Содержание

ПРОВЕРКА МИКРОСХЕМ ТАЙМЕРОВ

Привет всем гостям и почитателям сайта Радиосхемы! Сегодня хочу рассказать об изготовлении миниатюрного, мобильного и не сложного пробника для тестирования всем известных микросхем таймеров NE555. Микросхема эта в быту радиолюбителя очень нужная и распространенная, на ней собрано очень большое количество радиосхем. Поэтому многие люди, кто занимается радиолюбительством, покупают данные таймеры сразу по несколько штук. А если собрать данный тестер, то всегда можно оперативно проверить микросхемы на работоспособность.

Принципиальная схема тестера 555

Итак, приступим: для начала возьмём стандартную схему астабильного мультивибратора, добавим к ней пару светодиодов для визуального контроля состояния выхода микросхемы. При высоком уровне напряжения на выходе будет светиться нижний по схеме светодиод, при низком уровне – верхний. Соответственно, если оба светодиода будут по очереди зажигаться, то это будет означать исправность таймера. Если же какой-либо светодиод не светит, то можно смело отправлять микросхему на утилизацию.

   

Далее разработаем миниатюрную печатную плату в программе Sprint-layout. Для экономии места лучше использовать SMD компоненты. После распечатываем на глянцевой бумаге рисунок платы, переводим его на односторонний фольгированный стеклотекстолит, при помощи технологии ЛУТ. Смываем лишнюю медь в травильном растворе (я использую медный купорос и поваренную соль, подогреваю не плите раствор в эмалированной посуде почти до кипения, в итоге процесс занимает не больше пяти минут). Сверлим отверстия и обрабатываем контур платы. После чего остаётся залудить и впаять компоненты, которых собственно не так уж и много.

Список используемых деталей

  • Резисторы SMD:
  • 680 Ом – 2шт.
  • 30 кОм – 1шт.
  • 56 кОм – 1шт.
  • 0 Ом (перемычка) – 1шт.
  • Конденсаторы:
  • 1 мкФ – 1шт.
  • 10 нФ – 1шт.
  • Светодиоды 3 мм – 2шт.
  • Панелька 8-pin под микросхему – 1шт.
  • Тактовая кнопка – 1шт.
  • Штепсельный разъём от старой батарейки «крона» - 1шт.

После впайки компонентов на плату, необходимо припаять короткие проводки к колодке «кроны» и их соединить с платой соблюдая полярность. После чего можно проверить плату, вставив микросхему и подсоединив батарейку. Если всё заработает как положено – заливаем термоклеем пространство между платой и колодкой, ориентируя их относительно друг друга в правильное положение. При этом нужно учесть расстояние между ними, чтобы не было замыкания выводов на плату.

Теперь наш миниатюрный пробник готов! Осталось присоединить его к батарейке «крона» и использовать по назначению. Плюс ко всему у него есть ещё одна полезная функция – это карманный мини-фонарик, который может работать даже без микросхемы.

Видео работы устройства на Ютубе

Печатная плата в формате Lay. находится в архиве. До новых встреч на страницах сайта Радиосхемы! Собрал и испытал конструкцию Тёмыч (Артём Богатырь).

   Форум

   Форум по обсуждению материала ПРОВЕРКА МИКРОСХЕМ ТАЙМЕРОВ

Как проверить tda2030a на исправность мультиметром

Статьи, Схемы, Справочники

Вздутые — не вздутые, все равно перепаяйте. Можете емкость померить, если есть чем. Думаю, это оно, возбуждение. Микросхемы стоят на одном радиаторе? Ежели так то изолируйте их от радиатора, у Вас имеет место быть банальное самовозбуждение, у TDA 3-ий вывод электрически соединён с корпусом, получается петля и от этого самовозбуждение.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Поддельные ("левые") TDA2030/TDA2050

TDA2030a как проверить ? | Петрович Мастер

Дневники Файлы Справка Социальные группы Все разделы прочитаны. Как проверить исправность цифровых микросхем без выпайки их из платы. Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Я обычно разрываю печатные дорожки к другим микросхемам. Но есть ли другой способ чтобы проверять микросхемы без разрыва дорожек? Кто знает поскажите пожалуйста. Вот пример: Ремонтировал цифровое радио. Не было сигнала с выхода регистра сдвига включенного по схеме делителя частоту. Проверил осциллографом сигнал на входе — сигнал был. Подумал что несправен делитель. Но когда отпаял один выход, сигналы появились на всех выходах, включая тот который отпаял.

Значит микросхема исправна. Оценка 0. Крупнейшее в Китае предприятие по производству прототипов печатных плат, более , клиентов и более 10, онлайн-заказов ежедневно. Для шинных буферов типа SN74LS и др помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Кратковременно можно подать проводом сигнал нужной полярности и проследить изменения осциллом-микросхемы обычно из строя не выходят. Если изменилось, то скорее всего сдохла 1-я, если не изменилось то 2-я.

Это вообще, конечно шаманство, но иногда помогает. Если есть повторяющиеся блоки, но по осциллографу не понятно, можно тестером вызванивать одинаковые микросхемы в этих похожих блоках. Но лучше всего, это хорошо представлять как это все должно работать. Если же это невозможно, то вышеописанное, костер и прыжки вокруг него с бубном шамана.

Противное это занятие. Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля. Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах. Требования, предъявляемые к условиям эксплуатации приборов телеметрии и, как следствие, источников питания для них, могут быть довольно жесткими. Компания Fanso предоставляет широкий спектр продукции высокого качества, подтверждаемого выходным контролем, которая рассчитана на различные условия применения.

Дедукционному методу полноценной замены пока нет. Компэл совместно с Texas Instruments приглашают на вебинар, посвященный системам-на-кристалле для построения ультразвуковых расходомеров жидкостей и газов на базе ядра MSP Вебинар проводит господин Йоханн Ципперер — эксперт по ультразвуковым технологиям, непосредственно участвовавший в создании данного решения.

Можно еще пройтись тестером с прозвонкой по ножкам микросхемы на наличие закорачивания на землю и на питание , особенно помогает когда стоит планар с большим количеством выводов. Опции темы. Обратная связь — РадиоЛоцман — Вверх. Перевод: zCarot. Как проверить исправность цифровых микросхем без выпайки их из платы Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Отправить личное сообщение для vladelectron. Найти ещё сообщения от vladelectron. Отправить личное сообщение для LEAS. Найти ещё сообщения от LEAS. Файловый архив. Скачиваний: 1. Загрузок: 17 Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах.

Дедукционному методу полноценной замены пока нет Цитата: Сообщение от LEAS помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Отправить личное сообщение для Werdis. Найти ещё сообщения от Werdis. Скачиваний: 1 1. Похожие темы. Продам полупроводники отеч. Ваши права в разделе. Вы не можете создавать новые темы Вы не можете отвечать в темах Вы не можете прикреплять вложения Вы не можете редактировать свои сообщения BB коды Вкл.

Смайлы Вкл. HTML код Выкл. Правила форума.

стерео усилитель на TDA2030 (15вт)

В этой статье будет рассказано о том, как проверить на работоспособность микросхему с использованием обычного мультиметра. Иногда определить причину неисправности довольно просто, а иногда на это уходит много времени, и в результате поломка так и остается невыясненной. В этом случае надо сделать замену детали. Проверка микросхем — достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:. Самыми простыми для проверки являются микросхемы серии КР

Как проверить работоспособность TDA2030A?

By mini-jack , June 4, in Начинающим. Принесли мне колонки с неработающим усилителем. Там не грелись микросхемы, пошёл купил, заменил на такие-же TDAA. Радиатор начал греться работают значит. А в целом — как не шёл звук, так и не идёт. Просто гудят колонки! В чём дело — не пойму, мне друг посоветовал проверить диоды на входе, но как их проверить, если при проверке мультиметром результат не достоверный ток может и обходить диоды по параллельным путям

14W Hi-Fi одноканальный аудио усилитель TDA2030

Проверьте напряжения питания микросхемы. Если не помогло 4. Замените микросхему. Вход Регистрация.

Проверка микросхемы мультиметром и специальным тестером

Регистрация Вход. Ответы Mail. Вопросы — лидеры Квадрокоптер летит токо в верх модель YH 1 ставка. Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка.

Tda2030a как проверить

Switch to English регистрация. Телефон или email. Чужой компьютер. Недавно начал проверять усилители на TDA, оказалось что это довольно живучая и не очень капризная микросхема. Она может работать со мнимой средней точкой соединение двух конденсаторов последовательно. Обратные диоды для защиты выходного каскада можно не ставить желательно поставить при работе на нагрузку более 8 ом. Так же очень хорошо работает в мостовом режиме, выдержала на полной мощности кз в течении 3 сек, потом сгорел предохранитель, после его замены усилитель работал как ни в чем не бывало. В обычном режиме были слышны искажения на низких частотах из за маленьких конденсаторов для средней точки 2хмкф , после подключения в мостовом режиме искажения пропали.

Усилитель звука на микросхеме TDA2030A мощностью 14 Вт.

С помощью данного набора, можно собрать простой и компактный усилитель мощностью 14 Ватт на известной всем микросхеме TDAA. Эти микросхемы не дорогие и в своё время были очень популярны, они обладают достойным звучанием и их часто можно встретить в заводской аудио аппаратуре. Ссылки на набор и другие необходимые компоненты вы можете найти на нашем сайте kavmaster. В комплект набора входят печатная плата, на которой расписано где какая деталь должна быть установлена, небольшой набор необходимых деталей и инструкция по сборке усилителя, где можно найти параметры усилителя, принципиальную схему, список компонентов и внешний вид уже собранный усилитель.

Проверка микросхемы мультиметром и специальным тестером

ВИДЕО ПО ТЕМЕ: TDA2030, TDA2050, LM1875 — что лучше?

Ремонт авто усилителя Сreative Weekdays. Как проверить полевой транзистор мультиметром. Супер-Простой способ проверки P-канального "mosfet" транзистора! Без приборов! Ремонт усилителя Быстрый поиск неисправности oleg pl.

TDA2030A и умощнение микросхемы до 60 — 100 ватт

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? Стереофонический усилитель мощности звуковой частоты. Предназначен для применения в различных аудиоустройствах. Микросхемы усилителя должны быть установлены на теплоотводе.

Как проверить исправность цифровых микросхем без выпайки их из платы

За это сообщение сказали спасибо: Antech. За это сообщение сказали спасибо: 31гдн. За это сообщение сказали спасибо: rrr Конференция iXBT.

Статьи, Схемы, Справочники

Вздутые — не вздутые, все равно перепаяйте. Можете емкость померить, если есть чем. Думаю, это оно, возбуждение. Микросхемы стоят на одном радиаторе? Ежели так то изолируйте их от радиатора, у Вас имеет место быть банальное самовозбуждение, у TDA 3-ий вывод электрически соединён с корпусом, получается петля и от этого самовозбуждение.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Поддельные ("левые") TDA2030/TDA2050

TDA2030a как проверить ? | Петрович Мастер

Дневники Файлы Справка Социальные группы Все разделы прочитаны. Как проверить исправность цифровых микросхем без выпайки их из платы. Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Я обычно разрываю печатные дорожки к другим микросхемам. Но есть ли другой способ чтобы проверять микросхемы без разрыва дорожек? Кто знает поскажите пожалуйста. Вот пример: Ремонтировал цифровое радио. Не было сигнала с выхода регистра сдвига включенного по схеме делителя частоту. Проверил осциллографом сигнал на входе — сигнал был. Подумал что несправен делитель. Но когда отпаял один выход, сигналы появились на всех выходах, включая тот который отпаял.

Значит микросхема исправна. Оценка 0. Крупнейшее в Китае предприятие по производству прототипов печатных плат, более , клиентов и более 10, онлайн-заказов ежедневно. Для шинных буферов типа SN74LS и др помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Кратковременно можно подать проводом сигнал нужной полярности и проследить изменения осциллом-микросхемы обычно из строя не выходят. Если изменилось, то скорее всего сдохла 1-я, если не изменилось то 2-я.

Это вообще, конечно шаманство, но иногда помогает. Если есть повторяющиеся блоки, но по осциллографу не понятно, можно тестером вызванивать одинаковые микросхемы в этих похожих блоках. Но лучше всего, это хорошо представлять как это все должно работать. Если же это невозможно, то вышеописанное, костер и прыжки вокруг него с бубном шамана.

Противное это занятие. Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля. Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах. Требования, предъявляемые к условиям эксплуатации приборов телеметрии и, как следствие, источников питания для них, могут быть довольно жесткими. Компания Fanso предоставляет широкий спектр продукции высокого качества, подтверждаемого выходным контролем, которая рассчитана на различные условия применения.

Дедукционному методу полноценной замены пока нет. Компэл совместно с Texas Instruments приглашают на вебинар, посвященный системам-на-кристалле для построения ультразвуковых расходомеров жидкостей и газов на базе ядра MSP Вебинар проводит господин Йоханн Ципперер — эксперт по ультразвуковым технологиям, непосредственно участвовавший в создании данного решения.

Можно еще пройтись тестером с прозвонкой по ножкам микросхемы на наличие закорачивания на землю и на питание , особенно помогает когда стоит планар с большим количеством выводов. Опции темы. Обратная связь — РадиоЛоцман — Вверх. Перевод: zCarot. Как проверить исправность цифровых микросхем без выпайки их из платы Очень часто когда приходится ремонтировать цифровую технику сталкиваешься с такой проблемой — одна цифрова микросхема закорачивает другую микросхему, поэтому когда проверяешь сигнал на выходе микросхемы и его там нет, можно придти к ложному выводу что микросхема не исправна.

Отправить личное сообщение для vladelectron. Найти ещё сообщения от vladelectron. Отправить личное сообщение для LEAS. Найти ещё сообщения от LEAS. Файловый архив. Скачиваний: 1. Загрузок: 17 Литиевые батарейки Fanso для систем телеметрии и дистанционного контроля Системы телеметрии находят все более широкое применение во многих отраслях на промышленных и коммунальных объектах.

Дедукционному методу полноценной замены пока нет Цитата: Сообщение от LEAS помогает надевание сверху на впаянную неисправную микросхему микросхемы исправной. Отправить личное сообщение для Werdis. Найти ещё сообщения от Werdis. Скачиваний: 1 1. Похожие темы. Продам полупроводники отеч. Ваши права в разделе. Вы не можете создавать новые темы Вы не можете отвечать в темах Вы не можете прикреплять вложения Вы не можете редактировать свои сообщения BB коды Вкл.

Смайлы Вкл. HTML код Выкл. Правила форума.

стерео усилитель на TDA2030 (15вт)

В этой статье будет рассказано о том, как проверить на работоспособность микросхему с использованием обычного мультиметра. Иногда определить причину неисправности довольно просто, а иногда на это уходит много времени, и в результате поломка так и остается невыясненной. В этом случае надо сделать замену детали. Проверка микросхем — достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:. Самыми простыми для проверки являются микросхемы серии КР

Как проверить работоспособность TDA2030A?

By mini-jack , June 4, in Начинающим. Принесли мне колонки с неработающим усилителем. Там не грелись микросхемы, пошёл купил, заменил на такие-же TDAA. Радиатор начал греться работают значит. А в целом — как не шёл звук, так и не идёт. Просто гудят колонки! В чём дело — не пойму, мне друг посоветовал проверить диоды на входе, но как их проверить, если при проверке мультиметром результат не достоверный ток может и обходить диоды по параллельным путям

14W Hi-Fi одноканальный аудио усилитель TDA2030

Проверьте напряжения питания микросхемы. Если не помогло 4. Замените микросхему. Вход Регистрация.

Проверка микросхемы мультиметром и специальным тестером

Регистрация Вход. Ответы Mail. Вопросы — лидеры Квадрокоптер летит токо в верх модель YH 1 ставка. Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка.

Tda2030a как проверить

Switch to English регистрация. Телефон или email. Чужой компьютер. Недавно начал проверять усилители на TDA, оказалось что это довольно живучая и не очень капризная микросхема. Она может работать со мнимой средней точкой соединение двух конденсаторов последовательно. Обратные диоды для защиты выходного каскада можно не ставить желательно поставить при работе на нагрузку более 8 ом. Так же очень хорошо работает в мостовом режиме, выдержала на полной мощности кз в течении 3 сек, потом сгорел предохранитель, после его замены усилитель работал как ни в чем не бывало. В обычном режиме были слышны искажения на низких частотах из за маленьких конденсаторов для средней точки 2хмкф , после подключения в мостовом режиме искажения пропали.

Усилитель звука на микросхеме TDA2030A мощностью 14 Вт.

С помощью данного набора, можно собрать простой и компактный усилитель мощностью 14 Ватт на известной всем микросхеме TDAA. Эти микросхемы не дорогие и в своё время были очень популярны, они обладают достойным звучанием и их часто можно встретить в заводской аудио аппаратуре. Ссылки на набор и другие необходимые компоненты вы можете найти на нашем сайте kavmaster. В комплект набора входят печатная плата, на которой расписано где какая деталь должна быть установлена, небольшой набор необходимых деталей и инструкция по сборке усилителя, где можно найти параметры усилителя, принципиальную схему, список компонентов и внешний вид уже собранный усилитель.

Проверка микросхемы мультиметром и специальным тестером

ВИДЕО ПО ТЕМЕ: TDA2030, TDA2050, LM1875 — что лучше?

Ремонт авто усилителя Сreative Weekdays. Как проверить полевой транзистор мультиметром. Супер-Простой способ проверки P-канального "mosfet" транзистора! Без приборов! Ремонт усилителя Быстрый поиск неисправности oleg pl.

TDA2030A и умощнение микросхемы до 60 — 100 ватт

Нужны еще сервисы? Архив Каталог тем Добавить статью. Как покупать? Стереофонический усилитель мощности звуковой частоты. Предназначен для применения в различных аудиоустройствах. Микросхемы усилителя должны быть установлены на теплоотводе.

Как проверить исправность цифровых микросхем без выпайки их из платы

За это сообщение сказали спасибо: Antech. За это сообщение сказали спасибо: 31гдн. За это сообщение сказали спасибо: rrr Конференция iXBT.

Ребята, подскажите пожалуйста как проверить робочая ли микросхема TDA2030?

Похожие статьи

Береш и проверяеш

Алексей, как её можно проверить?

Николай, как включить?

Серёга, обвес собрать и включить

А обвес это что такое?
Можите схему скинуть?

Серёга, пишеш в гугле!унч на тда 2030А и смотоиш картинки.и вауля

Серёга, собираеш и не выебыыываешшссяя

Алексей, мда помогли.
Такой способ я и сам знал.
Просто микросхему впаюваты, выпаюваты это смишком много времени, думал что может кто-то посоветует намного прощий вариант! Но увы!

Лучше даже в гугле tda2030, там будет ссылка на pdf, в нем схема

Ахмед, да лень им

Серёга, вот как тя назвать а? Это не транзистор прозвонить — микру ты не проверишь никак пока не соберёшь обвес и не включишь.

Ахмед, слыш)) ему типо долго выпаивать.пусть дип переходник возьмёт и просто втыкает)

За схемку спасибо.
А вот общаться с людьми вы не очень умеее=(

Есть еще вариант. Проверить сопротивление 4 ноги относительно 5 и 3, не должно быть кз и низкого сопротивления, но способ неточен.

Серёга, а чё ты дуешься — то, ты же изначально хрень спросил

Icl7106 как проверить работоспособность - Вместе мастерим

На примере цифрового мультиметра DT9208A рассказано о диагностике и ремонте с заменой основной микросхемы-капли на популярную ICL7106.

При ремонте неисправного импульсного блока питания электролит после входного диодного моста оказался заряженным. Мультиметр использовался в режиме прозвонки диодов и сгорел.

Вот так выглядит плата прибора с деталями:

После вскрытия обнаружены перегоревшая дорожка и два диода 1N4007. Эти дефекты устранены, но мультимер не заработал, индикатор оставался темным.

В интернете найдена схема на DT9208A, даже не один вариант. Каждая немного отличается от ремонтируемого прибора. Несколько статей и книг по теме. Изучена информация по основной микросхеме-капле. Установлена возможность ее замены на микросхему ICL7106 в DIP корпусе, или ее аналог КР572ПВ5. По хорошей цене купить можно кликнув на фото ниже.

Времени потрачено достаточно, на мой взгляд информация получена полезная и возможно кому-то еще понадобится. Коротко приведу то, что было важно для меня.

  1. Схема из интернета, которая мне наиболее подошла:

  1. Нумерация и назначение выводов микросхемы-капли на плате мультиметра:

У микросхемы-капли 42 вывода, у микросхемы ICL7106 всего 40. Выводы между 25 -26, 38-39 останутся не подключенными. Не будут задействованы функции индикации низкого заряда батареи и удержания измерений. На мой взгляд это не создаст значительных неудобств.

  1. Проверка исправности микросхемы-капли. Для этого достаточно измерить ее режим:

При напряжении кроны под нагрузкой у меня 8,46В напряжение между выводами 1 и 26 составило 8В. Напряжение между выводами 1 и 32 стабилизировано самой микросхемой и должно быть 3±0,05 В. Напряжение между выводами 32 и 36 должно быть 0,1 В (выставляется резистором VR2(Vref) по схеме).

На выводе 39 должны быть импульсы более 30 кГц, амплитудой не менее 5В:

Если что-то не так, а дорожки и элементы вокруг исправны, то микросхему нужно менять. У меня не было импульсов на выводе 39, внешний резистор и конденсатор генератора исправны.

  1. Как конструктивно заменить микросхему-каплю на большую ICL7106?

Для этого каплю нужно высверлить сверлом около 6 мм и далее круглым напильником увеличить диаметр отверстия, чтобы дорожки, которые шли внутрь капли были надежно изолированы друг от друга. Затем подготавливаем 40 проводов длиной 4-5 см, залуживаем их и контакты на плате. Микросхему располагаем с противоположной стороны, там достаточно места, и аккуратно, по одному продевая в отверстие, паяем все 40 проводов в соответствии с номерами на плате и самой микросхеме.

На фото ниже вид со стороны распайки выводов на плате:

А на этом фото показана установленная микросхема ICL7106 с противоположной стороны:

Чтобы экран крышки мультиметра при закрывании корпуса не перемкнул выводы микросхемы, на него, напротив микросхемы, наклеить изоляционный материал.

После включения прибор заработал. Но не измерял емкость конденсаторов и частоту. Пришлось поменять еще две микросхемы: LM324 (измерение емкости) и 7555 (измерение частоты). Эти микросхемы не являются дефицитом и стоят недорого. Вместо 7555 я поставил таймер 1006ВИ1, это то же самое.

После ремонта мультиметр нужно откалибровать. Для этого понадобится один или несколько приборов, которым вы доверяете. Перед началом калибровки в отремонтированный мультиметр установить новую крону (или подключить к БП на 9В). На подстроечные резисторы маркером нанести вертикальные риски, чтобы при необходимости вернуть их в исходное положение. Так как схемы имеют различие, найти нужный подстроечник можно методом пробы. Если не тот, по риске вернуть назад и пробовать следующий.

Проверку необходимо делать во всех режимах. Если есть погрешность или несоответствие, использовать подстроечные резисторы мультиметра как сказано выше.

На фото ниже пример расположения некоторых подстроечных резисторов:

Ремонтировать прибор, или покупать новый — личное дело каждого. Микросхему ICL7106 я купил за 1,7$, LM324 и 1006ВИ1 у меня были. Новый прибор стоит от 15 до 20 $. И еще, мастеру сам процесс ремонта интересен, да и выбросить все что было целым не рационально.

Микросхему ICL7106 по аналогии можно использовать в большинстве мультиметров подобного класса.

Наиболее полезная информация изложена в книжке: Д.А. Садченков. Современные цифровые мультиметры.

Если восстанавливать мультиметр совсем нет желания, новый по хорошей цене можно купить кликнув на фото ниже.

Мини ампервольтметры для лабораторного блока питания или индикации напряжения бортсети автомобиля можно купить кликнув на фото ниже.

Материал статьи продублирован на видео:

9 комментариев к “Мультиметр цифровой. Устройство, ремонт.”

Отличная статья,спасибо автору за полезные информации.
Нужна ваша помощь,у меня такой мультиметр правда дешевая китайская поделка,ситуация такая хотел замерить напряжение акб шуруповерта и забыл переключать рычаг в нужное положение т.е стоял на замене постоянного тока 20а и итоги когда щупы коснулись к контактам аккумулятора пошла небольшая искра после чего мультиметр перестал ничего замерить,включается но на дисплее светится цифры 1или 0 при повороте рычага.
Может скажите что проверить?
При открытии его ничего не видно что сгорело,проверил все смд резисторы вроде все живые.
Спасибо.

Проверьте дорожки, которые отходят от тех разъемов, куда были подключены измерительные щупы в момент искры. В цепи измерения тока есть предохранитель, проверьте его. Он правда в цепи измерения мА, но смотря как были у Вас щупы вставлены. Затем проверьте резисторы, подключенные к тем дорожкам, ну и так далее, по цепочке.

Спасибо вам за ответ.
знаете я вроде проверял все дорожки и под увилечением,негде не видно обрыв дорожек.
Предохранители нет стоит шунт.Резисторы нормальные ,правда ещё смд конденсаторы не все проверял.
щупы стояли сом на своём гнезде а второй красный в гнездо 20А ,а при измерении напряжения аккумулятора на контактах акб небольшая искра пошла и тот же убрал щупы.
Есть подозрение что одна микросхема которая находится внизу рядом с гнездом щупы накрылась,беда в том что на её корпусе ничего не видно или китайцы стёрли или так была ,под микроскопом смог какие та буквы и цифры рашифровать и кажется hc14ag 14 ножки в смд корпусе.

Это микросхема LM324 в SMD корпусе (4 операционных усилителя в одном корпусе). Для уточнения неисправных элементов нужно проверить режимы.

Добрый день !
Понимаете судя по буквам и цифрам которые удалось разглядеть то не lm324.
Плата мультиметра сильно отличается от оригинальной .
Жаль что сюда не смогу выложить вам фото платы.

Спасибо за статью, у меня мультиметр от фирмы Kewtech, при измерении тока сгорает предохранитель на 500ma. Прибор был залит водой, затем отмыт спиртом, высушен. Дефект появился после сушки. Спасибо.

Наверное похвалы Вам не нужны, потому что Вы сами знаете, что Вы молодец.
Главное Вы хороший мастер своего дела и грамотный человек.
Спасибо!
Вопрос:
При проверке транзистора неопределенной проводимости и цоколевки прибор MY63 дисплей стал постепенно мутнеть и потом перестал включаться.
Вскрыл и заменил предохранитель. Дисплей все равно не высвечивается. Запитывал от ИП 9В.
С уважением!
Вячеслав

Начните с проверки режима микросхемы 7601 и работы ее генератора.

Самостоятельно организовать и произвести ремонт мультиметра вполне по силам каждому пользователю, хорошо знакомому с азами электроники и электротехники. Но прежде чем приступать к такому ремонту необходимо попробовать разобраться с характером возникшего повреждения.

Визуально обнаруживаемые дефекты (заводской брак)

Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:

  • необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
  • особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
  • заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.

Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.

В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.

Проверка дисплея

Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).

Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).

После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.

При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.

Дополнительная информация. Указанная неисправность чаще всего проявляется в процессе эксплуатации цифрового мультиметра, в котором его измерительная часть выходит из строя и нуждается в ремонте крайне редко (при условии, что соблюдаются требования инструкции).

Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.

Неполадки, связанные с проверкой сопротивлений

В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:

  1. при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
  2. в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.

Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.

При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).

Если мультиметр постоянно пищит при прозвонке или молчит, то причиной может быть некачественная пайка выводов микросхемы IC2. Ремонт заключается в тщательной пайке.

Неполадки в АЦП

Обследование и ремонт неработающего мультиметра, неисправность которого не связана с уже рассмотренными случаями, рекомендуется начинать с проверки напряжения 3 Вольта на питающей шине АЦП. При этом в первую очередь необходимо убедиться в том, что отсутствует пробой между питающим выводом и общей клеммой преобразователя.

Пропадание элементов индикации на экране дисплея при наличии питающего преобразователь напряжения с большой долей вероятности свидетельствует о повреждении его схемы. Такой же вывод можно сделать и при выгорании значительного количества схемных элементов, расположенных поблизости от АЦП.

На практике этот узел «выгорает» лишь при попадании на его вход достаточно высокого напряжения (более 220 Вольт), что проявляется визуально в виде трещин в компаунде модуля.

Тестирование АЦП

Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.

При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.

Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.

Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.

При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.

При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.

Возможен ли в таком случае ремонт?

Поскольку современные АЦП чаще всего выпускаются в интегральном исполнении (без корпуса), то заменить их редко кому удаётся. Так что если преобразователь сгорел, то починить мультиметр не удастся, ремонту он не подлежит.

Неполадки в круговом переключателе

Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.

При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.

В заключении отметим, что при обнаружении заводских «непропаев» или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.

Самостоятельно организовать и произвести ремонт мультиметра вполне по силам каждому пользователю, хорошо знакомому с азами электроники и электротехники. Но прежде чем приступать к такому ремонту необходимо попробовать разобраться с характером возникшего повреждения.

Визуально обнаруживаемые дефекты (заводской брак)

Проверить исправность прибора на начальной стадии ремонта удобнее всего путём осмотра его электронной схемы. Для данного случая разработаны следующие правила поиска неисправностей:

  • необходимо тщательно обследовать печатную плату мультиметра, на которой могут иметься хорошо различимые заводские недоработки и ошибки;
  • особое внимание должно уделяться наличию нежелательных замыканий и некачественной пайки, а также дефектам на выводах по краям платы (в районе подключения дисплея). Для ремонта придется применить пайку;
  • заводские ошибки чаще всего проявляются в том, что мультиметр показывает не то, что он должен по инструкции, в связи с чем его дисплей обследуется в первую очередь.

Если мультиметр выдает неправильные показания во всех режимах и микросхема IC1 нагревается, то надо осмотреть разъемы для проверки транзисторов. Если длинные выводы замкнулись, то ремонт будет заключаться всего-навсего в их размыкании.

В общей же сложности визуально определяемых неисправностей может набраться достаточное количество. С некоторыми из них вы можете ознакомиться в таблице и затем устранить своими руками. (по адресу: http://myfta.ru/articles/remont-multimetrov.) Перед ремонтом необходимо изучить схемы мультиметра, которая обычно дается в паспорте.

Проверка дисплея

Если хотят проверить исправность и провести ремонт индикатора мультиметра, то обычно прибегают к помощи дополнительного прибора, выдающего сигнал подходящей частоты и амплитуды (50-60 Гц и единицы вольт). При его отсутствии можно воспользоваться мультиметром типа M832 с функцией генерации прямоугольных импульсов (меандра).

Для диагностики и ремонта дисплея мультиметра необходимо вынуть рабочую плату из корпуса прибора и выбрать удобное для проверки контактов индикатора положение (экраном вверх).

После этого следует присоединить конец одного щупа к общему выводу исследуемого индикатора (он расположен в нижнем ряду, крайний слева), а другим концом поочередно прикасаться к сигнальным выводам дисплея.

При этом все его сегменты должны загораться один за другим согласно разводке сигнальных шин, с которой следует ознакомиться отдельно. Нормальное «срабатывание» проверяемых сегментов во всех режимах свидетельствует о том, что дисплей исправен.

Дополнительная информация. Указанная неисправность чаще всего проявляется в процессе эксплуатации цифрового мультиметра, в котором его измерительная часть выходит из строя и нуждается в ремонте крайне редко (при условии, что соблюдаются требования инструкции).

Последнее замечание касается лишь постоянных величин, при измерении которых мультиметр хорошо защищён по перегрузкам. Серьёзные затруднения с выявлением причин отказа прибора чаще всего встречаются при определении сопротивлений участка цепи и в режиме прозвонки.

Неполадки, связанные с проверкой сопротивлений

В данном режиме характерные неисправности, как правило, проявляются в измерительных диапазонах до 200 и до 2000 Ом. При попадании на вход постороннего напряжения, как правило, сгорают резисторы под обозначениями R5, R6, R10, R18, а также транзистор Q1. Кроме того, нередко пробивается и конденсатор C6. Последствия воздействия постороннего потенциала проявляются следующим образом:

  1. при полностью «выгоревшем» триоде Q1 при определении сопротивления мультиметр показывает одни нули;
  2. в случае неполного пробоя транзистора прибор с разомкнутыми концами должен показывать сопротивление его перехода.

Обратите внимание! В других режимах измерения этот транзистор замкнут накоротко и поэтому влияния на показания дисплея не оказывает.

При пробое C6 мультиметр не будет работать на измерительных пределах 20, 200 и 1000 Вольт (не исключён и вариант сильного занижения показания).

Если мультиметр постоянно пищит при прозвонке или молчит, то причиной может быть некачественная пайка выводов микросхемы IC2. Ремонт заключается в тщательной пайке.

Неполадки в АЦП

Обследование и ремонт неработающего мультиметра, неисправность которого не связана с уже рассмотренными случаями, рекомендуется начинать с проверки напряжения 3 Вольта на питающей шине АЦП. При этом в первую очередь необходимо убедиться в том, что отсутствует пробой между питающим выводом и общей клеммой преобразователя.

Пропадание элементов индикации на экране дисплея при наличии питающего преобразователь напряжения с большой долей вероятности свидетельствует о повреждении его схемы. Такой же вывод можно сделать и при выгорании значительного количества схемных элементов, расположенных поблизости от АЦП.

На практике этот узел «выгорает» лишь при попадании на его вход достаточно высокого напряжения (более 220 Вольт), что проявляется визуально в виде трещин в компаунде модуля.

Тестирование АЦП

Прежде чем говорить о ремонте, необходимо провести проверку. Простым способом тестирования АЦП на пригодность к дальнейшей эксплуатации является прозвонка его выводов с использованием заведомо исправного мультиметра того же класса. Отметим, что для такой проверки не подходит случай, когда второй мультиметр неправильно показывает результаты измерений.

При подготовке к работе прибор переводится в режим «прозвонки» диодов, а измерительный конец провода в красной изоляции подсоединяется к выводу микросхемы «минус питания». Вслед за этим чёрным щупом последовательно касаются каждой из её сигнальных ножек.

Так как на входах схемы имеются защитные диоды, включённые в обратном направлении, после подачи прямого напряжения от стороннего мультиметра они должны открыться.

Факт их открытия фиксируется на дисплее в виде падения напряжения на переходе полупроводникового элемента. Аналогично проверяется схема при подключении щупа в чёрной изоляции к контакту 1 (+ питания АЦП) с последующим касанием всех остальных выводов. При этом показания на экране дисплея должны быть такими же, как в первом случае.

При смене полярности подключения второго измерительного прибора его индикатор всегда показывает обрыв, поскольку входное сопротивление рабочей микросхемы достаточно велико.

При этом неисправными будут считаться выводы, в обоих случаях показывающие конечное значение сопротивления. Если при любом из описанных вариантов подключения мультиметр показывает обрыв – это с большой вероятностью свидетельствует о внутреннем обрыве схемы.

Возможен ли в таком случае ремонт?

Поскольку современные АЦП чаще всего выпускаются в интегральном исполнении (без корпуса), то заменить их редко кому удаётся. Так что если преобразователь сгорел, то починить мультиметр не удастся, ремонту он не подлежит.

Неполадки в круговом переключателе

Ремонт потребуется, если возникли неисправности, связанные с пропаданием контакта в круговом галетном переключателе. Это проявляется не только в том, что не включается мультиметр, но и в невозможности получить нормальное соединение без сильного нажатия на галетник. Объясняется это тем, что в дешёвых китайских мультиметрах контактные дорожки редко покрываются качественной смазкой, что приводит к их быстрому окислению.

При эксплуатации в пыльных условиях, например, они через какое-то время загрязняются и теряют контакт с переключающей планкой. Для ремонта этого узла мультиметра достаточно удалить из его корпуса печатную плату и протереть контактные дорожки ваткой, смоченной в спирте. Затем на них следует нанести тонкий слой качественного технического вазелина.

В заключении отметим, что при обнаружении заводских «непропаев» или замыканий контактов в мультиметре следует устранить эти недоработки, воспользовавшись низковольтным паяльником с хорошо отточенным жалом. В случае отсутствия полной уверенности в причине поломки прибора следует обратиться к специалисту по ремонту измерительной техники.

КАК ПРОВЕРИТЬ МИКРОСХЕМУ NE555 | Дмитрий Компанец

Микросхемы со свалки

Микросхемы со свалки

Иногда я нахожу весьма интересные запчасти прямо под ногами. Вот и в этот раз мне повезло - я нашел плату содержащую уйму интересных деталей среди которых есть немало чипов и микросхем.

Одну из микросхем NE555 я выпаял сразу - мне давно хотелось провести с ней некоторые опыты и поизучать её работу, но покупать её мне вовсе не хотелось, а тут она пришла сама мне в руки.

Но выпаивая микросхемы их не трудно перегреть и сломать, да и не ясно почему была вброшена эта плата с пометками красным фломастером, може как раз те самые 555 и вышли "погулять" - сломались.
В общем встала передо мной задачка - ПРОВЕРИТЬ чип на работо-пригодность.

Долго не думая , пошарив в бесконечной мусорке сети, я отрыл парочку пригодных для реализации простых схем с NE555 , выбрал те что нуждаются в минимальном обвесе и приткнул все это в макетную плату... тут надо сказать, что макетки как нельзя лучше подойдут для такого безобразия - проверки микрух на пригодность.

Звуковой генератор на NE555

Звуковой генератор на NE555

Генератор звука заработал сразу, так что я решил поморгать и упростить схему используя светодиоды

Схемы мигалок на Микросхеме 555

Схемы мигалок на Микросхеме 555

Схему мигалки я решил сделать по своему и вместо пары постоянных резисторов я применил один переменный - одновременно изменяющий параметры морганий обоих светодиодов.

В итоге проверка микросхемы свелась к сборке мини схемы позволяющей управлять импульсами или играть роль Маячка, Стробоскопа , Мигалки ...или что там еще можно выдумать глядя на моргающие диоды! =)

Сгодится вам такая метода аль нет - Решать вам, а Мне это помогло !
Удачи!

Подписывайтесь на канал Яндекс.Дзен и узнавайте первыми о новых материалах, опубликованных на сайте.

ЕСЛИ СЧИТАЕТЕ СТАТЬЮ ПОЛЕЗНОЙ,
НЕ ЛЕНИТЕСЬ СТАВИТЬ ЛАЙКИ И ДЕЛИТЬСЯ С ДРУЗЬЯМИ.

Как проверить операционный усилитель. » Хабстаб

На днях купил в магазине операционный усилитель(ОУ) за 1.5$, пришёл домой, запаял, тишина. То что виноват в работоспособности схемы ОУ сомнений не было, поэтому выпаял купленный ОУ и решил проверить. Соединил инвертирующий вход с выходом, подал питание и напряжение на прямой вход(1V), исправный ОУ на выходе должен был выдать то, что подал ему на вход, собственно в этом и заключается проверка ОУ, а у меня на выходе ноль.

Интересно, подумал тогда, либо перегрел его когда паял, что вряд ли, либо купил неисправный. Снова пошёл в магазин, купил ещё один, но решил проверить его перед тем как запаивать и о чудо, этот то же неисправный, но теперь его хоть можно вернуть продавцу, судя по всему, у него таких целая партия...

Но разбираться времени не было, пошёл в другой магазин и купил такой же ОУ, но уже за 4$, при покупке договорились, что если он не заработает то, принесу его обратно. Пришёл домой, проверил — работает, запаял — работает. Вывод из этого можно сделать следующий, после покупки детали, перед тем как её запаивать желательно проверить, а продавец, скорее всего, заказал партию этих ОУ с Китая и когда получил, не проверил, это и понятно когда у тебя целый магазин с радиодеталями проверять все устанешь.

К чему всё это писал, после этого поискал эти ОУ на али и когда нашёл их был приятно удивлён, на те деньги, которые потратил у себя в городе чтобы купить исправный ОУ(4$) в Китае можно было купить 5 штук, но они были в корпусе soic8, а имея негативный опыт, описанный выше, конечно же, хотелось их проверить когда они придут. Решить этот вопрос можно было несколькими способами, вытравить макетку, в которую можно было впаивать ОУ каждый раз, с другой стороны, чтобы не впаивать можно было просто прижимать ОУ к плате прищепкой, уже лучше, но есть вариант ещё интереснее, так как часто приходиться иметь дело с soic8, решил поискать ZIF адаптер soic8 – dip8, тогда можно будет собрать схему на breadboard, что значительно ускорит процесс.



В общем нашел такой переходник на али за 1.7$ и это с учётом доставки. Когда ОУ пришли, переходник был уже на руках, а так как у меня в арсенале есть генератор сигналов, то проверял их по схеме из даташита.

Что интересно, все заказанные ОУ оказались исправными.
soic8 - dip8 ZIF adapter

Как прозванивать микросхемы мультиметром. Проверка микросхемы мультиметром и специальным тестером

Очень часто мы сталкиваемся с такой проблемой: из-за поломки небольшой радиодетали выходит из строя целый агрегат. Чтобы как-то облегчить себе жизнь, нужно уметь быстро проверять и устранять поломки. Для этого мы сейчас научимся, как правильно и, главное, быстро проверять радиодетали . Вне зависимости от производителя, будь то импортные, отечественные либо советские радиодетали, принципы и приемы проверки идентичны. Естественно, визуально мы не всегда сможем понять, исправна эта деталь или нет, поэтому нам понадобится мультиметр.

Проверяем биполярные транзисторы.

Самая распространенная поломка-это сгоревшие в схемах транзисторы . Поэтому начнем с них. Чтобы проверить их работоспособность, первым делом «прозваниваем» переходы БАЗА-ЭМИТТЕР и БАЗА-КОЛЛЕКТОР. Следует учитывать, что ПНП транзистор проводит ток к БАЗЕ, а НПН транзистор - от БАЗЫ (ток идет только в одном направлении, в обратном направлении идти не должен). Далее прозваниваем два перехода ЭМИТТЕР-КОЛЛЕКТОР. Пока транзистор закрыт, ток не должен проходить через них в любом направлении. Как только на БАЗУ подали напряжение, ток, проходя через переход БАЗА-ЭМИТТЕР, открывает транзистор , одновременно сопротивление перехода ЭМИТТЕР-КОЛЛЕКТОР резко падает, практически до нуля. Следует учесть, что падение напряжения на переходах обычно не ниже 0,6В (у сборных транзисторов «Дарлингтонов» более 1.2В, в связи с этим мультиметры с батарейкой 1.5В не смогут их открыть). Рекомендую приобрести мультиметр с более мощным элементом питания.

Также следует учесть, что в некоторых современных транзисторах параллельно с цепью КОЛЛЕКТОР-ЭМИТТЕР встроен диод (изучите документацию, если КОЛЛЕКТОР-ЭМИТТЕР прозванивается в одну сторону).

ИТОГ: если хотя бы одно из утверждений не подтвердилось, транзистор неисправен. Перед его заменой проверьте оставшиеся детали.

Проверяем униполярные транзисторы.

Сопротивление между всеми выводами униполярного (полевого) транзистора должно быть бесконечным. Вне зависимости от тестового напряжения прибор должен показывать бесконечное сопротивление. Но имеются некоторые исключения!!!

Прикладывая положительный щуп к затвору n-типа, а отрицательный – к истоку транзистора, емкость затвора зарядится и транзистор откроется. Между стоком и истоком прибор будет показывать некоторое сопротивление. Это не неисправность. Просто перед прозвонкой канала «сток-исток» замкните все ножки транзистора для разрядки емкости затвора. Только после этого, если сопротивление «сток-исток» не бесконечно, транзистор можно считать неисправным.

Следует помнить, что в мощных современных полевых транзисторах между стоком и истоком стоит диод, поэтому при проверке канала «сток-исток» транзистор будет вести себя как обычный диод. Не забывайте читать даташиты к Вашим радиодеталям.

Проверяем конденсаторы.


Одни из самых выходящих из строя радиодеталей – , причем электролитические ломаются чаще, керамика и пленка – наоборот.

Первоначальные наши действия – это визуальный осмотр платы. Электролитические конденсаторы после выхода из строя надуваются, а иногда даже взрываются. Керамические конденсаторы не надуваются, но взорваться могут. Так же, как и электролитические, их надо прозвонить. Ток проводить они не должны.

Следующий шаг, который мы выполняем, – это механическая проверка выводов внутреннего контакта. Для этого сгибаем выводы конденсатора под небольшим углом, слегка потягивая и поворачивая их в разные стороны, убеждаемся в их неподвижности. Если хотя бы один вывод крутится вокруг оси либо свободно вынимается из корпуса, значит он непригоден.

Последнее, что мы делаем, – замеряем сопротивление. При подключении щупов сопротивление от единиц Ом в течение секунды вырастет до бесконечности. При перемене мест щупов эффект повторится. Этот эффект наиболее заметен у емкостью более 10 мкФ.

Теперь мы можем сделать вывод: если конденсатор проводит ток либо не заряжается, он неисправен.

Проверяем резисторы.


Резисторы - это наиболее распространенные на платах радиодетали . Резисторы выходят из строя не так часто, как другие компоненты, да и проверить их намного проще.

Первым делом – визуальный осмотр. Если резистор почерневший (перегретый), то он, вероятнее всего, неисправен, и даже если он исправен, рекомендую его заменить.

Далее – прозвонка. Если сопротивление меньше бесконечности и не равно нулю, скорее всего резистор пригоден к использованию. Замеряем сопротивление, и если оно отличается от номинального больше чем на ±5% , такой резистор лучше заменить.

Проверяем диоды.

Ну, тут вообще все очень просто. Замеряем сопротивление. С плюсом на аноде оно должно показать несколько десятков либо сотен Ом, с плюсом на катоде – бесконечность. В противном случае диод неисправен.

Проверяем индуктивность.

Причины выхода из строя индуктивности – две: первая – короткое замыкание витков, вторая – обрыв.

Обрыв определяем замером сопротивления, оно должно быть меньше бесконечности.

Короткое замыкание вычислить сложнее. Для дросселей и трансформаторов с обмотками не меньше 1000 витков проверяем напряжение самоиндукции. Для этого подаем низковольтный импульс на обмотку и затем замыкаем эту обмотку газоразрядной лампочкой. Импульс требуется подать, слегка касаясь контактов элемента питания. Если лампочка в итоге мигнет, то короткого замыкания нет. В противном случае либо мало витков, либо короткое замыкание.

Конечно, такой способ не совсем точный, поэтому, прежде чем «грешить» на индуктивность, проверьте остальные детали.

Проверяем оптопары.


Сначала прозваниваем излучающий диод. Как и обычный диод, он должен прозваниваться в одну сторону.

Затем, подав питание на излучающий диод, замеряем сопротивление фотоприемника (в зависимости от оптопары, это может быть диод, транзистор, тиристор или симистор). Сопротивление должно быть близким к нулю. Затем убираем питание, если сопротивление выросло до бесконечности, значит исправна.

Проверяем тиристоры (симисторы).

Для проверки берем омметр. Плюс подключаем к аноду, минус к катоду. Сопротивление должно равняться бесконечности. Затем к аноду присоединяем управляющий электрод. Сопротивление должно упасть примерно до сотни Ом. После этого отсоединяем управляющий электрод от анода. Сопротивление должно остаться низким (это называют током удержания). В противном случае отбраковываем.

В следующих статьях мы рассмотрим проверку и выбраковку большинства остальных компонентов.

Прошу обратить внимание: если Вы нашли неисправные радиодетали и хотите их заменить, то мы с радостью поможем найти любые радиодетали и компоненты .

К сожалению, рано или поздно любая техника начинает некорректно работать либо вовсе перестаёт функционировать. Зачастую это случается из-за выхода из строя микросхемы, а точнее, из-за поломки определённых деталей на микросхеме. Наиболее важными и в то же время наименее надёжными элементами в цепи являются конденсаторы.

Конденсаторами являются устройства способные накапливать электрический заряд. Конструкция данной детали достаточно простая и представляет собой две токопроводящие пластины , между которыми расположен диэлектрик. Наиболее важной характеристикой этого элемента является его ёмкость. Величина ее зависит от толщины токопроводящих пластин и диэлектрика. Единица измерения ёмкости устройства называется Фарад. В электрической цепи конденсатор является пассивным элементом, поскольку он не влияет на преобразование электрической энергии. Он также способен оказывать так называемое реактивное сопротивление переменному току.

Виды конденсаторов

По принципу работы они разделяются на два типа:

  • полярные;
  • неполярные.

Полярными являются конденсаторы электрические, в которых используется электролит. Благодаря расположенному внутри электролиту, вместо одной из токопроводящих пластин и обретается полярность. Полярные конденсаторы имеют отдельный контактный вывод на плюс и на минус. Если включить в электрическую схему такую деталь, не учитывая полярность, то она достаточно быстро выйдет из строя. Ёмкость элементов электролитического типа начинается от 1 микроФарада и может достигать сотен тысяч микроФарад.

Неполярными называются конденсаторы, имеющие небольшую ёмкость. В таких устройствах не присутствует электролит , соответственно их можно включать в схему как угодно.

Проверка на работоспособность

Для того чтобы произвести проверку конкретного элемента на микросхеме и получить достоверную информацию о его состоянии, его следует демонтировать с микросхемы. Если деталь не выпаять, то элементы, расположенные на плате по соседству, от необходимой нам, будут вносить искажения в получаемые показания в момент измерения её ёмкости.

После того как измеряемый конденсатор выпаян из цепи, его необходимо визуально проверить на присутствие каких-либо дефектов. Если таковые обнаружатся, такая деталь автоматически становится непригодной к использованию.

Если визуальная проверка не выявила никаких повреждений, то следует начать проверять элементов микросхемы мультиметром.

Мультиметр

Это прибор, благодаря которому существует возможность измерять показания постоянного и переменного тока, уровни мощности и сопротивления электрических сетей, а также точно устанавливать внутреннюю ёмкость конденсаторов.

Перед тем как начнётся проверка каких-либо элементов мультиметром, необходимо проверить исправность самого мультиметра. Для этого регулятор прибора нужно установить в положение прозвона , после чего щупы мультиметра прижимают друг другу и если он начинает пищать, то значит он исправен.

Далее, можно проверять все элементы на исправность. Прекрасным способом станет проверка конденсатора на возможность заряжаться. Для этого необходимо взять деталь электролитического типа и выставить тестер с помощью регулятора в положение прозвонки. Далее, щупы мультиметра нужно установить на деталь согласно обозначениям полярности, плюс к плюсу, минус к минусу. В случае исправности детали, на табло мультиметра будут отображаться плавно возрастающие до бесконечности числовые значения. После того как измеряемый элемент окончательно зарядится, тестер издаст звуковой сигнал, а на табло начнёт отображаться единица, что также свидетельствует о корректной работе проверяемой детали.

С тем как проверить конденсаторы мультиметром на сопротивление, разобраться тоже очень просто. Сперва тестер необходимо выставить в положение измерения сопротивления , после чего, как и в случае измерения ёмкости, при касании щупами детали, на цифровом табло или шкале мультиметра будет отображаться значение номинального сопротивления.

Но часто бывает и так, что при проверке мультиметром, деталь стала неисправной. Основных причин по которым ранее рабочий элемент перестаёт функционировать всего две:

  • пробой;
  • обрыв.

Пробой возникает в следствие так называемого засыхания конденсатора. Со временем диэлектрик между токопроводящими пластинами разрушается, постепенно теряя свои свойства. Вследствие этого между пластинами проходит ток, что приводит к короткому замыканию и сгоранию детали. Если проверять пробитый конденсатор мультиметром, то прикоснувшись к нему щупами, тестер начнёт пищать, а на табло будет отображаться ноль, что свидетельствует об отсутствии заряда в устройстве.

В момент такой неисправности, как обрыв при измерении, прибор вместо плавного возрастания показателей сопротивления, моментально выдаст максимальное значение заряженности конденсатора , что также свидетельствует о его неисправности и такой элемент немедленно следует заменить на такой же или аналогичный.

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными. Приведем правила проверки некоторых элементов, в том числе и материнской платы.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления. При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Диод

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод – показание на шкале должно быть от 10 до 100 Ом. Переставляем , теперь минус (черный щуп) на аноде – показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.


Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.


Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности – цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции. На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула – замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны. При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими – значит, пришло время менять шлейф, поскольку на старом короткое замыкание.


Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci. Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.


Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить. Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат – это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности – эта деталь исправна и годится для дальнейшего использования . На неисправной — величина при двух измерениях будет равна бесконечности – при внутреннем обрыве. При величине сопротивления до 500-сот Ом – произошел полупробой.

Но чаще всего на микросхеме материнской платы сгорают мосты – северный и южный. Это стабилизаторы питания схемы, от которых поступает напряжение на материнку. Определяют эту «неприятность» достаточно легко. Включаем блок питания на компьютере, и подносим руку к материнской плате. В месте поражения она будет сильно нагреваться. Одной из причин такой поломки может быть полевой транзистор моста. Затем проводим прозвонку на их выводах и при необходимости заменяем неисправную деталь. Сопротивление на исправном участке должно быть не более 600 Ом.

Методом обнаружения нагревающего устройства, определяют короткое замыкание (КЗ) на некоторых деталях платы. При подаче питания и обнаружения участка нагрева, кисточкой смазываем место нагрева. По испарению спирта определяется деталь с КЗ.


Сегодня мы поговорим о том, как самостоятельно провести диагностику ЖК телевизора или плазменной панели в домашних условиях. Также узнаем, как с помощью мультиметра и тестера выявить неисправности в жк-телевизоре и обнаружить сломанные или сгоревшие радиодетали, платы и микросхемы

Диагностику ЖК телевизора необходимо начинать с чистки аппарата. Вооружившись мягкой кистью и пылесосом, следует произвести чистку внутренней поверхности корпуса, поверхности микросхем и платы телевизионного приемника. После тщательной очистки производят внешний осмотр платы и элементов на ней. Иногда можно сразу определить место неисправности по вздувшимся или разорвавшимся конденсаторам, по обгоревшим резисторам или по прогоревшим насквозь транзисторам и микросхемам.


Значительно чаще визуальный осмотр не выявляет внешних признаков неисправных деталей. И тут возникает вопрос - с чего начать?



Наиболее целесообразно начать ремонт жк телевизора с проверки работоспособности блока питания. Для этого отключаем нагрузку и подключаем вместо нее лампу накаливания 220 В, 60...100 Вт.


Обычно напряжение питания строчной развертки составляет 110...150 В в зависимости от размеров кинескопа. Просмотрев вторичные цепи, на плате рядом с импульсным трансформатором блока питания находим конденсатор фильтра, который чаще всего имеет емкость 47...100 мкФ и рабочее напряжение порядка 160 В. Рядом с фильтром находится выпрямитель напряжения питания строчной развертки.

После фильтра напряжение поступает на выходной каскад через дроссель, ограничительный резистор или предохранитель, а иногда на плате стоит просто перемычка. Отпаяв этот элемент, мы отключим выходной каскад блока питания от каскада строчной развертки. Параллельно конденсатору подключаем лампу накаливания - имитатор нагрузки.


При первом включении ключевой транзистор блока питания может выйти из строя из-за неисправности элементов обвязки. Для того чтобы этого не произошло, блок питания лучше включать через еще одну лампу накаливания мощностью 100...150 Вт, используемую в качестве предохранителя и включенную вместо выпаянного компонента. Если в схеме есть неисправные элементы и ток потребления будет большим, лампа загорится, и все напряжение упадет на ней.

В такой ситуации необходимо, прежде всего, проверить входные цепи, сетевой выпрямитель, конденсатор фильтра и мощный транзистор блока питания. Если при включении лампа зажглась и сразу погасла или стала слабо светиться, то можно предположить, что блок питания исправен, и дальнейшую регулировку лучше производить без лампы.


Включив блок питания, замерьте напряжение на нагрузке. Внимательно посмотрите на плате, нет ли около блока питания резистора регулировки выходного напряжения. Обычно рядом с ним находится надпись, указывающая величину напряжения (110...150 В).



Если таких элементов на плате нет, обратите внимание на наличие контрольных точек. Иногда величину напряжения питания указывают рядом с выводом первичной обмотки строчного трансформатора. Если диагональ кинескопа 20...21", напряжение должно быть в диапазоне 110...130 В.


Если напряжение питания выше указанных значений, надо проверить целостность элементов первичной цепи блока питания и цепь обратной связи, которая служит для установки и стабилизации выходного напряжения. Следует также проверить электролитические конденсаторы. При высыхании их емкость значительно уменьшается, что приводит к неправильной работе схемы и повышению вторичных напряжений.

Особо надо остановиться на диагностике блока управления ЖК телевизором.
При его ремонте желательно пользоваться схемой или справочными данными на процессор управления. Если не удалось найти таких данных, можно попытаться скачать их с сайта производителя этих компонентов через Интернет


Неисправность в блоке может проявляться следующим образом: телевизор не включается, телевизор не реагирует на сигналы с пульта или кнопок управления на передней панели, нет регулировок громкости, яркости, контрастности, насыщенности и других параметров, нет настройки на телевизионные программы, не сохраняются настройки в памяти, нет индикации параметров управления.


Если телевизор не включается, прежде всего проверяем наличие питания на процессоре и работу тактового генератора. Затем нужно определить, поступает ли сигнал с процессора управления на схему включения. Для этого необходимо выяснить принцип включения телевизора.


Телевизор можно включить с помощью управляющего сигнала, который запускает блок питания, или с помощью снятия блокировки с прохождения строчных запускающих импульсов с задающего генератора до блока строчной развертки.
Следует отметить, что на процессоре управления сигнал на включение обозначается либо Power, либо Stand-by. Если сигнал с процессора поступает, то неисправность следует искать в схеме включения, а если сигнала нет, придется менять процессор.
Если телевизор включается, но не реагирует на сигналы с пульта, нужно для начала проверить сам пульт.


Проверить его можно на другом телевизоре такой же модели.
Для проверки пультов можно изготовить простое устройство, состоящее из фотодиода, подключенного к разъему СР-50. Устройство подключается к осциллографу, чувствительность осциллографа устанавливается в пределах 2...5 мВ. Пульт следует направить на светодиод с расстояния 1...5 см. На экране осциллографа при исправном пульте будут видны пачки импульсов. Если импульсов нет, диагностируем пульт.


Проверяем последовательно питание, состояние контактных дорожек и состояние контактных площадок на кнопках управления, наличие импульсов на выходе микросхемы пульта, исправность транзистора или транзисторов и исправность излучающих светодиодов.


Часто после падения пульта выходит из строя кварцевый резонатор. При необходимости меняем неисправный элемент или восстанавливаем контактные площадки и покрытие кнопок (это можно сделать, нанеся графит, например мягким карандашом, или наклеив на кнопки металлизированную пленку).


Если пульт исправен, нужно проследить прохождение сигнала от фотоприемника до процессора. Если сигнал доходит до процессора, а на его выходе ничего не меняется, можно предположить, что процессор неисправен.
Если телевизор не управляется с кнопок на передней панели, нужно сначала проверить исправность самих кнопок, а затем проследить наличие импульсов опроса и подачу их на шину управления.


Если телевизор включается с пульта и импульсы поступают на шину управления, а оперативные регулировки не работают, надо выяснить, с помощью какого вывода микропроцессор управляет той или иной регулировкой (громкость, яркость, контрастность, насыщенность). Далее проверить тракты данных регулировок, вплоть до исполнительных устройств.


Микропроцессор выдает управляющие сигналы с линейно изменяющейся скважностью, а поступая на исполнительные устройства, данные сигналы преобразуются в линейно изменяющееся напряжение.


Если сигнал поступает на исполнительное устройство, а реакции устройства на этот сигнал нет, то ремонту подлежит данное устройство, а если нет управляющего сигнала, замене подлежит процессор управления.


При отсутствии настройки на телевизионные программы сначала проверяем узел выбора поддиапазона. Обычно через буферы, реализованные на транзисторах, с процессора подается напряжение на выводы тюнера (0 или 12 В). Чаще всего выходят из строя именно эти транзисторы. Но бывает, что с процессора нет сигналов переключения поддиапазонов. В этом случае надо менять процессор. .

Далее проверяем узел выработки напряжения настройки. Напряжение питания обычно поступает от вторичного выпрямителя со строчного трансформатора и составляет 100...130 В. Из этого напряжения с помощью стабилизатора формируется 30...31 В.


Микропроцессор управляет ключом, формирующим напряжение настройки 0...31 В с помощью сигнала с линейно изменяющейся скважностью, который после фильтров преобразуется в линейно изменяющееся напряжение.

Элементы не способны идеально перекрыть поток света - черный цвет на экране ЖК-телевизора на самом деле не является абсолютно черным.

Из недостатков также необходимо отметить искажение цветов и потерю контрастности, поскольку угол обзора у ЖК не так уж широк. Из-за этой особенности LCD-телевизоры долго не могли завоевать популярность, но сейчас, благодаря усилиям разработчиков, искажения стали практически незаметны.

К достоинствам телевизоров с жидкокристаллическим экраном можно отнести широкий выбор моделей с различными показателями яркости (от 250 до 1500 кд/м2) и контрастности (от 500:1 до 5 000 000:1). Благодаря этому, покупатель может приобрести аппарат, оптимально сочетающий в себе требуемое качество изображения и доступную цену. Кроме того, ЖК-телевизоры обладают малым весом и толщиной, поэтому их можно размещать на стене.

Но самая большая заслуга жидкокристаллической технологии - в ее массовости. За счет широкомасштабного производства, цены на телевизоры с ЖК-матрицей сейчас ниже, чем на другие подобные устройства.

Чаще всего выходит из строя стабилизатор 30...33 В. Если в телевизоре не сохраняются настройки в памяти, надо при любой настройке проверить обмен данными между процессором управления и микросхемой памяти по шинам CS, CLK, D1, DO. Если обмен есть, а значения параметров в памяти не хранятся, замените микросхему памяти.


Если в телевизоре нет индикации параметров управления, необходимо в режиме индикации проверить наличие пачек видеоимпульсов служебной информации на процессоре управления по цепям R, G, В и сигнал яркости, а также прохождение этих сигналов через буферы на видеоусилители.

Вы должны понимать что вы делаете и соблюдать технику безопасности, в том числе электростатической (в т.ч. работать в антистатическом браслете).
Стандарт ATX имеет 2 версии - 1.X и 2.X, имеющие 20 и 24-пиновые коннекторы соответственною, вторая версия имеет 24-x 4 дополнительных пина, удлиняя тем самым стандартный коннектор на 2 секции таким образом:

Прежде чем мы начнем, расскажу про “правила большого пальца” по отношению к неисправностям ЖК телевизора:


1) Проблемную телевизионную плату в ЖК или плазме легче заменить чем починить, это крайне сложная и многослойная схема, в которой разве что можно заменить пару конденсаторов, а обычно это проблемы не решает.
2) Если вы не уверены в том что вы делаете, то не делайте этого.


Для более точной и углубленной диагностики ЖК телевизора вам понадобится осциллограф.

Перейдем к диагностике ЖК телевизора или плазмы:

Вам понадобится обычный мультиметр и тестер. Необходимы достаточно тонкие щупы, для того чтобы мы могли тыкнуть в провод с задней части коннектора, конденсатора, резистора и любой другой радиодетали.
Ничего из корпуса ЖК телевизора не вынимаем. Диагностику проводим с коннектором питания в проверяемой плате, и включенным блоком питания, подключенным к сети.


Проверка напряжения ЖК телевизора :


Если ваш мультиметр не имеет функции автоматической подстройки диапазона, то выставьте его на измерение десяток вольт постоянного напряжения. (Обычно обозначается 20 Vdc)
Поставим черный щуп на землю (GND-pin, COM) - черный провод, к примеру контакты 15, 16, 17.

Концом красного щупа тыкаем в:

1) Пин 9 (Пурпурный, VSB) - должен иметь напряжение 5 вольт ± 5%. Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Он используется для питания компонентов, которые должны работать, пока 5 основных каналов питания недоступны. К примеру - контроль питания, Wake on LAN, USB-устройства у телевизора, контроль вскрытия и т.д.
Если напряжения нет или он меньше/больше, то это означает серьезные проблемы со схемой самого блока питания.

2) Пин 14 (Зеленый, PS_On) должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от проверяемой платы или микросхемы. Если напряжение поднимется, то виновата кнопка.

Все еще держим красный щуп на 14ом контакте…


3) Смотрим на мультиметр и нажимаем кнопку питания, напряжение должно упасть до 0, сигнализируя блоку питания о том, что надо врубать основные рельсы питания постоянного тока: +12VDC, +5VDC, +3.3VDC, -5VDC и -12 VDC. Если изменений нет, то проблема либо в процессоре/ плате, либо в кнопке питания. Для того чтобы проверить кнопку питания вытаскиваем ее коннектор из разъема на микросхеме или плате и легонько закорачиваем пины легким прикосновением отвертки или джампером. Также можно попробовать аккуратно проводом закоротить PS_On на землю сзади. Если изменений нет, то скорее всего что-то случилось с проверяемой платой, процессором или его сокетом.


Если подозрения все-таки падают именно на процессор, то можно попытаться заменить процессор на известный исправный, но делать это на свой страх и риск, поскольку если убила его неисправная плата, то тоже самое может случиться и с этим.
При напряжении ~0 В на PS_On… (Т.e. после нажатия на кнопку)
4) Проверяем Pin 8 (Серый, Power_OK) он должен иметь напряжение ~3-5V, что будет означать что выходы +12V +5V и +3.3V находятся на приемлемом уровне и держат его достаточное время, что дает процессору сигнал стартовать. Если напряжение ниже 2.5V то процессор телевизора не получает сигнала к старту.
В таком случае виноват блок питания.

5) Нажатие на Restart должно заставить напряжение на PWR_OK упасть до 0 и быстро подняться обратно.
На некоторых телевизионныхплатах этого происходить не будет, в случае если производитель использует “мягкий” триггер перезагрузки.

При напряжении ~5V на PWR_OK
6) Смотрим на таблицу и сверяем основные параметры напряжения на коннекторе и всех коннекторах периферии:

Тестируем ЖК телевизор на пробои:

ОТКЛЮЧАЕМ ЖК ТЕЛЕВИЗОР ОТ СЕТИ и ждем 1 минуту пока уйдет остаточный ток.

Ставим мультиметр на измерение сопротивления. Если ваш мультиметр не имеет автоматической подстройки диапазона, то ставим его на самый нижний порог измерений (Обычно это значок 200 Ω). Из-за погрешностей, замкнутая цепь не всегда соответствует 0 Ом. Сомкните щупы мультиметра и посмотрите какую цифру он показывает, это и будет нулевым значением для замкнутой цепи.

Проверим цепи блока питания ЖК телевизора :

Вынимаем коннектор из проверяемой платы…
И держа один из концов мультиметра на металлической части корпуса телевизора…
1) Дотрагиваемся щупом мультиметра до одного из черных проводов в коннекторе, а потом до среднего штырька (земли) сетевой вилки. Сопротивление должно быть нулевым, если это не так, то блок питания плохо заземлен и его следует заменить.
2) Дотрагиваемся щупом до всех цветных проводов в коннекторе по очереди. Значения должны быть больше нуля. Значение, равное 0 или меньше 50 Ом означает проблему в цепях питания.


3) Дотрагиваемся одним щупом мультиметра до шасси, а другим тыкаем во все разъемы земли (GND, пины 3, 5, 7, 13, 15, 16, 17) и смотрим на мультиметр. Сопротивление должно быть нулевым. Если оно не нулевое вытаскиваем телевизионную плату из корпуса и тестируем опять, только в этот раз один из щупов должен касаться металлизированного колечка у отверстия для шурупов на которых плата фиксируется к задней стенке корпуса жк-телевизора. Если значение сопротивления все еще ненулевое, то с цепями проверяемой платы что-то глубоко не так и скорее всего ее придется менять.
Проверка электронных компонентов с использованием мультиметра это довольно простая задача. Для ее выполнения нужен обычный мультиметр китайского производства, покупка которого не представляет проблемы, важно только избегать самых дешевых, откровенно некачественных моделей.
Аналоговые приборы со стрелочным указателем до сих пор способны выполнять такие задачи, но более удобны в применении
цифровые мультиметры , в которых выбор режима осуществляется при помощи переключателей, а результаты измерения отображаются на электронном дисплее.
Внешний вид аналоговых и цифровых мультиметров:

Сейчас чаще всего используются цифровые мультиметры, так как у них меньший процент погрешности, их легче использовать и данные выводятся сразу на дисплей прибора.
Шкала цифровых мультиметров больше, имеются удобные дополнительные функции – температурный датчик, частотомер, проверка конденсатора, и др.
Проверка транзистора

Если не вдаваться в технические подробности, то транзисторы бывают полевые и биполярные

Биполярный транзистор представляет собой два встречных диода, поэтому проверка выполняется по принципу «база-эмиттер» и «база-коллектор». Ток может идти только в одном направлении, в другом его быть не должно. Не нужно проверять переход «эмиттер-коллектор». Если на базе нет напряжения, но ток все же проходит, прибор неисправен.

Для проверки полевого транзистора N-канального типа, нужно присоединить черный (отрицательный) щуп к выводу стока. К выводу истока транзистора присоединяется красный (положительный) щуп. В таком случае транзистор закрыт, мультиметр высвечивает падение напряжения примерно 450 мВ на внутреннем диоде, и бесконечное сопротивление на обратном. Теперь нужно присоединить красный щуп к затвору, после чего вернуть на вывод истока. Черный щуп при этом остается присоединен к выводу стока. Показав на мультиметре 280 мВ, транзистор открылся от прикосновения. Не отсоединяя красный щуп, дотронемся черным щупом к затвору. Полевой транзистор закроется, а на дисплее мультиметра увидим падение напряжения. Транзистор исправен, что и показали данные манипуляции. Диагностика Р-канального транзистора выполняется аналогично, но щупы меняют местами.

Проверка диода

Сейчас выпускается несколько основных типов диодов (стабилитрон, варикап, тиристор, симистор, свето- и фотодиоды), каждый из них используется для определенных целей. Для проверки на диоде замеряется сопротивление с плюсом на аноде (должно быть от нескольких десятков до нескольких сотен Ом), затем с плюсом на катоде – должна быть бесконечность. Если показатели другие – прибор неисправен.

Проверка резисторов
Как можно понять из картинки, резисторы тоже бывают разные:

На всех резисторах производителями указывается номинальное сопротивление. Его мы и замеряем. Допускается 5% погрешности значения сопротивления, если погрешность больше – прибор лучше не использовать. Если резистор почернел, его тоже лучше не использовать, даже если сопротивление в пределах нормы.
Проверка конденсаторов
Сначала осматриваем конденсатор. Если на нем нет никакие трещин и вздутий, нужно попытаться (осторожно!) покрутить выводы конденсатора. Если получается прокрутить или даже вообще вытащить – конденсатор сломан. Если внешне все нормально, проверяем мультиметром сопротивление, показания должны быть равны бесконечности.
Катушка индуктивности

В катушках поломки могут быть разные. Поэтому сначала исключаем механическую неисправность. Если внешне повреждений нет, измеряем сопротивление, подключая мультиметр к параллельным выводам. Оно должно быть близким к нулю. Если номинальное значение превышено, возможно, поломка произошла внутри катушки. Можно попытаться перемотать катушку, но проще поменять.

Микросхема

Микросхему мультиметром проверять не имеет смысла – в них десятки и сотни транзисторов, резисторов и диодов. На микросхеме не должно быть механических повреждений, пятен от ржавчины и перегрева. Если внешне все в порядке, микросхема скорее всего повреждена внутри, починить ее не удастся. Однако можно проверить выходы микросхемы на напряжение. Слишком низкое сопротивление выходов питания (относительно общего) свидетельствует о коротком замыкании. Если хотя бы один из выходов неисправен, скорее всего схему уже не вернуть в строй.

Работа с цифровым мультиметром
Подобно аналоговому, цифровой тестер имеет щупы красного и черного цвета, а также 2-4 дополнительных гнезда. Традиционно, «масса» или общий вывод маркируется черным. Гнездо общего вывода обозначается знаком «-» (минус) или кодом СОМ. Конец вывода бывает оснащен зажимом типа «крокодильчик», для укрепления на проверяемой схеме.
Красный вывод всегда использует гнездо с маркировкой «+» (плюс) или кодом V. В более сложных мультиметрах имеется дополнительное гнездо для красного щупа, обозначенное кодом «VQmA». Его использование позволяет измерять сопротивление и напряжение в миллиамперах.
Гнездо, обозначенное 10ADC предназначено для измерения постоянного тока, силой до 10А.
Главный переключатель режимов, имеющий круглую форму и расположенный в большинстве мультиметров посредине передней панели, служит для выбора режимов измерения. При выборе напряжения следует выбирать режим больший, чем сила тока. Если требуется проверить бытовую розетку, из двух режимов, 200 и 750 В, выбираем режим 750.

LM386 Часть 2

Ещё раз о покупке электронных комплектующих на Aliexpress.
На этот раз LM386 в корпусе DIP8.

Список сокращений:
Кг (THD) — коэффициент гармоник
ООС — отрицательная обратная связь
ЗК — звуковая карта
PC — персональный компьютер (англоязычное сокращение)

1. Покупка.
После положительных результатов с модулями LM386 захотелось продолжить эксперименты.
Были куплены 10 шт. LM386 в корпусе DIP8.

Микросхемы приехали. Вскоре состоялась проверка.
Схема стенда — проще простого: всего-то надо подключить питание к выводам микросхемы и померить напряжение на выходе (вывод 5).

Если микросхема исправна, на 5-м выводе присутствует напряжение около половины питающего.
Т.к. проверка выполнялась от 4В источника, на выходе ожидалось около 2В.

И тут сюрпрайз: +0,6В.
Естественно, в стенде побывали все 10 штук микросхем. У всех — одинаковые симптомы.
Сделал фото, открыл спор, через время получил обратно свой доллар.

Отзыв на али:

Дополнительная информация

2. Некоторые замечания о бракованных LM386.

Упрощённая схема LM386:

2.1. Резистор ООС между выводами 1 и 5 легко проверяется омметром: вместо 15 кОм было значение около 20 кОм.

2.2. Обозначение на корпусе: 18CXY LM386 M-82 — это БРАК!

Бракованные микросхемы отправились в мусорное ведро.
На их замену с местном инет-магазине были куплены LM386 от производителя UTC.
Фото не приводится, т.к. отсутствие полноценного макро объектива не позволяет отснять надписи на корпусе.

3. Продолжение экспериментов.
Вновь прибывшие микросхемы также были проверены на стенде: +1,9В на выводе 5, т.е. всё ОК.
Сопротивление резистора ООС — около 15 кОм, что вполне соответствует документации.

Спектр выходного сигнала.
Условия замера:
— питание 4В от LiIon аккумулятора через защитный диод Шоттки 1N5819
— экранированный корпус
— оба входа закорочены на землю через 1 кОм

Если очень внимательно читать документацию на LM386, можно заметить, что входной сигнал подаётся на вывод 3 (неинвертирующий).
Вывод 2 (инвертирующий вход), как правило, не используется.

Была собрана модель LM386 в симуляторе Multisim10.
И проверены две схемы:
— входной сигнал подаётся на вход 2 (инвертирующий)

— входной сигнал подаётся на вход 3 (неинвертирующий)

Можно заметить: Кг получился разный (0,28% и 0,44%).
Было логично повторить замеры вживую.

Входной сигнал (10 мВ 1 кГц) — на вход 2 (инвертирующий):

Входной сигнал (10 мВ 1 кГц) — на вход 3 (неинвертирующий):

Выводы:
— Кг по входам 2 и 3 примерно одинаковый, но при использовании входа 3 немного ниже
— не всегда симуляторы дают адекватную оценку таких деликатных параметров, как Кг (THD)

4. Особенности питания LM386 от других источников.

Все замеры выше выполнены при использовании 4В источника (свежезаряженная LiIon аккумулятор, который при малых разрядных токах обеспечивает «чистое» питание 4,0..4,1В под нагрузкой).
В цепи питания всегда присутствует защитный диод Шоттки 1N5819.
Падение напряжения на диоде около 0,2В никаким образом не влияет на работоспособность микросхемы.

Некоторые критики внимательные читатели могут заметить, что работоспособность LM386 гарантируется от 4В и выше.
С этим никто не спорит. 😉

Как обычно, хочется где-то съэкономить и\или упростить себе жизнь.

4.1. Питание от USB.
Условия замера:
— +5В подано через RC-фильтр (51 Ом и 47 мкФ)
— использован только плюсовой провод от USB
— входы закорочены на землю через резисторы 1 кОм

На спектре появилась «расчёска». (

4.2. Питание от повербанка
Условия замера:
— +5В подано через RC-фильтр (51 Ом и 47 мкФ)
— входы закорочены на землю через резисторы 1 кОм

«Расчёска» также присутствует.

ВЫВОДЫ:
— покупать микросхемы необходимо у проверенных продавцов
— использование LM386 предпочтительно от LiIon аккумулятора
— в зависимости от задачи возможно использование входов 2 и 3
— Кг (THD) в пределах 0,1% при выходном напряжении 200 мВ (типичное значение чувствительности линейных входов звуковой аппаратуры и линейного входа ЗК)

Всем удачных разработок!

PS
По незнанию в обзор были добавлены файлы .ovl
По сути это текстовые файлы, которые создаёт и использует программа SpectraLab.

Объём этих файлов оказался настолько большим, что при попытке опубликовать обзор сайт выдал ошибку «Более 15000 символов».
Поэтому пришлось удалить лишние строки кода из отчёта.

Для желающих скачать все исходные материалы данного обзора, ссылка на гуглодиск.

Тестер микросхем серии 555 с таймером PWM-TEST555 Проверка работоспособности микросхемы. Набор для пайки своими руками

ШИМ РЕГУЛЯТОР МОЩНОСТИ с ПРЯМЫМ И ИНВЕРТИРОВАННЫМ ВЫХОДОМ 4А (8А МАКС) + ТЕСТЕР микросхем серии 555 С ВИЗУАЛЬНЫМ УПРАВЛЕНИЕМ + ПРОСТОЙ ТЕСТЕР ТРАНЗИСТОРОВ PWM-TEST555

Одна из самых рекомендуемых микросхем для начинающих радиолюбителей. микросхема таймера 555. Эту микросхему используют и многие производители серьезной электроники. Поэтому данный прибор PWM-TEST555 можно рекомендовать не только всем начинающим радиолюбителям, но и студентам, инженерам, ремонтным мастерским и всем любителям электроники.Устройство выполняет не только развлекательную и обучающую функцию. Кроме того, устройство представляет собой генератор сигналов ШИМ с регулируемой частотой и рабочим циклом с питанием от полевого МОП-транзистора для самостоятельного подключения нагрузки до 4 А (8 А MAX) до двух каналов. Сигнал ШИМ регулируется одновременно в двух каналах в противофазе - т.е. усиление одного канала приводит к ослаблению мощности ШИМ на другом канале.


Очень часто могут выйти из строя микросхемы серии 555. Будет поврежден какой-либо один блок микросхемы или произойдет смертельное повреждение микросхемы электричеством (микросхема сгорела без внешних признаков повреждения). Как проверить исправность такой микросхемы 555? Почему не работает таймер 555 - может сгореть? Эту задачу решает прибор PWM-TEST555. Кроме того, прибор позволяет обнаруживать бракованные и поддельные новые микросхемы таймера серии 555. Очень часто микросхемы из Китая бывают бракованными или просто подделками. Для фальшивой микросхемы отдельный блок может не работать, либо, например, генерация нестабильна.

Поэтому рекомендуем проверить даже новые чипы серии 555 на работоспособность.Даже оригинальные полупроводниковые интегральные схемы могут быть повреждены статическим напряжением во время транспортировки. PWM-TEST555 позволяет проверить микросхему просто, быстро и с визуальным контролем. Даже без осциллографа. С помощью осциллографа вы можете проверить параметры качества и производительности. Но обычно визуального осмотра с помощью светодиодов бывает достаточно.


Тестирование SMD-версий микросхем NE555


Микрочип NE555 и его аналоги могут быть изготовлены в SMD-корпусах: SOIC на 8 выводов, TSSOP на 8 выводов, УПАКОВКА FK на 20 выводов.Адаптер для тестирования SMD не входит в стандартный комплект, но вы можете приобрести адаптеры SMD отдельно, если вы планируете тестировать микросхемы не только в DIP-корпусе. Компания PWM может предложить SMD переходники для микросхем SOIC8⇒DIP8, TSSOP8⇒DIP8. 20-контактный адаптер FK PACKAGE недоступен.

555 тестер таймера доступен в ДВУХ версиях:

1. Самостоятельная версия прибора для самостоятельной сборки. Данная версия представлена ​​в виде деталей и набора электронных компонентов для сборки устройства. Необходимо спаять электронные компоненты на печатной плате, скрутить и собрать детали устройства.
2. Готовая версия устройства, собранная компанией PWM и готова к использованию.

Электронная документация и руководства устройства

Компания PWM предоставляет два руководства для этого инструмента тестирования на сайте компании http://pwm.company. Вы можете найти всю информацию, используя название модели TEST555:

  1. Руководство для самостоятельной сборки компонентов печатной платы, для тестирования и использования
  2. Руководство для самостоятельной сборки корпусов для тестеров PWM-TOOLS.

Основные функции инструмента PWM-TEST555:

1. Очень популярный тестер серии IC NE555
2. Простой тестер транзисторов
3. Генератор регулируемой частоты и рабочего цикла с выходом разъема BNC
4. Мощность ШИМ 4 А регулятор с прямым и обратным выходом с выходом DC-005 Jack

Официально поддерживаемые микросхемы для тестирования в корпусе DIP8

NE555, TLC555, LM555, LM1455, MC1455P, RC555, ICM7555, LC7555, КР1006ВИ1, 10875ВИ2 , NJM555D, TA7555P, 142ЕН6, UPC617C .В будущем этот список может быть расширен. Этот инструмент тестирования позволяет тестировать ИС в корпусе DIP8, но с помощью адаптера корпуса ИС можно тестировать и микросхемы SMD. Адаптер SMD не входит в стандартную комплектацию.

Инструмент тестирования обеспечивает тестирование основных характеристик микросхем серии NE555:

1. Низко-, средне- и высокочастотный выход с визуальным выходом с мигающими светодиодами
2. Регулировка частоты и рабочего цикла.
3. Визуальный контроль времени работы NE555 с помощью светодиодов на плате

Инструмент тестирования представляет собой простой тестер транзисторов на основе схемы таймера NE555 для:

1.Биполярный переходный транзистор (BJT)
2. Полевой транзистор (MOSFET)
3. Дарлингтон
4. Биполярный транзистор с изолированным затвором (IGBT)

Испытательная плата обеспечивает ШИМ-регулятор мощности 4A с прямым и инвертированным выходом:

1. Регуляторы рабочего цикла и частоты
2. Контроль рабочего цикла управляют 2 отдельными каналами, прямым и инвертированным одновременно в противофазе.

Питание устройства

Адаптер питания AC-DC не входит в комплект.Для питания устройства вы можете использовать любой адаптер постоянного тока или любой источник постоянного тока 10–20 В с минимальным выходным током 0,3 А. Тип разъема: штекер DC Power Jack 5.5x2.1мм (DC-005 Jack). Не превышайте входное напряжение 22 В. Запитывайте устройство от источника с ограничением по току МАКСИМАЛЬНЫЙ 8А и защищенного от сети по соображениям безопасности.

Автоматическое обнаружение типов клеток и микросхем из нейронной коннектомики

Однако было также сочтено, что неясно, как работает алгоритм и каковы могут быть его ограничения - настоятельно необходимо более тщательное описание и представление метода с дополнительными обсуждениями.Другими словами, действительно ли метод работает? В представленном виде он кажется волшебным и впечатляющим, и были некоторые опасения, не было ли оно слишком хорошим, чтобы быть правдой. Данные и методы должны быть доступны, а также иметь элементы управления и показывать кривые ROC для дальнейшей оценки. Также необходима более строгая формулировка терминов и цифр на этикетках. Также было сочтено, что цифры, хотя и эстетически приятны, не помогают при оценке алгоритма .

Мы добавили широкий спектр дополнительных подробных анализов, добавили дополнительные цифры, чтобы напрямую указать на полезность алгоритма.Мы также добавили моделирование, чтобы показать, при каких обстоятельствах алгоритм не работает. Действительно, нас по-настоящему впечатлил тот факт, что рецензенты просят провести анализ видов отказов вместо того, чтобы заявлять (как в некоторых известных журналах), что любой из (неизбежных) видов отказов может стать причиной для отказа.

В частности, были затронуты следующие аспекты :

1) Объясните ограничения алгоритма, то есть, где он не работает (отмечая, что рецензенты понимают, что ни один алгоритм не может решить каждую проблему).Лучше всего это сделать в контексте игрушечной задачи. Любому потенциальному пользователю этого алгоритма будет полезно лучше понять его ограничения. При каких условиях он выходит из строя? Какие точки давления? Например, что, если набор данных имеет структуру, но на самом деле нет отдельных классов (как было предложено для коры головного мозга)? Он особенно чувствителен к выбору некоторых приоров? И т.д. Возможно, другие примеры дадут лучшее представление о потенциальных режимах отказа .

Мы добавили моделирование, показывающее режимы отказа алгоритмов. Есть два вида сбоев: (1) алгоритм может не справиться с правильным решением проблемы, которую он призван решить, (2) проблема может не справиться с проблемой, которую мы, ученые, хотим решить, потому что на самом деле он решает другую проблему. проблема. Мы добавили моделирование, чтобы решить эти две проблемы. Короче говоря, как мы уже показали в отношении (1), алгоритм работает все хуже и хуже, поскольку классы становятся все более и более похожими, поскольку это замедляет смешивание.Такое поведение типично для алгоритмов MCMC. Что касается (2), мы построили случаи, когда алгоритм выявляет типы ячеек, где их нет, в случае непрерывных распределений, и случаи, когда алгоритм не находит типы ячеек, потому что другие аспекты типов ячеек (например, границы реконструируемых площадей) делают оценку невозможной.

2) Показать перекрестную проверку на предсказании ссылки .

Готово.

3) Как указано, анализ идентичности типа клеток трудно поддается синтаксическому анализу; сюжеты в стиле цирка мало что говорят, а другие сюжеты часто неадекватно обозначены.Также неясно, как валидация проводилась или должна была соблюдаться. Требуется просто увидеть кривые ROC (или зарегистрированные площади) или что-то подобное. Цифры малоинформативны. Как какой-нибудь известный контролируемый метод справится с этой задачей при перекрестной проверке? Интуитивно кажется, что это естественный выбор для изучения идентификации соты . См., Например, PMID: 21154911 для подробного анализа .

Мы отказались от графиков связности в стиле Circos, которые, несмотря на визуальную привлекательность, не справлялись с задачей адекватной передачи типа и связности, связанной с расстоянием.Вместо этого теперь мы используем линейный график зависимости связности от расстояния. Мы считаем, что это более четко демонстрирует зависимый от расстояния характер связи. Теперь мы обсудим возможность и ограничения контролируемых методов.

Показать прогноз стиля ROC для типов ячеек. Это можно сделать с помощью перекрестной проверки, то есть выполнить кластеризацию, а затем пометить все клетки, используя, например, 2/3 данных, помеченных человеком. Затем присвойте каждой неизвестной ячейке метку на основе ее принадлежности к ячейкам с известными метками.Это в конечном итоге даст ранжированную оценку, так как вероятностную. Метод сравнения был бы чем-то вроде присвоения ближайшего соседа. Чтобы не превращать это в проблему предсказания нескольких классов, можно делать это по одному классу за раз и не беспокоиться о перекрывающихся назначениях. Это установило бы хороший стандарт для сравнения методов .

Чтобы решить эту проблему, мы расширили набор показателей, которые мы используем для количественной оценки кластеризации, с учетом ARI, полноты и однородности. Прогнозы в стиле ROC были бы интересными и выполнимыми, если бы только наборы данных были больше.В настоящее время существует лишь очень небольшое количество примеров многих типов, и удаление большего количества для анализа ослабило бы нашу силу. Мы считаем, что этот вид проблемы также хорошо решается с помощью нашего нового и гораздо более всестороннего анализа свойств алгоритма.

4) Рассмотрение и обсуждение краевых эффектов в данных сетчатки .

Набор данных сетчатки охватывает относительно небольшой объем сетчатки (порядка 100 микрон в каждом направлении), и большинство клеток, чьи тела расположены в этом объеме, имеют свои нейриты «отрезаны», т.е.е. они не полностью содержатся в объеме. Это приведет к краевым эффектам, которые могут повлиять на паттерны соединений или смещать их, например, клетки, чьи тела находятся рядом с центром поля зрения, должны иметь больше синаптических контактов (больше партнеров в матрице контактов) просто потому, что они более полно захватываются в реконструкция. Как такие потенциальные краевые эффекты учтены в настоящем анализе? Можно ли улучшить производительность алгоритма кластеризации за счет учета таких смещений ?

Готово.

5) Пример микросхемы считался менее критичным по сравнению с предоставлением большего количества испытаний, дополнительных деталей и обсуждения сетчатки глаза и C.elegans примеров .

Мы несколько сократили пример микросхемы. Мы считаем, что он по-прежнему полезен, поскольку позволяет читателю понять, что этот общий класс алгоритмов может быть полезен не только в области нейробиологии.

6) Использование информации о связности для характеристики узлов в нейронной сети имеет долгую историю в когнитивной и системной нейробиологии.Было бы неплохо указать на это. Возможной отправной точкой является обзор Passingham et al. (2002) в Nature Reviews Neuroscience .

Мы добавили обширные ссылки на эту часть литературы во вновь созданном разделе «Обсуждение».

7) Дополнительные комментарии относительно аспектов бесполезного / нечеткого рисунка для особенностей алгоритма :

Существуют ли какие-либо известные предубеждения в отношении предпочтений в размерах кластеров? Из Рисунок 4 видно, что существует небольшое количество довольно больших (и довольно однородных) кластеров и большее количество довольно маленьких (которые кажутся довольно шумными с точки зрения классификации клеток анатома) .

Наша модель использует апарметрический априор, который, как правило, полагает, что для прогнозирования данных можно использовать «небольшое» количество кластеров, но (если данные поддерживают это), но вероятность данных легко преобладает. Хорошее согласие как по размеру, так и по типу кластера с синтетическими данными заставляет нас думать, что это не результат предшествующих. Кроме того, мы выполняем гиперпараметрический вывод по параметру концентрации кластеров альфа. Это позволяет избежать чрезмерного смещения модели в сторону больших кластеров.Таким образом, мы считаем, что «шум», присутствующий в кластеризации, действительно отражает неопределенность данных.

Трудно судить только по визуальному осмотру, насколько «хорошее» соответствие между автоматическим кластерным анализом и схемой заказа анатома на самом деле ( Рисунок 3C , внешнее кольцо). Есть ли более количественный способ определения «соответствия» модели априорному присвоению анатомических типов клеток ?

Как упоминалось выше, мы добавили дополнительные метрики соответствия.Мы также расширили обсуждение этого вопроса в тексте, чтобы читателям было легче его усвоить.

В аналогичном ключе текст утверждает (в подразделе, озаглавленном «Восстановление пространственной связности в нескольких графах одновременно»), что для C. elegans кластеры примерно однородно соответствуют мото, сенсорным и интернейронам, но если посмотреть на Рис. 5 , не так уж и понятно. Интернейроны обнаруживаются почти во всех кластерах, и очень немногие из них действительно однородны по отношению к этим трем типам нейронов.Опять же, было бы хорошо подумать о способе количественной оценки «однородности» .

Мы добавили количественную оценку однородности и смягчили обсуждение в тексте.

На круговых графиках (например, Рисунок 1I ) не совсем понятно, к чему относятся заштрихованные дуги в центре. Пропорционально ли затенение какой-то плотности (какой?), И какая ширина этих дуг относится к ?

Как указано выше, мы отказались от графиков в стиле цирка, заменив их (как мы надеемся) более интуитивно понятными и тщательно аннотированными линейными фигурами.

https://doi.org/10.7554/eLife.04250.015

Заключительные мысли: Структура теории корковых микросхем

Страница из

НАПЕЧАТАНО ИЗ ОНЛАЙН-СТИПЕНДИИ ОКСФОРДА (oxford.universitypressscholarship.com). (c) Авторские права Oxford University Press, 2021. Все права защищены. Отдельный пользователь может распечатать одну главу монографии в формате PDF в OSO для личного использования. дата: 22 мая 2021 г.

Глава:
(стр.195) 10 заключительных мыслей: структура теории корковых микросхем
Источник:
Разнообразие в нейронной машине
Автор (ы):

Иван Солтес

Издатель:
Oxford University Press

DOI: 10.1093 / acprof: oso / 9780195177015.003.0010

Эта глава представляет собой синтез обсуждений в предыдущих главах. Он утверждает, что крайне важно четко различать гетерогенность, изменчивость и разнообразие, поскольку большая часть разногласий в литературе возникла из-за смешения аргументов, связанных с межклеточной изменчивостью в рамках определенных межнейрональных подтипов, с данными о межнейрональном видовом разнообразии. Межклеточная изменчивость не только естественным образом существовала в популяциях интернейронов, принадлежащих к одному подтипу, но и эта изменчивость от клетки к клетке имела несколько функциональных последствий, включая регуляцию возбудимости нейронов, осцилляторную активность и синхронизацию сети.

Ключевые слова: интернейроны, межнейронное разнообразие, шанс, нейроанатомия

Для получения доступа к полному тексту книг в рамках службы для стипендии

Oxford Online требуется подписка или покупка. Однако публичные пользователи могут свободно искать на сайте и просматривать аннотации и ключевые слова для каждой книги и главы.

Пожалуйста, подпишитесь или войдите для доступа к полному тексту.

Если вы считаете, что у вас должен быть доступ к этой книге, обратитесь к своему библиотекарю.

Для устранения неполадок, пожалуйста, проверьте наш FAQs , и если вы не можете найти там ответ, пожалуйста свяжитесь с нами .

Количественное исследование производительности памяти вычислительной микросхемы модели гиппокампа

Память, процесс кодирования, хранения и поддержки информации во времени, чтобы повлиять на будущие действия, очень важен в нашей жизни.Если его потерять, это дорого обойдется. Поэтому расшифровка биофизических механизмов, ведущих к улучшению воспоминаний, должна иметь первостепенное значение. В этом исследовании мы предприняли поиски по улучшению вычислительной производительности воспроизведения биоиндуцированной микросхемной модели гиппокампа млекопитающих, области мозга, ответственной за хранение и воспроизведение краткосрочных декларативных воспоминаний. Модель состояла из возбуждающих и тормозных клеток. Свойства клеток точно соответствовали тому, что в настоящее время известно из экспериментальной нейробиологии.Возбуждение клеток было приурочено к колебаниям тета, которым управляют две отдельные популяции нейронов, демонстрирующие очень регулярную взрывную активность, одна из которых тесно связана с впадиной, а другая - с пиком тета. Возбуждающий вход предоставляется в контекст возбуждающих ячеек и информацию о времени для поиска ранее сохраненных шаблонов памяти. Ингибирование возбуждающих клеток действовало как неспецифическая глобальная пороговая машина, которая устраняла ложную активность во время отзыва. Чтобы систематически оценивать эффективность запоминания модели относительно сохраненных паттернов, перекрытия паттернов, размера сети и количества активных ячеек по паттерну, мы выборочно модулировали возбуждающие и тормозные пути с прямой связью и обратной связью, нацеленные на конкретные возбуждающие и тормозящие клетки.Из различных протестированных вариаций модели (модулированных путей) качество запоминания «модели 1» было превосходным во всех условиях. Отзыв «Модели 2» был наихудшим. Количество «активных ячеек», представляющих шаблон памяти, было определяющим фактором в улучшении способности вспоминать модель независимо от количества сохраненных шаблонов и перекрытия между ними. По мере уменьшения количества активных ячеек на шаблон увеличивалась емкость памяти модели, уменьшались эффекты интерференции между сохраненными шаблонами и улучшалось качество воспроизведения.

Ключевые слова

Компьютерная модель, дендрит, торможение, возбуждение, бистратифицированная клетка, медиальная перегородка, пирамидальная клетка, тета-ритм, извлечение памяти, клетка OLM

Толстопленочные материалы | DuPont

Инновационные высокопроизводительные толстопленочные материалы для гибких, жестких и гибридных подложек

DuPont Advanced Materials Advantage

DuPont обладает более чем 50-летним опытом в области материаловедения при разработке тысяч металлических, полимерных и стеклянных материалов, предназначенных для выполнения определенных функций.Клиенты обращаются к нам, чтобы применить наши обширные знания для создания инновационных высококачественных материалов, которые будут хорошо работать независимо от того, насколько требовательны приложения.

Для разработчиков продукции и инженеров, желающих создать или определить высокопроизводительные печатные электронные схемы и компоненты на гибких, жестких и гибридных подложках, DuPont предлагает наиболее полный набор продуктов и услуг печатной электроники, доступных во всем мире. За более чем 50 лет мы помогли сотням клиентов найти успешные дизайнерские решения для различных областей применения в бытовой электронике, автомобилестроении, аэрокосмической отрасли, биотехнологии, телекоммуникациях, военной сфере, информационных технологиях, энергетике, фотоэлектрической и многих других отраслях.

DuPont также предлагает линейку высокопроизводительных низкотемпературных керамических материалов (LTCC) для создания высокочастотных и высоконадежных схем для телекоммуникационных сетей 5G (беспроводные базовые станции и смартфоны / мобильные устройства) и приложений военной связи. Кроме того, у нас есть самый полный ассортимент жаропрочных толстопленочных паст, подходящих для высоконадежных гибридных схем, а также широкий спектр материалов для пассивных компонентов.


Выберите DuPont в качестве партнера по решениям для материалов:

  • Определите лучшую печатную электронную продукцию для вашего конкретного приложения или схемотехники
  • Создание экономичных, высокопроизводительных, высококачественных и масштабируемых печатных схем на гибких или жестких подложках.
  • Обратитесь к нашей глобальной команде, которая может поддержать вашу цепочку создания стоимости проектирования и производства, где бы они ни находились
  • Быстро создавайте качественные решения и отвечайте за короткие циклы проектирования в вашей отрасли

Продукты :

Обширная линейка толстопленочных продуктов DuPont обеспечивает максимальную гибкость проектирования с точки зрения совместимости с подложками: от паст, отверждаемых при низких температурах, подходящих для подложек из ПВХ, полиэтилена, полипропилена и ПЭТ, до паст с высокими эксплуатационными характеристиками, которые могут работать при температуре до 250 ° C при высоких температурах. гибкие подложки, такие как полиимидные пленки PEN и DuPont ™ Kapton ™.Наши материалы также совместимы с другими полимерными, стеклянными, металлическими и керамическими подложками.

Семейство продуктов:

  • Материалы гибридных схем
  • Материалы пассивных компонентов
  • Низкотемпературные керамические материалы с совместным обжигом
  • Печатные электронные материалы

Сяолун Цзян, доктор философии | BCM

Электронная почта

[email protected]

позиций

Доцент
Отделение неврологии
Медицинский колледж Бейлора
Хьюстон, Техас, США
Следователь
Ян и Дэн Дункан Неврологический научно-исследовательский институт при детской больнице Техаса
Хьюстон, Техас США
Доцент
Кафедра офтальмологии
Медицинский колледж Бейлора
Хьюстон, Техас США

Адреса

1250 Moursund St.(Офис)
Suite 0925.15
Houston, TX 77030
United States
Телефон: (832) 824-8123
[email protected]
1250 Moursund St (Lab)
Suite 0925
Houston, TX 77479
United States
Телефон: (832) 824-8128
https: // www.bcm.edu/research/labs/xiaolong-jiang

Образование

Повышение квалификации от Университета Вирджинии
01/2011 - Шарлоттсвилл, VA США
Выпускник Медицинского факультета Чжэцзянского университета
06/1998 - Ханчжоу, Китай, Народная Республика
Доктор философии Университета медицинских наук
05/2007 - Bethesda, Мэриленд США

Профессиональные интересы

  • Рассечение микросхемы коры при здоровье и болезни; коннекопатии при эпилепсии и расстройствах аутистического спектра

Заявление профессионала

Каждая область мозга состоит из различных типов нейрональных клеток с характерными морфологическими, электрофизиологическими и молекулярными свойствами, и эти типы клеток определенным образом связаны между собой, образуя функциональную цепь.Механическое понимание работы нормального и патологического мозга требует идентификации всех составляющих типов клеток, картирования их взаимосвязей и определения их функций.

Наша лаборатория в Медицинском колледже Бейлора и Неврологический научно-исследовательский институт Яна и Дэна Дунканов в Детской больнице Техаса фокусируется на трех связанных вопросах, касающихся мозговых цепей: 1) Сколько типов клеток присутствует в каждой области мозга и как они соединяются друг с другом, образуя нормальная, функциональная схема; 2) каковы уникальные типы клеток и принципы организации, которые могли быть разработаны, чтобы наделить мозг приматов превосходными вычислительными возможностями для сложных когнитивных процессов, характерных для приматов; 3) Как на стереотипные принципы связи между типами клеток влияют различные психоневрологические состояния?

С этой целью мы разработали и применяем мультидисциплинарный подход, который включает в себя запись нескольких клеток (до 12 одновременных записей), морфологическое восстановление, секвенирование одноклеточной РНК, оптогенетические методы и машинное обучение.Используя этот интегрированный подход, мы выполняем крупномасштабное междисциплинарное профилирование отдельных нейронов в цепи мозга, включая их электрофизиологические свойства, морфологию, транскриптом и связи, чтобы расшифровать всеобъемлющую схему схемы в различных областях мозга у разных видов. Мы также используем сложные генетические модели мышей, записи целых клеток in vivo, двухфотонную визуализацию кальция и поведенческие анализы, чтобы проанализировать функциональную роль каждого типа клеток в обработке информации.

Параллельно мы используем тот же подход для расшифровки аберрантных связей между конкретными типами клеток (коннекопатиями), лежащих в основе психоневрологических расстройств, включая эпилепсию, расстройства аутистического спектра и шизофрению. Были проведены обширные исследования этих нарушений на генетическом / молекулярном, макроуровне и поведенческом уровне. Однако на мезомасштабном уровне, как каждое психоневрологическое состояние влияет на схему цепи, остается в значительной степени неизвестным. Кроме того, для каждого заболевания головного мозга этиология может быть очень разнообразной, несмотря на общую симптоматику и сигнатуру ЭЭГ, что повышает вероятность того, что разные этиологии вызывают одни и те же нарушения разводки цепей, что приводит к одним и тем же фенотипам.Выявление стереотипных дефицитов контуров для конкретного типа нейропсихиатрического заболевания открывает путь для более универсальных, основанных на контурах специфических вмешательств, специфичных для клеточного типа, для этих заболеваний.

Сайты

Лаборатория нейронной микросхемотехники - EPFL

Лаборатория нейронных микросхем (LNMC), возглавляемая профессором Генри Маркрамом, занимается изучением структуры, функций и пластичности нейронных микросхем с упором на неокортекс.

Лаборатория нейронных микросхем (LNMC), возглавляемая профессором Генри Маркрамом, занимается изучением структуры, функций и пластичности нейронных микросхем с упором на неокортекс.

Неокортекс составляет почти 80% человеческого мозга и состоит из повторяющихся стереотипных микросхем, состоящих из разных подтипов нейронов. Микросхема неокортекса обладает огромными вычислительными возможностями и способна принимать участие в ряде различных задач.Неокортекс можно разделить на несколько перекрывающихся вертикальных столбцов (диаметром 0,3-0,5 мм), каждый из которых выполняет свою функцию, тем самым формируя основу функциональной компартментализации неокортекса. Мы считаем, что неокортикальные микросхемы внутри таких функциональных кортикальных столбов представляют собой фундаментальную единицу вычислений, составляющую сущность вычислений неокортекса. Другими словами, нейронная микросхема лежит в основе способности неокортекса к обработке информации.

Таким образом, получение чертежа корковой микросхемы необходимо для всестороннего понимания высших когнитивных функций. Для достижения этой цели мы систематически характеризуем электрофизиологические, структурные и молекулярные свойства отдельных нейронов, а также локальные правила связности и синаптические свойства взаимосвязанных нейронов. Недавно мы также начали исследовать нейромодуляцию динамики микросхем. Функциональные свойства микросхемы в конечном итоге определяются динамическим репертуаром составляющих ее нейронов и синапсов, и поэтому мы прилагаем значительные усилия для раскрытия молекулярных основ этих динамических свойств.Эти усилия включают разработку высокопроизводительных протоколов для характеристики и картирования ионных каналов и получения транскриптома одной клетки.

Подробная информация о микросхеме также важна для всестороннего понимания неврологических и психических расстройств, возникающих в результате дисфункции неокортекса. Это могло бы стать основой для разработки вмешательств, устраняющих такие отклонения микросхем. В LNMC мы исследуем роль изменений микросхем в отношении аутизма.Один из наших основных вкладов до сих пор включает предложение теории интенсивного мира для аутизма.

Экспериментальные данные, сгенерированные LNMC, используются проектом Blue Brain Project (BBP) для построения реалистичных моделей in silico многих областей мозга с целью получить представление об обработке сигналов нейронных цепей с помощью детального компьютерного моделирования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *