Содержание

Свойства электролитического конденсатора. Устройство и особенности.

Устройство и особенности электролитических конденсаторов

Главная особенность электролитических конденсаторов, наверняка, состоит в том, что они по сравнению с остальными обладают большой ёмкостью и довольно небольшими габаритами.

Широко распространённые алюминиевые конденсаторы по сравнению с другими имеют некоторые специфические свойства, которые следует учитывать при их использовании.

За счёт того, что алюминиевые обкладки электролитических конденсаторов скручивают для помещения в цилиндрический корпус, образуется индуктивность. Эта индуктивность во многих случаях нежелательна. Также алюминиевые электролитические конденсаторы обладают так называемым эквивалентным последовательным сопротивлением (ЭПС или на зарубежный манер, ESR). Чем ниже ESR конденсатора, тем он качественнее и более пригоден для работы в цепях, где требуется фильтрация высокочастотных пульсаций. Примером может служить рядовой импульсный блок питания компьютера или адаптер питания ноутбука.

В основном электролитические конденсаторы служат для сглаживания пульсаций тока в цепях выпрямителей переменного тока. Кроме этого они активно используются в звуковоспроизводящей технике для разделения пульсирующего тока (ток звуковой частоты + постоянная составляющая) на постоянную и переменную составляющую тока звуковой частоты, которая подаётся на следующий каскад усиления. Такие конденсаторы называют разделительными.

В практике ремонта можно встретить неисправность, когда разделительный конденсатор "высыхает", а, следовательно, теряет изначальную ёмкость. При этом он плохо разделяет ток звуковой частоты от пульсирующего и не пропускает звуковой сигнал на последующий каскад усиления. Амплитуда звукового сигнала в соответствующем каскаде усиления резко снижается либо вносятся существенные искажения. Поэтому при ремонте усилителей и прочей звуковоспроизводящей аппаратуры стоит внимательно проверять исправность разделительных электролитических конденсаторов.

В связи с тем, что электролитические конденсаторы имеют полярность, то при работе на их обкладках должно поддерживаться постоянное напряжение. Это является их недостатком. В результате их можно применять в цепях с пульсирующим или постоянным током.

Кроме алюминиевых электролитических конденсаторов в современной электронике легко обнаружить и танталовые. У них нет жидкого электролита, он у них твёрдотельный. Также танталовые конденсаторы имеют достаточно низкое ESR, благодаря чему активно применяются в высокочастотной электронике. Из минусов можно отметить высокую стоимость и низкое номинальное напряжение, обычно не превышающее 75V. Более подробно о танталовых конденсаторах я рассказывал здесь.

Устройство алюминиевого электролитического конденсатора.

Чтобы узнать, как устроены алюминиевые электролитические конденсаторы, давайте распотрошим одного из них. На фото показан разобранный экземпляр ёмкостью 470 мкФ и на номинальное напряжение 400V.

Взял я его из промышленного частотника. Надо сказать, весьма неплохой конденсатор с низким ESR.

Конденсатор состоит из двух тонких алюминиевых пластин, к которым крепятся выводы. Между алюминиевыми пластинами помещается бумага. Она служит диэлектриком. Но это ещё не всё. В данном случае получается обычный бумажный конденсатор с малой ёмкостью.

Для того чтобы получить большую ёмкость и уменьшить размеры готового прибора, бумагу пропитывают электролитом. На фотках можно разглядеть желтоватый электролит на дне алюминиевого стакана.

Далее, пропитанную электролитом бумагу помещают между алюминиевыми обкладками. В результате электрохимических процессов алюминиевая фольга окисляется под действием электролита. На поверхности фольги образуется тонкий слой окисла – оксида алюминия (Al2O3). На вид можно легко определить сторону обкладки с тонким слоем окисла - она темнее.

Оксид алюминия является отличным диэлектриком и обладает свойством односторонней проводимости. Поэтому электролитические конденсаторы полярны и способны работать лишь в цепях с пульсирующим, либо постоянным током.

А что будет, если на электролитический конденсатор подать напряжение обратной полярности?

Если так произойдёт, то начнётся бурная электрохимическая реакция, которая сопровождается сильным нагревом. Электролит моментально вскипает и конденсатор "бабахает". Именно поэтому при установке такого конденсатора в схему нужно строго соблюдать полярность его включения.

Кроме оксида алюминия (Al2O3), благодаря которому удаётся изготавливать конденсаторы с большой электрической ёмкостью, применяются и другие уловки, чтобы увеличить ёмкость и уменьшить размеры готового изделия. Известно, что ёмкость зависит не только от толщины слоя диэлектрика, но и от площади обкладок. Чтобы её увеличить применяют метод травления, аналогичный тому, что используют в своей практике радиолюбители для изготовления печатных плат. На поверхности алюминиевой обкладки вытравливают канавки. Размеры этих канавок малы и их очень много. За счёт этого активная площадь обкладки увеличивается, а, следовательно, и ёмкость.

Если присмотреться, то на алюминиевой обкладке можно заметить еле заметные полоски, наподобие дорожек на грампластинке. Это и есть те самые канавки.

В неполярных электролитических конденсаторах окисляются обе алюминиевые обкладки. В результате он становиться неполярным.

Особенности применения электролитических конденсаторов.

Нетрудно заметить, что на верхней части цилиндрического корпуса у большинства радиальных электролитических конденсаторов нанесена защитная насечка - клапан.

Дело в том, что если на электролит воздействует переменное напряжение, то конденсатор сильно разогревается и жидкий электролит начинает испаряться, давить на стенки корпуса. Из-за этого он может "хлопнуть". Поэтому на корпусе и наноситься защитный клапан, чтобы под действием избыточного давления он открылся и предотвратил "взрыв" конденсатора, выпустив закипающий электролит наружу.


"Взорвавшийся" электролитический конденсатор

Отсюда исходит правило, которое необходимо учитывать при самостоятельном конструировании электроники и ремонте радиоаппаратуры. При диагностике неисправности, а также при первом включении конструируемого или ремонтируемого аппарата, необходимо держаться на расстоянии от электролитических конденсаторов. В случае если при сборке в схеме была допущена ошибка, приводящая к завышению предельного рабочего напряжения конденсатора, либо воздействию на него переменного тока, конденсатор нагреется и "хлопнет". При этом сработает защитный клапан, и электролит под давлением рванёт наружу.

Нельзя допускать, чтобы электролит попадал на кожу и тем более в глаза!

Выход из строя электролитического конденсатора не редкость. По внешнему виду можно сразу определить его неисправность. Вот лишь несколько примеров. Все эти конденсаторы пострадали из-за превышения допустимого напряжения.

Автомобильный усилитель. Как видим, "хлопнула" целая грядка электролитов во входном фильтре. Видимо на усилитель подали 24V вместо положенных 12.

Далее - жертва "сетевой атаки". В электросети 220V резко подскочило напряжение из-за обледенения вводов. Как результат, полная неработоспособность блока питания ноутбука. Кондик просто испустил пар. Насечка на корпусе вскрылась.

Маленькое отступление.

Помнится, в студенческую пору была распространена известная забава. Брался электролитический конденсатор, к его выводам подпаивались проводки и в таком виде конденсатор кратковременно подключался к розетке электроосветительной сети 220 Вольт. Он заряжался, накапливая заряд. Далее, ради "прикола" выводами кондёра касались руки ни в чем не подозревающего человека. Тот, естественно, ничего не подозревает и его дёргает небольшой электрический удар. Так вот,

делать это крайне опасно!

Как сейчас помню, когда перед началом практики старший мастер строго запретил данную забаву, аргументировав это тем, что был случай, когда парнишке сильно повредило кисть руки, когда тот решил "зарядить" электролитический конденсатор от розетки 220 В. Конденсатор, не выдержав поданного переменного напряжения, взорвался в его руке!

Электролитический конденсатор может выдержать несколько "экспериментальных" попыток заряда от электросети, но может и хлопнуть в любой момент. Всё зависит как от конструкции конденсатора, так и от приложенного напряжения. Данная информация приведена лишь с целью предупредить о крайней опасности таких экспериментов, которые могут закончиться печально.

При ремонте радиоаппаратуры не стоит забывать о том, что после выключения прибора электролитические конденсаторы некоторое время сохраняют электрический заряд. Перед проведением работ их необходимо разряжать. Особенно это стоит учитывать при ремонте всевозможных импульсных блоков питания и выпрямителей, электролитические конденсаторы в которых имеют значительную ёмкость и рабочее напряжение, достигающее 100 – 400 вольт.

Если нечаянно коснуться его выводов, то можно получить неприятный электрический удар. Иногда после таких случаев можно заметить лёгкий ожог кожного покрова в месте касания электродов. О том, как разрядить конденсатор перед проведением работ или измерений уже упоминалось в статье как проверить конденсатор.


Мощные электролитические конденсаторы ёмкостью 10000 мкФ. в блоке питания усилителя Marantz

При использовании электролитических конденсаторов стоит помнить, что рабочее напряжение на них должно соответствовать 80% от номинального рабочего напряжения. Это правило стоит учитывать, если вы хотите обеспечить долгую и стабильную работу конденсатора. Так, если в схеме на конденсатор будет действовать напряжение в 50 вольт, то его стоит выбирать на рабочее напряжение 63 вольта или более. Если установить конденсатор с меньшим рабочим напряжением, то он скоро выйдет из строя.

Как и у любой другой радиодетали, у электролитического конденсатора есть допустимый диапазон рабочей температуры. На его корпусе обычно указывается верхний порог, например +85 или +105.

Для разных моделей конденсаторов диапазон рабочей температуры может простираться от -60 до +850C. Или же от -25 до +1050С. Более конкретно узнать допустимый диапазон температур для конкретного изделия можно из документации на него.

Поскольку в электролитических конденсаторах присутствует жидкий электролит, то он со временем высыхает. При этом теряется его ёмкость. Именно поэтому их не рекомендуется размещать рядом с сильно нагревающимися элементами, например, радиаторами охлаждения или же в плохо вентилируемом корпусе.

Стоит отметить тот факт, что электролиты - это ахиллесова пята любой электроники. По своему опыту скажу, что это одна из самых ненадёжных, некачественных и, при этом, дорогих деталей. Качество во многом зависит от производителя. Но это уже другой разговор.

Кроме электролитических конденсаторов в аппаратуре можно встретить и другой элемент, который обладает куда большей ёмкостью и меньшими габаритами, чем классический электролит. Это - ионистор.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

go-radio.ru

Как работает конденсатор. Емкость конденсатора. — МикроПрогер

Конденсатор — полупроводник, состоящий из двух обкладок, диэлектрика между ними и двумя выводами на обкладках.

 

Основная характеристика — емкость (C), измеряется в Фарадах.

Формула емкости конденсатора

Формула емкости конденсатора показывает какое количество заряда способен «вместить» в себя конденсатор при текущем напряжении(потенциале) между его обкладками. Емкость зависит от диэлектрической проницаемости, размеров и формы конденсатора.

 

Работа конденсатора

 

В схемах постоянного тока один вывод конденсатора стыкуется к земле(точка 4, 0V), второй к тому месту в схеме(точка 1, 5V), где требуется, собственно,

работа конденсатора.

 

Цикл полной зарядки и разрядки конденсатора

Рассмотрим цикл полной зарядки и полной разрядки конденсатора.

Заряд конденсатора

При возникновении тока в схеме(на рисунке выше), ток через конденсатор не течет, но обкладки конденсатора заряжаются(в точке 2 на обкладке конденсатора скапливается электрический заряд) и ток течет от точки 1 к обкладке 2. Заряд достигает определенного уровня(зависит от характеристик конденсатора и напряжения в цепи) и после этого ток от точки 1 до точки 2 перестает течь.

Разрядка конденсатора

Как только напряжение 5V в цепи пропадает, происходит разрядка конденсатора, ток начинает течь обратно от точки 2 на обкладке конденсатора к точке 1, стараясь поддерживать напряжение в цепи. Затем конденсатор полностью разряжается ток перестает течь.

 

Стабилизация напряжения

Практическое применение этого свойства конденсатора заключается в поддерживании стабильности напряжения в цепи в точке 1. Как только напряжение становится чуть ниже 5V, конденсатор начинает отдавать свой накопленный заряд. Как только напряжение стабилизируется, становится равным 5V, конденсатор вновь начинает заряжаться.

 

Свойство накапливать и отдавать заряд используется во многих схемах электронной и аналоговой аппаратуры. На основе конденсатора изготавливаются следующие основные элементы схем:

  • Фильтр.  Используется в радиоэлектронной аппаратуре, акустических системах, в самых различных аналоговых и электронных устройствах. Допустим, у нас есть линия(5V), соединяющая два устройства — источник звукового сигнала и усилитель(который подает звуковой сигнал на динамики). Допустим, сигнал 5V приходит с определенной частотой, не превышающей 20кГц, длина одного импульса равна 2мс. Но на линию передачи влияют помехи и из-за помех в линии постоянно появляются импульсы напряжением 5V, но кратковременные — например, длительностью не более 10мкс. Чтобы в колонки не проходили эти импульсы помех(и мы не слышали посторонних звуков из динамиков), мы встраиваем в схему между усилителем и источником сигнала конденсатор, рассчитанный на время заряда при 5V более 10мкс, но намного меньше 2мс. Конденсатор будет заряжаться импульсами помех(брать их на себя, то есть фильтровать) и эти импульсы не будут проходить в усилитель. Так же он будет отбирать часть полезного сигнала, но так как время его зарядки намного меньше 2мс, то его влияния мы не заметим.
  • Выпрямитель напряжения. При выпрямлении переменного напряжения используется диодный мост. Диодный мост попеременно пропускает напряжение, подавая его на одну общую линию. Но в момент перепада переменного напряжения происходит пропадание тока в цепи. И в итоге вместо +-5V переменки у нас получается постоянное напряжение, изменяющееся от 0 до +5V. Чтобы этих колебаний не происходило, опять же, встраиваем после диодного моста конденсатор. Он будет заряжаться и отдавать ток в моменты перепада и пропадания напряжения на общем выводе
  • Генераторы импульсов и таймеры. Обычно в таких устройствах конденсатор применяется вместе с катушкой индуктивности. Вместе они составляют колебательный контур, основанный на свойствах конденсатора копить и отдавать заряд и на свойствах катушки копить и отдавать магнитную составляющую тока. Они работают в паре. Конденсатор заряжается и разряжается определенное время, зависящее от характеристик конденсатора. Подобрав нужные конденсаторы, можно рассчитать время разряда и заряда каждого из них и, исходя из этого, собрать целый таймер или генератор импульсов определенной длины и частоты.

 

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Автор публикации

не в сети 3 недели

wandrys

877 Комментарии: 0Публикации: 31Регистрация: 17-03-2016

micro-proger.ru

Виды конденсаторов. Устройство и особенности. Параметры и работа

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению:
  • Общего назначения. Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные. Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости:
  • Постоянной емкости. Не имеют возможности изменения емкости.
  • Переменной емкости. Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами, от температуры – термоконденсаторами.
Способу защиты:
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа:
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки, имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика:

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжения в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой тока и напряжения.
Форме пластин:
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности:
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.
Конструктивные особенности
Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов:
  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры:
  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры:
  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Похожие темы:

electrosam.ru

Принцип работы конденсатора | Бакарабан

В одной из статей мы поговорили о том, что такое конденсатор. Сейчас же хочется рассказать, как он работает и где используется.

Емкость

По своей сути, конденсатор – пассивный элемент электрической цепи, обладающий способностью накапливать электрический заряд и энергию. Мера этой способности – емкость, чем она выше тем больше энергии способен накопить конденсатор и освободить в дальнейшем.

Емкость измеряется в Фарадах (Ф = [Кл/В] = [А · с / В]), где А – сила тока, с – время, В — напряжение. Аккумулятор также имеет накопленный заряд, но конденсатор разряжается практически мгновенно, а аккумулятор – постепенно.

Типы соединения

 

Чтобы в цепи получить большую емкость, конденсаторы соединяют параллельно. Общая емкость будет равна С=С1+С2+…+Сn.  Такой тип нужен для устройств, которым требуется повышенный кратковременный заряд энергии, например, для запуска.

Если же их соединить последовательно, то общая емкость будет равна С = 1/С1+1/С2+…+1/Сn, то есть емкость минимальна, что позволяет исключить пробоя (сгорания конденсатора) при высоком напряжении. Последовательное соединение используют не так часто, как параллельное, так как сейчас можно найти конденсаторы очень малой емкости, работающих при повышенном напряжении, а такое соединение только усложнит цепь.

Существует также смешанный тип соединения, в зависимости от расположения и количества элементов, расчетная формула меняется.

Из чего состоит

Площадь пластины A должна быть намного больше расстояния d

В простейшем случае конденсатор состоит из двух обкладок и диэлектрика, который расположен между ними, но, в основном, это многослойное устройство.

В качестве диэлектрика в нем используются:

  • Воздух
  • Керамика
  • Слюда
  • Бумага
  • Стекло
  • Вакуум

 

Виды конденсаторов

  • Бумажные конденсаторы
бумажный конденсатор
  • Электролитические конденсаторы
    • Алюминиевые
    • Танталовые
электролитический конденсаторполимерный конденсатор
  • Конденсатор переменной емкости
Конденсатор переменной емкостиконденсатор пленочныйконденсатор керамический

Принцип действия

Чтобы зарядить конденсатор, нужно подключить его обкладки к источнику тока, из-за того, что между пластинами конденсатора находиться диэлектрик, который не позволяет перейти разноименным зарядам на противоположную сторону, на одной пластине будут накапливаться положительные ионы, а на другой – отрицательные электроны.

 

Ток будет течь по проводнику до тех пор, пока на обкладках будет «место» для частиц, то есть пока не кончится емкость, в то же время будет расти напряжение.

В итоге, на двух пластинах будет заряд одинаковым по модулю, но разным по знаку. По мере заполнения обкладок, ток будет уменьшаться. После того, как конденсатор зарядился, его можно подключить к потребителю, например, к лампочке, будет резкая разрядка (электроны с одной пластины, устремятся к ионам на другой), лампа на короткое время загорится (это используется в фотоаппаратах, в качестве вспышки).

Ток будет течь по проводнику до тех пор, пока на обкладках есть разность потенциалов, то есть пока заряды на двух пластинах не станут одинаковыми по знаку, в то же время будет падать напряжение.

Хочется добавить, что это упрощенный разбор без углубления в расчеты, без различных формул, но для понимания принципа работы конденсатора эта статья будет полезна.

Спасибо за внимание!

 

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

bakaraban.ru

Работа конденсатора. Чем пусковой конденсатор отличается от рабочего: описание и сравнение

$direct1

Чем пусковой конденсатор отличается от рабочего: описание и сравнение

Конденсатор – электронный компонент, предназначенный для накопления электрической энергии. По характеру работы он относится к пассивным элементам. В зависимости от режима работы, в которой работает элемент, различают конденсаторы постоянной емкости и переменной (как вариант — подстроечные). По виду рабочего напряжения: полярные – для работы при определенной полярности подключения, неполярные – могут использоваться как в цепи переменного, так и постоянного тока. При параллельном соединении результирующая емкость суммируется. Это важно знать при подборе необходимой емкости для электрической цепи.

Для  запуска и работы асинхронных двигателей в однофазной цепи переменного тока используют конденсаторы:

  • Пусковые.
  • Рабочие.

Пусковой конденсатор предназначен для кратковременной работы – запуск двигателя. После выхода двигателя на рабочую частоту и мощность пусковой конденсатор отключают. Далее работа происходит без участия данного элемента. Это необходимо для определенных двигателей, схема работы которого предусматривает режим запуска, а так же для обычных двигателей, у которых в момент запуска присутствует нагрузка на валу, препятствующая свободному вращению ротора.

Схема подключения пускового конденсатора  к асинхронному двигателю

Для запуска двигателя используют кнопку Кн1, которая коммутирует пусковой конденсатор С1 на время, необходимое для выхода электродвигателя на необходимую мощность и обороты. После этого конденсатор С1 отключают и мотор работает за счет сдвига фаз в рабочих обмотках. Рабочее напряжение такого конденсатора необходимо выбирать с учетом коофициента 1,15, т.е. для сети 220 В рабочее напряжение конденсатора должно быть 220*1,15= 250 В. Емкость пускового конденсатора можно рассчитать по исходным параметрам электродвигателя.

Рабочий конденсатор

Рабочий конденсатор подключен к цепи все время и выполняет функцию фазосдвигающей цепи для обмоток электродвигателя. Для уверенной работы такого двигателя необходимо рассчитать параметры рабочего конденсатора. В связи с тем, что конденсатор и обмотка электродвигателя создают колебательный контур, в момент перехода из одной фазы цикла в другую на конденсаторе возникает повышенное напряжение, превышающее напряжение питания.

Под действием этого напряжения конденсатор находится постоянно и при выборе его номинала необходимо учесть этот фактор. В расчетах напряжения рабочего конденсатора берут коофициент 2,5-3. Для сети 220 В напряжение рабочего конденсатора должно быть 550-600 В. Это обеспечит необходимый запас по напряжению в процессе работы.

При определении емкости этого элемента в расчет берут мощность двигателя и схему соединения обмоток.

Различают два вида соединения обмоток трехфазного двигателя:

  1. Треугольник.
  2. Звезда.

Для каждого из этих способов соединения свой расчет.

Треугольник: Ср=4800*Ip/Up.

Пример: для двигателя мощностью 1 кВт – ток составляет примерно 5А, напряжение 220 В. Ср = 4800*5/220. Емкость рабочего конденсатора составит 109 мФ. Округлить до ближайшего целого – 110 мФ.

Звезда: Ср=2800*Ip/Up.

Пример: двигатель 1000 Вт – ток составляет  примерно 5 А, напряжение 220 В. Ср=2800*5/220. Емкость рабочего конденсатора составит 63,6 мФ. Округлить до ближайшего целого – 65 мФ.

Из расчетов видно, что способ соединения обмоток очень сильно влияет на величину рабочего конденсатора.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

РАБОЧИЙПУСКОВОЙ
Где применяетсяВ цепи рабочих обмоток асинхронного двигателяВ пусковой цепи
Выполняемые функцииСоздание вращающегося электромагнитного поля для работы электромотораСдвиг фаз между пусковой и рабочей обмоткой, запуск двигателя под нагрузкой
Время работыОт включения до окончания работыВо время запуска до выхода на нужный режим.
Тип конденсатораМБГО, МБГЧ и подобные нужного номинала и напряжения 1,15 выше питающегоМБГО, МБГЧ и подобные нужного номинала и на рабочее напряжение в 2-3 раза превышающее напряжение питания

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы.

Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные.

Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды. Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц

10i5.ru

Работа конденсатора - Справочник химика 21

    Прямотрубные конденсаторы с естественной циркуляцией широко применяют в крупных отечественных воздухоразделительных установках. Их выполняют в виде вертикального прямотрубного аппарата (рис. 4), состоящего из трубных решеток, наружной обечайки, крышек и трубок длиной около 3 м. Жидкий кислород подается в нижнюю часть конденсатора и поступает в трубки, где он кипит, частично испаряется и с паром поступает на верхнюю трубную решетку, откуда стекает вниз по имеющейся в конденсаторе центральной трубе. При нормальной работе конденсаторов этого типа количество жидкости, циркулирующей в конденсаторе, зна- [c.13]
    Показатели работы конденсаторов II холодильников [c.130]

    Число ходов в скобках соответствует работе конденсатора с возвратной водой. [c.170]

    В самом начале при экспериментальной проверке работы конденсатора значения температуры воды оказались ниже требуемых технологическим регламентом, и параметры потоков воды и конденсаторов имели следующие значения расход воды на входе 163 000 кг/ч при 26 °С температура воды на выходе 35 °С расход конденсата 2840 кг/ч при 94 °С. Экспериментально измеренный К равен только 140, несмотря на то, что скорость воды приблизительно в 2,5 раза выше требуемой технологическим регламентом. Хотя количество конденсируемого пара превышает проектное, давление в системе слишком высоко, следовательно, конденсатор не отвечает запроектированной расчетной мощности при летних температурах охлаждающей воды. [c.83]

    Чтобы определить причины отказа или неисправности в работе конденсатора, предположим, что поверхность теплопередачи не имеет загрязнений, и подсчитаем, какой длины должны быть трубы, соответствующие наблюдаемым условиям работы конденсатора. Коэффициенты теплоотдачи а = 2210 Вт/(м Х ХК), а, = 704 Вт/(м2-К). [c.83]

    При осушке газа конденсатор газа регенерации служит лишь для того, чтобы удалить десорбированную жидкость из потока газа. В процессе КЦА показатели работы конденсатора определяют эффективность всего процесса [c.257]

    Авторами данного учебного пособия использовался другой, более гибкий подход, в котором любая нестандартная спецификация, какая бы она ни была, прибавлялась в качестве дополнительного уравнения в конец стандартной системы. Согласно каждому такому дополнению, одна из стандартных спецификационных переменных рассматривается как дополнительная неизвестная. Исключение составляют уравнения для определения флегмового числа и температуры точки кипения, которые являются стандартными для описания режима работы конденсатора. [c.252]

    Поскольку единичная мощность установленных паровых турбин в крупнотоннажных производствах достигает 30 МВт, становится очевидным какую роль играют показатели работы конденсатора в обеспечении оптимального режима работы технологических установок. [c.133]


    Зависимость коэффициентов вн и Кф от паровой нагрузки АВО определяется условиями совместной работы конденсатора [c.137]

    Основным условием правильного определения предельной температуры атмосферного воздуха, до которой обеспечивается устойчивая совместная работа конденсаторов, является равенство абсолютных значений AQ. В нашем примере объединение коллекторов позволяет всей системе работать в оптимальных условиях до ii = 25,6 °С. [c.141]

    Режим работы воздушных холодильников технологических сред во многом отличается от режима работы конденсаторов. Основное отличие состоит в том, что при охлаждении необходимо поддерживать определенное значение температуры продукта на выходе из АВО /вых при постоянных расходах охлаждаемого потока. Возможны две схемы рабочего процесса когда охлаждаемая среда с температурой tex возвращается в АВО и когда среда не возвращается в АВО (например, готовая продукция). При охлаждении обращаемого технологического продукта любые причины, вызывающие увеличение температуры вых сверх регламентированной, приводят к нарушению режима работы установки и повышению температуры продукта на входе в АВО. Повышение температур i вх и вых Продолжается до уровня, при котором наступает равновесное состояние. [c.143]

    Тепловой расчет конденсатора смешения. Для проверки тепловой работы конденсатора рассчитаем число тарелок и высоту конденсатора. Примем предварительно число тарелок и расстояние между ними по рис. 73. Расчет должен показать, что при принятых числе тарелок н расстоянии между ними вычисленное количество охлаждающей воды должно нагреться до заданной температуры (51,9°С). Найдем изменение темпе- [c.249]

    Давление в емкости орошения поддерживается регулирующим клапаном, установленным на выходе паров из емкости орошения. Раздельное регулирование давления в колонне и в рефлюксной емкости обеспечивает работу конденсатора-холодильника в по- [c.203]

    На эффективность процесса Клауса влияют состав кислого газа, температура процесса, давление, время контакта, эффективность катализаторов и эффективность работы конденсаторов серы. [c.95]

    Абсолютное давление в верхней колонне поддерживается в пределах 0,14 - 0,16 МПа, что соответствует температуре кипения кислорода 366 °С. В нижней колонне при абсолютном давлении 0,59 МПа температура кипения азота составляет 371 °С. Таким образом, разность температур конденсирующегося азота и кипящего кислорода, необходимая для работы конденсатора, составляет около 5 °С. [c.147]

    С. Конденсаторы. Гравитационная сепарация жидкости и пара играет важную роль и в обеспечении работы конденсаторов, конструкции которых также весьма многообразны и в большой степени определяются отношением количества конденсирующегося и неконденсирующегося компонентов в потоке охлаждаемой жидкости. [c.12]

    В табл. 9 приведены основные данные о размерах и технологическом режиме работы конденсаторов и холодильников, применяемых на установке. [c.178]

    Прекращение подачи воды на установку прежде всего вызовет остановку печных насосов, работающих с водяным охлаждением, поэтому установку останавливают в аварийном порядке. Кроме того, нарушится нормальная работа конденсаторов и холодильников и

www.chem21.info

это что за устройство? Заряд конденсатора :: SYL.ru

В электрической цепи каждого прибора есть такой элемент, как конденсатор. Это он служит для наполнения энергией, которая нужна для правильной и бесперебойной работы оборудования.

Что такое конденсатор

Каждый конденсатор - это устройство, обладающее набором технических параметров, которые стоит рассмотреть детально.

Конденсаторы можно встретить во многих отраслях электротехники. Их непосредственная область применения:

  • Создание цепей, колебательных контуров.
  • Получение импульса с большим количеством мощности.
  • В промышленной электротехнике.
  • В изготовлении датчиков.
  • Усовершенствование работы защитных устройств.

Емкость конденсатора

Для каждого конденсатора главный параметр – это его емкость. У каждого устройства она своя и измеряется она в Фарадах. В основе электроники и радиотехники используют конденсаторы с миллионной долей Фарад. Чтобы узнать номинальную емкость устройства, достаточно просмотреть его корпус, на котором имеется вся информация. Показания емкости могут изменяться из-за следующих параметров:

  • Общая площадь всех обкладок.
  • Расстояние между ними.
  • Материал, из которого сделан диэлектрик.
  • Температура окружающей среды.

Наряду с номинальной емкостью существует еще и реальная. Ее значение намного ниже предыдущей. По реальной емкости можно определить основные электрические параметры. Емкость определяют от заряда обкладки и ее напряжения. Максимальная емкость может достигать нескольких десятков Фарад. Конденсатор может также быть охарактеризован удельной емкостью. Это отношение емкости и объема диэлектрика. Маленькая толщина диэлектрика обеспечивает большое значение удельной емкости. Каждый конденсатор может изменять свою емкость, и делятся они на следующие типы:

  • Постоянные конденсаторы – они практически не меняют свою емкость.
  • Переменные конденсаторы – значение емкости изменяется в ходе работы оборудования.
  • Подстроечные конденсаторы – изменяют свою емкость от регулировки аппаратуры.

Напряжение конденсатора

Напряжение считается еще одним из важных параметров. Чтобы конденсатор выполнял свои функции в полном объеме, нужно знать точное показание напряжения. Оно указывается на корпусе устройства. Номинальное напряжение напрямую зависит от сложности конструкции конденсатора и основных свойств материалов, используемых при его изготовлении. Напряжение, подаваемое на конденсатор, должно полностью совпадать с номинальным. Многие устройства при работе нагреваются, в таком случае напряжение понижается. Часто из-за большой разницы в напряжениях конденсатор может перегореть или взорваться. Также это происходит из-за утечки или повышения сопротивления. Для безопасной работы конденсатора его оснащают защитным клапаном и насечкой на корпусе. Как только происходит увеличение давления, клапан автоматически открывается, и по намеченной насечке корпус ломается. Из конденсатора в таком случае электролит выходит в виде газа и не происходит никакого взрыва.

Допуски конденсаторов

Самый простой конденсатор – это два электрода, сделанные в форме пластин, которые разделяются тонкими изоляторами. Каждое устройство имеет отклонение, которое допустимо при его работе. Эту величину также можно узнать по маркировке устройства. Его допуск измеряется и указывается в процентном соотношении и может лежать в пределах от 20 до 30%. Для электротехники, которая должна работать с высокой точностью, можно использовать конденсаторы с маленьким значением допуска, не больше 1%.
Приведенные параметры являются основными для работы конденсатора. Зная их значения, можно использовать конденсаторы для самостоятельной сборки аппаратов или машин.

Виды конденсаторов

Существует несколько основных видов конденсаторов, которые используют в различной технике. Итак, стоит рассмотреть каждый вид, его описания и свойства:

  1. Конденсаторы электролитические. Устройства такого типа обладают большой емкостью. Выпускаются компактного размера и небольшого веса. Обкладки в количестве двух штук сделаны из фольги и тонкого слоя материи, пропитанной электролитом. Это позволяет служить хорошим проводником. Конденсаторы электролитические имеют два вывода: положительный и отрицательный. Обязательное условие правильного подключения – это соблюдение полярности.
  2. Конденсаторы из бумаги или пластика. Изготавливаются, как правило, в виде рулона, сделанного из фольги с диэлектриком. Чаще всего в схемах используют пластиковые устройства, так как они обладают большим сопротивлением, чем бумажные. Выпускаются такие конденсаторы небольших размеров и малого веса. Устройства могут быть низковольтными и высоковольтными.
  3. Конденсаторы дисковые из керамики. Дешевые аналоги устройств, которые обладают высокой выносливостью и надежностью. Конденсатор МКФ встречается в каждой электронной схеме. Подходят такие типы для работы в приборах с сигналами, которые изменяют полярность. Многослойный керамический конденсатор работает только на высоких частотах. Только такие устройства обладают низкой потерей тока, компактными размерами, маленьким весом и невысокой стоимостью.
  4. Конденсатор переменный. Выпускается различной формы и размера. При установке такого устройства требуется только опытный специалист, который разбирается в подобных конденсаторах. Выпускается в виде навесного и печатного монтажа, а также для микросхем и микромодулей.
  5. Конденсатор вакуумный. Диэлектриком является сам вакуум. Его электроды помещены в стеклянный корпус с вакуумом.
  6. Конденсаторы с газообразными диэлектриками. К ним относятся устройства с воздушными или газонаполненными диэлектриками.
  7. Конденсатор с жидким диэлектриком. Как правило, это органические жидкости, к которым относятся кремний или совол, а также минеральные и нефтяные масла.
  8. Конденсаторы со стеклянным, смоляным, комбинированным диэлектриком. Они подразделяются на три подгруппы: низковольтные, высоковольтные и помехоподавляющие. Его обкладка изготавливается из тонкого слоя металла, который наносится на диэлектрик в виде тонкой фольги.

У каждого конденсатора свое предназначение, поэтому их дополнительно классифицируют на общие и специальные. Общие конденсаторы применяют в любых видах и классах аппаратуры. В основном это низковольтные устройства. Специальные конденсаторы – это все остальные виды устройств, которые являются высоковольтными, импульсными, пусковыми и другими различными видами.

Особенности плоского конденсатора

Так как конденсатор – это устройство, предназначенное для накопления напряжения и его дальнейшего распределения, поэтому нужно выбирать его с хорошей электроемкостью и «пробивным» напряжением. Одним из таких является плоский конденсатор. Выпускается он в виде двух тонких пластин определенной площади, которые расположены на близком расстоянии друг от друга. Плоский конденсатор обладает двумя зарядами: положительным и отрицательным.

Пластины плоского конденсатора между собой имеют однородное электрическое поле. Этот тип устройства не вступает во взаимодействие с другими приборами. Пластина конденсатора способна усиливать электрическое поле.

Правильный заряд конденсатора

Он является хранилищем для электрических зарядов, которые должны постоянно заряжаться. Заряд конденсатора происходит за счет подключения его к сети. Чтобы зарядить устройство, нужно правильно подсоединить его. Для этого берут цепь, которая состоит из разряженного конденсатора с емкостью, резистором, и подключают к питанию с постоянным напряжением.

Разряжается конденсатор по следующему типу: замыкают ключ, и пластины его соединяются между собой. В это время конденсатор разряжается, и между его пластинами исчезает электрическое поле. Если конденсатор разряжается через провода, то на это уйдет много времени, так как в них накапливается много энергии.

Зачем нужен контур конденсатора

В контурах находятся конденсаторы, которые изготавливаются из пары пластин. Для их изготовления берут алюминий или латунь. Хорошая работа радиотехники зависит от правильной настройки контуров. Самая обычная цепь контура состоит из одной катушки и конденсатора, которые между собой замкнуты в электрическую цепь. Есть условия, которые влияют на появление колебаний, поэтому чаще всего контур конденсатора называют колебательным.

Заключение

Конденсатор – это пассивное устройство в электрической цепи, которое используется в качестве емкости для хранения электричества. Чтобы средство для накопления энергии в электрических цепях, именуемое конденсатором, проработало долго, нужно следовать указанным условиям, которые прописаны на корпусе устройства. Область применения широкая. Используют конденсаторы в радиоэлектронике и различной аппаратуре. Подразделяются устройства на много разных видов и выпускаются многообразной конструкцией. Конденсаторы могут соединяться двумя видами: параллельным и последовательным. Также на корпусе устройства есть информация о емкости, напряжении, допуске и его типе. Стоит запомнить, что при подключении конденсатора стоит соблюдать полярность. В противном случае устройство быстро выйдет из строя.

www.syl.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *