к фундаменту, в то время как центробежная сила постоянно стремится разорвать лопасти на куски. С увеличением количества лопастей нагрузка на ось генератора снижается, поэтому оптимальным количеством лопастей для самодельного ветряка считается от 4 до 8 лопастей. Помимо этого лопасти ветрогенератора должны отвечать определенным аэродинамическим характеристикам, от которых зависит коэффициент использования ветрового потока и уровень шума, который возникает при работе (двухлопастные ветряки более шумные, т.к. их лопасти очень сложно сбалансировать).

Элементы защиты ветрогенератора

Асинхронный электродвигатель в качестве генератора для ветряка
Мачта для ветрогенератора: конструкция, установка и эксплуатация

В домашних условиях достаточно трудно изготовить идеальные лопасти, провести балансировку колеса и рассчитать требуемый запас прочности для мачты ветрогенератора. Мощные ветрогенераторы с диаметром лопастей от 2м обладают высокими показателями аэродинамического сопротивления. При этом на всю конструкцию ветряка воздействует огромная ветровая нагрузка. При превышении скорости ветра 10 м/с или при сильном переменчивом ветре необходимо принудительно ограничивать работу ветрогенератора. В качестве одного из устройств, которое ограничивало бы работу ветрогенератора при больших ветровых нагрузках, можно использовать так называемую боковую лопату: при сильном ветровом потоке, давление на ветроколесо превышает силу давления пружины защиты, в результате чего срабатывает защита. Когда генератор начинает складываться, ветровой поток попадает на ветрогенератор под углом, что серьезно сокращает его мощность. При очень сильном ветре защита полностью складывает генератор параллельно направлению ветрового потока, полностью прекращая работу ветряка.

Правила ухода за ветрогенератором

При эксплуатации самодельных ветрогенераторов стоит соблюдать следующие правила:
1. Периодически проводить ревизию всех болтовых соединений в элементах крепления мачты к фундаменту и генератора к мачте.
2. Проводить смазку подшипников генератора и поворотного устройства ветрогенератора.
3. Следить за балансировкой колеса ветрогенератора.
4. Проверять состояние изоляции электрооборудования не реже 1 раза в 6 месяцев.

Если же процесс создания и эксплуатации ветрогенератора, сделанного своими руками, для Вас кажется очень сложным, тогда можно заказать готовый ветрогенератор для дома и оградить себя от различных неприятностей. Однако в таком случае необходимо позаботится о наличии достаточного количества финансовых средств для оплаты работы проектировщиков, монтажников и обслуживающего персонала.

Ветряки для дома своими руками. Выбираем генератор.

В связи с постоянно растущими ценами на электричество, все большее количество владельцев частных домов и дачных участков задумываются об установке источников альтернативного электропитания. Ветряки для дома своими руками являются отличным решением, как для выработки дополнительного электричества, что сможет снизить счета за коммунальные услуги, так и для обеспечения бесперебойным питанием загородные дома, к которым не подключили энергосети

Территория Россия, благодаря преимущественно равнинной местности и обширной площади, круглый год омывается большим количеством ветров, другое дело, что потенциал силы ветра оставляет желать лучшего, так как ветер чаще всего медленный и слабый. Другое дело – это необжитые территории России, где ветры гораздо большей силы. В любом случае, установка ветрогенератора даже при слабых ветрах, сможет обеспечить дом своего хозяина бесперебойной, и главное – бесплатной энергией.

Какой мощности выбрать ветрогенератор?

Первое, что стоит запомнить – ветряки для дома, как и любые другие источники альтернативного электричества, не смогут производить колоссальное количество электроэнергии. Многие начинающие конструкторы стремятся создать максимально мощный ветрогенератор, который сможет обеспечить электричеством не только освещение на дачном участке или зарядить аккумуляторные батареи, но также будет поддерживать абсолютно все электропитания дома, включая нагрев бойлера и отопительных систем. В принципе, это вполне возможно, если построить ветровой генератор мощностью более 2 киловатт модели W-HR2. Для строительства такого промышленного ветряка необходимы огромное количество денег, сил и расчетов. Соорудить его в одиночку непрофессионалу практически невозможно.

Оптимальным решением будет установка ветрогенератора мощностью до 500 ватт, этого вполне достаточно для обеспечения электроэнергией маленького загородного участка, а при необходимости большей мощности, всегда можно соорудить еще несколько ветряков и создать из них единую электростанцию.

Ниже представляем таблицу мощности ветряков в зависимости от кол-ва лопастей и диаметра всего ветроколеса при скорости ветра 4 м/с

Со стороны может показаться, что показатели несколько завышены, но не стоит забывать, что 4 м/с – это обычная скорость ветра на равнинной территории и чаще всего он достигает порывов выше, чем данная отметка. А чем больше скорость ветра, тем больше дает энергии самодельный ветряк.

Выбираем тип ветроколеса

Именно ветряное колесо является самым важным элементом всей конструкции, так как за счет его движения энергия ветра преобразовывается в механическую.

Самые популярные типы ветроколеса:

  1. Парусные
  2. Крыльчатые

Преимущества парусного ветроколеса заключается в их дешевизне и простоте установке: достаточно на лопасти прикрепить парусный материал и разместить под небольшим углом к ветру, такая конструкция будет в точности повторять старинные ветряные мельницы. К ее недостаткам относится большое аэродинамическое сопротивление воздушному потоку, который будет возрастать при ветре, идущем диагонально относительно лопастей.

Намного более эффективными являются лопасти крыльчатого типа, они немного дороже и сложнее в изготовлении, но устойчивы к силам трения или аэродинамическим потерям. Именно поэтому крылья самолетов имеют похожую форму. К дополнительным преимуществам крыльчатых лопастей относят небольшую затрату материалов для их изготовления, для сравнения можно привести вертикально осевой тип лопастей, чья эффективность будет сравнима с крыльчатыми, но при этом будет гораздо больший расход материалов.

Оптимальное количество лопастей на ветроколесе

При создании ветряков для дома своими руками можно сэкономить на материалах и обойтись всего 2-3 лопастями, но данное решение будет чревато несколькими неприятными моментами:

  • Чем меньше лопастей, тем они быстрее вращаются и создают лишнюю центробежную нагрузку на ветрогенератор, что может привести к поломке мачты и узлов крепления ветряка
  • При высокой частоте оборотов ветроколесу приходиться противодействовать большой силе трения воздуха, которые могут привести к разрушению лопастей. Поэтому лопасти приходиться изготавливать из крепких и дорогостоящих материалов
  • Высокий шум при работе

Исходя из всего вышеперечисленного, наиболее оптимальным числом лопастей будет 5 или 6. Когда определились с количеством лопастей, нужно определиться с диаметром ветроколеса исходя из данных таблицы выше. Следует учитывать, что чем больше длина лопастей, тем массивней конструкция, следовательно придется дополнительно укреплять ветряк и проводить работы по уравновешиванию винта. Наиболее оптимальный диаметр ветроколеса – это 2 метра.

Конечно, чем больше лопастей, тем большая эффективность ветрогенератора, но вместе с тем усложняется и общая конструкция ветряка и будет необходима установка дополнительного редуктора.

Выбираем генератор

При выборе генератора необходимо отталкиваться от скорости вращения ветроколеса. Ниже в таблице приведено количество оборотов зависимости от скорости ветра для ветроколеса с 6 лопастями.

Исходя из данных выше, наилучшим выбором будет веломотор или электродвигатель от ленточного накопителя данных. Преимущество таких двигателей в том, что они имеют низкие рабочие обороты и смогут раскрутить ветряк без установки редуктора.

Создаем ветровые генераторы для дома своими руками

При изготовлении ветрогенератора будем придерживаться данной таблицы. Конечно, способы крепления и расположение узлов может быть несколько изменено, но в целом, для создания эффективного ветряка лучше не отступать от представленной конструкции.

Примечание: Расстояние между мачтой и лопастями должно быть не менее 25 см, если меньше, то есть вероятность того, что лопасти прогнувшись под ветром разобьются о мачту.

Изготовление лопастей

Лучше всего крылья для ветряка вырезать из толстостенной ПВХ трубы. Конечно, можно изготовить лопасти из древесины, но это гораздо более трудозатратно, а также древесина может прийти в негодность под воздействием влаги.

Для лопастей следует использовать трубы с толщиной не менее 4 мм, иначе они будут без проблем прогибаться под ветром и быстро придут в негодность.

Высчитывание оптимальной формы лопастей чаще всего проводится эмпирическим путем при вырезании нескольких образцов разного размера. Но такой способ требует затрат времени и приводит к излишнему переводу материала. Поэтому мы предоставляем Вам ниже шаблон лопасти для трубы диаметром 16 см и длинной в 1 метр.

После того, как вы вырежете 6 лопастей по шаблону, необходимо максимально отполировать их поверхность и сточить края, чтобы они меньше сопротивлялись воздушному потоку.

Теперь изготавливаем головку электродвигателя, к которой будут крепиться лопасти. Для этого берем диск из стали толщиной не более 10 мм и привариваем к нему несколько полос длинной до 30 см, на которых высверливаем отверстия для крепления лопастей.

Чтобы повысить эксплуатационные характеристики ветряка, головку электродвигателя обязательно нужно сбалансировать. Для этого головка крепится вертикально в безветренном помещении. Необходимо следить за тем, чтобы ни одна из сторон головки самопроизвольно не двигалась и находилась в неподвижном состоянии. Если заметно движение, то полосы головки стачиваются до того состояния, пока движение не прекратиться при любом положении головки в пространстве.

Закрепляем генератор на раме

Генератор принимает вращательный момент от лопастей и постоянно находится под давлением больших центробежных и гироскопических нагрузок. Чтобы ветряк раньше времени не вышел из строя, генератор следует плотно закрепить на раме. Сама рама представляет собой пластину из метала, на которой располагаются главные узлы ветряка, а также станину из дюралалюминия с резьбовым отверстием. На станину накручивается вал генератора, а для его лучшего крепления следует использовать на конце соединения гайку с контршайбой.

Укрепление ветрогенератора от штормовых ветров

Рассматриваемый нами в этой статье ветряк не обладает высоким числом оборотов и вряд ли будет достигать таких частот вращения, что составляющие ветряка начнут приходить в негодность. Но при частых переменах направления ветра, хвост ветряка будет резко поворачиваться, что может привести к расшатыванию элементов крепления конструкции. Помимо этого, лопасти ветряка при сильном ветре будут сопротивляются поворотам, что вместе с подвижным хвостом ветрогенератора будет создавать высокую нагрузку в месте соединения рамы и генератора.

Чтобы значительно повысить срок службы ветровой электростанции, необходимо устанавливать специальную защиту от сильного ветра. Такой защитой выступает боковая лопатка – простенькое устройство, собираемое из минимума материалов, но удачно зарекомендовавшая себя во множестве ветровых установках.

С помощью боковой лопатки регулируется наклон ветряка по вертикали и при сильном ветре устанавливает лопасти параллельно ветру. То есть при умеренной силе ветра ветряк находится в стандартном положении перпендикулярно относительно земли, но при штормовых воздушных потоках, ветряк складывается на 90 градусов относительно своего рабочего положения, из-за чего его работа прекращается.

Боковая лопатка состоит из небольшой профильной трубы скрепленной с тонкой металлической пластиной, пружины и растяжки располагающейся между лопаткой и хвостом. Растяжка нужна для того, чтобы контролировать угол складывания ветряка.

В лопатке необходимо использовать крепкую пружину из углеродистой стали, которая в крайней точке выдерживает нагрузку до 12 кг. Растяжку изготавливают из тонкого велосипедного троса.

Устанавливаем мачту

Мачта является опорой для ветряка и на этом этапе ни в коем случае не стоит экономить. Лучше всего будет установить мачту на открытой территории, где в радиусе нескольких десятков метров не будет никаких строений. Сама мачта изготавливается из металличесской водопроводной трубы длинной в 7 метров. Если же возле ветряка находятся строения или деревья, то мачту следует сделать хотя бы на метр выше относительно их уровня. На пути к лопастям ветрового генератора не должно быть никаких препятствий, а иначе КПД ветряка будет значительно меньше ожидаемого.

Ветровой генератор – это массивная конструкция весом в несколько сотен килограмм, поэтому, чтобы он не проседал в почве, его необходимо устанавливать на крепком бетонном фундаменте. Помимо закрепления основы мачты в фундаменте, ветряк дополнительно фиксируется несколькими растяжками из монтажных тросов шириной не менее 5 мм. Растяжки крепятся к мачте хомутов, вытягиваются на максимальную длину и крепятся к колышкам, которые забиваются в землю на глубину не менее метра.

Устанавливать мачту с генератором можно как с помощью автокрана, так и в ручную. Для этого используется противовес, изготовленный из тяжелого деревянного бруса.

Аккумуляторные батареи и электронная система ветряка

Чтобы хранить энергию выработанную ветровой электростанцией, используют небольшие аккумуляторные батареи, емкость которых должна быть не меньше 120 а\ч. Рекомендуется также взять батарею до 300 а/ч, и уже в процессе эксплуатации определить сколько времени необходимо для ее зарядки. На выбор батареи также влияет сфера применения АКБ: если батарея используется для обеспечения электрическом нагревательных приборов, то следует отдать предпочтение более емким аккумуляторам.

Чтобы питать аккумулятором технику работающую при напряжении тока 220 В, необходимо установить специальный инвертор преобразователя напряжения. Инверторы различаются между собой уровнем пиковой мощностью, на которой они могут питать технику. Так, если подключать к АКБ компьютер вместе с монитором, то будет достаточно инвертора рассчитанного на 1000 Вт, если же от аккумуляторной батареи будут работать строительные инструменты, такие как перфоратор, то придется взять инвертор на 2000 Вт.

На рисунке ниже Вы можете видеть простейшую схему для зарядки аккумуляторов ветряком: от генератора идут три вывода, которые подключаются к параллельно идущим трем диодным полумостам. От генератора будет вырабатываться напряжение равное 26 В, поэтому к диодным полумостам будет достаточно последовательно подключить две батареи напряжением 12 В.

Основным преимуществом такой схемы является ее легкость сборки и минимум используемых материалов. Ее недостатком будет то, что при небольших ветрах аккумуляторы практически не будут заряжаться. Процесс зарядки начнется только при ветре в 7 м/с, который не так уж и часто можно встретить на равнинных территориях России.

Как ухаживать за ветрогенератором

Ветряки не требуют включения от внешних источников питания, они полностью автономны, благодаря чему запускаются самостоятельно даже при очень слабом ветре. Ветрогенераторы для дома своими руками могут прослужить десятки лет, для этого следует придерживаться нескольких правил:

  1. Чтобы металлические компоненты ветровой электростанции не сгнили под атмосферными осадками, их стоит красить каждые 2 года
  2. Дважды в год смазывать подшипники в генераторе и поворотном узле
  3. Ветроколесо – самое уязвимое место всей конструкции и может с легкостью разбалансироваться при сильном ветре. Примером разбалансировки может служить излишнее дрожание лопастей. Если дефект ветроколеса был обнаружен, то его следует немедленно снять и провести ремонтные работы

Вам понравится

Мой самодельный ветрогенератор | RadioFishka

В окружающем нас мире есть много процессов и веществ, которые может использовать человек для получения электроэнергии: солнечный свет (батареи солнечных элементов), энергия ветра (ветрогенераторы), движение воды в реках (гидроэлектростанции). Ниже представлено свободное изложение англоязычной страницы Майка Дэвиса (Mike Davis) об опыте работы над самодельным ветрогенератором.

Сделать своими руками ветрогенератор нетрудно. Вы тоже можете его изготовить.

Несколько лет назад я купил недвижимость (участок земли) в пустынной Аризоне. Я астроном и мне нужно было место, чтобы я мог заниматься своим хобби вдали от городского неба, где наблюдением мешает световое загрязнение города. Проблема была в том, что это место очень далеко от цивилизации, там нет электрических услуг. С определенной точки зрения это хорошо, нет электричества - нет светового загрязнения. Тем не менее, было бы неплохо иметь хотя бы небольшое количество электроэнергии, ведь очень многое в жизни человека в 21 веке зависит от нее.

Одну вещь я заметил сразу - в этой местности большую часть времени дует ветер. Это помогло мне сосредоточиться на положительных сторонах. Почти с самого момента как я его купил, у меня была мысль о том, что энергетической независимости можно достичь путем установки ветрогенератора, затем можно будет добавить немного солнечных панелей и газификатор биомассы.

Это история о том, как я сделал своими руками ветрогенератор. Не из дорогой, приобретенной в магазине турбины, а из самодельной, которая почти ничего не стоила. Если у вас есть навыки изготовления и некоторый опыт работы с электроникой, вы можете сделать это.

Я искал информацию о самодельных ветрогенераторах и понял, что, несмотря удивительное разнообразие конструкций и сложность, все они имеют пять общих вещей:

  •     генератор
  •     лопасти пропеллера
  •     монтажную конструкцию, которая держит ветровую турбину
  •     башню, чтобы держать все это на ветру
  •     батареи и электронную систему управления.

Реализация проекта самодельного ветрогенератора

Проект изготовления ветрогенератора своими руками не казался мне слишком тяжелым. Я решил начать с генератора тока. Мои интернет-исследования показали, что многие люди делали свои собственные генераторы. Это показалось слишком сложным для первой попытки. Другие используют двигатели постоянного тока в качестве генераторов в своих проектах. Это было похоже на простой путь. Поэтому я начал искать, какие двигатели были бы лучше для работы ветрогенератора.

Многие люди использовать старый компьютер с накопителем на магнитной ленте (когда в компьютерах были большие катушечные магнитофоны, а в них использовались медленно вращающиеся двигатели). Пожалуй, лучшую пару моделей таких двигателей сделала компания Ametek. К сожалению, их почти невозможно найти в наши дни.

Есть, вероятно, много других марок и моделей доступных двигателей постоянного тока, которые будут работать как генераторы.

То, что нужно - это двигатель для самодельного ветрогенератора, который рассчитан на высокое напряжение постоянного тока, низкие обороты и большие токи. Нужно избегать низкого напряжения и / или высоких оборотов в минуту.

Нужен двигатель, который будет давать более 12 вольт на достаточно низких оборотах, и полезный уровень тока. Таким образом, двигатель, рассчитанный на 325 оборотов в минуту (на 30 вольт) при использовании в качестве генератора, может дать 12 вольт на разумных низких оборотах.
С другой стороны, двигатель мощностью 7200 оборотов в минуту на 24 вольта, вероятно, не будет производить 12 вольт в качестве генератора (много тысяч оборотов в минуту - это слишком быстро для ветровых турбин). Нужно было искать в магазине для двигателей.

Мне удалось купить хороший 30-вольтовый двигатель Ametek всего за $ 26.

Двигатель был в хорошем состоянии и работал хорошо. Даже просто быстрый поворот вала двигателя моими пальцами зажигал лампочку 12 вольт достаточно ярко (я легко получил от него пару сотен ватт). Я знал, что если я смогу сделать приличный набор лопастей, он будет производить большое количество энергии.

Итак лопасти и концентратор для их подключения были моей следующей делом. Многие сделали лопасти своими руками, вырезая их из дерева. Для меня это был возмутительно большой объем работы.

Я обнаружил, что другие люди делали лопасти путем разрезания ПХВ трубы и формирование их в профилях. Это выглядело гораздо более перспективным.

Я использовал их рецепт, но сделал несколько иначе. Я использовал черные ABS трубы, 6-дюймовые трубы вместо 4 дюймов и 24 дюйма в длину вместо 19,6.

Я взял 24-дюймовый длинный кусок трубы и разрезал его вдоль на четыре части. Тогда я вырезал одну лопасть, и использовал ее как шаблон для вырезания других. Это дало мне 4 лопасти (3 плюс одна запасная).

При этом я их немного дополнительно сгладил и сформировал с помощью моего шлифовального станка (шлифовал на разрезе краев, чтобы сделать их профиль лучшим). По моему мнению, лопасти выглядят очень хорошо.

Теперь мне нужно центрировать лопасти и прикрепить их к двигателю. В моей мастерской я нашел зубчатый шкив, который помещался на валу двигателя, но был слишком мал в диаметре, чтобы закрепить его на лопасти. Я также обнаружил среди металлолома алюминиевые диски 5 дюймов в диаметре, теперь я мог крепить лопасти, но как приложить их к валу двигателя? Самое простое решение, конечно, было соединить эти две части вместе, чтобы сделать хаб.

Далее было много сверления, нарезания резьбы и болты, в сумме получился хаб.

Здесь он собран и с лопастями (после сверления отверстия в них, конечно).

Вот еще один вид на центр с лопастями.

Во время поездки в магазин я нашел эту куполообразную крышку вентиляционного отверстия.

Я сразу подумал о добавлении обтекателя к хабу. Ничего себе, это действительно выглядит профессионально сделанным устройством. Я никогда не смог бы убедить всех, что я сделал это своими руками из мусора в моей мастерской и сантехнических деталей.

Далее мне нужно было монтировать турбину. Желая сделать просто, я решил закрепить двигатель на кусок дерева 2 х 4. Правильная длина древесины вычислена была очень научным методом выбора наиболее перспективных кусков 2 х 4 из моей кучи металлолома.

Я также вырезать кусок из 4 дюймового диаметра трубы ПВХ для крепления двигателя и чтобы защитить его от непогоды. Как хвостовую часть, чтобы мой ветрогенератор возвращался при изменении направления ветра, я просто использовал кусок тяжелого алюминиевого листа. Я боялся, что хвост будет недостаточно большим, но это, кажется, работает очень хорошо. Турбина направлялась прямо на ветер каждый раз, когда тот менял направление. Для тех из вас, кто всегда требует от меня представить планы, чертежи, схемы и т. д. для моих проектов, я добавил несколько размеров изображения. Хотя я сомневаюсь, что любое из этих измерений является критическим.

Вот еще одна фотография изготовленной конструкции.

Далее я должен был начать думать о башне ветрогенератора и каком-то подшипнике, который позволил бы голове свободно поворачиваться по ветру.

Наконец, я пришел к решению, которое, кажется, работает хорошо. После мозгового штурма я заметил, что железная труба диаметром 1 дюйм хорошо прилегает и скользит в стальном кабелепроводм диаметром 1,25 дюйма. Я мог бы использовать длинный кусок 1,25-дюймового трубопровода как башню ветрогенератора и трубопроводную арматуру для подключения конструкции с двигателем.

К головному устройству я прикрепил фланец железа в 1 дюйм длиной 7,5 дюйма (показано на фотографии). Провода от генератора будут проходить через отверстие в 2х4 по центру трубы / короба и выходить на основание башни ветрогенератора.

База башни самодельного ветрогенератора. Изготовление базы башни я начал с разрезания диска из фанеры диаметром 2 фута. Я сделал U-образную конструкцию с однодюймовый трубопроводной арматуры. В середине этой конструкции поместил тройник диаметром 1,25 дюйма. В тройник входит однодюймовый труба, это позволяет мне поднимать и опускать башню.

Я также позже сделал отверстия в деревянном диске, чтобы можно было использовать стальные вставки для фиксации башни на земле.

Эта фотография показывает верхушку конструкции самодельного ветрогенератора и базу вместе. Эти две части должен соединять 10-метровый кусок стального трубопровода. Так как я делал эту вещь во Флориде, но собирался использовать ее в Аризоне, я решил повременить с покупкой 10-метровой части трубопровода, пока я не доберусь до Аризоны. Это означало, что ветровая турбина никогда не будет полностью собрана и не получит должного испытания, пока я не буду готов попробовать все в поле. Это было немного страшно, потому что я не знал, будет ли эта вещь действительно работать.

Далее, я покрасил все деревянные части несколькими слоями, потому что хотел защитить дерево от непогоды. Эта фотография показывает также противовес, который я добавил в левой части 2х4 под хвост, чтобы сбалансировать голову.

Эта фотография показывает готовую голову ветрогенератора с лопастями.

В один ветреный день я попытался подержать ее высоко в воздухе над моей головой, просто чтобы посмотреть, будут ли лопасти раскручиваться так, как я надеялся. В течение нескольких секунд они раскрутились до по-настоящему страшного хода (без нагрузки на генератор), и я едва удерживал свою конструкцию, не зная, как положить ее вниз, не порезав себя на куски. К счастью, я в конце концов смог вывести ее из ветра и замедлить вращение до нелетальной скорости. Я не сделаю эту ошибку снова.

Для продолжения щелкните на кнопке с цифрой 2

Электроника самодельного ветрогенератора

Теперь, когда у меня были все механические части ветрогенератора, пришло время вернуться к электронной части проекта. Система состоит из ветровой турбины, которая преобразует энергию ветра в электрическую, одной или нескольких батарей для хранения энергии, производимой турбиной, блокирующего диода для предотвращения питания от батареи, когда вращается двигатель / генератор, вторичной нагрузки, которая сбрасывает энергию от турбины, когда батареи полностью заряженные, и контроллера заряда для запуска всего.

Есть много контроллеров для солнечных и ветряных электростанций, но я решил попробовать изготовить свой собственный.

Я нашел много информации, в том числе достаточно хорошие схемы, и это сделало проектирование моего собственного блока довольно легким делом.

Я занимался электроникой с раннего возраста, у меня есть большой запас электронных компонентов, так что мне пришлось купить очень мало, чтобы изготовить контроллер. Я заменил различные компоненты для некоторых частей и несколько переработал схему, чтобы я мог использовать то, что у меня уже было на руках. Таким образом, единственной частью, которую я должен был купить, было реле.

Итак для самодельного ветрогенератора нужен контроллер. Общий принцип действия контроллера заключается в том, что он контролирует напряжение батареи в системе, отслеживает, передается мощность от турбины в батарее, чтобы перезарядить их, или отводит мощность от турбины во вторичное нагрузки, если батареи имеют полный заряд (для предотвращения чрезмерного заряда и уничтожению батарей).

Это изображение контроллера, который я сделал. Я просто скрепил болтами все на куске фанеры с целью тестирования. Впоследствии я буду монтировать в корпус, который защитит от непогоды.

Маленькая макетная плата в нижней центральной части с микросхемой - это фактическая схема контроллера. Серебряная скоба ниже держит две кнопки, которые позволяют мне вручную переключать устройство между зарядкой батарей и сбросом мощности на вторичную нагрузку. На большом черном радиаторе в левом нижнем углу есть два диоды 40 Amp. Прямо сейчас я использую только один, но я мог бы легко добавить вторую ветряную турбину или даже фотоэлектрические солнечные панели к системе с помощью второго диода. Двойной ряд золотых прямоугольников в верхней является фиктивным нагрузкой и состоит из высокомощных резисторов. Я использую их в качестве вторичной нагрузки, которое позволяет сбрасывать энергию от турбины в случае, если аккумулятор полностью заряжен. Я также использую с целью тестирования, чтобы проверить турбину. Впоследствии избыточная мощность от турбины будет сброшена на что-то более полезное, такое как водонагреватель или вторую батарею.

Ниже и слева от фиктивного нагрузки является предохранитель для ветрогенератора. Маленький серый куб - 40 Amp SPDT автомобильное реле, которое посылает энергию от турбины или на батарее или на эквивалент нагрузки. Вдоль правой стороны - клеммные колодки, которые позволяют мне подключить все вместе. 

В процессе работы ветровая турбина подключена к контроллеру. Потребление тока происходит непосредственно от аккумуляторной батареи. Если напряжение батареи падает ниже 11,9 вольт, контроллер переключает силовую турбину на зарядку аккумулятора. Если напряжение батареи повышается до 14 вольт, контроллер переключается на сброс энергии газотурбинной электростанции в эквивалент нагрузки. Можно регулировать уровень напряжения, при котором контроллер переключается между аккумуляторной батареей и вторичным нагрузкам.

Я выбрал 11.9 В для точки разряда и 14 В для полностью заряженной точки на основе рекомендаций на предмет правильной зарядки свинцово-кислотных батарей. Когда напряжение батареи составляет от 11.9 В и 14 В, система может переключаться между зарядкой и демпингом. В режиме тестирования пара кнопок позволяет мне переключаться в любое время. Обычно система работает автоматически. При зарядке аккумулятора горит желтый светодиод. Когда батарея заряжена и энергия сбрасывается на эквивалент нагрузки, горит зеленый светодиод. Это дает мне некоторую минимальную информацию о том, что происходит с системой. Я также использую мой мультиметр для измерения напряжения батареи и напряжения. Я, вероятно, в конечном итоге добавлю индикатор напряжения и заряда / разряда в систему.

Перед полевыми испытаниями нужно установить нижнюю точку напряжения питания 11.9 В, подбирая номинал резистора (сначала можно использовать переменный резистор). Затем подстроить резистор для высокого напряжения 14 В.

Существенно! Теперь я установил 14.8 В для полного точечного заряда после дальнейших исследований надлежащей зарядки свинцово-кислотных аккумуляторов. Кроме того, я перешел на герметичные свинцово-кислотные аккумуляторные батареи, я получил много их от моего брата. Я рассматривает переход на глубокий цикл питания, когда те, которыми я пользуюсь сейчас, начнут давать сбои.

Существенно! Я узнал на своей шкуре, что с этим контроллером ветрогенератора очень важна правильная последовательность подключения. Если вы подключите первой ветровую турбину, дикие колебания напряжения от турбины НЕ будут сглаживаться нагрузкой на аккумулятор, контроллер будет работать с ошибками, реле дико щелкать, и всплески напряжения могут разрушить микросхему. Поэтому всегда контроллер вначале подключается к аккумуляторной батарее, а затем подключается к ветровой турбины. Кроме того, убедитесь, что вы отключили ветровую турбину в первую очередь при отсоединении элементов системы друг от друга. Отключайте аккумуляторную батарею последней!

Существенно! Вот схема моего контроллера заряда (схема масштаб 100%) для самодельного ветрогенератора. Я несколько изменил оригинальную схему, чтобы использовать радиодетали, которые были у меня под рукой. Таким образом я должен был купить только несколько вещей, чтобы изготовить контроллер. Вы можете сделать также, не обязательно точно дублировать эту конструкцию. Я использовал другие ОУ чипов и другую MOSFET, чем те, что были в оригинальной схеме. Большинство резисторов не являются критическими. Если у вас есть знания, чтобы сделать это, не стесняйтесь заменить. Кроме того, не стесняйтесь экспериментировать.

Для продолжения щелкните на кнопке с цифрой 3

Испытания самодельного ветрогенератора

Наконец, все части проекта изготовления ветрогенератора своими руками были завершены. Все это было сделано только через неделю и было испытанием для моих близких. Я разобрал турбину, тщательно упаковал все (и инструменты) и снова поехал в Аризону, на этот раз надеясь получить источник электроэнергии.

И вот я на месте! Первым делом было создание крепления башни. Я поехал в ближайший Home Depot (около 60 км в одну сторону) и купил 10-метровый кусок трубопровода диаметром 1,25 дюйма, поскольку он был нужен для мачты.

Монтаж ветрогенератора прошел быстро. Я использовал нейлоновую веревку, чтобы прикрепить верхнюю часть башни к четырем большим деревянным кольям, вбитым в землю. Талрепы на нижних концах каждого держателя позволили мне дойти до башни. Выпуская нейлон согласно шарниру на базе, я мог бы поднять и опустить башню. Наконец, впоследствии нейлон и деревянные колья будут заменены стальными кольями / кронштейнами и стальными тросами. Тем не менее, в режиме тестирования, этот механизм работал нормально.

Эта фотография показывает крупным планом крепления в верхней части башни ветрогенератора.

Эта фотография показывает основу башни, прикрепленную к земле и с проводом от ветровой турбины на выходе из тройника под трубопроводом башни. Я использовал кабель старого удлинителя для подключения турбины с контроллером.

Заправка проволоки через башню оказалось легкой. Это было холодное утро, и шнур был очень жестким. Я должен был просто нажимать на него по всей длине трубопровода башни. В теплый день нужно будет что-то придумывать. Мне повезло.

Эта фотография показывает голову турбины, установленную на вершине башни ветрогенератора. Я смазал часть монтажной конструкции головы, которая должна скользить по верхней части трубопровода и это оказало большое влияние, как я и предполагал. Иногда я даже удивлялся себе.

Сейчас я просто жду, когда подует ветер. Это был первый спокойный день, который я когда-либо видел в этой местности.

Наконец! Ветровая турбина вращается на ветру.

Эта фотография показывает контроллер, аккумулятор и связанные с электроникой все ведущие подключения вверх. У меня есть инвертор на 120 В, подключенный к батарее, и мультиметр для контроля напряжения аккумуляторной батареи и выходного напряжения ветровой турбины. Кроме того, моя электробритва и зарядное устройство подключены к преобразователю и работают от 120 В переменного тока. Позже я подключил удлинитель к преобразователю и протянул его к дому. Я знаю, эта установка является черновой, но я спешил проверить, что все работает.

Это фотография крупным планом электроники ветрогенератора. Мультиметр показывает, что ветровая турбина производит 13,32 вольт. Моя электробритва и зарядное устройство получают питание через инвертор.

А здесь индикатор показывает, что турбина ветрогенератора произвела 13,49 вольта. Как только ветер начинает дуть, турбина начинает набирать обороты. Она вращается быстро, пока выходное напряжение не превышает напряжение аккумуляторной батареи плюс падение на блокирующем диоде (около 13,2 вольта, в зависимости от состояния заряда аккумулятора) и действительно работает без нагрузки до этой точки. После того, как это напряжение будет превышена, турбина начинается сбрасывать энергию в батареи. Под нагрузкой обороты незначительно растут по мере увеличения скорости ветра. Больший ветер - больший ток в батарею, что означает большую нагрузку на генератор. Таким образом, система является в значительной степени самоуправляемой. Я не видел никаких признаков чрезмерной перегрузки.

Конечно, при штормовых ветрах, все меняется. Переключение контроллера в эквивалент нагрузки тормозит турбину и замедляет ее даже при сильных порывах ветра. На самом деле лучшим выходом является короткое замыкание турбины. Оно заставляет турбину остановиться прямо сейчас, даже при сильном ветре. Короткое замыкание выхода, которое я сделал, позволяет турбину безопасно поднимать и опускать и избежать внезапного завершения жизни (будучи порезанным на куски вращающимися лопастями пропеллера).

Внимание! Будьте осторожны, когда держите конструкцию ветровой турбины или находитесь у лопастей пропеллера. Внезапный порыв ветра - и вы будете ранены.

В конце концов я решил, что самодельная электроника ветрогенератора слишком неопрятна и опасна. Глупо иметь электрические соединения и кучу проводов на алюминиевом столе. Опасность короткого замыкания была слишком высокой. Я поставил всю электронику на кусок фанеры в верхней части пластикового контейнера. Тогда я присоединил удлинитель от инвертора к моему контроллеру и подключил все в инвертор.

Полностью собранный самодельный ветрогенератор.

У меня есть электричество! Здесь у меня есть ноутбук, подключенный к инвертору, который в свою очередь питается от ветрогенератора. У меня обычно есть только около двух часов автономной работы на ноутбуке. Так что я не могу использовать его дольше, пока я в кемпинге. Теперь у меня нет проблемы: батареи дают питание, по крайней мере, пока дует ветер. Кроме того, я могу теперь заряжать мой мобильный телефон, фотоаппарат, пользоваться электробритвой, насосом надувного матраса и т. д.

Так сколько же стоит ветрогенератор, сделанный своими руками? Я сохранил все квитанции за все, что я купил для ветрогенератора.

В целом это стоило $ 140,62. Не так уж плохо! Я сомневаюсь, что я мог бы купить промышленного изготовления турбину с сопоставимой мощностью, а также промышленного изготовления контроллер заряда, а также промышленного изготовления башню менее чем за $ 750 - $ 1000.

Правда, я использовал то, что у меня уже было: аккумулятор, инвертор, силовой кабель и радиодетали.

Будущие изменения и усовершенствования самодельного ветрогенератора. Я хотел бы сделать, чтобы система включала:

  •     электронику в защищенном от непогоды корпусе;
  •     индикатор для контроля напряжения аккумулятора и тока заряда / разряда;
  •     тахометр, чтобы знать, как быстро вращаются лопасти;
  •     дополнительные батареи для увеличения резерва емкости;
  •     вторую ветряную турбину или солнечную батарею для увеличения мощности;
  •     более высокую мощность преобразователя;
  •     возможность автоматически свернуть или тормозить устройство при сильном ветре;
  •     бетонный фундамент для башни;
  •     высокую башню со стальными кольями / креплениями и стальной проволокой.
Ответы на часто задаваемые вопросы об изготовлении ветрогенератора своими руками

Вопрос № 1: Как предотвратить скручивание силового кабеля, который спускается внутрь башни ветрогенератора от обмотки?

Ответ: Об этом меня часто спрашивают. Короткий ответ: «Я не делаю ничего, чтобы предотвратить это. К плохому не доходит. Когда же все-таки это необходимо сделать - просто отсоединяете провода в нижней части и вручную разматываете. У меня есть идея построить фазную систему, которая бы предотвращала любую возможность разрыва кабеля. Может быть, я попробую это в будущей турбине.»

Вопрос № 2: Можете ли вы помочь мне в проектировании / строительстве системы использования энергии ветра для моего дома / фермы, чтобы я мог отсоединиться от моей злой электрической коммунальной компании?

Ответ: Короткий ответ: нет. Не только из-за нехватки времени, но и потому, что моя система не предназначена для производства электроэнергии нужной для питания всего дома или фермы. Моя система была просто предназначена для обеспечения нескольких сотен ватт в районе, где нет доступных других электрических вариантов. Я работаю на проектированием и строительством других ветровых турбин и солнечных панелей, что позволит увеличить мощности производства электроэнергии за пределы текущего минимального уровня. Тем не менее, даже в случае успеха, эти новые вещи все равно не обеспечат типичный дом или ферму. Моей конечной целью является получение достаточно количества энергии от ветровых и солнечных источников для питания небольшого помещения и обсерватории, где будет небольшая потребность в электроэнергии.

Для продолжения щелкните на кнопке с цифрой 4

Усовершенствования и доработка самодельного ветрогенератора

Вот фотография самодельного ветрогенератора на моей удаленной собственности во время поездки в Аризону в мае 2007 года. Я оставил большую часть оборудования на месте в Аризоне. На зиму я только принес домой голову турбины и контроллер заряда. Все пережило зиму хорошо. Просто появились небольшие пятна ржавчины на частях основания башни ветрогенератора.

В этом трейлере я провел мои весенние каникулы. Ветровая турбина давала достаточную энергию (12 В и 120 В) для внутреннего освещения и розеток, к которым подключались зарядные устройства, электробритва и мини пылесос. Все заряжалось и работало нормально.

Вот мой вольтметр показывает производство турбиной ветрогенератора 14.5 вольта в сильный ветер. Несмотря на то, что ветровая турбина работает достаточно хорошо, я думаю, есть возможности для совершенствования. Я получаю питания 120 вольт переменного тока через мой инвертор. Эти 120 В переменного тока превращаются в 12 В постоянного тока для питания аксессуаров 12 В. Потери при преобразовании в 120 В переменного тока, а затем назад в 12 В, вероятно, ускоряют разрядку аккумулятора. Питание 12 В системы непосредственно от батареи, вероятно, будет работать лучше. Единственный недостаток я вижу в том, что это напряжение не регулируется и может качнуть пару вольт вверх или вниз с изменениями скорости ветра.

Я закончил перестройку контроллера заряда ветрогенератора. Сейчас он находится в защищенном от атмосферных воздействий корпусе, в который я также добавил встроенный вольтметр. Кроме того, я добавил несколько новых возможностей. Теперь устройство имеет возможность присоединения нескольких источников и также имеет встроенное распределение питания 12 В для трех внешних нагрузок.

Эта фотография показывает входы контроллера заряда: один для моей ветровой турбины и два солнечных панелей, хотя у меня на данный момент только одна панель солнечных батарей.

Эта фотография показывает выходы контроллера заряда ветрогенератора. Есть подключение к аккумуляторной батарее, эквиваленту нагрузки, и трех внешних нагрузок 12 В.

Эта фотография показывает внутреннюю часть контроллера заряда ветрогенератора. Я в основном просто смонтировал все, что сначала было прикручено к фанере, добавил индикатор чрезмерного напряжения и предохранители на 3 внешние нагрузки 12 В. Я использовал тяжелые провода, чтобы попытаться уменьшить потери из-за сопротивления проводов. Каждый ватт имеет значение, когда вы живете вне электрической сети.

Это схема нового контроллера заряда (новая схема масштаб 100%) самодельного ветрогенератора. Она почти такая же, как и старая, показаная выше, за исключением добавленного вольтметра и дополнительных блоков предохранителей для внешних нагрузок.

Макет печатной платы для контроллера заряда.

Блок-схема полной системы. Это блок-схема всей системы управления. Обратите внимание, что у меня встроена сейчас только одна солнечная панель. Я просто не имел времени, чтобы завершить вторую.

Еще раз я попал на свой участок в ходе недавнего отдыха в Аризоне. На этот раз у меня были и мой самодельный ветрогенератор, и мои самодельные солнечные панели. Работая вместе, они обеспечивают достаточную мощность для моих (правда, минимальных) потребностей в электроэнергии.

Вот крупным планом панели солнечных батарей. Расскажу позже о том, как я это сделал. Мне нужно перемещать их несколько раз в день, чтобы держать направленными на солнце, но это не очень трудно. Возможно, когда-то я сделаю систему автоматического направления на солнце.

Самодельная складывающаяся солнечная панель мощностью 15 Вт. Они складывается для удобства хранения и транспортировки.

Вот фотография нового блока контроллера заряда для самодельного ветрогенератора. Провод на левой стороне идет от ветряных турбин и солнечных панелей. Провод с правой стороны от батарей и эквивалента нагрузки. Я разрезал старый тяжелый (100 футов) удлинитель, чтобы сделать кабели для подключения ветряных турбин и солнечных панелей на контроллер заряда. Кабель для ветровой турбины составляет около 75 метров в длину и кабель к панели солнечных батарей составляет около 25 футов в длину. Аккумуляторная батарея, которую в настоящее время использую, состоит из 11 герметичных свинцово-кислотных аккумуляторов 12 В с мощностью 8 ампер в час, соединенных параллельно. Это дает мне емкость на 88 ампер-часов, чего достаточно для кемпинга.

Новые лопасти для самодельного ветрогенератора

Ветровая турбина, сломанная после штормового ветра! Я поехал в город, чтобы забрать некоторые материалы. В то время, как я ушел, сорвался штормовой ветер более 50 миль в час. Когда я вернулся, обнаружил, что турбина ветрогенератора в таком состоянии. Две лопасти были сломаны, а третья была сломана, но все же держалась. Лопасти сломались в месте крепления. Я знал, что это слабое место и всегда ожидал, что они будут ломаться там. Я не знаю наверняка, это было превышение скорости или просто усталость от постоянных изгибов. Я подозреваю, что усталость. Я видел, как лопасти изгибаются в сильный ветер.

Я знал, что ветровая турбина снова заработала бы, если я мог бы просто просверлить новые крепежные отверстия в лопасти. У меня не было сверла. Я должен был думать некоторое время, прежде чем понял, как это сделать.

Я понял, что, если я нагрею мою самую крестообразную отвертка над огнем, она сделает в ПВХ лопасти отверстия правильного размера для крепежных болтов. Это плохое обращение с вполне хорошей отверткой, но это была чрезвычайная ситуация в конце концов.

Я использовал одну из сломанных монтажных петель в качестве шаблона, чтобы найти, где сделать отверстия в основании лопасти. Это было очень быстро и просто, а дырки были очень чистые.

Сломанные вкладки стали основой для повторной установки лопастей. Я использовал разбиты монтажные петли в качестве прокладок под лопасти для предотвращения их повреждения головками болтов, которые держат все вместе. Я должен был сделать это таким образом в самом начале. Век живи - век учись.

Отремонтированная ветровая турбина. Вот все заново собрано и готово вернуться на башню моего ветрогенератора.

Отремонтированная ветровая турбина снова работает. Потеря двух дюймов длины лопастей кажется негативно не повлияла на производительность турбины. Она по-прежнему прекрасно работает. Неплохо, как для импровизированного ремонта.

Новый контроллер заряда для самодельного ветрогенератора. Я снова переработал схему контроллера заряда батареи. Теперь он менее сложный и использует только те части, которые легко найти.

6 июня 2011. Я сделал некоторые изменения в ветровой турбине. Я установил новые лопасти, которые я купил по Интернету. Эти диски продаются в качестве замены для Air-X серии промышленного изготовления ветровых турбин. Они более эффективны, чем мои самодельные, и запускаются при более низких скоростях ветра. Я также увеличил хвост области турбины, так как эти новые лопасти тяжелее и имеют большую площадь поверхности, чем мои самодельные лопасти. После модификации ветровая турбина прекрасно работает, производит гораздо больше энергии при более легких ветрах, чем раньше.

Я сделал еще одну модификацию моего самодельного ветрогенератора. Я добавил носовой конус к нему.

В начале я говорил, что нашел куполообразные ПВХ вентиляционные крышки в магазине сантехники. Я попытался использовать такую ​​крышку как большой носовой обтекатель для турбины. Вот фотография вентиляционной крышки рядом с лопастями. Я раньше никогда не находил времени для установки крышки. Вот теперь я решил установить ее на турбину.

Я прорезал три прямоугольные углубления в крышке таким образом, чтобы они соответствовали основам новых лопастей. Тогда я использовал эпоксидную смолу, чтобы присоединить три болта крепления к крышке. Я поставить болты через три дополнительных отверстия, затем наложил эпоксидную смолу на головки болтов, затем установил крышку (монтажные петли выровнял по эпоксидным меткам вершин болтов). После того, как эпоксидная смола укрепилась, я снял носовой конус и нанес несколько эпоксидных слоев, чтобы получить хорошее соединение между крышкой и болтами. Эта фотография показывает носовой конус после второго нанесения эпоксидной смолы.

Установка носового конуса на ветровую турбину. Использовал некоторые гайки и стопорные шайбы, чтобы удерживать ее на месте. Я проделал хорошую работу по центровке крышки, так как вращательный баланс турбины был прекрасным после установки. Я хотел бы добавить немного больше веса в хвост турбины, чтобы сбалансировать конструкцию ветрогенератора. Тем не менее, это не нарушало существенно равновесие, поэтому я решил попробовать, как есть.

Готовый носовой обтекатель установлен на ветровой турбине. Вся работа заняла примерно час фактической работы. Это, вероятно, было бы еще быстрее, если бы я это сделал в мастерской, а не в поле.

Кажется, обтекатель помог турбине моего самодельного ветрогенератора работать лучше и запускается она при более легких ветрах, чем раньше. Я думаю, что носовой обтекатель гладко отклоняет воздух вокруг себя на лопатки пропеллера.

Оригинальный текст Майка Дэвиса можно прочитать на англоязычном сайте www.mdpub.com.

Как построить ветряную электростанцию ​​

Когда дело доходит до выработки электроэнергии, ветер - один из самых устойчивых природных ресурсов Земли. Чтобы использовать его, все, что вам нужно сделать, это построить ветряную турбину, которая преобразует движение воздуха в кинетическую энергию. Однако для того, чтобы делать это в больших масштабах, вам понадобится ветряная электростанция - набор специально разработанных ветряных турбин, установленных на ландшафте или в океане, где дуют устойчивые и сильные ветры. Ветровые турбины имеют несколько лопастей, которые расположены высоко на башнях, которые вращаются на ветру и собирают энергию.

Отраслевые эксперты говорят, что у Соединенных Штатов достаточно ветровых ресурсов, чтобы эффективно удвоить их текущую мощность ветрогенерации, и что это принесет множество экологических выгод. В одной только Америке энергия ветра предотвращает выброс около 62 миллионов тонн парниковых газов и ежегодно экономит 20 миллиардов галлонов воды.

Потенциальные препятствия для строительства ветряных электростанций включают общественные споры по поводу размещения ветряных турбин, проблемы с разрешениями, финансовые проблемы и технические вопросы, такие как необходимость инфраструктуры для передачи энергии в электрическую сеть, обслуживающую потребителей.Однако, если вы хотите построить собственную ветряную электростанцию, это не так уж и сложно.

Начало работы: планирование ветряной электростанции

Строительство ветряной электростанции - это большой проект, требующий от команды специалистов для решения многих аспектов проекта - от концепции и планирования до реализации. Планирование особенно важно для этого типа генератора энергии. Надлежащее расположение должно быть оценено на предмет любых рисков для дикой природы, должны быть получены разрешения, а сами турбины должны быть испытаны.

Во-первых, убедитесь, что вы выбрали место, в котором достаточно ветровых ресурсов. По данным Американской ассоциации ветроэнергетики, на лучших площадках для коммерческих ветряных электростанций скорость ветра составляет 13 миль в час (6 метров в секунду) или более. Хотя может показаться, что чем сильнее ветер, тем лучше, слишком сильный ветер может вызвать нагрузку на оборудование и сделать проект более дорогостоящим.

Специальные карты скорости ветра могут помочь вам определить регион с подходящими ветровыми ресурсами. Например, Министерство энергетики США предлагает удобную карту ветров.Вы также можете самостоятельно измерить энергию ветра, используя инструмент, называемый анемометром, на месте, которое вы планируете. Некоторые штаты даже предлагают программы ссуды на анемометры. Ваш инженер может использовать специализированные службы и программное обеспечение для оптимизации местоположения, например Windnavigator и GH WindFarmer, которые анализируют топографию, погодные условия и аэродинамику.

Кроме того, вам нужно будет учитывать особые факторы, связанные с целевым местоположением, такие как доступ к дороге, потенциальные шумовые воздействия, мерцающие тени от лопастей и культурные особенности.

Оценка рисков для дикой природы

Вращающиеся лопасти ветряных турбин могут убить находящихся под угрозой исчезновения птиц, летучих мышей, хищников и водоплавающих птиц, поэтому лучше всего размещать турбины вдали от оживленных коридоров дикой природы и ежегодных миграционных путей. Консультативный комитет по использованию ветряных турбин Службы охраны рыбных ресурсов и диких животных США рекомендует многоуровневый подход, который включает предварительную оценку, характеристику участка и полевые исследования для прогнозирования и оценки видов и местообитаний, пострадавших от ветряной электростанции.

Как разработчик сайта, вам необходимо тесно сотрудничать с соответствующим государственным учреждением (или органом, выдающим разрешения), чтобы сократить и смягчить смертность животных из-за ветряной электростанции. В некоторых случаях вам может быть разрешено построить ветряную электростанцию ​​в уязвимых местах, если вы измените ее работу, чтобы она была более благоприятной для дикой природы. Например, вам может потребоваться временно остановить турбины в сезон миграции или в периоды слабого ветра, когда летучие мыши наиболее активны, а выработка энергии минимальна.

Затраты и финансирование ветряных электростанций

Подумайте, сколько энергии вы хотите произвести - или сколько может произвести сайт - и сколько денег вы можете потратить. Только покупка ветряных турбин может обойтись вам в среднем 1,37 миллиона долларов за мегаватт мощности.

Как правило, коммунальным предприятиям дешевле развивать ветроэнергетические объекты, чем частным инвесторам, потому что коммунальные предприятия могут использовать благоприятные структуры финансирования, которые сокращают затраты примерно на 30%, или примерно на 1.4 цента за киловатт-час, согласно отчету, финансируемому Министерством энергетики США.

Государственные программы стимулирования также облегчают строительство ветряной электростанции. Налоговый кредит на производство (PTC) теперь предоставляет налоговый кредит в размере 2,3 цента за киловатт-час в течение первого десятилетия работы.

Чтобы спрогнозировать нормированную стоимость финансирования вашего ветроэнергетического проекта, включите ваши конкретные детали в интерактивные инструменты BITES (сценарии зданий, промышленности, транспорта и электричества), предоставленные Национальной лабораторией возобновляемых источников энергии.Вы также можете просмотреть базу данных государственных и федеральных стимулов для возобновляемых источников энергии.

Убедитесь, что ваша ферма соответствует требованиям законодательства

Производители электроэнергии регулируются федеральными законами, такими как Закон о политике регулирования коммунальных предприятий 1978 года (PURPA), Закон об энергетической политике 2005 года (EPACT 2005) и Закон об энергетической независимости и безопасности 2007 года (EISA 2007). В отдельных штатах также существует разное толкование того, как применяются эти федеральные законы, и у них разные полномочия по продвижению возобновляемых источников энергии через законодательство о стандартах портфеля возобновляемых источников энергии (RPS).

Юрист или консультант, специализирующийся на развитии возобновляемых источников энергии, может помочь вам сориентироваться в законах, регулирующих ваш предлагаемый проект. Эти люди также могут помочь вам получить различные разрешения на строительство и охрану окружающей среды, которые вам понадобятся в государственных учреждениях.

Если ваша ветряная электростанция будет находиться в государственной собственности или у нее есть партнер из федерального агентства, получение разрешения может зависеть от формального процесса оценки воздействия на окружающую среду. Например, ветряные электростанции, размещенные на территории, управляемой U.S. Бюро землепользования руководствуются определенными руководящими принципами, предназначенными для защиты охраняемых на федеральном уровне видов и других природных ресурсов.

Определение оборудования и конструкции ветряной электростанции

Современные ветряные турбины изящнее и больше, чем старомодные ветряные мельницы, с огромными лопастями и башнями высотой с высотные здания. Точное размещение этих турбин на ветряной электростанции влияет на общее производство энергии.

Как правило, чем больше размер ветряной турбины, тем выше ее генерирующая мощность.Наиболее часто устанавливаемая ветряная турбина имеет номинальную мощность 1,5 мегаватт и может питать до 500 домов, но более новые модели работают еще больше. На веб-сайте General Electric указаны мощности до 3,4 мегаватт для использования на суше и до шести мегаватт для использования на море. Среди других ведущих производителей ветряных турбин Vestas, Goldwind, Enercon, Siemens, Sulzon, Gamesa, United Power, Ming Yang и Nordex.

Для больших и тяжелых ветряных турбин требуется более крупный фундамент, и их установка стоит дороже.Морские ветряные турбины должны быть спроектированы для условий океана. Ветровые турбины редко работают на полную мощность, поскольку их выработка энергии зависит от погодных условий.

Помимо ветряных турбин, ветряная электростанция требует системы сбора электроэнергии, трансформаторов, сети связи и подстанций. Более того, для мониторинга производительности используется информационная система диспетчерского управления и сбора данных (SCADA). Инженер может порекомендовать подходящее оборудование и размещение турбины в зависимости от вашего участка, финансов и целей в области энергетики.

Пропускная способность безопасной передачи

Если вы планируете коммерческую ветряную электростанцию, вам нужен способ доставки энергии оптовым или розничным покупателям. Обычно для этого требуются линии передачи, связывающие продукцию вашей ветряной электростанции с сетью передачи электроэнергии - энергосистемой - в вашем регионе. Коммерческие ветряные электростанции в удаленных местах могут столкнуться с трудностями при обеспечении пропускной способности и взаимосвязанности с сетью.

В качестве альтернативы, небольшие ветряные электростанции можно использовать в качестве выделенного источника электроэнергии для сообщества или бизнеса.В этих случаях ветряной электростанции может не потребоваться подключение к обычной электросети. Тем не менее, чтобы продать избыточную мощность, вам по-прежнему нужен способ ее доставки в электроэнергетику.

Для получения дополнительной информации обратитесь в Национальную лабораторию возобновляемых источников энергии (NREL), которая работает с разработчиками ветроэнергетики для обеспечения пропускной способности и взаимосвязанности. Группа Utility Wind Integration Group также предоставляет ресурсы для подключения ветряной электростанции к электрической системе.

Установите, протестируйте и запустите оборудование

Строительство ветряной электростанции может быть завершено в течение нескольких месяцев.Однако сначала вам может потребоваться проложить к участку дороги для перевозки ветряных турбин и другого оборудования.

Для каждой ветряной турбины вам нужно будет выкопать яму и заполнить ее железобетоном, который послужит стабилизирующим основанием. Этот процесс более сложен в каменистых условиях или на морских ветряных электростанциях. После того, как фундамент будет подготовлен, вам нужно будет установить турбины с помощью специальных подъемников.

Затем вы установите электрическую проводку и системы и проведете тесты, чтобы убедиться, что все элементы работают правильно.Часто требуется шесть месяцев, прежде чем изгибы будут устранены и ветряная электростанция выйдет на полную коммерческую производственную мощность.

Каждой ветряной турбине требуется около недели регулярного технического обслуживания в год. Американская ассоциация ветроэнергетики заявляет, что для обслуживания каждых 10 мегаватт установленной генерирующей мощности требуется один специалист по ветроэнергетике.

энергии ветра! Проектирование ветряной турбины - мероприятие

(0 Рейтинги)

Быстрый просмотр

Уровень оценки: 4 (3-5)

Требуемое время: 1 час 45 минут

(можно разбить на два занятия по 50 минут)

Расходные материалы на группу: 4 доллара США.00

Размер группы: 2

Зависимость действий: Нет

Associated Sprinkle: Энергия ветра (для неформального обучения)

Тематические области: Измерения, Физические науки, Наука и Технологии

Ожидаемые характеристики NGSS:


Резюме

Студенты узнают, как инженеры преобразуют энергию ветра в электрическую, создавая свои собственные миниатюрные ветряные турбины и измеряя производимый ими электрический ток.Они исследуют, как дизайн и расположение влияют на производство электроэнергии. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Инженеры проектируют ветряные турбины, чтобы использовать ветер как чистый, возобновляемый и надежный источник выработки электроэнергии. Энергия ветра представляет собой жизнеспособную и экономичную альтернативу обычным электростанциям во многих районах страны. Концепция ветра может также производить энергию в других приложениях, таких как, например, турбокомпрессор, который представляет собой компрессор, используемый в автомобильных или реактивных двигателях внутреннего сгорания для увеличения выходной мощности.Компрессор увеличивает количество воздуха и топлива, поступающего в двигатель, потому что чем больше воздуха может всасывать и сжигать автомобиль, тем большую мощность он может выдать. Этот увеличенный воздушный поток (ветер) можно сравнить с ветряными генераторами. Фактически, турбонагнетатель включает в себя турбину, которая приводит в действие компрессор, используя энергию выхлопных газов.

Цели обучения

После этого занятия студенты должны уметь:

  • Опишите преобразования энергии, происходящие в ветряной турбине.
  • Опишите, как инженеры конструируют ветряную турбину.
  • Объясните, как конструкция и расположение ветряной турбины влияет на вырабатываемую ею электрическую энергию.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются Сетью стандартов достижений (ASN) , проект Д2Л (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения - наука
Ожидаемые характеристики NGSS

4-ПС3-4.Примените научные идеи для разработки, тестирования и усовершенствования устройства, преобразующего энергию из одной формы в другую. (4 класс)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Нажмите, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям от результатов.
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Сквозные концепции
Применяйте научные идеи для решения задач проектирования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергию также можно передавать с места на место с помощью электрического тока, который затем можно использовать локально для создания движения, звука, тепла или света. С самого начала токи могли быть созданы путем преобразования энергии движения в электрическую.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Выражение «производить энергию» обычно относится к преобразованию накопленной энергии в желаемую форму для практического использования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Возможные решения проблемы ограничены доступными материалами и ресурсами (ограничениями). Успешность разработанного решения определяется с учетом желаемых характеристик решения (критериев). Различные предложения по решениям можно сравнивать на основе того, насколько хорошо каждое из них соответствует указанным критериям успеха или насколько хорошо каждое учитывает ограничения.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия может передаваться различными способами и между объектами.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Инженеры улучшают существующие технологии или разрабатывают новые.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Большинство ученых и инженеров работают в группах.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Наука влияет на повседневную жизнь.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Общие основные государственные стандарты - математика
Международная ассоциация преподавателей технологий и инженерии - Технология
  • Студенты разовьют понимание атрибутов дизайна.(Оценки К - 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание инженерного дизайна.(Оценки К - 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание отношений между технологиями и связи между технологиями и другими областями обучения.(Оценки К - 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Энергия бывает разных форм.(Оценки 3 - 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Инструменты, машины, продукты и системы используют энергию для работы.(Оценки 3 - 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Список материалов

Каждой группе необходимо:

  • маленький игрушечный двигатель постоянного тока; доступно онлайн
  • 2 куска тонкого электрического провода с зажимами из крокодиловой кожи, каждый длиной около 50 см или 20 дюймов
  • резинка
  • жесткая линейка
  • пробка цилиндрической формы диаметром не менее 2 см или дюйма; альтернатива пробке: пенопласт
  • 4 скрепки
  • скотч
  • ножницы
  • Картон 4 шт. По 3 х 5 см
  • (опционально) защитные очки или очки
  • Рабочий лист ветряных турбин, по одному на команду

На долю всего класса:

Рабочие листы и приложения

Посетите [www.teachengineering.org/activities/view/cub_energy2_lesson07_activity2], чтобы распечатать или загрузить.

Больше подобной учебной программы

Тар она дует! Ветер как возобновляемый источник энергии

Студенты узнают о ветре как об источнике возобновляемой энергии и исследуют преимущества и недостатки ветряных турбин и ветряных электростанций. Они также узнают об эффективности ветряных турбин в различных погодных условиях и о том, как инженеры работают над созданием более дешевой, надежной и надежной ветровой энергии...

Возобновляемая энергия Проектирование: ветряные турбины

Студенты знакомятся с реальным техническим инструментом навесного винта ветряной турбины. Это устройство, которое эффективно собирает энергию ветра, и в этом задании они построят собственное, используя ветряную турбину LEGO, вентилятор и счетчик энергии.

Не в сети

Студенты изучают и обсуждают преимущества и недостатки возобновляемых и невозобновляемых источников энергии. Они также узнают об электросети нашей страны и о том, что значит быть «вне сети» для жилого дома.

Питание U.С.

Этот урок дает студентам обзор электроэнергетической отрасли в Соединенных Штатах. Студенты также узнают о воздействии на окружающую среду, связанном с различными источниками энергии.

Введение / Мотивация

Вы когда-нибудь чувствовали сильный ветер? Каково это? Вы когда-нибудь чувствовали себя обдуваемыми ветром? Ветер может делать нам работу, перемещая предметы.Иногда мы не хотим, чтобы ветер двигал вещами, например, когда он развевает наши бумаги, и мы должны их подбирать. Но иногда мы хотим, чтобы ветер двигал за нас вещами. Например, когда ветер перемещает лопасти ветряной турбины (машина, которая преобразует движущуюся энергию ветра в механическую энергию и электрическую энергию ), турбина вырабатывает некоторую полезную энергию (в форме электричество).

Давайте поговорим о том, что происходит при получении электричества от ветра.Прежде всего, чтобы преобразовать энергию ветра в электричество, лопасти ротора вращают ступицу (в центре) турбины . Внутри турбины находится электрический генератор , который представляет собой вращающуюся машину, которая выдает электрический выход с напряжением и током. Вращающее действие ступицы вращает магнит внутри катушки с проволокой в ​​генераторе, производя электричество.

Турбина - это в основном двигатель, подключенный в обратном направлении. Вместо того, чтобы подключать батарею к двигателю, чтобы заставить что-то двигаться, к двигателю подключается ветряная турбина, и ее движение вырабатывает электричество.Вы можете измерить, сколько электричества (напряжения) вырабатывается с помощью вольтметра .

Инженеры проектируют ветряные турбины, которые превращают кинетическую энергию ветра (движение ветра) в механическую или электрическую энергию.

Итак, когда лучше всего работает ветряная турбина? Мощность, производимая ветряной турбиной, зависит от высоты над уровнем моря, скорости ветра и температуры воздуха. Ветряным турбинам требуется скорость ветра не менее 15 километров (9 миль) в час для небольших ветряных турбин и 21 километр (14 миль) в час для турбин коммунального масштаба.Ветровые турбины лучше всего размещать в районах со скоростью ветра 26-32 км / ч (16-20 миль / ч) при высоте мельницы на высоте 50 метров (55 ярдов). Это довольно высоко. Чем больше скорость ветра, тем больше энергии вырабатывается. Подумайте об этом: когда ветер дует сильнее, эти бумаги перемещаются еще быстрее. Если скорость ветра увеличивается вдвое, мощность ветряной турбины увеличивается в восемь раз. Это означает, что мощность удваивается, удваивается и снова удваивается!

Сегодня мы собираемся действовать как инженеры и создавать небольшие ветряные турбины, которые преобразуют энергию ветра, подключенную к двигателю, в электрическую энергию (напряжение).Затем мы измерим, как скорость ветра влияет на наши маленькие ветряки. Это поможет нам понять, что нужно знать инженерам при проектировании и размещении ветряных турбин в лучших местах.

Процедура

Перед мероприятием

  • Полезно заранее построить и протестировать ветряную турбину, чтобы использовать ее в качестве примера.
  • Соберите материалы и сделайте копии рабочего листа ветряных турбин.
  • Подсоедините провода к двигателям постоянного тока.
  • Установите испытательную станцию ​​с вольтметром и источником ветра (вентилятором или феном), где команды могут по очереди измерять мощность своих генераторов ветряных турбин.
  • Проверьте правильность работы двигателей и вольтметров.

Со студентами

  1. Разделите класс на команды по два ученика в каждой. Обеспечьте каждую команду материалами и рабочим местом.
  2. Обратите внимание на меры безопасности. Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  3. Попросите учащихся прикрепить электродвигатель к линейке с помощью резиновой ленты, при этом вал электродвигателя должен находиться на конце линейки (см. Рисунок 1). Линейка служит платформой для ветряной турбины.

Рис. 1. Схема действия: прототип ветряной турбины, подключенный к вольтметру. Авторское право

Copyright © 2005 Малинда Шефер Зарске, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  1. Выпрямите нижнюю часть каждой из четырех скрепок.
  2. Вырежьте четыре куска картона размером 3 x 5 см. Используйте скотч, чтобы плотно прикрепить кусочек картона к каждой скрепке.
  3. Приклейте выпрямленную часть каждой скрепки к изогнутым сторонам пробки, чтобы получить четыре лопасти турбины. Убедитесь, что лезвия равномерно распределены по пробке.
  4. Вставьте пробку в вал двигателя. Убедитесь, что стержень входит точно в центр пробки.
  5. Поверните лезвие в пробке так, чтобы оно находилось под углом 45º к плоской плоскости края линейки.Вы завершили свою ветряную турбину! Рисунок 2. Настройка действия. Авторское право

    Copyright © 2007 Эшли Бейли, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  6. В командах попросите учащихся принести свои ветряные турбины на испытательную станцию.
  7. По одной команде, используйте зажимы типа «крокодил», чтобы прикрепить свободные концы проводов к вольтметру постоянного тока. В ожидании попросите другие команды поработать над листом.
  8. Начните с размещения ветряной турбины на расстоянии примерно 30 см (12 дюймов) от источника ветра (вентилятора или фена).Отрегулируйте расстояние в зависимости от силы источника ветра.
  9. Включите источник ветра и измерьте создаваемое напряжение. Запишите на листе.
  10. Повторите с ветряной турбиной на разном расстоянии от источника ветра.
  11. Попросите членов команды работать вместе, чтобы заполнить рабочий лист.
  12. После того, как все команды побывали на испытательной станции и заполнили свои рабочие листы, завершите обсуждение в классе. Опишите движение энергии в вашем генераторе, начиная с ветра и заканчивая вольтметром.Просмотрите результаты и наблюдения каждой команды. Создавала ли конструкция турбины какой-либо команды большее напряжение на том же расстоянии по сравнению с остальными? Кто-нибудь регулировал угол наклона лопастей? Что это сделало? Что произошло, когда вы переместили ветряную турбину ближе или дальше от источника ветра? Как вы можете изменить конструкцию или положение турбины, чтобы лучше улавливать ветер и производить большее напряжение? Какие факторы могут учитывать инженеры, решая, где разместить ветряк или ветряную электростанцию?

Словарь / Определения

электрическая энергия: электрическая энергия существует, когда заряженные частицы притягиваются или отталкиваются друг от друга.Телевизоры, компьютеры и холодильники используют электрическую энергию.

энергия: способность выполнять работу.

Генератор: устройство, преобразующее механическую энергию в электрическую.

ступица: центральная часть колеса, вентилятора или пропеллера.

кинетическая энергия: энергия движения. Например, волчок, падающий объект и катящийся шар обладают кинетической энергией. Движение, если ему противодействует сила, действительно работает.Ветер и вода обладают кинетической энергией.

механическая энергия: Механическая энергия - это энергия, которую можно использовать для выполнения работы. Это сумма кинетической и потенциальной энергии объекта.

потенциальная энергия: потенциальная энергия - это энергия, запасенная объектом в результате его положения. Американские горки на вершине холма обладают потенциальной энергией.

возобновляемая энергия: энергия, полученная из источников, которые можно регенерировать.Источники включают солнце, ветер, геотермальные источники, биомассу, океан и гидро (воду).

ротор: вращающаяся часть электрического или механического устройства.

турбина: машина, в которой кинетическая энергия движущейся жидкости преобразуется в механическую энергию путем вращения ряда лопаток, лопастей или лопастей на роторе.

вольтметр: прибор, измеряющий силу электромотора в единицах, называемых вольтами.

ветряная турбина: машина, которая преобразует движущуюся энергию ветра в механическую и / или электрическую энергию.

Оценка

Оценка перед началом деятельности

Мозговой штурм: Предложите учащимся провести открытое обсуждение, чтобы подумать о том, как ветер можно использовать в качестве источника энергии. Напомните им, что ни одна идея или предложение не являются «глупыми». Все идеи следует уважительно выслушивать. Напишите их идеи на классной доске.

Встроенная оценка деятельности

Рабочий лист: Попросите студенческие группы записать свои измерения и наблюдения в рабочий лист ветряных турбин.Просмотрите их ответы, чтобы оценить их уровень владения предметом.

Оценка после деятельности

Вопрос / ответ: Задайте ученикам и обсудите в классе:

  • Когда можно использовать энергию ветра? (Ответ: Ветер должен иметь достаточно высокую скорость.)
  • Почему инженеры могут быть заинтересованы в развитии ветроэнергетики? (Ответ: Ветер - это возобновляемый источник энергии. Энергия ветра не производит парниковых газов и не загрязняет окружающую среду. Использование энергии ветра снижает потребление невозобновляемых ископаемых видов топлива.)
  • Почему большие ветряные турбины часто располагаются на холмах? (Ответ: скорость ветра выше над землей.)
  • Если мы снимем двигатель с ротора ветряной турбины, мы не сможем производить электричество, но все равно сможем работать с нашей ветряной мельницей. Какую работу мы могли бы сделать? (Ответ: Мы могли бы выполнять механическую работу, заставляя вращаться лопасти ветряной мельницы.)

Задача инженера: Попросите учащихся подумать о следующей проблеме инженерного проектирования.Предложите им обсудить свои ответы в группах и поделиться своими мыслями с классом.

  • Домовладелец хочет использовать ветряную турбину для электроснабжения своего дома, но рядом с домом нет холмов. Где инженер мог разместить ветряную турбину? (Ответ: Как можно выше, например, на столбе над крышей или на отдельной конструкции, которая поднимает его очень высоко в воздух.)

Вопросы безопасности

  • Обратите внимание на меры безопасности.Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  • Напомните студентам, что нельзя класть ничего, в том числе руки, рядом с ветряной турбиной или вентилятором, когда он вращается.

Советы по поиску и устранению неисправностей

Перед началом работы проверьте двигатели и вольтметры, чтобы убедиться, что они работают правильно.

Если упражнение не помогает, попробуйте следующий вариант: прикрепите двигатель постоянного тока к колесу.Клейкая лента 2 Эскимо приклеивается к колесу, образуя прямую линию. Приклейте клейкой лентой прямоугольный кусок картона к каждой палочке для мороженого под таким углом, чтобы возникало вращение, когда ветер дует мимо нее. Прикрепите мотор лентой к линейке, которая будет служить ручкой.

Если время ограничено, ускорите работу, установив два вентилятора, чтобы получить две тестовые станции.

Расширения деятельности

Попросите учащихся создать свои собственные наборы лезвий, различающихся по размеру, форме, материалу и количеству.Попросите учащихся прикрепить эти новые лопасти к двигателю и отрегулировать их под разными углами для получения максимального напряжения. Попросите их записать свои переменные и результаты в диаграмме данных, которую они создают во время упражнения. Попросите учащихся поделиться своими проектами и сравнить их, предоставив классу краткие инженерные отчеты.

Узнайте, как скорость ветра влияет на количество вырабатываемой электроэнергии при изменении скорости вращения вентилятора.

Изучите «Живую лабораторию возобновляемых источников энергии» для реальных измерений ветра, систем сбора энергии и реальных данных.См .: http://www.teachengineering.org/livinglabs/

Масштабирование активности

  • Для более низких классов подготовьте двигатель. Просто попросите учащихся создать лезвия на скрепках и вдавить их в пробку. Помогите студентам измерить напряжение, генерируемое их ветряными турбинами.
  • Для старших классов попросите учащихся построить график зависимости производимого напряжения от расстояния до вентилятора. Попросите учащихся решить проблемы с электроэнергией в ветроэнергетике! Математический лист.

использованная литература

Купи ветер и поборись с глобальным потеплением! Планета Чистого Воздуха . По состоянию на 20 октября 2005 г. (Хорошие фотографии первой крупной ветряной турбины промышленного масштаба, установленной в индейской резервации Роузбад-Сиу) http://www.cleanair-coolplanet.org/action/windbuilders.php

Планы уроков по возобновляемым источникам энергии . Бесконечная мощность, Управление энергосбережения штата Техас. Доступ 19 октября 2005 г.http://www.infinitepower.org/lessonplans.htm

Как работают ветряные турбины . Обновлено 3 октября 2005 г. Программа ветроэнергетических технологий, энергоэффективность и возобновляемые источники энергии, Министерство энергетики США. Проверено 19 октября 20015 г. (Великолепная анимация ветряной турбины, вырабатывающей электричество) http://www1.eere.energy.gov/wind/wind_animation.html

авторское право

© 2005 Регенты Университета Колорадо

Авторы

Ксочитл Замора-Томпсон; Сабер Дурен; Натали Мах; Малинда Шефер Зарске; Дениз В.Карлсон

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этой учебной программы по цифровой библиотеке было разработано за счет грантов Фонда улучшения послесреднего образования (FIPSE), Министерства образования США и Национального научного фонда (грант GK-12 № 0338326). Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 27 августа 2021 г.

Как сделать ветряк для школьного проекта?

Шаг № 1: Сборка ротора

Возьмите большой кусок картона и вырежьте 4 круглых части диаметром около 3 см каждая. Склейте все кружочки с помощью клея, чтобы получился один толстый кружок.

Теперь возьмите тонкую бумагу и оберните (приклейте) ее вокруг толстого круга, который вы получили выше, убедившись, что он правильно соответствует кругу по длине и ширине.

Шаг № 2: Изготовление лезвий

Вырежьте до 4 прямоугольных частей из большого картона, каждый размером 8 см X 2,5 см. Вырежьте один край кусков, чтобы они образовали круглую форму, чтобы вы могли легко приклеить их к ротору, который вы только что сделали.

Вам также нужно будет слегка согнуть все 4 части по центру, чтобы они выглядели несколько закругленными, как лопасти в типичном комплекте домашней ветряной турбины.

Приклейте все 4 лопасти к ротору и дайте им высохнуть.

Шаг № 3: Построение мачты

Поскольку лопастям требуется время для высыхания, вы можете сконцентрироваться на изготовлении мачты, которая поднимет ротор вверх.

Вернитесь к большому куску картона и вырежьте из него тонкий кусок размером 30 см x 12 см.

Оберните этот вырез вокруг ручки, чтобы получился идеальный полый стержень. Приклейте конец бумаги и вытащите ручку так, чтобы осталась башня.

Шаг №4: Установка двигателя

Возьмите двигатель постоянного тока и оберните его куском картонной бумаги, соответствующей его длине.При этом следите, чтобы заостренная часть мотора оставалась за пределами пленки.

Возьмите ротор с 4 лопастями и проделайте в его середине небольшое отверстие. Здесь острая часть двигателя соединяется с ротором.

Подключите положительный и отрицательный провода к двигателю с помощью горячего пистолета, убедившись, что вы оставили достаточную длину провода для соединения со светодиодной лампой на других концах.

Приклейте оберточную бумагу двигателя к полюсу и дайте ей высохнуть.

Шаг № 5: Строительство дома

Вам также нужно будет сделать модель дома, которая будет освещаться за счет энергии, вырабатываемой вашей ветряной турбиной.

Для этого отрежьте 4 части одинакового размера, чтобы получились 4 стены вашего дома. Вырежьте дверной проем на одну часть и прорежьте оконные проемы на трех оставшихся частях.

Склейте все 4 части вместе, чтобы получился дом, следя за тем, чтобы деталь с дверным вырезом оставалась спереди.

Имейте в виду, что вам также нужно будет отрезать еще один кусок, чтобы сделать крышу для вашего дома… но не делайте этого сейчас.

Шаг №6: Подключение фонаря

На этом этапе вам нужно взять светодиодный фонарь и подключить его к проводам, идущим от двигателя (как на этапе №4). Прикрепите этот светильник к любому из окон вашего дома и закрепите его лентой.

Как только свет будет хорошо подключен и внутри дома, вы можете сделать кровлю для своего дома. Возьмите две части вагона и приклейте их по краям, чтобы получилась треугольная форма крыши, а затем приклейте кровлю к 4 стенам вашего дома.

Приклейте весь дом к толстому слою картона (например, к полу дома), чтобы он выглядел более устойчивым.

Теперь приклейте весь дом и башню, на которой крепится турбина, к фанерной доске так, чтобы весь ваш проект находился на одной платформе.

Затем соедините вместе провода двигателя и светодиода.

Шаг № 5: Заставьте турбину вращаться.

Теперь, когда все настроено и готово к работе, пора заставить турбину вращаться, чтобы производить электроэнергию и зажечь лампочку, висящую на вашем окне.

Используйте внешний источник ветра, предпочтительно настольный вентилятор, чтобы лопасти турбины вращались. Затем они будут вращать двигатель, который, в свою очередь, вырабатывает электрическую энергию, которая затем течет по проводам и зажигает вашу светодиодную лампочку!

Вот и все! Вы успешно сконструировали простую рабочую домашнюю турбину для своего школьного проекта. Материалы, используемые в этом проекте, легко доступны и дешевы.

Ваша турбина уже начала освещать ваш «дом»?

9 проектов для выработки собственного электричества (и экономии денег!)

0

Предпринять более экологически сознательные шаги в направлении более зеленого будущего сейчас необходимо больше, чем когда-либо.Хотя мы не полагаемся на сжигание ископаемого топлива так сильно, как в прошлом, с появлением ядерной энергии, эти типы искусственных источников электричества по-прежнему влияют на нашу окружающую среду. Поэтому проекты «сделай сам» по уменьшению ущерба и внесению собственного вклада в более чистый воздух - отличный вариант для каждого из нас. А пока достаточно начать с малого.

Для сегодняшней статьи мы выбрали 9 конструкций ветряных турбин своими руками, которые не оставят больших вмятин в ваших карманах. Просто установите его на лужайке и получайте прибыль от всей этой чистой энергии.

Связанные : Ветровые турбины: как работает энергия ветра?

Ветрогенератор с вертикальной осью v1.0

Для этого самодельного проекта вам понадобятся только подручные материалы и обычные инструменты, такие как дрель, нож для резки коробок и заклепочник. Эта конструкция была разработана Дэниелом Коннеллом и основана на конструкции подъемника + сопротивления Lenz2. Коннелл пишет, что вы можете построить версию с тремя или шестью лопастями. Версия с тремя лопастями выдерживает сильный ветер со скоростью 80 км / ч. Шестилопастная версия до 105 км / ч.Подробное руководство Коннелла не должно содержать для вас секретов. В нем также есть шаблоны для печати, которые сделают вашу работу еще проще.

Миниатюрная ветряная турбина

Нет причин не привлекать к этому проекту молодого инженера. Майкл Аркуин, основатель проекта KidWind, разработал эту турбину из ПВХ. Его можно модифицировать в соответствии с возрастом и навыками молодежи. Дизайн также может быть стартовым проектом для взрослого, который хочет проверить свои способности и не хочет вкладывать слишком много средств в более крупный проект.Выньте сверло, кусачки и пистолет для горячего клея и подготовьте трубы и фитинги из ПВХ. В руководстве есть список всех необходимых инструментов и материалов, а также изображения, чтобы показать вам, где все подходит.

Связано: Откуда берется энергия ветра: Основы

Ветряная турбина с соплом / диффузором

Это ветряная турбина, созданная своими руками, в которой используются обычные пластиковые ведра, чтобы использовать как можно больше энергии ветра. Однако для этого вам понадобится электрическая ручная дрель, ножовка и муфта, поэтому она предназначена только для ответственных взрослых.Полный список инструментов и всего остального можно найти в руководстве с пошаговыми изображениями.

Самодельная ветряная турбина с генератором переменного тока

Этот проект немного сложнее, так как требует некоторых предыдущих инженерных навыков. Хотя руководство поможет вам в работе, оно адресовано читателю, который немного знает, как это сделать. Кроме того, вместо того, чтобы покупать пропеллеры, вы можете создать их самостоятельно, чтобы сэкономить дополнительные деньги. В руководстве нет вспомогательных изображений, но есть конечный результат, поэтому приступайте к работе над этим проектом только в том случае, если вы уверены в своих технических способностях.

Самодельная ветряная турбина для производства электроэнергии

Эта ветряная турбина была построена астрономом, у которого не было доступа к электричеству в его удаленной резиденции в Аризоне. Итак, воспользовавшись ветреной погодой, он построил собственную ветряную турбину, вырабатывающую электричество. Имейте в виду, что конструкция предназначена для питания всей собственности, поэтому вы знаете, что усилия того стоят. Что еще более удивительно, так это то, что стоимость всего проекта составила чуть более 140 долларов. Учебное пособие очень обширное, со всеми подробностями и картинками, которые можно показать.Есть даже раздел часто задаваемых вопросов, который поможет вам с каждой проблемой.

Ветряк от мотора стиральной машины своими руками

Это еще один сделай сам, который перепрофилирует старые машины из вашего дома, которые больше не работают. Если ваша стиральная машина сломалась, просто снимите катушку и магнит в сборе и удерживайте болты, удерживающие их на месте. Вам нужно будет купить несколько труб из ПВХ, которые будут служить лопатками в проекте. В пошаговом руководстве показано все, что вам нужно сделать, с изображениями, размерами и деталями стиральной машины, которые использовал пользователь.

Самодельная ветряная турбина мощностью 1000 Вт

Еще один блестящий проект DIY, разработанный экспертом, который обязательно обеспечит питание вашего дома от электросети. Хотя в руководстве подробно и показано изображение за изображением, как действовать, вам все же потребуются некоторые инженерные навыки. Вам нужно будет построить катушки и работать с ними в определенных сериях согласно схемам. Если вам нужен сложный проект, не стесняйтесь брать его. Результаты того стоят.

Связанные : Взвешивание плюсов и минусов ветроэнергетики

Старая 17-футовая ветряная турбина

Эта гигантская ветряная турбина, сделанная своими руками, потребует много работы, так как вы будете строить все с нуля.Но если это будет ваш главный источник энергии, не нужно сомневаться. Учебник настолько подробен, насколько это возможно, и команда, стоящая за проектом, даже предлагает новые и последние дизайны, которые они разрабатывали на протяжении многих лет. В конце концов, вы можете выбрать дизайн поменьше или еще больше, высотой 20 футов.

Самодельная ветряная турбина с минимальным дизайном

По словам Кевина Харриса, человека, который проектировал турбину, общая стоимость проекта достигает 150 долларов или меньше, если вы будете экономны.Он попробовал несколько конструкций, включающих шесть лопастей и широкие лопатки, но самый простой по-прежнему был наиболее эффективным. Трехлопастный ветрогенератор регулярно выдает 50-250 Вт. Харрис пишет, что весь проект можно завершить за один уик-энд. Некоторые материалы тоже можно заменить, если их нет рядом. Следуйте инструкциям Харриса и без проблем создайте свой собственный ветряк.

Заключительные слова

В целом, мы надеемся, что этот список предоставил вам как можно больше информации, чтобы вы начали создавать свою собственную ветряную турбину.Он чистый и того стоит, учитывая нынешнюю ситуацию с нашим климатом. Мы также включили небольшие проекты, если вы хотите повозиться с некоторыми материалами в свободное время и посмотреть, работает ли это. Используйте ресурсы вокруг себя и станьте зеленым.

Источник изображения: Pixabay

Альтернативная энергия через самодельные ветряные турбины - Центр Лоулэндера

Наиболее подверженные риску люди на побережье Луизианы - традиционные рыбацкие общины, которые сталкиваются с множеством проблем из-за воздействия климата и серьезной потери земель, осложненных предрассудками и исторические политические структуры насилия и отчуждения.Мы сочли полезным участвовать в работе, которая связана с множеством проблем, что снижает нагрузку на разрозненную работу. Трудно решить одну проблему без понимания ее контекста и взаимосвязи со всеми остальными. В массовом активизме этого коллектива сообществ и друзей энергия и вода являются основными проблемами, общими для каждого.

Электроэнергия, питьевая вода и нефть / топливо являются спорными вопросами для общин нижнего бухты прибрежной Луизианы.Сообщества, на которые оказывает влияние нефть, также комплексно вовлечены в экономику нефти, от добычи до ее переработки; аналогично дилемме, с которой сталкиваются многие, выступающие за более чистые возобновляемые источники энергии, но которым трудно отказаться от использования нефти и ее продуктов. Как только нефть и газ стали частью огромного промышленного комплекса региона, местные исторические и племенные общины и их образ жизни стали жертвенными, и мало что было сделано для исправления и борьбы с множеством экологических нарушений.

Необходимо иметь доступ к энергии для домов, для рыболовных судов (устрицы, креветки и крабы) и льда для хранения улова. Воздействующие штормы, которые нарушают энергоснабжение нижележащих населенных пунктов, приводят к отключениям электроэнергии, которые становятся более частыми и на более длительные периоды времени. Компании, поставляющие энергию в регион, в ответ на сложную ситуацию либо не восстанавливают некоторые из своих услуг, либо устанавливают обременительную доплату для каждого домохозяйства / бизнеса.

Прожиточный минимум, обеспечиваемый богатством земли и щедрым изобилием вод, затрудняется быстро исчезающими землями и изменениями динамики воды. Вода, которая когда-то была пресной и использовалась для личных и сельскохозяйственных нужд, теперь становится солоноватой и все быстрее превращается в соленую. Это изменяет устья рек, снижает возможности ведения сельского хозяйства и делает дефицит питьевой воды.

Племена ищут творческие способы производства продуктов питания и борьбы с загрязнением почвы.Сообщества продолжают наращивать и расширять политический потенциал, одновременно работая над слоями разнообразных проблем, связанных с повседневной жизнью. Племена также укрепляют культуру, обсуждают адаптацию к климату и используют традиционные знания для совместного управления своей жизненной средой.

Альтернативные источники энергии являются одним из ключевых элементов, дающих надежду на стабильность для сообществ. В течение многих лет несколько прибрежных Племен говорили об энергетической независимости и искали способы достижения такого статуса.Важно, чтобы альтернативы энергии были доступными, простыми в эксплуатации и подходящими для местоположения. Самым последним исследованием энергетической независимости стало развитие ветряных турбин. Проект ветряной турбины является доступным источником и может быть воспроизведен членами сообщества.

Недавно группа из 6 человек из 3 прибрежных племен приехала в Северную Каролину, чтобы работать в мастерской по производству ветряных турбин. Целью было построить ветряную турбину, которая будет размещена в теплице центра племен Пуэнт-о-Чиен.Изучение процесса было так же важно, как и результат. Каждый член команды приобрел навыки, необходимые для производства турбины, и, таким образом, получил практические знания для тиражирования своего творения. Мастер-класс проводил Handy Village Institute. Цель наших прибрежных сообществ - провести следующий семинар в Луизиане, чтобы больше людей из Племен могли научиться строить турбину, тем самым создавая больше турбин, что приведет к большей энергетической устойчивости прибрежных сообществ.

Самодельные ветряные мельницы для электричества | Sciencing

Альтернативная энергия - постоянная проблема, и для некоторых людей поиск способа использования альтернативных источников электроэнергии становится важной задачей.Кто-то потратит деньги на дорогие солнечные батареи, но тем, у кого больше изобретательности, может быть интересно построить собственную ветряную мельницу. На самом деле это намного проще, чем вы думаете.

Получить мотор

Любой маленький мотор можно превратить в ветряк. Лучше всего работают небольшие и легкие электродвигатели. Электродвигатели вентиляторов отлично подходят для экспериментальных ветряных мельниц. Промышленные двигатели вентиляторов также работают хорошо, и к ним даже прикреплены красивые лопасти из листового металла, но они также очень тяжелые и их трудно поворачивать на ветру.Многие люди используют автомобильные генераторы для создания ветряных мельниц, способных производить больше энергии.

Для тех, кто впервые строит самодельную ветряную мельницу, проще всего работать с мотором беговой дорожки. Эти двигатели имеют свободно движущийся маховик, установленный спереди, что является идеальной платформой для крепления лопастей.

Конструируйте лопасти

Лопасти ветряной мельницы являются важным элементом. Они должны быть достаточно широкими и длинными, чтобы ловить ветер, а также иметь надлежащую кривизну, чтобы превращать их в ветровой парус.К счастью, существует очень простой метод изготовления самодельных лопастей ветряных мельниц, которые не уступают по качеству любым профессионально сконструированным лопастям.

Приобретите кусок 8-дюймовой трубы из ПВХ длиной примерно 2 фута. Эта труба будет иметь идеальную кривизну для лопастей вашей ветряной мельницы. Возможно, вам придется специально заказать трубу в строительном магазине. Разрежьте трубу на полосы, длина которых начинается с 5 дюймов и сужается до 2 дюймов в том месте, где они соединяются с двигателем. Скругление краев ленточной шлифовальной машины поможет направить на лезвия больше ветра.

Установите узел

Используйте кусок «алюминиевого канала» размером от 36 до 48 дюймов в качестве рамы для ветряной мельницы. Закрепите двигатель (с прикрепленными лезвиями) к дальнему концу рамы. К противоположному концу прикрепите ветряк. Хвост ветра - это, по сути, большой плоский плавник, который будет вращать мельницу, если ветер дует сбоку. Для этой цели отлично подойдет квадратный кусок листового металла.

Купите стальную трубу длиной 1,5 дюйма, которая будет служить опорой для ветряной мельницы.Присоедините «штуцер» к верхней части столба, а затем прикрепите ветряную мельницу к этому штуцеру. Штуцер для труб позволит ветряной мельнице свободно вращаться по направлению ветра.

Подключение ветряной мельницы к электричеству

Электроэнергия, подаваемая ветряными мельницами, непостоянна, поэтому вместо того, чтобы подключать прибор непосредственно к ветряной мельнице, ветряная мельница используется для зарядки банка батарей. Ветряная мельница такого размера способна заряжать 12-вольтовую батарею. Можно использовать автомобильный аккумулятор или две 6-вольтовые батареи для гольф-мобилей.

Подсоедините провода от двигателя к выпрямителю, затем подсоедините провода аналогичного размера от выпрямителя к батарее. Выпрямитель поддерживает односторонний ток от ветряной мельницы к батареям, чтобы ваш сок не тратился зря на вращение ветряной мельницы. Следует использовать дополнительный провод для заземления мельницы в качестве меры предосторожности от ударов молнии.

Ветряная турбина - Музей науки и промышленности

Постройте ветряную турбину для выработки электроэнергии и исследуйте процесс преобразования энергии.

Материалы

  • Три трубы из ПВХ, одна длиной около 30 см, а другие длиной не менее 15 см
  • Три тройника из ПВХ
  • Одно колено из ПВХ
  • Двигатель
  • Провод (длиной около двух футов)
  • Провод фрезы
  • Ступица (можно приобрести у Kid Wind Project)
  • Деревянные дюбеля
  • Мультиметр
  • Зажимы типа «крокодил»
  • Ножницы
  • Лента
  • Фен или вентилятор
  • Материалы для лезвий, такие как бальзовая бумага, алюминиевая фольга, строительная бумага , палочки для мороженого и т. д.

Указания

  1. Вставьте 15-сантиметровую трубу из ПВХ в среднее отверстие тройника из ПВХ. Повторите то же самое с другой 15-сантиметровой трубой из ПВХ и тройником.
  2. Соедините две части вместе, вставив свободные концы труб по сторонам третьего тройника так, чтобы среднее отверстие было направлено вверх.
  3. Вставьте оставшуюся трубу из ПВХ в тройниковое отверстие, направленное вверх, так, чтобы труба стояла вертикально.
  4. Поместите последний тройник на свободный конец башни.
  5. Подсоедините к двигателю два провода.Надежно установите двигатель в шарнир наверху башни. Пропустите провода по трубе башни и выведите из одного из тройников на основании. При необходимости используйте изоленту, чтобы надежно удерживать двигатель на месте.
  6. Прикрепите пластиковую круглую деталь, называемую ступицей, к прямой металлической детали на внешней стороне двигателя.
  7. Подсоедините провода к мультиметру с помощью зажимов типа «крокодил». Установите мультиметр на 20 вольт.
  8. Вставьте несколько небольших деревянных дюбелей в отверстия ступицы.Создайте ветер с помощью фена или вентилятора. Проверьте мультиметр, чтобы узнать, сколько энергии вырабатывается.
  9. Используя различные материалы, спроектируйте различные лопасти ветряной турбины. Учитывайте вес, гладкость поверхности и количество необходимых лезвий. Прикрепите лезвия к дюбелям с помощью скотча.
  10. Снова включите фен или вентилятор и проверьте турбину с каждым типом лопастей, которые вы разработали. Чем отличается электрическая мощность? Протестируйте турбину с разными скоростями ветра, такими как низкие, средние и высокие настройки вентилятора.Влияет ли скорость ветра на выработку электроэнергии?

Что происходит?

Поскольку кинетическая механическая энергия движущегося ветра вращает лопасти ветряной турбины, генератор внутри турбины также вращается. Это заставляет спиральный провод вращаться вокруг магнита и создает электрический ток, который мы измеряем с помощью мультиметра.

Так как энергия не создается и не разрушается, чем больше энергия вводится, тем больше будет выход энергии.Следовательно, чем больше механической энергии вы начинаете - чем быстрее вращаются лопасти - тем больше электроэнергии будет вырабатывать турбина.

Справочная информация

Ветер возникает из-за разницы в давлении, создаваемой неравномерным нагревом поверхности Земли солнцем. Излучение солнца заставляет землю накапливать тепловую энергию. Воздух над землей также получает тепловую энергию и расширяется, становясь менее плотным и поднимаясь вверх.

Это движение вызывает область низкого давления на поверхности, создавая вакуум, который втягивает воздух.Более холодный и плотный воздух течет в область низкого давления на поверхности, заполняя пространство, оставшееся поднимающимся нагретым воздухом. Это создает конвекционный ток, а тепловая энергия преобразуется в кинетическую механическую энергию в виде движущегося воздуха или ветра.

Ветряная турбина преобразует механическую энергию ветра в электрическую. Турбина берет кинетическую энергию движущейся жидкости, в данном случае воздуха, и преобразует ее во вращательное движение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *