Содержание

принцип работы, устройство, типы, схемы подключения

Системы контроля производят постоянное наблюдение за состоянием различных механизмов, положением рабочих органов и, в том числе, контролируют вес. Для измерения величины веса и дальнейшего применения данных в логических схемах устанавливается тензометрический датчик (тензодатчик). Что это такое и как он работает мы рассмотрим в данной статье.

Что такое тензодатчик?

Тензометрический датчик, в соответствии с п.2.1.2 ГОСТ 8.631-2013 представляет собой весоизмерительный элемент, который реагирует на изменение величины физического воздействия (усилия) и переводит его в электрический сигнал. Фактически это резистор, меняющий параметр омического сопротивления, по отношению к прилагаемой силе. На практике широко используются для измерения массы и нагрузки в весоизмерительных системах. В зависимости от сферы применения используются различные типы тензодатчиков, отличающихся как принципом действия, так и конструктивными особенностями.

Конструкция

В качестве примера рассмотрим наиболее простой вариант тензодатчика, где в роли чувствительного элемента выступает тензорезистор. Конструктивно его можно представить в виде тонкой упругой проволоки или пленки, распределенной по контролируемой поверхности. 

Работа тензорезистора основывается на законе Гука, гласящем, что изменение электрического сопротивления по отношению к исходному положению элемента пропорционально удлинению или сжатию сенсора. Руководствуясь данным принципом определяется коэффициент пропорциональности:

K = Δl / l = ΔR / R

Где:

  • K – коэффициент пропорциональности;
  • Δl – величина изменения длины в ходе деформации;
  • l – длина измеряемого элемента в состоянии покоя;
  • ΔR – изменение величины сопротивления при деформации;
  • R – значение сопротивления тензорезистора в нормальном положении.

На практике это реализуется следующим образом (рисунок 1):

Рис. 1. Устройство тензорезистора

При нахождении в состоянии покоя дорожки тензорезистора имеют определенное сечение и длину проводника. Сопротивление всего резистивного элемента тензодатчика будет определяться по формуле:

R = (ρ*l)/S , где

  • ρ – удельное сопротивление материала, как правило, в качестве металла с постоянным удельным сопротивлением используют константан; 
  • l – длина проводника тензодатчика;
  • S – поперечное сечение проводника тензодатчика.

Таким образом, в случае удлинения тензодатчика длина проводящих дорожек увеличивается, а поперечное сечение уменьшается. Как результат, омическое сопротивление тензорезистора будет повышаться. При сжатии произойдет обратный процесс – длина проводящих элементов уменьшиться, а их поперечное сечение увеличиться. В результате сжатия сопротивление тензодатчика уменьшиться, что и лежит в основе принципа его работы.

Принцип работы

В большинстве случаев тензодатчик функционирует не от одного тензорезистора, а включает в себя мостовую измерительную схему. Такой принцип получил название моста Уитстона и реализуется следующим образом (рисунок 2):

Рис. 2. Принцип действия тензодатчика

Как видите на рисунке, в плечи моста включены четыре тензорезистора, которые расположены на гибкой подложке, что обеспечивает им упругую деформацию в ходе измерений. Все резистивные элементы тензодатчика подбираются равнозначными, что обеспечивает на выходе в состоянии покоя нулевое значение разности потенциалов в точках + S и – S. Это обозначает, что в ненагруженном идеальном тензодатчике не будет протекать ток в выходной цепи измерительного прибора.  В реальном устройстве, все равно существует токовая нагрузка из-за конструктивных отличий резистивных деталей, температурных колебаний.

Как только к измерительному органу прибора будет приложена механическая нагрузка, гибкое основание деформируется, от чего изменятся рабочие параметры всех резисторов в цепи моста тензодатчика. В большинстве случаев попарно происходит сжатие и растяжение тензорезисторов (рисунок 3):

Рис. 3. Воздействие нагрузки на тензодатчик

Как видите, на рисунке два резистора сжимаются, а другие два растягиваются, в результате чего происходит искажение моста. Электрическая цепь выходит из равновесия и через выход тензодатчика начинает протекать электрический ток. О чем будет свидетельствовать отклонение стрелки гальванометра или дисплей оборудования, реагирующий на изменение разности потенциалов. Как только нагрузка перестанет воздействовать на тензодатчик, гибкая пластина вернется в исходное состояние, а измерительный мост снова перейдет в состояние равновесия.

На данном примере мы рассмотрели простейший вариант четырехпроводного тензометрического датчика. Но на практике также используются пяти и шестипроводные весоизмерительные сенсоры, что обусловлено типом конкретного устройства.

Типы

Сфера применения тензометрических датчиков охватывает ряд устройств самого различного назначения. Поэтому для измерения величины физического воздействия применяются тензодатчики разных типов. Разделение сенсоров по видам осуществляется на основании нескольких факторов.

Рис. 4. Типы датчиков по форме грузоприемного основания

Так, в зависимости от формы грузоприемного основания выделяют:

  • Консольные (балочные) – устанавливаются в некоторых типах весов, при взвешивании контейнеров и т.д.;
  • S-образные – применяются для измерения поднимаемых грузов;
  • Мембранные – используются в системах контроля, высокоточных измерителях и т.д.;
  • Колонные – монтируются в оборудовании с большой массой;

В зависимости от вида метода измерения все тензодатчики подразделяются на:

  • Резистивные – в основе работы лежит тензорезистор или мост из них, расположенный на гибком основании. Такой тензодатчик крепится к поверхности измерителя и реагирует на механические деформации. В соответствии с п.1.1 ГОСТ 21616-91 разделяются на проволочные и фольгированные. По количеству и форме разделяются на одиночные, розетки, цепочки, мембранные розетки.
  • Тактильные – состоят из двух проводников, между которыми расположена перфорированная пленка диэлектрика. При нажатии проводники продавливают мягкий диэлектрик и обеспечивают некую проводимость, чем изменяется величина сопротивления. По типу измерения бывают датчики касания, проскальзывания, усилия.
  • Пьезорезонансные – основаны на  полупроводниковых элементах, в таких тензодатчиках происходит сравнение реального сигнала с эталонным.
  • Пьезоэлектрические – основаны на собственном напряжении выхода электронов некоторых полупроводниковых кристаллов. При воздействии усилия на кристалл меняется и величина зарядов, что передается на измерительный орган тензодатчика.
  • Магнитные – используют свойство магнитных проводников изменять величину магнитной проницаемости в зависимости от физических параметров. При сжатии или растяжении сердечника, электромагнитный поток, формируемый катушкой, будет изменяться. В результате чего индуктивность тензодатчика также отклонится от образцового состояния.   
  • Емкостные – используют эффект переменного конденсатора, в котором с уменьшением расстояния между пластинами будет возрастать емкость. А при увеличении расстояния или уменьшении площади пластин емкость уменьшится.
Рис. 5. Принцип действия емкостного тензодатчика

В соответствии с п.1.2 ГОСТ 28836-90 по характеру прилагаемого усилия тензодатчики можно разделить на те, которые реагируют на сжатие, растяжение и универсальные.

Схемы подключения

На практике применяются различные способы подключения тензодатчика в общую цепь. Наиболее простой вариант –  схема четырехпроводного подключения, которая приведена на рисунке 6 ниже:

Рис. 6. Четырехпроводная схема подключения

В данном случае схема подключения подразумевает строгое соблюдение цветовой маркировки проводов: красного и белого для подачи напряжения питания, а черного и зеленого для съема получаемого сигнала. Пятый провод используется для заземления корпуса оборудования, в некоторых моделях используется экран для устранения помех. Такой вариант применяется для силовых датчиков, слаботочного оборудования, устанавливаемого непосредственно в месте измерения и фиксации результата. На практике может реализоваться следующим образом:

Рис. 7. Практическая реализация четырехпроводной схемы подключения

Когда весоизмерительный блок удален от контрольного блока, используется шестипроводная схема для исключения влияния омического сопротивления проводов питания на результат измерений.

Рис. 8. Шестипроводная схема с цепью обратной связи

Выводы + E и – E применяются для подачи напряжения питания на тензодатчик. С клемм + Sen и – Sen снимается падение напряжения на проводах, которое затем вычитается из результирующего сигнала.  Контакты + S и – S используются для съема показаний, функция вычитания реализуется следующим образом:

Рис. 9. Практическая реализация вычитания напряжения

Назначение

Тензодатчик устанавливается в различных приборах и приспособлениях для отслеживания реакции на физическое воздействие. На сегодняшний день сфера его применения охватывает самые различные отрасли промышленности и народного хозяйства, где он используется для:

  • Измерения веса – устанавливается в электронных весах различного типа.
  • Определения ускорения – применяется при испытании транспортных средств.
  • Измерения давления – распространено в сфере обработки поверхностей, при контроле прилагаемого усилия, в механических средствах и т.д.
  • Контроля перемещения – фиксируют перемещение строительных элементов, фундаментов, сейсмологических приспособлений и т.д.
  • Измерения крутящего момента – применяется в машиностроительной отрасли, для технического обслуживания и прочих.

Как выбрать?

При выборе модели для измерения какого-либо физического усилия или веса, необходимо руководствоваться основными параметрами сенсора. К таким характеристикам относятся:

  • Диапазон измерений – определяет границы весовой нагрузки, которую сможет фиксировать тензодатчик;
  • Класс точности – выбирается в зависимости от параметров оборудования и требований к точности измерений;
  • Схема подключения – по количеству подключаемых выводов  может использоваться четырех или шестипроводная схема;
  • Термокомпенсация  – для тензодатчиков, где необходима высокая точность измерений, важно учитывать влияние температуры окружающей среды, применяются термокомпенсирующие элементы;
  • Степень защиты – обозначается индексом  IP и определяет устойчивость к воздействию пыли и влаги на тензодатчик.

Список использованной литературы

  1. Клокова Н.П. «Тензорезисторы: Теория, методики расчета, разработки» 1990
  2. Фрайден Дж. «Современные датчики. Справочник» 2005
  3. Клокова Н.П. «Тензодатчики для измерений при повышенных температурах» 1965
  4. Пучкин Б.И. «Приклеиваемые тензодатчики сопротивления» 1966
  5. Ильинская Л.С., Подмарьков А. «Полупроводниковые тензодатчики» 1966

Что такое тензодатчик и есть ли разница между ним и тензорезисторным датчиком

Тензодатчик веса – это основной и, пожалуй, главный элемент весового оборудования. Именно от того, каким типом тензодатчика оснащены Ваши весы, напрямую зависит точность и скорость измерений.

Общие сведения

В первую очередь заметим, что понятие «тензодатчик» включает в себя и тензорезисторные и тензометрические датчики. Дело в том, что тензометрические датчики – это наиболее широкое понятие, включающее в себя все виды весоизмерительных датчиков. Существуют различные способы измерения деформаций: тензорезистивный, пьезорезистивный, оптико-поляризационный, волоконно-оптический, и механический - простое считывание показаний с линейки механического тензодатчика. Каждый из этих способов дал название виду тензодатчика. А поскольку, наибольшее распространение среди электронных тензодатчиков получили тензорезистивные датчики, то это название стало практически нарицательным.

Устройство и принцип действия тензометрических датчиков

Тензометрический датчик (тензодатчик) – конструктивно представляет собой металлическую конструкцию, внутри которой расположены резисторы с электросхемой. Тензодатчик связан с корпусом весового дозатора или весовой платформы, и, при изменении веса, корпус тензодатчика подвергается деформации, после чего результат деформации передается на тензорезисторы, а оттуда, информация о массе - на весовой терминал.

Принцип работы системы измерения веса с использованием тензодатчика предельно прост: под действием массы груза, в тензодатчике возникает механическая деформация, которую и учитывает датчик, преобразует её в электрический аналоговый или цифровой сигнал, и передаёт на индикатор веса, на котором и отображается масса взвешиваемого груза.

Современные тензодатчики прекрасно справляются со своей работой даже в достаточно жестких условиях, поскольку обладают хорошей влаго- и пылезащитой. Спектр применения тензометрического оборудования довольно широк - от самых простых весоизмерительных элементов, до сложнейших технологических промышленных комплексов динамического взвешивания.

Особенности тензодатчиков

Тензодатчики используются практически во всех современных электронных весоизмерительных системах и системах дозирования – бункерных и крановых весах, весовых дозаторах и т.д. Они обеспечивают высокую точность измерений, устойчивы к воздействию окружающей среды, а современные технологии позволяют добиться систематизации и автоматизации всего процесса измерения, используя оборудование с электронными тензодатчиками.

Следует отметить следующие возможности и преимущества тензорезисторных весоизмерительных датчиков:

  • Высокая точность измерения. Современные тензодатчики обладают практически безупречной точностью. Самыми распространенными тензодатчиками являются датчики класса точности C3, что соответствует комбинированной погрешности 0.02%. Существуют тензодатчики и с более высоким классом точности.
  • Разнообразие конструкций. Выпускаются тензодатчики следующих типов: S-образный, балочного (консольного) типа, колонные датчики, датчики платформенного типа, одноточечные, торсионные, цилиндрические и прочие. Применение конкретного типа датчика зависит от назначения и конструкции весовой системы, места и способа его установки. Благодаря огромному разнообразию конструкций тензодатчиков, можно выбрать оборудование, наиболее подходящее для конкретных производственных нужд заказчика.
  • Надежность материалов. Большинство тензодатчиков изготовлены из алюминия, нержавеющей или легированной стали, что обеспечивает долгий срок службы оборудования. Водонепроницаемые тензодатчики, которые изготавливаются из нержавеющей стали, обладающие классом защиты IP68, особенно востребованы в пищевой и рыбной промышленности.
  • В условиях неисправности одного из датчиков, весы с несколькими тензодатчиками сохраняют работоспособность и точность измерений.

Среди многообразия форм, типов тензометрических датчиков, среди датчиков, различных по цене и качеству сложно сделать правильный выбор.

Как выбрать тензодатчик?

При покупке тензодатчика следует учитывать следующие показатели:

  • Наибольший предел измерения (НПИ) - следует учитывать, что предполагаемая номинальная нагрузка на тензодатчик не должна превышать НПИ. Хотя фактически датчик имеет дополнительный запас прочности, некоторые конструкции весов требовательны к наличию дополнительного запаса НПИ.
  • Материал тензодатчика – как мы уже писали выше, наибольшее распространение получили тензометрические датчики из нержавеющей и легированной стали, а также алюминия. Как правило, только одноточечные тензодатчики изготавливаются из алюминия, все остальные выполнены из стали.
  • Класс точности тензодатчика – на практике класс точности тензодатчика может лежать в диапазоне от D1 до С6, хотя, в соответствии с OIML R 60, класс точности тензометрического датчика может быть и в более широком диапазоне. Наиболее распространен класс точности C3. Необходимость применения более точных датчиков требует обоснования, поскольку с классом точности цена растет в геометрической прогрессии.
  • Схема подключения тензодатчика – обычно для подключения тензодатчиков используется «четырехжильная» схема подключения. Однако в частных случаях, и в случаях, когда присутствует большая разница в сопротивлении кабелей смежных тензодатчиков, применяется «шестижильная» схема подключения.

Выбирая тип тензометрического датчика, также следует обратить внимание на следующие характеристики: рабочий диапазон температур, рабочий коэффициент передачи, класс защиты, диаметр и длину кабеля, входное и выходное сопротивление, рекомендуемое и максимальное напряжение питания.

Виды тензорезисторных датчиков

Одноточечные тензодатчики. Главным их как преимуществом, так и недостатком является возможность создания весоизмерительной системы используя лишь один датчик. Такие датчики применяются в фасовочном и дозирующем оборудовании, а также в конструкциях небольших платформенных весов с малой нагрузкой на платформу.


Тензодатчики балочного (консольного) типа (консольная балка сдвига). Используются как чувствительные элементы в весах и весоизмерительных системах с общим НПВ в 5-7 тонн.


S-образные тензодатчики (балка на растяжение-сжатие). Предназначаются для использования в подвесных и бункерных весах. Датчики укомплектованы шарнирными подвесами, за счет которых снижается затрачиваемое время на установку и запуск оборудования. В основе работы таких тензодатчиков лежит принцип преобразования механической силы растяжения/сжатия в электрический сигнал, пропорциональный этой механической силе.


Цилиндрические тензодатчики. Работают по принципу преобразования показаний механической деформации при сжатии в пропорциональный электрический сигнал. Чаще всего применяются при выпуске новых или модернизации старых вагонных, автомобильных или многотонных бункерных весов, а также в испытательных стендах.


Колонные датчики. Силоизмеряющий элемент выполнен в виде колонны. Применяются в автомобильных весах, железнодорожных весах и т.д.


Датчики платформенного типа. Используются в производстве автомобильных, вагонных, бункерных и емкостных весов.


Торсионные тензодатчики. Также называются тензодатчиками мембранного типа, шайбами, "таблетками", круглыми датчиками. Используются для производства автомобильных, железнодорожных и емкостных весов, а также в конвейерном весовом оборудовании.


Прочие. Включают в себя специализированные узкопрофильные модели.


Вывод

Подводя итоги, можно сказать, что тензодатчик – это важный элемент, составляющий основу механизма любого электронного весоизмерительного оборудования. Электронное весовое оборудование, в отличие от механического оборудования, благодаря применению датчиков силы, стало менее громоздким, более точным и намного более функциональным. Электронная система с применением тензодатчиков позволила перейти на качественно новый уровень работы и полностью автоматизировать контрольно-измерительные процессы.

Чтобы правильно подобрать тензодатчики, узнать стоимость тензометрических датчиков весов или купить тензорезисторные датчики, вам достаточно позвонить по телефону +7 (4812) 209-311 или написать по электронной почте [email protected]

Тензодатчики, схема подключения, принцип работы

Автор Светозар Тюменский На чтение 3 мин. Просмотров 13.9k. Опубликовано Обновлено

Тензодатчик (он же – тенезометрический преобразователь) – достаточно простой электромеханический прибор, преобразующий деформацию регистрирующего механического устройства в электрический сигнал. Физические основы работы датчиков давления сформулированы давно, а вот широкое распространение в быту и незаменимость в различных промышленных отраслях – заслуга современных инженеров.

Принцип работы тензодатчика

Принцип работы тензометрического устройства основан на изменении сопротивления проводника при механическом воздействии на него. В наиболее простом конструкционном исполнении датчик представляет собой мелкоячеистую проводниковую сетку, закрепленную на токопроводящую основу, например, металлическую фольгу. Принцип работы тензодатчика в человеческом виде – если где-то надавить или стукнуть, умный прибор определит место, силу и даже время удара. Правда, во всех случаях сам тензор является только источником сигнала о произошедшем событии , а его преобразование в цифровой формат – задача совсем других устройств.

Схема исполнения решеток тензорного регистрирующего прибора может выполняться в проволочном варианте: с перемычками, петлевые, витковые, а в более сложных приборах – возможны комбинированные фольгированные схемы, позволяющие оценивать однокомпонентные, трехмерные и даже кольцевые деформации.

Тензорезистивный эффект, позволяющий фиксировать изменения электрического сопротивления в твердых проводниках или полупроводниковых пластинах при их сжатии или расширении, связан с деформационными воздействиями на атомарную структуру материала. Свое практическое воплощение он нашел при создании целого конструктивного ряда тензорезисторов, без использования которых уже трудно представить жизнь современного человека.

Тензодатчики веса

Прежде всего, это тензодатчики веса. Будь то напольные весы в спальне посадивших себя на диету женщин, неизменные электронные атрибуты современных магазинов, промышленные установки взвешивания автомобилей на стройплощадках или балочные платформенные весы, без тензорезисторов не обойтись. В настоящее время ассортимент тензодатчиков веса настолько велик, что любой заинтересованный потребитель сможет без особого труда выбрать требуемую именно для его случая комплектацию. Остановимся на нескольких конструктивных типах промышленных тензодатчиков веса.


Консольные устройства в алюминиевом или стальном исполнении. Диапазон весовых нагрузок этих приборов достаточно широк, а разнообразие вариантов корпусного решения позволяет использовать их во многих хозяйственных и бытовых сферах.

Стальные тензодатчики типа «бочка» или «шайба». Обладают хорошими показателями по герметичности и защите устройства от внешних воздействий. Это касается и материала оболочки и изоляции электропровода.

Балочные весовые регистраторы. Область применения – измерение весовых нагрузок на мостовые и платформенные конструкции. Регистрируют деформации изгиба и сдвига. Фиксировать натяжение крепежных элементов помогут тензодатчики на растяжке, а допустимость подвесного груза на стройке S-образные.

Схема подключения тензодатчика

Рассмотрим схему подключения тензодатчика.

Принцип работы S-образных тензометрических датчиков УРАЛВЕС


Тензодатчики ( как правильно наклеить тензодатчики)


Тензодатчики для весов принцип работы

Для справки. Остальные данные по сопротивлению проводов весового датчика весов CAS DB H можно посмотреть здесь. Допускается отклонение сопротивления от указанных +-1 Ом. Стандартное напряжение питания датчика – это +5В, но датчики обычно рассчитываются на 12В.

Способ №2 альтернативный.

Проверялся только на мостовой схеме, для других схем подключения может не подойти.

Находим контакты с максимальным сопротивлением, красный и белый провод имеют сопротивление больше всех , 422 Ом – это контакты для входного напряжения. Соответственно оставшиеся два синий и зеленый, есть контакты выходного сопротивления измерительного моста.

Мы намеренно опустили определение полярности входных и выходных групп контактов, что бы не перегружать материал информацией.

Определение полярности контактов для измерительного датчика весов (в разработке).

Тут все несколько неоднозначно, по крайней мере, для нас. Поэтому выкладываем только данные практических экспериментов. В качестве объекта измерения выбраны весы CAS DB 1H с тензодатчиком BC-150DB. Зная паспортные данные тензодатчика, имея 4 варианта подключения и зная правильную ориентацию на станине – снимем показания с выходного датчика. Правильное подключение по паспорту.

Вариант 1. (паспортное подключение)

Рис. Подключение тензодатчика по заводским параметрам.

  • 0кг, на выходе 0мВ
  • 20кг, на выходе 1мВ
  • 40кг, на выходе 1,9мВ

Показания родного АЦП с весов

  • 0 кг, показания АЦП, канал неизвестен 1,160
  • 20 кг, показания АЦП, канал неизвестен 5,956
  • 40 кг, показания АЦП, канал неизвестен 10,751

Давление на датчик снизу вверх – дает на выходе отрицательное напряжение.

Вариант 2. (перевернутое подключение)

Рис. Подключение тензодатчика наоборот, на входе плюс подключаем к минусу, на выходе плюс соединяем к минусу.

  • 0кг, на выходе 0мВ
  • 20кг, на выходе 1мВ
  • 40кг, на выходе 1,9мВ

Показания родного АЦП с весов

  • 0 кг, показания АЦП, канал неизвестен 1,150
  • 20 кг, показания АЦП, канал неизвестен 5,916
  • 40 кг, показания АЦП, канал неизвестен 10,679

Давление на датчик снизу вверх – дает на выходе отрицательное напряжение.

Как видно из показаний, данные АЦП несколько отличаются. В рабочем режиме весы начинают «врать», то есть показывать меньший вес, но если весы откалибровать – показания становятся правильными и весы становятся полностью работоспособными.

Вывод.

Фактически подключение не влияет на работоспособность весов в целом, но показания при разных подключениях имеют небольшое отличие. Тензодатчик можно заставить работать в обоих подключениях. Два других варианта подключения рассматривать не будем, так как показания вольтметра на выходе получаются отрицательными, а соответственно нас не интересуют.

Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение

«Точность – вежливость королей!» В наше время актуальность этого средневекового французского афоризма только растет. Для проведения точных измерительных вычислений на производстве и в быту все шире используются приборы на основе тензометрических датчиков.

Что такое тензометрия и для чего нужны тензодатчики

Тензометрия (от лат. tensus — напряжённый) – это способ и методика измерения напряжённо-деформированного состояния измеряемого объекта или конструкции. Дело в том, что нельзя напрямую измерить механическое напряжение, поэтому задача состоит в измерении деформации объекта и вычислении напряжения при помощи специальных методик, учитывающих физические свойства материала.

В основе работы тензодатчиков лежит тензоэффект — это свойство твёрдых материалов изменять своё сопротивление при различных деформациях. Тензометрические датчики представляют собой устройства, которые измеряют упругую деформацию твердого тела и преобразуют её величину в электрический сигнал. Этот процесс происходит при изменении сопротивления проводника датчика при его растяжении и сжатии. Они являются основным элементом в приборах по измерению деформации твёрдых тел (например, деталей машин, конструкций, зданий).

Устройство и принцип работы

Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.

В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.

Рассмотрим более предметно виды и типы современных тензометрических датчиков.

Датчики крутящего момента

Датчики крутящего момента предназначены для измерения крутящего момента на вращающихся частях таких систем, как коленвал двигателя или рулевой колонки. Тензодатчики крутящего момента могут определять как статический, так и динамический момент контактным либо бесконтакным (телеметрическим) способом.

Тензодатчики балочного, консольного и кромочного типов

Эти типы датчиков изготавливают обычно на основе параллелограммной конструкции со встроенным элементом изгиба для высокой чувствительности и линейности измерений. Тензорезисторы в них закрепляются на чувствительных участках упругого элемента датчика и соединяются по схеме полного моста.

Конструктивно балочный тензодатчик имеет специальные отверстия для неравномерного распределения нагрузки и выявления деформаций сжатия и растяжения. Для получения максимального эффекта тензорезисторы по специальным меткам строго ориентируют на поверхности балки в ее самом тонком месте. Высокоточные и надежные датчики этого типа используют для создания многодатчиковых измерительных систем в платформенных или бункерных весах. Нашли они свое применение и в весовых дозаторах, фасовщиках сыпучих и жидких продуктов, измерителях натяжения тросов и других измерителях силовых нагрузок.

Тензодатчики силы растяжения и сжатия

Тензодатчики силы растяжения и сжатия, как правило, имеют S-образную форму, изготавливаются из алюминия и легированной нержавеющей стали. Предназначены для бункерных весов и дозаторов с пределом измерения от 0,2 до 20 тонн. S-образные тензодатчики силы растяжения и сжатия могут использоваться в станках по производству кабелей, тканей и волокон для контроля силы натяжения этих материалов.

Тензорезисторы проволочные и фольговые

Проволочные тензорезисторы делают в виде спирали из проволоки малого диаметра и крепят на упругом элементе или исследуемой детали с помощью клея. Их отличает:

  • простота изготовления;
  • линейная зависимость от деформации;
  • малые размеры и цена.

Из недостатков отмечают низкую чувствительность, влияние температуры и влажности среды на погрешность измерения, возможность применения только в сфере упругих деформаций.

Фольговые тензорезисторы в настоящее время являются наиболее распространенным типом тензорезисторов из-за их высоких метрологических качеств и технологичности производства. Это стало доступным благодаря фотолитографической технологии их изготовления. Передовая технология позволяет получать одиночные тензорезисторы с базой от 0,3 мм, специализированные тензометрические розетки и цепочки тензорезисторов с широким рабочим температурным диапазоном от –240 до +1100 ºС в зависимости от свойств материалов измерительной решетки.

Преимущества и недостатки тензодатчиков

Широкое применение тензодатчики получили благодаря своим свойствам:

  • возможности монолитного соединения датчика деформации с исследуемой деталью;
  • малой толщине измерительного элемента, что обеспечивает высокую точность измерения с погрешностью 1-3 %;
  • удобстве крепления, как на плоских, так и на криволинейных поверхностях;
  • возможности измерения динамических деформаций, меняющихся с частотой до 50000 Гц;
  • возможности проведения измерений в сложных условиях окружающей среды в температурном интервале от -240 до +1100˚С;
  • возможности измерений параметров одновременно во многих точках деталей;
  • возможности измерения деформации объектов, расположенных на больших расстояниях от тензометрических систем;
  • возможностью измерения деформаций в движущихся (крутящихся) деталях.

Из недостатков следует отметить:

  • влияние метеоусловий (температуры и влажности) на чувствительность датчиков;
  • незначительные изменения сопротивления измерительных элементов (около 1%) требует применение усилителей сигналов.
  • при работе тензодатчиков в условиях высокотемпературной или агрессивной среды необходимы специальные меры их защиты.

Основные схемы подключения

Рассмотрим это на примере подключения тензометрических датчиков к бытовым или промышленным весам. Стандартный тензодатчик для весов имеет четыре разноцветных провода: два входа – питание (+Ex, -Ex), два других – измерительные выходы (+Sig, -Sig). Встречаются также варианты с пятью проводами, где дополнительный провод служит в качестве экрана для всех остальных. Суть работы весового измерительного датчика балочного типа довольно проста. На входы подается питание, а с выходов снимается напряжение. Величина напряжения зависит от приложенной нагрузки на измерительный датчик.

Если длина проводов от весового тензодатчика до блока АЦП значительна, то сопротивление самих проводов будет влиять на показание весов. В этом случае целесообразно добавить цепь обратной связи, которая компенсирует падение напряжения путем корректировки погрешности от сопротивления проводов, вносимую в измерительную цепь. В этом случае схема подключения будет иметь три пары проводов: питания, измерения и компенсации потерь.

Примеры использования тензометрических датчиков

  • элемент конструкции весов.
  • измерение усилий деформации при обработке металлов давлением на штамповочных прессах и прокатных станах.
  • мониторинг напряженно-деформационных состояний строительных конструкций и сооружений при их возведении и эксплуатации.
  • высокотемпературные датчики из жаропрочной легированной стали для металлургических предприятий.
  • с упругим элементом из нержавеющей стали для измерений в химически агрессивной среде.
  • для измерения давления в нефте и газопроводах.

Простота, удобство и технологичность тензодатчиков – основные факторы для дальнейшего активного их внедрения, как в метрологические процессы, так и использования в повседневной жизни в качестве измерительных элементов бытовой техники.

Что такое тензодатчик и как он работает

Виды и сфера применения

Для начала разберемся в принципе действия тензометрических датчиков. При воздействии на тело внешних сил оно деформируется, противодействует приложенной силе. За счёт деформаций корпуса датчика происходит воздействие на измерительный элемент тензодатчика. В результате устройство выдаёт электрический сигнал, считывая который система обработки выдаёт результат измерений. Но для чего нужен такой тип устройств?

Тензометрические датчики используются для:

  • Измерения веса. При этом в зависимости от конструкции измерительного узла могут использоваться на сжатие или на растяжение. Соответственно их назначение – измерение веса на платформах (например, весы в магазинах) или на подвесе (краны и прочее).
  • Измерения давления. Например, в трубопроводах газов и жидких веществ.
  • Измерения крутящего момента (на двигателях автомобилей или станков).
  • Определения ускорения.
  • Контроля перемещения.

По типу измерительного элемента и принципа работы тензодатчики делятся на:

  • Тензорезистивные.
  • Пьезоэлектрические.
  • Оптико-поляризационные.
  • Волоконно-оптические.
  • Пьезорезистивные.

Конструктивные особенности тензодатчика определяет то где он применяется, ведь конструкция определяет наличие монтажных отверстий и векторов возможного приложения сил, соответственно и самого процесса измерения. По форме также тензометрические датчики бывают разных типов:

  1. Консольные. Назначение таких устройств – измерение количества веществ в дозаторах, конвейерных, платформенных, бункерных и напольных весах.
  2. Цилиндрические. Применяются для взвешивания вагонов, автомобилей, баков и емкостей – там, где нужно измерять большие веса.
  3. S-образные, срабатывают на растяжение, подходят для измерения веса, поднимаемого краном и в других подобных конструкциях.

На практике тензометрические датчики могут производиться в совершенно разнообразном исполнении.

Устройство и принцип действия

Для измерения давления или веса используется тензодатчики, все они выдают электрический цифровой или аналоговый электрический сигнал при изменении формы чувствительного элемента. Но из чего они состоят?

Основа или корпусы бывают разных типов, от этого зависит, куда вы сможете установить датчик. А также то, в каком направлении он работает – на сжатие, растяжение или на изгиб.

В корпусе тензодатчика кроме чувствительного элемента могут находиться и дополнительные блоки, например, АЦП, формирователи питания и пр. Если тензометрический датчик цифровой, то и блок для преобразования аналогового сигнала (АЦП). Рассмотрим принцип работы чувствительного элемента тензометрического датчика на примере тензорезистивного компонента – они нашли наиболее широкое применение.

Тензометрический датчик резистивного типа представляет собой гибкую плёнку или подложку, на которую нанесён резистивный слой. Если это плёночный датчик – тонкое напыление или фольга, если проволочный — на гибкой подложке размещена проволока. Напыление или проволока укладываются в извилистую линию.

При механическом воздействии на подложку он изгибается, в результате чего плёнка, фольга или проволока растягивается. Соответственно в натянутом состоянии изменяется (уменьшается) её площадь поперечного сечения и сопротивление увеличивается. При снижении давления подложка возвращается в исходное положение, резистивный слой тоже, а его сопротивление начинает уменьшаться и возвращаться к норме.

Пьезоэлектрические чувствительные органы работают напротив. При давлении на пьезокристалл возникает ЭДС, тогда как у пьезорезистивных датчиков из тонких плёнок полупроводников также изменяется сопротивление.

Ещё можно встретить и емкостные датчики – это приборы, принцип работы которых заключается в измерении ёмкости между гибкими пластинами. А также электромагнитные устройства, в которых под воздействием на магнитопровод изменяются характеристики контура.

Схема подключения

Как работает тензодатчик мы разобрались. Теперь следует ознакомиться со схемой подключения. Блок схема устройства, которое считывает сигнал, изображена на рисунке ниже. На ней вы видите один из вариантов усиления и преобразования сигнала с датчика.

Если рассмотреть тензорезистивный датчик, то реально он представляет собой мост из резисторов, включённый следующим образом. Такая схема включения называется «Мост Уинстона» или измерительный мост.

Для его работы недостаточно подключить лишь сигнальные провода, нужны еще и провода питания. В некоторых сложных системах могут подключаться еще и провода для термостабилизации или других функций.

На видео подробно рассказывается, что собой представляют тензометрические датчики и как они работают:

Современные тензометрические датчики в зависимости от своего назначения могут использоваться в установках для измерения от долей грамм до сотен тон. Соответственно для каждого диапазона весов подбираются тензодатчки определённой конструкции и типа чувствительного элемента. Кроме измеряемых весов немаловажную роль в выборе контрольно-измерительной аппаратуры играет и условия, в которых они будт работать, а также требуемый класс точности.

Материалы по теме:

Особенности и принцип действия тензометрических датчиков

Измерение напряжений и усилий в действующих узлах и конструкциях оборудования считается одной из наиболее сложных задач. Между тем в процессе эксплуатации техника подвергается разным видам нагрузок, которые определяют долговечность и надежность оборудования. Решение поставленных задач возможно с помощью тензометрических датчиков. Установка подобных устройств целесообразна тогда, когда в дополнение к производственным факторам добавляются остаточные напряжения, постепенно накапливаемые в ходе работы.

Описание и назначение

При измерении деформаций, напряжений и усилий при помощи тензометрических датчиков используют изменение значений омического сопротивления материала, которое вызывается упругими деформациями металлической проволоки или полупроводников стержневого исполнения. Изменение сопротивления датчика передаётся при помощи кабеля или бесконтактным путем на измерительный мост. Там оно преобразуется в усиленные электрические сигналы, которые и фиксируются прибором.

Все типы тензометрических датчиков (или, иначе – тензорезисторов) используют зависимость между напряжениями и деформациями – закон Гука – который справедлив в области упругих деформаций. Согласно закону Гука изменение электросопротивления, отнесённое к исходному значению данного параметра до деформации, пропорционально изменению удлинения, отнесённому к первоначальной длине измерительного элемента. Применяя коэффициент пропорциональности, который зависит от диапазона измеряемых параметров и материала устройства, устанавливают зависимость между нагрузкой на датчик и его удлинением:

R – исходное значение электрического сопротивления;

ΔR – изменение значения электрического сопротивления в процессе деформации;

k – коэффициент пропорциональности;

Δl – изменение длины при деформировании;

l – исходная длина измерительного элемента до приложения к нему эксплуатационной нагрузки.

Указанный тип устройств используется в весоизмерительной технике, поскольку относится к тензорным, определяющим усилия и внешние нагрузки.

Применяемость рассматриваемых измерительных элементов определяется материалом, из которого выполнен датчик. Чаще всего исходным материалом служит сплав константан, состоящий из 40% никеля и 60% меди. Для константана k ≈ 2; таким же порядком значений (1.5…3,5) обладают и другие сплавы постоянного электросопротивления.

Датчики полупроводникового типа имеют более высокие значения коэффициента пропорциональности. В зависимости от материала полупроводника (кремний или германий), а также состава легирующих добавок значения коэффициента достигают 50…70. В связи с этим полупроводниковые тензометрические датчики более чувствительны, и их применяют для оценки малых удлинений. Вместе с тем полупроводниковые датчики характеризуются повышенными отклонениями своего удлинения в диапазонах 1,5…9 % относительного удлинения. Для проволочных датчиков этот показатель не превышает 0,5%.

Конструкции тензометрических датчиков проволочного типа разрабатываются с учетом следующих ограничений:

  • С целью получения достаточной точности измерений величина сопротивления проволочного элемента должна находиться в пределах 100…1000 Ом;
  • Диаметр проволоки целесообразно иметь в диапазоне 0,01…0,03 мм;
  • Длина проволочного элемента не должна превышать 250…300 мм.

В некоторых случаях приведенные ограничения не позволяют устанавливать тензометрические датчики в виде проволок, поэтому измерительные устройства изготавливают из фольги или плоских измерительных решеток. Для предохранения от повреждений, которые могут возникнуть при транспортировке или сборке таких датчиков, для их крепления в напольном исполнении применяют подложку из бумаги или тонкого пластика.

Чтобы обеспечить электрический контакт с измерительной решеткой, на подложке размещают проволочные выводы, которые затем присоединяются к датчику при помощи пайки.

Виды тензодатчиков, включающих в себя активный измерительный элемент, контактные выводы и подложку:

  1. Плоский проволочный.
  2. Фольговый.
  3. Полупроводниковый, с одним или двумя стержнями.
  4. Трубчатый.

Краткая характеристика наиболее распространённых исполнений тензодатчиков приводится далее.

  • Консольные. Предназначены для измерения крутящих и изгибающих моментов, устанавливаются в метах наибольшего прогиба конструкций.
  • Цилиндрические. Наименее компактны, зато позволяют определять значительные напряжения, приближающиеся по своим значениям к пределу текучести лимитирующего материала.
  • S-образные. Дают возможность оценивать трехмерные деформации при объемном напряженно-деформированном состоянии. Чаще других нуждаются в поверке.

Устройство и принцип работы

По типу воздействия на исполнительные элементы конструкции различают тактильные, резистивные, пьезорезонансные, пьезоэлектрические, магнитные и емкостные датчики.

Тактильные

Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.

Резистивные

Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.

Пьезорезонансные

Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.

Пьезоэлектрические

По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.

Магнитные

Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.

Емкостные

Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.

Характеристика

Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций. При этом коэффициент пропорциональности k должен иметь большие значения. Для компактных устройств со значительной чувствительностью приходится применять материалы, обладающие высоким удельным сопротивлением. При этом температурная зависимость удельного сопротивления при изменении внешних условий должна быть незначительной, а лучше и вовсе отсутствовать.

Условия оптимального использования тензорезисторов:

  • Малое различие между коэффициентами теплового расширения материала конструкции (или узла) и измерительной проволоки устройства.
  • Нечувствительность к термическим напряжениям, которые возникают при соединении измерительного элемента с контролируемой частью оборудования или конструкции (для такого присоединения чаще всего используют пайку).
  • Хорошая обрабатываемость паяных соединений, которая не изменяет эксплуатационные параметры оборудования.
  • Надежность соединения, учитывающая возможные динамические удары и перемещения.

На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.

Схемы подключения

Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.

Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.

Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:

  • Высокое сопротивление ползучести.
  • Отсутствие гистерезиса.
  • Влагостойкость.
  • Адгезионная способность.
  • Температуростойкость.

Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.

Сферы применения

Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.

Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.

Основным преимуществом тонкопленочных преобразователей является устранение нестабильности, вызванной клеем.

Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.

Часто применяемые условия для использования тензодатчиков перечислены далее.

Измерение веса

Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.

Измерение давления

Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.

Измерение крутящего момента

Применяется для испытательного оборудования станций технического обслуживания автомобильного транспорта.

Определение ускорения

Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.

Контроль перемещения

Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.

Плюсы и минусы

Тензорные датчики компактны, удобны при установке, практически не ограничивают работоспособность конструкции, где они установлены. Вместе с тем они часто подвержены эффекту старения, чувствительны к температурным напряжениям и иногда характеризуются повышенным разбросом получаемых данных. Тонкоплёночные тензорезисторы, кроме того, характеризуются низким уровнем выходного сигнала, ограниченными частотными характеристиками и влиянием высокого напряжения на точность получаемых результатов. Чаще других типов применяются в качестве весовых, а также для определения комплекса силовых факторов, постоянно изменяющихся в процессе работы оборудования или конструкции.

Преимущества тензометрических технологий:

  • Быстрое время отклика;
  • Простота компенсации температурных эффектов;
  • Малая чувствительность к динамическим воздействиям.
  • Невозможность обеспечить более низкие диапазоны измерений;
  • Снижение точности показаний при вибрациях;
  • Необходимость точного совмещения с окружающей средой;
  • Сложность первоначальной настройки.

Выпуск современных тензометрических датчиков регламентируется требованиями ГОСТ 21616-91.

Схема подключения тензодатчиков к индикатору веса

Подключение тензодатчика к индикатору веса, на первый взгляд кажется простой задачей, но неправильное соединение может вызвать уменьшение точности измерения или некорректную работу весовой системы. Тензодатчики различных производителей имеют либо 4-х проводный, либо 6-ти проводный кабель для подключения к весовому индикатору.

Ниже приведены схемы подключения для этих двух типов тензодатчиков:

Большинство промышленных весовых систем используют несколько тензодатчиков, в этом случае они должны быть подключены параллельно. Обычно эту связь делают не простой скруткой, а с применением специализированных соединительных коробок. Дополнительно, некоторые модели таких коробок позволяют «подогнать» сопротивление датчиков друг под друга, т.е. сбалансировать систему из множества датчиков.

Тензодатчики поставляются с кабелем определенной длины. При удлинении соединительного кабеля следует учитывать, что это может привести к падению точности измерения. Также при изменении длины кабеля следует производить перекалибровку весового индикатора, к которому подключен тензодатчик.

Как подключить тензодатчик к весовому терминалу

Большинство тензодатчиков поставляется с документацией, в которой указывается цветовая маркировка идущих от него проводов и их назначение. 4-х проводные тензодатчики, судя по названию, имею 4 соединительных линии:

+EXC – +Питание
-EXC – -Питание
+SIG – +Сигнал
-SIG – -Сигнал

Т.е. две линии это цепи питания и две это выходной сигнал датчика. Для корректной работы необходимо подать питающее напряжение на линии +EXC и –EXC, в соответствии с техническими характеристиками датчика, обычно оно составляет от 5 до 12 вольт. После подачи питания на сигнальных линиях SIG меняется напряжение, и это изменение необходимо фиксировать весоизмерительным прибором.


На рисунке приведена схема подключения тензодатчика четырёхпроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.

Некоторые тензодатчики могут иметь не четыре, а шесть соединительных проводов. Две дополнительные линии называются – линиями обратной связи, и имеют маркировку SENSE. Эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах. Как видно из рисунка выше, в случае подключения четырехпроводного тензометрического датчика, функция компенсации потерь не используется, и необходимо использовать перемычки для подключения тензодатчика к прибору.

Четырехпроводные тензодатчики датчики лучше использовать на короткие расстояния передачи сигнала. Шестипроводные датчики, благодаря линиям обратной связи, обладают большей точность и их можно использовать для больших расстояний, т.к. эти две дополнительные линии позволяют осуществлять компенсацию потерь на длинных проводах.


На рисунке приведена схема подключения тензодатчика шестипроводного типа, на примере датчика фирмы Zemic и весоизмерительного прибора КВ-001.

Определение маркировки проводов тензодатчика без документации

Если у вас отсутствует описание тензодатчика, для определения маркировки проводов можно использовать обыкновенный мультиметр, при условии, что датчик аналоговый, а не цифровой.

  • Измерьте сопротивление между всеми проводами. В 4-проводном тензодатчике имеется шесть комбинаций проводов, следовательно, вы получите 6 значений сопротивлений, одна пара проводов будет иметь сопротивление больше, чем все остальные.
  • Пара с самым большим сопротивлением – это линия питания, оставшаяся пара проводов – линия сигнала.
  • Подключите линию питания к весоизмерительному прибору, или подайте напряжение.
  • Измерьте напряжение на линии сигнала, определив тем самым полярность подключения.

Подключение нескольких тензодатчиков при помощи соединительной (балансировочной) коробки

Как подключать несколько тензодатчиков при помощи балансировочной коробки можно посмотреть на видео

Заземление и экранирование при подключении тензодатчика.

Организация заземления и экранирования важный вопрос успешного создания весовой системы с использованием тензодатчиков. Надёжное решение данной задачи – ключ к правильной работе тензометрического датчика, генерирующего слаботочные сигналы. Кабели тензодатчиков должны иметь экранирующую оплетку, которая, при правильном подключении, обеспечивает защиту от электростатических и других помех.

Основное правило, которое нельзя нарушать: необходимо избегать «земляных» петель, т. е. заземлять устройства нужно в ОДНОЙ общей точке. Петли могут возникать если экран кабеля подключать к заземляющему контуру с двух концов. Поэтому, если корпус датчика надёжно заземлён и одновременно соединён с экраном – этого достаточно, в противном случае – соединить экран с заземлением только с любого ОДНОГО конца, например, в электрощите, где установлен прибор отдельным жёлто-зелёным проводом. Под «заземлением» мы понимаем защитное заземление, желто-зелёный провод. Использовать «нейтраль» в качестве «земли» очень нежелательно.

Если датчики соединяются параллельно, то необходимо не забывать соединять друг с другом и экранные оплётки кабелей через соответствующий контакт клеммы в соединительной коробке, и тут же их заземлять вместе с корпусом коробки. Общий кабель, идущий от соединительной коробки к прибору, соединять с заземлением также с ОДНОЙ стороны, как описано выше, не допуская образования «земляной» петли, желательно возле входа в измерительный прибор, то есть заземлять со стороны приёмника.

На кабель датчика, прямо поверх изоляции, на расстоянии 4-5 см от клеммы измерительного прибора, желательно защёлкнуть ферритовый фильтр для блокировки возникающих в цеху разнообразных помех по «земле». Такие фильтры производятся под кабели разных диаметров. Фильтры желательно защёлкнуть и на других длинных линиях, например RS-485, на приёмном и передающем устройстве. Если индуктивности одного фильтра недостаточно для надёжного уменьшения уровня помехи, такие фильтры можно защёлкивать последовательно на небольшом расстоянии друг от друга, наращивая тем самым индуктивность до необходимого уровня.

Информация -Тензодатчик: принцип работы

Тензодатчик представляет собой резистор, сопротивление которого изменяется при деформации (нагрузке).  Как правило, используются блоки тензорезисторов, соединённые по мостовой схеме. Тензорезисторы приклеиваются к поверхности металлической балки, размеры и форма которой соответствуют диапазону внешних нагрузок и области применения (тензодатчики балочного типа, S-образного типа, мембранного типа и т.п.). Кроме балки могут быть использованы и другие типы упругих элементов.

К одной диагонали моста подводится постоянное напряжение питания (от 5 до 15)В. С другой диагонали моста снимается напряжение (от 0 до 10)мВ, пропорциональное силе воздействия (растяжения, сжатия, изгиба и т.п.).

Так как пассивная гравитационная масса показывает с какой силой тело взаимодействует с внешним гравитационным полем, а вес - это сила с которой тело действует на горизонтальную опору или подвес, то есть является гравитационным свойством тела, то в современной метрологии измерение массы (в г, кг, т) осуществляется взвешиванием.

Тензорезисторные датчики (первичные измерительные преобразователи), а так же весовые индикаторы (весовые терминалы, весовые контроллеры), или вторичные измерительные преобразователи, являются ключевыми элементами весоизмерительных систем.

Весовые индикаторы осуществляют питание мостовой схемы тензорезисторных преобразователей, следят за стабильностью питающего напряжения, а так же осуществляют преобразование напряжения, снимаемого с моста тензодатчика, в цифровой код, а также преобразование его в показания веса, посредством соответствующей процедуры калибровки по эталонному весу.

Учитывая достаточно высокую скорость первичного и вторичного преобразования информации, указанные весоизмерительные системы широко используются как для статического взвешивания (платформенные, автомобильные, бункерные, конвейерные весы), так и для автоматизации технологических процессов (фасовка, упаковка, многокомпонентное смешивание и дозирование) в производстве жидких и сыпучих продуктов, где требуется контроль и измерение веса.

В этой связи наряду с поставкой весовых индикаторов (весовых терминалов, весовых контроллеров) мы предлагаем к поставке широкий спектр тензорезисторных датчиков, как со склада, так и под заказ.

Предлагаемые тензорезисторные датчики совместимы с нашими вторичными весовыми преобразователями и преобразователями тензосигналов в цифровой код (ПТЦ-001).

принцип действия, описание, виды, схемы

Устройство и принцип работы

Основу тензодатчика составляет тензорезистор, оснащенный специальными контактами, закрепленными на передней части измерительной панели. В процессе измерения чувствительные контакты панели соприкасаются с объектом. Происходит их деформация, которая измеряется и преобразуется в электрический сигнал, передаваемый на элементы обработки и отображения измеряемой величины тензометрического датчика.

В зависимости от сферы функционального использования датчики различаются как по типам, так и по видам измеряемых величин. Важным фактором является требуемая точность измерения. Например, тензодатчик грузовых весов на выезде с хлебозавода совершенно не подойдет к электронным аптекарским весам, где важна каждая сотая часть грамма.

Рассмотрим более предметно виды и типы современных тензометрических датчиков.

Датчики крутящего момента

Датчики крутящего момента предназначены для измерения крутящего момента на вращающихся частях таких систем, как коленвал двигателя или рулевой колонки. Тензодатчики крутящего момента могут определять как статический, так и динамический момент контактным либо бесконтакным (телеметрическим) способом.

Тензодатчики балочного, консольного и кромочного типов

Эти типы датчиков изготавливают обычно на основе параллелограммной конструкции со встроенным элементом изгиба для высокой чувствительности и линейности измерений. Тензорезисторы в них закрепляются на чувствительных участках упругого элемента датчика и соединяются по схеме полного моста.

Конструктивно балочный тензодатчик имеет специальные отверстия для неравномерного распределения нагрузки и выявления деформаций сжатия и растяжения. Для получения максимального эффекта тензорезисторы по специальным меткам строго ориентируют на поверхности балки в ее самом тонком месте. Высокоточные и надежные датчики этого типа используют для создания многодатчиковых измерительных систем в платформенных или бункерных весах. Нашли они свое применение и в весовых дозаторах, фасовщиках сыпучих и жидких продуктов, измерителях натяжения тросов и других измерителях силовых нагрузок.

Принцип работы

Конструктивно прибор представляет собой тензорезистор с контактным элементом. Он закреплен на верхней панели устройства, которая соприкасается с измеряемым телом. Принцип работы любого тензодатчика основан на воздействии на чувствительный элемент определенной детали. Для включения датчика в сеть применяется специальные электрические отводы, которые подключаются к чувствительной пластине. Благодаря этому в контактном элементе наблюдается постоянное напряжение. Но, при работе датчика на специальную подложку устанавливается деталь. Её вес разрывает цепь и образовывается механическая деформация, которая при помощи контрольных контактов преобразуется в электрический сигнал.

Измерительный мост тензодатчика позволяет измерить наименьшие нагрузки, благодаря чему значительно расширяется использование прибора. Мостовая схема подключения тензометрического датчика основана на законе Ома, при котором если все сопротивления имеют равное значение, то ток, проходящий через резисторы, также будет иметь одинаковое значение. Здесь воздействие из вне принято называть «внешним фактором», а преобразование сигнала – «внутренним». Тогда принцип действия основан на анализе внешнего фактора при помощи внутреннего.

В бытовом использовании работы тензодатчиков наглядно демонстрируют электронные или цифровые весы. В них установлены специальные тензорезисторы, которые контактами соединены с рабочей поверхностью весов. Питание таких приборов производится при помощи батарей.


Фото — принцип работы тензометрического модуля Z-SG

Этот измерительный прибор обладает чрезвычайно высокой точностью анализа. Чувствительность рабочих элементов допускает погрешность не более 0,02 %, что является довольно высоким показателем. Но некоторые устройства выполняются с еще большим классом точности. Работа таких моделей основана на измерении силы воздействия на контакты. Электрический преобразованный сигнал является прямо пропорциональной величиной силе давления.

Достоинства тенодатчиков:

  1. Высокая точность измерения;
  2. Подходят для измерения статических и динамических напряжений, при этом, не искажают полученные данные. Это очень удобно при использовании устройств в транспортных средствах или экстремальных условиях работы;
  3. Небольшие размеры позволяют использовать такие датчики практически в любых измерительных устройствах.

Но, у тензодатчиков есть и определенные недостатки. Любой преобразователь такого типа подвержен снижению чувствительности при перепадах температуры. Для наиболее точного измерения требуется производить опыты только при комнатной температуре и влажности не более 30 %.

Видео: Тензометрический датчик

Характеристика

Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций. При этом коэффициент пропорциональности k должен иметь большие значения. Для компактных устройств со значительной чувствительностью приходится применять материалы, обладающие высоким удельным сопротивлением. При этом температурная зависимость удельного сопротивления при изменении внешних условий должна быть незначительной, а лучше и вовсе отсутствовать.

Условия оптимального использования тензорезисторов:

  • Малое различие между коэффициентами теплового расширения материала конструкции (или узла) и измерительной проволоки устройства.
  • Нечувствительность к термическим напряжениям, которые возникают при соединении измерительного элемента с контролируемой частью оборудования или конструкции (для такого присоединения чаще всего используют пайку).
  • Хорошая обрабатываемость паяных соединений, которая не изменяет эксплуатационные параметры оборудования.
  • Надежность соединения, учитывающая возможные динамические удары и перемещения.

На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.

Принцип работы тензодатчика

Под воздействием механической нагрузки некоторые вещества меняют свое электрическое сопротивление. Тензочувствительность у разных материалов отличается. Если для металлической фольги коэффициент составляет от 2 до 5 единиц, то для кремния диапазон шире: от -125 до 200. Разрабатывая тензодатчики под конкретные нужды производители подбирают материал, исходя из тензочувствительности требуемой в конкретном применении и других технических характеристик.

Тензодатчик измеряет вес от 500 граммов до 600 тонн и более. Для каждой модели производитель заявляет пределы и точность измерения. Превышать указанный предел нагрузки запрещается. Это вызывает снижение точности, а при существенном увеличении запредельной нагрузки повлечет разрушение датчика и выход его из строя.

Тензодатчики рассчитан на определение одного из видов деформации: давление, растяжение, сдвиг, кручение. Они компактны. Тензодатчики размещают в опорах платформ, в точке подвеса емкости или внутрь цистерны. В последнем случае используются мембранные тензорезисторные датчики. Во влажных средах используются тензодатчики в защищенном от воды и пыли корпусе из нержавеющей стали, сплавов, устойчивых к коррозии.

Вступление

Технический термин, тензометрические датчики, вряд ли вам знаком, хотя с его работой вы сталкиваетесь достаточно часто. Любое взвешивание на электронных весах, не возможно без тензометрического датчика. Именно он преобразует механическую нагрузку на весы в электронный сигнал, который преобразуется в цифры на экране весового табло.

Но бытовое назначение тензометрического датчика не основное. Тензометрический датчик это основной элемент измерительной аппаратуры различного назначения. Датчики различного типа преобразуют на только силовую нагрузку в электронный сигнал, но и давление, ускорение, центробежную силу. Принципиально, тензодатчик преобразует любую деформацию в электронный сигнал пригодный для его фиксации и измерению.

Виды тензометров

Для измерения деформаций различных объектов были созданы тензометры, отличающиеся принципами действия и областями применения. По этим признакам измерительное оборудование подразделяют на следующие виды:

  • механическое;
  • резистивное;
  • струнное;
  • ёмкостное;
  • индуктивное.

Механические

Измерения основаны на фиксации изменения длины объекта под нагрузкой. Работа механического тензометра заключается в определении зависимости удлинения тела от напряжения в поперечном сечении.

Резистивные

Плёночные тензоризисторы, наклеенные в разных направлениях на теле объекта, при его сжатии или растяжении меняют своё электрическое сопротивление вместе с объектом. Точность измерений деформаций обеспечивается работой не одного датчика, а группы тензорезистров.

Плёночные тензорезисторы

Струнные

Струнный вариант представляет собой стальную проволоку (струну), её натягивают между опорами, которые закрепляют на поверхности объекта. Суть измерений заключаются в определении отношения частоты колебания струны к степени её натяжения при изменении длины обследуемого тела под воздействием нагрузки.

Ёмкостные

В качестве датчика применяют конденсатор с переменной ёмкостью. Деформация объекта вызывает изменение зазора между пластинами конденсатора, что отражается на характеристике тока в измерительной схеме прибора.

Индуктивные

Устройство прибора основано на применении катушки индуктивности, в которой установлен подвижный сердечник. Он напрямую контактирует с поверхностью объекта. При малейшей деформации поверхности происходит смещение сердечника в катушке. Изменяющиеся параметры катушки индуктивности фиксируются через электросхему прибором.

Архивы

АрхивыВыберите месяц Июль 2020  (2) Июнь 2020  (1) Апрель 2020  (1) Март 2020  (3) Февраль 2020  (2) Декабрь 2019  (2) Октябрь 2019  (3) Сентябрь 2019  (3) Август 2019  (4) Июнь 2019  (4) Февраль 2019  (2) Январь 2019  (2) Декабрь 2018  (2) Ноябрь 2018  (2) Октябрь 2018  (3) Сентябрь 2018  (2) Август 2018  (3) Июль 2018  (2) Апрель 2018  (2) Март 2018  (1) Февраль 2018  (2) Январь 2018  (1) Декабрь 2017  (2) Ноябрь 2017  (2) Октябрь 2017  (2) Сентябрь 2017  (4) Август 2017  (5) Июль 2017  (1) Июнь 2017  (3) Май 2017  (1) Апрель 2017  (6) Февраль 2017  (2) Январь 2017  (2) Декабрь 2016  (3) Октябрь 2016  (1) Сентябрь 2016  (3) Август 2016  (1) Июль 2016  (9) Июнь 2016  (3) Апрель 2016  (5) Март 2016  (1) Февраль 2016  (3) Январь 2016  (3) Декабрь 2015  (3) Ноябрь 2015  (4) Октябрь 2015  (6) Сентябрь 2015  (5) Август 2015  (1) Июль 2015  (1) Июнь 2015  (3) Май 2015  (3) Апрель 2015  (3) Март 2015  (2) Январь 2015  (4) Декабрь 2014  (9) Ноябрь 2014  (4) Октябрь 2014  (4) Сентябрь 2014  (7) Август 2014  (3) Июль 2014  (2) Июнь 2014  (6) Май 2014  (4) Апрель 2014  (2) Март 2014  (2) Февраль 2014  (5) Январь 2014  (4) Декабрь 2013  (7) Ноябрь 2013  (6) Октябрь 2013  (7) Сентябрь 2013  (8) Август 2013  (2) Июль 2013  (1) Июнь 2013  (2) Май 2013  (4) Апрель 2013  (7) Март 2013  (7) Февраль 2013  (7) Январь 2013  (11) Декабрь 2012  (7) Ноябрь 2012  (5) Октябрь 2012  (2) Сентябрь 2012  (10) Август 2012  (14) Июль 2012  (5) Июнь 2012  (21) Май 2012  (13) Апрель 2012  (4) Февраль 2012  (6) Январь 2012  (6) Декабрь 2011  (2) Ноябрь 2011  (9) Октябрь 2011  (14) Сентябрь 2011  (22) Август 2011  (1) Июль 2011  (5)

Тензометрические датчики веса и силы широко применяются в современном взвешивающем оборудовании.

Чувствительным элементом такого оборудования является тензорезистор с электронной согласующей схемой, встроенные в алюминиевый или стальной корпус. Деформация объектов позволяет измерить различные физические величины, например, объем, силу и вес.

Внешнее электронное оборудование на основе показаний с датчиков определяет величину требуемого параметра. Схемо-технически подключение датчиков выбирается для компенсации температурного влияния.

Изменение сопротивления датчика от приложенной силы тензометрических датчиков носит линейный характер, что упрощает процесс преобразования.

Рис. 1

Тензорезисторы в зависимости от типа чувствительного материала делятся на проволочные, пленочные и фольговые. Наибольшее распространение получили фольговые датчики (Рис. 1), в которых тензоматериал 1 наносится на подложку 3 методом травления как в печатных платах.

Для защиты от внешней среды датчик покрывается защитным слоем 4. Выводы 2 служат для подключения внешней измерительной схемы.

Под действием груза или приложенной силы возникает деформация корпуса и тензористора, вызывая изменения сопротивления. Большая площадь тензометрических проводников обеспечивает хорошую чувствительность измерений.

Материалом для измерения деформации служит манганин или константан. Отличие пленочных датчиков (Рис. 2) состоит в используемым полупроводниковом чувствительном элементе М.

Поэтому пленочные тензорезисторы не применяют в условиях резкого колебания температур, т.к. тепловые процессы внутри полупроводника приводят к нелинейности выходного сопротивления.

Рис. 2

Измерительным элементом проволочных датчиков силы и веса  (Рис. 3) являются несколько параллельно соединённых

Рис. 3

тензочувствительных проводников 1.Параллельное соединение повышает чувствительность измерений. Гибкая подложка 3 подвергается внешней деформации, проводники залиты защитным слоем цемента или клея 4. К внешнему оборудованию датчик подключается через выводы 2.

Проволочные датчики в простейшем случае служат для измерения давления. В таких датчиках катушка из тензочувствительного материала, помещенная в объем измеряемой жидкости или газа меняет свое сопротивление под действием давления.

Максимальная нагрузка и точность измерения веса и силы зависит от конструктивных особенностей корпуса датчика и количества измерительных резисторов.

Верхний и нижний пределы измерения веса современных тензометрических весов колеблются от нескольких тонн до нескольких грамм. Одноточечные балочные датчики с одним измерительным элементом в большинстве случаев имеют алюминиевый корпус и используются для измерения небольшой массы груза в фасовочных и дозирующих системах (Рис. 4).

Одноточечные датчики преобразуют величину поперечной деформации в электрический сигнал.

Рис. 4

Электрическая измерительная часть тензометрического датчика надежно изолирована от внешней среды и не подвержена влиянию влажности и пыли и может работать в широком диапазоне температур (Для большинства датчиков от -40 до +80 градусов).

Выбор максимальной нагрузки, как правило, осуществляется с запасом для исключения повреждения датчика. Важным параметром датчиков веса и силы является класс точности. Наибольшее распространение получили датчики с классом С3 с нормированной по ГОСТу точностью в 0,002 %.

Чтобы снизить величину ошибки измерения для каждого вида датчика нужно выбрать правильное место установки.

Балочные датчики (Рис. 5) закрепляются неподвижно одним торцом, а на другой край подвешивается груз. Типичный вес нагрузки таких датчиков – от нескольких килограмм до нескольких тонн.

Рис.5

Цилиндрические тензометрические датчики силы (Рис. 6), также известные как «шайбовые», имеют стальной корпус, применяются для взвешивания грузов массой до нескольких десятков тонн. Такие датчики используется для модернизации устаревших бункерных весов, для определения массы автомобилей, вагонов, крупногабаритных емкостей.

Рис.6

S-образные датчики (Рис. 7)работают на сжатие и растяжение, являются  измерительной системой в подвесных весах.

Рис.7

Современные тензодатчики находят широкое применения для измерения различных параметров, связанных с механической деформацией объектов, таких вес, нагрузки износ оборудования. Такие системы применяются в охранных системах, металлургии, в промышленном оборудовании, при взвешивании автомобилей и другого транспорта и негабаритных грузов.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Как выбрать тензодатчик и комплектующие для весового оборудования?

Главная / Сервисная служба / Документация и программное обеспечение / Статьи Старые / Как выбрать тензодатчик и комплектующие для весового оборудования?

Как выбрать тензодатчик и комплектующие для весового оборудования?

Этот вопрос легко решается, если следовать советам компании ЮНИВЕС. Сначала поймём, что такое тензометрический датчик? Силоизмерительный тензодатчик предназначен для преобразования усилий (механических деформаций) в электрический сигнал и применяется как комплектующее изделие в весах, весодозирующих и силоизмерительных устройствах. Чтобы не ошибиться при выборе тензодатчика необходимо однозначно представлять себе следующие технические вопросы: 1. Возможные варианты размещения датчиков (датчика) в весовом устройстве в зависимости от его конструкции и предназначения. Возможно, ваша система взвешивания будет монтироваться на одном датчике либо Вы планируете использовать несколько датчиков

В случае, если центр тяжести находится ниже места крепления тензодатчика Вам следует обратить внимание на S-образные датчики растяжения. Если центр тяжести находится выше места крепления тензодатчиков Вам потребуются датчики сжатия

В случае использования одного датчика сжатия обратите внимание на алюминиевые датчики. Если используется несколько — на конструкции узлов встройки для выбранного типа датчика. 2. Максимальная удельная нагрузка на датчик и возможные перегрузки. Максимальная удельная нагрузка на датчик определяется как сумма веса весоприемной конструкции, собственно веса продукта и дополнительных нагрузок от внешних воздействий (возможных смещений груза, динамического нагружения, ветровых нагрузок). Желательно, чтобы рассчитанная максимальная удельная нагрузка не превышала НПВ датчика. Всегда выбирайте датчик с большим НПВ в случае, если рассчитанная максимальная удельная нагрузка несколько больше ближайшего значения НПВ. 3. Требуемая точность системы и желаемая дискретность отсчета. Различайте цену поверочного деления вашей весовой системы (е) и дискретность отсчета (d), которую может обеспечить ваша система. Помните, что погрешность измерения определяется нагрузочной кривой тензодатчика и жесткостью системы (отношением нагрузки к деформации), а дискретность — лишь возможностью АЦП весового индикатора. Для того чтобы достичь погрешности 0,03% Вам необходимо использовать датчик типа D3 или С3. Если Вам необходимо получить более высокие погрешности (0,02%) используйте датчики А5. Помните, что при использовании нескольких датчиков точность системы повышается в N раз, где N — число датчиков. Выбирая датчик знайте, что CAS обеспечивает 40% рабочий интервал для всех датчиков, т.е любой датчик будет соответствовать своим метрологическим данным D3, С3 или А5 даже при использовании 40% рабочего диапазона. 4. Устойчивость показаний. Для устойчивой оцифровки аналогового сигнала весовым индикатором рекомендуется выполнение следующего условия 1d = 1,5…2,0 мкВ. При этом обращайте внимание на рабочий коэффициент передачи датчика (РКП) и выбирайте НПВ датчика(ов) с разумным запасом. 5. Условия эксплуатации датчиков. Всегда обращайте внимание на указанную степень защиты (IP) датчика. Помните, что для использования в агрессивных средах следует использовать датчики с IP не ниже 67. 6. Предполагаемые инвестиции (выбирайте согласно принципу цена-качество). Самым надёжным в конструкции — датчики, так как именно этот элемент конструкции определяет точность, надежность и долговечность весовой системы в целом.Поэтому помните, что скупой платит дважды. 7. Формальности при покупке и гарантийные обязательства. При покупке датчика проверьте наличие калибровочного сертификата датчика. Данный сертификат с указанием индивидуального номера датчика и его технических характеристик является одновременно инструкцией по эксплуатации данного датчика и его гарантийным талоном. Помните, что продавец в праве отказать в бесплатном ремонте или замене датчика, в случае потери калибровочного сертификата датчика. Всегда сохраняйте индивидуальный калибровочный сертификат. В случае необходимости Вы можете получить копию метрологического сертификата о внесении данного типа датчика в государственный реестр средств измерений. 8. Что дальше? Вам необходимо выбрать весовой индикатор и, если Вы намерены использовать более одного датчика, — соединительную коробку. На все возникшие вопросы Вам ответят специалисты компании ЮНИВЕС по телефону.

описание, инструкция и принцип работы

Тензодатчик – это специальный датчик, который позволяет преобразовывать измеряемую деформацию твердых тел в электрический сигнал.

В этой статье мы рассмотрим принцип действия и устройство тензодатчика. Также вы узнаете его сопротивление и преобразующую деформацию.

Особенности работы

Изменение сопротивления проводника тензодатчика во время деформации объясняется по двум причинам:

  1. Изменением геометрических размеров.
  2. Изменением удельного сопротивления материала.

Работа тензодатчика будет характеризоваться коэффициентом тензоустойчивости (S). Найти его можно по следующей формуле:

  • L и R в этой формуле – это длина сопротивления датчика при отсутствии механического напряжения.
  • ?L и ?R – изменение длины и сопротивления в результате воздействия внешнего деформирующего усилия.

Формула также может быть представлена в следующем виде:

Коэффициент тензоустойчивости считается безразмерной величиной и поэтому он может быть, как положительным, так и отрицательным показателем. Для разнообразных металлов значение S может колебаться от – 12.6 до +6. Величина номинального сопротивления тензодатчика находится в пределах от 50 до 1000 Ом.

Важно знать! Проводниковые тензодатчики изготовляют из металлической проволоки. Их диаметр составляет от 0.015 до 0.05 мм

Наклеиваемый тензодатчик

Наклееваемый тензодатчик также пользуется популярностью. Он представляет собою тонкую проволоку, которая будет сложена в виде решетки. Также она будет обклеена с обеих сторон специальными изоляционными пластинками. Для определения растяжения или сжатия пластинку в обязательном порядке необходимо будет наклеить на поверхность детали с помощью специального клея.

Тензодатчики способны воспринимать все деформации наружного волокна детали и реагировать на сжатие или растяжение. Проволочные тензодатчики имеют небольшие размеры и поэтому являются безынерционными. В большинстве случаев подобные датчики размещают в труднодоступных местах. Благодаря ряду достоинств эти устройства действительно приобрели значительную популярность.

Конечно, после детального изучения, наклеиваемого тензодатчика можно выделить и его недостатки. К основному недостатку относится малая величина изменения сопротивления. В связи с этим во время проведения измерения, вам потребуется применять измерительные схемы высокой чувствительности.

Проволочные тензодатчики на сегодняшний день применяют при измерении деформаций в деталях разнообразных механизмов. Тензодатчик также является составной частью тензометра. Тензометр – это специальный прибор, который проводит измерения в твердых телах деформаций, возникающих во время нагрузки.

Для измерения разнообразных деформаций датчики будут включаться в мостовые или потенциометрические схемы. Благодаря использованию тензодатчиков у вас появится возможность измерять не только статические, но и динамические деформации.

Чтобы регистрировать сложные деформации тензодатчика специалисты применяют питание измерительных мостов напряжением высокой частоты. Например, изучить сложные деформации можно с помощью оциллогрофа. Теперь вы знаете, как работает тензодатчик и его разновидности. Надеемся, что эта информация была полезной и интересной.

Тензорезистивный метод

Сейчас это наиболее удобный и чаще других используемый метод. При деформации электропроводящих материалов (металлов, полупроводников) происходит изменение их удельного электрического сопротивления и, как следствие, — изменение сопротивления чувствительного элемента датчика. В качестве проводящих материалов обычно используются металлические плёнки, напылённые на гибкую диэлектрическую подложку. В последнее время находят применение полупроводниковые датчики. Сопротивление чувствительного элемента измеряется тем или иным способом.

Конструкция типичного металлического датчика


Плёночный тензорезистор. На подложку через фигурную маску в вакууме напылена или сформирована методами фотолитографии плёнка металла. Для подключения электродов выполнены контактные площадки (снизу). Метки облегчают ориентацию при монтаже.

На диэлектрическую подложку (например, полимерную плёнку или слюду) в вакууме через напыляют плёнку металлического сплава, либо формируют проводящую конфигурацию на подложке фотолитографическими методами. В последнем случае на предварительно напылённую сплошную плёнку металла на подложке наносят слой фоторезиста и засвечивают его ультрафиолетовым излучением через фотошаблон. В зависимости от вида фоторезиста, либо засвеченные, либо незасвеченные участки фоторезиста смываются растворителем. Затем незащищённую фоторезистом металлическую плёнку растворяют (например, кислотой), формируя фигурный рисунок металлической плёнки.

В качестве материала плёнки обычно используются сплавы, имеющие низкий температурный коэффициент удельного сопротивления (например, манганин) — для снижения влияния температуры на показания тензометра.

При использовании тензорезистор подложкой приклеивают к поверхности исследуемого на деформации объекта или поверхности упруго-деформируемого элемента в случае применения в весах, динамометрах, торсиометрах, датчиках давления и др., так, чтобы тензорезистор деформировался вместе с деталью.

Чувствительность к деформации такого тензорезистора зависит от направления приложения деформирующей силы. Так, наибольшая чувствительность при растяжении и сжатии — по вертикальной по рисунку оси и практически нулевая при горизонтальной, так как полоски металла в зигзагообразной конфигурации сильнее изменяют своё сечение при вертикальной деформации.

Тензорезистор включается с помощью электрических проводников во внешнюю электрическую измерительную схему.

Измерительная схема


Измерительный мост с вольтметром в диагонали. Тензорезистор обозначен Rx.

Обычно тензорезисторы включают в одно или два плеча сбалансированного моста Уитстона, питаемого от источника постоянного напряжения (диагональ моста A—D). С помощью переменного резистора R2 производится балансировка моста, так, чтобы в отсутствии приложенной силы напряжение диагонали сделать равным нулю. С диагонали моста B—C снимается сигнал, далее подаваемый на измерительный прибор, дифференциальный усилитель или АЦП.

При выполнении соотношения R1 / R2 = Rx / R3 напряжение диагонали моста равно нулю. При деформации изменяется сопротивление Rx (например, увеличивается при растяжении), это вызывает снижение потенциала точки соединения резисторов Rx и R3 (B) и изменение напряжения диагонали B—C моста — полезный сигнал.

Изменение сопротивления Rx может происходить не только от деформации, но и от влияния других факторов, главный из них — изменение температуры, что вносит погрешность в результат измерения. Для снижения влияния температуры применяют сплавы с низким ТКС, термостатируют объект, вносят поправки на изменение температуры и/или применяют дифференциальные схемы включения тензорезисторов в мост.

Например, в схеме на рисунке вместо постоянного резистора R3 включают такой же тензорезистор, как и Rx, но при деформации детали этот резистор изменяет своё сопротивление с обратным знаком. Это достигается наклейкой тензорезисторов на поверхности по-разному деформируемых зон детали, например, с разных сторон изгибаемой балки или с одной стороны, но со взаимно перпендикулярной ориентацией. При изменении температуры, если температура обоих резисторов равна, знак и величина изменения сопротивления (вызванного изменением температуры) равны, и температурный уход при этом компенсируется.

Также промышленностью выпускаются специализированные микросхемы для работы совместно с тензорезисторами, в которых помимо усилителей сигнала часто предусмотрены источники питания моста, схемы термокомпенсации, АЦП, цифровые интерфейсы для связи с внешними цифровыми системами обработки сигналов и другие сервисные функции.

Виды тензорезисторных датчиков

Одноточечные тензодатчики. Главным их как преимуществом, так и недостатком является возможность создания весоизмерительной системы используя лишь один датчик. Такие датчики применяются в фасовочном и дозирующем оборудовании, а также в конструкциях небольших платформенных весов с малой нагрузкой на платформу.

Т24А датчики тензорезисторные одноточечного типаТ70А датчики тензорезисторные одноточечного типаК-О-10А тензодатчики одноточечные

Тензодатчики балочного (консольного) типа (консольная балка сдвига). Используются как чувствительные элементы в весах и весоизмерительных системах с общим НПВ в 5-7 тонн.

Н2 датчики тензорезисторные балочного типаТ2 датчики тензорезисторные балочного типаК-О-14А тензодатчики балочные с сильфоном

S-образные тензодатчики (балка на растяжение-сжатие). Предназначаются для использования в подвесных и бункерных весах. Датчики укомплектованы шарнирными подвесами, за счет которых снижается затрачиваемое время на установку и запуск оборудования. В основе работы таких тензодатчиков лежит принцип преобразования механической силы растяжения/сжатия в электрический сигнал, пропорциональный этой механической силе.

С2 датчики тензорезисторные S-образныеС2А датчики тензорезисторные S-образныеК-Р-16К тензодатчики S-образные

Цилиндрические тензодатчики. Работают по принципу преобразования показаний механической деформации при сжатии в пропорциональный электрический сигнал. Чаще всего применяются при выпуске новых или модернизации старых вагонных, автомобильных или многотонных бункерных весов, а также в испытательных стендах.

M50 датчики тензорезисторныеК-С-18Д тензодатчики цилиндрическиеSHB датчики тензометрические

Колонные датчики. Силоизмеряющий элемент выполнен в виде колонны. Применяются в автомобильных весах, железнодорожных весах и т.д.

МВ датчики тензорезисторные колонного типаМВ150 датчики тензорезисторные колонного типаST-T датчики тензометрические колонного типа

Датчики платформенного типа. Используются в производстве автомобильных, вагонных, бункерных и емкостных весов.

Торсионные тензодатчики. Также называются тензодатчиками мембранного типа, шайбами, «таблетками», круглыми датчиками. Используются для производства автомобильных, железнодорожных и емкостных весов, а также в конвейерном весовом оборудовании.

Прочие. Включают в себя специализированные узкопрофильные модели.

С2К датчики тензорезисторные специализированные для крановых весовК-Р-20А тензодатчики на растяжениеК-Б-12Т тензодатчики силы натяжения троса

Вывод

Подводя итоги, можно сказать, что тензодатчик – это важный элемент, составляющий основу механизма любого электронного весоизмерительного оборудования. Электронное весовое оборудование, в отличие от механического оборудования, благодаря применению датчиков силы, стало менее громоздким, более точным и намного более функциональным. Электронная система с применением тензодатчиков позволила перейти на качественно новый уровень работы и полностью автоматизировать контрольно-измерительные процессы.

Чтобы правильно подобрать тензодатчики, узнать стоимость тензометрических датчиков весов или купить тензорезисторные датчики, вам достаточно позвонить по телефону +7 (4812) 209-311 или написать по электронной почте [email protected]

Оцените статью:

Общие сведения и принцип работы тензодатчиков -Типы тензодатчиков

Тензодатчики (тензометрические датчики) являются основным первичным устройством преобразования физической величины веса в нормированный электрический сигнал. Сигнал с тензодатчика впоследствии обрабатывается вторичными преобразователями (весовой индикатор, весовой процессор, аналого-цифровой преобразователь и т.д.).

Тензодатчики (тензометрические датчики) - это устройства для измерения деформации различных конструкций, основанный на определении смещения (или перемещения) упругого элемента. Датчики смещения могут измерять как линейный сдвиг (при поступательном движении), так и угол поворота (при вращении).

Существует множество способов измерения деформаций в соответствии с используемым принципом преобразования: тензорезистивный, оптико-поляризационный, пьезорезистивный, волоконно-оптический, или простым считыванием показаний с линейки механического тензодатчика. Среди электронных тензодатчиков, наибольшее распространение получили тензорезистивные датчики.

Существуют разные типы тензодатчиков, в зависимости от сферы применения:

  • тензодатчики силоизмерительные измеряют усилия и нагрузки;
  • тензодатчики весоизмерительные измеряют вес;
  • тензодатчики давления измеряют давления в различных средах;
  • акселерометры -датчики ускорения;
  • тензодатчики перемещения;
  • тензодатчики крутящего момента.

Наиболее типичным применением весовых тензодатчиков являются весы. В зависимости от конструкции грузоприемной платформы применяются весовые тензодатчики различного типа:

  • тензодатчики консольные или балочные тензодатчики;
  • тензодатчики s-образные;
  • тензодатчики "шайба" или тензодатчики мембранного типа;
  • тензодатчики "бочка" или тензодатчики колонного типа.

Конструкция тензодатчиков.

Тензодатчики тензорезистивные представляют собой упругий элемент, на котором зафиксирован тензорезистор. Под действием силы (вес груза) происходит деформация упругого элемента вместе с тензорезистором. По изменению сопротивления тензорезистора можно вычислить степень деформации, которая будет пропорциональна силе, приложенной к конструкции.

Принцип измерения веса при помощи тензодатчиков основан на уравновешивании массы взвешиваемого груза с упругой механической силой тензодатчиков и последующего преобразования этой силы в электрический сигнал для последующей обработки.

Тензодатчики являются наиболее уязвимыми компонентами весоизмерительной системы. В процессе эксплуатации на весовые тензодатчики воздействуют: агрессивная окружающая среда, ударные динамические нагрузки, электростатическое воздействие (сварка), вибрации и т.д. Поэтому в периоды технического обслуживания, перед установкой в оборудование, а также в аварийных случаях, существует необходимость диагностики весовых тензодатчиков.

При проверке состояния тензодатчиков для начала необходимо  проверить  общее техническое состояние системы измерения веса:

  • наличие заземляющего контура (шунта), затяжку резьбовых соединений;
  • проверка отсутствия следов коррозии, повреждения тензодатчиков, узлов встройки, грузоприемного устройства;
  • проверка суммирующих плат; весового индикатора на имитаторе тензодатчика;
  • тестирование весового индикатора, подключение к имитатору тензодатчика;
  • осмотр состояния кабельной продукции, герметичность кабельного ввода на тензодатчике.

Рассмотрим  последовательность выполнения тестов лоя проверки тензодатчика.

1. Проверка нулевого баланса.

Измерение нулевого баланса необходимо для проверки состояния тензодатчика в ненагруженном состоянии, для этого тензодатчик извлекают из узла встройки и убирают с датчика веса всю приложенную нагрузку. Далее подключают источник питания 10 В в цепь возбуждения тензодатчика, с выходной цепи снимают сигнал в мВ и сравнивают со значением в калибровочном листе. Например, при чувствительности тензодатчика 2мВ/В и питании 10В, напряжение нулевого баланса соответствует +- 0.02 мВ.

В случае если значения выходного сигнала существенно отличаются от паспортных значений, можно судить о деформации упругого элемента тензодатчика, а также нарушении изоляционного слоя тензорезисторов.

2. Проверка сопротивления изоляции

Производится подключением мегомметра к кабелю тензодатчика и проверке на наличие тока утечки между корпусом тензодатчика и токоведущими частями. Низкое значение сопротивления изоляции меньше 1кОм свидетельствует о коротком замыкании (к.з.). Нормальным значением является сопротивление 5Мом. Короткое замыкание может быть между корпусом тензодатчика и токоведущими частями, а также в кабеле. При к.з. в кабеле и появлении тока утечки, кабель можно заменить, если это предусматривает конструкция тензодатчика.

3.Проверка целостности тензометрического моста (Мост Уитстона)

Целостность моста проверяется путем измерения входного и выходного сопротивления, а также сопротивления баланса моста. Отсоедините датчик из коробки или измерительного прибора. Входные и выходные сопротивления измеряется омметром, подключаемого к каждой паре входных и выходных проводов тензодатчика. Далее производится сравнение входного и выходного сопротивления со значениями в калибровочном сертификате или с технической спецификацией оригинального тензодатчика. Сопротивление баланса моста измеряется поочередным подключением омметра к каждой паре выводов кабеля. Значение сопротивления между парами, не должно отличаться более чем на 1-2 Ома.

Отличие входного и выходного сопротивления тензодатчика от паспортных значений, свидетельствует о неисправности тензометрического моста, появление сопротивления разбаланса, означает неработоспособность тензодатчика и необходимость замены. Подобные неисправности появляются, как правило, в следствии электрического воздействия (сварка, статическое поле, электрический пробой), физического (удары, прокручивание, боковые нагрузки), термического.

4. Проверка под нагрузкой

Тензодатчик должен быть подключен к весовому индикатору или к прибору со стабильным источником питания не менее 10В. С помощью милливольтметра, подключенного к выходу тензодатчика, нагружают датчик и фиксируют показания выходного сигнала, при снятии нагрузки показания выходного сигнала должны вернуться к исходным . Будьте предельно осторожны, не перегрузите тензодатчик! В случае если при проведении теста показания будут отличаться при постоянно прикладываемой нагрузке и не возвращаться к исходным значениям, можно судить о нарушении контакта в клеевом слое между тензорезисторами и упругим элементом. Тензодатчик требует замены.

Тензодатчик

: принцип, типы, особенности и применение | by Encardio rite

3 июля 2019 г. | Источники: Encardio-Rite

Тензометрические датчики - важные геотехнические инструменты, которые измеряют деформацию в подземных полостях, туннелях, зданиях, бетоне, каменных дамбах, мостах, заделках в почве / бетоне. и т. д. Основная цель тензодатчика - косвенно количественно определять напряжение и его изменение во времени. Изменение напряжения определяется путем умножения измеренной деформации на модуль упругости.

Вот все, что вам нужно знать о тензодатчиках. Мы рассмотрели его принципы работы, характеристики, особенности, а также области применения.

Тензодатчик

был изобретен в 1938 году Эдвардом Э. Симмонсом и Артуром Руге. Это один из важных датчиков, используемых в геотехнической области для измерения степени деформации любой конструкции (плотины, здания, атомные станции, туннели и т. Д.). Сопротивление тензодатчика зависит от приложенной силы и преобразует такие параметры, как сила, давление, натяжение, вес и т. Д.в изменение сопротивления, которое можно будет измерить позже.

Всякий раз, когда к объекту прикладывается внешняя сила, он имеет тенденцию изменять свою форму и размер, тем самым изменяя свое сопротивление. Напряжение - это внутренняя сопротивляемость объекта, а деформация - это величина деформации, которую он испытывает.

Любой базовый тензодатчик состоит из изолирующей гибкой основы, которая поддерживает узор из металлической фольги. Датчик прикрепляется к объекту, находящемуся под напряжением, с помощью клея.Деформация объекта вызывает искажение фольги, что в конечном итоге изменяет удельное электрическое сопротивление фольги. Это изменение удельного сопротивления измеряется мостом Уитстона, который связан с деформацией величиной, называемой калибровочным фактором.

Тензодатчик зависит от удельного электрического сопротивления любого проводника. Сопротивление в любом проводящем устройстве зависит от его длины, а также от площади поперечного сечения.

Предположим, что L1 - это исходная длина провода, а L2 - новая длина после приложения к нему внешней силы, деформация (ε) определяется формулой:

ε = (L2-L1) / L1

Теперь , всякий раз, когда внешняя сила изменяет физические параметры объекта, его удельное электрическое сопротивление также изменяется.Датчик деформации измеряет эту деформацию с помощью формулы калибровочного фактора.

В случае реального мониторинга при строительстве бетонных конструкций или памятников нагрузка прикладывается в точке приложения нагрузки тензодатчика, который состоит из тензодатчика, расположенного под ним. Как только сила приложена, тензодатчик деформируется, и эта деформация вызывает изменение его электрического сопротивления, что в конечном итоге изменяет выходное напряжение.

Измерительный коэффициент - это коэффициент чувствительности тензодатчиков, который определяется по формуле:

GF = [ΔR / (RG * ε)]

Где

ΔR = Изменение сопротивления, вызванное деформацией

RG = сопротивление недеформированной толщины

ε = деформация

Коэффициент толщины обычной металлической фольги обычно немного больше 2.Выходное напряжение моста Уитстона, SV определяется по формуле:

SV = {EV x [(GF x ε) / 4]}

Где,

EV - напряжение возбуждения моста.

. различные материалы приведены ниже:

Материал

Измерительный коэффициент

Тензодатчик из металлической фольги

2–5

Тонкопленочный металл (например, константан)

2

Монокристаллический кремний

-125 до + 200

Поликремний

± 30

Ge p-типа

102

Толстопленочные резисторы

100

Тензодатчик работает по принципу электропроводности и ее зависимости от геометрии проводника.Когда проводник растягивается в пределах своей упругости, он не ломается, а становится уже и длиннее. Точно так же, когда он сжимается, он становится короче и шире, в конечном итоге меняя его сопротивление.

Мы знаем, что сопротивление напрямую зависит от длины и площади поперечного сечения проводника:

R = L / A

Где,

R = сопротивление

L = длина

A = поперечное -Площадь сечения

Изменение формы и размера проводника также изменяет его длину и площадь поперечного сечения, что в конечном итоге влияет на его сопротивление.

Любой типичный тензодатчик будет иметь длинную тонкую проводящую полоску, расположенную зигзагообразно из параллельных линий. Причина их зигзагообразного выравнивания заключается в том, что они не увеличивают чувствительность, поскольку процентное изменение сопротивления для данной деформации для всей проводящей полосы одинаково для любой отдельной дорожки.

Кроме того, отдельная дорожка подвержена перегреву, что изменит ее сопротивление и, таким образом, затруднит точное измерение изменений.

Как упоминалось ранее, тензодатчики работают по принципу сопротивления проводника, что дает вам значение манометра. Коэффициент по формуле:

GF = [ΔR / (RG * ε)]

На практике изменение деформации объекта - очень малая величина, которую можно измерить только с помощью моста Уитстона.Схема моста Уитстона приведена ниже.

Рисунок 1: Схема тензометрического датчика

Мост Уитстона представляет собой сеть из четырех резисторов с напряжением возбуждения Vext, приложенным к мосту. Мост Уитстона является электрическим эквивалентом двух параллельных цепей делителя напряжения с R1 и R2 в качестве одного из них и R3 и R4 в качестве другого.

Выходной сигнал цепи Уитстона определяется как:

Vo = [(R3 / R3 + R4) - (R2 / R1 + 2)] * Vex

Когда R1 / R2 = R4 / R3, выходное напряжение Vo равен нулю, и мост называется уравновешенным.Следовательно, любое изменение значений R1, R2, R3 и R4 приведет к изменению выходного напряжения. Если вы замените резистор R4 тензодатчиком, даже незначительное изменение его сопротивления изменит выходное напряжение Vex, которое является функцией деформации. Эквивалентная выходная деформация и выходное напряжение всегда имеют соотношение 2: 1.

Характеристики тензодатчиков следующие:

  1. Они обладают высокой точностью и не подвержены влиянию температурных изменений. Однако, если на них действительно влияют изменения температуры, имеется термистор для корректировки температуры.
  2. Они идеально подходят для связи на большие расстояния, так как на выходе подается электрический сигнал.
  3. Тензодатчики требуют легкого обслуживания и имеют длительный срок службы.
  4. Изготовление тензодатчиков легко благодаря простому принципу работы и небольшому количеству компонентов.
  5. Тензодатчики рассчитаны на длительную установку. Однако они требуют определенных мер предосторожности при установке.
  6. Все тензодатчики, производимые Encardio-Rite, герметичны и изготовлены из нержавеющей стали, что делает их водонепроницаемыми.
  7. Они полностью герметизированы для защиты от повреждений при манипуляциях и установке.
  8. Также возможно дистанционное цифровое считывание тензодатчиков.

Тензодатчики широко используются в области геотехнического мониторинга для постоянного контроля конструкций, плотин, туннелей и зданий, чтобы вовремя избежать аварий. Области применения тензодатчиков:

Aerospace

Тензодатчики крепятся к несущим конструктивным элементам для измерения напряжений вдоль траекторий нагрузки для прогиба или деформации крыла в самолете.

Тензодатчики подключаются к цепям моста Уитстона, и их области применения включают бортовые блоки формирования сигналов, источники питания возбуждения и телеметрию, необходимую для считывания измерений на месте.

Кабельные мосты

Контрольно-измерительные приборы мостов выполняются для проверки проектных параметров, оценки эффективности новых технологий, используемых при строительстве мостов, для проверки и контроля процесса строительства и для последующего мониторинга производительности.

Хорошо оборудованные мосты могут предупреждать ответственные органы о приближающемся отказе, чтобы предпринять превентивные меры. Выбор подходящих типов датчиков, технологии, диапазона измерения и их расположения на мосту очень важен для оптимизации затрат и получения всех преимуществ от измерительных приборов.

Становится необходимым регулярно контролировать мосты на предмет деформации любого вида, так как это может привести к несчастным случаям со смертельным исходом. Технология тензодатчиков используется для мониторинга огромных мостов в режиме реального времени, что делает проверки точными.

Например, мост Ямуна в Аллахабад-Найни представляет собой вантовый мост длиной 630 метров через реку Ямуна. Мост оборудован множеством измерительных каналов, которые определяют скорость ветра и натяжение его тросов.

Мониторинг рельсов

Тензодатчики

имеют долгую историю обеспечения безопасности рельсов. Он используется для измерения напряжения и деформации рельсов. Тензодатчики измеряют осевое растяжение или сжатие без воздействия на рельсы. В случае возникновения чрезвычайной ситуации тензодатчики могут выдавать предупреждение, поэтому обслуживание может быть выполнено на ранней стадии, чтобы минимизировать воздействие на железнодорожное движение.

Измерение крутящего момента и мощности вращающегося оборудования

Тензодатчики могут измерять крутящий момент, прилагаемый двигателем, турбиной или двигателем к вентиляторам, генераторам, колесам или гребным винтам. Вы найдете такое оборудование на электростанциях, кораблях, нефтеперерабатывающих заводах, автомобилях и в промышленности.

Тензодатчики широко используются в области геотехнического мониторинга и контрольно-измерительной аппаратуры для постоянного контроля плотин, внутренней облицовки туннелей, конструкций, зданий, вантовых мостов и атомных электростанций, чтобы избежать аварий и аварий в случае их деформации. .

Своевременно принятые меры помогут избежать несчастных случаев и гибели людей из-за деформаций. Следовательно, тензодатчики являются важными датчиками в геотехнической области.

Тензодатчики устанавливаются на эти конструкции, а затем полные данные с них могут быть получены удаленно с помощью регистраторов данных и считывающих устройств. Они считаются важным измерительным оборудованием для обеспечения производительности и безопасности.

Существует несколько типов тензодатчиков по принципу действия, а именно.механический, оптический, акустический, пневматический или электрический. Что касается монтажа, тензодатчики могут быть приклеенными или несвязанными, и в зависимости от конструкции у нас могут быть фольговые, полупроводниковые и фотоэлектрические тензодатчики.

Encardio-rite в основном работает с шестью различными типами тензодатчиков:

Модель EDS-11V / Герметичный тензодатчик с вибрирующей проволокой

Тензометр модели EDS-11V подходит для заделки в грунт или бетон или для поверхностного монтажа с помощью сварки. на стальных конструкциях.Он предоставляет важные количественные данные о величине и распределении деформации сжатия и растяжения и ее изменениях во времени.

Тензомер Encardio-rite включает в себя новейшую технологию вибрирующей проволоки для обеспечения удаленного цифрового считывания деформации сжатия и растяжения в плотинах, мостах, подземных полостях, канализационных / метро / железнодорожных / автомобильных туннелях, шахтах, стальных конструкциях и других областях приложение, где требуется измерение деформации.

Долговременная стабильность достигается за счет циклического изменения температуры и нагрузки, уникального метода зажима проволоки путем создания вакуума 1/1000 Торр внутри датчика посредством электронно-лучевой сварки.Это приводит к тому, что эффект окисления, влаги, условий окружающей среды и любого проникновения воды полностью устраняется.

Принцип работы герметичного тензодатчика с вибрирующей проволокой

Измеритель деформации вибрирующей проволоки Encardio-rite в основном состоит из магнитной натянутой проволоки с высокой прочностью на растяжение, один конец которой закреплен, а другой конец смещен пропорционально изменению напряжение.

Любое изменение деформации напрямую влияет на натяжение проволоки, что приводит к соответствующему изменению частоты вибрации проволоки.Резонансная частота, с которой колеблется провод, считывается блоком считывания. Напряжение пропорционально квадрату частоты, и устройство считывания может отображать это непосредственно в деформациях.

Характеристики герметичного тензодатчика с вибрирующей проволокой

  1. Тензодатчик точный, прочный и недорогой
  2. Он обеспечивает долгосрочную стабильность с высокой надежностью
  3. Он герметичен под вакуумом 0,001 торр
  4. изготовлен из нержавеющей стали
  5. Не требует специальной установки и обслуживания
  6. Широкий спектр аксессуаров доступен вместе с этим тензодатчиком
  7. Термистор доступен для температурной коррекции
  8. Дистанционное цифровое считывание для измерения деформации
  9. Простота регистрации данных

Применение герметичного тензодатчика с вибрирующей проволокой

  1. Измерение и контроль.. (Подробнее ..)

Что такое тензодатчик?

Введение в тензодатчики

Тензодатчик (иногда называемый тензодатчиком) - это датчик, сопротивление которого зависит от приложенной силы; Он преобразует силу, давление, натяжение, вес и т. Д. В изменение электрического сопротивления, которое затем можно измерить.Когда к неподвижному объекту прикладываются внешние силы, возникают напряжение и деформация. Напряжение определяется как внутренние силы сопротивления объекта, а деформация - как возникающие смещение и деформация.

Тензодатчик - один из наиболее важных датчиков в технике электрических измерений, применяемых для измерения механических величин. Как указывает их название, они используются для измерения деформации. Технический термин «деформация» состоит из деформации растяжения и сжатия, различающихся положительным или отрицательным знаком.Таким образом, тензодатчики можно использовать для измерения расширения, а также сжатия.

Напряжение тела всегда вызвано внешним или внутренним воздействием. Деформация может быть вызвана силами, давлениями, моментами, теплом, структурными изменениями материала и т.п. Если выполняются определенные условия, количество или значение влияющей величины может быть получено из измеренного значения деформации.Эта функция широко используется в экспериментальном анализе напряжений. Экспериментальный анализ напряжений использует значения деформации, измеренные на поверхности образца или детали конструкции, для определения напряжения в материале, а также для прогнозирования его безопасности и долговечности. Специальные преобразователи могут быть разработаны для измерения сил или других производных величин, например моментов, давлений, ускорений, смещений, вибраций и других. Преобразователь обычно содержит чувствительную к давлению диафрагму с прикрепленными к ней тензодатчиками.

Узнайте больше о единицах измерения деформации и истории измерительных датчиков.

Подробнее о тензодатчиках

Прецизионные тензодатчики общего назначения


Прецизионные тензодатчики общего назначения - это тензодатчики из константановой фольги, предлагаемые в широком спектре моделей для научного, промышленного и экспериментального анализа напряжений.Эти прецизионные тензодатчики могут использоваться для экспериментального анализа напряжений, мониторинга промышленного оборудования или различных научных приложений. В разделе «Тензодатчики общего назначения» вы найдете образцы тензодатчиков рядом с номерами деталей, чтобы вы могли видеть геометрию тензодатчика. Габаритные размеры также представлены в единицах СИ (метрическая система, мм) и стандартная система США (английский язык, дюймы). Прецизионные тензодатчики общего назначения предлагаются в линейных моделях, двойных параллельных сетках, тройниковых розетках (0/90 °), прямоугольных или дельтовых (45 ° или 60 °), штабелированных или плоских розетках, а также на сдвигах.

Тензодатчики качества преобразователя


Тензодатчики уровня преобразователя предназначены для клиентов, которые производят преобразователи или аналогичные чувствительные устройства. Тензодатчики, соответствующие качеству преобразователя, имеют более жесткие допуски на размеры трима держателя, что позволяет при необходимости использовать край держателя для выравнивания тензодатчика. Они также имеют более жесткие допуски на номинальные значения сопротивления. Эти датчики могут быть настроены на ползучесть в соответствии со спецификациями производителя преобразователя, и их можно настроить в соответствии с уникальными требованиями преобразователя.Они также являются отличными стандартными приборами для экспериментального анализа напряжений и / или проектов проверки деформаций.

Тензодатчики Karma



Рекомендации по выбору тензодатчиков


  1. Длина датчиков
  2. Количество датчиков в шаблоне шаблона
  3. Расположение датчиков в шаблоне шаблона
  4. Сопротивление сети
  5. Чувствительный к деформации сплав
  6. Несущий материал
  7. Ширина колеи
  8. Язычок под пайку, тип
  9. Конфигурация выступа под пайку
  10. Наличие
Omega предлагает полную линейку тензодатчиков Karma.Тензодатчики Karma могут использоваться для различных статических и динамических приложений. Тензодатчики Karma используются для датчиков, где требуется долговременная стабильность или использование при более высоких температурах. При использовании при комнатной температуре для измерения статической деформации преобразователь будет иметь очень хорошую стабильность в течение месяцев или даже лет. Тензодатчики Karma также предлагаются для измерения статической деформации в широком диапазоне температур от -75 до 200 ° C (от -100 до 392 ° F) из-за их хорошей линейности в этом широком диапазоне температур.Тензодатчики Karma часто используются в конструкциях датчиков, рассчитанных на усталость. Усталостная долговечность сплава Karma, как правило, намного лучше, чем у константана, поэтому датчики, использующие тензодатчики Karma, обеспечивают хорошую усталостную долговечность. Karma - это никель-хромовый сплав, который был выбран в качестве материала для тензодатчиков из-за его способности компенсировать модуль упругости, что позволяет значительно уменьшить сдвиг диапазона в конструкции преобразователя.

Для сплавов Karma коэффициент толщины имеет тенденцию уменьшаться с повышением температуры. Этот эффект уменьшения модуля упругости приведет к уменьшению сдвига пролета.У сплавов Karma есть недостатки, например, их сложно паять без специальных флюсов. У OMEGA есть решение. Мы устранили эту проблему, предложив наши тензодатчики Karma с медными контактными площадками под пайку. Никаких специальных флюсов или процедур не требуется.

Тензодатчики из фольги


Первый тензодатчик с металлической проволокой был разработан в 1938 году. Тензорезистор с металлической фольгой состоит из сетки из проволочной нити (резистора) приблизительно 0 Ом.001 дюйм (0,025 мм) толщиной, приклеивается непосредственно к деформируемой поверхности тонким слоем эпоксидной смолы. Когда к поверхности прикладывается нагрузка, результирующее изменение длины поверхности передается на резистор, и соответствующая деформация измеряется в единицах электрического сопротивления фольгированного провода, которое изменяется линейно с деформацией. Диафрагма из фольги и адгезивное связующее должны работать вместе, передавая напряжение, в то время как клей должен также служить в качестве электрического изолятора между сеткой из фольги и поверхностью.При выборе тензодатчика необходимо учитывать не только деформационные характеристики датчика, но также его стабильность и температурную чувствительность. К сожалению, наиболее желательные материалы для тензодатчиков также чувствительны к колебаниям температуры и имеют тенденцию изменять сопротивление по мере старения. Для кратковременных применений это может не быть серьезной проблемой, но для непрерывных промышленных измерений необходимо включать компенсацию температуры и дрейфа.

Выберите правильный тензодатчик

Предварительно смонтированные тензодатчики
Прецизионные манометры с присоединенным изолированным проводом длиной 1 м или 3 м для упрощения установки.Манометры серии KFH доступны в линейных формах, тройниковых розетках или плоских розетках 0/45/90. Тензодатчики для приложений сдвига или крутящего момента
Полумостовые тензодатчики для приложений сдвига или крутящего момента.Их прочная конструкция, надежность и гибкость делают их подходящими для высокоточных статических и динамических преобразователей.

Часто задаваемые вопросы

Цепи тензодатчиков


Чтобы измерить деформацию с помощью тензодатчика сопротивления, он должен быть подключен к электрической цепи, способной измерять мельчайшие изменения сопротивления, соответствующие деформации.В тензодатчиках обычно используются четыре элемента тензодатчика, которые электрически соединены и образуют мостовую схему Уитстона. На Рисунке 1 показана типичная диаграмма тензодатчика. Мост Уитстона - это схема с разделенным мостом, используемая для измерения статического или динамического электрического сопротивления. Выходное напряжение моста Уитстона выражается в выходных милливольтах на входной вольт. Схема Уитстона также хорошо подходит для температурной компенсации. Количество активных тензодатчиков, которые необходимо подключить к мосту, зависит от области применения.Например, может быть полезно соединить датчики, которые находятся на противоположных сторонах балки, один при сжатии, а другой при растяжении. В такой конфигурации можно эффективно удвоить выходную мощность моста при той же деформации. В установках, где все рычаги подсоединены к тензодатчикам, температурная компенсация выполняется автоматически, поскольку изменение сопротивления (из-за колебаний температуры) будет одинаковым для всех плеч моста.

Тензодатчики на заказ


OMEGA может изготовить тензодатчики на заказ.Мы понимаем, что нашим клиентам может потребоваться нестандартный узор, изготовленный в соответствии с их спецификациями. Пользовательские тензодатчики могут быть разработаны для упрощения установки тензодатчиков для конкретного применения или для среды с ограниченным пространством. Если вы не нашли то, что вам нужно в нашем стандартном ассортименте, сообщите нам об этом. Мы можем настроить ваш тензодатчик в соответствии с вашими потребностями, в том числе:
  • Изменение стандартной ширины колеи
  • Создание собственной розетки или шаблона тензодатчика
  • Поместите несколько манометров на общий держатель
  • Обеспечьте нестандартную длину вывода
  • Использовать нестандартный материал
  • Переместите контактные площадки для пайки или обеспечьте дополнительные точки подключения
  • Произведите обрезку определенного размера или формы для устранения препятствий
Мы можем предоставить индивидуальные характеристики ползучести в соответствии с вашим пружинным элементом, чтобы максимизировать производительность вашего датчика.Наша команда будет работать с вами над повышением или понижением компенсации ползучести в зависимости от результатов ваших испытаний. OMEGA может предоставить 1/2 или полные мосты Уитстона или индивидуальные розетки. Мы стремимся сделать покупку нестандартного тензодатчика быстрой и простой. Просто отправьте в OMEGA свой индивидуальный чертеж вместе с вашими спецификациями и требуемым количеством тензодатчиков. Команда OMEGA будет работать с вами над вашим приложением и предоставить расценки на специальные тензодатчики.Мы можем изготовить контрольные образцы нестандартных калибров всего за 2 недели. С объемами производства вскоре после этого. Для вашего тензодатчика будет создан индивидуальный номер детали, чтобы сделать заказ в будущем быстрым и легким.

Тензодатчик | Сопутствующие товары

↓ Посмотреть эту страницу на другом языке или регионе ↓

Принцип работы, характеристики и применение

Тензодатчик был изобретен Эдвардом Э.Симмонс и Артур С. Руге в 1938 году. Это изобретение привело к измерению значительного напряжения в различных структурах. Тензодатчик - это тип датчика, который используется в самых разных приложениях для измерения деформации объекта. Это важный геотехнический инструмент, который определяет деформации в различных конструкциях, таких как туннели, подземные полости, здания, мосты, бетон, каменные дамбы, заделки в грунт / бетон и т. Д. Вот все, что читатель может знать о тензодатчиках, включая принцип работы, характеристики и приложения.


Что такое тензодатчик?

Определение: Тензодатчик - одно из обязательных устройств, используемых в области геотехники для измерения деформации различных конструкций. Применение внешней силы приведет к изменению сопротивления тензодатчика.

тензодатчик

Базовая конструкция датчика имеет изолирующую гибкую основу для поддержки структуры из металлической фольги. Эта металлическая катушка приклеивается к тонкой подложке, называемой держателем, и вся установка прикрепляется к объекту с помощью подходящего клея.Поскольку объект деформируется под действием силы, давления, веса, натяжения и т. Д., Электрическое сопротивление фольги изменяется. Мост Уитстона измеряет изменение удельного сопротивления, которое связано с деформацией, с помощью величины, известной как калибровочный коэффициент.

тензодатчик-образец-диаграмма

Небольшие изменения сопротивления датчика измеряются с использованием концепции моста Уитстона. На рисунке ниже показан общий мост Уитстона, который имеет четыре резистивных плеча и напряжение возбуждения V EX .

Мост Уитстона

Мост Уитстона имеет две параллельные цепи делителя напряжения. R1 и R2 образуют одну цепь делителя напряжения, R3 и R4 образуют вторую цепь делителя напряжения. Выходное напряжение VO определяется по формуле:

.

Vo = [R3 / (R3 + R4) -R2 / (R1 + 2)] * V EX

Если R1 / R2 = R4 / R3, то выходное напряжение равно нулю, и мост называется сбалансированным мостом.

Небольшое изменение сопротивления приводит к ненулевому выходному напряжению. Если «R4» заменить тензодатчиком, и любые изменения сопротивления тензодатчика приведут к разбалансировке моста и появлению ненулевого напряжения.

Измерительный коэффициент тензодатчика

Коэффициент калибровки GF равен

.

GF = (∆R⁄RG) / ∈

Где,

‘ΔR’ - изменение сопротивления из-за деформации

«RG» - сопротивление недеформированного датчика

‘ε’ - деформация

Измерительный коэффициент обычной металлической фольги составляет около 2. Напряжение SV выходного датчика моста Уитстона равно,

SV = EV (GF.∈) / 4

Где EV - напряжение возбуждения моста

Тензодатчик рабочий

Функционирование тензодатчика полностью зависит от удельного электрического сопротивления объекта / проводника.Когда объект растягивается в пределах своей эластичности и не ломается или не изгибается постоянно, он становится тоньше и длиннее, что приводит к высокому электрическому сопротивлению. Если объект сжимается и не деформируется, а расширяется и укорачивается, это приводит к снижению электрического сопротивления. Значения, полученные после измерения электрического сопротивления манометром, помогают понять количество вызванного напряжением.

Напряжение возбуждения подается на входные клеммы измерительной сети, а выходное напряжение считывается на выходных клеммах.Обычно они подключены к нагрузке и могут оставаться стабильными в течение более длительных периодов времени, иногда десятилетий. Клей, используемый для манометров, зависит от продолжительности работы системы измерения - цианоакрилатный клей подходит для краткосрочных измерений, а эпоксидный клей - для долгосрочных измерений.

Принцип работы тензодатчика

Как мы знаем, сопротивление напрямую зависит от длины и площади поперечного сечения проводника, которая определяется как R = L / A

Где,

‘R’ = Сопротивление

‘L’ = длина

‘A’ = площадь поперечного сечения

Очевидно, что длина проводника изменяется с изменением размера и формы проводника, что в конечном итоге приводит к изменению площади поперечного сечения и сопротивления.

Любой нормальный калибр имеет длинную и тонкую проводящую полосу, расположенную зигзагообразно из параллельных линий. Цель этого зигзагообразного выравнивания - с большой точностью уточнить небольшое напряжение, которое возникает между параллельными линиями. Напряжение определяется как сила сопротивления объекта.

Розетки тензодатчиков

Два или более датчиков, расположенных близко друг к другу в форме розетки, для измерения количества компонентов и точной оценки деформации на поверхности, известны как розетки для датчиков деформации.Иллюстрация представлена ​​на рисунке ниже.

тензометрические розетки

тензодатчики

Эти датчики веса чаще всего используются в промышленности. Он очень точный и экономичный. По сути, датчик нагрузки состоит из металлического корпуса, на котором прикреплены тензодатчики. Чтобы металлический корпус был прочным и менее эластичным, для его проектирования используются легированная сталь, алюминий или нержавеющая сталь.

Когда к весоизмерительному датчику прилагается внешняя сила, он слегка деформируется, и, если он не перегружен, он возвращается к своей первоначальной форме.

Если датчик веса деформируется, датчик изменяет форму, вызывая изменение электрического сопротивления датчика, который, в свою очередь, измеряет напряжение.

Существуют распространенные типы тензодатчиков, которые включают изгибающую балку, блин, датчик нагрузки с одноточечной поперечной балкой, двустороннюю поперечную балку, зажимы для троса и т. Д.

Характеристики тензодатчиков

Важными характеристиками тензодатчиков являются:

  • Они подходят для более длительных периодов с соблюдением определенных мер предосторожности
  • Они обеспечивают точные значения при изменении температуры и других факторов
  • Они просты в изготовлении благодаря простым компонентам
  • Они просты в обслуживании и имеют длительный срок службы
  • Он полностью герметичен для защиты от повреждений, например, при транспортировке и установке

Применение тензодатчика

Исключительные характеристики позволяют использовать эти датчики в области геотехнической инженерии для контроля таких конструкций, как плотины, туннели и т. Д.постоянно и заблаговременно избегать несчастных случаев. Некоторые из областей применения тензодатчиков включают -

  • Мониторинг рельсов
  • Мосты кабельные
  • Аэрокосмическая промышленность
  • Атомные электростанции

Часто задаваемые вопросы

1). Какая чувствительность тензодатчика?

Напряжение течения зависит от скорости деформации. Кроме того, скорость деформации зависит от размера зерна объекта или рабочего материала. Он определяется как отношение изменения напряжения течения к изменению деформации.

2). Что такое единица деформации?

Деформация - безразмерная величина. Однако скорость деформации обратно пропорциональна времени, а единица СИ обратно пропорциональна секундам (с-1).

3). Как выбрать тензодатчик?

Выбирается на основе типа приложений и других связанных элементов. Такие как -

  • На основе измерительной длины и сопротивления
  • На основе затрат на рабочую силу
  • На основе материала и среды измерения

4).Почему мост Уитстона используется для тензодатчика?

Мост Уитстона может измерять выходное напряжение в милливольтах. Для тензодатчика со встроенным тензодатчиком изменение сопротивления можно измерить, когда он подключен к электрической цепи (мост Уитстона), которая измеряет незначительное изменение сопротивления. Когда выходное напряжение на мосту Уитстона становится отличным от нуля, схема теряет равновесие и помогает определить нагрузку на объект.

5). Как установить тензодатчики?

Вот шаги для установки тензодатчика

Таким образом, в этой статье дается подробное описание тензодатчика, принцип работы, измерительный коэффициент, характеристики и области применения.Помимо этого, корреляция цифровых изображений (DIC) - это метод, используемый в настоящее время для измерения деформации. Он используется во многих отраслях из-за точности и в качестве замены традиционных типов датчиков, таких как акселерометры, струнные потенциометры, LVDT и многие другие. Вот вам вопрос, какова основная функция тензодатчика?

Принцип работы тензодатчика

- ваше руководство по электрике

Привет друзья,

В этой статье я собираюсь описать вам принцип работы тензодатчика , коэффициент измерения и работу тензодатчика.

Тензодатчик - это пассивный преобразователь, который преобразует механическое смещение в изменение сопротивления. Датчик тензодатчика - это тонкое устройство, похожее на пластину, которое можно прикрепить к различным материалам для измерения приложенной деформации. Они используются в качестве основных датчиков во многих типах датчиков, таких как датчики давления, тензодатчики, датчики крутящего момента и т. Д.

Тензодатчики фольгового типа (рис. 1) очень распространены, когда резистивная фольга устанавливается на материал основы. Они доступны в различных формах и размерах для различных применений.Сопротивление фольги изменяется по мере того, как материал, к которому прикреплен датчик, подвергается растяжению или сжатию из-за изменения его длины и диаметра.

Это изменение сопротивления пропорционально приложенной деформации. Поскольку это изменение сопротивления очень мало по величине, его влияние может ощущаться только мостом Уитстона. Это основной принцип работы тензодатчика .

Принципиальная схема показана на Рисунке №2. На этой принципиальной схеме тензодатчик подключен к мосту Уитстона.Эта схема спроектирована таким образом, что, когда к тензодатчику не приложена сила, R 1 равно R 2 , а сопротивление тензодатчика равно R 3 . В этом состоянии мост Уитстона сбалансирован, и вольтметр не показывает отклонения.

Но когда к тензодатчику прилагается напряжение, сопротивление тензодатчика изменяется, мост Уитстона становится несбалансированным, через вольтметр течет ток. Поскольку чистое изменение сопротивления пропорционально приложенной деформации, следовательно, результирующий ток, протекающий через вольтметр, пропорционален приложенной деформации.Таким образом, вольтметр можно откалибровать по деформации или силе.

В приведенной выше схеме мы использовали только один тензодатчик. Это называется четвертьмостовой схемой. Мы также можем использовать в этой схеме два тензодатчика или даже четыре тензодатчика. Тогда эта схема называется «полумостом» и «полным мостом» соответственно. Полная мостовая схема обеспечивает большую чувствительность и наименьшее количество ошибок изменения температуры.

Фактор тензодатчика

Измерительный коэффициент тензодатчика определяется как изменение сопротивления на единицу изменения длины.

т.е. коэффициент манометра G f = (∆R / R) / (∆l / l)

где R = номинальное сопротивление датчика,
∆R = изменение сопротивления,
l = длина образца в ненапряженное состояние,
∆l = изменение длины образца.

Это можно доказать математически,

Калибровочный коэффициент, G f = 1 + 2v + (∆ρ / ρ) / (∆L / L)

Если изменение удельного сопротивления из-за деформации почти незначительно , то

коэффициент тензодатчика , G f = 1 + 2v

Где, v - коэффициент Пуассона.Его можно определить как отношение деформации в поперечном направлении к деформации в осевом направлении. Коэффициент Пуассона для большинства металлов находится в диапазоне от 0 до 0,5, что дает приблизительно 2 калибровочный коэффициент.

Розетки тензодатчиков

Форма тензодатчика выбирается в соответствии с измеряемой деформацией. Тензодатчики различной формы могут использоваться для измерения деформации в осевом, двухосном или многоосном направлениях. Если требуется одновременное измерение деформации более чем в одном направлении, используются многоэлементные тензодатчики.

Эти многоэлементные тензодатчики называют «розетками тензодатчиков». В двухэлементных тензодатчиках оба элемента удерживаются под углом 90 o . Этот тип тензодатчиков используется в датчиках силы. Розетки трехэлементных тензодатчиков используются для определения направления и величины основной деформации, возникающей в результате сложной структурной нагрузки. Самый популярный тип имеет угловое смещение между чувствительными элементами 45 o или 60 o (рис. 5).

Тензодатчики

Весоизмерительный датчик - это устройство для измерения силы. В датчике нагрузки датчик используется для преобразования силы в пропорциональный электрический сигнал. Существуют различные типы датчиков веса, такие как гидравлические, пневматические датчики веса и тензодатчики . В промышленности в основном используются тензодатчики. В этих тензодатчиках используются тензодатчики для измерения силы и создания пропорционального электрического сигнала.

Схематическое изображение тензодатчика показано на рисунке №4.В этом датчике веса четыре тензодатчика подключены к датчику веса. Они также связаны с мостом Уитстона. Эта система сконструирована таким образом, что в нормальных условиях мост Уитстона остается сбалансированным и, следовательно, вольтметр не показывает отклонения.

Но когда мы прикладываем нагрузку к датчику веса, в тензодатчиках происходит деформация. Эта деформация тензодатчиков изменяет их сопротивление. Это делает мост Уитстона неуравновешенным. И вольтметр показывает показания. Поскольку дисбаланс в цепи пропорционален нагрузке, вольтметр можно откалибровать по силе или нагрузке.

Характеристики тензодатчиков

Для удовлетворительной работы тензодатчик должен иметь следующие характеристики:

  • Он должен иметь высокое значение калибровочного коэффициента. Благодаря высокому значению калибровочного коэффициента мы можем получить высокую чувствительность системы.
  • Он должен иметь высокое значение сопротивления, так как сводит к минимуму влияние нежелательных изменений сопротивления в измерительной цепи.
  • Он должен иметь низкий температурный коэффициент сопротивления.Очень важно минимизировать ошибки из-за перепадов температуры.
  • Не должно иметь эффектов гистерезиса.
  • Он должен иметь линейные характеристики. вариации сопротивления всегда должны быть пропорциональны вариациям деформации.


Спасибо, что прочитали о «принципе работы тензодатчика».

Приборы | Все сообщения

© www.yourelectricalguide.com/ Принцип работы тензодатчика pdf.

Тензодатчики

: конструкция, принцип работы и общие типы

Тензодатчик

- это устройство, которое изменяет сопротивление с силой; он преобразует физические величины, такие как сила, давление, натяжение и вес, в изменения сопротивления для измерения этих физических величин. Когда внешняя сила действует на неподвижный объект, возникают напряжение и деформация. Сила реакции (внешняя сила), возникающая внутри объекта, является напряжением, а возникающие смещение и деформация - деформацией.

Каталог

I. Структура

Тензодатчик состоит из чувствительной сетки, основы, покровного слоя и выводного провода. Между основанием и покровным слоем приклеивается чувствительная сетка с помощью клея. Типичная конструкция тензодатчика с проволочной обмоткой показана на рисунке ниже.

1. Чувствительная сетка

Чувствительная сетка - это сетка, сделанная из легированной проволоки или фольги из сплава.Он может преобразовать поверхностную деформацию измеряемого компонента в относительное изменение сопротивления. Поскольку она очень чувствительна, ее называют чувствительной сеткой. Он состоит из двух частей: вертикальной сетки и горизонтальной сетки. Центральная линия вертикальной сетки называется осью тензодатчика.

Чувствительная сетка является основным компонентом тензорезистора, и ее характеристики имеют решающее влияние на работу тензорезистора. Чтобы улучшить характеристики тензодатчиков сопротивления, люди исследовали характеристики сопротивления деформации различных материалов, тем самым разработав чувствительные материалы затвора, включая металлы, полупроводники и оксиды металлов.В настоящее время обычно используемые чувствительные к металлу сеточные материалы в основном включают медно-никелевые сплавы, никель-хромовые сплавы, никель-молибденовые сплавы, сплавы на основе железа, сплавы на основе платины и сплавы на основе палладия. Коэффициенты чувствительности тензорезисторов сопротивления с металлическими материалами в качестве чувствительных сеток обычно находятся в диапазоне от 2,0 до 4,0. Полупроводниковые материалы, такие как кремний и германий, обладают пьезорезистивным эффектом, и все материалы также используются в качестве чувствительных вентилей. Коэффициент чувствительности тензорезисторов с полупроводниковыми материалами в качестве чувствительных вентилей обычно составляет около 150, что намного выше, чем у металлических материалов в качестве чувствительных вентилей.

2. Подложка

Подложка является неотъемлемой частью тензорезистора. Его функция заключается в том, чтобы постоянно или временно размещать чувствительную сетку на испытательном образце до установки тензодатчика и изолировать чувствительную сетку и образец, к которому прикреплен тензодатчик. Материалы подложек в тензодатчиках обычно должны соответствовать следующим требованиям: мягкость и определенная механическая прочность, хорошие адгезионные и изоляционные свойства, низкая ползучесть и гистерезис, отсутствие поглощения влаги и способность работать при различных температурах.

3. Подводящий провод

Подводящий провод тензорезистора представляет собой металлический провод или полосовой металлический провод, вытянутый из чувствительной сетки. Обычно выводной провод подключается к чувствительной сетке и становится частью тензодатчика при его изготовлении. Есть также некоторые тензодатчики из фольги, которые не имеют выводного провода, когда они покидают завод. Подводящий провод должен иметь низкое и стабильное удельное сопротивление и небольшой температурный коэффициент сопротивления. Материал тензодатчика при нормальной температуре - это в основном красная медь.Чтобы облегчить сварку, поверхность медного провода можно лужить. Провода среднетемпературных тензодатчиков и высокотемпературных тензодатчиков могут быть посеребренными, никелированными, покрытыми нержавеющей сталью или серебряными, хромоникелевыми (или модифицированными), никелевыми, железо-хромо-алюминиевыми, платиновыми, или платина-вольфрам. В тензодатчиках с высоким усталостным ресурсом в качестве свинца может использоваться бериллиевая бронза.

4. Покрывающий слой

Покровный слой тензорезистора сопротивления используется для защиты чувствительной сетки от механических повреждений или предотвращения окисления при высоких температурах.Он обычно используется для изготовления основной пленки или ткани из стекловолокна, пропитанной органическим клеем (например, эпоксидной смолой, фенольной смолой и т. Д.) В качестве покровного слоя, а клей, используемый при производстве чувствительной сетки, также может быть покрыт Пол защиты. Материал покровного слоя включает бумагу, полиэтиленовую пленку и стеклоткань.

II. Принцип работы

Тензодатчик - это своего рода высокоточный механический элемент измерения количества с широким спектром применения.Его основная задача - преобразовать деформацию поверхности детали в электрический сигнал, который вводится в соответствующие инструменты для анализа. В природе все объекты, кроме сверхпроводников, имеют электрическое сопротивление, а разные объекты - разную электропроводность. Сопротивление объекта связано со свойствами материала и геометрией объекта, и тензодатчик сопротивления использует эту характеристику сопротивления проводника.

Самым важным элементом тензодатчика является чувствительная сетка.Чувствительную сетку можно рассматривать как резистивную проволоку, и изменения ее свойств материала и геометрии вызовут изменение сопротивления проволочной сетки.

Предположим, что металлический провод сопротивления, удельное сопротивление его материала равно ρ, а исходная длина равна L. Без ограничения общности, предполагая, что его поперечное сечение представляет собой круг с диаметром D и площадью A, начальное Значение сопротивления провода сопротивления составляет R:

Под действием внешней силы провод сопротивления деформируется.Если предположить, что резистивный провод вытянут в осевом направлении, его поперечный размер будет соответственно уменьшен, а уменьшение радиуса поперечного сечения приведет к изменению площади поперечного сечения. Исходная площадь поперечного сечения провода составляет:

Его относительное изменение:

Где μ - коэффициент Пуассона материала провода. dL / L - относительное изменение длины металлической проволоки, выраженное в деформации, а именно:

Изменение значения сопротивления, возникающее при удлинении проволоки сопротивления, составляет:

В формуле первое срок обусловлен изменением удельного сопротивления после деформации металлической проволоки; последний член обусловлен изменением геометрического размера после деформации металлической проволоки.При комнатной температуре для многих металлических материалов в определенном диапазоне деформации относительное изменение сопротивления проволоки сопротивления пропорционально относительному изменению осевой длины проволоки. который равен:

В формуле Ks - это коэффициент чувствительности одиночного провода. Это означает, что скорость изменения сопротивления металлической проволоки линейно зависит от ее осевой деформации. В соответствии с этим законом материалы, которые могут вызывать изменения сопротивления во время деформации, используются для изготовления тензодатчиков сопротивления, которые преобразуют сигналы деформации в электрические сигналы.

III. Общие типы

1. Тензодатчик с проволочной обмоткой

Тензодатчик с проволочной обмоткой имеет высокий предел усталостной прочности и деформации и может использоваться в качестве элемента преобразования деформации датчика для динамических испытаний. В тензодатчиках с проволочной обмоткой используется бумажная основа и бумажная крышка, которые недороги и просты в установке. Однако, поскольку боковая часть чувствительной сетки тензодатчика имеет дугообразную форму, ее боковой эффект велик, а точность измерения низкая.Кроме того, деталь с торцевой дугой сложно изготовить, а форму не так просто обеспечить, чтобы обеспечить ту же форму, что делает работу тензодатчика рассредоточенной. Измерение деформации при комнатной температуре постепенно заменяется другими видами.

2. Тензодатчик короткого замыкания

Существуют также бумажные и резиновые тензодатчики. Тензодатчик короткого замыкания закорочен толстыми медными проводами в поперечном направлении, поэтому коэффициент бокового воздействия очень мал (<0.1%), что является самым большим преимуществом тензорезистора с коротким замыканием. Кроме того, форму чувствительной сетки легче обеспечить в процессе производства, поэтому точность измерения высока. Однако из-за большого количества паяных соединений поперечное сечение паяных соединений резко меняется, поэтому этот тензодатчик имеет короткий усталостный срок службы.

3. Тензодатчик из металлической фольги

Чувствительная сетка тензодатчика из фольги изготовлена ​​из металлической фольги из медно-никелевого или хромоникелевого сплава толщиной 0.002 ~ 0,005 мм, который изготавливается в процессе гравировки, изготовления пластин, фотолитографии и коррозии (см. Рисунок 2-5). Основание покрывается полимерным клеем с другой стороны фольги и полимеризуется при нагревании. Толщина основания обычно составляет 0,03-0,05 мм.

По сравнению с проволочными тензодатчиками преимущества фольговых тензодатчиков следующие:

- Чувствительная сетка очень тонкая, а площадь контакта между фольгой и клеевым слоем больше, чем у проволоки, поэтому плотно приклеен и способствует передаче деформации, поэтому состояние деформации, которое он ощущает, ближе к состоянию деформации на поверхности образца, Высокая точность измерения;

- Чувствительная сетка тонкая и широкая.При условии одинаковой площади поперечного сечения площадь поверхности сетки из фольги больше, чем у проволочной сетки, а теплоотвод хороший, поэтому пропускается больший ток, поэтому он может выдавать более сильный сигнал. и повысить чувствительность измерения

- Боковые концы чувствительной сетки представляют собой более широкие полосы, поэтому боковой эффект невелик;

- Лист из фольги обеспечивает точный размер и однородные линии, поэтому коэффициент чувствительности невелик;

- Фольговые тензодатчики обладают малой ползучестью и большим усталостным ресурсом;

- Хорошие рабочие характеристики, из них могут быть изготовлены тензодатчики различных форм и размеров, особенно тензодатчики с малой длиной сетки или специальные чувствительные узоры сетки;

- Производственный процесс автоматизирован, возможно серийное производство, эффективность производства высокая.

Поскольку фольговые тензодатчики обладают многими из перечисленных выше преимуществ, они широко используются в различных областях измерения. Существует тенденция постепенно заменять тензодатчики с проволочной обмоткой при измерении деформации при комнатной температуре.

Как работает тензодатчик? Что такое тензодатчик?

Что такое датчик веса , какие существуют типы датчиков силы и как они работают при измерении силы? В этом подробном руководстве вы узнаете о функциях и возможностях различных тензодатчиков, также известных как датчики силы.


Датчик нагрузки , произведенный в США компанией FUTEK Advanced Sensor Technology (FUTEK), ведущим производителем датчиков нагрузки, производящим огромный выбор датчиков силы , использующих одну из самых передовых технологий в области датчиков: тензодатчик из металлической фольги технология. Датчик силы определяется как преобразователь, который преобразует входную механическую нагрузку , вес, растяжение, сжатие или давление в электрический выходной сигнал (определение тензодатчика).Датчики силы также широко известны как Force Transducer . Существует несколько типов датчиков веса в зависимости от размера, геометрии и грузоподъемности.

Посетите наш магазин тензодатчиков. Доступно более 600+ типов тензодатчиков!


Что такое тензодатчик, датчик силы или датчик силы?

По определению, тензодатчик (или тензодатчик) представляет собой тип датчика, в частности датчик силы. Он преобразует входную механическую силу , такую ​​как нагрузка , вес (также известные датчики веса), растяжение , сжатие или давление (также известные как датчики давления для измерения давления - что такое датчик давления?) В другое физическое состояние. переменная, в данном случае, в электрический выходной сигнал, который можно измерить, преобразовать и стандартизировать.По мере увеличения силы, приложенной к датчику силы, электрический сигнал изменяется пропорционально.

Преобразователи силы

стали важным элементом во многих отраслях промышленности, включая автомобилестроение, высокоточное производство, аэрокосмическую и оборонную промышленность, промышленную автоматизацию, медицину и фармацевтику, а также робототехнику, где первостепенное значение имеет надежное и высокоточное измерение нагрузки (например, медицинские датчики нагрузки). Совсем недавно, с развитием коллаборативных роботов (коботов) и хирургической робототехники, появилось много новых приложений для измерения силы , таких как миниатюрные медицинские датчики для роботизированной хирургии.

Миниатюрный линейный датчик нагрузки LCM100

Ячейка нагрузки через отверстие пончика ЛТх400 - Шайба силы

Посетите наш магазин тензодатчиков. Доступно более 600+ типов тензодатчиков!

Как работает тензодатчик?

Во-первых, нам необходимо понять физику и материалы, лежащие в основе принципа работы тензодатчика , тензодатчика (иногда называемого тензодатчиком ).Тензодатчик из металлической фольги - это материал, электрическое сопротивление которого зависит от приложенной силы. Другими словами, он преобразует (или преобразует) силу, давление, растяжение, сжатие, крутящий момент, вес и т. Д. В изменение электрического сопротивления, которое затем можно измерить. Таким образом, тензодатчик из металлической фольги является строительным блоком принципа работы датчика силы. Измерение веса с помощью тензометрического моста также является одним из замечательных приложений этой технологии.

Тензодатчики - это электрические проводники, плотно прикрепленные к пленке зигзагообразно.Когда эту пленку натягивают, она вместе с проводниками растягивается и удлиняется. Когда его толкают, он сокращается и становится короче. Это изменение формы вызывает изменение сопротивления в электрических проводниках. На основании этого принципа можно определить прилагаемую к весоизмерительной ячейке деформацию, поскольку сопротивление тензодатчика увеличивается с приложенной деформацией и уменьшается с уменьшением.

Рис. 1. Тензорезистор из металлической фольги. Источник: ScienceDirect

Конструктивно датчик силы (или преобразователь ) выполнен из металлического корпуса (также называемого изгибом), к которому прикреплены тензодатчики из фольги .Корпус датчика обычно изготавливается из алюминия или нержавеющей стали, что придает датчику две важные характеристики: (1) обеспечивает прочность, чтобы выдерживать высокие нагрузки, и (2) обладает эластичностью, позволяющей минимально деформироваться и возвращаться к своей исходной форме при воздействии силы. удаленный.

Когда прикладывается сила ( растяжение или сжатие ), металлический корпус действует как «пружина» и слегка деформируется, и, если он не перегружен, он возвращается к своей исходной форме. По мере деформации изгиба тензодатчик также изменяет свою форму и, следовательно, свое электрическое сопротивление, что создает изменение дифференциального напряжения через цепь моста Уитстона .Таким образом, изменение напряжения пропорционально физической силе, приложенной к изгибу.

Рис. 2: Деформация тензодатчика как при растяжении, так и при сжатии.

Посетите наш магазин тензодатчиков. Доступно более 600+ типов тензодатчиков!

Эти тензодатчики расположены в так называемой схеме моста Уитстона (см. Анимированную схему цепи датчика веса). Это означает, что четыре тензодатчика соединены между собой в виде замкнутой цепи, и измерительная сетка измеряемой силы выравнивается соответствующим образом.

Модуль усилителя тензодатчика (или преобразователи сигнала тензодатчика) подает регулируемое напряжение возбуждения на усилитель моста Уитстона тензодатчика и преобразует выходной сигнал мВ / В в другую форму сигнала, более полезную для пользователя. Сигнал, генерируемый тензодатическим мостом, является сигналом низкой мощности и может не работать с другими компонентами системы, такими как ПЛК, модули сбора данных (DAQ), регистраторы данных тензодатчиков, компьютеры или микропроцессоры. Таким образом, функции усилителя тензодатчика включают в себя напряжение возбуждения, фильтрацию или ослабление шума, усиление сигнала и преобразование выходного сигнала (т.е.е. АЦП с тензодатчиком).

Кроме того, изменение выходного напряжения усилителя тензодатчика откалибровано так, чтобы оно было линейно пропорциональным ньютоновской силе, приложенной к изгибу.

Рис. 3: Тензодатчик - схема Уитстона с полным мостом.

Важным понятием, касающимся датчиков силы, является чувствительность и точность тензодатчика. Точность датчика силы может быть определена как наименьшее количество силы, которое может быть приложено к корпусу датчика, необходимое для того, чтобы вызвать линейное и повторяемое изменение выходного напряжения.Чем выше точность тензодатчика силы, тем лучше, поскольку он может постоянно фиксировать очень ощутимые изменения силы. В таких приложениях, как высокоточная автоматизация производства, хирургическая робототехника, аэрокосмическая промышленность, линейность тензодатчиков имеет первостепенное значение для обеспечения точной подачи данных в систему управления PLC или DAQ при точном измерении силы. Некоторые из наших универсальных весоизмерительных ячеек демонстрируют нелинейность ± 0,1% (от номинальной мощности) и неповторяемость ± 0,05% RO.

Хотите узнать больше о тензодатчиках? Загляните в наш магазин тензодатчиков!

Каковы преимущества тензодатчиков?

Тензодатчики с металлической фольгой (тензодатчики с тензометрическим датчиком) являются наиболее распространенной технологией, учитывая их высокую точность, долгосрочную надежность, разнообразие форм и геометрии датчиков, а также экономическую эффективность по сравнению с другими технологиями измерения силы.Кроме того, тензометрические датчики силы меньше подвержены влиянию колебаний температуры.

  • Самая высокая точность, которая может соответствовать многим стандартам от хирургической робототехники до авиакосмической промышленности;
  • Прочная конструкция из высокопрочной нержавеющей стали или алюминия;
  • Поддерживать высокую производительность при максимально долгом сроке службы даже в самых суровых условиях. Некоторые конструкции тензодатчиков могут работать до миллиардов полностью обращенных циклов (срок службы).
  • Множество геометрий и индивидуальных форм, а также варианты крепления для ЛЮБОЙ шкалы В ЛЮБОМ месте.
  • Полная гамма блюд с вместимостью от 10 граммов до 100 000 фунтов.

Какие типы датчиков веса?

Несмотря на то, что существует несколько технологий для измерения силы, мы остановимся на наиболее распространенном типе тензодатчиков: тензодатчиках из металлической фольги. В пределах типов датчиков силы существует множество форм и геометрий тела, каждый из которых предназначен для различных применений. Познакомьтесь с ними, если хотите купить датчик веса:

  • Встроенный датчик нагрузки - Чаще всего называется датчиком силы встроенного датчика силы с наружной резьбой.Этот тип датчика силы нагрузки может использоваться как в приложениях силы толкания, так и тяги. Встроенные датчики обеспечивают высокую точность и высокую жесткость при минимальном необходимом монтажном зазоре. Они отлично подходят для выносливости, приложений для измерения усилия и датчика измерения силы для оборудования для тренировок в тренажерном зале. Также предлагается в миниатюрных версиях в виде микродатчик нагрузки (он же микродатчик силы, миниатюрный датчик нагрузки, миниатюрный датчик силы или миллиграммовый датчик нагрузки).
  • Весоизмерительная ячейка с колонной - FUTEK предлагает широкий ассортимент емкостных весоизмерительных ячеек (также известных как тензодатчики с колонной), предназначенных для высокопроизводительных приложений сжатия, таких как испытание силы зажима тисков станков с ЧПУ.Эти модели предлагают прочную конструкцию с грузоподъемностью от 2 000 до 30 000 фунтов. Компания FUTEK также разработала серию миниатюрных контейнеров для тензодатчиков для приложений, где размер является критическим фактором.
  • Кнопка нагрузки - Эти датчики силы имеют единственную плоскую выступающую поверхность (также известную как кнопка), на которую прикладывается сжимающая сила. Что впечатляет в кнопках загрузки, так это их низкопрофильная конструкция датчика веса. Какими бы небольшими они ни были, они известны своей надежностью и используются при усталостных нагрузках.Для некоторых приложений требуются миниатюрные режимы, такие как кнопка загрузки сверхминиатюрного тензодатчика LLB130. Измерение нагрузки на подшипник качения - это приложение, в котором используются кнопки нагрузки.
  • Весоизмерительная ячейка S Beam - С другими названиями, включая Z Beam Sensor, S-Type или Shear Beam Load Cell, S Beam Load Cell, S Beam Load Cell, S Beam Load Cell, S Beam Load Cell - датчик нагрузки растяжения и датчик нагрузки сжатия с внутренней резьбой для монтажа. Этот тип датчика силы, обладающий высокой точностью, тонким динамометрическим датчиком и компактным профилем, отлично подходит для поточной обработки и приложений с автоматической обратной связью.Весоизмерительные ячейки S Beam также могут использоваться в качестве бесконтактного датчика потока в приложении для измерения расхода жидкости.
  • Тензодатчик со сквозным отверстием - Также известный как тензодатчик со сквозным отверстием или тензодатчик с шайбой, динамометрический датчик со сквозным отверстием традиционно имеет гладкий внутренний диаметр без резьбы, используемый для измерения сжимающих нагрузок, которые требуют, чтобы стержень проходил через его центр. Одно из основных применений этого типа датчика - измерение нагрузки на болты.
  • Тензодатчики типа "блины" - Тензодатчики типа "блины" или универсальные датчики веса имеют центральное резьбовое отверстие для измерения нагрузок при растяжении или сжатии.Эти датчики силы используются в приложениях, где требуется высокая износостойкость, высокая усталостная долговечность или высокопроизводительные линейные измерения, например, силовые испытания материалов, тензодатчики для систем взвешивания резервуаров или тензодатчики кранов. Они также обладают высокой устойчивостью к внеосевым нагрузкам и также доступны в виде низкопрофильных тензодатчиков типа «блины».
  • Датчик нагрузки на конце стержня - Также известный как датчик нагрузки с приводом, этот тип датчика нагрузки предлагает одну наружную резьбу и одну внутреннюю резьбу для установки.Комбинация наружной и внутренней резьбы хорошо подходит для приложений, в которых необходимо адаптировать датчик силы к существующему приспособлению.
  • Датчик нагрузки с изгибающейся балкой - Обладает тонкой конструкцией, что делает его идеальным для OEM-приложений. Датчики нагрузки с изгибающимися балками, используемые при сжатии, можно использовать для измерения силы, поверхностного давления и смещения в OEM-приложениях. Консольные весоизмерительные ячейки благодаря своему миниатюрному размеру являются отличным выбором для работы в тесных условиях.
  • Одноточечный датчик веса - Боковой датчик нагрузки с одноточечной конструкцией, специально разработанный для OEM-приложений, требующих высокой точности или большого объема производства.Эти датчики силы на основе тензометрических датчиков измеряют растяжение и сжатие и также известны как компактные параллелограммные датчики или одноточечные датчики нагрузки. Боковые датчики нагрузки, такие как модель LSM300, являются рекомендуемым OEM-решением для измерения веса автоматических машин для розлива бутылок.

Также доступны другие уникальные конструкции, такие как датчики нагрузки со штифтом (также называемые штифтом датчика нагрузки), датчик нагрузки ремня безопасности и другие.

LLB130 Миниатюрная кнопка нагрузки

Миниатюрный тензодатчик колонки LCA305

Посетите наш магазин весоизмерительных ячеек с более чем 600 типами весоизмерительных ячеек!

Как выбрать датчик веса для вашего приложения?

Мы понимаем, что выбор подходящего датчика нагрузки - непростая задача, поскольку нет реального отраслевого стандарта, касающегося выбора весоизмерительных датчиков для продажи.Вы также можете столкнуться с некоторыми проблемами, в том числе с поиском совместимого тензометрического усилителя, формирователя сигнала тензодатчика или требования нестандартного продукта, который увеличил бы время доставки продукта.

Чтобы помочь вам выбрать датчик силы, компания FUTEK разработала простое руководство из 5 шагов. Вот краткая информация, которая поможет вам сузить круг выбора. Ознакомьтесь с нашим полным руководством «Важные соображения при выборе тензодатчика» для получения дополнительной информации.

  • Шаг 1: Изучите свое приложение и то, что вы измеряете .Датчики нагрузки отличаются от промышленных датчиков давления (также называемых датчиком давления) или датчиков крутящего момента, и они предназначены для измерения нагрузок на растяжение и сжатие.
  • Шаг 2 : Определите монтажные характеристики датчика и его сборку. У вас статическая нагрузка или она динамическая? Определите тип крепления. Как вы будете устанавливать этот датчик силы?


Линейные диаграммы

Схемы бокового монтажа

  • Шаг 3 : Определите минимальные и максимальные требования к емкости. Обязательно выберите грузоподъемность сверх максимальной рабочей нагрузки и определите все посторонние нагрузки (боковые нагрузки или нецентральные нагрузки) и моменты до выбора грузоподъемности. В некоторых случаях вам потребуется многоосевой датчик нагрузки, такой как 6-осевой датчик. Одним из типичных применений многоосных тензодатчиков в аэрокосмической отрасли является стенд для испытания тяги ракетного двигателя, необходимый для определения характеристик тяги и Isp ракетного двигателя в условиях статических испытаний.
  • Шаг 4: Определите свой размер и геометрию требования (ширина, вес, высота, длина и т. Д.) И требования к механическим характеристикам (выход, нелинейность, гистерезис, ползучесть, сопротивление моста, разрешение, частотная характеристика и т. Д.)) Другие характеристики, которые следует учитывать, включают водонепроницаемый датчик силы (погружной датчик нагрузки), криогенный, высокотемпературный, множественные или дублирующие мосты и TEDS IEEE1451.4.
  • Шаг 5: Определите тип вывода, который требуется вашему приложению. Выходные данные схемы датчиков силы указаны в мВ / В (милливольт на вольт). Следовательно, если вашему ПЛК, прибору или DAQ требуется аналоговый выход (т.Для некоторых приложений требуется цифровой индикатор весоизмерительной ячейки или портативный дисплей для локального считывания показаний весоизмерительной ячейки. Убедитесь, что вы выбрали правильный усилитель, а также откалибруйте всю систему измерения (датчик нагрузки + формирователь сигнала). Это готовое решение обеспечивает большую совместимость и точность всей системы измерения силы.

В сочетании с тросовым датчиком (он же струнный потенциометр) тензодатчики являются стержнем современной автоматизации производства.

FUTEK имеет специальные типы универсального модуля формирования сигнала, который поддерживает широкий диапазон входов датчиков, таких как ± 10 В постоянного тока, 0-20 мА, ± 400 мВ / В и входы импульсного типа TTL.Универсальный модуль формирования сигнала USB520 USB может работать в паре с датчиками различных типов и устраняет необходимость во внешнем источнике питания для датчика и оборудования отображения. Модуль питается от ПК через USB-кабель, обеспечивая напряжение возбуждения 5-24 В постоянного тока на датчик и одновременно 5 В постоянного тока для энкодеров.

Для получения более подробной информации о нашем Руководстве по 5 шагам, пожалуйста, посетите наш «Как выбрать тензодатчик» для получения полных рекомендаций.

Принцип работы тензодатчика

- Inst Tools

Тензометрические датчики или пьезорезистивные датчики

Пьезорезистивный означает «чувствительное к давлению сопротивление» или сопротивление, значение которого изменяется в зависимости от приложенного давления.Тензодатчик - классический пример пьезорезистивного элемента, типичный элемент тензодатчика, показанный здесь на кончике моего пальца:

Для практического применения тензодатчик должен быть приклеен (приклеен) к более крупному образцу, способному выдерживать приложенную силу (напряжение):

По мере того как образец для испытаний растягивается или сжимается под действием силы, проводники тензодатчика деформируются аналогичным образом. Электрическое сопротивление любого проводника пропорционально отношению длины к площади поперечного сечения (R ∝ {l / A}), что означает, что деформация растяжения (растяжение) увеличивает электрическое сопротивление за счет одновременного увеличения длины и уменьшения площади поперечного сечения, в то время как деформация сжатия (сжатие) снижает электрическое сопротивление за счет одновременного уменьшения длины и увеличения площади поперечного сечения.

При прикреплении тензодатчика к диафрагме получается устройство, которое изменяет сопротивление в зависимости от приложенного давления. Давление заставляет диафрагму деформироваться, что, в свою очередь, вызывает изменение сопротивления тензодатчика. Измеряя это изменение сопротивления, мы можем сделать вывод о величине давления, приложенного к диафрагме.

Классическая система тензодатчиков, представленная на предыдущем рисунке, изготовлена ​​из металла (как образец для испытаний, так и сам тензодатчик). В пределах своей упругости многие металлы обладают хорошими пружинными характеристиками.Металлы, однако, подвержены усталости при повторяющихся циклах деформации (растяжения и сжатия), и они начнут «течь», если будут деформированы за пределами их предела упругости. Это частый источник ошибок в металлических пьезорезистивных приборах для измерения давления: при избыточном давлении они имеют тенденцию терять точность из-за повреждения пружины и элементов тензодатчика.

Современные технологии производства сделали возможным создание тензодатчиков из кремния вместо металла. Кремний демонстрирует очень линейные пружинные характеристики в узком диапазоне движения и высокую устойчивость к усталости.Когда кремниевый тензодатчик перенапрягается, он полностью выходит из строя, а не «течет», как в случае с металлическими тензодатчиками. Обычно это считается лучшим результатом, поскольку он четко указывает на необходимость замены датчика (тогда как металлический датчик деформации может создавать ложное впечатление о продолжении работы после события перенапряжения).

По мере того как диафрагма изгибается наружу под действием приложенного давления жидкости, тензодатчик растягивается на большую длину, вызывая увеличение его сопротивления.Это изменение сопротивления приводит к дисбалансу мостовой схемы, вызывая напряжение (Vout), пропорциональное величине приложенного давления. Таким образом, тензодатчик работает для преобразования приложенного давления в измеряемый сигнал напряжения, который может быть усилен и преобразован в токовый сигнал контура 4–20 мА (или в цифровой сигнал «полевой шины»).

В некоторых конструкциях одиночная силиконовая пластина служит и диафрагмой, и тензодатчиком, чтобы в полной мере использовать превосходные механические свойства кремния (высокая линейность и низкая усталость).Однако кремний химически несовместим со многими технологическими жидкостями, поэтому давление должно передаваться на силиконовую диафрагму / датчик через нереактивную заполняющую жидкость (обычно жидкость на основе силикона или фторуглерода). Металлическая изолирующая диафрагма передает давление технологической жидкости заполняющей жидкости, которая, в свою очередь, передает давление на кремниевую пластину. На другой упрощенной иллюстрации показано, как это работает:

Изолирующая диафрагма спроектирована так, чтобы быть намного более гибкой (менее жесткой), чем силиконовая диафрагма, поскольку ее цель - беспрепятственно передавать давление жидкости от технологической жидкости к заполняющей жидкости, а не действовать как пружинный элемент.Таким образом, кремниевый датчик испытывает такое же давление, как если бы он находился в непосредственном контакте с технологической текучей средой, без необходимости контакта с технологической текучей средой. Гибкость металлической изолирующей диафрагмы также означает, что она испытывает гораздо меньшие нагрузки, чем силиконовая чувствительная диафрагма, что позволяет избежать проблем, связанных с усталостью металла, которые возникают в конструкциях передатчиков, использующих металл в качестве чувствительного (пружинного) элемента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *