Содержание

Разделение PEN проводника

Система заземления TN-C-S

Разделение PEN проводника согласно ПУЭ. Более 20 лет опыта, сотни выполненных объектов.

Система заземления TN-C является устаревшей и запрещена к использованию. К применению рекомендуются такие системы как TN-C-S или TN-S. Система TN-S крайне плохо приживается на постсоветском пространстве в силу своей дороговизны, а вот TN-C-S вполне неплохо используется. Но главным условием работоспособности такого вида заземления является расщепление PEN проводника на PE и N.

Зачем нужно разделение проводника

В первую очередь это безопасность, обеспечение которой требует не только здравый смысл, но и техническая документация, а именно ПУЭ 7 издание:

7.1.13. Питание электроприемников должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S. При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 В или 3 х 220 В, следует предусматривать перевод сети на напряжение 380/220 В с системой заземления

TN-S или TN-C-S.

В правилах четко прописано, что все электрические установки напряжением от 220 В до 380 В обязаны обладать системой заземления TN-S либо TN-C-S, а так как TN-S практически не используется в России, то остается TN-C-S. И именно в этом варианте требуется расщепление PEN проводника.

Правила разделения PEN проводника согласно ПУЭ

Правила прописаны в ПУЭ, разделы 1.7 и 7.1

Правила разделения PEN проводника

Правила разделения PEN проводника согласно ПУЭ.

1. Расщепление PEN провода должно осуществляться до любого коммутационного аппарата (в частности вводного автомата). При этом провод непосредственно сажается на разделительную планку, которая также соединяется с нулевой и заземляющей планкой.

Получается, что данное действие необходимо выполнить до прибора учета, а никак не после.

2. При этом сечение всех проводников ответвления должно быть идентичным.

3. В дальнейшем запрещено вновь соединять в одну точку разделенные проводники.

4. Запрещено применять одну шину для N и PE проводников, правильно делать так, как показано на фото.

Разделение PEN проводника

Запрещено применять одну шину для N и PE проводников. Более 20 лет опыта, сотни выполненных объектов.

5. Желательно выполнить повторное заземление уже непосредственно на вводе.

6. Категорически запрещено использовать какие-либо коммутирующие аппараты в цепях PEN и PE проводниках.

Заземление TN-C-S в частном доме

Реализовать подобную систему в частном доме довольно легко как для однофазного, так и для трехфазного ввода. Для этого достаточно сделать качественное заземление дома. И уже во вводном щитке произвести данное расщепление.

Заземление TN-C-S в квартире

Для того, чтобы выполнить такую систему в собственной квартире, необходимо чтобы управляющая компания выполнила реконструкцию

ГЩУ (главного щита управления), где специалистами будет произведено расщепление PEN проводника и уже заземление и рабочий ноль (отдельными проводами) не будут заведены в ваши этажные распределительные боксы.

Если Вы выполните реконструкцию своей собственной проводки и выведете в щиток заземляющий провод, то все равно нужно будет ждать пока компания не сделать расщепление в ГЩУ.

Подключение PEN-проводника в частном доме

Если вы делаете проект электроснабжения частного дома или захотели выполнить замену электропроводки в старом доме или на даче, то должны знать, как правильно выполняется подключение PEN-проводника, т. к. в нормах имеется ряд требований.

В некоторых темах данный вопрос частично уже рассматривался и в данной статье подведу общий итог, чтобы вопросы подобного плана больше не возникали.

Сначала обратимся к требованиям ПУЭ, чтобы не быть голословным.

Требования ПУЭ по данной теме:

1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (PEN-проводник).

1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.

1.7.145. Не допускается включать коммутационные аппараты в цепи РЕ- и PEN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Допускается также одновременное отключение всех проводников на вводе в электроустановки индивидуальных жилых, дачных и садовых домов и аналогичных им объектов, питающихся по однофазным ответвлениям от ВЛ. При этом разделение PEN-проводника на РЕ- и N-проводники должно быть выполнено до вводного защитно-коммутационного аппарата.

Частные дома и дачи чаще всего имеют воздушный ввод. Сейчас воздушные линии электропередач выполняют изолированными проводами (ВЛИ).

Ввод может быть однофазным либо трехфазным.

1 Однофазный ввод.

При однофазном вводе к дому подводится двухжильный провод СИП 2×16. Не 3 жилы, а 2! Сечение 16мм2. В 99% происходит именно так. На вводе устанавливается однополюсный или двухполюсный автоматический выключатель. Лучше двухполюсный. До автомата выполняется разделение PEN на PE и N. Для разделения можно взять ответвительный сжим У734 (лучше РДБ-80А) либо клеммные зажимы серии ЗНИ-16 PEN.

Схема подключения PEN-проводника при однофазном вводе:

Схема подключения PEN-проводника при однофазном вводе

2 Трехфазный ввод.

При трехфазном вводе к дому подводится четырехжильный СИП 4×16. Сечение меньше быть не может. Увеличиться может при большой удаленности от магистральной линии. На вводе устанавливаем трехфазный автоматический выключатель и выполняем разделение PEN-проводника, как при однофазном вводе.

Схема подключения PEN-проводника при трехфазном вводе:

Схема подключения PEN-проводника при трехфазном вводе

Данное подключение PEN-проводника неоднократно согласовывалось и не вызывало никаких вопросов. Также не забывайте про повторное заземление.

Смотрите также тему: Схема подключения однофазного счетчика в частном доме.

Советую почитать:

PE и PEN проводник - что это такое и для чего нужно.

Система заземления TN-C, несмотря на то, что она пока еще используется в большинстве многоквартирных домов, является устаревшей и ее активно заменяют на более совершенные в плане защиты TN-S или TN-C-S. Как итог, в схемах электроцепей используется N, как рабочий ноль, и PE проводник – это защитный ноль, который появляется в цепи после разделения провода PEN, или взятый непосредственно из контура заземления.

Основные требования к разделению PEN проводника

Все, что необходимо знать для грамотного выполнения таких работ, прописано в положениях ПУЭ. В частности про необходимость осуществления такого подключения говорится в пункте 7.1.13

Как подключение должно выглядеть на схеме, описано в пункте 1.7.135 – когда в каком-либо месте РЕН проводник разделен на нулевой и заземляющий провода в последующем их объединения не допускается.

После разделения шины считаются разными и должны быть соответствующим образом промаркированы – нулевая синим цветом, а PE помечается желто-зеленым.

Перемычка между заземляющей шиной и нулевой, делается из материала сечение не меньше чем сами шины от которых дальше идут провода PE и N. При этом шина защитного проводника PE может контактировать с корпусом трансформатора, а шина n отдельно устанавливается на изоляторах. PE шина должно быть заземлена – в идеальном варианте для неё должен быть отдельный контур (ПУЭ – 1. 7.61).

При использовании устройств УЗО, ноль, использующийся для подключения электрооборудования, никак не должен контактировать с нолем, который приходит на вводной автомат и счётчик. По такому принципу подключаются все эти устройства.

Место разделения PEN проводника на PE и N провод, по ряду причин, осуществляется в ВРУ, который стоит на входе в многоквартирный или частный дом.

Провод PEN, который будет разделяться на рабочий ноль и заземление, должен иметь сечение не меньше 10 мм² если это медь, и 16 квадратов если это алюминий. В противном случае, делать разделение запрещено.

Почему нельзя разделять PEN проводник в этажном щите

Такой вариант нельзя применять по целому ряду причин:

  1. Если принимать во внимание исключительно положения ПУЭ, то в них говорится что разделение проводов должно происходить на вводном автомате многоквартирного или частного отдельного дома.
  2. Даже если квартирный щиток считать водным автоматом (что сделать довольно-таки проблематично), такое подключение будет неправильным согласно другому требованию, а именно – PE проводник должен быть повторно заземлен, чего в этажном щитке добиться невозможно.
  3. Даже если исхитриться и подвести заземление к этажному щитку, то есть еще одно препятствие, грозящее большими штрафами. Дело в том что электрическая схема при строительстве дома утверждается в нескольких инстанциях и ее самовольное изменение это грубейшее нарушение всех существующих правил – по сути это изменение проекта по которому дом был подключен к сети. Такими делами должна заниматься исключительно организация обслуживающая этот дом или район.

Разумеется, если таковая организация и будет планировать какие-либо работы по разделению Pen проводника, то нет смысла возиться с каждым этажном щитком в отдельности. Самым оптимальным вариантом будет разделения его на вводном автомате, что и будет делаться.

Дополнительный довод в пользу разделения Pen проводника на одном автомате жилого дома является требование ПУЭ (п. 7.1.87) монтировать в этом месте система уравнивания потенциалов.

В любом другом месте ее делать запрещено, а это означает, что разделение PEN проводника в этажном щите в любом случае будет сделано без соблюдения всех необходимых правил и мер предосторожности.

Как итог единственный правильный метод сделать в доме заземление это коллективное обращение к организации обслуживающей дом или район.

Зачем разделять PEN проводник, если между PE и N шинами ставится перемычка – «физика» процесса

Прямого ответа на этот вопрос в ПУЭ и ГОСТах не дается – есть только рекомендации «как это сделать», а «почему» – не рассматривается, скорее всего, исходя из того предположения что и так должно быть ясно. Поэтому все последующие объяснения надо воспринимать как мнение автора, подкрепленное принципами подключения электропроводки и требованиями ПУЭ.

Главные моменты здесь следующие:

  1. В любой схеме, где иллюстрируется разделение PEN проводника на PE и N, заземление всегда ставится первым и уже от него идет перемычка к рабочему нолю. Это основное требование, от которого надо отталкиваться при разделении PEN проводника – наоборот не делается никогда и ни при каких условиях.
  2. Даже отдельно сделанное заземление наиболее эффективно при подключение через автомат УЗО.
    В противном случае даже если напряжение с корпусом электроприбора Будет уходить в землю всё равно остается риск поражения человека током хотя и значительно меньший.
  3. Любой провод обладает неким электрическим сопротивлением, соответственно, чем длиннее провод, тем выше его сопротивление электрическому току.

Чтобы понять саму «физику процесса» надо рассмотреть как ведут себя различные схемы подключения при возникновении нештатной ситуации.

Если нет перемычки и автомата УЗО, ноль и заземление не связаны

Фаза попадает на корпус прибора от него уходит на шину заземления из него уходит в землю по которой идет на трансформаторная подстанцию.

Если взять среднее значение сопротивления заземляющего устройства в 20 Ом, ток короткого замыкания не будет достаточно большим для отключения вводного автомата. Соответственно, электрическая цепь будет работать до тех пор, пока не перегорит повреждённый участок (в любом случае в этом месте будет повышенная температура и провод рано или поздно испортится), или же повреждение не разовьется в полноценное короткое замыкание между фазой и нулем.

В лучшем случае здесь человека может ощутимо «пощекотать» током или устройство может испортиться. В худшем, прибор может воспламениться и спровоцировать пожар.

Если есть перемычка между нолем и заземлением, нет автомата УЗО

В таком случае схема работает примерно так же как если бы просто в дом завести PEN проводник, с той лишь разницей, что человек будет более защищен благодаря заземлению. Это будет происходить как раз из-за длины провода – так как в любом случае ВРУ находится на некотором удалении от квартиры или дома, во внимание надо принимать сопротивление провода.

При замыкании фазы на корпус прибора, ток утечки пойдет на шину заземления, где у него будет только два выхода: часть его уйдет в землю, а другая вернется по нулевому проводу, спровоцировав отключение вводного квартирного автомата.

То есть, в данном случае перемычка нужна для того чтобы сработал защитный автоматический выключатель.

Если есть перемычки между PE и N, установлен УЗО

Так как у нулевого и заземляющего провода есть определенное сопротивление электрическому току, понятно, что в этом случае УЗО будет срабатывать в штатном режиме. Если появляется замыкание на корпус прибора, ток утечки, в первую очередь, идет по проводу к самому УЗО, а дальше уже уходит на ВРУ жилого дома. Здесь он опять же частично уходит в землю и частично через перемычку возвращаются назад провоцируя выключения вводного автомата, но до этого, скорее всего, дело не дойдет, так как УЗО сработает раньше.

Понятно, что в этом случае перемычка не играет особой роли и является больше лишней перестраховкой на тот почти невероятный случай, если не сработает защитный автомат УЗО.

Если нет перемычки между PE и N, установлен УЗО

Такая схема будет отрабатывать точно так же, как если бы перемычка между заземлением и рабочим нулем присутствовала. Единственное исключение в ней это отсутствие страховки на тот случай, если вдруг УЗО выйдет из строя. Тогда схема будет отрабатывать по первому варианту – вводной автомат может не сработать до тех пор, пока замыкания на корпус прибора не превратится в короткое замыкание между фазой и нулем.

На самом деле, такой вариант событий практически невозможен, потому что по факту такое подключение это уже схема заземления TN-S или даже TT, в которых предусмотрена двухфакторная защита – без нее такое подключение не примет энергонадзор.

Особенности разделения PEN проводника на вводе в частный дом

Для предотвращения воровства электроэнергии, представитель энергонадзора может потребовать, чтобы провод PEN был подключен непосредственно к счетчику и уже после него разделяться на линии проводника PE и рабочего N. В целом, такое подключение имеет право на жизнь, но правильнее всё-таки будет разделение выполнить до счётчика и опломбировать вводной автомат. В таком случае подключение будет надежнее, выполняются требования ПУЭ, а инспектора получают линию, защищенную от несанкционированного доступа.

Подробнее о PE и PEN проводниках в частном доме смотрите в этом видео:

Как итог, выполняя разделение PEN проводника достаточно знать и применять требования ПУЭ, которые дают исчерпывающие рекомендации по этому вопросу, независимо от места и способов подключения.

Разделение PEN проводника на PE и N

Разделение PEN проводника на PE и N

Мне довольно часто приходится сталкиваться с вопросом как правильно разделить входящий PEN проводник на N и PE. Также эти вопросы уже много раз задавались в комментариях на сайте и я обещал опубликовать материал на эту тему. Хоть не так быстро, но все-таки я свое обещание выполнил ))) Об этом говорит данная статья. Приятного чтения!

Как разделить входящий PEN проводник на N и PE

PEN проводник представляет собой совмещенные в одну жилу нулевой рабочий и нулевой защитный проводники. Если говорить простыми словами, то PEN это объединенные «ноль» и «земля». PEN проводник применяется в старых системах заземления TN-C. По современным требованиям нормативных документов этот проводник нужно разделять на два самостоятельных проводника N (нулевой рабочий) и PE (нулевой защитный) и сделать переход на систему заземления TN-C-S.

Об этом гласит ПУЭ п.7.1.13:

Питание электроприемников должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S. При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 В или 3 х 220 В, следует предусматривать перевод сети на напряжение 380/220 В с системой заземления TN-S или TN-C-S.

Данный перевод позволяет во всех розетках подключить защитные контакты, таким образом, позволяет заземлить всю домашнюю технику и обезопасить человека от поражения электрическим током.

Сегодня практически везде в частном секторе и во многих домах советской постройки используется старая система заземления TN-C. Поэтому при реконструкции электропроводки нужно делать переход на TN-C-S, т.е. нужно разделить PEN проводник на самостоятельные N и PE.

Где нужно разделять PEN проводник?

На это нам даст ответ ГОСТ Р 50571.1-2009. В п.312.2.1 есть следующие строки:

В электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений запрещено применять PEN-проводники. PEN-проводник распределительной сети должен быть разделен на нейтральный и защитный проводники на вводе электроустановки

Все мы живем в жилых же зданиях и согласно данного пункта мы видим, что PEN проводник у нас запрещено применять. Еще в этом пункте написано, что разделение нужно выполнять на вводе электроустановки. В частных домах, коттеджах и дачах это нужно делать в вводных щитах учета, а в многоквартирных домах это нужно делать в ВРУ.

После разделения в вводном щите PEN проводника на N и PE объединять обратно их уже нельзя, т.е. запрещено. Об этом гласит ПУЭ п. 1.7.131.

Когда нулевой рабочий и нулевой защитный проводники разделены, начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного -проводника.

Также из этого пункта мы видим, что для разделения нужно приготовить две шины. Одна шина для подключения нулевых рабочих проводников и вторая для подключения нулевых защитных проводников. Еще эти шины должны быть соединены между собой. Это соединение делается перемычкой из кабеля.

Приходящий PEN проводник сначала нужно подключать к шине PE и потом от этой шины делать перемычку на шину N.

Теперь смотрим ПУЭ п 1.7.61:

При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

В данном пункте мы видим, что приходящий PEN проводник рекомендуется повторно заземлять. То есть возле ВРУ или щита учета необходимо делать контур заземления или можно использовать естественные заземлители. Затем этот контур заземления нужно соединять с шиной PE, к которой уже подключен PEN проводник. В качестве реализации главной заземляющей шины в щитах для частных домов очень хорошо подходят распределительные блоки.

Также в данном пункте написано, что повторное заземление не нормируется, но все-таки стоит делать контур заземления надежным и качественным. По нормам сопротивление изоляции контура заземления не должно превышать 4 Ом. Вы сами без специального прибора этот параметр измерить не сможете.

Это была небольшая теория по разделению PEN проводника на N и PE с ссылками на пункты нормативных документов.

Теперь давайте рассмотрим несколько наглядных схем, на которых показано это разделение. Данные схемы помогут вам лучше понять как это делается.

Ниже представлена схема разделения PEN проводника для однофазной сети. В принципе, если вы прочитали вышеприведенные пункты, то вам должно быть в ней все понятно. Тут PEN проводник подключается к шине PE, затем эта шина повторно заземляется и от нее идет перемычка к шине N.

Если после вводного коммутационного аппарата (автоматического выключателя) у вас сразу идет прибор учета электроэнергии, то использование перемычки и шины N на вводе теряет смысл. Они становятся лишними болтовыми соединениями, где может ослабнуть контакт и ухудшиться качество соединения. Поэтому в таких схемах шину N можно и не ставить.

Посмотрите следующую схему. В ней нет перемычки и шины N.

В следующей схеме после счетчика установлено вводное УЗО. Может кому-нибудь эта схема пригодится. На номиналы автоматических выключателей и параметры УЗО сильно не смотрите, так как у вас они могут быть совершенно другими.

Если ваш дом подключен к 3-х фазной сети, то в ней суть разделения PEN проводника не меняется. Тут у вас только будет на две жилы (фазы) больше и все. Ниже приведен простой пример разделения PEN проводника для 3-х фазной сети.

Но большинство сетевых компаний не разрешают так делать при подключении частных домов и заставляют идти на нарушение некоторых пунктов нормативных документов. Так они борятся с воровством электроэнергии. Поэтому заставляют приходящий PEN проводник заводить сразу на счетчик, чтобы его можно было опломбировать. Ниже представлена типичная трехфазная схема щита учета, которую без проблем принимают инспектора сетевых организаций. Это не правильно и поэтому нужно доказывать свою правоту ссылаясь, на приведенные выше, пункты нормативных документов.

Еще ниже выкладываю небольшой бонус ))) Это 3-х фазная схема вводного щита учета для частного дома. Здесь стоит УЗИП 2-го класса, который защищен с помощью предохранителей. На самой схеме написаны параметры и типы защитных устройств. Данная схема возможно кому-то может пригодиться.

Разделение PEN проводника на PE и N

Заземление является неотъемлемой частью электрической сети, конечно если данная сеть проложена согласно нормативным документам. Такая система заземления как TN-C сейчас уже не актуальна, но в связи с отсутствием возможности её замены, эксплуатируется как в многоэтажных, так и в частных домах. Основная особенность системы — разделение PEN-проводника на рабочий ноль и защитный.

Основные разновидности систем заземления

Прежде чем переходить к PEN-проводнику, стоит более подробно рассмотреть классификацию существующих систем заземления и их краткую характеристику.

  1. TN. Означает систему с глухозаземлённой нейтралью, когда для подключения рабочего ноля и защитного контура используют общую нейтраль от источника тока (напрямую от генератора или трансформатора, где преобразуется напряжение). Обязательное условие данной системы — подключение корпуса любого электроприбора к общей нейтрали. Заземление TN имеет следующие разновидности:
  2. TT. Заземления потребителя выполняется непосредственно по месту его размещения. Наиболее часто применяется в местности, где подача электроэнергии происходит по воздушным ЛЭП. К потребителю поступает 3 фазы и рабочий ноль, а контур заземления монтируется поблизости.
  3. IT. Система характерна отсутствием ноля, поступающего к потребителю от источника. Контур заземления монтируется в непосредственной близости от потребителя. Для снижения вероятности поражения электрическим током все корпуса электроприборов подключают к шине заземления.

Необходимость разделения PEN-проводника

Почему многие пользователи разделяют PEN-проводник? Ответ прост, и он прописан в правилах устройства электроустановок (ПУЭ).

Согласно ПУЭ, при подаче напряжения 380/220 В, должна монтироваться система заземления ТN-S, в некоторых случаях допускается ТN-С-S. К сожалению, состояние электропроводки в многоэтажных домах оставляет желать лучшего и в качестве заземления практически везде установлена TN-C. Такие устаревшие нормы небезопасны при нагрузках современных бытовых приборов, а защита электрической сети является главным критерием безопасности проживания в квартире или частном доме.

Обязательным условием перехода на более современные ТN-S или ТN-С-S служит разделение PEN-проводника на PE и N. При такой процедуре PEN-проводник разделяют на рабочий и защитный ноль. Многие пользователи стараются выполнить это самостоятельно, чтобы не привлекать людей с соответствующим образованием, что станет причиной лишней траты средств. Последствием становится неправильный монтаж, что приводит к серьёзным проблемам с эксплуатацией электросети.

Разделение PEN-проводника

ПУЭ гласит: место разделения PEN-проводника должно иметь соответствующие распределительные элементы (шины). Не допускается пересечение рабочего и защитного нолей. Основной PEN-проводник подключается к месту, которые впоследствии будет смонтировано как PE проводник.

Такое объяснение достаточно путанное, но ответ достаточно просто: после разделения приходящего PEN-проводник на PE и N проводники, его нельзя соединять заново. Процесс монтажа ещё проще: достаточно смонтировать 2 шины и соединить их между собой перемычкой. Для того, чтобы при эксплуатации не возникали ошибки, шины следует промаркировать. Нулевая рабочая шина помечается стандартным синими цветом, а на шине заземления ставится соответствующее обозначение.

Перемычкой может стать или провод сечением не менее 10 см², или пластина, выполненная из того же материала что и шины. При этом между шиной рабочего ноля и корпуса щитка должен быть установлен изолятор. Шину заземления допускается крепить непосредственно к щитку.

После такого монтажа, согласно ПУЭ, следует произвести повторное заземление защитной шины. Для этого в правилах предлагают использовать естественные заземлители. После проведения работ, следует проверить сопротивление смонтированного заземляющего устройства и подключить к шине.

Можно ли разделить PEN-проводник в общем электрощите

Делать самостоятельно это не рекомендуются по причине противоречия ПУЭ и следующим причинам:

  • PE проводник после разделения следует повторно заземлить. Сделать же это в щетке на этаже невозможно. Только в основной электрощитовой, где установлен вводный автоматический выключатель, обеспечивающий электроэнергией целый дом.
  • Запрещается нарушать принятую определёнными инстанциями схему размещения электрических элементов. Такое действие, в скором времени, приведёт к солидному штрафу. Поэтому разделение PEN проводника следует предоставить соответствующей электротехнической службе.

Сейчас происходит постепенное обновление электротехнического хозяйства в многоэтажных домах. Данный процесс достаточно трудоёмкий и напрямую зависит от наличия средств. При замене старого или установке нового электрического щита, PEN-проводник разделяют на шины PE и N. При этом все действия происходят исключительно на вводе в дом. Многие организации, выполняющую данную разновидность работ, не занимаются щитками, установленными на каждом этаже.

Последовательность разделения PEN-проводника «с нуля»

Для того, чтобы понять правильность данной процедуры, необходимо ознакомиться с примером её последовательности. При отсутствии соответствующего образования и допуска до электротехнических работ, выполнять процесс самостоятельно не рекомендуется.

  1. Перед началом монтажа следует отключить напряжение. Для этого достаточно перевести автоматический выключатель, который является основным, в нижнее положение. После его выключения необходимо проверить с помощью индикаторной отвёртки отсутствие опасного потенциала.
  2. Можно приступать к монтажу шин. Используют специальные медные или алюминиевые пластины с готовыми отверстиями под болты. Если под рукой таких нет, то их можно изготовить самостоятельно, подойдёт обыкновенная сталь, в которой с помощью дрели и свёрл делают отверстия.
  3. Шина рабочего ноля крепится к щитку через изоляторы. Это делают в целях безопасности, так как бывают короткие замыкания в распределительных коробках, при которых отгорает ноль и соприкасается с фазой. Автоматический выключатель в данной ситуации не сработает, но нулевая шина будет под напряжением.
  4. Вторую шину, выполняющую роль заземления, можно крепить сразу к щитку, не используя изоляторы. После закрепления, на рабочую шину и шину заземления необходимо нанести соответствующую маркировку. По стандартам ПУЭ, ноль должен быть помечен синим цветом, а на заземлении установлен специальный знак. Чтобы не тратить время, знаки заземления и ноля можно приобрести в магазине, специализирующимся на электротехнической продукции.
  5. Между планками необходимо закрепить перемычку. Для этих целей также подойдёт пластина, выполненная из того же материала что и шины.

Важно! Нельзя использовать соединение алюминия и меди. Контакт этих двух металлов со временем окисляется и может стать причиной возгорания.

Следует помнить, что лучше не выполнять вышеописанную процедуру, не имея знаний и опыта в области электрики или электротехники.

Наиболее частые ошибки при разделении PEN-проводника

Выполняя разделение PEN-проводника самостоятельно необходимо неукоснительно соблюдать правильную последовательность данного процесса. Добиваться максимально надёжного контакта всех соединений, использовать качественные электротехнические материалы и иметь под рукой надёжный инструмент, который сэкономит время.

Наиболее частой ошибкой можно назвать подключение входного ноля к шине, которая будет выполнять роль заземления. В ПУЭ имеется соответствующий пункт, указывающий, что входной ноль должен быть подключён к нулевой шине, а не к защитной. Поэтому после работ следует обратить внимание на подключение и ещё раз всё проверить.

В качестве перемычки очень часто используют любой попавший под руку материал, не обращая внимания на его качество. Такая ошибка в скором времени приведёт к возгоранию и необходимости монтажа нового электрического щитка. Не следует экономить на таких важных вопросах как электричество в доме или квартире.

Использование некачественной изолирующей ленты также может быть опасно. При кратковременных нагрузках выше номинальных значений, такая изолента может оплавиться и контакт останется открытым. Что уже является нарушением техники электробезопасности и увеличивает шансы возникновения короткого замыкания. При любых электротехнических работах лучше всего использовать термоусадочную трубку.

При работах с квартирными щитками часто встречается большое количество скруток. Такой способ соединения уже устарел, он даёт некачественный контакт, который, как и использование алюминия с медью, может привести к пожару. Сейчас существуют специальные гидравлические прессы, позволяющие соединить провода с помощью гильз. Стоимость таких изделий высокая, но достигается максимальное качество соединения. При отсутствии подобного инструмента лучше всего применять болтовые соединения с несколькими шайбами.

Способы перехода многоэтажного дома на систему TN-C-S

Не имеет смысла самостоятельно переделывать систему TN-C всего дома, для этого существуют специальные службы. Другой вопрос, когда дойдёт очередь до капительного ремонта всего дома.

Варианты переделки электрической системы многоэтажного дома:

  1. Как ни банально, но многие жильца многоэтажных домов предпочитают просто ждать. Сейчас в стране, на федеральном уровне, работают программы по проведению капительного ремонта. В соответствующих инстанциях, отвечающих за коммунальные услуги, можно узнать, стоит ли дом на очереди или нет, и когда запланирован ремонт.
  2. Можно не ждать капитального ремонта, а оплатить услуги фирмы, которая занимается монтажом электрических сетей. Конечно данный способ весьма затратный, так как компания прокладывает новые линии, монтирует заземляющее устройства, устанавливают новые электрические щиты. Но помимо электромонтажных работ, фирма также берёт на себя нормативную базу, которую потом самостоятельно заверяет во всех инстанциях. Жильцам остаётся только оплатить услуги.
  3. Существует вариант совместной работы. Жильцы предлагают более низкую сумму, но будут активно помогать при проведении работ. К сожалению, на такой вариант соглашаются не многие компании, предпочитая делать всё самостоятельно.

Если не один из перечисленных выше вариантов не устраивает, тогда можно самостоятельно разделить PEN-проводник в электрическом щите на лестничной клетке. Траты при этом будут гораздо меньшими чем при монтаже вводного шкафа целого дома. Если проводить работы самостоятельно, но необходимо только закупить расходные материалы, цены на которые сейчас умеренные.

Видео по теме

Как разделить PEN проводник согласно ПУЭ

Зачем нужно разделять PEN-проводник

PEN проводник — это совмещённые в одном проводе рабочий и защитный нулевой провод. Системы электроснабжения, применявшиеся ранее и называемые TN-C, содержат именно такой проводник, совмещающий ноль и землю. Такая система является потенциально опасной и не обеспечивает условий для защиты от поражающих факторов электрического тока при повреждении PEN. Если указанный проводник каким-то образом окажется в нерабочем состоянии, то электроустановка окажется как без рабочего нулевого проводника, так и без защитного заземления.

В настоящее время системе TN-C пришла на смену более совершенная в отношении электробезопасности система TN-C-S или TN-S. Её использование для электроприёмников, подключенных от сети 380/220В, содержится в п. 7.1.13 (см. Главу 7.1 ПУЭ). В этом же пункте рекомендуется переключение жилых и общественных зданий при их реконструкции с пониженного напряжения 220/127 В и системы заземления TN-C на напряжение 380/220 В с системой заземления TN-S или TN-C-S.

Если вы живете в старом частном доме или «хрущевке», то есть вероятность, что тип системы заземления вашего жилища именно TN-C. В многоквартирном доме при наличии PEN-проводника (см. рис. 1) его подключение производится поэтажно в общих щитках.

Если происходит разрыв проводника PEN или контакта в щите, и фаза не отключится, а электроустановка квартиры останется под напряжением, в то время, как защитный проводник не будет действовать. Фактически при прикосновении к частям оборудования, находящимся под напряжением, человек попадет под действие электрического тока и защита не сработает.

В частном доме может наблюдаться аналогичное явление при совмещенном PEN-проводнике. Разница в том, что частный дом может не иметь этажных щитов, а иметь один вводной щит.

Для того, чтобы подключить все оборудование, в том числе и защитные контакты в розетках, к системе заземления, необходимо перевести заземление ТN-C на TN-C-S, то есть разделить PEN проводник на два независимых провода PE и N.

Кроме ПУЭ, требование разделения совмещённого проводника PEN на вводе в электроустановки жилых и общественных зданий, торговых предприятий, медицинских учреждений, содержится в ГОСТ Р 50571.1-2009 (п.312.2.1).

Как выполнить разделение

В жилых зданиях: частных домах, коттеджах и дачах это нужно делать в вводных щитах учета до счетчика, а в многоквартирных домах и остальных зданиях это можно выполнить в ВРУ.

После разделения в вводном щите PEN проводника на N и PE объединять их далее в другом месте электрической установки по ходу распределения энергии запрещается. Это требование закреплено в п. 1.7.131 ПУЭ (см. Главу 1.7).

Требования ПУЭ также определяют, что при монтаже в месте разделения PEN-проводника на нулевой защитный и нулевой рабочий провода необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или ГЗШ (шине-расцепителю, рис. 2) или шине нулевого защитного-проводника.

Если на вводе отсутствует коммутационный аппарат или автоматический выключатель, то использование шины расцепителя теряет смысл, так как оно создает лишние болтовые соединения, где может ухудшиться контакт.

Таким образом, необходимо для разделения проводника иметь две шины. Одну шину нужно будет использовать для подключения нулевых защитных проводов, вторую — для нулевых рабочих.

При монтаже обе шины могут соединяться между собой с помощью кабельной перемычки. Вводной совмещённый PEN проводник подключается сначала к шине PE, а затем от этой шины отводится перемычка на шину N.

В соответствии с требованиями ПУЭ (п 1.7.61) при использовании системы TN требуется сделать повторное заземление PE- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах, используя в первую очередь естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

Если естественные заземлители отсутствуют, то монтируется искусственное заземление и соединяется с шиной PE, к которой уже подключен PEN проводник.

При однофазном и трехфазном вводе принцип разделения совещенного проводника одинаков. Разница в том, что в однофазной системе электроснабжения один вводной фазный провод, а в трехфазной — три фазных провода.

В новых квартирах с системой заземления TN-C-S разделение совмещенного проводника на нулевой рабочий и нулевой защитный производят в ГРЩ. От него уже идут два провода отдельно на этажный щит и в квартиры, как показано на схеме ниже:

Напоследок рекомендуем просмотреть полезные видео по теме:

Вот и все, что хотелось рассказать вам о том, где должно быть выполнено разделение PEN проводника на PE и N по правилам ПУЭ. Еще раз дублируем ответ, чтобы вы наверняка запомнили: в частных домах провод нужно разделять до счетчика перед вводным коммутационным аппаратом, а в квартирах это делается в ГРЩ.

Будет полезно прочитать:

Почему необходимо разделять PEN-проводник на PE и N

Современные системы энергоснабжения строятся на основе типовых схем, учитывающих способы заземления подключенного к ним оборудования. Делается это с целью защиты конечного потребителя, а также работающего на электроустановках персонала. При организации современных сетей традиционно используются кабели, включающие в свой состав не только фазную жилу, но и рабочий нулевой N, а также защитный PE проводник. В ряде случаев эти два вида шин объединены в одну общую PEN-жилу. Для понимания их функционального назначения сначала придется выяснить, что такое шина PE и как осуществляется цветовая маркировка остальных проводников.

Виды систем заземления

Известные системы защиты электрооборудования различаются по ряду признаков, согласно которым они делятся на следующие виды: TN-S, TN-C, TN-C-S, TT, а также IT. Входящие в эти обозначения значки расшифровываются следующим образом:
  • T означает заземление (от французского «Terre» или земля).
  • N – это подсоединение к трансформаторной нейтрали.
  • I значит изолированное.
  • C – объединение функций рабочего и защитного нулевых проводников («common»).
  • S – раздельное применение этих жил («select»).

Обозначение TN-C-S значит, что на каком-то участке силовой цепи два проводника проложены совместно, а затем они разделены по функциональному признаку.

Классификация нулевых шин

По выполняемым функциям входящие в состав системы энергоснабжения нулевые шины делятся на следующие виды:

  • N – функциональный или рабочий «нуль», являющийся проводником для токов нагрузки.
  • PE – специально прокладываемый защитный «нуль», обеспечивающий возможность организации заземления на приемном конце в удобном месте.
  • PEN – проводник, совмещающий функции обеих этих шин.

Каждый из проводников на схемах выделяется определенным цветом (N – синим, PE – желто-зеленым, а PEN – их комбинацией). Они обязательно подбираются по своему сечению, которое не должно быть меньше этого же показателя для фазных шин.

Указанная расшифровка также позволяет понять, зачем нужно разделять PEN проводник, для чего он служит, как можно обустроить заземление на стороне потребителя.

Для чего разделять PEN на две части

Разделять ПЕН провод на жилы PE и N имеет смысл лишь в том случае, когда каждую из них предполагается использовать по своему прямому назначению. Это удается сделать в следующих случаях:

  • в частном (загородном) доме, когда в распределительном щите делается отвод от PE шины, используемый для организации местного повторного заземления;
  • в городском многоквартирном доме, где жильцы подъезда договорились обустроить общий заземляющий контур на улице рядом с подъездом;
  • медный спуск ведется от провода PE к самодельному заземляющему контуру.

Для реализации заземления с самодельным контуром потребуется разрешение от соответствующих энергетических служб и согласование с ЖКХ.

Когда в городских домах в подъездном щитке между шинами ставится перемычка, говорить о полноценном заземлении не приходится. В нормативной документации по этому поводу приводится рекомендация без подробного объяснения действия такого «заземления».

Варианты расщепления проводников

В распределительном щите, где производится разделение PEN проводника, заземление организуется методом расщепления, но между N и PE обязательно устанавливается перемычка. При этом важно, что земляная шина подключается первой, а только после этого оформляется присоединение рабочей жилы. В этой ситуации возможны четыре варианта включения PE провода:

  • Перемычка между ней и проводником N отсутствует – рабочий нулевой контакт и заземляющая шина не связаны электрически. УЗО в защитной цепи также не ставится.
  • Перемычка между этими клеммами есть, а УЗО не установлено.
  • PE для заземления и N закорочены и установлено УЗО.
  • Перемычки нет, но есть УЗО.
  1. Аварийная фаза попадает на корпус прибора.
  2. Затем она поступает на шину заземления.
  3. Далее по ней идет на контур трансформаторной подстанции.

При рассмотрении проблемы важно учитывать сопротивление заземляющей цепочки, обычно не превышающей 20 Ом с учетом сечения PE проводника в мм. квадратных. В случае аварии тока КЗ будет недостаточно для отключения вводного автомата. Защитная цепь будет функционировать до тех пор, пока поврежденный участок на приемной стороне не сгорит полностью. Человеку эта ситуация ощутимого вреда принести не сможет, а вот оборудование получит серьезные повреждения (худший вариант – его возгорание и пожар).

Перемычка есть, автомат УЗО отсутствует

В этом случае важную роль играет длина питающей линии (удаление места ее повреждения от вводно-распределительного электрощита), определяющая сопротивление провода для стекания заряда. При аварийном замыкании фазы на корпус поврежденного оборудования ток утечки сначала попадает на заземляющую шину. Далее у него имеется только два пути: часть аварийного электричества уходит в грунт, а другая по нулевой шине вызовет срабатывание автомата на вводе. В рассмотренной ситуации перемычка используется на случай, если по какой-то причине не сработал АВ. Но поскольку последнее практически невозможно, нет разницы, есть ли она или отсутствует.

Перемычка есть и установлено УЗО

Поскольку все защитные и рабочие проводники обладают определенным сопротивлением, в этом случае УЗО должно срабатывать в штатном режиме. При образовании замыкания на корпус ток утечки сначала поступает на само УЗО и лишь после этого уходит на ввод жилого дома. Здесь он, как и в предыдущем случае, разделяется на две части: какая-то доля целого уходит в землю, а часть через перемычку возвращаются в щиток, выключая вводный автомат. Однако до этого дело, как правило, не доходит, поскольку УЗО срабатывает значительно быстрее.

В этой ситуации перемычка не имеет особого значения и является только подстраховкой на всякий случай: если вдруг по странному стечению обстоятельств не сработает УЗО.

Перемычки нет и установлено УЗО

Такая схема будет срабатывать так же, как при наличии перемычки. Единственное отличие от предыдущего случая – отсутствие страховки при выходе из строя УЗО, что маловероятно. Если это все-таки произошло, схема начнет отрабатывать по первому из рассмотренных вариантов. При этом вводный прибор не срабатывает до тех пор, пока КЗ на корпус не трансформируется в фазное короткое замыкание.

Характерные ошибки расщепления фазы связаны с нарушениями порядка коммутаций. Нельзя подключать сначала рабочую жилу и только после нее подсоединять заземление. Другой характерной ошибкой является нежелание устанавливать УЗО. В цепях с искусственным расщеплением PEN проводника наличие устройства защитного отключения обязательно.

Особенности разделения PEN проводника

В частных домах и в городских квартирах в целях исключения воровства электроэнергии представители контролирующей организации вправе требовать, чтобы провод PEN был протянут до счетчика. И лишь после учетного прибора они разрешают разделять его на защитную шину PE и рабочую N. Такое подключение не противоречит требования ПУЭ, но гораздо естественней смотрится разделение, выполненное до счетчика.

Если сначала сделать разделение, а потом опломбировать вводной автомат, никаких возражений со стороны представителей «Энергосбыта» и инспекторов быть не может.

Зачем гадать и переводить с иностранного буквенное обозначение систем распределения электроэнергии, когда расшифровка приводится в ПУЭ (см. п. 1.7.3). Причём, расшифровка буквы Т разная, зависит от того какая буква Т по счёту в аббревиатуре. Из той же расшифровки можно понять, что защитное заземление проводящих корпусов электрооборудования используется только в системах IT и TT. А это редко используемые системы, особенно система IT. В основном для питания потребителей используют систему TN (TN-C, TN-C-S, TN-S). Это система с глухозаземлённой нейтралью трансформатора, где проводящие электрический ток корпуса электрооборудования электрически присоединяются к глухозаземлённой нейтрали трансформатора, т.е. зануляются (выполняется защитное зануление; см. ПУЭ, п. 1.7.31). Защитное зануление никто ещё не отменял и его определение (что это такое) есть в ПУЭ. Вывод: в системах TN заземление корпусов не используется совсем в виду его бесполезности (при пробое изоляции на корпус не обеспечивает безопасный ток через человека). Основная мера защиты в системах TN это автоматическое отключение питания, которое как раз и обеспечивается защитным занулением. Дополнительная мера защиты – применение УЗО. Поэтому никаких договоров с соседями и устройств заземляющих контуров делать не надо, всё уже сделано как надо. Единственное, что можно сделать, это преобразовать систему TN-C (у кого такая) в систему TN-C-S. Но здесь также используется зануление.

PE проводник — что это такое и для чего нужно

Система заземления TN-C, несмотря на то, что она пока еще используется в большинстве многоквартирных домов, является устаревшей и ее активно заменяют на более совершенные в плане защиты TN-S или TN-C-S. Как итог, в схемах электроцепей используется N, как рабочий ноль, и PE проводник – это защитный ноль, который появляется в цепи после разделения провода PEN, или взятый непосредственно из контура заземления.

Основные требования к разделению PEN проводника

Все, что необходимо знать для грамотного выполнения таких работ, прописано в положениях ПУЭ. В частности про необходимость осуществления такого подключения говорится в пункте 7.1.13

Как подключение должно выглядеть на схеме, описано в пункте 1.7.135 – когда в каком-либо месте РЕН проводник разделен на нулевой и заземляющий провода в последующем их объединения не допускается.

После разделения шины считаются разными и должны быть соответствующим образом промаркированы – нулевая синим цветом, а PE помечается желто-зеленым.

Перемычка между заземляющей шиной и нулевой, делается из материала сечение не меньше чем сами шины от которых дальше идут провода PE и N. При этом шина защитного проводника PE может контактировать с корпусом трансформатора, а шина n отдельно устанавливается на изоляторах. PE шина должно быть заземлена – в идеальном варианте для неё должен быть отдельный контур (ПУЭ – 1.7.61).

При использовании устройств УЗО, ноль, использующийся для подключения электрооборудования, никак не должен контактировать с нолем, который приходит на вводной автомат и счётчик. По такому принципу подключаются все эти устройства.

Место разделения PEN проводника на PE и N провод, по ряду причин, осуществляется в ВРУ, который стоит на входе в многоквартирный или частный дом.

Провод PEN, который будет разделяться на рабочий ноль и заземление, должен иметь сечение не меньше 10 мм² если это медь, и 16 квадратов если это алюминий. В противном случае, делать разделение запрещено.

Почему нельзя разделять PEN проводник в этажном щите

Такой вариант нельзя применять по целому ряду причин:

  1. Если принимать во внимание исключительно положения ПУЭ, то в них говорится что разделение проводов должно происходить на вводном автомате многоквартирного или частного отдельного дома.
  2. Даже если квартирный щиток считать водным автоматом (что сделать довольно-таки проблематично), такое подключение будет неправильным согласно другому требованию, а именно – PE проводник должен быть повторно заземлен, чего в этажном щитке добиться невозможно.
  3. Даже если исхитриться и подвести заземление к этажному щитку, то есть еще одно препятствие, грозящее большими штрафами. Дело в том что электрическая схема при строительстве дома утверждается в нескольких инстанциях и ее самовольное изменение это грубейшее нарушение всех существующих правил – по сути это изменение проекта по которому дом был подключен к сети. Такими делами должна заниматься исключительно организация обслуживающая этот дом или район.

Разумеется, если таковая организация и будет планировать какие-либо работы по разделению Pen проводника, то нет смысла возиться с каждым этажном щитком в отдельности. Самым оптимальным вариантом будет разделения его на вводном автомате, что и будет делаться.

Дополнительный довод в пользу разделения Pen проводника на одном автомате жилого дома является требование ПУЭ (п. 7.1.87) монтировать в этом месте система уравнивания потенциалов.

В любом другом месте ее делать запрещено, а это означает, что разделение PEN проводника в этажном щите в любом случае будет сделано без соблюдения всех необходимых правил и мер предосторожности.

Как итог единственный правильный метод сделать в доме заземление это коллективное обращение к организации обслуживающей дом или район.

Зачем разделять PEN проводник, если между PE и N шинами ставится перемычка – «физика» процесса

Прямого ответа на этот вопрос в ПУЭ и ГОСТах не дается – есть только рекомендации «как это сделать», а «почему» – не рассматривается, скорее всего, исходя из того предположения что и так должно быть ясно. Поэтому все последующие объяснения надо воспринимать как мнение автора, подкрепленное принципами подключения электропроводки и требованиями ПУЭ.

Главные моменты здесь следующие:

  1. В любой схеме, где иллюстрируется разделение PEN проводника на PE и N, заземление всегда ставится первым и уже от него идет перемычка к рабочему нолю. Это основное требование, от которого надо отталкиваться при разделении PEN проводника – наоборот не делается никогда и ни при каких условиях.
  2. Даже отдельно сделанное заземление наиболее эффективно при подключение через автомат УЗО. В противном случае даже если напряжение с корпусом электроприбора Будет уходить в землю всё равно остается риск поражения человека током хотя и значительно меньший.
  3. Любой провод обладает неким электрическим сопротивлением, соответственно, чем длиннее провод, тем выше его сопротивление электрическому току.

Чтобы понять саму «физику процесса» надо рассмотреть как ведут себя различные схемы подключения при возникновении нештатной ситуации.

Если нет перемычки и автомата УЗО, ноль и заземление не связаны

Фаза попадает на корпус прибора от него уходит на шину заземления из него уходит в землю по которой идет на трансформаторная подстанцию.

Если взять среднее значение сопротивления заземляющего устройства в 20 Ом, ток короткого замыкания не будет достаточно большим для отключения вводного автомата. Соответственно, электрическая цепь будет работать до тех пор, пока не перегорит повреждённый участок (в любом случае в этом месте будет повышенная температура и провод рано или поздно испортится), или же повреждение не разовьется в полноценное короткое замыкание между фазой и нулем.

В лучшем случае здесь человека может ощутимо «пощекотать» током или устройство может испортиться. В худшем, прибор может воспламениться и спровоцировать пожар.

Если есть перемычка между нолем и заземлением, нет автомата УЗО

В таком случае схема работает примерно так же как если бы просто в дом завести PEN проводник, с той лишь разницей, что человек будет более защищен благодаря заземлению. Это будет происходить как раз из-за длины провода – так как в любом случае ВРУ находится на некотором удалении от квартиры или дома, во внимание надо принимать сопротивление провода.

При замыкании фазы на корпус прибора, ток утечки пойдет на шину заземления, где у него будет только два выхода: часть его уйдет в землю, а другая вернется по нулевому проводу, спровоцировав отключение вводного квартирного автомата.

То есть, в данном случае перемычка нужна для того чтобы сработал защитный автоматический выключатель.

Если есть перемычки между PE и N, установлен УЗО

Так как у нулевого и заземляющего провода есть определенное сопротивление электрическому току, понятно, что в этом случае УЗО будет срабатывать в штатном режиме. Если появляется замыкание на корпус прибора, ток утечки, в первую очередь, идет по проводу к самому УЗО, а дальше уже уходит на ВРУ жилого дома. Здесь он опять же частично уходит в землю и частично через перемычку возвращаются назад провоцируя выключения вводного автомата, но до этого, скорее всего, дело не дойдет, так как УЗО сработает раньше.

Понятно, что в этом случае перемычка не играет особой роли и является больше лишней перестраховкой на тот почти невероятный случай, если не сработает защитный автомат УЗО.

Если нет перемычки между PE и N, установлен УЗО

Такая схема будет отрабатывать точно так же, как если бы перемычка между заземлением и рабочим нулем присутствовала. Единственное исключение в ней это отсутствие страховки на тот случай, если вдруг УЗО выйдет из строя. Тогда схема будет отрабатывать по первому варианту – вводной автомат может не сработать до тех пор, пока замыкания на корпус прибора не превратится в короткое замыкание между фазой и нулем.

На самом деле, такой вариант событий практически невозможен, потому что по факту такое подключение это уже схема заземления TN-S или даже TT, в которых предусмотрена двухфакторная защита – без нее такое подключение не примет энергонадзор.

Особенности разделения PEN проводника на вводе в частный дом

Для предотвращения воровства электроэнергии, представитель энергонадзора может потребовать, чтобы провод PEN был подключен непосредственно к счетчику и уже после него разделяться на линии проводника PE и рабочего N. В целом, такое подключение имеет право на жизнь, но правильнее всё-таки будет разделение выполнить до счётчика и опломбировать вводной автомат. В таком случае подключение будет надежнее, выполняются требования ПУЭ, а инспектора получают линию, защищенную от несанкционированного доступа.

Подробнее о PE и PEN проводниках в частном доме смотрите в этом видео:

Как итог, выполняя разделение PEN проводника достаточно знать и применять требования ПУЭ, которые дают исчерпывающие рекомендации по этому вопросу, независимо от места и способов подключения.

Как правильно разделить PEN проводник | Энергофиксик

Как известно, система заземления TN-C является устаревшей и запрещена к использованию. К применению теперь рекомендуются такие системы как TN-C-S или TN-S. Система TN-S крайне плохо приживается на постсоветском пространстве в силу своей дороговизны, а вот TN-C-S вполне неплохо используется. Но главным условием работоспособности такого вида заземления является расщепление PEN проводника на PE и N. И как это сделать по всем правилам я и расскажу вам в данном материале.

Зачем нужно разделение проводника

Перед тем как узнать как производится разделение, давайте поймем зачем нам это нужно. В первую очередь это наша с вами безопасность, обеспечение которой требует не только здравый смысл, но и техническая документация, а именно ПУЭ 7 издание:

В этом пункте четко прописано, что все электрические установки напряжением от 220 В до 380 В обязаны обладать системой заземления TN-S либо TN-C-S, а так как TN-S практически не используется в России, то остается TN-C-S. И именно в этом варианте требуется расщепление PEN проводника.

Правила разделения PEN проводника согласно ПУЭ

Эти правила прописаны в ПУЭ разделах 1.7 и 7.1

1. Расщепление PEN провода должно осуществляться до любого коммутационного аппарата (в частности вводного автомата). При этом провод непосредственно сажается на разделительную планку, которая также соединяется с нулевой и заземляющей планкой.

Получается, что данное действие необходимо выполнить до прибора учета, а никак ни после.

2. При этом сечение всех проводников ответвления должно быть идентичным.

3. В дальнейшем запрещено вновь соединять в одну точку разделенные проводники.

4. Запрещено применять одну шину для N, а так же PE проводников, правильно делать так:

5. Также желательно выполнить повторное заземление уже непосредственно на вводе.

6. Категорически запрещено использовать какие-либо коммутирующие аппараты в цепях PEN, а так же PE проводниках.

Заземление TN-C-S в частном домовладении

Реализовать подобную систему в частном доме довольно легко как для однофазного, так и для трехфазного ввода. Для этого достаточно сделать качественное заземление дома. И уже во вводном щитке произвести данное расщепление.

А вот с владельцами квартир все намного сложнее.

Заземление TN-C-S в квартире

Для того, чтобы выполнить такую систему в собственной квартире, вам необходимо будет дождаться того момента, пока управляющая компания не выполнит реконструкцию ГЩУ (главного щита управления), где специалистами будет произведено расщепление PEN проводника и уже заземление и рабочий ноль (отдельными проводами) не будут заведены в ваши этажные распределительные боксы.

Если вы уже выполнили реконструкцию своей собственной проводки и вывели в щиток заземляющий провод, то пусть он пока «повисит в воздухе» до того, как компания не сделать расщепление в ГЩУ. Больше вариантов у вас нет.

Выводы

Теперь вы знаете, каким образом выполняется правильное расщепление проводника PEN в системе заземления TN-C-S.

Спасибо за ваше драгоценное внимание!

описание, порядок разделения и типичные ошибки при установке

На чтение 6 мин Просмотров 972 Опубликовано Обновлено

Современные системы энергоснабжения строятся на основе типовых схем, учитывающих способы заземления подключенного к ним оборудования. Делается это с целью защиты конечного потребителя, а также работающего на электроустановках персонала. При организации современных сетей традиционно используются кабели, включающие в свой состав не только фазную жилу, но и рабочий нулевой N, а также защитный PE проводник. В ряде случаев эти два вида шин объединены в одну общую PEN-жилу. Для понимания их функционального назначения сначала придется выяснить, что такое шина PE и как осуществляется цветовая маркировка остальных проводников.

Виды систем заземления

Известные системы защиты электрооборудования различаются по ряду признаков, согласно которым они делятся на следующие виды: TN-S, TN-C, TN-C-S, TT, а также IT. Входящие в эти обозначения значки расшифровываются следующим образом:

  • T означает заземление (от французского «Terre» или земля).
  • N – это подсоединение к трансформаторной нейтрали.
  • I значит изолированное.
  • C – объединение функций рабочего и защитного нулевых проводников («common»).
  • S – раздельное применение этих жил («select»).

Согласно ПУЭ, TN-C означает заземленную на нейтраль систему с объединенными защитным и рабочим проводниками.

Обозначение TN-C-S значит, что на каком-то участке силовой цепи два проводника проложены совместно, а затем они разделены по функциональному признаку.

Классификация нулевых шин

По выполняемым функциям входящие в состав системы энергоснабжения нулевые шины делятся на следующие виды:

  • N – функциональный или рабочий «нуль», являющийся проводником для токов нагрузки.
  • PE – специально прокладываемый защитный «нуль», обеспечивающий возможность организации заземления на приемном конце в удобном месте.
  • PEN – проводник, совмещающий функции обеих этих шин.

Каждый из проводников на схемах выделяется определенным цветом (N – синим, PE – желто-зеленым, а PEN – их комбинацией). Они обязательно подбираются по своему сечению, которое не должно быть меньше этого же показателя для фазных шин.

Указанная расшифровка также позволяет понять, зачем нужно разделять PEN проводник, для чего он служит, как можно обустроить заземление на стороне потребителя.

Для чего разделять PEN на две части

Правильное разделение

Разделять ПЕН провод на жилы PE и N имеет смысл лишь в том случае, когда каждую из них предполагается использовать по своему прямому назначению. Это удается сделать в следующих случаях:

  • в частном (загородном) доме, когда в распределительном щите делается отвод от PE шины, используемый для организации местного повторного заземления;
  • в городском многоквартирном доме, где жильцы подъезда договорились обустроить общий заземляющий контур на улице рядом с подъездом;
  • медный спуск ведется от провода PE к самодельному заземляющему контуру.

Для реализации заземления с самодельным контуром потребуется разрешение от соответствующих энергетических служб и согласование с ЖКХ.

Когда в городских домах в подъездном щитке между шинами ставится перемычка, говорить о полноценном заземлении не приходится. В нормативной документации по этому поводу приводится рекомендация без подробного объяснения действия такого «заземления».

Варианты расщепления проводников

Разделение PEN проводника: варианты разделения

На сегодняшний день заземление необходимо выполнять в каждом доме. Разделение pen проводника должно выполняться только профессионалом. На тематических форумах есть множество дискуссий на эту тему. Именно поэтому мы решили предоставить вашему вниманию эту статью, которая ответит на ваши вопросы.

В этой статье вы найдете подробную информацию о том, как правильно выполнить разделение PEN проводника на PE и N. В этой статье мы постарались дать исчерпывающий ответ на этот вопрос.

Зачем нужно разделять PEN проводник?

Сначала необходимо разобраться, зачем нужно выполнять разделение pen проводника. Для этого сначала необходимо обратиться к ПУЭ.

Исходя из этого, можно сделать вывод, что все электроустановки, которые имеют напряжение 380 Вольт, должны иметь систему заземления TN-S. В крайнем случае вы можете сделать заземление TN-C-S. Многие могут задуматься, а что же делать, если проводка в старых домах выполнена с системой заземления TN-C. Если у вас нет заземления, тогда вода в ванной может бить током.

Если у вас такое заземление, и вы желаете обезопасить свою семью, тогда следует переходить на современные системы заземления TN-S и TN-C-S. При этом вам также необходимо выполнить разделение PEN проводника на нулевой рабочий N и нулевой защитный PE. Сейчас мы вашему вниманию предоставим пример подъездного щитка, в котором установлено старое заземление.

Разделение PEN проводника на PE и N?

Мы решили упростить информацию про разделение pen проводника и поэтому вся информация будет предоставляться с картинками. В качестве своего примера мы будем рассматривать питание жилого дома.

С места разделения PEN проводника на нулевой рабочий N и нулевой защитный PE дальнейшее их объединение запрещается. В месте их разделения должно устанавливаться два зажима, которые необходимо промаркировать:

  • Шина PE может иметь и второе название ГЗШ.
  • Шина N.

Для перемычки вы можете использовать любой провод, который имеет такое же сечение. Иногда можно установить и две перемычки. Шина или зажим обязательно должны иметь отдельные точки подключения. Подключать их в одном месте запрещено.

Шину N необходимо установить на специальных изоляторах, а шину PE можно закрепить прямо на корпус.

В этом пункте указано, что в качестве повторного заземления можно использовать естественные заземлители. Если сопротивление заземляющих устройств будет удовлетворять требованиям ПУЭ, тогда шину PE можно соединять с помощью проводника. С этой точки электроустановки вводный PEN проводник разделен на нулевой рабочий N и нулевой защитный PE проводники.

Схемы разделения PEN проводника

Чтобы правильно выполнить разделение pen проводника вам необходимо использовать схемы. Вот схема трехфазного счетчика с PEN проводником.

Эта схема может отличаться и все зависит от устройств питания. Например, есть 4-х этажный жилой дом. Он питается от трансформаторной подстанции с помощью кабеля АВБбШв. В этом случае все фазные жилы (A, B, C) будут подключены к коммутационному аппарату. Совмещенный PEN проводник будет подключаться на шину ГЗШ.

Для того чтобы вы могли более детально разобраться с предоставленным примером вот фото ВРУ.

Место разделения PEN проводника на PE и N

На сегодняшний день многих людей волнует вопрос о том где находится место разделения PEN проводника.

ВРУ

Наиболее правильным местом для разъединения PEN проводника является вводное распределительное устройство.

Есть еще одно важное условие, о котором сложно не сказать. Питание для отдельно стоящих зданий должно осуществляться кабелем, который имеет сечение не менее 10 кв.мм.

Этажный щит

На сегодняшний день многие люди на форумах интересуются про разделение pen проводника в этажном щитке.

Разделение PEN проводника на этажном щитке является грубым нарушением. Вы не имеете никакого права вмешиваться в работу этого щитка. Если вы вмешаетесь в его работу, то вам может быть предоставлен штраф. Теперь необходимо определиться, что делать и как перейти с системы TN-C на систему TN-C-S.

Переход с системы TN-C на систему TN-C-S

Для того чтобы перейти на использование системы TN-C-S вам необходимо:

  1. Ждать пока ваш многоквартирный дом включат в список домов, в которых требуется капитальный ремонт.
  2. Оплатить все затраты на составление проекта. Специалисты самостоятельно составят план перевода вашего дома на систему TN-C-S. В этом случае в доме будет установлен, ВРУ, и в вашу квартиру заведут заземление.
  3. Всем жильцам обратится в управляющую компанию для дальнейшего сотрудничества. Этот вариант больше всего подходит для участников ТСЖ.

Что делать, если современная проводка выполнена по современным требованиям ПУЭ, а питающая линия еще двухпроводная?

Чтобы решить этот вопрос вам необходимо добраться в квартирный щиток. В нем необходимо все защитные проводники PE подключить на свою защитную шину PE, но саму шину PE подключать не нужно. Ее следует оставить в «воздухе» до тех пор, пока ваш дом не переведут на систему TN-C-S.

Читайте также: система заземления TN-S.

Изолирующий трансформатор

. Что нужно знать

Что такое изолирующий трансформатор?

Изолирующий трансформатор - это трансформатор, используемый для передачи электроэнергии от источника переменного тока к какому-либо оборудованию или устройству, при этом запитываемое устройство отключается от источника питания, как правило, по соображениям безопасности. Изолирующие трансформаторы обеспечивают гальваническую развязку и используются для защиты от поражения электрическим током, для подавления электрических шумов в чувствительных устройствах или для передачи энергии между двумя цепями, которые нельзя соединять.Трансформатор, продаваемый для изоляции, часто имеет специальную изоляцию между первичной и вторичной обмотками и рассчитан на то, чтобы выдерживать высокое напряжение между обмотками.

Википедия - Изолирующий трансформатор

Типовая электрическая схема

Вы, вероятно, этого не знаете, но питание от сети, скорее всего, обеспечивается через изолирующий трансформатор. В электрической подстанции, которая питает ваш дом, скрывается огромный кусок меди и железа (трансформатор), который потребляет относительно высокое электрическое напряжение и преобразует его в наше общепризнанное напряжение 230–240 В, которое мы все знаем.В вашем доме есть кабель от этого трансформатора с двумя жилами. Один - это токоведущий провод, а другой - объединенный провод защитного заземления и нейтрали (PEN). (Это наиболее распространенная в Великобритании система TN-C-S. Доступны и другие системы.)

Внутри вашего дома провод PEN разделяется на нейтраль и землю внутри вашего потребительского блока / распределительного щита, также известного как плата предохранителей. Обратите внимание, что здесь нейтраль и земля соединены вместе, что означает, что напряжение между фазой и нейтралью такое же, как напряжение между фазой и землей - номинальное 230 В, а напряжение между нейтралью и землей равно нулю (поскольку они соединены вместе).Также обратите внимание, что токоведущий провод, проходящий через предохранитель электрической платы, разделен на выводы для ваших различных цепей, каждая из которых защищена автоматическим выключателем или плавким предохранителем. Для дополнительной защиты также может быть установлено устройство защитного отключения (УЗО). В то время как предохранитель или автоматический выключатель обычно требует много ампер тока для срабатывания или срабатывания УЗО с током около 30 мА, протекающим на землю (на самом деле дисбаланс между токами под напряжением и нейтралью, которые при нормальной работе одинаковы). Он используется для обеспечения дополнительной защиты при возможном контакте с водой или в других потенциально опасных ситуациях.Запомни это!

Идея этого устройства - обеспечение электробезопасности. Если токоведущий провод отсоединится от части оборудования и коснется заземленного шасси, то протечет сильный ток и сработает предохранитель или сработает прерыватель. Тот же результат будет получен, если в оборудовании возникнет короткое замыкание между фазой и нейтралью. Если электрический душ имеет оголенный проводник, с которым контактирует вода, тогда будет меньший электрический ток, который будет течь от напряжения к земле, и это обнаруживается УЗО, которое срабатывает и отключает электрическое питание на неисправный элемент оборудования. (и все остальное в той же цепи).Удобно, если вы обнажены в заземленной ванне.

Итак, теперь у нас есть три проводника в розетке. Предполагая, что мы подключены к земле (поскольку мы стоим на ней), тогда мы получим удар электрическим током, если случайно коснемся токоведущего проводника, но мы будем в безопасности, если прикоснемся к нейтральному проводнику (как нейтраль к земле напряжение равно нулю). Если мы изолированы от земли (например, в резиновых сапогах), мы можем коснуться токоведущего проводника и не получить электрический ток. Если мы коснемся как токоведущего, так и нулевого проводов, мы, конечно, получим ток.

Изолирующий трансформатор для безопасности

Итак, как можно использовать изолирующий трансформатор для обеспечения электробезопасности? Все сводится к тому, что на самом деле представляет собой трансформатор. Проще говоря, это две катушки проволоки вокруг железного сердечника. Входящая катушка, называемая первичной, преобразует электрическое поле в магнитное. Это магнитное поле затем индуцирует электрическое поле на второй катушке, и, следовательно, на выходе этой катушки (называемом вторичной обмоткой) появляется напряжение. Изменяя количество витков в катушках, можно повышать или понижать напряжение, но в нашем случае количество витков равно, поэтому выходное напряжение такое же, как и входное.Однако важно понять, что между входом и выходом нет электрического соединения. Связь сделана магнетизмом. Это означает, что выход «изолирован» от входа, отсюда и термин изолирующий трансформатор!

Выход изолирующего трансформатора все еще имеет номинальное выходное напряжение 230 В между его выходными проводниками, но нет связи с землей. Это означает, что вы можете безопасно прикоснуться к любому проводнику без риска поражения электрическим током. Однако вы все равно получите удар электрическим током, если дотронетесь до обоих проводов!

Важно отметить, что с изолирующим трансформатором устройство, которое может иметь замыкание на землю, которое может привести к срабатыванию автоматического выключателя или срабатыванию предохранителя, будет работать нормально.Фактически, изолирующие трансформаторы используются именно по этой причине в определенных приложениях, где внезапное отключение питания из-за замыкания на землю может вызвать еще большие опасности (например, на химических заводах или в операционных). В таких случаях обычно обеспечивается мониторинг, чтобы в случае возникновения тревоги подавать сигнал тревоги.

На приведенной выше схеме при установке без изолирующего трансформатора устройство имеет замыкание на землю (например, токоведущий провод замкнулся на шасси).Поскольку нейтраль и земля соединены в блоке потребителя, система рассматривает это как короткое замыкание, и поэтому будет протекать большой ток, который приведет к срабатыванию предохранителя или срабатыванию автоматического выключателя. Это также приведет к срабатыванию УЗО, если оно установлено.

Когда в цепь включен изолирующий трансформатор, ничего не произойдет. Это потому, что вторичные живые и нейтральные больше не живые и нейтральные. Их действительно следует называть фазой 1 и фазой 2, поэтому я заключил их в кавычки. Поскольку они больше не находятся под напряжением и нейтрали, нет связи с входящей землей, и, следовательно, ток короткого замыкания не может протекать.В этом случае, поскольку есть короткое замыкание от «живого» к земле, это «живое» фактически становится эквивалентом нейтрали, а «нейтраль» фактически становится под напряжением. На приведенной выше схеме у вас будет 230 В между «фазой» и «нейтралью», 230 В между «нейтралью» и землей и ноль вольт между «фазой» и землей.

Однако в основном изолирующий трансформатор используется для обеспечения безопасности, когда люди работают под напряжением, случайное прикосновение к проводнику под напряжением не вызовет поражения электрическим током, или существует риск повреждения кабелей и т. Д.например, на строительных площадках.

Другим следствием этого является устранение «утечки на землю», то есть утечки тока от живого к земле, вызванной сетевыми фильтрами. Поскольку прямого заземления нет, то утечке на землю некуда течь. Это может быть полезно при работе рядом с пациентом или для уменьшения утечки на землю от нескольких устройств, чтобы избежать ложных срабатываний УЗО.

Использование изолирующего трансформатора для снижения электрического шума.

Трансформатор, будучи катушкой, имеет так называемую индуктивность. Индуктивность является препятствием для высокочастотных сигналов. Электрический шум - это высокочастотный сигнал, поэтому трансформатор препятствует этому. Другие проблемы с питанием также могут быть уменьшены, особенно если в конструкции трансформатора есть электростатический экран, который заземлен. С помощью этого метода можно эффективно уменьшить любые электрические переходные процессы между проводниками питания и землей.

Помехи между силовыми проводниками можно уменьшить за счет индуктивности, но не устранить.Вот почему в специализированных устройствах стабилизации мощности, которые включают в себя изолирующие трансформаторы, дополнительная фильтрация проводится на вторичной стороне трансформатора, чтобы еще больше уменьшить это.

Вместо того, чтобы вдаваться в подробности об этом, этот отрывок лучше всего подойдет для чтения перед сном.

Или можете просто поверить мне на слово.

Восстановление облигации N-E

В сложных электрических установках или в некоторых, где проводка может быть старой, иметь плохие соединения или иным образом иметь чрезмерный импеданс, напряжение между нейтралью и землей может увеличиваться, особенно в самых удаленных от распределительного щита точках и особенно там, где задействованы высокие токи.Это может быть, а может и не быть проблемой для вашего электрического оборудования. Вы можете просто снова подключить нейтраль к земле, но электрические правила не допускают этого. Однако, поскольку вторичная обмотка изолирована от первичной, вы можете безопасно получить новую нейтраль и землю, соединив их во вторичной обмотке изолирующего трансформатора. Это также сделано для устранения шума между «нейтралью» и землей - когда вы замыкаете ее.

Однако при этом возникает проблема безопасности. Если, например, оборудование находится в зонах, которые могут контактировать с водой (например, в лабораториях), желательно защитить эту цепь с помощью устройства защитного отключения.Это связано с тем, что вода является довольно плохим проводником электричества, и в случае, если на часть оборудования попадает вода, протекает недостаточно тока, чтобы сгореть предохранитель, но может протекать ток, достаточный для того, чтобы кто-то, кто может контактировать с водой, и заземлить неприятный удар электрическим током. Обратите внимание, что для нарушения сердечного ритма требуется всего несколько миллиампер тока.

Возьмите сценарий выше. Для защиты операторов, работающих с оборудованием, от риска контакта воды с токоведущими проводниками, цепь оснащена УЗО.Если вода будет пролита на оборудование и войдет в контакт с токоведущими проводниками, возникнет ток утечки, что приведет к срабатыванию УЗО. Это отключит питание оборудования и оставит оператора в безопасности.

В следующем сценарии установлен изолирующий трансформатор, который снабжает оборудование. Если сейчас прольется вода, любой контакт с токоведущими проводниками приведет только к заземлению проводов. Ток не будет протекать, следовательно, оператор будет в безопасности, а оборудование продолжит работу.

В последнем сценарии изолирующий трансформатор имеет заземление, подключенное к одной из вторичных фаз, создавая новую эффективную связь нейтраль-земля. Если теперь вода пролита на оборудование и войдет в контакт с токоведущими проводниками, ток будет течь от конца фазы трансформатора к оборудованию, через воду на землю, а затем обратно к трансформатору. Поскольку этот путь тока находится во вторичной обмотке трансформатора, УЗО не обнаруживает дисбаланса и, следовательно, не срабатывает.Оператор сейчас находится в небезопасной среде с потенциалом поражения электрическим током, поскольку они могут стать самой низкой точкой сопротивления для тока утечки.

Такие опасности могут существовать не только в воде. Я вспоминаю, как мне рассказывали о случае с неудачливым оператором кассы в крупной сети продуктовых магазинов. Она не знала, что электрический кабель, питающий какое-то оборудование, запутался в механизме ее кресла. Когда она повернулась в кресле, это вызвало разрез изоляции кабеля, который затем коснулся токоведущего проводника.Эта цепь была защищена не УЗО, а только автоматическими выключателями. Следовательно, для отключения выключателя потребуется короткое замыкание, подобное току. В этом случае у кресла было плохое соединение с землей, поэтому кресло - и несчастный оператор - теперь находились под напряжением. Каждый раз, когда она касалась чего-то, что было заземлено, например, кассы или конвейерного механизма, она получала поражение электрическим током. Если бы цепь была защищена с помощью УЗО, это не предотвратило бы поражение электрическим током, но его серьезность снизилась бы, и это произошло бы только один раз, а не несколько раз, когда это случалось с этой бедной женщиной, пока не было отключено питание.Ретроспективная акция действительно заключалась в том, чтобы подогнать УЗО (и сделать это во всех магазинах). Если бы они установили изолирующий трансформатор, то оператор вообще не получил бы удара током. Никакой неисправности не будет - за исключением визуального осмотра. Если бы они установили изолирующий трансформатор с перемычкой N-E на вторичной обмотке, это бы свело на нет эффект УЗО, создав еще одну опасную ситуацию для оператора.

Положение о трансформаторе

Трансформаторы несовершенны, и в них существует сопротивление, которое вызывает падение напряжения в трансформаторе при протекании тока.Чем больше протекает ток, тем больше падение напряжения и, соответственно, выходное напряжение. Регулировка трансформатора - это разница между напряжением холостого хода и напряжением полной нагрузки, выраженная в процентах. Плохое регулирование может вызвать другие проблемы в цепи. Например, если нагрузка является нелинейной и принимает ток отдельными порциями, например, в выпрямителях, плохое регулирование может вызвать искажение формы волны и внести в систему гармоники напряжения. Другие проблемы включают слишком низкое падение напряжения и срабатывание систем защиты от пониженного напряжения.

ИБП и изолирующие трансформаторы

Прежде чем я перейду к ИБП с изолирующими трансформаторами, вероятно, стоит упомянуть, что происходит с бестрансформаторными системами ИБП в случае замыкания на землю, как описано выше. Утечки на землю невозможно устранить с помощью ИБП. Фактически, он является кумулятивным, поэтому утечка на землю ИБП добавляется к утечке на землю подключенных нагрузок. Это соображение для подключаемых ИБП, но это тема другой статьи. Если происходит событие утечки на землю, которое приводит к срабатыванию УЗО, то питание ИБП будет потеряно, и ИБП будет делать то, что он должен делать, а именно продолжать подавать питание на подключенную нагрузку, даже если у нее есть неисправность.Обратите внимание, что здесь я предполагаю, что это неисправность порядка десятков миллиампер - достаточная для срабатывания УЗО, но недостаточная для срабатывания предохранителя или размыкателя цепи. Это может показаться вам опасным. Однако, когда ИБП работает от батареи, он будет иметь (подключаемые системы - не всегда в случае проводных систем) реле обратной связи. То, что он делает, - это разомкнутая цепь, предотвращающая попадание выхода инвертора на входящие контакты питания на ИБП. Фактически это то же самое, что изоляция. Теперь нагрузка изолирована от источника, поэтому ток утечки на землю не будет продолжать протекать, и, следовательно, опасности не будет.

Если в ИБП есть изолирующий трансформатор, это обеспечивает дополнительную защиту по мощности, но требует определенных соображений. Во-первых, он требует добавления большого количества меди и железа, что существенно увеличивает его вес и физические размеры. Как описано выше, соединение нейтрали с землей на вторичной обмотке ИБП приводит к тому, что любая защита УЗО становится избыточной, поэтому предпочтительно, чтобы трансформатор был плавающим. В системах ИБП с проводным подключением, если требуется соединение N-E, монтажники на месте могут довольно легко добавить его и установить любую защиту УЗО после ИБП.Кроме того, где в цепи ИБП должен быть трансформатор? На входе или на выходе?

Если он находится на входе, то ИБП имеет дополнительное преимущество защиты, обеспечиваемой трансформатором. Это означает, что утечка на землю ИБП (и подключенного оборудования) равна нулю при измерении на входе ИБП.

Если он находится на выходе, то выход ИБП всегда будет постоянным, независимо от того, работает он от батареи или в нормальном режиме. Это будет особенно важно, если требуется облигация N-E.

На мой взгляд, лучшим вариантом мы считаем входной трансформатор в сочетании с действительно плавающим выходом. Это самая безопасная конфигурация, которую мы включили в наши системы ИБП серии TX.

Редактировать - Плавающее напряжение

Добавьте это к исходной статье, чтобы подробно объяснить, почему выходное напряжение относительно земли такое, как оно есть.

Если взять наш изолирующий трансформатор, вторичные обмотки которого не заземлены. Как бы мы ни старались, между выходными фазами и землей всегда будет некоторая паразитная емкость, полное сопротивление которой мы назовем Z p .

Затем мы измеряем (используя вольтметр с высоким сопротивлением) между фазой 1 и фазой 2 и получаем выходное напряжение Vo. Теперь, измеряя расстояние между Фазой 1 и Землей, что мы ожидаем найти? Мы измеряем напряжение на паразитном импедансе Z p . Если предположить, что это то же самое между фазой 1 и землей, как между фазой 2 и землей, тогда измеренное напряжение будет V m = V o (Z p / (Z p + Z p ) ), или V m = V o /2, например, мы измеряем половину выходного напряжения.Таким образом, для трансформатора на 230 В мы ожидаем измерения около 115 В.

Если мы подключим часть оборудования к трансформатору, который содержит входной фильтр, то мы обнаружим, что между фазами входа и землей намеренно включены конденсаторы. Игнорирование Z p (как Z c ≪Z p ), затем V m = V o (Z c / (Z c + Z c )) Например, половина V o снова.

Вот почему измеренное напряжение между фазой и землей обычно составляет примерно половину выходного напряжения трансформатора.Я понимаю, почему на первый взгляд это может вызвать беспокойство, поскольку кажется, что у нас есть высокое напряжение на землю даже через наш изолирующий трансформатор. Однако ток не будет течь (и, следовательно, это безопасно), если мы подключим любую фазу к земле. Все, что мы делаем, это теперь относим эту фазу к Земле.

% PDF-1.5 % 4487 0 obj> эндобдж xref 4487 236 0000000016 00000 н. 0000011196 00000 п. 0000005016 00000 н. 0000011380 00000 п. 0000011417 00000 п. 0000012028 00000 п. 0000012166 00000 п. 0000012309 00000 п. 0000012452 00000 п. 0000012590 00000 н. 0000012733 00000 п. 0000012871 00000 п. 0000013014 00000 п. 0000013156 00000 п. 0000013293 00000 п. 0000013435 00000 п. 0000013577 00000 п. 0000013715 00000 п. 0000013855 00000 п. 0000013993 00000 п. 0000014136 00000 п. 0000014274 00000 п. 0000014417 00000 п. 0000014560 00000 п. 0000014698 00000 п. 0000014841 00000 п. 0000014979 00000 п. 0000015122 00000 п. 0000015265 00000 п. 0000015408 00000 п. 0000015544 00000 п. 0000015679 00000 п. 0000015822 00000 п. 0000015965 00000 п. 0000016107 00000 п. 0000016249 00000 п. 0000016392 00000 п. 0000016535 00000 п. 0000016678 00000 п. 0000016820 00000 н. 0000016963 00000 п. 0000017106 00000 п. 0000017249 00000 п. 0000017392 00000 п. 0000017535 00000 п. 0000017678 00000 п. 0000017821 00000 п. 0000017964 00000 п. 0000018106 00000 п. 0000018207 00000 п. 0000018931 00000 п. 0000019740 00000 п. 0000019912 00000 п. 0000020528 00000 п. 0000021240 00000 п. 0000021354 00000 п. 0000022087 00000 п. 0000022888 00000 п. 0000023602 00000 п. 0000024380 00000 п. 0000025151 00000 п. 0000025991 00000 п. 0000026739 00000 п. 0000027538 00000 п. 0000035450 00000 п. 0000044439 00000 п. 0000044499 00000 н. 0000044607 00000 п. 0000044716 00000 п. 0000044859 00000 н. 0000044914 00000 п. 0000045188 00000 п. 0000045243 00000 п. 0000045357 00000 п. 0000045412 00000 п. 0000045513 00000 п. 0000045568 00000 п. 0000045734 00000 п. 0000045789 00000 п. 0000045930 00000 п. 0000045985 00000 п. 0000046102 00000 п. 0000046157 00000 п. 0000046258 00000 п. 0000046313 00000 п. 0000046491 00000 п. 0000046546 00000 п. 0000046667 00000 п. 0000046813 00000 п. 0000046987 00000 п. 0000047102 00000 п. 0000047233 00000 п. 0000047407 00000 п. 0000047540 00000 п. 0000047649 00000 п. 0000047825 00000 п. 0000048000 00000 н. 0000048121 00000 п. 0000048303 00000 п. 0000048426 00000 п. 0000048558 00000 п. 0000048743 00000 п. 0000048854 00000 п. 0000048977 00000 п. 0000049155 00000 п. 0000049297 00000 п. 0000049453 00000 п. 0000049615 00000 п. 0000049723 00000 п. 0000049861 00000 п. 0000050010 00000 п. 0000050142 00000 п. 0000050275 00000 п. 0000050394 00000 п. 0000050540 00000 п. 0000050699 00000 п. 0000050817 00000 п. 0000050943 00000 п. 0000051081 00000 п. 0000051223 00000 п. 0000051346 00000 п. 0000051477 00000 п. 0000051617 00000 п. 0000051751 00000 п. 0000051889 00000 п. 0000052023 00000 п. 0000052155 00000 п. 0000052287 00000 п. 0000052413 00000 п. 0000052554 00000 п. 0000052698 00000 п. 0000052818 00000 п. 0000052937 00000 п. 0000053065 00000 п. 0000053215 00000 п. 0000053360 00000 п. 0000053507 00000 п. 0000053669 00000 п. 0000053840 00000 п. 0000054009 00000 п. 0000054172 00000 п. 0000054336 00000 п. 0000054492 00000 п. 0000054635 00000 п. 0000054775 00000 п. 0000054922 00000 п. 0000055085 00000 п. 0000055236 00000 п. 0000055384 00000 п. 0000055545 00000 п. 0000055704 00000 п. 0000055840 00000 п. 0000055980 00000 п. 0000056128 00000 п. 0000056269 00000 п. 0000056410 00000 п. 0000056543 00000 п. 0000056745 00000 п. 0000056907 00000 п. 0000057047 00000 п. 0000057176 00000 п. 0000057310 00000 п. 0000057432 00000 п. 0000057560 00000 п. 0000057736 00000 п. 0000057858 00000 п. 0000058014 00000 п. 0000058165 00000 п. 0000058335 00000 п. 0000058504 00000 п. 0000058654 00000 п. 0000058776 00000 п. 0000058934 00000 п. 0000059080 00000 п. 0000059217 00000 п. 0000059357 00000 п. 0000059528 00000 п. 0000059648 00000 н. 0000059773 00000 п. 0000059938 00000 н. 0000060071 00000 п. 0000060201 00000 п. 0000060326 00000 п. 0000060490 00000 н. 0000060657 00000 п. 0000060791 00000 п. 0000060925 00000 п. 0000061068 00000 п. 0000061239 00000 п. 0000061397 00000 п. 0000061616 00000 п. 0000061779 00000 п. 0000061911 00000 п. 0000062045 00000 п. 0000062206 00000 п. 0000062337 00000 п. 0000062481 00000 п. 0000062609 00000 п. 0000062759 00000 п. 0000062916 00000 п. 0000063119 00000 п. 0000063266 00000 п. 0000063404 00000 п. 0000063535 00000 п. 0000063665 00000 п. 0000063794 00000 п. 0000063923 00000 п. 0000064061 00000 п. 0000064202 00000 н. 0000064359 00000 н. 0000064523 00000 п. 0000064688 00000 п. 0000064820 00000 н. 0000064946 00000 н. 0000065076 00000 п. 0000065230 00000 п. 0000065357 00000 п. 0000065480 00000 п. 0000065622 00000 п. 0000065766 00000 п. 0000065944 00000 п. 0000066072 00000 п. 0000066237 00000 п. 0000066381 00000 п. 0000066594 00000 п. 0000066723 00000 п. 0000066913 00000 п. 0000067052 00000 п. 0000067182 00000 п. 0000067330 00000 п. 0000067525 00000 п. 0000067691 00000 п. 0000067865 00000 п. 0000068001 00000 п. 0000068145 00000 п. 0000068316 00000 п. трейлер ] >> startxref 0 %% EOF 4489 0 obj> поток xW!

% PDF-1.5 % 496 0 obj> эндобдж xref 496 109 0000000016 00000 н. 0000003926 00000 н. 0000004160 00000 н. 0000002531 00000 н. 0000004321 00000 п. 0000004468 00000 н. 0000004667 00000 н. 0000005185 00000 н. 0000006254 00000 н. 0000006290 00000 н. 0000006490 00000 н. 0000006672 00000 н. 0000006749 00000 н. 0000007479 00000 н. 0000008518 00000 н. 0000008689 00000 н. 0000008869 00000 н. 0000009384 00000 н. 0000009575 00000 н. 0000009732 00000 н. 0000010224 00000 п. 0000012917 00000 п. 0000013107 00000 п. 0000013300 00000 п. 0000029699 00000 н. 0000029756 00000 п. 0000029863 00000 п. 0000029950 00000 н. 0000030064 00000 п. 0000030279 00000 п. 0000030425 00000 п. 0000030521 00000 п. 0000030749 00000 п. 0000030885 00000 п. 0000031038 00000 п. 0000031142 00000 п. 0000031256 00000 п. 0000031411 00000 п. 0000031501 00000 п. 0000031633 00000 п. 0000031772 00000 п. 0000031876 00000 п. 0000031981 00000 п. 0000032081 00000 п. 0000032185 00000 п. 0000032285 00000 п. 0000032394 00000 п. 0000032607 00000 п. 0000032714 00000 п. 0000032866 00000 п. 0000033060 00000 п. 0000033167 00000 п. 0000033336 00000 п. 0000033512 00000 п. 0000033615 00000 п. 0000033763 00000 п. 0000033906 00000 п. 0000034025 00000 п. 0000034179 00000 п. 0000034285 00000 п. 0000034402 00000 п. 0000034530 00000 п. 0000034676 00000 п. 0000034806 00000 п. 0000034941 00000 п. 0000035108 00000 п. 0000035233 00000 п. 0000035339 00000 п. 0000035507 00000 п. 0000035668 00000 п. 0000035799 00000 п. 0000035943 00000 п. 0000036066 00000 п. 0000036198 00000 п. 0000036315 00000 п. 0000036432 00000 п. 0000036548 00000 н. 0000036639 00000 п. 0000036733 00000 п. 0000036839 00000 п. 0000036984 00000 п. 0000037089 00000 п. 0000037200 00000 н. 0000037353 00000 п. 0000037502 00000 п. 0000037603 00000 п. 0000037709 00000 п. 0000037820 00000 п. 0000037933 00000 п. 0000038113 00000 п. 0000038230 00000 п. 0000038369 00000 п. 0000038466 00000 п. 0000038639 00000 п. 0000038731 00000 п. 0000038859 00000 п. 0000038973 00000 п. 0000039117 00000 п. 0000039258 00000 п. 0000039388 00000 п. 0000039549 00000 п. 0000039657 00000 п. 0000039759 00000 п. 0000039901 00000 н. 0000040058 00000 н. 0000040224 00000 п. 0000040389 00000 п. 0000040511 00000 п. 0000040647 00000 п. трейлер ] >> startxref 0 %% EOF 499 0 obj> поток g5UggOcǺ? zW [1v / W ㅙ [toUX ~ --Z3 ~~ ܱ &% grxsl ԰ ne] vDhI1e / ґc۵zv + ̄9! d ~ [&.хм ф p1 + E-6 & \ 2ȺmoMǢ! n ۅ $

% PDF-1.6 % 1 0 объект > эндобдж 5 0 obj > эндобдж 2 0 obj > эндобдж 3 0 obj > ручей 2009-03-17T11: 56: 17 + 01: 00Canon DR-9080C TWAIN2009-03-24T09: 52: 19 + 01: 002009-03-24T09: 52: 19 + 01: 00Приложение Adobe Acrobat 8.12 Paper Capture Plug-inapplication / pdfuuid : af578b4a-df43-4b14-b75d-f4f308e16925uuid: 68ca863e-3e7c-4740-aacd-641c205cb636 конечный поток эндобдж 4 0 obj > эндобдж 6 0 obj >> эндобдж 7 0 объект > эндобдж 8 0 объект > / XObject> >> / Аннотации [91 0 R] / Родитель 4 0 R / MediaBox [0 0 595 842] >> эндобдж 9 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115447 + 01'00 ') >> эндобдж 10 0 obj > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115448 + 01'00 ') >> эндобдж 11 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115450 + 01'00 ') >> эндобдж 12 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115451 + 01'00 ') >> эндобдж 13 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115452 + 01'00 ') >> эндобдж 14 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115453 + 01'00 ') >> эндобдж 15 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115455 + 01'00 ') >> эндобдж 16 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115456 + 01'00 ') >> эндобдж 17 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115457 + 01'00 ') >> эндобдж 18 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115459 + 01'00 ') >> эндобдж 19 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115500 + 01'00 ') >> эндобдж 20 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115501 + 01'00 ') >> эндобдж 21 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115502 + 01'00 ') >> эндобдж 22 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115504 + 01'00 ') >> эндобдж 23 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115505 + 01'00 ') >> эндобдж 24 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115506 + 01'00 ') >> эндобдж 25 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115508 + 01'00 ') >> эндобдж 26 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115509 + 01'00 ') >> эндобдж 27 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115510 + 01'00 ') >> эндобдж 28 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115511 + 01'00 ') >> эндобдж 29 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115512 + 01'00 ') >> эндобдж 30 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115514 + 01'00 ') >> эндобдж 31 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115515 + 01'00 ') >> эндобдж 32 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115516 + 01'00 ') >> эндобдж 33 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115517 + 01'00 ') >> эндобдж 34 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115518 + 01'00 ') >> эндобдж 35 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115519 + 01'00 ') >> эндобдж 36 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115520 + 01'00 ') >> эндобдж 37 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115521 + 01'00 ') >> эндобдж 38 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115523 + 01'00 ') >> эндобдж 39 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115524 + 01'00 ') >> эндобдж 40 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115525 + 01'00 ') >> эндобдж 41 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115526 + 01'00 ') >> эндобдж 42 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115527 + 01'00 ') >> эндобдж 43 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115528 + 01'00 ') >> эндобдж 44 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115529 + 01'00 ') >> эндобдж 45 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115531 + 01'00 ') >> эндобдж 46 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115532 + 01'00 ') >> эндобдж 47 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115533 + 01'00 ') >> эндобдж 48 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115534 + 01'00 ') >> эндобдж 49 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115536 ​​+ 01'00 ') >> эндобдж 50 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115537 + 01'00 ') >> эндобдж 51 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115538 + 01'00 ') >> эндобдж 52 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115539 + 01'00 ') >> эндобдж 53 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115540 + 01'00 ') >> эндобдж 54 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115541 + 01'00 ') >> эндобдж 55 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115543 + 01'00 ') >> эндобдж 56 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115544 + 01'00 ') >> эндобдж 57 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115545 + 01'00 ') >> эндобдж 58 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115546 + 01'00 ') >> эндобдж 59 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115547 + 01'00 ') >> эндобдж 60 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115549 + 01'00 ') >> эндобдж 61 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115550 + 01'00 ') >> эндобдж 62 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115551 + 01'00 ') >> эндобдж 63 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115552 + 01'00 ') >> эндобдж 64 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115553 + 01'00 ') >> эндобдж 65 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115555 + 01'00 ') >> эндобдж 66 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115556 + 01'00 ') >> эндобдж 67 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115557 + 01'00 ') >> эндобдж 68 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115558 + 01'00 ') >> эндобдж 69 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115559 + 01'00 ') >> эндобдж 70 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115600 + 01'00 ') >> эндобдж 71 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115602 + 01'00 ') >> эндобдж 72 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115603 + 01'00 ') >> эндобдж 73 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115604 + 01'00 ') >> эндобдж 74 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115605 + 01'00 ') >> эндобдж 75 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115606 + 01'00 ') >> эндобдж 76 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115607 + 01'00 ') >> эндобдж 77 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115609 + 01'00 ') >> эндобдж 78 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115610 + 01'00 ') >> эндобдж 79 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115611 + 01'00 ') >> эндобдж 80 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115612 + 01'00 ') >> эндобдж 81 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115613 + 01'00 ') >> эндобдж 82 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115614 + 01'00 ') >> эндобдж 83 0 объект > / Шрифт> / ProcSet [/ PDF / Text / ImageB] >> / Тип / Страница / LastModified (D: 200

115616 + 01'00 ') >> эндобдж 84 0 объект > эндобдж 85 0 объект >> эндобдж 86 0 объект > эндобдж 87 0 объект >> эндобдж 88 0 объект > ручей xVMDm7sYq

% PDF-1.6 % 9640 0 объект > эндобдж xref 9640 366 0000000016 00000 н. 0000032151 00000 п. 0000032290 00000 п. 0000032456 00000 п. 0000032879 00000 п. 0000032918 00000 п. 0000033095 00000 п. 0000033210 00000 п. 0000034209 00000 п. 0000034618 00000 п. 0000034809 00000 п. 0000034922 00000 п. 0000035203 00000 п. 0000035483 00000 п. 0000528154 00000 н. 0000543798 00000 н. 0000547428 00000 н. 0000547843 00000 н. 0000548140 00000 н. 0000550589 00000 н. 0000557150 00000 н. 0000557225 00000 н. 0000557307 00000 н. 0000557421 00000 н. 0000557467 00000 н. 0000557554 00000 н. 0000557640 00000 н. 0000557772 00000 н. 0000557818 00000 п. 0000557985 00000 н. 0000558031 00000 н. 0000558191 00000 п. 0000558237 00000 п. 0000558375 00000 п. 0000558421 00000 н. 0000558599 00000 н. 0000558645 00000 н. 0000558780 00000 н. 0000558826 00000 н. 0000558974 00000 п. 0000559020 00000 н. 0000559166 00000 п. 0000559212 00000 н. 0000559329 00000 н. 0000559375 00000 п. 0000559500 00000 н. 0000559546 00000 н. 0000559667 00000 н. 0000559713 00000 н. 0000559851 00000 н. 0000559897 00000 н. 0000560047 00000 н. 0000560093 00000 н. 0000560220 00000 н. 0000560266 00000 н. 0000560411 00000 н. 0000560457 00000 н. 0000560609 00000 н. 0000560655 00000 н. 0000560812 00000 н. 0000560858 00000 п. 0000560985 00000 п. 0000561031 00000 н. 0000561173 00000 п. 0000561219 00000 н. 0000561346 00000 н. 0000561392 00000 н. 0000561535 00000 н. 0000561581 00000 п. 0000561717 00000 н. 0000561763 00000 н. 0000561884 00000 н. 0000561930 00000 н. 0000562079 00000 н. 0000562125 00000 н. 0000562248 00000 н. 0000562294 00000 н. 0000562430 00000 н. 0000562476 00000 н. 0000562611 00000 п. 0000562657 00000 н. 0000562783 00000 н. 0000562829 00000 н. 0000562963 00000 н. 0000563009 00000 н. 0000563196 00000 п. 0000563242 00000 н. 0000563405 00000 н. 0000563451 00000 н. 0000563592 00000 п. 0000563638 00000 п. 0000563790 00000 н. 0000563836 00000 н. 0000563968 00000 н. 0000564014 00000 н. 0000564215 00000 н. 0000564261 00000 н. 0000564487 00000 н. 0000564632 00000 н. 0000564821 00000 н. 0000564867 00000 н. 0000564976 00000 н. 0000565159 00000 н. 0000565319 00000 н. 0000565365 00000 н. 0000565486 00000 н. 0000565618 00000 н. 0000565775 00000 н. 0000565820 00000 н. 0000565960 00000 н. 0000566102 00000 п. 0000566219 00000 п. 0000566264 00000 н. 0000566431 00000 н. 0000566476 00000 н. 0000566614 00000 н. 0000566755 00000 н. 0000566918 00000 н. 0000566962 00000 н. 0000567086 00000 п. 0000567225 00000 н. 0000567422 00000 н. 0000567466 00000 н. 0000567565 00000 н. 0000567658 00000 н. 0000567751 00000 н. 0000567795 00000 н. 0000567839 00000 п. 0000567945 00000 н. 0000567989 00000 н. 0000568033 00000 п. 0000568078 00000 н. 0000568242 00000 н. 0000568287 00000 н. 0000568406 00000 н. 0000568451 00000 н. 0000568557 00000 н. 0000568602 00000 н. 0000568723 00000 н. 0000568768 00000 н. 0000568898 00000 н. 0000568943 00000 н. 0000569068 00000 н. 0000569112 00000 н. 0000569156 00000 п. 0000569201 00000 н. 0000569331 00000 п. 0000569421 00000 н. 0000569586 00000 н. 0000569631 00000 н. 0000569777 00000 н. 0000569969 00000 н. 0000570172 00000 н. 0000570217 00000 н. 0000570348 00000 п. 0000570489 00000 н. 0000570534 00000 п. 0000570669 00000 н. 0000570714 00000 н. 0000570840 00000 н. 0000570885 00000 н. 0000571044 00000 н. 0000571089 00000 н. 0000571185 00000 н. 0000571230 00000 н. 0000571345 00000 н. 0000571390 00000 н. 0000571512 00000 н. 0000571557 00000 н. 0000571678 00000 н. 0000571723 00000 н. 0000571768 00000 н. 0000571813 00000 н. 0000572008 00000 н. 0000572053 00000 н. 0000572278 00000 н. 0000572323 00000 н. 0000572417 00000 н. 0000572536 00000 н. 0000572581 00000 н. 0000572626 00000 н. 0000572671 00000 н. 0000572716 00000 н. 0000572823 00000 н. 0000572868 00000 н. 0000572979 00000 н. 0000573024 00000 н. 0000573069 00000 н. 0000573114 00000 п. 0000573160 00000 н. 0000573305 00000 н. 0000573351 00000 н. 0000573501 00000 н. 0000573547 00000 н. 0000573706 00000 н. 0000573864 00000 н. 0000574040 00000 н. 0000574086 00000 н. 0000574240 00000 н. 0000574286 00000 н. 0000574435 00000 н. 0000574565 00000 н. 0000574760 00000 н. 0000574806 00000 н. 0000574917 00000 н. 0000575044 00000 н. 0000575206 00000 н. 0000575252 00000 н. 0000575395 00000 н. 0000575441 00000 н. 0000575567 00000 н. 0000575709 00000 н. 0000575755 00000 н. 0000575915 00000 н. 0000575961 00000 н. 0000576153 00000 н. 0000576199 00000 н. 0000576310 00000 н. 0000576401 00000 н. 0000576447 00000 н. 0000576566 00000 н. 0000576612 00000 н. 0000576717 00000 н. 0000576763 00000 н. 0000576896 00000 н. 0000576942 00000 н. 0000576988 00000 н. 0000577034 00000 н. 0000577080 00000 п. 0000577254 00000 н. 0000577300 00000 н. 0000577346 00000 п. 0000577392 00000 н. 0000577552 00000 н. 0000577598 00000 н. 0000577738 00000 н. 0000577878 00000 н. 0000578003 00000 н. 0000578049 00000 н. 0000578175 00000 н. 0000578221 00000 н. 0000578351 00000 н. 0000578397 00000 н. 0000578537 00000 н. 0000578583 00000 н. 0000578796 00000 н. 0000578842 00000 н. 0000578888 00000 н. 0000579023 00000 н. 0000579069 00000 н. 0000579201 00000 н. 0000579247 00000 н. 0000579293 00000 н. 0000579339 00000 н. 0000579385 00000 н. 0000579431 00000 н. 0000579476 00000 н. 0000579606 00000 н. 0000579725 00000 н. 0000579771 00000 н. 0000579908 00000 н. 0000579954 00000 н. 0000580089 00000 н. 0000580135 00000 н. 0000580276 00000 н. 0000580322 00000 н. 0000580448 00000 н. 0000580494 00000 н. 0000580633 00000 п. 0000580679 00000 н. 0000580787 00000 н. 0000580833 00000 н. 0000580980 00000 н. 0000581025 00000 н. 0000581155 00000 н. 0000581200 00000 н. 0000581347 00000 н. 0000581392 00000 н. 0000581539 00000 н. 0000581584 00000 н. 0000581629 00000 н. 0000581675 00000 н. 0000581813 00000 н. 0000581859 00000 н. 0000581905 00000 н. 0000581951 00000 н. 0000582051 00000 н. 0000582160 00000 н. 0000582357 00000 н. 0000582403 00000 н. 0000582527 00000 н. 0000582665 00000 н. 0000582852 00000 н. 0000582898 00000 н. 0000583022 00000 н. 0000583156 00000 н. 0000583343 00000 п. 0000583389 00000 н. 0000583513 00000 н. 0000583647 00000 н. 0000583767 00000 н. 0000583813 00000 н. 0000584015 00000 н. 0000584061 00000 н. 0000584140 00000 н. 0000584244 00000 н. 0000584290 00000 н. 0000584336 00000 н. 0000584382 00000 н. 0000584521 00000 н. 0000584567 00000 н. 0000584613 00000 н. 0000584659 00000 н. 0000584798 00000 н. 0000584844 00000 н. 0000584890 00000 н. 0000584936 00000 н. 0000585075 00000 н. 0000585121 00000 п. 0000585167 00000 н. 0000585213 00000 н. 0000585259 00000 н. 0000585305 00000 н. 0000585351 00000 н. 0000585458 00000 н. 0000585616 00000 н. 0000585662 00000 н. 0000585806 00000 н. 0000585852 00000 н. 0000585983 00000 н. 0000586029 00000 н. 0000586192 00000 п. 0000586238 00000 п. 0000586358 00000 п. 0000586404 00000 н. 0000586450 00000 н. 0000586496 00000 н. 0000586598 00000 н. 0000586718 00000 н. 0000586764 00000 н. 0000586946 00000 н. 0000586992 00000 н. 0000587148 00000 н. 0000587194 00000 н. 0000587311 00000 н. 0000587357 00000 н. 0000587475 00000 н. 0000587521 00000 н. 0000587638 00000 н. 0000587684 00000 н. 0000587806 00000 н. 0000587852 00000 н. 0000587898 00000 н. 0000587944 00000 н. 0000588039 00000 н. 0000588085 00000 н. 0000588191 00000 н. 0000588237 00000 н. 0000588339 00000 н. 0000588385 00000 п. 0000588498 00000 н. 0000588545 00000 н. 0000588654 00000 н. 0000588701 00000 п. 0000588748 00000 н. 0000007774 00000 н. трейлер ] / Назад 15851437 >> startxref 0 %% EOF 10005 0 объект > поток ; AZLv

гЂ) ӥ \ `փ X | ׃ б.o € gX5w-ujS% ~ ؛ xT% 8K3 "a @ Ju @ Ay08D s7a͚fUlglNa * V]? o (Bbi .- '/ "| Ca" 4: IXtȲUS ߓ' izis B] N9FƝ | {]% l> 45 ڵ m * 4r + n7j`Bv52 (K & '4Uǵbs;) 9O | O8̉r + ьl? KAZ = ux | vu ("s,? k_V6iW3ļx

Страница не найдена - Legrand

| 07.09.2021

В июле 2021 года Legrand получил Платиновую медаль EcoVadis, высшую награду, которой награждается 1% самых успешных компаний в области корпоративной социальной ответственности среди всех компаний, оцененных EcoVadis.

| 05.06.2021 07:30

Значительный рост продаж и финансовых результатов

Органический рост продаж: +13.1%

Скорректированная операционная маржа до приобретений: 21,9% от продаж

Чистая прибыль, относящаяся к Группе: + 36,4%

Целевые показатели на 2021 год достигнуты

Бенуа Кокварт, генеральный директор Legrand, прокомментировал:

«В первом квартале 2021 года наша выручка резко выросла во всех регионах ...

Финансы | 04.12.2021 17:30

Универсальный регистрационный документ Legrand был подан 12 апреля 2021 года в Управление по финансам.

Группа | 03.26.2021

Проекты-победители для Legrand - это линейка электропроводки Mallia Senses и система домашней автоматизации и домофона KaiYun.
Это большое достижение демонстрирует наше лидерство в реагировании на потребности пользователей в улучшении жизни с помощью элегантных сетевых решений.

Финансы | 19.03.2021 18:00

В соответствии с разрешением, предоставленным очередным и внеочередным общим собранием акционеров 27 мая 2020 года для реализации программы обратного выкупа акций, Legrand сегодня объявила о подписании соглашения с поставщиком инвестиционных услуг на покупку до 1 200 000 акций в течение периода с 22 января. С марта по 21 мая 2021 г.

Целью этой транзакции является приобретение акций для распределения по планам акций с наступающим сроком погашения или, в зависимости от случая, их аннулирование.

Группа | 03.02.2021

В понедельник, 1 марта 2021 года, Legrand опубликовала свой индекс гендерного равенства за 2020 год.В этом году Группа набрала 91 балл из 100: этот результат идентичен результату 2019 года.

Группа | 02.11.2021

Legrand объявляет о выпуске беспроводного и безбатарейного коммутатора нового поколения.Эта технологическая инновация была разработана в сотрудничестве с CEA, крупным игроком в области исследований, разработок и инноваций.

Финансы | 02.11.2021 06:45

Ответственное антикризисное управление

Сильные финансовые достижения и достижения в области ESG в 2020 году
Изменение продаж: -7.9%
Скорректированная операционная маржа: 19,0%
Свободный денежный поток: 16,9% от продаж
Достижение дорожной карты КСО: 128%

Объявлено 3 новых приобретения
Всего в 2020 году приобретено 4 новых компании
Постоянное активное развертывание продуктовых предложений недавно приобретенных компаний

Группа | 01.12.2021

Legrand был удостоен знака различия Европейского и международного стандарта гендерного равенства (GEEIS), который был учрежден компанией Arborus и прошел аудит Bureau Veritas Certification. Эта награда свидетельствует о прогрессе, достигнутом Группой за многие годы с точки зрения разнообразия, профессионального равенства и инклюзивности - принципов, которые лежат в основе стратегии Legrand в области управления персоналом и корпоративной социальной ответственности.

CSR | 12.02.2020

Legrand заняла 33-е место в общем рейтинге и 2-е место в категории «Электротехнические материалы и оборудование».

CSR | 26.11.2020

Legrand был удостоен Гран-при Proxinvest «2020 ESG Innovation».Премия награждает европейскую компанию за ее инновационные методы в области «ESG».

Финансы | 11.05.2020 07:30

Хорошие результаты в третьем квартале
Продажи стабилизируются по сравнению с третьим кварталом 2019 года
Восстановление скорректированной операционной маржи и свободного денежного потока

Первые девять месяцев: хорошие результаты в беспрецедентной кризисной среде
Органическое изменение продаж: -10%
Скорректированная операционная маржа: 18.7%
Свободный денежный поток: 13,8% от продаж

Продолжение внедрения модели Legrand

CSR | 10.01.2020

Эти решения являются результатом целенаправленной политики в области инноваций и приобретения, реализуемой Группой.Legrand в настоящее время является второй по величине компанией в Европе на рынке вспомогательного жилья, особенно после приобретения Intervox (Франция), Tynetec, Jontek и Aidcall (Великобритания) и Neat (Испания).

группа | 21.09.2020

Международное жюри на конкурсе XXVI Compasso d’Oro ADI Award присудило Living Now революционному модельному ряду электрических элементов управления Bticino, итальянского отделения Legrand Group, награду Honorable Mention .

Финансы | 05.12.2020 20:30

Legrand сегодня завершила выпуск облигаций с фиксированной ставкой на сумму 600 миллионов евро, сроком погашения 10 лет и годовым купоном 0.75%.

Эта операция увеличивает средний срок погашения облигаций до 6,7 лет со следующей датой погашения, установленной на 19 апреля 2022 года, на сумму 400 миллионов евро.

Успех этого выпуска, на который были подписаны 3,2 раза, еще раз демонстрирует уверенность инвесторов в надежности модели развития Legrand.

Система электроснабжения

с помощью устройств защиты от перенапряжения SPD

Базовая система электроснабжения, используемая в электроснабжении для строительных проектов, представляет собой трехфазную трехпроводную и трехфазную четырехпроводную систему и т. Д., Но смысл этих терминов не очень строгий.Международная электротехническая комиссия (МЭК) разработала единые положения для этого, и это называется системой TT, системой TN и системой IT. Какая система TN делится на систему TN-C, TN-S, TN-C-S. Ниже приводится краткое введение в различные системы электропитания.

система электропитания

В соответствии с различными методами защиты и терминологиями, определенными МЭК, низковольтные системы распределения электроэнергии делятся на три типа в соответствии с различными методами заземления, а именно системы TT, TN и IT, и описываются как следует.



Система электропитания TN-C

Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.

Система электропитания TN-CS

Для временного электропитания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что строительная площадка должна использовать TN-S система электропитания, общая распределительная коробка может быть разделена в задней части системы.Помимо линии PE, система TN-CS имеет следующие особенности.

1) Рабочая нулевая линия N соединена со специальной защитной линией PE. Когда несимметричный ток линии велик, на нулевую защиту электрооборудования влияет нулевой потенциал линии. Система TN-C-S может снизить напряжение корпуса двигателя на землю, но не может полностью устранить это напряжение. Величина этого напряжения зависит от дисбаланса нагрузки проводки и длины этой линии.Чем больше несимметрична нагрузка и чем длиннее проводка, тем больше смещение напряжения корпуса устройства относительно земли. Следовательно, требуется, чтобы ток неуравновешенности нагрузки не был слишком большим и чтобы линия защитного заземления заземлялась повторно.

2) Линия PE не может войти в устройство защиты от утечки ни при каких обстоятельствах, поскольку устройство защиты от утечки на конце линии вызовет срабатывание переднего устройства защиты от утечки и вызовет крупномасштабный сбой питания.

3) В дополнение к линии PE необходимо подключать к линии N в общей коробке, линия N и линия PE не должны подключаться в других отсеках.На линии защитного заземления нельзя устанавливать переключатели и предохранители, и заземление не должно использоваться в качестве защитного заземления. линия.

С помощью приведенного выше анализа система электропитания TN-C-S была временно изменена в системе TN-C. Когда трехфазный силовой трансформатор находится в хорошем рабочем состоянии заземления и трехфазная нагрузка относительно сбалансирована, влияние системы TN-C-S на использование электроэнергии в строительстве все еще возможно. Однако в случае несимметричных трехфазных нагрузок и специального силового трансформатора на строительной площадке необходимо использовать систему электропитания TN-S.

Система электропитания TN-S

Система электропитания режима TN-S - это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S. Характеристики системы питания TN-S следующие.

1) Когда система работает нормально, на выделенной линии защиты нет тока, но есть несимметричный ток на рабочей нулевой линии. На линии PE относительно земли нет напряжения, поэтому нулевая защита металлического корпуса электрооборудования подключена к специальной линии защиты PE, которая является безопасной и надежной.

2) Рабочая нейтральная линия используется только как цепь однофазной осветительной нагрузки.

3) Специальная защитная линия PE не может разрывать линию и не может попасть в реле утечки.

4) Если устройство защиты от утечки на землю используется на линии L, рабочая нулевая линия не должна повторно заземляться, а линия PE имеет повторное заземление, но не проходит через устройство защиты от утечки на землю, поэтому устройство защиты от утечки также может быть установлен на линии L источника питания системы TN-S.

5) Система питания TN-S безопасна и надежна, подходит для систем электроснабжения низкого напряжения, таких как промышленные и гражданские здания. Перед началом строительных работ необходимо использовать систему электроснабжения TN-S.

Система электропитания TT ​​

Метод TT относится к системе защиты, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Все заземление нагрузки в системе ТТ называется защитным заземлением. Характеристики этой системы питания следующие.

1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.

2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.

3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.

В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.

Отделите линию PE новой добавленной специальной защитной линии от рабочей нулевой линии N, которая характеризуется:

1 Отсутствует электрическое соединение между общей линией заземления и рабочей нейтральной линией;

2 При нормальной работе рабочая нулевая линия может иметь ток, а линия специальной защиты не имеет тока;

3 Система TT подходит для мест с очень разрозненным защитным покрытием.

Система электропитания TN
Система электропитания

TN Этот тип системы электропитания представляет собой систему защиты, которая соединяет металлический корпус электрооборудования с рабочим нулевым проводом.Она называется системой нулевой защиты и представлена ​​TN. Его особенности заключаются в следующем.

1) После подачи питания на устройство система защиты от перехода через ноль может увеличить ток утечки до тока короткого замыкания. Этот ток в 5,3 раза больше, чем у системы ТТ. Фактически, это однофазное короткое замыкание, и предохранитель предохранителя перегорел. Расцепитель низковольтного выключателя немедленно сработает и отключится, что сделает неисправное устройство более безопасным и отключенным.

2) Система TN экономит материалы и человеко-часы и широко используется во многих странах и странах Китая. Это показывает, что система TT имеет много преимуществ. В системе питания с режимом TN он делится на TN-C и TN-S в зависимости от того, отделена ли линия защитного нуля от рабочей нулевой линии.

Принцип работы:

В системе TN открытые проводящие части всего электрического оборудования подключены к защитной линии и подключены к точке заземления источника питания.Эта точка заземления обычно является нейтральной точкой системы распределения электроэнергии. Система питания системы TN имеет одну точку, которая напрямую заземлена. Открытая электропроводящая часть электрического устройства подключается к этой точке через защитный провод. Система TN обычно представляет собой трехфазную сеть с заземленной нейтралью. Его особенностью является то, что открытая проводящая часть электрооборудования напрямую подключена к точке заземления системы. Когда происходит короткое замыкание, ток короткого замыкания представляет собой замкнутый контур, образованный металлической проволокой.Образуется металлическое однофазное короткое замыкание, приводящее к достаточно большому току короткого замыкания, чтобы защитное устройство могло надежно срабатывать для устранения повреждения. Если рабочая нейтральная линия (N) повторно заземляется, при коротком замыкании корпуса часть тока может быть отведена в точку повторного заземления, что может привести к сбою надежной работы защитного устройства или во избежание отказа, тем самым расширяя неисправность. В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE проложены отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.Поэтому самое важное, о чем мы заботимся, - это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N. Исходная линия - это линия N.Предполагаемый ток нейтрали разделяется линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением. По указанным выше причинам в соответствующих правилах четко указано, что нейтральная линия (т.е. линия N) не должна заземляться повторно, за исключением нейтральной точки источника питания.

IT-система

IT-система питания I показывает, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.

Система электроснабжения в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю по-прежнему невелик и не повредит баланс напряжения источника питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *