Содержание

Пульсирующий воздушно-реактивный двигатель – это… Что такое Пульсирующий воздушно-реактивный двигатель?

Пульсирующий воздушно-реактивный двигатель

Пульсирующий воздушно-реактивный двигатель — Вариант Воздушно-реактивного двигателя. В ПуВРД используется камера сгорания с входными клапанами и длинное цилиндрическое выходное сопло. Горючее и воздух подаются периодически.

Цикл работы ПуВРД состоит из следующих фаз:

  • Клапаны открываются и в камеру сгорания поступает воздух и топливо, образуется воздушно-топливная смесь.
  • Смесь поджигается с помощью искры свечи зажигания. Образовавшееся избыточное давление закрывает клапан.
  • Горячие продукты сгорания выходят через сопло создавая реактивную тягу и технический вакуум в камере сгорания.

История

Первые патенты на пульсирующий воздушно-реактивный двигатель (ПуВРД) были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия)[1]. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), Результаты этих разработок заинтересовали США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Пульсирующий воздушно-реактивный двигатель обладает большим удельным импульсом по сравнению с ракетными двигателями, но уступает по этому показателю турбореактивным двигателям. Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с. Когда появились компактные ядерные заряды, уже была отработана конструкция более эффективных турбореактивных двигателей. Поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Представители ракет «воздух-поверхность» с пульсирующим воздушно-реактивным двигателем.

  • Fi-103
  • 10Х · 14Х · 16Х – Благодаря использованию двух двигателей был достигнут практический предел скорости полета для ПуВРД — 980км/ч (270 м/с).
  • JB-2

Принцип действия и устройство ПуВРД

Изготовление авиамодели с ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей.[2]

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра[3]. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; за ней — камера сгорания; 4 — выходное (реактивное) сопло.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

Фау-1 Файл:Verpuffungsstrahltriebwerk.jpg гибкие прямоугольные клапанные пластинки

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды — малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламененяется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме
    , ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи — поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска[4]).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла.

[5] Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.

ПуВРД – Пульсирующий воздушно-реактивный двигатель, ТРД – Турбореактивный двигатель, ПВРД – Прямоточный воздушно-реактивный двигатель, ГПВРД – Гиперзвуковой прямоточный воздушно-реактивный двигатель Двигатели характеризуют рядом параметров:

  • удельная тяга – отношение создаваемой двигателем тяги к массовому расходу топлива;
  • удельная тяга по весу — отношение тяги двигателя к весу двигателя.

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полета – высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

ХарактеристикаРДТТЖРДПуВРДТРДПВРДГПВРД
Рабочий диапазон скоростей, число Махане ограничен0.3-0.80-31.5-5>5
Удельная тяга, м/с2000-30002000-4000~700015000-30000
Удельная тяга по весунет~100~10

Другие пульсирующие ВРД

Бесклапанный ПуВРД Образцы бесклапанных (U-образных) ПуВРД[6].

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД, иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД — их низкой долговечности (на самолёте-снаряде Фау-1 клапана прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).
  • Детонационные ПуВРД. (англоязычное название PDE) В этих двигателях горение топливной смеси происходит в режиме детонации (в отличие от дефлаграции, которая имеет место при горении топливно-воздушных смесей во всех ВРД, рассмотренных выше). Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно (до значений свыше 100 ат), таким образом имеет место изохорический (при постоянном объёме) нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.
    Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента[7].
Детонационный ПуВРД

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД — следствие неполного сгорания топлива в камере.

Испытания американского Мустанга P-51 с ПуВРД

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД (при закрытом клапане резко возрастает лобовое сопротивление ПуВРД и на околозвуковых скоростях оно «съедает» почти всю тягу, создаваемую этим двигателем).

Самодельный двигатель из нержавеющей стали

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД — беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,— летающие мишени, беспилотные разведчики.[8] По тем же причинам, двигатель также применяется в авиамоделизме[9] .

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне.

благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть). [10]

Примечания

  1. Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
  2. Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
  3. Устройство и работу серийного клапанного ПуВРД модели «ДайнаДжет» можно подробно увидеть в видеофильме.
  4. См. видео о запуске V-1 с катапульты.
  5. ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
  6. Иллюстрированное описание нескольких конструкций бесклапанных ПуВРД (на английском)
  7. Видеозаписи испытаний экспериментальных детонационных ПуВРД.
  8. Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
  9. Рольф Вилле “Постройка летающих моделей-копий”, перевод с немецкого В.Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille “Flufahige, vorbildgetrene Nachbauten”, Transpress VEB Verlag fur Verkehrswessen), ББК 75.725, глава 9 “Размещение двигателя на модели” страницы 114-118
  10. В России изготовлением беспилотных летательных аппаратов с ПуВРД занимается фирма “Эникс” в г.Казань. http://www.enics.ru/engine

Литература

Видео

dic.academic.ru

«В России испытали пульсирующий детонационный двигатель» в блоге «Авиация»

В России испытали пульсирующий детонационный двигатель

Су-35СФото: КнААЗ

Опытно-конструкторское бюро имени Люльки разработало, изготовило и испытало опытный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Как сообщает ИТАР-ТАСС, средняя измеренная тяга двигателя составила около ста килограммов, а длительность непрерывной работы ─ более десяти минут. До конца текущего года ОКБ намерено изготовить и испытать полноразмерный пульсирующий детонационный двигатель.

  По словам главного конструктора ОКБ имени Люльки Александра Тарасова, в ходе испытаний моделировались режимы работы, характерные для турбореактивного и прямоточного двигателей. Измеренные величины удельной тяги и удельного расхода топлива оказались на 30-50 процентов лучше, чем у обычных воздушно-реактивных двигателей. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги.

На основе проведенных исследований, полученных при испытании данных, а также схемно-конструкторского анализа ОКБ имени Люльки намерено предложить разработку целого семейства пульсирующих детонационных авиационных двигателей. В частности, могут быть созданы двигатели с коротким ресурсом работы для беспилотных летательных аппаратов и ракет и самолетные двигатели с крейсерским сверхзвуковым режимом полета.

В перспективе на основе новых технологий могут быть созданы двигатели для ракетно-космических систем и комбинированных силовых установок самолетов, способных выполнять полеты в атмосфере и за ее пределами.

По оценке конструкторского бюро, новые двигатели позволят увеличить тяговооруженность самолетов в 1,5-2 раза. Кроме того, при использовании таких силовых установок дальность полета или масса авиационных средств поражения могут увеличиться на 30-50 процентов. При этом удельный вес новых двигателей будет в 1,5-2 раза меньше аналогичного показателя обычных реактивных силовых установок.

О том, что в России ведутся работы по созданию пульсирующего детонационного двигателя, сообщалось в марте 2011 года. Об этом заявил тогда Илья Федоров, управляющий директор научно-производственного объединения «Сатурн», в состав которого входит ОКБ имени Люльки. О каком именно типа детонационного двигателя шла речь, Федоров не уточнил.

В настоящее время известны три вида пульсирующих двигателей ─ клапанные, бесклапанные и детонационные. Принцип работы этих силовых установок заключается в периодической подаче в камеру сгорания топлива и окислителя, где происходит воспламенение топливной смеси и истечение продуктов сгорания из сопла с образованием реактивной тяги. Отличие от обычных реактивных двигателей заключается в детонационном горении топливной смеси, при котором фронт горения распространяется быстрее скорости звука.

Пульсирующий воздушно-реактивный двигатель был изобретен еще в конце XIX века шведским инженером Мартином Вибергом. Пульсирующий двигатель считается простым и дешевым в изготовлении, однако из-за особенностей горения топлива ─ малонадежным. Впервые новый тип двигателя был использован серийно во время Второй мировой войны на немецких крылатых ракетах Фау-1. На них устанавливался двигатель Argus As-014 компании Argus-Werken.

В настоящее время несколько крупных оборонных фирм мира занимаются исследованиями в области создания высокоэффективных пульсирующих реактивных двигателей. В частности, работы ведут французская компания SNECMA и американские General Electric и Pratt & Whitney. В 2012 году Научно-исследовательская лаборатория ВМС США объявила о намерении разработать спиновый детонационный двигатель, который должен будет заменить на кораблях обычные газотурбинные силовые установки.

Спиновые детонационные двигатели отличаются от пульсирующих тем, что детонационное горение топливной смеси в них происходит непрерывно ─ фронт горения перемещается в кольцевой камере сгорания, в которой топливная смесь постоянно обновляется.

sdelanounas.ru

На пути к пятому и шестому шестому поколению. Пульсирующие детонационные двигатели

Объединенная двигателестроительная корпорация (ОДК) намерена в ближайшее время начать создание новых авиационных и ракетных двигателей, в которых будут использоваться детонационные технологии. 

Демонстраторы технологий детонационных дозвукового и сверхзвукового двигателей уже созданы. На испытаниях они показали на 30–50% лучшие удельные тягу и расход топлива по сравнению с обычными силовыми установками, сообщило РИА “Новости” со ссылкой на данные корпорации. 

В проекте по созданию детонационных двигателей будет участвовать Опытно-конструкторское бюро им. Люльки. Бюро предложило разработать семейство таких силовых установок, которые можно было бы использовать на беспилотных летательных аппаратах, крылатых ракетах, воздушно-космических самолетах и ракетах. 

 Детонационные двигатели отличаются: 

– горением топливной смеси, сопровождающимся прохождением по ней ударной волны, которая формируется за счет сверхзвукового распространения по топливной смеси фронта горения; 

– широким диапазоном скоростей – от дозвуковых до гиперзвуковых, что может помочь при создании гиперзвуковых ракет, проектирование которых активно ведется в России в последние годы. 

В 2013 году Опытно-конструкторское бюро им. Люльки испытало опытный уменьшенный образец пульсирующего резонаторного детонационного двигателя с двухстадийным сжиганием керосиновоздушной смеси. Во время испытаний средняя измеренная тяга силовой установки составила около ста килограммов, а длительность непрерывной работы – более десяти минут. В ходе экспериментов производилось многократное включение и выключение нового двигателя, а также регулирование тяги. 

По оценке конструкторского бюро, детонационные двигатели позволят увеличить тяговооруженность самолетов в 1,5–2 раза. Работы по созданию пульсирующих детонационных двигателей ведутся в России с 2011 года. 

Помимо России в мире сразу несколько компаний занимаются разработкой детонационных двигателей: французская компания SNECMA и американские General Electric и Pratt & Whitney.

 

 

ОСНОВЫ ДЕТОНАЦИОННОГО ДВИГАТЕЛЯ

Если бы удельный расход топлива не рос с увеличением скорости полета, то применяя современные решения для улучшения внешней аэродинамики, увеличивая высоту полета, на сверхзвуковых скоростях можно было бы добиться таких же характеристик дальности, что и у дозвукового магистрального самолета. Но вот внутренняя аэродинамика сверхзвуковых самолетов имеет неустранимый недостаток – на сверхзвуковых скоростях удельный расход топлива традиционной силовой установки монотонно растет по мере увеличения скорости на любых высотах полета. Выход видится в применении двигателей, основанных на иных принципах, нежели традиционный термодинамический цикл Брайтона горения топлива при постоянном давлении. К последним относятся пульсирующие воздушно-реактивные и детонационные двигатели. В статье рассмотрены преимущества использования детонационного горения в турбореактивных и ракетных двигателях. 

  

Одним из лучших в термодинамическом плане является детонационный двигатель. Благодаря тому, что в нем сжигание топлива происходит в ударных волнах примерно в 100 раз быстрее, чем при обычном медленном горении (дефлаграции), этот тип двигателя теоретически отличается рекордной мощностью, снимаемой с единицы объема, по сравнению со всеми другими типами тепловых двигателей.

Сравнение литровой мощности современных двигателей.

Вопрос об использовании детонационного горения в энергетике и реактивных двигателях впервые был поставлен Я.Б. Зельдовичем еще в 1940 г. По его оценкам прямоточные воздушно-реактивные двигатели, использующие детонационное сгорание топлива, должны иметь максимально возможную термодинамическую эффективность.

 

НАПРАВЛЕНИЯ РАБОТ ПО ИМПУЛЬСНЫМ ДЕТОНАЦИОННЫМ ДВИГАТЕЛЯМ

Направление №1 – Классический импульсный детонационный двигатель

Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо, можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами – передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу – дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Традиционные импульсные детонационные двигатели представляют собой длинные трубы, по которым с небольшой частотой следуют ударные волны. Система волн сжатия и разрежения автоматически регулирует подачу топлива и окислителя. Из-за низкой частоты следования ударных волн (единицы Гц) время, в течение которого происходит сжигание топлива, по сравнению с характерным временем цикла, мало. В результате, несмотря на высокий КПД собственно детонационного сжигания (на 20-25% больше, чем у двигателей с циклом Брайтона) общий КПД таких конструкций низкий.

Основная задача в этой области на современном этапе – разработка двигателей с высокой частотой следования ударных волн в камере сгорания или создание двигателя с непрерывной детонацией (CDE).

Классический облик ИДД – цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую “тяговой стенкой”. Простота устройства ИДД – неоспоримое его достоинство. Несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

– низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

– высокие тепловые и вибрационные нагрузки.

Принципиальная схема импульсно-детонационного двигателя (ИДД).

 

Направление №2 – Многотрубный ИДД

Основной тенденцией при разработках ИДД является переход к многотрубной схеме. В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления, в частности, возможных низкочастотных колебаний в донной области между трубами.

Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов.

 

Направление №3 – ИДД с высокочастотным резонатором

Существует и альтернативное направление – широко разрекламированная в последнее время схема с тяговыми модулями, имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. Люлька и в МАИ. Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Схема ИДД с высокочастотным резонатором.

Тяговый Модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие.

Схема ИДД с высокочастотным резонатором. СЗС-сверхзвуковая струя, УВ – ударная волна, Ф – фокус резонатора, ДВ – детонационная волна, ВР- волна разрежения, ОУВ – отраженная ударная волна.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки в МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом.

Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера. Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье – Стокса без использования моделей турбулентности (задача неподъемная на современном этапе).

Из представленных выше схем видно, что исследуемые сегодня схемы ИДД – это однорежимные двигатели, имеющие весьма ограниченный диапазон регулирования, поэтому прямое их использование в качестве единственной силовой установки на самолете нецелесообразно. Другое дело – ракетный двигатель.

 

Понравился наш сайт? Присоединяйтесь или подпишитесь (на почту будут приходить уведомления о новых темах) на наш канал в МирТесен!

cosmos.mirtesen.ru

Пульсирующий воздушно-реактивный двигатель — Википедия

Пульсирующий воздушно-реактивный двигатель

Пульсирующий воздушно-реактивный двигатель — вариант воздушно-реактивного двигателя. В ПуВРД используется камера сгорания с входными клапанами и длинное цилиндрическое выходное сопло. Горючее и воздух подаются периодически.

Цикл работы ПуВРД состоит из следующих фаз:

  • Клапаны открываются и в камеру сгорания поступает воздух и топливо, образуется воздушно-топливная смесь.
  • Смесь поджигается с помощью искры свечи зажигания. Образовавшееся избыточное давление закрывает клапан.
  • Горячие продукты сгорания выходят через сопло, создавая реактивную тягу и технический вакуум в камере сгорания.

История

Первые патенты на пульсирующий воздушно-реактивный двигатель (ПуВРД) были получены (независимо друг от друга) в 1860-х годах Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия)[1]. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

Двигатель Фау-1

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric).
Результаты этих разработок заинтересовали США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Пульсирующий воздушно-реактивный двигатель обладает большим удельным импульсом по сравнению с ракетными двигателями, но уступает по этому показателю турбореактивным двигателям. Существенным ограничением является также то, что этот двигатель требует разгона до рабочей скорости 100 м/с и его использование ограничено скоростью порядка 250 м/с. Когда появились компактные ядерные заряды, уже была отработана конструкция более эффективных турбореактивных двигателей. Поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Представители ракет «воздух-поверхность» с пульсирующим воздушно-реактивным двигателем.

  • Fi-103
  • 10Х · 14Х · 16Х — Благодаря использованию двух двигателей был достигнут практический предел скорости полёта для ПуВРД — 980км/ч (270 м/с).
  • JB-2

В начале 2010-х годов наблюдается возрождение интереса к ПуВРД: их разработку и испытания проводят General Electric, Pratt & Whitney, SNECMA, а также отечественное НПО «Сатурн»[2].

Принцип действия и устройство ПуВРД

Изготовление авиамодели с ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей.[3]

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра[4]. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; за ней — камера сгорания; 4 — выходное (реактивное) сопло.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

гибкие прямоугольные клапанные пластинки

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды — малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламеняется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме, ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи — поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска[5]).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла.[6] Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.

ПуВРД — Пульсирующий воздушно-реактивный двигатель, ТРД — Турбореактивный двигатель, ПВРД — Прямоточный воздушно-реактивный двигатель, ГПВРД — Гиперзвуковой прямоточный воздушно-реактивный двигатель.

Двигатели характеризуют рядом параметров:

  • удельная тяга — отношение создаваемой двигателем тяги к массовому расходу топлива;
  • удельная тяга по весу — отношение тяги двигателя к весу двигателя.

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полёта — высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

ХарактеристикаРДТТЖРДПуВРДТРДПВРДГПВРД
Рабочий диапазон скоростей, число Махане ограничен0,3-0,80-31,5-5>5
Удельная тяга, м/с2000-30002000-4000~700015000-30000
Удельная тяга по весунет~100~10

Другие пульсирующие ВРД

Бесклапанный ПуВРД Образцы бесклапанных (U-образных) ПуВРД[7].

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД, иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД — их низкой долговечности (на самолёте-снаряде Фау-1 клапаны прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).
  • Детонационные ПуВРД. (англоязычное название PDE) В этих двигателях горение топливной смеси происходит в режиме детонации (в отличие от дефлаграции, которая имеет место при горении топливно-воздушных смесей во всех ВРД, рассмотренных выше). Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно (до значений свыше 100 ат), таким образом имеет место изохорический (при постоянном объёме) нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.
    Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента[8].

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД — следствие неполного сгорания топлива в камере.

Испытания американского Мустанга P-51 с ПуВРД

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД (при закрытом клапане резко возрастает лобовое сопротивление ПуВРД и на околозвуковых скоростях оно «съедает» почти всю тягу, создаваемую этим двигателем).

Самодельный двигатель из нержавеющей стали

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД — беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,— летающие мишени, беспилотные разведчики[9].[10] По тем же причинам, двигатель также применяется в авиамоделизме[11].

Клапанные, так же, как и бесклапанные, ПуВРД имеют распространение в любительской авиации и авиамоделировании, благодаря простоте и дешевизне. По этой причине маленькие двигатели этого типа стали очень популярны среди авиамоделистов и в любительской авиации; появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).

ПуВРД может использоваться не только в качестве двигателя, но и в качестве стационарной установки для генерации тепла[9].

Примечания

  1. Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.
  2. ↑ В России испытали пульсирующий детонационный двигатель
  3. ↑ Выпускавшийся серийно в Германии (1944—1945гг) ПуВРД Argus As-014 ракеты Фау-1 работал на частоте пульсаций около 45гц
  4. ↑ Устройство и работу серийного клапанного ПуВРД модели «ДайнаДжет» можно подробно увидеть в видеофильме.
  5. ↑ См. видео о запуске V-1 с катапульты.
  6. ↑ ПуВРД Argus As-014 также мог работать в этом режиме, но развиваемая им при этом тяга была слишком мала, чтобы разогнать ракету Фау-1, поэтому она стартовала с катапульты, сообщавшей ей скорость, при которой двигатель становился эффективным.
  7. ↑ Иллюстрированное описание нескольких конструкций бесклапанных ПуВРД (на английском)
  8. ↑ Видеозаписи испытаний экспериментальных детонационных ПуВРД.
  9. 1 2 Олег Макаров. Огненный пульс // Популярная механика. — 2017. — № 11. — С. 122-126.
  10. ↑ Что касается получившего широкую известность боевого применения самолёта-снаряда Фау-1, оборудованного ПуВРД, нужно отметить, что даже по меркам периода Второй мировой войны он уже не отвечал требованиям к такому оружию по скорости: более половины этих снарядов уничтожались средствами ПВО того времени, главным образом, самолётами-истребителями с поршневыми двигателями, и своим умеренным успехом Фау-1 был обязан низкому уровню развития в то время средств заблаговременного обнаружения воздушных целей.
  11. ↑ Рольф Вилле «Постройка летающих моделей-копий», перевод с немецкого В. Н. Пальянова, Издательство ДОСААФ СССР, Москва 1986 (Rolf Wille «Flufahige, vorbildgetrene Nachbauten», Transpress VEB Verlag fur Verkehrswessen), ББК 75.725, глава 9 «Размещение двигателя на модели» страницы 114-118

Литература

Видео

wikipedia.green

Пульсирующий- первый реактивный — Паркфлаер

Многие полагают, что пульсирующий воздушно-реактивный двигатель (ПуВРД) пявился в Германии в период Второй мировой войны, и применялся на самолетах-снарядах V-1 (Фау-1), но это не совсем так. Конечно, немецкая крылатая ракета стала единственным серийным летательным аппаратом с ПуВРД, но сам двигатель был изобретен на 80 (!) лет раньше и совсем не в Германии. 
Патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 60-х годах XIX века Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия).

Пульсирующий воздушно-реактивный двигатель (англ. Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД (прямоточный воздушно реактивный двигатель) или ТРД (турбореактивный двигатель), а в виде серии импульсов.

Воздух, проходя через конфузорную часть, увеличивает свою скорость, вследствие чего давление на этом участке падает. Под действием пониженного давления из трубки 8 начинает подсасываться топливо, которое затем подхватывается струей воздуха, рассеивается ею на более мелкие частички. Образовавшаяся смесь, проходя диффузорную часть головки, несколько поджимается за счет уменьшения скорости движения и в окончательно перемешанном виде через входные отверстия клапанной решетки поступает в камеру сгорания.
Первоначально топливно-воздушная смесь, заполнившая объем камеры сгорания, воспламеняется с помощью свечи, в крайнем случае, с помощью открытого пламени, подводимого к обрезу выхлопной трубы. Когда двигатель выйдет на рабочий режим, вновь поступающая в камеру сгорания топливно-воздушиая смесь воспламеняется не от постороннего источника, а от горячих газов. Таким образом, свеча необходима лишь на этапе запуска двигателя, в качестве катализатора.
Образовавшиеся в процессе сгорания топливно-воздушной смеси газы резко повышают, и пластинчатые клапаны решетки закрываются, а газы устремляются в открытую часть камеры сгорания в сторону выхлопной трубы. Таким образом, в трубе двигателя, в процессе его работы происходит колебание газового столба: в период повышенного давления в камере сгорания газы движутся в сторону выхода, в период пониженного давления — в сторону камеры сгорания. И чем интенсивнее колебания газового столба в рабочей трубе, тем большую тягу развивает двигатель за один цикл.

ПуВРД имеет следующие основные элементы: входной участок а — в, заканчивающийся клапанной решеткой, состоящей из диска 6 и клапанов 7; камеру сгорания 2, участок в — г; реактивное сопло 3, участок г — д, выхлопную трубу 4, участок д — е.
Входной канал головки имеет конфузорный а — б и диффузорный б — в участки. В начале диффузорного участка устанавливается топливная трубка 8 с регулировочной иглой 5.

И снова вернемся к истории. Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом как я уже говорил, явился немецкий самолёт-снаряд Фау-1.

Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 000 единиц.

Кроме беспилотных крылатых ракет, в Германии, так же разрабатывалась пилотируемая версия самолета-снаряда-  Фау-4 (V-4). По задумке инженеров, пилот должен был навести на цель свой одноразовый пепелац, покинуть кабину и спастись, используя парашют. 
 

 Правда, о том, способен ли человек покинуть кабину пилота на скорости 800км/час, да еще имея у себя за головой воздухозаборник двигателя- скромно умалчивалось.

 Изучением и созданием ПуВРД занимались не только в фашисткой Германии. В 1944 году для ознакомления, в СССР Англия поставила покореженые куски Фау-1. Мы, в свою очередь “слепили из того, что было”, создав при этом, практически новый двигатель ПуВРД Д-3, ииии…..
…..и водрузили его на Пе-2:

Но не с целью создания первого отечественного реактивного бомбардировщика, а для испытаний самого двигателя, который потом применялся для производства советских крылатых ракет 10-Х:



Но на этом не ограничивается применение пульсирующих двигателей в советской авиации. В 1946 году была реализована идея оборудовать истрибитель ПуВРД-шками:
 

Да. Всё просто. На истрибитель Ла-9, под крыло установили два пульсирующих движка. Конечно на практике все оказалось несколько сложнее: на самолете изменили систему питания топливом, сняли бронеспинку, и две пушки НС-23, усилив конструкцию планера. Прирост скорости составил 70 км/ч. Летчик-испытатель И.М.Дзюба отмечал сильные вибрации и шум при включении ПуВРД. Подвеска ПуВРД ухудшала маневренные и взлетно-посадочные характеристики самолета. Запуск двигателей был ненадежным, резко снижалась продолжительность полета, усложнялась эксплуатация. Проведенные работы принесли пользу лишь при отработке прямоточных двигателей, предназначавшихся для установки на крылатые ракеты.  
Конечно, в боях эти самолеты участия не принимали, но они достаточно активно использовались на воздушных парадах, где неизменно своим грохотом производили сильное впечатление на публику. По свидетельству очевидцев в разных парадах участвовало от трех до девяти машин с ПуВРД.
Кульминацией испытаний ПуВРД стал пролет девяти Ла-9РД летом 1947 г. на воздушном параде в Тушино. Пилотировали самолеты летчики-испытатели ГК НИИ ВВС В.И.Алексеенко. А.Г.Кубышкин. Л.М.Кувшинов, А.П.Манучаров. В.Г.Масич. Г.А.Седов, П.М.Стефановский, А.Г.Терентьев и В.П.Трофимов.

Надо сказать о том, что американцы, тоже, не отставали в этом направлении. Они прекрасно понимали, что реактивная авиация, даже находясь на стадии младеньчества, уже превосходит свои поршневые аналоги. Но поршевых самолетов- очень много. Куда их девать?!…. И в 1946 году под крылья одного из самых совершенных истребителей своего времени, Мустанг P-51D, подвесили два двигателя Ford PJ-31-1.

 

Однако, результат оказался, прямо скажем,- не очень. С включенными ПуВРД скорость самолета заметно увеличивалась, но топливо они поглащали- о-го-го, так что долго летать с хорошей скоростью не получалось, и в выключенном состоянии реактивные моторы превращали истребитель небеный тихоход. Промучившись целый год американцы, все-таки, пришли к выводу, что получить задешево истребитель, способный хотя бы как-то конкурировать с новомодными реактивными не получится.

В итоге про ПуВРД забыли…..
Но не на долго! Этот тип двигателей хорошо проявил себя в качестве авиамодельного! А почему бы нет?! Дешевый в производстве и обслуживании, имеет простое устройство и минимум настроек, не требует дорогостоящего горючего, да и вообще- его и покупать не обязательно- можно и самостоятельно построить, имея минимум ресурсов.

Это самый маленький ПуВРД в мире. Создан в 1952 г.

Ну согласитесь, кто не мечтал о реактвном самолете с хомячком пилотом и ракетами?!))))
Теперь ваша мечта стала реальостью! Да и не  обязательно покупать двигаль- его можно построить:


 

 
P.S. данная статья основана на материалах, опубликованных в сети Интернет…
The end. 

www.parkflyer.ru

принцип работы, устройство и применение

Реактивный пульсирующий двигатель представляет собой разновидность силовых агрегатов, работающих по принципу смешивания воздушной и реактивной пульсирующей силы. Указанные моторы легко узнать по характерному сильному звуку. Среди преимуществ перед аналогами – предельно упрощенная конструкция и небольшая масса. Остальные особенности агрегатов рассмотрим далее.

История создания

Первые разработки пульсирующего воздушно-реактивного двигателя (ПВРД) официально датированы второй половиной XIX столетия. В 60-е годы два изобретателя, обособленно друг от друга, получили патенты на новую конструкцию движителей. Разработки Телешова Н. А. и Шарля де Вуалье на тот период мало кого заинтересовали. Зато в начале XX века на них обратили внимание немецкие инженеры, которые искали достойную альтернативу поршневым силовым агрегатам.

В период Второй мировой войны немецкая авиация пополнилась самолетным снарядом типа ФАУ, который оснащался ПВРД. Невзирая на то, что указанный элемент уступал по техническим параметрам поршневым вариациям, он пользовался популярностью. Этот факт обусловлен простотой конструкции и дешевизной. В известной истории это был единственный случай, когда подобные моторы применялись для оснащения самолетов в серийных масштабах.

Попытки усовершенствования

После окончания войны реактивный пульсирующий двигатель некоторое время оставался в разработке военного направления. Он использовался как движитель для ракет конфигурации «воздух-земля». Низкая эффективность, слабая стартовая скорость и необходимость разгона при запуске – причины, которые стали ключевыми в дальнейшем снижении позиций ПВРД до нулевого показателя.

Указанный тип мотора в последнее время снова начал интересовать инженеров и любителей. Появляются новые разработки, иные схемы усовершенствования. Вполне возможно, что обновленные модификации снова появятся в оснащении военной авиации. Практическое применение его сегодня – моделирование прототипов ракет и самолетов с использованием современных конструкционных материалов.

Устройство реактивного пульсирующего двигателя

Рассматриваемый агрегат представляет собой полость, открытую с обеих сторон. На входе монтируется заборник воздуха, сзади него – тяговый блок с клапанами. Также в конструкцию входит несколько камер сгорания, сопло для выпуска реактивного потока. Входной клапан изготавливается в нескольких конфигурациях, отличных по устройству и внешнему виду. Один из вариантов – прямоугольные пластины по типу жалюзи, которые крепятся на раме, открываются или закрываются под перепадами давления. Вторая, более компактная версия – металлические «лепестки», размещаемые по кругу.

В отсеке сгорания предусмотрена свеча зажигания. Этот элемент продуцирует серию разрядов, а после достижения нужной концентрации горючего, заряд воспламеняется. Так как двигатель обладает скромными габаритами, стальные стенки агрегата интенсивно нагреваются, способны активировать топливную смесь по аналогу свечи.

Принцип работы

Поскольку реактивный пульсирующий двигатель работает циклично, он имеет несколько основных тактов. Среди них:

  1. Процесс впуска. На этом этапе клапан входа открывается, в камеру сгорания попадает разряженный воздух. Синхронно, через форсунки, поступает горючее, в результате чего создается своеобразный топливный заряд.
  2. Полученная смесь воспламеняется от искры свечи зажигания, после чего наблюдается образование газов высокого давления. Под их действием впускной клапан закупоривается.
  3. Далее продукты сгорания выдуваются через сопло, создавая реактивную тягу. При этом в отсеке сгорания получается разряжение. Процедура повторяется – входной клапан открывается, пропуская очередную порцию воздуха.

Горючее подается посредством форсунок с обратным клапанным механизмом. При снижении давления в камере горения поступает следующая доза топлива. После увеличения давления подача прекращается. Стоит отметить, что на авиационных моделях малой мощности форсунки отсутствуют, а система работает по традиционной карбюраторной схеме.

Конструктивные особенности

У пульсирующего реактивного двигателя, чертеж и схема работы которого приведена ниже, имеется впускной клапан перед камерой сгорания. Это является основным его отличием от ближайших «собратьев» типа прямоточного и реактивного мотора. Указанная деталь отвечает за предотвращение возврата продуктов сгорания, что определяет их направление прямо в сопло. Конкурирующие разновидности особо не нуждаются в клапанах, поскольку воздух сразу подается под давлением с предварительным сжатием. Такая «мелочь» на самом деле является огромным плюсом в работе рассматриваемого агрегата, касательно улучшения термодинамических характеристик.

Еще одно отличие – цикличность работы. Например, в ТРД топливо сжигается беспрерывно, что гарантирует равномерную и ровную тягу. В ПВРД циклы обеспечивают колебания внутри конструкции. Чтобы гарантировать максимальную амплитуду, требуется синхронизация вибрации всех деталей. Этот момент достигается за счет подбора оптимальной длины сопла.

Реактивный пульсирующий двигатель способен функционировать на низких скоростях или находясь в неактивной позиции при отсутствии встречного потока воздуха. Это преимущество перед прямоточной версией весьма спорно, поскольку для пуска ракеты или самолета в указанных условиях требуется первоначальное ускорение.

Разновидности

Кроме обычной версии пульсирующего воздушно-реактивного двигателя с прямолинейным и входным клапаном, существуют еще бесклапанная и детонационная разновидности.

Первая модификация не оснащается входным клапаном. Это обусловлено уязвимостью и быстрым износом дополнительной детали. В таком варианте срок службы силовой установки больше. По конструкции агрегат представляет собой форму в виде литеры U, концы которой направлены по течению реактивной тяги (назад). Канал, который отвечает за тягу, немного длиннее. По короткому патрубку поступает воздушный поток в отсек сгорания. В результате сжигания и расширения газов некоторая часть из них возвращается обратно через указанный вход. Подобное устройство дает возможность обеспечить улучшенную вентиляцию рабочей камеры. При этом отсутствует потеря топливного заряда через входной клапан, что создает незначительную «прибавку» тягового усилия.

ПВРД детонационного типа ориентирован на сжигание заряда топлива посредством детонации. То есть, при постоянном объеме, в отсеке сгорания происходит резкое увеличение давления топливно-воздушной смеси. При этом объем увеличивается начиная от момента перемещения газов по сопловой части. Такое решение позволяет повысить термический коэффициент полезного действия. В настоящее время такая конфигурация моторов не эксплуатируется, находясь на этапе исследования и доработок.

Плюсы

Принцип работы реактивного пульсирующего двигателя наряду с простотой конструкции и невысокой стоимостью – основные преимущества рассматриваемой системы. Эти качества обусловили появление данных моторов на военных ракетах, летающих мишенях и прочих объектах, где важна не долговечность, а быстрая доставка летательного аппарата к цели с максимально упрощенной комплектацией «движка». Любители авиамоделизма ценят рассматриваемую модификацию по тем же причинам. Компактные, дешевые и легкие моторы прекрасно подходят для авиационных моделей. Еще один плюс – возможность изготовления элементарного пульсирующего воздушно-реактивного двигателя своими руками.

Минусы

Среди недостатков также немало пунктов, а именно:

  • высокая степень шумности в рабочем состоянии;
  • чрезмерный расход горючего;
  • наличие остатков топлива после использования;
  • повышенная уязвимость входного клапана;
  • ограничение скоростного режима.

Невзирая на все минусы, ПВРД в своем сегменте остается весьма востребован. Подобный мотор незаменим для одноразовых запусков, особенно если нецелесообразно монтировать мощные и дорогие версии.

Детонационный пульсирующий реактивный двигатель своими руками

Для начала необходимо создать чертеж с разверткой будущих деталей. Если вы помните азы школьной геометрии и обладаете минимальными навыками по черчению, можете приступать к работе. Самая простая схема – цилиндрические трубы. Рисуются прямоугольники, одна сторона которых будет равняться длине, а вторая – диаметру (умноженному на 3,14 – число «пи»). Конусные и цилиндрические развертки можно выполнить, найдя необходимые рекомендации в любом пособии по черчению.

Второй немаловажный вопрос – выбор металла. Как вариант, можно использовать нержавейку или низкоуглеродистую черную сталь. Остановимся на втором варианте, поскольку он проще в обработке и формировании. Толщина листа по минимуму составляет 0,6 мм. В указанном случае размер составил 1 мм.

Подготовительный процесс

Прежде чем приступить к сооружению пульсирующего реактивного двигателя своими руками, необходимо очистить листовые металлические заготовки от ржавчины и пыли. Для этого вполне подойдет стандартная шлифовальная машинка. Побеспокойтесь о безопасности – наденьте перчатки, так как края листов острые и изобилуют заусенцами.

Перед началом основных работ нужно подготовить чертежи и картонные шаблоны деталей в натуральную величину. Для получения точной конфигурации и размеров контуры обводят перманентным маркером. Крайне не рекомендуется вырезать развертки при помощи сварочного аппарата, каким бы современным он ни был. Дело в том, что полученные таким способом детали очень плохо свариваются по краям. Желательно для этой цели использовать электрические ножницы по металлу, поскольку в ручном варианте имеется большой риск загибания краев заготовок. Резать нужно аккуратно, надежно зафиксировав обрабатываемый шаблон струбциной или другим подходящим способом.

Основной этап

Изготавливая реактивный пульсирующий двигатель дома, помните, что трубы фиксированного диаметра легко сформировать при помощи большего аналога. Вполне реально операцию провести руками за счет рычажного принципа, после чего края заготовки обработать киянкой, загибая их до нужной кондиции. Желательно, чтобы концы при стыковании образовывали плоскость, что улучшит размещение сварного шва. Листы в трубу согнуть сложнее, потребуется листогиб или вальцы. Этот профессиональный инструмент найдется далеко не у каждого. В качестве альтернативы допускается использование тисов.

Важный и кропотливый момент – сварка тонкого листа из металла. Здесь потребуются специальные навыки, особенно если в процессе применяется ручная дуговая сварка. Новичкам лучше не пытаться экспериментировать (малейшая передержка электрода в одной точке приводит к прожиганию дыры). Кроме того, в район шва могут попасть пузырьки, что впоследствии гарантирует течь. Лучше всего провести шлифовку шва до минимальной толщины, что позволит увидеть «брак» невооруженным глазом сразу. Конические сегменты сгибают вручную, обжимают узкий конец заготовки вокруг трубы малого диаметра, делая большее усилие, чем на широкую часть.

Рекомендации

Зная, как сделать реактивный пульсирующий двигатель самостоятельно, вы можете его использовать на авиационных моделях либо для ускорения скейтерской доски. Опытные пользователи рекомендуют для получения оптимального состава топливной смеси, сначала подавать в мотор газ, заполнив им камеру сгорания полностью. Затем активируют искру зажигания. В последнюю очередь подается воздух, после достижения оптимальной концентрации всех компонентов – производится запуск.

fb.ru

Пульсирующий воздушно-реактивный двигатель — ВиКи

Первые патенты на пульсирующий воздушно-реактивный двигатель были получены (независимо друг от друга) в 1860-х годах Шарлем де Луврье (Франция) и Николаем Афанасьевичем Телешовым (Россия)[1].

Немецкие конструкторы, ещё накануне Второй мировой войны проводившие широкий поиск альтернатив поршневым авиационным двигателям, не обошли вниманием и это изобретение, долгое время остававшееся невостребованным. Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. Главный конструктор Фау-1 Роберт Люссер выбрал для него ПуВРД не ради эффективности (поршневые авиационные двигатели той эпохи обладали лучшими характеристиками), а, главным образом, из-за простоты конструкции и, как следствие, малых трудозатрат на изготовление, что было оправдано при массовом производстве одноразовых снарядов, серийно выпущенных за неполный год (с июня 1944 по март 1945) в количестве свыше 10 тыс. единиц.

  Двигатель Фау-1

После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric).
Результаты этих разработок заинтересовали военных США и СССР. Был разработан ряд опытных и экспериментальных образцов. Первоначально основная проблема ракет «воздух-поверхность» заключалась в несовершенстве инерциальной системы наведения, точность которой считалась хорошей, если ракета с дальности в 150 километров попадала в квадрат со сторонами 3 километра. Это привело к тому, что с боезарядом на основе обычного взрывчатого вещества данные ракеты имели низкую эффективность, а ядерные заряды в то же время имели ещё слишком большую массу (несколько тонн). Когда же появились компактные ядерные заряды — уже была отработана конструкция более эффективных турбореактивных двигателей, поэтому пульсирующие воздушно-реактивные двигатели не получили широкого распространения.

Представители ракет «воздух-поверхность» с пульсирующим воздушно-реактивным двигателем.

  •   Fi-103
  •   10Х · 14Х · 16Х — благодаря использованию двух двигателей был достигнут практический предел скорости полёта для ПуВРД — 980км/ч (270 м/с).
  •   JB-2

В начале 2010-х годов наблюдается возрождение интереса к ПуВРД: их разработку и испытания проводят General Electric, Pratt & Whitney, SNECMA, а также отечественное НПО «Сатурн»[2].

  Изготовление авиамодели с ПуВРД

Пульсирующий воздушно-реактивный двигатель (ПуВРД, англоязычный термин Pulse jet), как следует из его названия, работает в режиме пульсации, его тяга развивается не непрерывно, как у ПВРД или ТРД, а в виде серии импульсов, следующих друг за другом с частотой от десятков герц, для крупных двигатателей, до 250 Гц — для малых двигателей, предназначенных для авиамоделей.[3]

Конструктивно, ПуВРД представляет собой цилиндрическую камеру сгорания с длинным цилиндрическим соплом меньшего диаметра[4]. Передняя часть камеры соединена со входным диффузором, через который воздух поступает в камеру.

Между диффузором и камерой сгорания установлен воздушный клапан, работающий под воздействием разницы давлений в камере и на выходе диффузора: когда давление в диффузоре превышает давление в камере клапан открывается и пропускает воздух в камеру; при обратном соотношении давлений он закрывается.

  Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 — воздух; 2 — горючее; 3 — клапанная решётка; за ней — камера сгорания; 4 — выходное (реактивное) сопло.

Клапан может иметь различную конструкцию: в двигателе Argus As-014 ракеты Фау-1 он имел форму и действовал наподобие оконных жалюзи и состоял из наклёпанных на раму гибких прямоугольных клапанных пластинкок из пружинной стали; в малых двигателях он выглядит как пластина в форме цветка с радиально расположенными клапанными пластинками в виде нескольких тонких, упругих металлических лепестков, прижатых к основанию клапана в закрытом положении и отгибающихся от основания под действием давления в диффузоре, превышающего давление в камере. Первая конструкция намного совершеннее — оказывает минимальное сопротивление потоку воздуха, но гораздо сложнее в производстве.

  гибкие прямоугольные клапанные пластинки

В передней части камеры имеются одна или несколько топливных форсунок, которые впрыскивают топливо в камеру, пока давление наддува в топливном баке превышает давление в камере; при превышении давлением в камере давления наддува, обратный клапан в топливном тракте перекрывает подачу топлива. Примитивные маломощные конструкции нередко работают без впрыска топлива, подобно поршневому карбюраторному двигателю. Для пуска двигателя в этом случае обычно используют внешний источник сжатого воздуха.

Для инициирования процесса горения в камере устанавливается свеча зажигания, которая создаёт высокочастотную серию электрических разрядов, и топливная смесь воспламеняется, как только концентрация горючего в ней достигает некоторого, достаточного для возгорания, уровня. Когда оболочка камеры сгорания достаточно прогревается (обычно, через несколько секунд после начала работы большого двигателя, или через доли секунды — малого; без охлаждения потоком воздуха, стальные стенки камеры сгорания быстро нагреваются докрасна), электрозажигание вовсе становится ненужным: топливная смесь воспламеняется от горячих стенок камеры.

При работе, ПуВРД издаёт очень характерный трещащий или жужжащий звук, обусловленный как раз пульсациями в его работе.

  Схема работы ПуВРД

Цикл работы ПуВРД иллюстрируется рисунком справа:

  • 1. Воздушный клапан открыт, воздух поступает в камеру сгорания, форсунка впрыскивает горючее, и в камере образуется топливная смесь.
  • 2. Топливная смесь воспламеняется и сгорает, давление в камере сгорания резко возрастает и закрывает воздушный клапан и обратный клапан в топливном тракте. Продукты сгорания, расширяясь, истекают из сопла, создавая реактивную тягу.
  • 3. Давление в камере уравнивается с атмосферным, под напором воздуха в диффузоре воздушный клапан открывается и воздух начинает поступать в камеру, топливный клапан тоже открывается, двигатель переходит к фазе 1.

Кажущееся сходство ПуВРД и ПВРД (возможно, возникающее из-за сходства аббревиатур названий) — ошибочно. В действительности ПуВРД имеет глубокие, принципиальные отличия от ПВРД или ТРД.

  • Во-первых, наличие у ПуВРД воздушного клапана, очевидным назначением которого является предотвращение обратного движения рабочего тела вперёд по ходу движения аппарата (что свело бы на нет реактивную тягу). В ПВРД (как и в ТРД) этот клапан не нужен, поскольку обратному движению рабочего тела в тракте двигателя препятствует «барьер» давления на входе в камеру сгорания, созданный в ходе сжатия рабочего тела. В ПуВРД начальное сжатие слишком мало, а необходимое для совершения работы повышение давления в камере сгорания достигается благодаря нагреву рабочего тела (при сжигании горючего) в постоянном объёме, ограниченном стенками камеры, клапаном, и инерцией газового столба в длинном сопле двигателя. Поэтому ПуВРД с точки зрения термодинамики тепловых двигателей относится к иной категории, нежели ПВРД или ТРД — его работа описывается циклом Хамфри (Humphrey), в то время как работа ПВРД и ТРД описывается циклом Брайтона.
  • Во-вторых, пульсирующий, прерывистый характер работы ПуВРД, также вносит существенные различия в механизм его функционирования, в сравнении с ВРД непрерывного действия. Для объяснения работы ПуВРД недостаточно рассматривать только газодинамические и термодинамические процессы, происходящие в нём. Двигатель работает в режиме автоколебаний, которые синхронизируют по времени работу всех его элементов. На частоту этих автоколебаний оказывают влияние инерционные характеристики всех частей ПуВРД, в том числе инерция газового столба в длинном сопле двигателя, и время распространения по нему акустической волны. Увеличение длины сопла приводит к снижению частоты пульсаций и наоборот. При определённой длине сопла достигается резонансная частота, при которой автоколебания становятся устойчивыми, а амплитуда колебаний каждого элемента — максимальной. При разработке двигателя эта длина подбирается экспериментально в ходе испытаний и доводки.

Иногда говорят, что функционирование ПуВРД при нулевой скорости движения аппарата невозможно — это ошибочное представление, во всяком случае, оно не может быть распространено на все двигатели этого типа. Большинство ПуВРД (в отличие от ПВРД) может работать, «стоя на месте» (без набегающего потока воздуха), хотя тяга, развиваемая им в этом режиме, минимальна (и обычно недостаточна для старта приводимого им в движение аппарата без посторонней помощи — поэтому, например, V-1 запускали с паровой катапульты, при этом ПуВРД начинал устойчиво работать ещё до пуска[5]).

Функционирование двигателя в этом случае объясняется следующим образом. Когда давление в камере после очередного импульса снижается до атмосферного, движение газа в сопле по инерции продолжается, и это приводит к понижению давления в камере до уровня ниже атмосферного. Когда воздушный клапан открывается под воздействием атмосферного давления (на что тоже требуется некоторое время), в камере уже создано достаточное разрежение, чтобы двигатель мог «вдохнуть свежего воздуха» в количестве, необходимом для продолжения следующего цикла.[6] Ракетные двигатели помимо тяги характеризуются удельным импульсом, являющимся показателем степени совершенства или качества двигателя. Этот показатель является также мерой экономичности двигателя. В приведённой ниже диаграмме в графической форме представлены верхние значения этого показателя для разных типов реактивных двигателей, в зависимости от скорости полёта, выраженной в форме числа Маха, что позволяет видеть область применимости каждого типа двигателей.

ПуВРД — Пульсирующий воздушно-реактивный двигатель, ТРД — Турбореактивный двигатель, ПВРД — Прямоточный воздушно-реактивный двигатель, ГПВРД — Гиперзвуковой прямоточный воздушно-реактивный двигатель.

Двигатели характеризуют рядом параметров:

  • удельная тяга — отношение создаваемой двигателем тяги к массовому расходу топлива;
  • удельная тяга по весу — отношение тяги двигателя к весу двигателя.

В отличие от ракетных двигателей, тяга которых не зависит от скорости движения ракеты, тяга воздушно-реактивных двигателей (ВРД) сильно зависит от параметров полёта — высоты и скорости. Пока не удалось создать универсальный ВРД, поэтому эти двигатели рассчитываются под определенный диапазон рабочих высот и скоростей. Как правило, разгон ВРД до рабочего диапазона скоростей осуществляется самим носителем либо стартовым ускорителем.

ХарактеристикаРДТТЖРДПуВРДТРДПВРДГПВРД
Рабочий диапазон скоростей, число Махане ограничен0,3-0,80-31,5-5>5
Удельная тяга, м/с2000-30002000-4000~700015000-30000
Удельная тяга по весунет~100~10

Другие пульсирующие ВРД

  Бесклапанный ПуВРД   Образцы бесклапанных (U-образных) ПуВРД[7].

В литературе встречается описание двигателей, подобных ПуВРД.

  • Бесклапанные ПуВРД, иначе — U-образные ПуВРД. В этих двигателях отсутствуют механические воздушные клапаны, а чтобы обратное движение рабочего тела не приводило к уменьшению тяги, тракт двигателя выполняется в форме латинской буквы «U», концы которой обращены назад по ходу движения аппарата, при этом истечение реактивной струи происходит сразу из обоих концов тракта. Поступление свежего воздуха в камеру сгорания осуществляется за счёт волны разрежения, возникающей после импульса и «вентилирующей» камеру, а изощрённая форма тракта служит для наилучшего выполнения этой функции. Отсутствие клапанов позволяет избавиться от характерного недостатка клапанного ПуВРД — их низкой долговечности (на самолёте-снаряде Фау-1 клапаны прогорали приблизительно после получаса полёта, чего вполне хватало для выполнения его боевых задач, но абсолютно неприемлемо для аппарата многоразового использования).
  • Детонационные ПуВРД. (англоязычное название PDE) В этих двигателях горение топливной смеси происходит в режиме детонации (в отличие от дефлаграции, которая имеет место при горении топливно-воздушных смесей во всех ВРД, рассмотренных выше). Детонационная волна распространяется в топливной смеси гораздо быстрее, чем звуковая, поэтому за время химической реакции детонационного горения объём топливной смеси не успевает существенно увеличиться, а давление возрастает скачкообразно (до значений свыше 100 ат), таким образом имеет место изохорический (при постоянном объёме) нагрев рабочего тела. После этого начинается фаза расширения рабочего тела в сопле с образованием реактивной струи. Детонационные ПуВРД могут быть как с клапанами, так и без них.
    Потенциальным преимуществом детонационного ПуВРД считается термический КПД более высокий, чем в ВРД любого другого типа. Практическая реализация этого двигателя находится в стадии эксперимента[8].

Область применения ПуВРД

ПуВРД характеризуется как шумный и неэкономный, зато простой и дешёвый. Высокий уровень шума и вибрации вытекает из самого пульсирующего режима его работы. О неэкономном характере использования топлива свидетельствует обширный факел, «бьющий» из сопла ПуВРД — следствие неполного сгорания топлива в камере.

  Испытания американского Мустанга P-51 с ПуВРД

Сравнение ПуВРД с другими авиационными двигателями позволяет довольно точно определить область его применимости.

ПуВРД во много раз дешевле в производстве, чем газотурбинный или поршневой ДВС, поэтому при одноразовом применении он выигрывает экономически у них (разумеется, при условии, что он «справляется» с их работой). При длительной эксплуатации аппарата многоразового использования, ПуВРД проигрывает экономически этим же двигателям из-за расточительного расхода топлива.

По простоте и дешевизне ПВРД практически не уступает ПуВРД, но на скоростях менее 0,5М он неработоспособен. На более высоких скоростях, ПВРД превосходит по эффективности ПуВРД (при закрытом клапане резко возрастает лобовое сопротивление ПуВРД и на околозвуковых скоростях оно «съедает» почти всю тягу, создаваемую этим двигателем).

  Самодельный двигатель из нержавеющей стали

Совокупность этих обстоятельств и определяют ту нишу, в которой находит применение ПуВРД — беспилотные летательные аппараты одноразового применения с рабочими скоростями до 0,5М,— летающие мишени, беспилотные разведчики[9].[10] По тем же причинам, двигатель также применяется в авиамоделизме[11].

Благодаря простоте и дешевизне ПуВРД имеют распространение в любительской авиации и авиамоделировании. Маленькие двигатели этого типа стали очень популярны среди авиамоделистов и в любительской авиации. По этой причине появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть).

ПуВРД может использоваться не только в качестве двигателя, но и в качестве стационарной установки для генерации тепла[9].

www.xn--b1aeclack5b4j.xn--j1aef.xn--p1ai

Добавить комментарий

Ваш адрес email не будет опубликован.