Содержание

Как проверить транзистор мультиметром ⋆ diodov.net

Если под рукой нет документации на биполярный транзистор, то мультиметр позволяет определить некоторые параметры и выводы транзистора. Поэтому рассмотрим, как проверить транзистор мультиметром.

Принципиально различают два вида биполярных транзисторов: npn и pnp структуры. Принцип работы их аналогичен. Отличие заключается лишь в полярности подключения источника питания и других полярных радиодеталей: электролитических конденсаторов, диодов, светодиодов и т.п.

Упрощенно любой биполярный транзистор можно представить в виде двух последовательно и встречно соединенных диодов, поэтому рекомендую изначально ознакомиться с тем, как проверить диод. Однако следует понимать, что если взять и соединить таким образом два диода, то транзистор не получится. Но в данном случае мы можем допустить такое упрощение.

Место соединения двух условных диодов называется базой. А два оставшихся вывода, соответственно будут эмиттер и коллектор. Теперь рассмотрим, как проверить транзистор мультиметром и определить его выводы.

Проще всего определить базу. С нее и начнем. Если относительно одного вывода ток будет протекать в сторону других выводов, то это и есть база. Когда на базе находится положительный щуп, то значит, то биполярный транзистор имеет npn структуру. В противоположном случае – pnp структуру.

Когда база определена, осталось узнать, какой из выводов является эмиттером, а какой коллектором. Для этого следует выполнить «прозвонку» выводов между базой и другими выводами и сравнить показания двух падений напряжений. Большее значение соответствует эмиттеру, а меньшее – коллектору.

Как проверить транзистор мультиметром наверняка

У современных биполярных транзисторов эта разница выражена не очень явно и бывает, что мультиметр показывает одинаковые значения. Поэтому с целью однозначного определения выводов можно воспользоваться функцией измерения коэффициента усиления биполярного транзистора по току. Для этого переключатель устанавливается на отметке hFE. Этому режиму соответствует специальный режим на передней части корпуса. Он имеет 8 отверстий: 4 для

pnp структуры и 4 для npn структуры. Отверстия для эмиттера дублируются, поскольку транзисторы могут иметь разное расположение выводов относительно корпуса. Поэтому такой подход позволяет определить коэффициент усиления по току транзистора с любой распиновкой.

Структуру транзистора ранее мы уже научились определять «прозвонкой». С базой тоже проблем нет. Осталось убедиться в правильности соответствия коллектора и эмиттера. Вставляем полупроводниковый прибор в нужные отверстия. Если на дисплее отображается число в среднем от 30 и выше, то коллектор с эмиттером определены верно, а данное число показывает коэффициент усиления по току. В противном случае нужно поменять местами два вывода.

Я надеюсь статья стала полезной и Вы нашли ответ на вопрос, как проверить транзистор мультиметром. Более подробно с работой мультиметра можно ознакомиться, перейдя по ссылке.

Еще статьи по данной теме

Как проверить IGBT транзистор мультиметром | Энергофиксик

Здравствуйте уважаемые посетители моего канала! В этом материале мы продолжаем с вами знакомиться с правилами проверки различных элементов электроники. И сегодня нашим героем станет IGBT транзистор.

IGBT транзистор

IGBT транзистор

Немного теории

За основу работы биполярных транзисторов с изолированным затвором взято использование n – канального МОП – транзистора небольшой мощности для коммутирования мощного биполярного транзистора. В данном устройстве получилось соединить все самое лучшее от биполярного и полевого транзисторов.

Биполярные транзисторы с изолированным затвором (БТИЗ) нашли самое широкое применение во многих современных электроприборах. Так, например, большинство современных сварочных аппаратов обязательно в своей конструкции имеют сборку из IGBT транзисторов.

Графически данный элемент изображается следующим образом.

Графическое обозначение транзистора на схемах где G - Затвор, C- коллектор, E - эмиттер.

Графическое обозначение транзистора на схемах где G - Затвор, C- коллектор, E - эмиттер.

Проверяем IGBT транзистор мультиметром

Ну а теперь давайте от слов перейдем к делу и проверим мультиметром транзистор STGW45HF60WD.

Транзистор и мультиметр MASTECH MY62

Транзистор и мультиметр MASTECH MY62

Для начала нам нужно выяснить, где у элемента эмиттер, коллектор и затвор. Для этого открываем любой поисковик и ищем Datasheet на наш элемент.

Datasheet испытуемого транзистора

Datasheet испытуемого транзистора

После того как мы узнали назначение каждого вывода, можно приступать к проверке работоспособности. Для этого берем мультиметр и ставим регулятор на прозвонку и производим замер между затвором и эмиттером.

Тем самым мы проверим наш транзистор на возможный «коротыш». Если мультиметр показывает «1», значит все в норме и можно продолжать измерения, а если прибор покажет «ноль», то изделие неисправно.

Теперь щупами производим замер между затвором и коллектором, так же проверяя на возможное короткое замыкание.

Далее с помощью перемычки или любого металлического предмета перемыкаем вывода транзистора на пару секунд. Тем самым мы гарантировано закроем его.

После этого вновь берем мультиметр и «минус» (черный щуп) соединяем с коллектором, а «плюс» (красный щуп) с эмиттером. При этом на дисплее мультиметра вы увидите падение напряжения на внутреннем диоде.

Теперь меняем щупы местами и мультиметр должен показать «1». Это означает, что в транзисторе нет утечки и внутреннего замыкания.

Кроме этого вы можете собрать простенькую схему, с помощью которой вы так же гарантировано проверите работоспособность транзистора даже без проверочного оборудования.

Схема проверки транзистора сторонним источником питания и лампой на 12 Вольт

Схема проверки транзистора сторонним источником питания и лампой на 12 Вольт

Так если кнопка будет зажата, то лампочка будет гореть, а в отжатом положении нет.

Вот таким нехитрым способом можно проверить работоспособность IGBT (БТИЗ) транзистора. Если вам понравился материал, и вы хотите видеть в своей ленте больше подобного, тогда ставим лайк и подписываемся. А в комментариях вы можете написать на какую тему вы хотите почитать статью.

Как проверить полевой транзистор - ООО «УК Энерготехсервис»

MOSFET: N-канальный полевой транзистор.

Обозначение выводов:

S — исток, D — сток, G — затвор

На мультиметре выставляем режим проверки диодов.

Транзистор закрыт: сопротивление — 502 ома

MOSFET — это Metal-Oxide-Semiconductor Field-Effect Transistor.

Для диагностики полевых транзисторов N-канального вида ставим мультиметр на проверку диодов (обычно он пищит на этом положении), черный щуп слева на подложку (D — сток), красный на дальний от себя вывод справа (S — исток), тестер показывает 502 Ома — полевой транзистор закрыт (Рис.

4). Далее, не снимая черного щупа, касаемся (Рис.5) красным щупом ближнего вывода (G — затвор) и опять возвращаем его на дальний (S — исток), тестер показывает 0 Ом: полевой транзистор открылся прикосновением (Рис.6).

Если сейчас черным щупом коснуться нижней (G — затвор) ножки, не отпуская красного щупа (Рис.7), и вернуть его на подложку (D — сток), то полевой транзистор закроется и снова будет показывать сопростивление около 500 Ом (Рис.8). Это верно для большинства N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

В цепи сток-исток имеется диод. Кстати его наличие обусловлено технологией производства.

Тестером можно подтвердить наличие этого диода.

0.5В — это падение напряжение на внутреннем диоде Шоттки. Если поменять щупы местами, то должен быть «обрыв».

А теперь можно проверить и затвор.

Тестер должен показывать «обрыв» при проверке затвор-исток и затвор-сток, причем полярность щупов не имеет значения.

Но вот что интересно, если черный щуп («-«) держать на истоке, а красным щупом («+») коснуться затвора, то транзистор откроется. В чем мы можем убедится, опять проверив

сток-исток.проверка MOSFET

Тестер покажет почти нулевое сопротивление.

Теперь поместим щуп «+» на сток, а черный щуп на затвор и проверим сток-исток. Тестер опять будет показывать или падение напряжения на диоде или «обрыв», т.е транзистор закрылся!

Кстати есть еще одна тонкость — если мы откроем транзистор и измерим сопротивление сток-исток, но только не сразу, а через некоторое время, то тестер будет показывать сопротивление отличное от нуля. И чем больше пройдет времени, тем больше будет сопротивление.

Почему же так происходит? А все очень просто — емкость между затвором и стоком достаточно большая (обычно единицы нанофарад) и когда мы открываем MOSFET транзистор, эта емкость заряжается. А так как полевой транзистор управляется полем а не током, то пока не разрядится конденсатор, транзистор будет открыт.

P-канальный MOSFET транзистор можно проверить по такому же принципу, только полярность затвора другая.

В современной радиоэлектронной аппаратуре все чаще находят применение полевые транзисторы. Как доказала практика, конструктивная надежность данных компонентов обуславливает высокую практичность работоспособности всевозможной бытовой техники.

В процессе ремонтных работ, которые все же случаются, возникает необходимость тестирования того или иного компонента на предмет его исправности. Например, как проверить полевой транзистор, который выпаяли из неисправного блока, вышедшего из строя аппарата. Самый простой метод проверки с применением стрелочного тестера.

У исправного транзистора между всеми его выводами прибор показывает бесконечное сопротивление, кроме современных, имеющих диод между стоком и истоком, который и ведет себя, как обычный диод. Второй способ проверки с применение современного цифрового мультиметра. Черный щуп, являющийся отрицательным, прикладываем к выводу стока транзистора.

Красный щуп, являющийся положительным, прикладываем к выводу истока. Мультиметр показывает прямое падение напряжения на внутреннем диоде около 450мВ, в обратном – бесконечное сопротивление. В данный момент транзистор закрыт. Что мы делаем далее. Не снимая черного щупа, прикладываем красный к затвору, и вновь возвращаем на вывод истока.

Мультиметр показывает 280мВ, т.е. он открылся прикосновением. Теперь, если прикоснуться затвора черным щупом, не отпуская красного щупа и вернуть его на вывод стока, то полевой транзистор закроется, и прибор снова покажет падение напряжения на диоде. Диагностика произведена, в результате чего мы убедились в исправности тестируемого транзистора.

Для образца мы применили N-канальный полевой транзистор. Чтобы проверить исправность P-канального транзистора, необходимо, всего лишь, поменять местами щупы мультиметра.

ЗЫ: Взял где взял, обобщил и добавил немного. (не отвлекайтесь и откликайтесь кому это не по зубам) — Копипаста? Да! ….обобщённая и дополненная.

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Мосфет Измерения Проверка Ремонт техники Видео Длиннопост

Прочитал пост про проверку спелости арбуза через отношение массы и длины окружности плода.

https://pikabu.ru/story/v_doegyevskuyu_yepokhu_6032324

«Талия» 63 см.

Согласно расчётам: Спелый арбуз массой 4 кг. должен иметь длину окружности 61,9 см и более.

Проверим: 

Показать полностью 1 [моё] Арбуз Спелый Проверка Измерения Окружность

Диод.

Это такая хитрая фиговина, пропускающая ток только в одну сторону. Его можно сравнить с ниппелем. Применяется, например, в выпрямителях, когда из переменного тока делают постоянный. Или когда надо отделить обратное напряжение от прямого.

Выводы диода называют анодом и катодом. Ток течет от анода к катоду. Запомнить где какой вывод очень просто: на условном обозначнеии стрелочка и палочка со стороны катода как бы рисуют букву К вот, смотри —К|—. К= Катод! А на детали катод обозначается полоской или точкой.

Есть еще один интересный тип диода – стабилитрон. Особенностью его является то, что в прямом направлении он работает как обычный диод, а вот в обратном его срывает на каком либо напряжении, например на 3.3 вольта. Подобно ограничительному клапану парового котла, открывающемуся при превышении давления и стравливающему излишки пара.

Стабилитроны используют когда хотят получить напряжение заданной величины, вне зависимости от входных напряжений. Это может быть, например, опорная величина, относительно которой происходит сравнение входного сигнала.

Им можно обрезать входящий сигнал до нужной величины или используют его как защиту. Также есть такой зверь как супрессор. Тот же стабилитрон, только куда более мощный и часто двунаправленный.

Используется для защиты по питанию.

Так работает диод.

Транзистор.

Жуткая вещь, в детстве все не мог понять как он работает, а оказалось все просто.

В общем, транзистор можно сравнить с управляемым вентилем, где крохотным усилием мы управляем мощнейшим потоком. Чуть повернул рукоятку и тонны дерьма умчались по трубам, открыл посильней и вот уже все вокруг захлебнулось в нечистотах. Т.е. выход пропорционален входу умноженному на какую то величину. Этой величиной является коэффициент усиления.

Делятся эти девайсы на полевые и биполярные.

В биполярном транзисторе есть эмиттер, коллектор и база (смотри рисунок условного обозначения). Эмиттер он со стрелочкой, база обозначается как прямая площадка между эмиттером и коллектором.

Между эмиттером и коллектором идет большой ток полезной нагрузки, направление тока определяется стрелочкой на эмиттере. А вот между базой и эмиттером идет маленький управляющий ток. Грубо говоря, величина управляющего тока влияет на сопротивление между коллектором и эмиттером.

Биполярные транзисторы бывают двух типов: p-n-p и n-p-n принципиальная разница только лишь в направлении тока через них.

Полевой транзистор отличается от биполярного тем, что в нем сопротивление канала между истоком и стоком определяется уже не током, а напряжением на затворе. Последнее время полевые транзисторы получили громадную популярность (на них построены все микропроцессоры), т.к. токи в них протекают микроскопические, решающую роль играет напряжение, а значит потери и тепловыделение минимальны.

Обозначение транзисторов или камень преткновения всех студентов. Как запомнить тип биполярного транзистора по его условной схеме? Представь что стрелочка это направление твоего движения на машине… Если едем в стенку то дружный вопль «Писец Нам Писец

Короче, транзистор позволит тебе слабеньким сигналом, например с ноги микроконтроллера, управлять мощной нагрузкой типа реле, двигателя или лампочки.

Если не хватит усиления одного транзистора, то их можно соединять каскадами – один за другим, все мощней и мощней. А порой хватает и одного могучего полевого MOSFET транзистора.

Посмотри, например, как в схемах сотовых телефонов управляется виброзвонок. Там выход с процессора идет на затвор силового MOSFET ключа.

ЗЫ: Взял где взял, обобщил и добавил немного.

ЗЫ2: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Берегите себя и своих близких!

Показать полностью 2 3 Диоды Транзистор Проверка Ремонт техники Видео Длиннопост

В наше время уже тяжело представить себе какое-либо устройство без пульта дистанционного управления.

История изобретения пульта ДУ весьма противоречива и, судя по-всему, так уже и останется тайной…

По одной из версий первые эксперименты были предприняты немцами еще в конце 30-х годов прошлого века.

Первая система дистанционного управления состояла из громозкого устройства со сложной электронной начинкой, соединенным с самим устройством проводами.

В дальнейшем (в середине 70-х годов) для передачи сигнала на расстояние стал использоваться ультразвук, а в конце все тех-же 70-х было предложено использовать и СВЧ-радиосигнал.

В 1974 году фирмой GRUNDIG был выпущен первый телевизор, где впервые было использован принцип передачи сигнала при помощи ИК лучей, который с большим успехом применяется и по наше время…

Принцип работы пультов ДУ следующий:

В основу каждого пульта положен генератор импульсов, работающий в частотном диапозоне между 30 и 40 кГц, сигнал которого промодулирован кодом той или иной команды. Для наглядности рассмотрим график:

Показать полностью 13 4 Пду Пуль управления Проверка Измерения Видео Длиннопост

Словосочетание «катушка ниток» знакомо всем, но про катушку индуктивности слышали, думаю, не все. Вот что вы себе представляете под словом «катушка» ? Ну…

это, наверное, какая-нибудь фиговинка, на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции. Изоляция может быть из бесцветного лака, из проводной изоляции, и даже из матерчатой.

Тут фишка такая, хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности сами, ни в коем случае не вздумайте брать обычный медный голый провод!

Любая катушка индуктивности, как ни странно, обладает индуктивностью 🙂 Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется LC — метром. Что такое индуктивность? Давайте разбираться. Если через проводок прогнать электрический ток, то он вокруг себя создаст магнитное поле:

Показать полностью 24 Катушка индуктивности Измерения Ремонт техники Длиннопост

Как проверить транзистор мультиметром?

Транзистор это очень распространенный активный радиокомпонент, который попадается почти во всех схемах, и очень часто, особенно во время эксперементальных курсов по изучению азов электроники, он выходит из строя. Поэтому без навыка проверки транзисторов, вам в электронику лучше не соваться. Вот и давайте разбираться, как проверить транзистор.

Биполярный транзистор состоит из двух P-N переходов. Его выводы называются, как эммитер, база и коллектор. Слой, который посередине, называется базой. Эммитер и коллектор находятся по краям. В P-N-P транзисторе в классической схеме включения ток втекает в эммитер и собирается в коллекторе. А ток базы регулирует ток в коллекторе.

Из измерительного оборудования для проверки транзистора нам потребуется только обычный мультиметр, который необходимо переключить в режим омметра или в режим проверки диодов.

Проверка биполярных транзисторов основана на том, что они имеют два n-p перехода, поэтому транзистор можно представить как два диода, общий вывод которых – база. Для n-p-n транзистора эти два эквивалентных диода соединены с базой анодами, а для транзистора p-n-p катодами. Транзистор считается исправным, если исправны оба перехода.

Для проверки транзистора один щуп мультиметра присоединяют к базе транзистора, а вторым щупом поочередно дотрагиваются к эмиттеру и коллектору. Затем меняют щупы местами и повторяют измерение. Теперь чуть подробнее: Возьмем транзистор структуры N-P-N и проверим эмитерный переход для этого плюсовой щуп тестера подключаем к базе, а минусовой к эммитеру.

Показать полностью 2 Транзистор Проверка Ремонт техники Длиннопост Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам:

Как проверить полевой транзистор: мосфет или полевик, мультиметром не выпаивая, с изолированным затвором на неисправность

Использование полевых транзисторов очень распространено. Если происходит поломка необходимо найти неисправную деталь. Иногда требуется точно определить, работоспособен ли полевой транзистор. Это возможно выполнить с использованием мультиметра. Как проверить полевик — подробнее рассказывается далее.

Полевой транзистор — что это

Он включает три основных элемента — исток, затвор и сток. Для их создания используются полупроводники n-типа и p-типа. Они могут сочетаться одним из способов:

  1. Сток, исток соответствуют n-типу, а затвор — p-типу. Их называют транзисторы n-p-n типа.
  2. Такие, у которых используется полярность p-n-p. Тип проводимости у каждой части транзистора изменён на противоположный в сравнении с предыдущим вариантом.

Проверка мультиметром

Если эту деталь соединить с источником питания, то ток будет отсутствовать. Но всё будет иначе, если это сделать между истоком и затвором или стоком и затвором.

Нужно, чтобы к затвору было приложено напряжение, соответствующее по знаку его типу проводимости (положительное для p-типа, отрицательное для n-типа). Тогда через эту деталь потечёт ток.

Чем более высокое напряжение было подано на затвор, тем он будет сильнее.

Отличие полевого от биполярного транзистора

Транзистор станет открытым при условии, что на затвор подаётся разность потенциалов нужной полярности. В этом случае при помощи электрического поля создаётся канал между истоком и стоком, через который могут перемещаться электрические заряды. У других разновидностей транзисторов управление происходит на основе тока, а не напряжения.

Рассматриваемые электронные компоненты также называют мосфетами. Это слово происходит из аббревиатуры MOSFET — Metal Oxide Semiconductor Field Effect Transistor (в переводе это означает: металл-окисел-полупроводник полевой транзистор).

Разновидности полевиков

Как работает

Полевой транзистор отличается от других разновидностей особенностями своего устройства. Он может относиться к одному из двух типов:

  • с управляющим переходом;
  • с изолированным затвором.

Первые из них бывают n канальными и p канальными. Первые из них более распространены. Они используют следующий принцип действия.

В качестве основы используется полупроводник с n-проводимостью. К нему с противоположных сторон присоединены контакты истока и стока. В средней части с противоположных сторон имеются вкрапления проводника с p-проводимостью — они являются затвором. Та часть полупроводника, которая между ними — это канал.

Вам это будет интересно  Как работают датчики движения для включения светаТранзистор с управляющим переходом

Если к истоку и стоку n канального транзистора приложить разность потенциалов, то потечёт ток. Однако при подаче на затвор отрицательного напряжения по отношению к истоку, то ширина канала для перемещения электронов уменьшится. В результате сила тока станет меньше.

Таким образом, уменьшая или увеличивая ширину канала, можно регулировать силу тока между истоком и стоком или изолировать их друг от друга.

В p-канальных транзисторах принцип работы будет аналогичным.

Этот тип полевых транзисторов становится менее распространённым, а вместо него получают всё большее распространение те, в которых используется изолированный затвор. Они могут относиться к одному из двух типов: n-p-n или p-n-p. У них принцип действия является аналогичным. Здесь будет рассмотрен более подробно первый из них: n-p-n.

В этом случае в качестве основы для транзистора применяется полупроводник p-типа. В него встраиваются две параллельно расположенные полоски полупроводника с другим типом основных носителей заряда. Между ними по поверхности прокладывается изолятор, а сверху устанавливается слой проводника. Эта часть является затвором, а полоски — это исток и сток.

Устройство транзистора

Когда на затвор подаётся положительное напряжение по отношению к истоку, на пластину попадает положительный заряд, создающий электрическое поле. Оно притягивает к поверхности положительные заряды, создавая канал для протекания тока между истоком и стоком. Чем сильнее напряжение, поданное на затвор, тем более сильный ток проходит между истоком и стоком.

Для всех типов полевых транзисторов управление происходит при помощи подачи напряжения на затвор.

Транзистор открыт

Какие случаются неисправности

Полевые транзисторы могут быть перегружены током во время проведения проверки и, в результате перегрева прийти в неисправное состояние.

Важно! Они уязвимы к статическому напряжению. В процессе проведения работы нужно обеспечить, чтобы оно не попадало на проверяемую деталь.

При работе в составе схемы может произойти пробой, в результате которого полевой транзистор становится неисправным и подлежит замене. Его можно обнаружить по низкому сопротивлению p-n-переходов в обоих направлениях.

Определить то, насколько транзистор является работоспособным можно, если прозвонить его с помощью цифрового мультиметра.

Назначение выводов

Это нужно делать следующим образом (для примера используется широко распространённая модель М-831, рассматривается полевой транзистор с каналом n-типа):

  1. Мультиметр нужно переключить в режим диодной проверки. Он отмечен на панели схематическим изображением диода.
  2. К прибору присоединены два щупа: чёрный и красный. На лицевой панели имеются три гнезда. Чёрный устанавливают в нижнее, красный — в среднее. Первый из них соответствует отрицательному полюсу, второй — положительному.
  3. Нужно на тестируемом полевом транзисторе определить, какие выходы соответствуют истоку, затвору и стоку.
  4. В некоторых моделях дополнительно предусмотрен внутренний диод, защищающий деталь от перегрузки. Сначала нужно проверить то, как он работает. Для этого красный провод присоединяют к истоку, а чёрный — к стоку.

Вам это будет интересно  Особенности резонанса токовПроверка диода в прямом направлении

На индикаторе должно появиться значение, входящее в промежуток 0,5-0,7. Если провода поменять местами, то на экране будет указана единица, что означает, что ток в этом направлении не проходит.

Проверка диода в обратном направлении

  1. Дальше осуществляется проверка работоспособности транзистора.

Если присоединить щупы к истоку и стоку, то ток не будет проходить по ним. Чтобы открыть затвор. Необходимо подать положительное напряжение на затвор. Нужно учитывать, что на красный щуп подан от мультиметра положительный потенциал. Теперь достаточно его соединить с затвором, а чёрный со стоком или истоком, для того, чтобы транзистор стал пропускать ток.

Открытие канала

Теперь, если красный провод подключить к истоку, а чёрный — к стоку, то мультиметр покажет определённую величину падения напряжения, например, 60. Если подключить наоборот, то показатель будет примерно таким же.

Если на затвор подать отрицательный потенциал, то это закроет транзистор в обоих направлениях, однако будет работать встроенный диод. Если полевик закрыт не будет, то это указывает на его неисправность.

Проверка мофсета с p-каналом выполняется аналогичным образом. Отличие состоит в том, что при проверке там, где раньше использовался красный щуп, теперь используется чёрный и наоборот.

Работа полевого МДП транзистора

Способы устранения

Для того, чтобы при проверке не повредить деталь, нужно применять при проверке такие мультиметры, у которых используется рабочее напряжения не более 1,5 в.

Если в результате проверки на мультиметре было обнаружено, что полевой транзистор вышел из строя, то его необходимо заменить на новый.

Инструкция по прозвонке без выпаивания

Чтобы проверить, исправен ли полевой транзистор, нужно его выпаять и прозвонить с мультиметром. Однако могут возникать ситуации, когда нужно в схеме есть несколько таких деталей и неизвестно, какие из них исправны, а какие — нет. В этом случае полезно знать, как проверить полевой транзистор мультиметром не выпаивая.

Цифровой мультиметр

В этом случае применяют проверку без выпаивания. Она даёт примерный результат.

Важно! После того, как будет определён предположительно неисправный элемент, его отсоединяют и проверяют, получив точную информацию о его работоспособности. Если он функционирует нормально, его устанавливают на прежнее место.

Проверка без выпаивания выполняется следующим образом:

  1. Перед проведением прозвонки полевого транзистора цифровым мультиметром устройство отключают от электрической розетки или от аккумуляторов. Последние вынимают из устройства.
  2. Если красный щуп соединить с истоком, а чёрный — со стоком, то можно рассчитывать, что мультиметр покажет 500 мв. Если на индикаторе можно увидеть эту или превышающую её цифру, то это говорит о том, что транзистор полностью фунукционален. В том случае, если эта величина гораздо меньше — 50 или даже 5 мв, то в этом случае можно с высокой вероятностью предположить неисправность.

Вам это будет интересно  Как измерять напряжениеС управляющим p-n-переходом

  1. Если красный мультиметровый щуп переставить на затвор, а чёрный оставить на прежнем месте, то на индикаторе можно будет увидеть 1000 мв или больше, что говорит об исправности полевого транзистора. Когда разница составляет 50 мв, то это внушает опасение, что деталь испорчена.
  2. Если чёрный щуп тестера поставить на исток, а красный поместить на затвор, то для работоспособного транзистора можно ожидать на дисплее 100 мв или больше. В тех случаях, когда цифра будет меньше 50 мв, имеется высокая вероятность того, что проверяемая деталь неработоспособна.

Нужно учитывать, что выводы, получаемые без выпайки, носят вероятностный характер. Эти данные позволяют получить предварительные выводы об используемых в схеме полевых транзисторах.

Для проверки их нужно выпаять, произвести проверку и установить, если работоспособность подтверждена.

Подготовка к работе

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

Проверка полевого транзистора на работоспособность

Исключая теорию работы полевых транзисторов, все таки вспомним, что они бывают двух видов: с управляющим p-n-переходом; со структурой металл-диэлектрик-полупроводник (МДП) или MOSFET — Metal-Oxide-Semiconductor Field-Effect Transistor

Проверка полевых транзисторов MOSFET n канального типа

Для проверки полевых транзисторов N-канального типа структуры МДП необходимо переключить мультиметр в режим проверки диодов , черный минусовой щуп необходимо установить слева на подложку (D — сток), красный плюсовой на дальний от себя вывод справа (S — исток), мультиметр показывает падение напряжения на внутреннем диоде , полевой транзистор закрыт.

Затем, не отпуская черного щупа, касаемся красным щупом ближнего вывода (G — затвор) и опять соеденяем его с дальним (S — исток), мультиметр показывает 0 мВ (на некоторых цифровых мультиметрах будет показываться 150…170 мВ), полевой транзистор открылся прикосновением

Если же в этот момент черным щупом коснуться нижней (G — затвор) ножки, не отпуская плюсового щупа, и вернуть его на подложку (D — сток), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения около 500 мВ (последний рисунок). Это метод проверен на большинстве N-канальных полевиков в корпусе DPAK и D²PAK, применяемых на современных материнских платах и видеокартах.

Проверка полевых транзисторов MOSFET p канального типа

Для проверки P-канальных полевых транзисторов требуется поменять полярность напряжений открытия-закрытия. Для этого щупы мультиметра поменяем местами.

Советы радиолюбителю. Простой способ проверки транзисторов, конденсаторов, диодов и тиристоров

Как проверить полевой транзистор

    Транзистор IRFZ44N

В современной электронной аппаратуре все чаще находят применение полевые транзисторы. Разработчики используют их в блоках питания телевизоров, мониторов, видеомагнитофонов и другой аппаратуре. При проведении ремонта мастер сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В статье автор рассказывает, как произвести проверку полевого транзистора с помощью обычного омметра.

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры.

При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Расположение выводов полевых транзисторов (Gate — Drain — Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S). Если такой маркировки нет, то желательно воспользоваться справочными данными.

    Транзистор RU6888R
    (для ремонта гироскутеров)

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно при проверке полевых транзисторов соблюдать правила безопасности.

Дело в том, что полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление.

Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет. Также следует помнить, что при хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

При проверке ПТ чаще всего пользуются обычным омметром. У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору (G) транзистора n-типа, а отрицательный — к истоку (S), зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком (D) и истоком (S) прибор покажет некоторое значение сопротивления, которое зависит от ряда факторов.

Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед “прозвонкой” канала “сток-исток” замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным.

В противном случае транзистор признается неисправным.

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод, поэтому канал “сток-исток” при проверке ведет себя как обычный диод. Для того чтобы избежть досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Убедиться в наличии диода достаточно просто.

Нужно поменять местами щупы тестера, и он должен показать бесконечное сопротивление между стоком и истоком. Если этого не произошло, то, скорее всего, транзистор пробит. В остальном проверка транзистора не отличается от приведенной выше. Таким образом, имея под рукой обычный омметр, можно легко и быстро проверить мощный полевой транзистор.

Большой выбор полевых транзисторов в интернет магазине Dalincom, в разделе Полевые транзисторы.

Александр Столовых»Ремонт электронной техники» №7 2001

Краткий курс: как проверить полевой транзистор мультиметром на исправность

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Особенности конструкции, хранения и монтажа

При работе с полевыми транзисторами необходимо учитывать их чувствительность к воздействию электрического поля. Поэтому хранить их надо с закороченными фольгой выводами, а перед пайкой необходимо закоротить выводы проволочкой. Паять полевые транзисторы надо с использованием паяльной станции, которая обеспечивает защиту от статического электричества.

Прежде, чем начать проверку исправности полевого транзистора, необходимо определить его цоколевку. Часто на импортном приборе наносятся метки, определяющие соответствующие выводы транзистора. Буквой G обозначается затвор прибора, буквой S – исток, а буквой D- сток.
При отсутствии цоколевки на приборе необходимо посмотреть ее в документации на данный прибор.

Схема проверки полевого транзистора n-канального типа мультиметром

Перед тем, как проверить исправность полевого транзистора, необходимо учитывать, что в современных радиодеталях типа MOSFET между стоком и истоком есть дополнительный диод. Этот элемент обычно присутствует на схеме прибора. Его полярность зависит от типа транзистора.

Работоспособность катушки зажигания определяют проверкой сопротивлений на первичной и вторичной обмотках с помощью мультиметра.

  1. Снять статическое электричество с транзистора.
  2. Перевести мультиметр в режим проверки диодов.
  3. Подключить черный провод мультиметра к минусу измерительного прибора, а красный – к плюсу.
  4. Подключить красный провод к истоку, а черный – к стоку транзистора. Если транзистор исправен, то мультиметр покажет напряжение на переходе 0,5 — 0,7 В.
  5. Подключить красный провод мультиметра к стоку, а черный – к истоку транзистора. При исправном приборе мультиметр покажет единицу, что означает бесконечность.
  6. Подключить черный провод к истоку, а красный – к затвору. Таким образом, осуществляется открытие транзистора.
  7. Черный провод оставляется на истоке, а красный подсоединяется к стоку. При исправном приборе мультиметр покажет напряжение от 0 до 800 мВ.
  8. При смене полярности щупов мультиметра величина показаний не должна измениться.
  9. Подключить красный провод к истоку, а черный – к затвору. Произойдет закрытие транзистора.
  10. При этом транзистор возвратиться в состояние, соответствующее п.п.4 и 5.

По проделанным измерениям можно сделать вывод, что если полевой транзистор открывается и закрывается с помощью постоянного напряжения с мультиметра, то он исправен.

Проверка исправности р-канального полевого транзистора производится таким же образом, что и n-канального. Отличие состоит в том, что в п. 3 к минусу мультиметра надо подключить красный провод, а к плюсу мультиметра – черный провод.

Как мультиметром проверить MOSFET

  • Программатор Ch441A MinProgrammer описание, драйвера, инструкция
    Этот программатор почему-то все называют Mini Programmer, несмотря на то, что надпись на нем все таки иная. Этим грешат даже поисковики. Д…

  • Шаговый двигатель из CD/DVD привода
    Попались в мои руки несколько приводов оптических дисков, которые я разобрал. В итоге помимо плат и прочей механики стал обладателем несколь…

  • Реле SRD-05VDC-SL-C описание, характеристики
    Речь пойдет о низковольтном реле SRD-05VDC-SL-C китайского производства. Очень часто приходится коммутировать напряжение 220 v, в большинств…

  • Пришла мне в голову идея собрать на lm358 усилитель для наушников. Идея вызвана тем, что мне срочно понадобился прибор для проверки операцио…

  • Как выпаять микросхему в SOP или SOIC корпусе паяльником
    Выпайка SMD компонентов обычным паяльником возможна, я сейчас опишу демонтаж микросхемы в корпусе SOP8 при помощи обычного 30-ти ваттного па…

  • Не так давно мне нужно было подключить нагрузку к Arduino nano и я столкнулся проблемой силовых ключей. У меня было несколько IRF640N, по мо…

  • Прошивка Cisco AIR-lAP1131AG-E-K9
    Поговорим о том, как прошить точку доступа cisco AIR-lAP1131AG-E-K9 в режим Stand-alone. Итак, имеем WiFi точку с прошивкой для раб…

Как проверить полевой транзистор

Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, малому сопротивлению в открытом состоянии, находят широкое применение в блоках  питания компьютеров, мониторов, телевизоров,  видеомагнитофонов и другой радиоэлектронной аппаратуры, постепенно, но неуклонно вытесняя транзисторы биполярные.

1. Меры предосторожности при работе с полевыми транзисторами

Чтобы предотвратить выход из строя транзистора во время проверки, очень важно соблюдать правила безопасности. Полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для того чтобы снять с себя накопленные статические электрические заряды, необходимо надеть на руку заземляющий антистатический браслет.

При отсутствии браслета достаточно коснуться рукой батареи отопления или любых заземленных предметов, так как электростатические заряды между телами при их разделении распределяются пропорционально массе тел. Поэтому для их «обезвреживания» бывает достаточно прикоснуться даже к любой большой незаземленной металлической поверхности.

При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой.

2. Определение цоколёвки полевых транзисторов

Полевые транзисторы, выполненные по технологии МОП (металл-оксид-полупроводник) или МДП (металл-диэлектрик-полупроводник) в англоязычной литературе носят наименование MOSFET(Metal-Oxide-SemiconductorField-EffectTransistor).

Расположение выводов (цоколёвка) полевых транзисторов Затвор (Gate) – Сток (Drain) – Исток (Source) может быть различным. Чаще всего выводы транзистора можно определить по маркировке на плате ремонтируемого аппарата (обычно выводы маркируются латинскими буквами G, D, S).

Если такой маркировки нет, то желательно воспользоваться справочными данными (datasheet).

Основные типы корпусов полевых транзисторов импортного производства

Корпус типа D²PAK, так же известен как TO-263-3. Встречается в основном на пожилых платах, на современных используется редко.

Корпус типа DPAK, так же известен как TO-252-3. Наиболее часто используется, представляет собой уменьшенный D²PAK.

Корпус типа SO-8.Встречается на материнских платах и видеокартах, чаще на последних. Внутри может скрываться один или два полевых транзистора.

Корпус типа SuperSO-8, он же — TDSON-8отличается от SO-8 тем, что 4 вывода соединены с подложкой транзистора, что облегчает температурный режим. Характерен для продуктов фирмы Infineon. Легко заменяется на аналог в корпусе SO-8

Корпус типа IPAK так же известен как TO-251-3. По сути — полный аналог DPAK, но с полноценной второй ногой. Такой тип транзисторов очень любит использовать фирма Intel на ряде своих плат.

Для электронных компонентов иностранного производства справочные данные берутся из Даташит (Datasheet— в дословном переводе «бумажка с информацией) — официального документа от производителя электронных компонентов, в котором приводятся описание, параметры, характеристики изделия, типовые схемы и т.д. Datasheet обычно представляет собой файл в формате PDF.

3. Основные характеристики N-канального полевого транзистора

Различных параметров важных, и не очень, у полевых транзисторов много. Мы подойдем к вопросу с прикладной точки зрения и ограничимся рассмотрением необходимых нам практически параметров.

  • Vds — Drain to Source Voltage — максимальное напряжение сток-исток.
  • Vgs — Gate to Source Voltage — максимальное напряжение затвор-исток.
  • Id — Drain Current — максимальный ток стока.
  • Vgs(th) — Gate to Source Threshold Voltage — пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток.
  • Rds(on) — Drain to Source On Resistance — сопротивление перехода сток-исток в открытом состоянии.
  • Q(tot) — Total Gate Charge — полныйзарядзатвора.

Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать.

4. Система маркировки полевых транзисторов

Рассмотрим на примере транзистора 20N03. Это означает, что он рассчитан на напряжение (Vds) ~30V и ток (Id) ~20A. Буква N означает, что это N-канальный транзистор. Но из любого правила есть исключения, так, например, фирма Infineon указывает в маркировке Rds, а не максимальный ток.

 Примеры:

  • IPP15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO220
  • IPB15N03L — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=12.6mΩ Id=42A TO263(D²PAK)
  • SPI80N03S2L-05 — Infineon OptiMOS N-channel MOSFET Vds=30V Rds=5.2mΩ Id=80A TO262
  • NTD40N03R — On Semi Power MOSFET 45 Amps, 25 Volts Rds=12.6mΩ
  • STD10PF06 — ST STripFET™ II Power P-channel, MOSFET 60V 0.18Ω  10A IPAK/DPAK

  Итак, в случае маркировки XXYZZ мы можем утверждать, что XX — или Rds, или Id Y — тип канала ZZ – Vds.

 5. Алгоритм проверки исправности полевого транзистора

 Проверку можно проводить стрелочным омметром (предел х100), но более удобно это делать цифровым мультиметром в режиме тестирования P-N пере­ходов . Показываемое мультиметром зна­чение сопротивления на этом пределе численно равно напряжению на P-N переходе в милливольтах.

6. Пример проверки транзистора мультиметром:

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от полярности прикладываемого напряжения (щупов).

В современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод.

Черным (отрицательным) щупом прикасаемся к подложке — СТОКУ (D), красным (положительным) — к выводу ИСТОКА (S). Мультиметр показывает прямое падение напряжения на внутреннем диоде (500 — 800 мВ). В обратном смещении мультиметр должен показывать бесконечно большое сопротивление, транзистор закрыт.

Далее, не снимая черного щупа, касаемся красным щупом вывода ЗАТВОРА (G) и опять возвращаем его на вывод ИСТОКА (S). Мультиметр показывает близкое к нулю значение, причём при любой полярности приложенного напряжения — полевой транзистор открылся прикосновением. На некоторых цифровых мультиметрах возможно значение будет не 0, а 150…170 мВ

Если теперь черным щупом коснуться вывода ЗАТВОРА (G), не отпуская красного щупа, и вернуть его на вывод подложки — СТОКА (D), то полевой транзистор закроется и мультиметр снова будет показывать падение напряжения на диоде. Это верно для большинства N-канальных полевых транзисторов в корпусе DPAK и D²PAK, применяемых на материнских платах и видеокартах.

Транзистор выполнил всё, что от него требовалось. Диагноз — исправен.

Для проверки P-канальных полевых транзисторов нужно поменять полярность напряжений открытия-закрытия. Для этого просто меняем щупы мультиметра местами.

Методика проверки исправности полевых транзисторов с достаточной степенью правильности показана в видеоролике от магазина Чип и Дип

Источник: http://meandr.org/archives/9199

Как проверить транзистор мультиметром не выпаивая, проверка исправности

Принцип работы и виды транзисторов

Транзисторы — это полупроводниковые приборы, служащий для преобразования электрических величин. Основное их применение заключается в усилении сигнала и способность работать в режиме ключа. Они выпускаются с тремя и более выводами. Существует три вида приборов:

  • биполярные;
  • полевые;
  • биполярные транзисторы с изолированным затвором.

Бывает ещё составной транзистор. Он подразумевает электрическое объединение в одном корпусе нескольких приборов одного типа. Такие сборки называются парой Дарлингтона и Шиклаи, также имеют три вывода.

Биполярное устройство

Разделяются по своему типу. Выпускаются как электронного, так и дырочного типа проводимости. В своей конструкции используют n-p или p-n переход. Дырочного типа транзисторы состоят из двух крайних областей p проводимости, и средней n проводимости. Электронного типа наоборот. Средняя зона называется базой, а примыкающие к ней области коллектором и эмиттером. Каждая зона имеет свой вывод.

Промежуток между граничащими переходами очень мал, не превышает микрометры. При этом содержание примесей в базе меньше, чем их количество в других зонах прибора. Графически биполярный прибор обозначается для PNP стрелкой внутрь, а NPN стрелкой наружу, что показывает направление тока.

Перед тем как проверить биполярный транзистор мультиметром, нужно понимать, какие физические процессы происходят в приборе. Основа работы устройства лежит в способности p-n перехода пропускать ток в одном направлении. При подаче питания на одном переходе возникает прямое напряжение, а на другом обратное. Область перехода с прямым напряжением имеет малое сопротивление, а с обратным — большое.

Принцип работы заключается в том, что прямой сигнал влияет на токи эмиттера и коллектора. При увеличении величины прямого сигнала возрастает ток в области прямого подключения. Носители заряда перемещаются в зону базы, что приводит к увеличению тока и в обратной области подключения. Возникает объёмный заряд и электрическое поле, способствующее втягиванию в зону обратного подключения заряда другого знака. В базе происходит частичное уничтожение зарядов противоположного знака, процесс рекомбинации. Благодаря чему и возникает ток базы.

Эмиттером называется область прибора, служащая для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика. На схеме элемент обозначается латинскими буквами VT или Q.

Полевой прибор

Полевые транзисторы были изобретены в 1952 году. Основное их достоинство в высоком входном сопротивлении по сравнению с биполярными приборами. Такие элементы часто называются униполярными или мосфетами. Разделяют их по способу управления, на транзисторы с управляющим p-n переходом и с изолированным затвором.

Полевой транзистор выпускается с тремя выводами, один из них управляющий, называемый затвор. Другой исток, соответствующий эмиттерному выводу в биполярном приборе, и третий сток, вывод с которого снимается сигнал. В каждом типе устройства есть транзисторы с n-каналом и p-каналом.

Работа прибора с управляющим каналом, например, n-типа, основана на следующем принципе. Источник питания, подключённый к прибору, создаёт на его переходе обратное напряжение. Если уровень входного сигнала изменяется, то изменяется и обратное напряжение. Это приводит к тому, что меняется площадь, через которую протекают основные носители заряда. Такая площадь называется каналом. Полевые транзисторы изготавливаются методом сплавления или диффузией.

Мосфет с изолированным затвором представляет собой металлический канал, отделённый от полупроводникового слоя диэлектриком. Общепринятое название прибора — MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

Основанием элемента служит пластинка из кремния с дырочной электропроводностью. В ней создаются области с электронной проводимостью, соответственно образующие исток и сток. Такой мосфет работает в режиме обеднения или обогащения. В первом случае на затвор подаётся напряжение относительно истока отрицательного значения, из канала выдавливаются электроны, и ток истока уменьшается. Во втором режиме, наоборот, ток увеличивается из-за втягивания новых носителей заряда.

Транзистор с индуцированным каналом, открывается при возникновении разности потенциалов между затвором и истоком. Для полевика с p-каналом к затвору прикладывается отрицательное напряжение, а с n-каналом положительное. Особенность мощных транзисторов состоит в том, что вывод истока соединяется с корпусом прибора. При этом соединяется база с эмиттером. Такое соединение образует диод, который в закрытом состоянии не влияет на работу прибора.

Биполярный тип с изолированным затвором

Устройства такого типа называются IGBT (Insulated Gate Bipolar Transistor). Это сложный прибор, в котором, например, полевой n-канальный транзистор управляется биполярным устройством типа PNP.

К эмиттеру биполярного транзистора подключается коллектор мосфета. Если на затвор подаётся напряжение положительной величины, то между эмиттером и базой транзистора возникает проводящий канал. В результате транзистор IGBT отпирается, падение напряжения на PN переходе уменьшается. Когда значение напряжения увеличивается, то пропорционально увеличивается и ток канала в базе биполярного прибора, а падение напряжения на IGBT транзисторе уменьшается. Если полевой транзистор заперт, то и ток биполярного прибора будет почти нулевым.

Проверка биполярного прибора тестером

Проверку прибора можно осуществить двумя способами. Для этого в тестере используется режим прозвонки или специально предназначенный режим проверки биполярных транзисторов.

На начальном этапе выясняется тип проводимости элемента. Для этого можно воспользоваться справочником или вычислить путём прозвонки. База вычисляется методом перебора. Щуп с общего вывода тестера подключается к одному из выводов транзистора, а щуп со второго вывода по очереди прикасается к двум оставшимся ножкам радиоэлемента. При этом смотрится какую величину сопротивления показывает тестер.

Необходимо найти такое положение, чтоб величина значения сопротивления между выводами составляла бесконечность. На цифровом тестере в режиме прозвонки будет гореть единица. Если такое положение не найдено, следует зафиксировать щуп второго вывода, а щупом с общего выхода осуществлять перебор.

Когда требуемая комбинация будет достигнута, то вывод, по отношению которого измеряется сопротивление, будет базой. Для вычисления выводов коллектора и эмиттера понадобится: в случае pnp транзистора на вывод базы — подать отрицательное напряжение, а для npn — положительное. Сопротивление перехода эмиттер — база будет немного больше, чем база-коллектор.

Например, исследуя биполярный низкочастотный транзистор NPN типа MJE13003, который имеет последовательность выводов база, коллектор, эмиттер, понадобится:

  1. Переключить мультиметр в режим прозвонки.
  2. Стать положительным щупом на базу прибора.
  3. Вторым концом прикоснуться к коллектору прибора, сопротивление должно быть около 800 Ом.
  4. Второй конец переставить на эмиттер прибора, сопротивление должно составить 820 Ом.
  5. Поменять полярность. На базу стать отрицательным щупом, а к коллектору и эмиттеру прикоснуться поочерёдно вторым концом. Сопротивление должно быть бесконечным.

Если во время проверки все пункты выполняются верно, то транзистор исправен. В ином случае, при возникновении короткого замыкания между любыми переходами, или обрыва в обратном включении, делается вывод о неисправности транзистора. Проверка прибора обратной проводимости проводится аналогичным образом, лишь меняется полярность приложенных щупов. Таким способом можно проверить транзистор мультиметром, не выпаивая его, так и сняв с платы.

Второй способ измерения при использовании современного мультиметра, позволит не только проверить исправность полупроводникового прибора, но и определить коэффициент усиления h31. В зависимости от типа и вида, ножки транзистора совмещаются с соответствующими надписями на гнезде, обозначенном также hFE. При включении прибора на экране появится цифра, обозначающая коэффициент усиления транзистора. Если цифра определяется равной нулю, то такой транзистор работать не будет, или же неправильно определена его проводимость.

Определение целостности полевого радиоэлемента

Такой тип электронного прибора не получится проверить без выпайки из схемы. Способ проверки как для n-канального, так и для p-канального, а также IGBT вида, одинакова. Разница лишь в полярности, прикладываемой к выводам. Например, исправность F3NK80Z n-канального прибора выясняется по следующему алгоритму:

  1. Мультиметр переключается в режим прозвонки.
  2. Щуп общего провода прикасается к стоку прибора, а положительный — к истоку.
  3. Щуп переставляется с истока на затвор. Переход в транзисторе откроется.
  4. Возвращаем щуп на исток. Значение сопротивления должно быть маленьким, прибор, если у него есть звуковая прозвонка, запищит.
  5. Для закрытия прибора щуп общего провода соединяется с затвором, при этом положительный щуп с истока не снимается.
  6. Устанавливается положения щупов согласно первому пункту.

Для проверки p-типа проводимости последовательность операций остаётся такой же, за исключением полярности щупов, которая меняется на обратную.

Для мощных полевых приборов может случиться так, что напряжения тестера не хватит для его открытия. Так как прозвонить такой полевой транзистор мультиметром не удастся, понадобиться применить дополнительное питание. В таком случае в разрыв через сопротивление 1–2 кОм подаётся постоянное напряжение равное 12 вольт.

Существуют такие радиоэлементы, например, КТ117а, имеющие две базы. Их относят к однопереходным приборам. В современных устройствах они не получил широкого применения, но порой встречаются. У них нет коллектора.

Такие транзисторы тестером проверяются только на отсутствие короткого замыкания между выводами. Убедиться в его работе можно воспользовавшись схемой генератора.

Как проверить транзистор мультиметром - простое руководство


Перед тем как собрать какую-то схему или начать ремонт электронного устройства необходимо убедиться в исправности элементов, которые будут установлены в схему. Даже если эти элементы новые, необходимо быть уверенным в их работоспособности. Обязательной проверке подлежат и такие распространенные элементы электронных схем как транзисторы.

Для проверки всех параметров транзисторов существуют сложные приборы. Но в некоторых случаях достаточно провести простую проверку и определить годность транзистора. Для такой проверки достаточно иметь мультиметр.

Виды транзисторов и их применение

В технике используются различные виды транзисторов – биполярные, полевые, составные, многоэмиттерные, фототранзисторы и тому подобные. В данном случае будут рассматриваться наиболее распространенные и простые — биполярные транзисторы.

Такой транзистор имеет 2 р-n перехода. Его можно представить как пластину с чередующимися слоями с разными типами проводимости. Если в крайних областях полупроводникового прибора преобладает дырочная проводимость (p), а в средней – электронная проводимость (n), то прибор называется транзистор р-n-p. Если наоборот, то прибор называется транзистором типа n-p-n. Для разных видов биполярных транзисторов меняется полярность источников питания, которые подключаются к нему в схемах.

Наличие в транзисторе двух переходов позволяет представить в упрощенном виде его эквивалентную схему как последовательное соединение двух диодов. При этом для p-n-p прибора в эквивалентной схеме между собой соединены катоды диодов, а для n-p-n прибора – аноды диодов.
В соответствии с этими эквивалентными схемами и производится проверка биполярного транзистора мультиметром на исправность.

Порядок проверки устройства — следуем по инструкции

Процесс измерений состоит из следующих этапов:

  • проверка работы измерительного прибора;
  • определение типа транзистора;
  • измерение прямых сопротивлений эмиттерного и коллекторного переходов;
  • измерение обратных сопротивлений эмиттерного и коллекторного переходов;
  • оценка исправности транзистора.

Перед тем, как проверить биполярный транзистор мультиметром, необходимо убедиться в исправности измерительного прибора. Для этого вначале надо проверить индикатор заряда батареи мультиметра и, при необходимости, заменить батарею. При проверке транзисторов важна будет полярность подключения. Надо учитывать, что у мультиметра на выводе «COM» имеется отрицательный полюс, а на выводе «VΩmA» – плюсовой. Для определенности к выводу «COM» желательно подключить щуп черного цвета, а к выводу «VΩmA» -красного.

Чтобы к выводам транзистора подключить щупы мультиметра правильной полярности, необходимо определить тип прибора и маркировку его выводов. С этой целью необходимо обратиться к справочнику или найти описание транзистора в Интернете.

На следующем этапе проверки переключатель операций мультиметра устанавливается в положение измерения сопротивлений. Выбирается предел измерения в «2к».

Каждый радиолюбитель или начинающий электрик должен располагать надежным инструментом для пайки. Совсем не обязательно такой покупать, потому что можно ознакомиться с детальной инструкцией — как сделать паяльник своими руками, и сэкономить лишние денежные затраты.

Кроме паяльника, изучив более сложные схемы, можно собрать целую паяльную станцию. Как это сделать, читайте тут.

Перед тем, как проверить pnp транзистор мультиметром, надо минусовой щуп подключить к базе устройства. Это позволит измерить прямые сопротивления переходов радиоэлемента типа p-n-p. Плюсовой щуп подключается по очереди к эмиттеру и коллектору. Если сопротивления переходов равны 500-1200 Ом, то эти переходы исправны.

При проверке обратных сопротивлений переходов к базе транзистора подключается плюсовой щуп, а минусовой по очереди подключается к эмиттеру и коллектору. Если эти переходы исправны, то в обоих случаях фиксируется большое сопротивление.

Проверка npn транзистора мультиметром происходит по такой же методике, но при этом полярность подключаемых щупов меняется на противоположную. По результатам измерений определяется исправность транзистора:

  1. если измеренные прямое и обратное сопротивления перехода большие, то это значит, что в приборе имеется обрыв;
  2. если измеренные прямое и обратное сопротивления перехода малы, то это означает, что в приборе имеется пробой.

В обоих случаях транзистор является неисправным.

Оценка коэффициента усиления

Характеристики транзисторов обычно имеют большой разброс по величине. Иногда при сборке схемы требуется использовать транзисторы, у которых имеется близкий по величине коэффициент усиления по току. Мультиметр позволяет подобрать такие транзисторы. Для этого в нем имеется режим переключения «hFE» и специальный разъем для подключения выводов транзисторов 2 типов.

Подключив в разъем выводы транзистора соответствующего типа можно увидеть на экране величину параметра h31.

Выводы:

  1. С помощью мультиметра можно определить исправность биполярных транзисторов.
  2. Для проведения правильных измерений прямого и обратного сопротивлений переходов транзистора необходимо знать тип транзистора и маркировку его выводов.
  3. С помощью мультиметра можно подобрать транзисторы с желаемым коэффициентом усиления.

Видео о том, как проверить транзистор мультиметром

Как проверить биполярный транзистор на пригодность обычным мультиметром, тестером.

Иногда возникает необходимость в проверке биполярного транзистора на его пригодность. Это легко можно сделать с помощью обычного мультиметра, электронного тестера даже самой простой модели типа DT830. Как известно, биполярный транзистор представляет собой полупроводник, имеющий три вывода – эмиттер, коллектор и база.

Электротехнически биполярный транзистор можно представить как два диода. Причем, при одной проводимости (n-p-n) эти диоды как бы соединены одними своими полярностями (плюсами, и это база), а при другой проводимости (p-n-p), противоположными полярностями (минусами, это также база). И по сути вся проверка биполярного транзистора сводится к двум типам измерения – это наличие нормальной полупроводимости у переходов база-эмиттер и база-коллектор, и наличие нужного коэффициента усиления данного транзистора.

Для тех кто не знает напомню, что основная функциональная задача транзистора является усиление тока. То есть, пропускание небольших токов через база-эмиттерный переход приводит к тому, что на переходе эмиттер-коллектор можно получить токи в десятки-тысячи раз больше. Причем имеется прямая зависимость, чем больше ток будет проходит через базу, тем больше тока мы получим на коллекторе. Но это усиление тоже не бесконечное.

У маломощных биполярных транзисторов коэффициент усиления может быть от десятков до тысяч раз. Чем мощнее транзистор, тем больший ток он может через себя пропустить, но при этом обычно жертвуя этим самым коэффициентом усиления. У мощных транзисторов этот коэффициент усиления обычно не превышает десятков, реже сотен раз.

Теперь вернемся к проверке биполярного транзистора обычным мультиметром. Первым вариантом будет просто проверить на транзисторе два полупроводящих перехода. Это переход база-эмиттер и база коллектор. Берем мультиметр, колесо выбора измерения переводим на диод и измеряем. Если Вы не знаете где какой вывод у транзистора, то без справочника тут не обойтись. Просто через поиск картинок в интернете набираете «цоколевка транзистора (пишем его название)» и смотрите результаты.

Когда вы знаете где, какие выводы, то еще нужно знать тип проводимости транзистора (n-p-n или p-n-p). Для тех кто не вкурсе – это, проще говоря, либо два диода направлены в одну сторону или же в противоположную. Опять же, через поиск в интернете набираем «проводимость транзистора (пишем его название)». Хотя можно просто, зная где у биполярного транзистор база, сначала одним щупом мультиметра прикоснутся к базе, а вторым к эмиттеру и коллектору. Если измерительный прибор ничего не показывает, то просто поменять местами щупы измерителя. Если транзистор работоспособен, то на экране электронного тестера должно отобразится падение напряжения перехода, которое равно около 600-700 милливольт. На переходах база-эмиттер и база коллектор эти значения падения напряжения могут немного отличаться, это нормально.

Теперь, что мы увидим на мультиметре в случае если транзистор неисправен. Возможен полный или частичный пробой. При полном пробое переходы либо вовсе перегорают (один или сразу два) или наоборот, становятся полными проводниками. То есть, в одном случае полупроводниковый переход разрывается, контакта нет, электронный тестер ничего не покажет. Во втором случае переход начинает проводит в обе стороны, превращаясь из полупроводника в полный проводник (хотя имеющее уже свое какое-то сопротивление). Тут мультиметр должен показать нули, или около того. Если же биполярный транзистор пробивается частично, то в этом случае мы на экране измерительного прибора можем увидеть не нормальное падение напряжения на переходах (значительно больше или меньше нормальных значений). Этот транзистор будет работать, но уже не так как нужно изначально. Его необходимо заменить на заведомо работоспособный.

Мультиметр также позволяет измерить коэффициент усиления биполярного транзистора. И это второй способ проверки биполярного транзистора на пригодность.  Для этого на электронном тестере предусмотрен специальный разъем. Для проверки нужно свой транзистор вставить в нужные гнезда (соблюдая цоколевку и тип проводимости). Переводим колесо выбора измерения мультиметра в положение hFE. Если биполярный транзистор рабочий, то на экране тестера мы увидим реальный коэффициент усиления данного элемента. Если же транзистор неисправен, то измерительный прибор ничего не покажет.

И еще одно замечание, которое следует учесть. Новичок может вначале подумать, что проверить транзисторные переходы база-эмиттер и база-коллектор можно через измерение по сопротивлению. По идее это логично. Но технически это сделать не получится (по крайней мере на тех мультиметрах, у которых измерение диода вынесено на отдельный селектор). Дело в том, что в самом электронном тестере при измерении малых сопротивлений на щупы подается всего лишь 0,5 вольта. Для открытия кремниевых полупроводников (которым и является транзистор, диод и т.д.) нужно не менее 0,6 вольта. И получается что измеряя даже рабочий полупроводник через сопротивление тестер нам ничего не покажет. Когда же мы проверяем полупроводники через диоды, то на щупы измерителя подается уже 2,5 вольта, что вполне хватает для проведения измерения. Так что учтите этот момент.

P.S. Как видно проверить биполярный транзистор не составляет большого труда. Хотя в высокоточных схемах даже работоспособный транзистор, который имеет значительные отклонения в своих параметра, может работать некорректно. И тут уж такая проверка мультиметром не выявит неисправность. В этом случае нужно искать дефективный элемент на самой схеме при ее работе или просто заменять подозрительные компоненты на запасные, заведомо исправные.

Проверка npn транзистора мультиметром - Яхт клуб Ост-Вест

Проверку транзисторов приходится делать достаточно часто. Даже если у Вас в руках заведомо новый, не паяный ни разу транзистор, то перед установкой в схему лучше все-таки его проверить. Нередки случаи, когда купленные на радиорынке транзисторы, оказывались негодными, и даже не один единственный экземпляр, а целая партия штук на 50 – 100. Чаще всего это происходит с мощными транзисторами отечественного производства, реже с импортными.

Иногда в описаниях конструкции приводятся некоторые требования к транзисторам, например, рекомендуемый коэффициент передачи. Для этих целей существуют различные испытатели транзисторов, достаточно сложной конструкции и измеряющие почти все параметры, которые приводятся в справочниках. Но чаще приходится проверять транзисторы по принципу «годен, не годен». Именно о таких методах проверки и пойдет речь в данной статье.

Часто в домашней лаборатории под рукой оказываются транзисторы, бывшие в употреблении, добытые когда-то из каких-то старых плат. В этом случае необходим стопроцентный «входной контроль»: намного проще сразу определить негодный транзистор, чем потом искать его в неработающей конструкции.

Хотя многие авторы современных книг и статей настоятельно не рекомендуют использовать детали неизвестного происхождения, достаточно часто эту рекомендацию приходится нарушать. Ведь не всегда же есть возможность пойти в магазин и купить нужную деталь. В связи с подобными обстоятельствами и приходится проверять каждый транзистор, резистор, конденсатор или диод. Далее речь пойдет в основном о проверке транзисторов.

Проверку транзисторов в любительских условиях обычно проводят цифровым мультиметром или старым аналоговым авометром.

Проверка транзисторов мультиметром

Большинству современных радиолюбителей знаком универсальный прибор под названием мультиметр. С его помощью возможно измерение постоянных и переменных напряжений и токов, а также сопротивления проводников постоянному току. Один из пределов измерения сопротивлений предназначен для «прозвонки» полупроводников. Как правило, около переключателя в этом положении нарисован символ диода и звучащего динамика.

Перед тем, как производить проверку транзисторов или диодов, следует убедиться в исправности самого прибора. Прежде всего, посмотреть на индикатор заряда батареи, если требуется, то батарею сразу заменить. При включении мультиметра в режим «прозвонки» полупроводников на экране индикатора должна появиться единица в старшем разряде.

Затем проверить исправность щупов прибора, для чего соединить их вместе: на индикаторе высветятся нули, и раздастся звуковой сигнал. Это не напрасное предупреждение, поскольку обрыв проводов в китайских щупах явление довольно распространенное, и об этом забывать не следует.

У радиолюбителей и профессиональных инженеров – электронщиков старшего поколения такой жест (проверка щупов) выполняется машинально, ведь при пользовании стрелочным тестером при каждом переключении в режим измерения сопротивлений приходилось устанавливать стрелку на нулевое деление шкалы.

После того, как указанные проверки произведены, можно приступить к проверке полупроводников, – диодов и транзисторов. Следует обратить внимание на полярность напряжения на щупах. Отрицательный полюс находится на гнезде с надписью «COM» (общий), на гнезде с надписью VΩmA положительный. Чтобы в процессе измерения об этом не забывать, в это гнездо следует вставить щуп красного цвета.

Рисунок 1. Мультиметр

Это замечание не настолько праздное, как может показаться на первый взгляд. Дело в том, что у стрелочных авометров (АмперВольтОмметр) в режиме измерения сопротивлений положительный полюс измерительного напряжения находится на гнезде с маркировкой «минус» или «общий», ну с точностью до наоборот, по сравнению с цифровым мультиметром. Хотя в настоящее время больше используются цифровые мультиметры, стрелочные тестеры применяются до сих пор и в ряде случаев позволяют получить более достоверные результаты. Об этом будет рассказано чуть ниже.

Рисунок 2. Стрелочный авометр

Что показывает мультиметр в режиме «прозвонки»

Проверка диодов

Наиболее простым полупроводниковым элементом является диод, который содержит всего один P-N переход. Основным свойством диода является односторонняя проводимость. Поэтому если положительный полюс мультиметра (красный щуп) подключить к аноду диода, то на индикаторе появятся цифры, показывающие прямое напряжение на P-N переходе в милливольтах.

Для кремниевых диодов это будет порядка 650 – 800 мВ, а для германиевых порядка 180 – 300, как показано на рисунках 4 и 5. Таким образом, по показаниям прибора можно определить полупроводниковый материал, из которого сделан диод. Следует заметить, что эти цифры зависят не только от конкретного диода или транзистора, но еще от температуры, при увеличении которой на 1 градус прямое напряжение падает приблизительно на 2 милливольта. Этот параметр называется температурным коэффициентом напряжения.

Если после этой проверки щупы мультиметра подключить в обратной полярности, то на индикаторе прибора покажется единица в старшем разряде. Такие результаты будут в том случае, если диод оказался исправный. Вот собственно и вся методика проверки полупроводников: в прямом направлении сопротивление незначительно, а в обратном практически бесконечно.

Если же диод «пробит» (анод и катод замкнуты накоротко), то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае, если диод «в обрыве», как ни меняй полярность подключения щупов, на индикаторе, так и будет светиться единица.

Проверка транзисторов

В отличие от диодов транзисторы имеют два P-N перехода, и имеют структуры P-N-P и N-P-N, причем последние встречаются гораздо чаще. В плане проверки с помощью мультиметра транзистор можно рассматривать, как два диода включенных встречно – последовательно, как показано на рисунке 6. Поэтому проверка транзисторов сводится к «прозвонке» переходов база – коллектор и база – эмиттер в прямом и обратном направлении.

Следовательно, все что было сказано чуть выше о проверке диода, полностью справедливо и для исследования переходов транзистора. Даже показания мультиметра будут такие же, как и для диода.

На рисунке 7 показана полярность включения прибора в прямом направлении для «прозвонки» перехода база – эмиттер транзисторов структуры N-P-N: плюсовой щуп мультиметра подключен к выводу базы. Для измерения перехода база – коллектор минусовой вывод прибора следует подключить к выводу коллектора. В данном случае цифра на табло получена при прозвонке перехода база – эмиттер транзистора КТ3102А.

Если транзистор окажется структуры P-N-P, то к базе транзистора следует подключить минусовой (черный) щуп прибора.

Попутно с этим следует «прозвонить» участок коллектор – эмиттер. У исправного транзистора его сопротивление практически бесконечно, что символизирует единица в старшем разряде индикатора.

Иногда бывает, что переход коллектор – эмиттер пробит, о чем свидетельствует звуковой сигнал мультиметра, хотя переходы база – эмиттер и база – коллектор «звонятся» как будто нормально!

Проверка транзисторов авометром

Производится также, как и цифровым мультиметром, при этом не следует забывать, что полярность в режиме омметра обратная по сравнению с режимом измерения постоянного напряжения. Чтобы это не забывать в процессе измерений следует красный щуп прибора включать в гнездо со знаком «-», как было показано на рисунке 2.

Авометры, в отличие от цифровых мультиметров, не имеют режима «прозвонки» полупроводников, поэтому в этом плане их показания заметно различаются в зависимости от конкретной модели. Тут уже приходится ориентироваться на собственный опыт, накопленный в процессе работы с прибором. На рисунке 8 показаны результаты измерений с помощью тестера ТЛ4-М.

На рисунке показано, что измерения проводятся на пределе *1Ω. В этом случае лучше ориентироваться на показания не по шкале для измерения сопротивлений, а по верхней равномерной шкале. Видно, что стрелка находится в районе цифры 4. Если измерения производить на пределе *1000Ω, то стрелка окажется между цифрами 8 и 9.

По сравнению с цифровым мультиметром авометр позволяет более точно определить сопротивление участка база – эмиттер, если этот участок зашунтирован низкоомным резистором (R2_32), как показано на рисунке 9. Это фрагмент схемы выходного каскада усилителя фирмы ALTO.

Все попытки измерить сопротивление участка база – эмиттер с помощью мультиметра приводят к звучанию динамика (короткое замыкание), поскольку сопротивление 22Ω воспринимается мультиметром как КЗ. Аналоговый же тестер на пределе измерений *1Ω показывает некоторую разницу при измерении перехода база – эмиттер в обратном направлении.

Еще один приятный нюанс при пользовании стрелочным тестером можно обнаружить, если проводить измерения на пределе *1000Ω. При подключении щупов, естественно с соблюдением полярности (для транзистора структуры N-P-N плюсовой вывод прибора на коллекторе, минус на эмиттере), стрелка прибора с места не двинется, оставаясь на отметке шкалы бесконечность.

Если теперь послюнить указательный палец, как будто для проверки нагрева утюга, и замкнуть этим пальцем выводы базы и коллектора, то стрелка прибора сдвинется с места, указывая на уменьшение сопротивления участка эмиттер – коллектор (транзистор чуть приоткроется). В ряде случаев этот прием позволяет проверить транзистор без выпаивания его из схемы.

Наиболее эффективен указанный метод при проверке составных транзисторов, например КТ 972, КТ973 и т.п. Не следует только забывать, что составные транзисторы часто имеют защитные диоды, включенные параллельно переходу коллектор – эмиттер, причем в обратной полярности. Если транзистор структуры N-P-N, то к его коллектору подключен катод защитного диода. К таким транзисторам можно подключать индуктивную нагрузку, например, обмотки реле. Внутреннее устройство составного транзистора показано на рисунке 10.

Но более достоверные результаты об исправности транзистора можно получить с использованием специального пробника для проверки транзисторов, про который смотрите здесь: Пробник для проверки транзисторов.

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Тестер транзисторов

для проверки Hfe и работы транзисторов NPN и PNP

В этой статье обсуждаются различные схемы, которые можно использовать для тестирования транзисторов, как NPN, так и PNP. Мы разделили эту статью на две схемы. Если у вас есть какие-либо сомнения по поводу какого-либо раздела, спрашивайте в комментариях.

1. Тестер транзисторов, построенный на транзисторах

2. Простой тестер транзисторов (содержит принципиальную схему и схему печатной платы)

3.Тест транзисторов на основе светодиодов

Описание.

Вот очень простая схема, которую можно использовать для проверки hfe транзисторов. С помощью этой схемы можно проверить транзисторы PNP и NPN. С помощью этой схемы можно измерить Hfe до 1000. Схема основана на двух источниках постоянного тока, построенных на транзисторах Q1 и Q2. Q1 - это транзистор PNP, и постоянный ток течет в выводе эмиттера. Величина постоянного тока может быть задана уравнением; (V D1 -0.6) / (R2 + R4). POT R4 можно отрегулировать для получения постоянного тока 10 мкА.

Q2 представляет собой транзистор NPN, и постоянный ток течет по проводнику коллектора. Значение этого постоянного тока может быть задано уравнением; (VD2-0.6) / (R3 + R5). POT R5 можно отрегулировать для получения постоянного тока 10 мкА. Этот постоянный ток обеспечивается схемой Q1, если проверяемый транзистор является транзистором NPN, и схемой Q2, если транзистор Тестируемый транзистор PNP подается на базу тестируемого транзистора.Этот ток, умноженный на hfe, протекает в коллекторе транзистора, и он будет отображаться на измерителе. Измеритель может быть откалиброван напрямую для считывания HFE транзистора.

Принципиальная схема со списком деталей.


Примечания.
  • Соберите схему на печатной плате общего назначения.
  • Схема может питаться от печатной платы общего назначения.
  • J1 и J2 - это гнезда для транзисторов.
  • Стабилитроны должны иметь мощность не менее 400 мВт.

Примечание: Схема разработана нашим Автором: Высах

Простой тестер транзисторов - это схема анализатора транзисторов, которая подходит для тестирования как NPN-, так и PNP-транзисторов. Это очень простая схема по сравнению с другими тестерами транзисторов. Эта схема очень полезна как для технических специалистов, так и для студентов. Эта схема может быть легко собрана на печатной плате общего назначения. Для разработки этой схемы используется базовый электронный компонент, такой как резисторы, светодиоды, диод и трансформатор.Используя эту схему, мы можем проверить, в хорошем ли состоянии транзистор, открыт он или закорочен и так далее.

Рабочий

Принцип, лежащий в основе этой схемы, очень прост. Эта схема в основном работает на основе действия переключения транзисторов (Basic Transistor Theory). Взгляните на схему, приведенную ниже.

Тестирование NPN транзистора
  • Давайте начнем с подключения транзистора NPN к схеме с соответствующими выводами эмиттера, базы и коллектора и переключателем на схеме.
  • Во время первого полупериода входа трансформатора эмиттерный базовый переход транзистора смещен в прямом направлении, а коллекторный базовый переход смещен в обратном направлении, и транзистор находится в состоянии ВКЛ, а диод D1 находится в прямом смещении. красный светодиод начинает светиться. В течение следующего полупериода транзистор смещен в обратном направлении и находится в состоянии ВЫКЛ.
  • По альтернативному характеру входного переменного тока мы можем видеть, что красный светодиод находится в состоянии ВКЛ, а транзистор находится в хорошем рабочем состоянии (диод D2 и зеленый светодиод находятся в обратном смещении и в состоянии ВЫКЛ).Используя переменный резистор, мы можем проверить транзистор с различными базовыми токами.
  • Если транзистор NPN находится в открытом состоянии, транзистор не проводит ток и через светодиод не течет ток. Если транзистор закорочен, транзистор действует как замкнутый переключатель. Оба диода проводят попеременно, и оба светодиода начинают светиться.

Проверка транзистора PNP

Транзистор PNP присоединяется к устройству соответствующими контактами и включает схему.Если в течение одного полупериода входного переменного тока (предположим, что верхний вывод трансформатора отрицательный, а нижний - положительный), переходы база эмиттера и база коллектора транзистора смещены в прямом направлении. Тогда, в таком состоянии, если есть и ток течет через диод D2 и зеленый светодиод начинает светиться, тогда поймите, что транзистор находится в хорошем рабочем состоянии (диод D1 и красный светодиод смещены в обратном направлении и не работают на то время). В течение следующего полупериода оба диода и транзисторы смещены в обратном направлении и находятся в выключенном состоянии.Благодаря свойству переменного входного переменного тока, мы чувствуем, что зеленый светодиод горит. Мы можем проверить эту схему, предоставив различные базовые токи (очень переменным резистором.

Если транзистор PNP находится в открытом состоянии, он не проводит оба полупериода, и выходной сигнал не получается. Если транзистор закорочен, транзистор действует как замкнутый путь, и оба диода попеременно смещены в прямом направлении, что приводит к одновременному свечению двух светодиодов.

Схема печатной платы простого тестера транзисторов также приведена ниже .

Схема расположения печатной платы

Project 31 - полнофункциональный тестер транзисторов

Project 31 - полнофункциональный тестер транзисторов
Elliott Sound Products пр.31

© Октябрь 1999 г., Род Эллиотт (ESP)

Вершина
Введение

При создании усилителей или любых других силовых каскадов часто необходимо тестировать транзисторы, чтобы убедиться, что они (все еще) работают, или для некоторых эзотерических конструкций может даже потребоваться сопоставление определенных характеристик.Не думайте, что, поскольку ваш мультиметр (или небольшие «автоматические» тестеры компонентов) может тестировать транзисторы, он может тестировать силовые устройства, потому что это не так. Ток коллектора обычно ограничен максимум несколькими миллиампер, и это совершенно бесполезно для силового транзистора, который может не показывать никакого полезного усиления, пока не будет проводить где-то между 10 и 100 мА.

Представленный здесь дизайн - это именно то, что вам нужно, и дает возможность протестировать:

  • Коэффициент усиления (также обозначается как h FE или бета)
  • Коэффициент усиления при различных токах коллектора до 5А
  • Напряжение пробоя (с или без Rbe - значение выбирается)

Как и в случае с некоторыми другими моими проектами, это не так уж и дешево в строительстве, но, если уж на то пошло, мое собственное устройство прослужит долгие годы.(На самом деле, мой у меня был так долго, что в источнике переменного высокого напряжения использовался клапан - его только недавно заменили транзистором.) Эта конструкция на самом деле лучше, чем мой существующий блок - он имеет больший блок питания и более гибкая в эксплуатации.

В конце статьи есть пара фотографий моего устройства, так что вы можете получить некоторое представление о том, как он может выглядеть, когда закончите. Имейте в виду, что этот тестер отличается от моего (у него больше функций), поэтому не пытайтесь проводить прямое сравнение переключения.У меня (к сожалению) нет отдельных переключателей диапазонов тока базы и коллектора, поэтому он менее полезен. Может, в следующий раз мне придется сделать такое.

Предупреждение
Вначале я должен сделать одно предостережение. Как и любое подобное коммерческое предложение, этот тестер способен взорвать транзистор так же, как и проверить его. Пользователь полностью отвечает за правильность настроек перед нажатием переключателя усиления.Автор не несет абсолютно никакой ответственности за любой ущерб, прямой или косвенный, который может быть нанесен тестируемому устройству или оператору в результате использования или невозможности использования описанного проекта. Например, если вы оставите базовый ток, установленный на 10 мА, а диапазон тока коллектора (скажем) 1 А или более, когда вы попытаетесь проверить транзистор с малым сигналом, он, вероятно, немедленно выйдет из строя. Всегда проверяйте диапазоны перед нажатием кнопки тестирования!


Описание

Основной метод проверки усиления транзистора показан на рисунке 1, и хотя он не идеален, его гораздо проще реализовать, чем с использованием фиксированного тока коллектора.Результаты более чем приемлемы, и из-за конструкции этого устройства можно наблюдать падение усиления и другие нежелательные явления вплоть до максимального тока.


Рисунок 1 - Базовый метод тестирования транзисторов

Переключение диапазонов последнего блока и другие функциональные блоки показаны на рисунке 2, и легко увидеть, что он почти полностью состоит из переключателей и резисторов. Печатная плата не требуется, поскольку большинство резисторов следует подключать непосредственно к переключателям или их можно установить на бирках, как я сделал в моем оригинальном устройстве.


Рисунок 2 - Переключение функций тестера

Диапазон измерителя простирается от максимальной чувствительности измерителя в 100 мкА с шагом декады до 1А. Максимальный диапазон был намеренно ограничен до 5А - даже при этом токе транзистор будет рассеивать до 20 Вт в худшем случае, поэтому тестируемое устройство следует установить на радиаторе, или испытание должно быть очень коротким, в противном случае транзистор перегреется и может (будет) разрушен или серьезно поврежден.

Номинальная мощность резисторов
Значения номинальной мощности для различных шунтирующих резисторов измерителя важны. Резистор 2 Ом (диапазон 5 А) лучше всего сделать из пяти резисторов 10 Ом 10 Вт, включенных параллельно. Рассеивание будет максимум около 70 Вт, но будет использоваться только в течение короткого времени, иначе транзистор перегреется и выйдет из строя. Установите резисторы на секции радиатора с помощью алюминиевого кронштейна, убедившись, что кронштейн и радиатор имеют хороший тепловой контакт.Используйте термопасту, чтобы отвести как можно больше тепла. Не используйте тот же радиатор, что и регулятор мощности. Дополнительное тепло от резисторов слишком сильно повысит температуру и поставит под угрозу срок службы полупроводников.

Резистор 10 Ом (диапазон 1 А) также должен быть 10 Вт, но не требует радиатора (хотя установка его с другими не повредит). Держите его подальше от других компонентов, потому что он сильно нагреется.

100 Ом (диапазон 100 мА) может быть 5-ваттным и будет работать довольно прохладно (только 1.Рассеиваемая мощность 6 Вт в худшем случае), а все остальные резисторы должны быть типа 1/2 Вт. Поскольку абсолютная точность не слишком важна, допускается допуск 5%, но при желании можно использовать 1%.

Функции переключателей
Ниже перечислены различные переключатели и функции:


Рисунок 3 - Переключение NPN / PNP

На рисунке 3 показано переключение для NPN и PNP (полярность должна быть обратной), а также измеритель и его калибровочные резисторы и защитные диоды.Они будут проводить, когда напряжение на измерителе превысит 0,65 В, поэтому, если используется такое же движение измерителя (или примерно такое же), возможен максимальный ток перегрузки 170 мкА. Хотя при этом игла будет сильно качаться до упора, это не повредит движению.

Я использовал аналоговый измерительный механизм, потому что его гораздо проще реализовать, хотя они обычно несколько дороже, чем цифровой панельный измерительный прибор. Последним требуется плавающее питание, и они легко выходят из строя из-за паразитных высоких напряжений.Высокое напряжение используется для проверки напряжения пробоя транзистора и сильно укусит, поэтому я предлагаю вам относиться к нему с большим уважением.

Движение измерителя - стандартная единица измерения 100 мкА, и я основал значения резистора на указанном сопротивлении измерителя в 3900 Ом. Если вы используете другой измеритель, вам необходимо отрегулировать резисторы 82 кОм и 15 кОм. Их цель - обеспечить сопротивление всей цепи 100 кОм. Поскольку на шунтирующих резисторах для полной шкалы вырабатывается 10 В, это означает, что 10 В и 100 кОм = 100 мкА.Конечно, вы можете использовать многооборотный триммер, чтобы измеритель можно было откалибровать, если вы захотите.

Если сложить значения, мы получим 3,9 тыс., 15 тыс. И 82 тыс., Что в сумме составит 100,9 тыс. (Лучше, чем 1%), что более чем достаточно для этого приложения.

Резистор для измерения сопротивления 4 МОм (помечен *) может быть изготовлен с использованием 3,9 МОм последовательно с 100 кОм. Это должно быть достаточно точным, иначе показания измерителя напряжения не будут полезны. Обратите внимание, что защитные диоды счетчика отключаются в режиме проверки напряжения, но остаются подключенными к остальной цепи переключения счетчика.Это необходимо для гарантии того, что ток нагрузки на питании высокого напряжения не изменится при нажатии кнопки проверки напряжения. Если этого не сделать, нагрузка счетчика исчезнет, ​​и показания напряжения будут бессмысленными.

Обратите внимание, что переключатель диапазонов рассчитан на ток до 5 А. Это, вероятно, находится на самом пределе мощности переключателя (в зависимости от используемого устройства), но, поскольку ток прерывистый, он будет иметь долгую и плодотворную жизнь, несмотря на это. Обычно я никогда не буду эксплуатировать что-либо на пределе (или выше) его пределов, но стоимость альтернативы слишком ужасна, чтобы думать о ней.


Блок питания

Блок питания несложный, но потребует некоторой изобретательности, чтобы убедиться, что напряжения соответствуют заданным. Использование второго трансформатора, как показано на рисунке, - не самый эффективный способ создания источника высокого напряжения / низкого тока, но, безусловно, самый простой и надежный, и именно поэтому я решил сделать это именно так.

Основное питание вполне обычное (ну почти), а для установки напряжения используется регулятор 7812. Диод увеличивает его до 12.6 В (приблизительно), чтобы обеспечить точность базовых токов, и использует обходной транзистор для подачи максимального тока 5 А, на который я рассчитывал. Ограничение тока не используется, так как оно не требуется - даже с измерителем в диапазоне 5А прямое короткое замыкание может потреблять максимум около 6,3А, что вполне соответствует возможностям источника питания.


Рисунок 4 - Блок питания

Регулятор и силовой транзистор должны быть установлены на радиаторе. Хотя это не обязательно должно быть массовым (тесты обычно непродолжительны), я полагаю, что устройство 1 ° C / ватт было бы идеальным.Регулятор должен быть изолирован от радиатора слюдяной шайбой, но я рекомендую устанавливать силовой транзистор непосредственно для наиболее эффективной передачи тепла. При таком расположении радиатор будет работать при напряжении около 25 В над землей, поэтому рекомендуется внутренний монтаж. Убедитесь, что имеется достаточный воздушный поток для надлежащего охлаждения.

Некоторые подходящие высоковольтные транзисторы для высоковольтного питания включают 2N6517C, KSP44TF, ZTX458 и STX83003. Они доступны с 2015 года, но, возможно, вам все равно придется их искать.Первоначально предложенные транзисторы больше не доступны. Другие подходящие устройства включают BUL310FP или 2SC3749M. Транзистору необходимо номинальное напряжение не менее 400 В, а рассеиваемая мощность в худшем случае составит около 250 мВт. Также можно использовать высоковольтный полевой МОП-транзистор (например, IRF840), но вы должны добавить стабилитрон 12 В между выводами затвора и истока, иначе он будет разрушен - вероятно, при первом использовании!

Помните, что этот транзистор работает с максимальным напряжением более 300 В, поэтому не пытайтесь использовать какое-либо устройство с номинальным напряжением менее 350 В (минимум).Убедитесь, что он рассчитан на работу с низким током - многие сильноточные транзисторы имеют очень низкий коэффициент усиления при малых токах. Я должен признать, что BF338, который я использовал (больше не доступен), на самом деле рассчитан всего на 225 В, но одна из действительно хороших вещей в наличии такого тестера - это то, что вы можете выбирать транзисторы, которые часто значительно лучше, чем их спецификации. Даже не думайте о нем как о альтернативе предлагаемым устройствам, если вы не можете проверить его напряжение пробоя.

Последовательный резистор к линии питания HV2 - компромисс.Он должен быть достаточно высоким, чтобы предотвратить повреждение транзистора (или пользователя), но также должен быть достаточно низким, чтобы обеспечить приемлемый ток пробоя. Обычно для проверки напряжения пробоя транзистора требуется около 50–100 мкА. Если ток слишком велик, тестируемый транзистор может быть поврежден.

В источнике высокого напряжения используется второй трансформатор, и я предполагаю, что достаточно напряжения около 300 В постоянного тока. Нет никаких причин, по которым это значение нельзя увеличить (кроме поиска подходящего транзистора), но для работы со звуком в этом, как правило, нет необходимости.Имейте в виду, что высокое напряжение может убить вас, поэтому не забывайте о нем, пока строится тестер.

Все диоды в цепи должны быть 1N4007 (1000 В) и использовать мостовой выпрямитель на 10 А или 25 А. Убедитесь, что все подключения к сети должным образом изолированы, чтобы предотвратить случайный контакт. Это включает в себя участок высокого напряжения, который по-прежнему опасен во всех точках цепи.


ПРЕДУПРЕЖДЕНИЕ

Даже в готовом и собранном блоке максимальный ток составляет примерно 600 мкА - такая величина тока потенциально опасна, особенно при 300 В за ней. ЭТО МОЖЕТ УБИТЬ ВАС !!!

Никогда не используйте тестер при включенном высоковольтном источнике напряжения, если он вам не нужен для тестирования пробоя, и всегда проверяйте, чтобы напряжение было установлено на минимум сразу после тестирования. Не пренебрегайте этими предупреждениями.

Выбор трансформатора для источника высокого напряжения немного сложен, так как трансформаторы, которые вы можете получить, будут зависеть от того, где вы живете (у меня под рукой был старый силовой трансформатор вентильного усилителя, но вам может не повезти).Схема высоковольтного выпрямителя представляет собой удвоитель напряжения, поэтому вторичное напряжение трансформатора должно составлять около 110 В переменного тока. Это обеспечит номинальное напряжение постоянного тока около 310 В, но оно может сильно варьироваться в зависимости от используемого трансформатора.

ПРИМЕЧАНИЕ - Если вы находитесь в США или другой стране с напряжением 110 В, не поддавайтесь ни малейшему искушению использовать источник питания без трансформатора. Если вы сделаете это, вы создадите невероятно опасный запас, который почти гарантированно убьет вас рано или поздно (возможно, первое!).Даже с трансформатором это питание опасно по своей природе - этого нельзя избежать, и его следует всегда использовать с большой осторожностью.

Главный трансформатор должен иметь номинальную мощность не менее 100 ВА (предпочтительно 150 ВА или около того), и для него потребуется вторичное напряжение 15 В. Чтобы выбрать второй трансформатор ...

  • Если в США (или вы можете достать трансформаторы на 110 В), используйте вторичную обмотку 15 В. Поскольку вторая трансмиссия работает в обратном направлении, это даст вам необходимое напряжение 110 В.
  • В Европе вам понадобится трансформатор с вторичным напряжением около 30 В. Поскольку он подключен к источнику переменного тока 15 В, вторичное напряжение будет около 110 В переменного тока.
  • В Австралии, Новой Зеландии и других странах, где раньше было 240 В (сейчас в основном это 230 В), вам все равно понадобится трансформатор 30 В, но выходное напряжение будет быть выше, чем должно быть. Один из способов - это поэкспериментировать с последовательным резистором в линии 15 В переменного тока, или вы можете просто смириться с более высоким напряжением.

Второй трансформатор должен иметь мощность около 10 ВА, чтобы обеспечить ток, достаточный для подачи высокого напряжения. Скорее всего, потребуются некоторые эксперименты, поскольку я не могу предсказать, что вы можете (или не можете) достать.

Посмотрев на схему, вы увидите, что нет общего соединения между источниками низкого и высокого напряжения. Это сделано намеренно. Общее соединение выполняется в зависимости от настройки переключателя NPN / PNP, поэтому не соединяйте отрицательные стороны двух источников питания!

Хотя не показаны в предполагаемых положениях, вам следует использовать светодиоды в качестве индикаторов питания.Стандартный светодиод с параллельным диодом и последовательным резистором 2k2 (как показано в нижнем левом углу) следует использовать для индикатора основного питания (непосредственно через обмотку 15 В), а другой - через обмотку 15 В (или 30 В) второго трансформатора. как индикатор высокого напряжения.


Использование тестера

Поскольку он настолько всеобъемлющий, это не самый простой в использовании тестер в мире. С другой стороны, он очень гибкий и позволяет проводить полные испытания практически любого биполярного транзистора.Он не подходит для полевых МОП-транзисторов, поскольку процессы тестирования совершенно разные, но вы можете провести некоторые элементарные тесты, если напряжение на затворе 12 В в порядке. Я не делаю здесь никаких претензий - поскольку я не проводил никаких испытаний MOSFET на своем собственном устройстве (я не могу, потому что он немного отличается от этой конструкции и использует источник высокого напряжения для базового тока - это мгновенно разрушит устройство! ).

Перед началом работы
Всегда устанавливайте переключатель диапазонов на 100 мкА при подключении транзистора.Если он подключен неправильно или закорочен, вы не нанесете никакого вреда. Только когда вы убедитесь, что у вас есть правильные соединения и полярность, вы можете попытаться пойти дальше. При малых токах большинство транзисторов выдерживают любые злоупотребления, при при высоких токах они умирают.

Тестирование прироста
В зависимости от транзистора выберите подходящий диапазон для тока коллектора. Например, если вы выбираете 10 мА, всегда начинайте с минимального значения базового тока 1 мкА.Если вы обнаружите, что вам необходимо увеличить базовый ток до 100 мкА, показания полной шкалы на тестере покажут коэффициент усиления 100.

Для всех транзисторов всегда устанавливайте диапазон тока коллектора на значение, подходящее для устройства, и начинайте с самого низкого значения базового тока. Увеличивайте его до тех пор, пока показание измерителя не будет больше 10 мкА по шкале измерителя. Поскольку все диапазоны указаны в десятилетиях, мысленным расчетом легко определить усиление тестовой составляющей.

Например, если базовый ток составляет 10 мкА, а измеритель показывает 35 в диапазоне 10 мА (т.е.е. 3,5 мА), коэффициент усиления составляет 350. Если переключатели диапазона и базового тока установлены в минимальное положение (100 мкА и 1 мкА соответственно), полная шкала измерителя показывает коэффициент усиления 100.

Испытательное напряжение пробоя
Опять же, имейте в виду, что напряжение потенциально опасно. Установите переключатель диапазона в положение 100 мкА, а переключатель R-be в положение «Открыть». Медленно увеличивайте напряжение, наблюдая за счетчиком. Обычно вы видите постепенное увеличение тока, которое внезапно будет быстро увеличиваться. Это BVceo (напряжение пробоя, коллектор к эмиттеру при открытой базе).Нажмите кнопку «Проверка напряжения», чтобы считать напряжение (вам может потребоваться изменить диапазон - счетчик откалиброван от 0 до 100 В и от 0 до 500 В, как показано на рисунке, поэтому для диапазона x5 потребуется некоторая мысленная арифметика).

В качестве альтернативы можно использовать второе движение измерителя для измерения напряжения, или вы можете использовать мультиметр в контрольных точках эмиттера и коллектора. Это наиболее точно (но такая точность не требуется, поскольку мудрый разработчик не будет эксплуатировать устройство слишком близко к его измеренной производительности, которая в некоторых случаях может превышать спецификацию на 100% или более).

Во многих случаях напряжение пробоя транзистора может быть указано с некоторым значением сопротивления между эмиттером и базой - это BVcer (напряжение пробоя с указанным сопротивлением от эмиттера к базе). Такая конструкция допускает сопротивление от 100 кОм до 0 Ом в декадном диапазоне, и я обнаружил, что этого вполне достаточно для промышленных испытаний. Когда эмиттер замкнут на базу, напряжение пробоя примерно такое же, как указанное BVcbo (напряжение пробоя, коллектор на базу, эмиттер открыт).


Мой тестер существующих транзисторов

На фотографиях показан мой собственный тестер, который немного отличается от представленного здесь. Он не такой исчерпывающий и не может делать некоторые из тех вещей, которые есть в новом дизайне.

Верхнее изображение показывает внутреннее устройство тестера. Хорошо видны два силовых трансформатора, а также регулятор (крайний справа) и крышка главного фильтра. Все переключатели находятся на передней панели и состоят в основном из поворотных переключателей.Внимательный взгляд может увидеть реле, прячущееся в верхнем левом углу панели. Это было использовано, потому что я не мог достать подходящий кнопочный переключатель при сборке тестера, поэтому дополнительное переключение было получено с помощью реле.

Этому подразделению уже более 40 лет, и он продолжает развиваться. Мне приходилось это исправлять пару раз, один из которых заключался в замене высоковольтного буфера клапана на транзистор, и регулятор тоже однажды вышел из строя. Вы должны полюбить идею использования клапана в тестере транзисторов, но когда он был построен, транзисторов высокого напряжения не существовало.Клапан был 12AU7 с двумя параллельными секциями, использовавшимися в качестве катодного повторителя.

Переключение никогда не вызывало проблем, но, в отличие от новой конструкции, здесь для калибровки используются подстроечные головки. Они нуждаются в периодической настройке, чтобы восстановить точность, но, как видно на схемах, этого полностью удалось избежать с помощью нового дизайна (и это тоже хорошо). Опять же, когда устройство было построено, резисторы 1% были практически недоступны, а стандартный допуск, который я имел в то время, составлял 5%.

Ярлык, который я использовал для установки всех резисторов, виден в верхней части фотографии, но для этого требуется слишком много проводов. Новый дизайн требует совсем немного - всего несколько соединений между переключателями.

На втором фото изображена передняя часть устройства, на которой вручную нанесены надписи Letraset «rub-on» и нанесен прозрачный лак. С учетом всех обстоятельств он продержался довольно хорошо.

При сборке нового блока я предлагаю вам использовать гнездо для транзистора (если вы можете его получить - у меня он есть, но он модернизирован) для малых сигнальных транзисторов, а также использовать гнезда для клемм / бананов для проводов, к которым подключаются силовые устройства.Не используйте простые банановые розетки, как я - вы пожалеете об этом, потому что они причинят боль, если вы захотите использовать двухсторонние зажимы.

Крепежные штыри обеспечивают большую гибкость при использовании тестера, а с помощью подвесных выводов вы сможете тестировать транзисторы, все еще установленные на радиаторе (однако они не должны оставаться подключенными к остальной части схемы - это НЕ внутрисхемный тестер).

Счастливое тестирование транзисторов.



Указатель проектов
Основной указатель
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 1999. Воспроизведение или переиздание любыми средствами, электронными, механическими или электромеханическими, строго запрещено. в соответствии с международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта.Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Журнал изменений: обновлен 23 октября 2005 г.


Топ 5 лучших тестеров транзисторов [обновленный обзор 2021 г.]

68,12% пользователей выбрали Longruner 1,8 дюйма, 14,49% выбрали DROK, 4,35% выбрали BSIDE ESR02, 7,25% выбрали KOOKYE Mega328 и 5,8% выбрали LCR-T4 Mega328. Каждый месяц мы анализируем ваши ответы и меняем наш рейтинг.

Компьютерные инструменты, которые используются для контроля электрической активности транзисторов и нормальных диодов, - это тестеры транзисторов.Оценка основана на режиме реального времени, который представляет собой смесь двух встречных диодов, которые могут оказаться биполярными транзисторами. Вы можете сэкономить время и уменьшить трудозатраты, применив тестер транзисторов. Только вставьте ножки транзистора в отверстие и позвольте себе прочитать показания на экране. Это может быть значение или предупреждение. Поскольку этот компьютер не дорогой, было бы неплохим вложением в вашу цифровую лабораторию, если бы он имел одну машину.

Проверьте 5 лучших тестеров транзисторов, собранных из U.С. рынок. Имейте в виду, что тестер транзисторов никогда не бывает в одиночку, он имеет несколько характеристик, которые вы можете сравнить в таблице ниже. Также прочтите руководство покупателя, и вы получите полезные советы.

Многофункциональный тестер Longruner - лучшее для дисплея!

Этот тестер обнаруживает штыри детали в соответствующих отверстиях, затем набирает крошечный зажим, и устройство запускается и автоматически измеряет его, и в конечном итоге результаты будут четко показаны на панели TFT. Он поддерживает английский и китайский языки.

Если тестер не требуется в определенный период, функция автоматического выключения экономит ресурсы в определенных условиях или ситуациях. Чтобы выключить детектор, нажмите многофункциональную кнопку.
Кроме транзистора, можно проверить резистор, симистор, диод, триодный конденсатор, а также другие элементы.

  • Малый;
  • Яркий дисплей;
  • Точный;
  • Изысканный дизайн;
  • Использование одной клавиши;
  • Автоотключение;
  • Аккумулятор быстро разряжается;
  • Может быть непросто для новичков;

Лучшим вариантом для указанного выше продукта является инструмент Longruner TC1.Это дороговато, но стоит вложенных средств.


Тестер транзисторов DROK - лучший для широкого применения!

DROK - это обычный измеритель СОЭ, который предлагает множество возможностей. Благодаря своим разнообразным характеристикам, это широко популярный продукт. Этот измеритель DROK часто проверяет тиристоры, конденсаторы, полевые транзисторы, номиналы резисторов, диодов и т. Д., Помимо емкости ESR.

С блоком DC9V вы можете заправить этот счетчик DROK. Однако, поскольку он недоступен при покупке, вы должны предоставить его самостоятельно.Это универсальное устройство оснащено интеллектуальным обнаружением для транзисторов NPN и PNP, P-канала, MOSFET, N-канала и т. Д.

Этот сложный измеритель DROK имеет умную функцию автоматического отключения. И если вам не удастся выключить эту систему, она выключится автоматически. Счетчик автоматического выключения также можно изменить, за исключением того, что в большинстве счетчиков вы не заметите эту опцию.

  • Четкий ЖК-дисплей;
  • Настраиваемый;
  • Многие функции;
  • Хорошее время автономной работы;
  • Универсальный;
  • Немного сложно применить;
  • Батарея в комплект не входит;

Самым большим преимуществом является то, что вы можете расположить любой компонент в этом устройстве практически в любой ориентации.Он автоматически определит форму компонента и запишет правильное измерение. Это отличный маленький инструмент по цене.


Цифровой тестер транзисторов BSIDE ESR02 PRO - лучший для новичков!

Тестер транзисторов BSIDE ESR02 поставляется с пинцетом, чтобы его было проще использовать для начинающих. Для сравнения: ESR02 - один из доступных многофункциональных счетчиков. Красивые размышления и умелое чтение интригуют. На многофункциональном индикаторе вы можете найти руководство пользователя.

В рекомендуемое время безотказной работы уровень постоянного напряжения приводит этот измеритель к преобразователю, который использует 9–12 В. Аккумулятор 9v6 lr61 должен регулироваться, когда для регулировки или зарядки аккумулятора рекомендуется напряжение менее 6 В.

Период тестирования составляет около 2 секунд, возможность тестирования или установки, но может привести к более длительному периоду времени.

  • Бюджетный;
  • Подходит для новичков;
  • Множество автоматических настроек;
  • Универсальный;
  • Кнопка питания / тестирования;
  • Качество сборки среднее;
  • Батарейки в комплект не входят;

Кажется, этот тестер достаточно точен.Инструмент позволяет легко перепроверить значения. Система кажется достаточно прочной, чтобы в конце концов ее заменить, но при этом достаточно недорогой.


Тестер транзисторов KOOKYE Mega328 - лучший по цене!

Тестер транзисторов KOOKYE Mega328 - очень полезный инструмент по своей стоимости. Например, вы можете использовать этот тестер для того же процессора Arduino.

Он работает точно так же, как определено, действительно ясно и интуитивно понятно. Установка платы в корпус без осложнений занимает всего пару минут.Основной переключатель управления включен в прибор. Конфигурация корпуса охватывает не только панель и зарядное устройство, но и печатную плату.

Он не может полностью заменить измеритель СОЭ, но он делает это хорошо с минимальными навыками определения СОЭ.

  • Простота установки;
  • Работает точно;
  • Хорошее качество сборки;
  • Немного тусклый дисплей;
  • Плохая контрастность;
  • Угол обзора не прямой;

Это хороший вариант на верстаке.Отличный, быстрый и чрезвычайно подробный способ классификации частей, которые нельзя маркировать. Перед испытанием соблюдайте инструкции и снимите конденсаторы.


Цифровой тестер транзисторов Aitrip LCR-T4 Mega328 - лучший для быстрой работы!

Тестер Aitrip LCR-T4 Mega328 поставляется в прочном футляре для хранения всех компонентов, поставляемых в разобранном виде.

Работает шустро - тестовая скорость около 2 секунд. Для предотвращения чрезмерного расхода заряда, экономии заряда аккумулятора и повышения эффективности аккумулятора предусмотрена функция автоматического отключения питания.

  • Автоотключение;
  • Легко калибруется;
  • Работает быстро;
  • Handy;
  • Контрастность не регулируется;
  • Поставляется в разобранном виде;
  • Надежный чемоданчик;
  • Поставляется без инструкций;

Один из самых надежных и быстрых тестеров транзисторов на рынке США в настоящее время. Тем не менее, вы должны обладать твердыми техническими знаниями, чтобы правильно использовать все функции.


Справочник покупателя

Выбор тестера транзисторов может оказаться непростым делом, поскольку некоторые из этих приборов стоят всего 10 долларов, а другие могут быть очень дорогими, возможно, в десять раз дороже. Перед покупкой важно иметь четкое представление и должным образом обдумывать, что требуется и каковы фактические критерии для тестеров транзисторов. Таким образом, можно купить подходящие тестеры транзисторов для любых условий.

Приложение

Проверьте, нужно ли для какого-либо конкретного проекта выбрать тестер транзисторов для дома в качестве хобби или для более требовательного технического использования.Маловероятно, что потребуется высокая степень надежности, точности, производительности, времени работы от батареи и долговечность, которые используются в коммерческих или технических целях, если они будут применяться для дома / хобби. Между ценами на простые тестеры уровня и на те, которые требуются для специализированного использования, существует значительный разрыв.

Качество

Очень важно предоставить высококачественный тестер транзисторов, однако потребители должны убедиться, что они получают правильный тестер транзисторов по надлежащей цене.Независимо от того, сколько раз вы их берете, эти тестеры транзисторов имеют точные значения деталей. Это позволяет легко распознать поврежденный элемент и т. Д.

Подходит ли это пользователям начального уровня?

Пользователи должны помнить, что тестеры транзисторов должны быть простыми в применении до момента покупки, поэтому им следует изучить использование различных тестеров и основы их деятельности.

Видеоурок по

: Мультиметр BSIDE ESR02 Pro LCR и разборка!

Заключительные мысли

Итак, теперь вы знаете несколько лучших тестеров транзисторов, которые можно купить в Интернете.Как вы их используете и какие функции вам больше всего нравятся? Не стесняйтесь комментировать и просматривать тестеры, которые вы обычно используете.

Привет! Меня зовут Том, я автор блога. Мое хобби - электронные схемы и паяльники.

Схема простого тестера транзисторов

Наиболее часто используемый компонент в электронике - это транзистор, и он постоянно выходит из строя. Приходится проверять работу транзистора с помощью мультиметра. Путем тестирования одного терминала за другим, что может занять много времени.Эти мультиметры и тестеры транзисторов сложны для понимания и проектирования. Но в этом уроке мы собираемся создать простую схему тестера транзисторов, которая может тестировать как транзисторы PNP, так и NPN.

Эта схема проста в изготовлении и очень удобна для тестирования транзисторов. Он показывает работу транзисторов двумя разными светодиодами. Один для транзистора NPN, а другой для транзистора PNP.

Компоненты оборудования

С.нет. Компонент Значение Количество
1 Понижающий трансформатор 230 В / 6 В перем. 2,2 кОм, 22 кОм, 68 кОм, 270 кОм, 2,2 МОм, 680 Ом 1, 1, 1, 1, 1, 2
4 Диод 1N4001 2
5 КРАСНЫЙ, ЗЕЛЕНЫЙ 1, 1
Принципиальная схема

Схема соединений

Как вы знаете, у транзистора есть три вывода: база, эмиттер и коллектор.Чтобы соединить транзистор с этой схемой, мы отметили три точки на принципиальной схеме, как вы можете видеть. Важно правильно направить выводы транзистора. Транзисторный эмиттер со схемой эмиттера, где обозначено (E). База транзистора с базой схемы, обозначенной буквой (B), и коллектор транзистора с коллектором схемы, обозначенной как C. Если вы не соедините их соответствующими точками, эта схема не даст точных результатов.

Рабочее объяснение

Напряжение 230 В переменного тока, поступающее от сети, понижается до необходимого рабочего напряжения (6 вольт) через трансформатор.В этой схеме используются разные резисторы, которые используются в качестве ограничителя тока для проверяемых транзисторов. Поворотный переключатель S1 используется для выбора подходящего базового резистора для транзистора. В этой схеме мы используем два светодиода. Зеленый светодиод для транзисторов NPN и красный светодиод для транзисторов PNP.

Резистор подключен к каждому светодиоду для ограничения тока базы. Зеленый светодиод загорается, когда транзистор NPN работает правильно, а красный светодиод загорается, когда транзистор PNP работает правильно.

Тестер транзисторов

: 8 шагов (с изображениями)

Теперь, когда вы построили тестер, пора узнать, как его использовать. Есть два основных типа ситуаций, с которыми вы можете столкнуться.

Ситуация 1: Вы знаете тип и ориентацию транзистора.

Если вы знаете тип и ориентацию транзистора, поместите его в правильную схему тестирования. Держите тестер в горизонтальном положении так, чтобы аккумулятор находился справа. Поместите транзистор в схему, соответствующую его типу и ориентации, плоской стороной к себе.Когда транзистор плотно вставлен в гнездо, нажмите тактильную кнопку. Если светодиод загорается, транзистор проходит проверку.

Ситуация 2: Тип и ориентация транзистора неизвестны.

Начните с горизонтального положения тестера с батареей вправо. Поместите транзистор в нижнюю левую схему, схему, которая проверяет, является ли он NPN с ориентацией EBC. Убедитесь, что транзистор вставлен в гнездо плоской стороной к себе. С транзистором в гнезде обозревателя состояние светодиодов без нажатия кнопки , пока не трогайте его.

- Светодиод горит? Если это так, то транзистор имеет тип NPN, но не имеет ориентации EBC. Выньте его из гнезда и поместите в гнездо справа, чтобы проверить, имеет ли он ориентацию ECB.

- Светодиод не горит? Нажмите кнопку и наблюдайте за состоянием светодиода. Если светодиод загорится, значит, вы узнали об этом неизвестном транзисторе три вещи. Один из них имеет тип NPN. Два, если имеют ориентацию EBC, и три, он работает.

Если светодиод не горит при нажатии кнопки или без нее, поместите его в схему тестирования PNP и попытайтесь определить ориентацию.

Главное, что нужно сделать из этой ситуации, - это то, что если транзистор помещен в схему тестирования правильного типа, но в неправильной ориентации, светодиод загорится. Это верно как для испытательных схем NPN, так и для PNP. Наблюдая это, вы поймете, правильно ли вы угадали тип транзистора, но выбрали неправильную ориентацию.Знание этого может сэкономить вам много времени при тестировании кучи неизвестных транзисторов.

ПРИМЕЧАНИЕ: При работе с этим тестером вы могли заметить что-то странное, если вы дотронетесь до задней стороны цепи, в частности, переместите переключатель пальцем. Если вы сделаете это с правильным транзистором в гнезде, светодиод загорится, не нажимая кнопку. Не волнуйтесь, с вашей схемой или транзистором все в порядке, на самом деле это хорошо. Ваш палец проводит небольшой ток, который улавливается транзистором.Транзистор, выполняя одно из своих предназначений, улавливает этот небольшой ток и усиливает его, пропуская ток через светодиод. Поэтому при работе с тестером старайтесь не касаться пальцами задней части тестера, чтобы не показывать ложные показания.

Безумно лучший тестер транзисторов (тестер компонентов 2021)

Ищете высококачественный тестер транзисторов или лучше всего тестер компонентов в целом? Тогда вы попали в нужное место. Я очень надеюсь, что в конце поста у вас будет четкое представление о том, что такое тестер транзисторов, на что следует обращать внимание при его покупке и какую цену вы должны заплатить за первоклассное качество, и, что самое главное, список тестеров транзисторов. протестированы, использованы, проверены и рекомендованы специалистами в данной области.

Работая или экспериментируя с электроникой, весело проверять и тестировать различные компоненты, а также измерять их значения и другие параметры. Один из этих компонентов - транзистор. Есть много вещей, которые вы можете сделать с этим парнем, например, вы можете найти его DC Beta и выяснить его конфигурацию контактов (что иногда действительно является головной болью).

Классный способ поиграть с транзисторами или другими компонентами - это взять в руки лучший тестер транзисторов / компонентов.С помощью качественного измерителя или тестера транзисторов вы можете делать удивительные вещи, например определять тип транзистора BJT (PNP или NPN), различать MOSFET и BJT и многое другое.

Но не только это, вы также можете играть с другими компонентами, используя то же устройство, так что это тоже похоже на ваш тестер компонентов. В этой статье я просто перечислил несколько качественных тестеров компонентов, доступных на рынке, чтобы вы могли наслаждаться электроникой, тестировать и анализировать различные электронные компоненты.Я надеюсь, вам понравится эта статья. 😊

Лучшие тестеры транзисторов для всех

Тестер транзисторов или компонентов может сэкономить вам много времени, если вы тот парень, который целый день работает с электронными схемами. Но если вы, как и я, любитель электроники, то кого волнует, на что она способна, все, что мне нужно, - это новое электронное устройство, с которым я могу играть и экспериментировать. 😀 Тестер транзисторов сообщает вам не только конфигурацию выводов транзистора, но и DC Beta, NPN, PNP, J-FET, PMOS, NMOS и многое другое.

Лучшим тестером транзисторов, который рекомендую я и другие специалисты в этой области, является либо тестер транзисторов M328, либо тестер компонентов TC1, либо BSIDE ESR02 pro. Это лучшие, потому что они произведены известными брендами, имеют высокое качество, проверены множеством людей, и эти люди довольны ими, они надежны и, тем не менее, имеют достойные цены.

В оставшейся части статьи я подробно расскажу об этих упомянутых моделях.

1. Тестер транзисторов M328

Yaman Electronics - удивительная электронная компания, стремящаяся удовлетворить потребности клиентов.Они гарантируют высокое качество и превосходное обслуживание клиентов. Вы можете задать им любой вопрос, и они готовы помочь вам и поддержать вас.

Если говорить о транзисторном измерителе M328, то он великолепен, имеет красивый цветной дисплей и красивую упаковку, что делает его хорошим портативным устройством. Кроме того, вы можете использовать его для широкого спектра приложений.

Важные характеристики:

  • Он может автоматически обнаруживать и идентифицировать транзисторы NPN и PNP, N-канальный и P-канальный MOSFET.
  • Он также может автоматически обнаруживать диоды, тиристоры, резисторы, конденсаторы или другие устройства.
  • Имеет большой цифровой дисплей.
  • Дисплей использует разные цвета для разных параметров.
  • Может измерять емкость
  • Может использоваться для проверки триода, полевой трубки (FET), диода, резистора, конденсатора, катушки индуктивности, MOS, SCR.
  • Классная функция автоматического отключения, когда он не используется.

С помощью прибора мы можем идентифицировать и протестировать следующие компоненты с высокой точностью:

  • Транзисторы (все типы, включая BJT, MOSFETS), M328 автоматически определяет тип транзистора, правильную конфигурацию контактов, бета-коэффициент постоянного тока и многое другое.
  • диоды (включая PIN, Шоттки и Зенор).
  • MOS
  • SCR
  • Резистор, включая переменные резисторы, т.е. потенциометры.
  • Конденсаторы, этот маленький парень способен с большой точностью измерить значение ESR конденсатора.
  • Катушки индуктивности

Таким образом, M328 (Product Link) - лучший тестер транзисторов и компонентов, который вы можете иметь в своей лаборатории для замечательных проектов. Он красивый, имеет отличную док-станцию ​​для размещения компонентов и питается от батареи 9 В.Я очень рекомендую этого парня, если он вам нравится, купите его.

2. Тестер компонентов TC1

Лучшая альтернатива этому парню - это тестер компонентов TC1. Посмотрите на это устройство, оно такое красивое и от той же материнской компании. Разница между тестером лучших компонентов M328 и TC1 заключается в том, что в TC1 встроена аккумуляторная батарея. Для этого не нужно покупать внешний аккумулятор на 9 В. Другое отличие состоит в том, что TC1 выглядит немного лучше, чем M328, но это именно то, что я думаю о нем 😀 технически они оба выполняют одну и ту же работу.

Важные особенности:

  • Получил потрясающий цветной дисплей.
  • Может автоматически идентифицировать и обнаруживать транзисторы NPN и PNP, а также P-канальные MOSFET, IGBT, JFET.
  • Помимо транзисторов, он также может тестировать эти компоненты: симистор, резистор, диод, конденсатор триода и другие компоненты.
  • Одна ключевая операция, подключение компонента, нажатие кнопки тестирования, получение результатов.
  • Auto Power Off, для экономии заряда аккумулятора, когда он не используется в течение некоторого времени.
  • Дополнительные заглушки для более легкой и простой проверки компонентов.

Таким образом, тестер компонентов TC1 (Product Link) является лучшей альтернативой вышеуказанному продукту. Он имеет перезаряжаемый аккумулятор и USB-штекер для зарядки. Если вам это нравится, попробуйте. Я действительно уверен, что вам понравится это маленькое устройство.

3. BSIDE ESR02 pro

BSIDE - популярный бренд, производящий инструменты для измерения качества для любителей электроники.Тестер транзисторов, который они делают, настолько крут, что у вас есть не только возможность проверить SMD-транзисторы, но и возможность проверить SMD-компоненты.

Важные характеристики:

  • Лучшее для SMD транзисторов
  • Испытание различных типов триодов, тиристоров, полевых МОП-транзисторов
  • Это позволяет вам анализировать тип устройства, полярность вывода, выходной HFE, напряжение клапана, а также емкость перехода полевого транзистора.
  • Автоматическая идентификация размещаемых компонентов
  • Он измеряет ESR конденсатора, что очень круто.
  • Он имеет автоматическое отключение питания для экономии энергии, если в течение 10 секунд не выполняется никаких действий.
  • Большой ЖК-дисплей с функцией подсветки для удобного чтения.

Таким образом, Bside ESR02 Pro (ссылка на Amazon) - лучший SMD-транзистор. Это потрясающе, есть пинцет и красивая упаковка. Если вам нравится тестировать компоненты SMD, у этого парня есть почти все для вас.

Что такое тестер транзисторов или тестер компонентов?

Как следует из названия, это инструмент, используемый для проверки транзисторов.Под тестированием я подразумеваю определение типа транзистора, то есть NPN, PNP, N-канальный, P-канальный MOSFET, IGBT. Помимо типов, их конфигурации контактов и измерения их параметров.

Люди называют общий тестер компонентов тестером транзисторов. Я действительно не знаю, почему это так, но это то, что есть. Например, если у вас есть тестер компонентов, он может тестировать транзистор и все другие различные компоненты. Только не запутайтесь, оба термина относятся к одному и тому же устройству.

Мы используем эти тестеры для проверки и тестирования электронных компонентов в наших проектах, иногда в образовательных целях, а иногда просто для развлечения. Эти устройства способны идентифицировать компоненты, их типы и многие связанные с ними параметры, чтобы облегчить нам жизнь. Например, если вы подключаете к нему резистор, лучший тестер транзисторов или лучший тестер компонентов сразу скажет вам, что это резистор, и у него есть это значение сопротивления.

Как самому использовать лучший тестер транзисторов / компонентов?

Это устройство простое в использовании, не требует специальной подготовки или знаний.Это дружелюбная работа. Но всегда полезно обучиться, прежде чем начинать экспериментировать с устройством.

Ниже приведены советы, которые можно использовать для более эффективного использования продукта.

  • Прежде всего, убедитесь, что вы вставили батарейки и на вашем устройстве горит индикатор питания.
  • Выберите компонент, который вы хотите протестировать.
  • Внимательно посмотрите на номер док-станции 123 и 123 одинаковы, т. Е. Не подключаются между 11, 22 или 33.
  • Выполните соединения на 123 штыря.
  • Допустим, вы хотите проверить транзистор, поставьте его ножки на 123 соединения
  • Нажимайте кнопку запуска, только если вы используете тестер, который не работает автоматически.
  • После того, как вы разместили компонент, вы сразу увидите результаты на экране. Это так просто.

В качестве примечания: разрядите конденсаторы перед их подключением к устройству. Та же процедура касается и SMD-компонентов. Хотя для размещения компонентов в правильном положении было бы очень полезно использовать умный пинцет.

Заключение по лучшим тестерам транзисторов.

Вы работаете в лаборатории или разбираетесь в электронике и все время играете с ней. Тестирование компонентов - задача, с которой вы можете сталкиваться постоянно. Вы можете тестировать электронные компоненты с помощью мультиметра или другого измерителя, но для этой задачи есть специальный измеритель - тестер транзисторов. И эта статья написана для того, чтобы запачкать руки этим лучшим тестером транзисторов.

Тестер транзисторов, также называемый тестером компонентов, представляет собой инструмент, который может предоставить вам конфигурацию контактов различных компонентов и другие удивительные параметры.

Я написал это заключение для людей, которые начинают с заключения, а затем решают прочитать всю статью. Если вы тот парень, то можете прочитать статью. Если вы тот парень, который зашел так далеко, спасибо за потраченное время.

Надеюсь, эта статья вам помогла.

Другие полезные сообщения:

Спасибо и удачной жизни.

5 лучших тестеров транзисторов 2021 г. [обновлено в мае 2021 г.]

Купить тестеры транзисторов немного сложно, даже если вы читали о большом количестве тестеров транзисторов.Я исследовал 5 лучших тестеров транзисторов, основываясь на их точности и простоте использования.

А новичкам становится сложнее, поскольку вы не знакомы со многими функциями и функциями. Итак, здесь мы поможем вам купить лучшие тестеры транзисторов в соответствии с вашими потребностями в тестировании проекта.

С помощью хороших тестеров транзисторов вы можете выполнять потрясающую работу, например закорачивать транзисторы NPN или PNP, а также проверять другие различные компоненты, такие как емкость диодного триода, ESR и т. Д.

Лучшие тестеры транзисторов для электроники - обзор

Очевидно, что на рынке есть тысячи вариантов. Поэтому необходимо провести обширное исследование, чтобы выяснить, какие компоненты мы выбираем и тестируем с помощью оборудования, чтобы определить лучшую партию.

Основываясь на индивидуальной точности тестирования и простоте использования, мы выбрали ниже 5 лучших тестеров транзисторов Buy Best, перечисленных ниже.

Лучшие тестеры транзисторов для любителей электроники 2021

В настоящее время существует так много передовых вариантов тестеров транзисторов, что действительно сложно выбрать один из них, который лучше всего подходит.Здесь мы сделали подробный обзор 5 лучших тестеров транзисторов для любителей электроники, чтобы вы могли выбрать наиболее подходящие варианты тестеров транзисторов.

1. Longruner - лучший профессиональный тестер в этом списке

Многофункциональный тестер, Longruner

Карманный многофункциональный транзистор с подсветкой TFT с цветным дисплеем, LCR-TC1 Тестер для транзистора резистора конденсатора диодного триода

Мы начали этот список с одного из лучших тестеров транзисторов, у которого потрясающая цифра 1.8-дюймовый цветной дисплей. Тестер транзисторов Longruner - это многофункциональное устройство, которое может тестировать различные типы электронных компонентов. Он может тестировать транзисторы NPN и PNP, конденсатор, резистор, диод, триод и многое другое.

Почему нам понравилось?

Если вы ищете надежный тестер транзисторов, Longruner 1,8-дюймовый транзистор - это самый доступный и лучший выбор с его простой в использовании функцией и множеством других интересных функций.

Великолепный красочный дисплей делает это устройство уникальным благодаря целому ряду других ключевых функций, позволяющих точно тестировать электронные компоненты.Так я бы порекомендовал этот тестер транзисторов? Короткий ответ - да. Это одно ключевое устройство управления, нажав многофункциональную кнопку, вы можете проверить все требования.

Теперь все в порядке и пока все устраивает. Тесты показали, что лучший набор для тестирования транзисторов может быть полезен для различных промышленных приложений. За все эти возможности приходится дорого обходиться. Не поймите меня неправильно - он будет работать, но лучше всего с набором для сборки тестера транзисторов.

Что могло быть лучше?

Откровенно говоря, мы не обнаружили ничего плохого в самом продукте.Лучшим вариантом для указанного выше продукта является инструмент Longruner TC1. Это дороговато, но стоит вложенных средств. Он правильно определил и дал значения для конденсаторов, резисторов, переменных резисторов, диодов, транзисторов, и я не уверен, что еще он будет делать.

Важные особенности:

  • Самопроверка с функцией автоматической калибровки для экономии времени и обеспечения точности.
  • Уникальный красочный 1,8-дюймовый дисплей для безошибочного чтения.
  • Управление одной клавишей в одно касание с помощью многофункциональной кнопки.
  • Проверить транзистор NPN и PNP вместе с конденсатором, резистором, диодом, триодом и другими различными компонентами
Плюсы
  • Одна ключевая операция
  • Многофункциональный тестер
  • Результаты измерений отображаются на графическом дисплее TFT
Минусы
  • Батарея быстро разряжается
  • Новичкам трудно справиться

2.DROK - лучший тестер денег

DROK Mosfet Transistor Capacitor Tester

Этот многофункциональный лучший тестер транзисторов может использоваться для тестирования диодов, резисторов, конденсаторов, индукторов, MOS, SCR, которые доступны для тестирования различных электрических транзисторов.

DROK Mosfet Transistor Tester - это многофункциональный тестер, который используется в широком спектре приложений. Этот тестер транзисторов может быть испытательным диодом, конденсатором, резистором, индуктором и т. Д., А также использовать измеритель ESR.

Почему нам понравилось?

Функция

Automatic Checker Detector может проверять электронные устройства в очень интеллектуальных системах идентификации. Это оборудование работает от батареи постоянного тока напряжением 9 В.

Этот тестер транзисторов имеет чистый и стильный дизайн с интеллектуальной функцией проверки транзисторов. Устройство действительно прочное и питается от батареи DC9V. В этом лучшем тестере транзисторов есть все необходимое в тестере.

Еще одна ключевая особенность этого передового электронного тестера транзисторов - функция автоматического отключения.Время автоматического отключения может быть увеличено до 40 секунд, а на мониторе отображается обратный отсчет для информации.

Важные особенности:

  • Тестер, используемый в широком спектре приложений
  • Оснащен большим и четким цифровым дисплеем
  • Работает от батареи постоянного тока 9 В
  • Поставляется с функцией автоматического отключения
  • Функции автоматического тестирования
Плюсы
  • Поставляется с функциями автоматического выключения
  • Оборудован большим и четким цифровым дисплеем
Минусы
  • Немного сложно применить
  • Батарея не входит в комплект

3.Bside ESR02 - дешево по цене, хорошее исполнение

BSIDE ESR02 Цифровой тестер транзисторов

Этот многофункциональный лучший тестер транзисторов можно использовать для проверки триода, полевой трубки (FET), диода, резистора, конденсатора, индуктора, MOS, SCR, который доступен для тестирования различных электрических транзисторов. .

Цифровой тестер транзисторов

BSIDE ESR02 PRO - лучшее подходящее оборудование для тестирования, особенно для компонентов SMD. Этот тестер оснащен пинцетом для эффективного удержания устройств.

Почему нам понравилось?

Smart Digital Transistor Checker может использоваться в широком спектре приложений с легким для тестирования подключаемым модулем и тестированием, автоматически устанавливающим диапазоны.

Если цифровой тестер транзисторов BSIDE ESR02 PRO обеспечивает наилучшее соотношение цены и качества, в этом разделе очень легко протестировать подключаемые модули и устройства SMD, а также самый доступный тестер транзисторов. выглядит довольно гладко, что имеет автоматическое расположение контактов элемента идентификации и отображение их на ЖК-дисплее.

Важные особенности:

  • Тестер, используемый в широком диапазоне приложений
  • Оснащен двумя кнопками питания / тестирования с обеих сторон
  • Устройство автоматического отключения
  • Маркировано таблицей типичных значений ESR на корпусе
Плюсы
  • Маркировано типичным значением ESR Таблица на корпусе
  • Множество автоматических настроек
  • Доступная цена
Минусы
  • Батареи не включены

4.KOOKYE - просто, но круто!

Тестер транзисторов KOOKYE, измеритель ESR емкости диодов

Диапазоны испытаний: индукторы, конденсаторы, диоды, двойной диод, МОП, транзистор, SCR, регулятор, светодиодная трубка, ESR, сопротивление, регулируемое сопротивление потенциометра: максимум 50 МОм.

KOOKIE Transistor Tester действительно впечатлило устройство, оно отлично подходит для тестирования транзисторов, а также многих других электронных компонентов, таких как тиристоры, транзисторы, конденсаторы, N-канальные и P-канальные MOSFET и т. Д.

Почему нам понравилось?

Давайте углубимся в каждый продукт. Скорость тестирования у него довольно высока, и можно провести тестирование всего за 2 секунды. Режим отключения расходных материалов помогает экономить электроэнергию в течение длительного времени. Это лучший комплект тестеров транзисторов и очень удобный вариант. он имеет тонну встроенных средств безопасности, лучший набор для самостоятельного тестирования транзисторов. Отключение потребления Менее 20 нА.

Плюсы
  • Однокнопочный
  • ЖК-дисплей с подсветкой для простого режима
  • Автоматический тест
  • Имеет автоматическое отключение питания
Минусы
  • Немного тусклый дисплей
  • угол обзора не прямой;

5.LCR-T4 Mega328 - Самый доступный тестер

Компания AITRIP специализируется на различных тестерах электроники и аксессуарах. Цифровой тестер транзисторов может использоваться в широком диапазоне приложений тестирования. Он может тестировать транзисторы, конденсаторы, двойные диоды, SCR, светодиодную трубку, регулируемый потенциометр и т. Д.

Почему нам понравилось?

Конструкция включает полосу, изготовленную из гибкого и прочного материала, которая обеспечивает высокую скорость тестирования, достоверное тестирование компонентов. Этот лучший комплект тестеров транзисторов также имеет функцию активного автоматического отключения питания, чтобы избежать ненужных отходов, и другие многочисленные функции.

Плюсы
  • Функция автоматического отключения питания
  • Высокая скорость тестирования
  • Поддержка функции определения напряжения загрузки
Минусы
  • Контрастность не регулируется
  • Поставляется без инструкций

Лучший тестер транзисторов для электроники, Руководство покупателя

Что ж, теперь, когда вы знаете все о 5 лучших тестерах транзисторов для электроники, доступных на рынке.Узнаем, какой из них самый надежный тестер транзисторов по доступной цене, ведь там все хорошо. Имейте в виду, что когда мы говорим о тестерах, это необходимо, потому что здесь нам нужна точность и производительность. Когда мы измеряем и анализируем компоненты, оба имеют решающее значение, мы не можем идти на компромисс.

Чтобы избежать путаницы, мы тщательно перечислили важные факторы, которые необходимо учитывать при покупке лучшего набора тестеров транзисторов. Здесь мы перечислим наиболее часто используемые тестеры передатчиков, а также где можно купить транзисторы.

Дисплей

В идеале вы должны получить лучший тестер транзисторов smd с подсветкой дисплея. в основном мы имеем в виду, что дисплей четкий и достаточно тихий, чтобы пользователь мог просматривать и записывать все показания измерений, не прилагая особых усилий. Если вы не хотите разбираться в технических деталях, разрешение дисплея должно быть достаточно хорошим.

Ну, как уже упоминалось, позволяет легко считывать измерения, достаточно большой дисплей с подсветкой гарантирует, что даже в темноте вы можете использовать его идеально.

Функции безопасности

Несомненно, безопасность является важнейшим фактором для каждого продукта, работающего с электрическим током или цепью. Вам следует искать лучший комплект тестеров транзисторов, который, по крайней мере, соответствует нормам и стандартам безопасности. Тестеры передатчиков - очень чувствительные устройства, очевидно, последняя передовая инновационная версия,

.

Итак, чтобы убедиться, что ваш покупательский опыт должен быть сфокусированным и с учетом будущей ситуации., Вы должны подумать о вещах, которые вы должны знать, прежде чем покупать лучший набор для сборки тестера транзисторов.

Качество сборки

Было бы разумно потратить с трудом заработанные деньги на надежный гаджет, который использовался в течение более длительного периода времени. Это в дизайне. Есть те, которые могут быть изготовлены из качественного материала и долговечны, но требуют особого внимания при доработке лучшего тестера транзисторов smd для покупки.

Дополнительные функции

Купив лучший набор тестеров транзисторов, вы всегда можете поискать что-то дополнительное.Многие компании предлагают различные рекламные предложения и мероприятия для привлечения клиентов. Эти дополнительные функции могут быть в форме материалов или услуг, которые должны приветствоваться. До сих пор не было четырех диапазонов, но я думаю, мы можем это позаботиться. Если вам нужно сохранить тестер транзисторов, будет хорошо, если производитель предоставит сумку для переноски. Сумка для переноски защитит устройство, а также поможет перемещаться из одного места в другое.

Как использовать тестер транзисторов для проверки компонентов

Большинство функций тестера транзисторов очень просты и управляются одной кнопкой, поэтому для них не требуется никакого обучения. Как пользоваться тестером транзисторов.

Ниже приведены некоторые пошаговые инструкции для понимания функции и использования тестеров транзисторов.

  • Вставьте необходимый аккумулятор или источник питания, если это применимо, и включите устройство.
  • Выберите электронный компонент, который вы хотите протестировать.
  • Не проверяйте док-станцию ​​внимательно и в соответствии с подключением контактов для проверки
  • Если ваше устройство автоматически начнет тестирование, в противном случае необходимо нажать кнопку запуска на устройствах.
  • Проверить результат на дисплее тестера

Вердикт

С развитием технологий тестеры транзисторов нового поколения стали намного лучше с точки зрения точности и простоты использования.Поэтому мы выбрали лучшие тестеры транзисторов, которые отлично работают в обоих отделах.

Обычно я не умею выбирать самый дорогой спрей для чистки электроники. Я всегда могу изучить и выбрать продукт с лучшими характеристиками по доступной цене. В принципе, исследования и эксперименты всегда приносят пользу и не дадут повода пожалеть об этом в будущем.

В конечном счете, я надеюсь, что вы выбрали победителя из нашей выборки. в нем есть все - отличная совместимость, но если вы сомневаетесь, ознакомьтесь с лучшими предложениями в руководстве по покупке.Но это только мой выбор, вы можете проверить и рассмотреть другие в зависимости от требований вашего проекта,

в этом случае мы считаем многофункциональный тестер Longruner лучшим в целом, в то время как тестер транзисторов DROK Mosfet в конце концов покорил меня. Цифровой тестер транзисторов BSIDE ESR02 PRO - лучшая покупка для тяжелых условий эксплуатации, а тестер транзисторов KOOKYE MEGA328 - самый доступный вариант.

На этом этапе, я надеюсь, вы сможете принять решение и найти лучший набор для сборки тестера транзисторов для своих нужд.Также не забудьте оставить свой ценный отзыв в разделе комментариев ниже.

До следующего раза!

Заключение - Подведение итогов

Таким образом, тестер транзисторов также является важным устройством, позволяющим получать точные результаты за меньшее время. мы многое узнали о том, «Как использовать тестер транзисторов» и «где я могу купить транзисторы» с различными функциями тестера транзисторов.

Многофункциональный тестер , удлиненный 1,8-дюймовый дисплей - наш лучший совет, он довольно дорогостоящий, но стоит своих денег из-за широкого набора функций и простоты использования.

Видеоурок: дисплей цифрового тестера транзисторов BSIDE ESR02 PRO