Содержание

Как работает конденсатор – пояснение простым языком | ASUTPP

Конденсатор – небольшой элемент, присутствующий практически в любой электронной схеме. Его значимость безусловна, но вот принцип работы описать могут не многие. Но основной функционал стандартного конденсатора можно описать вполне простыми словами, и сперва необходимо понять, что такое конденсатор, и из чего он состоит.

Рисунок 1: Маркировка конденсаторов и обозначение электродов

Рисунок 1: Маркировка конденсаторов и обозначение электродов

Из чего состоит простой конденсатор?

Временно отложив в сторону сложные, многофункциональные конденсаторы, применяющиеся в промышленности и автоматизации некоторых система, необходимо ответить на простой вопрос: «Из каких элементов состоит конденсатор»?

Рисунок 3: Структура конденсатора

Рисунок 3: Структура конденсатора

Структура конденсатора:

  1. Первая металлическая пластина, к которой подаётся «+».
  2. Диэлектрический материал. Это такой материал, который не проводит электрический ток. К наиболее популярным диэлектрикам относятся: стекло, картон, фарфор, резина, некоторые виды смол, дерево.
  3. Вторая металлическая пластина, на которую приходит «-».

Современный конденсатор по своей форме представляет небольшой бочонок с двумя выводами. При выборе такого бочонка необходимо точно знать его ёмкость – основной рабочий параметр любого конденсатора.

Как работает конденсатор?

При подаче напряжения на конденсатор создаётся электрическое поле на металлических пластинах и элемент заряжается как аккумуляторная батарея небольшой ёмкости. Совсем небольшой ёмкости. Диэлектрик, расположенный между пластинами, не позволяет замкнуть цепь и соединиться зарядам. Получается, что каждый конденсатор является накопительным элементам, так как после отключения напряжения, заряды некоторое время остаются на металлических пластинах.

Рисунок 2: Пример простого полимерного конденсатора

Рисунок 2: Пример простого полимерного конденсатора

Чтобы высвободить накопившийся заряд, выводы обкладок (металлических пластин) конденсатора необходимо замкнуть.

Современные конденсаторы только внешне могут быть выполнены в виде бочонков, но внутри пластины имеют часто очень разнообразную форму. Например, уникальные спиралевидные или сферические обкладки. Такая форма пластин позволяет в несколько раз увеличить ёмкость элемента без изменения его внешних габаритов.

Зачем применяют конденсаторы

Если устройство и принцип действия конденсатора стали немного понятны, то вопрос «зачем?» остаётся открытым.

Конденсаторы применяются с целью:

  • Поддержания разницы потенциалов на другом элементе. Например, есть микроконтроллер – элемент, очень чувствительный к просадкам напряжения и если вольтаж падает, то он автоматически перезапускается. Конденсатор способен поддерживать напряжение именно в такие моменты, продолжая работу микроконтроллера без перерывов.
  • Фильтрования. Данный вопрос куда сложнее предыдущего, так как здесь чаще всего задействованы низкие и высокие частоты. Сказать можно одно: конденсаторы применяются с целью фильтрования как высоких, так и низких частот.

Конденсаторы применяются практически во всех современных электронных изделиях. От простого блока питания для смартфона или небольшой коробки управления ёлочной гирляндой и до автоматических шкафов управления серьёзными производственными конвейерами. Следует сразу уточнить, что при неисправности электронной схемы, первое место, куда необходимо обратить своё внимание – это именно конденсаторы.

Чтобы более подробно ознакомиться с работой конденсаторов, надо более глубоко окунуться в дебри электроники, но лучше всего познакомиться с другими элементами, такими как резисторы и диоды. Достаточно сказать, что стоимость конденсатора минимальна, но починка всего устройства иногда выходит в очень крупную сумму.

P.S. Более подробнее в моей новой статье – https://www.asutpp.ru/chto-takoe-kondensator.html

Конденсаторы: назначение, устройство, принцип действия

Конденсаторы, наряду с резисторами, являются одними из самых распространенных элементов в радиотехнических и электронных устройствах. Практически не существует устройств, в которых бы не применялись конденсаторы. Прежде всего, конденсаторы используются в качестве фильтров в выпрямителях и стабилизаторах напряжения (любой блок питания содержит в себе конденсаторы). Конденсаторы позволяют создавать временные интервалы необходимой выдержки и частоты в аналоговых схемах различных генераторов.

Первый прототип современного конденсатора появился в середине 18 века в Нидерландах. Питер ван Мушенбрук в своих опытах использовал стеклянную банку, выложенную внутри и снаружи оловянной фольгой (алюминий в те времена не использовался), заряд которой осуществлялся электрофорной машиной (единственный источник получения электрического тока в те времена). Позднее это устройство назовут лейденской банкой.

Рисунок 1

Устройство современного конденсатора аналогично устройству лейденской банки: две обкладки, между которыми находится диэлектрик. Емкость плоского конденсатора (измеряется в Фарадах) зависит от площади пластин (S), расстояния между пластинами (d) и диэлектрической проницаемости среды (ε). Геометрическая форма пластин конденсаторов может быть различной: для металлобумажных конденсаторов пластины выполняются в виде алюминиевой фольги свернутой вместе с диэлектриком в один клубок.

Рисунок 2

Приведенная формула для расчета емкости конденсаторов позволяет сделать вывод о том, что два проводника, расположенных рядом, обладают электрической емкостью. Это свойство проводников широко применяется в высокочастотной технике, при этом конденсаторы делаются в виде дорожек на печатной плате или в виде двух проводников.

Помимо емкости С, любой кабель характеризуется электрическим сопротивлением R. Как известно, RC-цепочка выступает в качестве интегрирующего звена в электронных схемах (рисунок 3). При входном импульсном сигнале на выходе сигнал искажается или, для сигналов незначительной мощности, может просто исчезнуть.

Рисунок 3

Из истории: первая попытка проложить трансатлантическую связь была предпринята в 1857 году. Однако, ученые не учли возможные искажения сигналов, которые могли возникнуть в кабеле, длиной более 4000 км. В результате телеграфный код в виде точек и тире, а по сути те же прямоугольные импульсы, искажались так, что на другом конце разобрать послание не удавалось. Лишь в 1865 году У. Томпсон предложил технологию передачи сигналов на дальние расстояния.

Диэлектрическая проницаемость среды ε и ток утечки

Увеличение диэлектрической проницаемости ε, исходя из формулы для расчета емкости конденсатора, повлечет возрастание емкости конденсатора. В большинстве случаев, в качестве диэлектриков в конденсаторах используются лавсан, полиэтилен или просто воздух. Если заменить эти диэлектрики, например спиртом или ацетоном, у которых диэлектрическая проницаемость существенно больше, то емкость конденсатора возрастет в 15…20 раз. Однако, диэлектрики с большой проницаемостью обладают достаточно высокой проводимостью, которая влияет на время разряда конденсатора через себя. Для описания этого свойства конденсаторов ввели термин тока утечки. Поэтому диэлектрики в конденсаторах характеризуются не только диэлектрической проводимостью, но и током утечки.

Электролитические конденсаторы

Электролитические конденсаторы обладают наибольшей удельной емкостью, среди всех типов конденсаторов. Емкость таких элементов может достигать 100 000 мкФ, а рабочее напряжение – до 600 В. Электролитические конденсаторы применяются в низкочастотных схемах и фильтрах блоков питания. Большая емкость электролитических конденсаторов предполагает и существенные размеры таких элементов (рисунок 4).

Рисунок 4

Электролитические конденсаторы могут хранить накопленную энергию несколько лет, однако они достаточно чувствительны к возможным перенапряжениям в цепи. При больших напряжениях или неправильном использовании (включении обычного электролитического конденсатора в цепь переменного тока) конденсаторы нагреваются, а затем просто взрываются. Особенно взрыву подвержены старые советские конденсаторы.

Принцип действия конденсаторов

Основные принципы при работе конденсаторов рассмотрим на примере простой схемы (рисунок 5). В качестве конденсатора лучше использовать электролитический конденсатор большой емкости.

Рисунок 5

Работа схемы: для начала необходимо зарядить конденсатор от источника питания через резистор R (график заряда конденсатора изображен на рисунке 6). Напряжение заряда возрастает по экспоненте, а ток заряда – спадает по экспоненте. Время полного заряда конденсатора определяется произведением емкости самого конденсатора С, величины сопротивления R и постоянной составляющей (для рассматриваемого примера t=5*C*R=5*500*0.002= 5 секунд). Далее переключатель SA переводится во второе положение, что соответствует разряду конденсатора через нагрузку (лампу накаливания). График разряда конденсатора приведен на рисунке 7.

Рисунок 6

Рисунок 7

Рассмотрим еще одну схему включения конденсатора (рисунок 8). При замыкании контакта SA произойдет кратковременная вспышка лампочки EL. Повторное замыкание контакта к вспышке не приведет, так конденсатор уже зарядился.

Рисунок 8

Конденсаторы в блоках питания

Всем электронным устройствам необходимо постоянное напряжения для питания и работы. Любой блок питания состоит из трансформатора, выпрямителя (однополупериодного или длвухполупериодного) и фильтра (рисунок 9).

Рисунок 9

Подбор необходимого конденсатора для указанных схем можно выполнять исходя из следующих соотношений:

– для двухполупериодного выпрямителя

[size=16]

C = Po / 2∙U∙f∙dU

где C – емкость конденсатора Ф, Po – мощность нагрузки Вт, U – напряжение на выходе выпрямителя В, f – частота переменного напряжения Гц, dU – амплитуда пульсаций В.

– для однополупериодного выпрямителя

C = Po / U∙f∙dU

– для трехфазного выпрямителя

C = Po / 3∙U∙f∙dU

Суперконденсатор – ионистор

Ионистор – новый класс электролитических конденсаторов (рисунок 10).

Рисунок 10

Ионисторы, по своим характеристикам сходны с обычными аккумуляторами. Заряд такого устройства происходит за несколько минут, а срок службы может превысить 40 000 часов.

Статьи по теме:
Про резисторы для начинающих заниматься электроникой

Конденсаторы в электрических и электронных схемах: назначение, устройство, принцип действия

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Назначение установок КРМ

Конденсаторные установки известны еще и как установки КРМ – то есть компенсаторы реактивной мощности. Они широко используются в энергетике, трансформаторах, асинхронных двигателях и другом оборудовании с появляющейся реактивной мощностью. Данное явление доставляет определенные неприятности подключенному оборудованию из-за создания дополнительного напряжения в сети. Для снижения негативных последствий и предназначены установки, компенсирующие реактивную мощность.

Очень часто возникает вопрос, зачем нужна конденсаторная установка для чего используется это устройство? Основной функцией данных систем является поддержание заданного уровня коэффициента мощности потребителя. С этой целью в реальном времени отслеживаются изменения нагрузки, после чего в нужный момент происходит включение или отключение нужного количества конденсаторных батарей.

Большая часть нагрузки современных электрических сетей создается на промышленных предприятиях электродвигателями, трансформаторами и другим оборудованием с электромагнитными системами.

Для их работы используется реактивная энергия, под действием которой появляется фазовый сдвиг между током и напряжением. При включении нагрузки происходит потребление не только активной, но и реактивной энергии. В связи с этим полная мощность увеличивается в среднем на 20-25% относительно активной мощности. Это соотношение и будет коэффициентом мощности.

Для того чтобы исключить попадание в сеть реактивной мощности применяются различные виды конденсаторных установок. За счет этого она вырабатывается и остается на месте, где и потребляется электрическими нагрузками.

Существует несколько видов установок компенсации реактивной мощности: автоматические высоковольтные и низковольтные, тиристорные, фильтрокомпенсирующие, а также тиристорные установки с фильтрацией высших гармоник. Отдельно следует отметить конденсаторные установки нерегулируемые, компенсирующие реактивную мощность постоянных нагрузок. Типичными примерами такого оборудования различные виды насосов, особенно используемых в системах тепло- и водоснабжения.

В этом случае коэффициент мощности повышается за счет приложения постоянной мощности конденсаторов напрямую к реактивной нагрузке.

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.

максимальное рабочее напряжение конденсатора

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Расчёт необходимой ёмкости

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя. На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70—72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Ср=2800 I / U

Если обмотки образуют треугольник:

Ср=4800 I / U

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

I = P / (3 U).

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

При пуске двигателя со значительной нагрузкой на валу параллельно с рабочей ёмкостью необходимо включить пусковую.

Её значение рассчитывают по формуле:

Сп=(2,5÷3,0) Ср

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Очень важен правильный выбор значения напряжения для конденсатора. Этот параметр, так же как и ёмкость, влияет на цену и габариты прибора. Если напряжение сети больше номинального значения конденсатора, пусковое приспособление выйдет из строя. Но и использовать оборудование с завышенным напряжением также не стоит. Ведь это приведёт к неэффективному увеличению габаритов конденсаторной батареи. Оптимальным является значение напряжения конденсатора в 1,15 раз превышающее значение напряжения сети: Uk =1,15 U с.

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Расчёт необходимой ёмкости.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники. Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки).
    Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью.
    Но к сожалению , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

Конденсатор переменного тока.

Где и для чего применяются

Всё же ответим на вопрос «для чего предназначен конденсатор?» с практической точки зрения. Для этого рассмотрим несколько схем.

Самое широкое применение электролитические конденсаторы нашли в качестве уже не раз упомянутого фильтра сетевых пульсаций в блоках питания. На схеме ниже изображено, где именно устанавливается электролит. Чем больше нагрузка – тем большая ёмкость электролита нужна для сглаживания пульсаций.

Следующее место, где применяются конденсаторы – это фильтры высоких и низких частот. Ниже на схеме приведены типовые включения. Таким образом в акустических системах разводят басы, средние и высокие частоты по динамикам без применения активных компонентов.

Балластные блоки питания часто используются для зарядки небольших аккумуляторов и питания маломощных устройств, таких как дешевые светодиодные лампочки, радиоприёмники и прочие. Плёночный конденсатор устанавливается последовательно с питающим устройством, ограничивая ток за счёт своего реактивного сопротивления – в этом и заключается принцип работы такой простой схемы.

Снабберы – это устройства, предназначенные для защиты полупроводниковых ключей и контактов реле от нагрузок, возникающих при коммутации. В современных импульсных высокочастотных БП нашли применение снабберы из резистора и конденсатора, таким образом улучшаются основные параметры в цепи и снижаются нагрузки на ключи, как и потери мощности на его нагрев. Принцип действия снаббера состоит в замедлении фронтов роста и спада напряжения на ключе за счет использования постоянной времени заряда ёмкости.

Принцип действия и для чего нужен конденсатор

Из обозначения и схематического изображения можно сделать заключение, что в качестве простейшего конденсатора могут выступить даже две металлические пластины, расположенные рядом. В качестве диэлектрика при этом справится воздух. Теоретически нет никакого ограничения на площадь пластин и расстояние между ними. Поэтому даже при разводе на огромные расстояния и уменьшении их размера, пускай и незначительная, но какая-то емкость сохраняется.

Такое свойство нашло использование в высокочастотной технике. Так, их научились делать даже в виде обычных дорожек печатного монтажа, а также просто скручивая два провода, которые находятся в полиэтиленовой изоляции. При использовании кабеля емкость конденсатора (мкф) увеличивается вместе с длиной. Но следует понимать, что если передаваемый импульс короткий, а провод длинный, то он может просто не дойти до точки назначения. Может использоваться конденсатор в цепи постоянного и переменного тока.

Работа конденсатора в электрической цепи

Уже давно мы отошли от понимания электричества в терминах движения, действия зарядов и так далее. Теперь мы мыслим понятиями электрических цепей, где обычными вещами являются напряжения, токи, мощность. И к рассмотрению поведения зарядов прибегаем только, чтобы понять, как работает в цепи какое-нибудь устройство.

Например, конденсатор в простейшей цепи постоянного электрического тока является просто разрывом. Обкладки ведь не соприкасаются друг с другом. Поэтому, чтобы понять принцип действия конденсатора в цепи, придется все-таки вернуться к поведению зарядов.

Зарядка конденсатора

Соберем простую электрическую цепь, состоящую из аккумулятора, конденсатора, резистора и переключателя.


Конденсатор: принцип действия

εc  – ЭДС аккумулятора, C – конденсатор, R – резистор, K – переключатель  

Когда переключатель никуда не включен, тока в цепи нет. Если подключить его к контакту 1, то напряжение с аккумулятора попадет на конденсатор. Конденсатор начнет заряжаться настолько, насколько хватит его емкости. В цепи потечет ток заряда, который сначала будет довольно большим, а по мере зарядки конденсатора будет уменьшаться, пока совсем не сойдет на нуль.

Конденсатор при этом приобретет заряд такого же знака, как и сам аккумулятор. Разомкнув теперь переключатель К, получим разорванную цепь, но в ней стало два источник энергии: аккумулятор и конденсатор.


Конденсатор

Разрядка конденсатора

Если теперь перевести переключатель в положение 2, то заряд, накопленный на обкладках конденсатора, начнет разряжаться через сопротивление R.

Причем, сначала, при максимальном напряжении, и ток будет максимальным, величину которого можно вычислить, зная напряжение на конденсаторе, по закону Ома. Ток будет течь, то есть конденсатор будет разряжаться, а напряжение его падать. Соответственно и ток будет все меньше и меньше. И когда в конденсаторе заряда совсем не останется, ток прекратится.


Процессы внутри конденсатора

У ситуации, описанной в этих двух случаях, есть интересные особенности:

  1. Электрическая батарея постоянного напряжения, работая в цепи с конденсатором, дает, тем не менее, переменный ток: при зарядке он изменяется от максимального значения до 0.
  2. Конденсатор, имея некоторый заряд, при разряжении через резистор, даст тоже переменный ток, изменяющийся от максимального значения до 0.
  3. В обоих случаях после непродолжительного действия ток прекращается. Конденсатор в обоих случаях после этого демонстрирует разрыв в цепи — ток больше не течет.

Описанные процессы называются переходными. Они имеют место в электрических цепях с постоянным напряжением питания, когда в них установлены реактивные элементы. После прохождения переходных процессов реактивные элементы перестают влиять на режимы токов и напряжений в электрической цепи. Время, в течение которого переходный процесс завершается, зависит как от емкости конденсатора C, так и от активного сопротивления нагрузки R. Очевидно, что чем они больше, тем больше нужен и интервал времени, пока переходный процесс не завершится.

Параметр, характеризующий время переходного процесса, называется «постоянной времени» для данной схемы, обозначается греческой буквой «тау»:

Формула

Произведение сопротивления в омах на емкость в фарадах, если рассмотреть внимательно эти единицы измерения, действительно дает величину в секундах. 

Однако переходный процесс разрядки конденсатора — это процесс плавный. То есть, грубо говоря, он не заканчивается никогда.


Временная диаграмма разрядки конденсатора через резистор

Uc  – напряжение  на конденсаторе (вольт), U – первоначальное напряжение заряженного конденсатора, t – время (сек)

На рисунке видно, что конденсатор будет разряжаться «всегда», так как чем меньше на нем остается зарядов, тем меньший ток будет бежать по цепи, следовательно, тем медленнее будет идти процесс разрядки. Процесс экспоненциальный. По времени отложены значения в секундах величин, кратных постоянной времени. С некоторых значений можно считать процесс практически законченным, например, при 5t, когда напряжения на конденсаторе осталось порядка 0,7%.

Режим, когда переходный процесс завершен, называется стационарным, или режимом постоянного тока.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.). Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF). Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов;
  • 450 В – 5000 часов;
  • 500 В – 1000 часов.

Неполярные конденсаторы

К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.

обозначение конденсатора на схеме

Конденсаторы переменной емкости

Эти виды конденсаторов имеют воздушный диэлектрик и могут менять свою емкость под действием внешней силы, например, такой как рука человека. Ниже на фото советские типы таких переменных конденсаторов.

переменные конденсаторы

Современные выглядят чуточку красивее

подстроечные конденсаторы

Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)

На схемах обозначаются так.

переменный конденсатор обозначение на схеме

Слева -переменный, справа – подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.

к73-9 советский конденсатор

Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой

что внутри конденсатора

Керамические конденсаторы

Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:

керамические конденсаторыкерамические каплевидные конденсаторы

SMD конденсаторы

smd конденсаторы

SMD конденсаторы – это керамические конденсаторы, которые построены по принципу бутерброда.

строение SMD конденсатора

Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Основное свойство конденсатора это емкость.

По мере накопления зарядов, поле начинает ослабевать, а сопротивление нарастает. Почему так происходит? Места на обкладках все меньше, одноименные заряды на них действуют друг на друга, а напряжение на конденсаторе становится равным источнику тока. Такое сопротивление называется реактивным, или емкостным. Оно зависит от частоты тока, емкости радиодеталей и проводов.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратиться. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. НО если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.
Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный.Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.

Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Убедиться в том, что конденсатор может проводить переменный электроток, наглядно поможет простейшая цепь, составленная из:

  • Источника тока. Он должен быть переменным.
  • Конденсатора.
  • Потребителя электротока. Лучше всего использовать лампу.

Однако стоит помнить об одном: лампа загорится лишь в том случае, если устройство имеет довольно большую емкость. Переменный ток оказывает на конденсатор такое влияние, что устройство начинает заряжаться и разряжаться. А ток, который проходит по сети во время перезарядки, повышает температуру нити накаливания лампы. В результате она и светится.

От емкости устройства, подключенного к сети переменного тока, во многом зависит электроток перезарядки. Зависимость прямо пропорциональная: чем большей емкостью обладает, тем больше величина, характеризующая силу тока перезарядки. Чтобы в этом убедиться, достаточно лишь повысить емкость. Сразу после этого лампа начнет светиться ярче, так как нити ее будут больше накалены. Как видно, конденсатор, который выступает в качестве одного из элементов цепи переменного тока, ведет себя иначе, нежели постоянный резистор.

При подключении конденсатора переменного тока начинают происходить более сложные процессы. Лучше их понять поможет такой инструмент, как вектор. Главная идея вектора в этом случае будет заключаться в том, что можно представить значение изменяющегося во времени сигнала как произведение комплексного сигнала, который является функцией оси, отображающей время и комплексного числа, которое, наоборот, не связано со временем.

Конденсатор в сети переменного тока может периодически перезаряжаться: он то приобретает какой-то заряд, то, наоборот, отдает его. Это означает, что кондер и источник переменного электротока в сети постоянно обмениваются друг с другом электрической энергией. Такой вид электроэнергии в электротехнике носит название реактивной.

Сравнение рабочего и пускового конденсатора

Сравнительная таблица применения конденсаторов для асинхронных двигателей, включенных на напряжение 220 В.

Таблица сравнения характеристик.

В связи с тем, что указанные типы конденсаторов имеют относительно большие габариты и стоимость, в качестве рабочего и пускового конденсатора можно использовать полярные (оксидные) конденсаторы. Они обладают следующим достоинством: при малых габаритах они имеют намного большую емкость, чем бумажные. Наряду с этим существует весомый недостаток: включать в сеть переменного тока напрямую их нельзя. Для использования совместно с двигателем, нужно применить полупроводниковые диоды.

Схема включения несложная, но в ней есть недостаток: диоды должны быть подобраны в соответствии с токами нагрузки. При больших токах диоды необходимо устанавливать на радиаторы. Если расчет будет неверным, или теплоотвод меньшей площади, чем требуется, диод может выйти из строя и пропустит в цепь переменное напряжение. Полярные конденсаторы рассчитаны на постоянное напряжение и при попадании на них напряжения переменного они перегреваются, электролит внутри них закипает и они выходят из строя, что может принести вред не только электромотору, но и человеку, обслуживающему данное устройство.

Напряжение 220 В – является напряжением опасным для жизни. В целях соблюдения правил безопасной эксплуатации электроустановок потребителей, сохранения жизни и здоровья лиц, эксплуатирующих данные устройства, применение данных схем включения должен проводить специалист.

Преимущества использования конденсаторных установок

Основными положительными качествами компенсационных систем является отсутствие каких-либо вращающихся частей, небольшие удельные потери активной мощности, возможность подбора любой практически необходимой мощности компенсации, возможность подключения к любой точке сети, простая эксплуатация и монтаж, отсутствие шумов во время работы, относительно низкие капиталовложения.

Конденсаторные установки бывают в двух вариантах:

  • Модульные – используют для компенсирования реактивной мощности в групповых сетях и сетях энергообеспечения на крупных и средних предприятиях.
  • Моноблочные – имеют широкое применение для компенсирования реактивной мощности в групповых сетях на малых предприятиях.

Если предприятие работает, круглые сутки и образование реактивной энергии случается постоянно, то выгодно чтобы конденсаторные установки работали круглые сутки. Но если на производстве, работа распределена неравномерно, предположим, в ночное время нагрузка значительно снижается, необходимо обеспечивать их выключение, так как непрерывная работа может привести к лишнему увеличению напряжения в электросетях.

Таким производствам больше подходят установки с автоматической регулировкой. Они имеют автоматический регулятор, он постоянно следит за значение коэффициента мощности, и, регулирует количество подключенных батарей, что позволяет максимально возмещать её объем.

Срок окупаемости при правильном выборе, может составить от шести месяцев до полутора лет.

Установка диммера

Установка электросчетчика в квартире

Установка и монтаж ГРЩ

Установка солнечных батарей

Установка подрозетников

Установка распаечных коробок

Принцип работы и назначение

В электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь. При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.

При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.

Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.

Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.

Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.

Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.

Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд. В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.

Таблица типовых обозначений и маркировки конденсаторов.

Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах  (mF), пикофарадах  (nF), нанофарадах ( nF).

Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF.  Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя. Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.

Конденсатор — электронное устройство, принцип работы, функциональное назначение, разновидности.

Конденсатор (электро-, Capacitor — Eng.) — элемент электрической цепи, который обеспечивает кратковременное накопление энергии и быструю отдачу накопленного. Применяются в цепях фильтров питания, цепях межкаскадовых связей, а также для фильтрации помех.

Основной характеристикой является ёмкость. Измеряется в Фарадах (Ф, F). Фарад характеризует заряды, создаваемые электрическими полями.
Емкость конденсатора пропорционально увеличивается с площадью обкладок и уменьшается с расстоянием между ними. Еще одной важным параметром конденсатора является рабочее напряжение. Напряжение это не с потолка берется, а характеризуется максимальным напряжением при превышении которого наступает пробой диэлектрика и выход конденсатора из строя. Качественные конденсаторы от дорожащих своим именем производителей, имеют солидный запас прочности и могут работать и на немного завышенных напряжениях без каких либо последствий. Потому именно их и стоит приобретать для лучшей стабильности и долговечности.

Существуют поляризированные и неполяризированные конденсаторы. При неправильном подключении поляризированного, он может выйти из строя из-за сильного нагрева, с последующим вскрытием или даже мини-взрывом.

Существует множество разновидностей конденсаторов.
В относительно сложных электронных схемах обычно применяются электролитические, полимерные и керамические. К тому же если конденсаторы используются с цифровым оборудованием, желательно чтобы они имели низкое эквивалентное последовательное сопротивление (Low — ESR). Чтобы это получить, производители используют более качественные компоненты конденсатора. Если требуется Low-ESR конденсатор а вы поставили обычный, он будет довольно сильно нагреваться и быстро выйдет из строя. Может быть за пару дней или даже часов.

Электролитические — самые недолговечные, по причине постоянного испарения электролита, особенно при повышенной температуре или плохой герметичности конденсатора. Но тем не менее, они и самые распространённые по причине своей дешевизны.


В основном, имеют срок службы не более 50 000 часов, обычно же 10 — 20 000. При испарении или недостаточном количестве электролита вздуваются и даже разрываются с характерным хлопком. Вздутые конденсаторы — показатель того что необходимо его заменить во избежании проблем с питанием и общей стабильностью.

Твёрдотельные полимерные

Относительно долговечны, очень редко вздуваются и намного компактней электролитических. Большинство производителей компьютерной техники, полностью перешли на полимерные конденсаторы, даже в бюджетном секторе. Нюанс в том, что они дороже электролитических. Потому этот переход был постепенным и произошёл благодаря массовому производству и удешевлению полимерных конденсаторов.

Принцип работы схож с электролитическими конденсаторами, только вместо электролита используется вязкий полимерный материал. Он практически не испаряется и имеет лучшие показатели, чем обычный электролит.

Керамические

Керамические конденсаторы умеют накапливать энергию с малыми потерями по току, лучше фильтруют помехи и не вздуваются в тяжёлых эксплуатационных условиях. А ещё они не вскрываются и не взрываются (есть исключения в некоторых видах полимерных), забрызгивая электролитом остальные компоненты схемы.
Имеют гораздо меньший размер в сравнении с электролитическими, меньше нагреваются. Срок службы 100 000 часов и более.

Не менее распространены танталовые конденсаторы, но применяются преимущественно в точной электронике с нанесением на саму плату. Танталовые конденсаторы, относятся к подвиду электролитических, но с натяжкой.

При малых размерах, имеют выдающиеся характеристики, а также долгий срок службы. Менее чувствительны к нефильтрованной высокочастотной составляющей, выносливы при работе с повышенной температурой, имеют низкий ESR.

Что такое конденсатор? Какой принцип работы конденсатора?

Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.
Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Из чего состоит конденсатор


Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.
подстроечные конденсаторы
Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)
На схемах обозначаются так.
переменный конденсатор обозначение на схеме
Слева -переменный, справа – подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.
к73-9 советский конденсатор
Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой
что внутри конденсатора

Керамические конденсаторы

Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:
керамические конденсаторы
керамические каплевидные конденсаторы

SMD конденсаторы

строение SMD конденсатора
Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Полярные конденсаторы

Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая – к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие – это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.
обозначение полярных конденсаторов на схеме

Электролитические конденсаторы

Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название “электролиты”.
электролитические конденсаторы
Строение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.
строение электролитического конденсатора
Давайте разберем один из таких электролитических конденсаторов во благо науки.

Снимаем его корпус и видим тот самый рулетик

Разматываем “рулетик” и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.
что внутри электролитического конденсатора
Некоторые ошибочно полагают, что бумага – это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?
На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:
схема строения электролитического конденсатора
Слой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?

где d – это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.
На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.
обозначение минусового вывода электролитического конденсатора
То есть  в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.

Танталовые конденсаторы

Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов – это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться – электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.
Выглядеть танталовые конденсаторы могут вот так
танталовые конденсаторы
ну или так
танталовые конденсаторы капли

Ионисторы

Есть также  особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что  там есть золото. Сам принцип работы ионистора ценее, чем золото.  Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик)  тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!
Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а  также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!
ионистор

большой ионистор
В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).
Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами.   А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.

Нет, лампочка не горит.
А  вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая – сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.

С помощью осциллографа мы будем снимать сигнал с красной и желтой точек относительно земли.
Думаю, этот генератор частоты вполне пойдет.

Для начала возьмем конденсатор на 1мкФ и резистор на 100 ом.

Далее за дело берется цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем здесь.  Будем использовать сразу два канала, то есть на одном экране будут высвечиваться сразу два сигнала. Здесь на экране уже видны наводки от сети 220 Вольт. Не стоит на это обращать внимание.

Красная осциллограмму снимаем с красной точки в цепи, а желтую – с желтой точки в цепи.

Зависимость сопротивления от частоты и сдвиг фаз

Поехали. Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать переменный ток с частотой в 100 Герц?
На дисплее осциллографа были выведены такие параметры, как частота сигнала и его амплитуда (эти параметры помечены белой стрелочкой).

F – это частота
Ma – амплитуда
Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.
Как вы видите на осциллограмме, с генератора выходит синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта, а на резисторе напряжение всего каких-то 136 мВ.

Как вы могли заметить, амплитуда желтого сигнала стала меньше. Это говорит нам о том, что конденсатор стал пропускать переменный ток, но его сопротивление до сих пор очень большое.
Но здесь можно заметить еще одну особенность: осциллограмма напряжения на резисторе сигнала сдвинулась влево, то есть она опережает сигнал с генератора частоты, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.
Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае – напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Давайте увеличим частоту  на генераторе до 500 Гц

На резисторе уже получили 560 мВ. Сдвиг фаз уменьшается. Получается, что мы чуть-чуть увеличили частоту, и сопротивление конденсатора стало меньше.
Увеличиваем частоту до 1 КГц

На резисторе у нас напряжение 1 Вольт. Напряжение не резисторе растет с увеличением частоты. Это говорит о том, что сопротивление конденсатора стало еще меньше.
Ставим частоту 5 КГц

Амплитуда 1,84 Вольта и сдвиг фаз явно становится меньше
Увеличиваем до 10 КГц

Амплитуда уже почти  такая же как и на входе. Сдвиг фаз менее заметен.
Ставим 100 КГц.

Сдвига фаз почти нет. Напряжение не резисторе почти сравнялось с напряжением генератора частоты. Это говорит о том, что конденсатор почти не оказывает сопротивление на высоких частотах.
Получился парадокс. Постоянный ток конденсатор не пропускает, а вот токи высокой частоты – без проблем!
Отсюда делаем глубокомысленные выводы:
Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.
Если построить обрезок графика, то получится типа что-то этого:

Зависимость сопротивления от номинала конденсатора

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по  этим же частотам.
Смотрим и анализируем значения:

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Гц  и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт (в реальности еще меньше из за помех). На частоте 500 Герц –  560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.
Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление становится больше.

Формула сопротивления конденсатора

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС  – это сопротивление конденсатора, Ом
П – постоянная и равняется приблизительно 3,14
F – частота, измеряется в Герцах
С – емкость,  измеряется в Фарадах
Так вот, поставьте в эту формулу частоту в  ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Последовательное и параллельное соединение конденсаторов

При последовательном соединении  конденсаторов
последовательное соединение конденсаторов
Их общая емкость будет вычисляться по формуле
последовательное сопротивление конденсаторов формула
а при параллельном соединении
параллельное соединение конденсаторов
их общая емкость будет вычисляться по формуле
формула параллельного соединения конденсаторов
Также в интернете нашел очень интересное видео по теме конденсаторов

Похожие статьи по теме “конденсатор”
ESR конденсатора
Как проверить конденсатор мультиметром
RC цепь

Конденсаторы

Принцип действия
В конденсатор обычно поступают перегретые пары теплоносителя, которые охлаждаются до температуры насыщения и, конденсируясь, переходят в жидкую фазу. Для конденсации пара необходимо отвести от каждой единицы его массы теплоту, равную удельной теплоте конденсации. В зависимости от охлаждающей среды (теплоносителя) конденсаторы могут быть разделены на следующие типы: с водяным охлаждением, с водо-воздушным (испарительным) охлаждением, с воздушным охлаждением, с охлаждением кипящим холодильным агентом в конденсаторе-испарителе, с охлаждением технологическим продуктом. Выбор типа конденсатора зависит от условий применения.

Применение
Конденсаторы применяются на тепловых и атомных электростанциях для конденсации отработавшего в турбинах пара. При этом на каждую тонну конденсирующегося пара приходится около 50 тонн охлаждающей воды. Поэтому потребность ТЭС и особенно АЭС в воде очень велика — до 600 тысяч м³/час. В маловодных районах охлаждение конденсаторов турбин может производиться воздухом (примером могут служить воздушно-конденсационные установки на Разданской ГРЭС, Армения), однако это ухудшает КПД турбин, вследствие повышения температуры конденсации. В турбинах с противодавлением конденсатор отсутствует — в этом случае весь отработанный пар поступает на производственные нужды.

Конденсатор холодильника «Минск-10»
В холодильных установках конденсаторы используются для конденсации паров хладагентов, например, фреона. В химической технологии конденсаторы используют для получения чистых веществ (дистиллятов) после перегонки или ректификации. Принцип конденсации успешно применяется также для разделения смеси паров различных веществ, так как их конденсация происходит при различных температурах.

Разновидности
По принципу теплообмена конденсаторы разделяются на смешивающие (конденсаторы смешения) и поверхностные. В смешивающих конденсаторах водяной пар непосредственно соприкасается с охлаждающей водой, а в поверхностных пары рабочего тела отделены стенкой от охлаждающего теплоносителя. Поверхностные конденсаторы разделяются по следующим особенностям:

по направлению потоков теплоносителя: прямоточные, противоточные и с поперечным потоком теплоносителей;
по количеству изменений направления движения теплоносителя — на одноходовые, двухходовые и др. ;
по количеству последовательно соединённых корпусов — одноступенчатые, двухступенчатые и др.
по конструктивному исполнению: кожухотрубные, пластинчатые и др.
Смешивающие конденсаторы
В смешивающем конденсаторе тепло- и массообменный процесс происходит путём прямого смешения сред. Охлаждающая вода разбрызгивается в пространстве смешивающего конденсатора. Пар конденсируется на поверхности капель воды и стекает вместе с ней в поддоны, откуда откачивается конденсатными насосами. Взаимное расположение потоков пара и воды может быть параллельным, противоточным или поперечноточным. При противотоке теплообмен более эффективен. Наиболее распространены пароводяные струйные аппараты, использующие струйные инжекторы. Поскольку в конденсат попадает охлаждающая вода с растворённым в ней воздухом и другими примесями, такая смесь не может быть использована для современных паровых котлов, которые предъявляют высокие требования к подготовке питательной воды. Поэтому смешивающие конденсаторы применяются либо в малых паровых машинах, либо в системах охлаждения с т. н. «сухими градирнями», где роль охладителей выполняют закрытые радиаторы. Поэтому охлаждающая вода, проходя через радиаторы, мало загрязняется и может быть присоединена к потоку конденсата.

Поверхностные конденсаторы
В поверхностных конденсаторах нет прямого контакта конденсата с охлаждающей водой, поэтому они применяются для любых систем прямого и оборотного охлаждения, в том числе и с охлаждением морской водой.

В корпусе 1 поверхностного конденсатора установлены трубные доски 2, в отверстия которых завальцованы тонкостенные трубки 3. Охлаждающая поверхность конденсатора образуется совокупностью поверхностей трубок, называемых «трубными пучками». Трубки выполняются из латуни или нержавеющей стали, они имеют, как правило, диаметр 24-28 мм и толщину 1-2 мм. Места вальцовки — основной путь попадания примесей в конденсат. Пространство между трубными досками и боковыми стенками конденсатора 4 представляют собой водяные камеры 5 и могут быть разделены перегородками на несколько отделений. Охлаждающая циркуляционная вода подводится под напором через патрубок 6 к нижнему отсеку водяной камеры, проходит по трубкам в поворотную камеру, проходит по другому пучку трубок и удаляется через патрубок 7. При этом вода нагревается примерно на 10 °C. Такой конденсатор называется двухходовым. Могут быть также одноходовые, трёхходовые и даже четырёхходовые конденсаторы. Одноходовые конденсаторы применяются, как правило, в судовых установках, где увеличение расхода охлаждающей воды не имеет практического значения, а также в конденсаторах турбоустановок АЭС, где это диктуется технико-экономическими соображениями.

Пар входит в конденсатор через горловину 8 цилиндра низкого давления турбины, попадает на холодную поверхность трубок 3, конденсируется, стекает вниз и скапливается в сборнике конденсата 9, откуда откачивается конденсатными насосами. Большая часть пара (свыше 99 %) конденсируется в т. н. зоне массовой конденсации, куда проникает сравнительно мало воздуха. Температура насыщенного пара не превышает обычно 50-60 °C. В зоне охлаждения парциальное давление пара меньше и температура паровоздушной смеси ниже. В этой зоне возможно переохлаждение конденсата, что неблагоприятно сказывается на эффективности установки в целом. Зону охлаждения отделяют перегородкой.

При конденсации в паровой части конденсатора образуется разрежение, то есть давление становится ниже атмосферного. При этом через неплотности в корпусе и через места вальцовки трубок проникает наружный воздух и воздух, растворённый в воде (примерно 0,05-0,1 % массового расхода пара). Попадание кислорода в конденсат влечёт возможность коррозии оборудования. Кроме того, примесь воздуха значительно ухудшает теплотехнические характеристики конденсатора, так как коэффициент теплоотдачи при конденсации пара составляет несколько тысяч кВт/(м²°С), а для паровоздушной смеси с большим содержанием воздуха — всего несколько десятков кВт/(м²°С). Воздух отсасывается пароструйным или водоструйным эжектором через патрубок 10. Так как воздух в конденсаторе смешан с паром, то отсасывать приходится паровоздушную смесь. Попадание в конденсат сырой охлаждающей воды приводит к солевому загрязнению пароводяного тракта, поэтому химический состав конденсата необходимо контролировать. На электростанциях после конденсатных насосов устраивают системы очистки конденсата.

Для расчёта теплотехнических свойств конденсатора используются заводские характеристики конденсаторов. Коэффициент теплопередачи в поверхностном конденсаторе зависит от паровой нагрузки, диаметра и чистоты трубок, скорости воды в трубках, числа ходов и других факторов. Коэффициент теплопередачи резко падает при снижении паровой нагрузки в связи с неравномерностью процесса распространения пара. Для определения коэффициента теплопередачи часто используют эмпирические зависимости, полученные Львом Давыдовичем Берманом (1903—1998), долгие годы проработавшим в ВТИ.

Эксплуатация конденсаторов

Пример системы шарикоочистки.
В конденсаторах турбин ТЭЦ устраивают отдельный встроенный пучок, который в летнее время используется для охлаждения, а в зимнее время — для предварительного подогрева сетевой воды. При этом система охлаждения может быть полностью отключена, так как на ТЭЦ зимой в конденсатор попадает небольшое количество пара — в основном он используется для теплофикации.

В процессе работы поверхность трубок конденсатора, в которые поступает вода из водоёмов (рек, прудов, озёр и т. д.), загрязняется биологическими и минеральными отложениями, что ухудшает экономичность работы турбин. Во избежание обрастания водяного тракта биологическими организмами охлаждающую воду обычно хлорируют. В замкнутых системах охлаждения целесообразно проводить «продувку», то есть добавление свежей воды. Фильтрация охлаждающей воды, как правило, неэкономична из-за огромного расхода воды. Большинство современных конструкций конденсаторов позволяет производить механическую очистку части трубок без перерыва работы с отключением некоторых пучков. Широко применяются также системы очистки конденсаторов эластичными шариками из пористой резины, которые прогоняются по трубкам напором воды.

Что такое конденсатор, типы конденсаторов и их обозначение на схемах.

Конденсаторы: назначение, устройство, принцип действия

Накопление и преобразование электрической энергии можно отнести к базовым задачам, которые решают вспомогательные элементы радиоаппаратуры. Конденсатор относится к пассивным компонентам и выступает своего рода емкостью для поступающего заряда. Конструкция стандартных устройств предусматривает наличие пластинчатых электродов, которые разделяются тонкими диэлектриками. Более сложные типы конденсаторов могут содержать несколько электродных слоев, формирующих цилиндрическую намотку. Есть и другие отличительные признаки, обуславливающие возможности применения элементов для той или иной аппаратуры.

Назначение конденсаторов

На сегодняшний день едва ли найдется область радиотехники, в которой бы не использовались данные устройства. Наиболее распространены комбинации конденсаторов с резисторами и катушками индуктивности, участвующие в построении электрических цепей. Такие узлы поддерживают функции частотных фильтров, колебательных контуров и линий с обратной связью. Еще одна их распространенная задача – сглаживание пульсаций напряжения, требуемое во вторичных источниках энергоснабжения. В лазерных установках, системах вспышки и магнитных ускорителях электрический конденсатор используется для выдачи разового заряда с большим показателем мощности. И напротив, электротехнические приборы оснащаются данными элементами с целью компенсации реактивной мощностной энергии. Хотя такие элементы нельзя рассматривать в качестве полноценных емкостных накопителей энергии, в некоторых системах они выступают и как носители информации.

Маркировка устройств

Для визуального определения принадлежности конденсатора к той или иной категории используются специальные обозначения. В первую очередь указывается емкостный потенциал, выражаемый микрофарадами (мкФ). Могут применяться и другие единицы измерения, о чем также будет свидетельствовать соответствующая маркировка. Не всегда отмечается тип используемого в конструкции материала – как правило, без маркировки выпускаются керамические и пленочные неполярные модели. В свою очередь, обозначение танталовых конденсаторов соответствует резисторам – за исключением наличия знака µ и цифр 104 или 107. Такие устройства могут иметь оранжевый, желтый или черный цвет. В знаковой маркировке также указываются размерные параметры и емкость. Высоковольтные и электролитические модели помечаются величиной максимального напряжения, а для переменных конденсаторов указывается диапазон емкости.

Основные характеристики

Главным рабочим параметром является емкость, от которой зависит способность конкретной модели накапливать заряд. Следует разделять номинальную и фактическую емкость, так как на практике использования вторая величина может быть меньше. Диапазон значений по объему может варьироваться от 1 до 50 мкФ, а в некоторых случаях максимум достигает и 10 000 мкФ. Важен и показатель энергетической плотности, во многом определяемый конструкцией изделия. Наибольшей плотностью характеризуются крупноформатные типы конденсаторов, у которых масса обкладки с электролитом существенно превышает вес корпуса. К примеру, при емкости в 10 000 мкФ с напряжением в 0,45 кВт и массой порядка 2 кг плотность может достигать 600-800 Дж/кг. Как раз такие модели выгодно использовать для длительного хранения энергии. Помимо этого, рабочие свойства конденсаторов определяются допуском. Речь идет как раз о погрешности в соотношении показателей реальной и номинальной емкости. Данная величина выражается в процентах и в среднем составляет 20-30 %. В некоторых направлениях радиотехники применяются изделия с 1 % допуска.

Керамические конденсаторы

Это устройства, базирующиеся на дисковых керамических элементах с диэлектриками из титаната бария. Такой конденсатор можно использовать в системах с напряжением до 50 000 В, но важно учитывать, что он имеет минимальную температурную стабильность и широкий спектр изменения емкости. Среди достоинств можно отметить небольшие утечки тока, скромные размеры (при большой емкости заряда) и способность работать на высокой частоте. Что касается назначения, то керамические конденсаторы применяются в цепях с пульсирующим, переменным и постоянным током. Чаще всего используют модели емкостью до 0,5 мкФ. В процессе работы конденсатор этого типа хорошо справляется с внешними нагрузками, среди которых механические удары. Нельзя сказать, что керамический корпус отличается большим эксплуатационным сроком и долговечностью, однако в заявленный период технические свойства поддерживает стабильно.

Полиэстеровые модели

На схемах устройства данного типа обозначаются маркировкой K73-17 или CL21. Их оболочку формирует металлизированная пленка, а для корпуса используется эпоксидный компаунд. Как раз наличие этого наполнителя в конструкции делает полиэстеровые конденсаторы устойчивыми к температурным, физическим и химическим воздействиям. Этот набор эксплуатационных качеств обусловил и широкое распространение конденсаторов типа K73-17 в производстве светотехнических приборов. Средняя емкость устройства составляет 15 мкФ при максимальном напряжении порядка 1500 В. Характеристики скромные, но это не мешает применять конденсатор в тех же цепях с импульсным и переменным током. К тому же и низкая стоимость устройства способствует его популярности на радиорынке.

Конденсатор на основе полипропилена

Тоже вариант относительно недорогого накопителя электрического заряда, который при этом отличается низким коэффициентом потерь и высокой диэлектрической прочностью. К плюсам можно отнести и оптимальную гигроскопичность. То есть один из главных врагов радиоэлементов в виде влажности полипропиленовым конденсаторам не страшен. В качестве изоляторов применяется металлизированная пленка или полоски фольги. В новейших версиях используют и технологию самовосстанавливающейся оболочки, что повышает надежность и долговечность конденсатора.

Устройство может работать на повышенных частотах с сохранением достаточной мощности. Это качество позволяет использовать конденсаторы в системах индукционного обогрева, дополненных водяным охлаждением. Распространено и применение таких элементов в оснастке электромоторов на 220 В. В данном случае они выступают как пусковые компоненты. Эту функцию лучше всего реализуют модели с рабочей емкостью в диапазоне 1-100 мкФ и напряжением в 440 В. Но и это не единственные накопители на синтетической основе. Какие бывают конденсаторы из термопластиков? Внимания заслуживают полисульфоновые и поликарбонатные элементы. Первые отличаются низким влагопоглощением и способностью поддерживать высокое напряжение при температурных перепадах, а вторые в процессе работы демонстрируют оптимальную электротехническую стабильность.

Танталовые конденсаторы

Основу устройства формирует пентоксид тантала с оксидным электролитическим наполнением. Конденсатор отличается высоким отношением емкости к объему, широким спектром поддерживаемых температур и компактностью. Используют такие компоненты в мелком приборостроении, компьютерах и другой вычислительной технике. В этом семействе можно выделить следующие типы конденсаторов: полярные и неполярные, твердотельные, жидкостные. Наиболее привлекательные по эксплуатационным качествам именно твердотельные устройства, так как они характеризуются способностью поддерживать большое напряжение. Однако в условиях критического превышения допустимой величины тока они могут выходить из строя. Емкость танталовых моделей составляет 1000 мкФ, но по сравнению с электролитическими аналогами их собственная индуктивность гораздо ниже, что допускает возможность применения элемента на высоких частотах.

Особенности высоковольтных моделей

Элементы такого типа могут применяться в системах с высокими показателями напряжения, достигающими 15 000 В. При этом емкость у высоковольтных конденсаторов небольшая – порядка 50-100 нФ. В качестве диэлектрического материала чаще используется керамика. Благодаря этой основе выдерживаются большие нагрузки напряжения, а корпус защищает начинку от пробоев пластин.

Распространены и стеклянные вакуумные изделия, также поддерживающие напряжение более 10 000 В. Они представляют собой колбы с концентрическими электродами, в процессе работы обеспечивающими небольшие частотные потери. Применяют высоковольтные конденсаторы такого типа для решения ответственных радиочастотных задач с индуктивным нагревом. Но стоят такие компоненты дороже, отличаются хрупкостью и большими размерами.

Многослойные и однослойные конструкции

Обычно данную классификацию применяют в отношении конденсаторов, выполненных из керамики. Так, однослойные конденсаторы (дисковые) имеют простое устройство, но это не сказывается на уменьшении размеров. В большинстве случаев они массивнее, чем многослойные аналоги. В итоге увеличивается емкость устройства, но крупные размеры все же ограничивают их распространение в отдельных областях.

Что касается многослойных элементов, то они по эксплуатационным качествам в целом схожи с дисковыми, но потенциал накопителей еще выше. Также существенное преимущество заключается в надежности и долговечности. Форм-фактор, в котором выполняются многослойные конденсаторы, делает их менее чувствительными к агрессивным средам, что расширяет область применения. Такие компоненты преимущественно используют в дорогой профессиональной аппаратуре.

Масляные конденсаторы с пропитками

Это отдельная группа радиотехнических элементов, в основе которых находятся бумажные наполнители. Они обрабатываются специальными растворами наподобие воска и эпоксидных смол. Какие бывают конденсаторы масляного типа? Принципиально отличаются модели для постоянного и переменного тока. Первые используются в целях частотной фильтрации, повышения напряжения и устранения электрической дуги. Конденсаторы на масляной пропитке для систем с переменным током применяют в промышленности. Такое устройство располагает большой емкостью и может справляться с большими пиковыми нагрузками. Как правило, его используют в качестве пускового компонента для электромоторов. К дополнительным функциям можно отнести разделение фаз, коррекцию мощности и выравнивание напряжения.

Негативные факторы применения конденсаторов

Одной из главных проблем использования конденсаторов является высокая вероятность взрыва при перегревах, которые происходят из-за больших утечек. Также повысить риск поломки элемента могут близко расположенные радиаторы с высоким тепловым излучением. Какие типы конденсаторов наиболее подвержены взрывам? Чаще всего это происходит с электролитическими устройствами, обеспеченными ненадежными корпусами. Оптимизация конструкции с целью уменьшения размеров изделия заставляет производителей использовать тонкие оболочки, поэтому может иметь место разлет частей конденсатора и разбрызгивание электролита при сильном перегреве или в условиях повышенного внутреннего давления.

Заключение

И простейшие однослойные, и многослойные высоковольтные модели конденсаторов выполняют важные для радиоаппаратуры задачи. Как минимум они корректируют параметры тока, что при схожих размерах не может обеспечить ни один другой технический компонент. В то же время электрический конденсатор вовсе не является идеальным решением, что обуславливает постоянные поиски новых форматов его исполнения. Производители сложной аппаратуры экспериментируют с конструкциями, наполнителями и физическими свойствами, стараясь предлагать оптимальные потребительские качества данного устройства. Среди наиболее важных целевых параметров в этом плане можно назвать устойчивость конденсатора к нагрузкам, широкие рабочие диапазоны, минимальное радиационное воздействие и высокий срок службы.

Конденсатор – это двухполюсник с определённым или переменным значением ёмкости и малой проводимостью; устройство для накопления заряда и энергии электрического поля.

Конденсатор является пассивным электронным компонентом. В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Практически применяемые конденсаторы имеют много слоёв диэлектрика и многослойные электроды, или ленты чередующихся диэлектрика и электродов, свёрнутые в цилиндр или параллелепипед со скруглёнными четырьмя рёбрами (из-за намотки).

Изобрел первую конструкцию-прототип электрического конденсатора «лейденскую банку» в 1745 году, в Лейдене, немецкий каноник Эвальд Юрген фон Клейст и независимо от него голландский физик Питер ван Мушенбрук.

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

Резонансная частота конденсатора равна: f р = 1/ (2∏ ∙ √ L с ∙ C ) .

При f > fp конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах f , на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2-3 раза ниже резонансной.

Отечественные неполярные конденсаторы:

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 1·10 6 пФ = 1·10 −6 Ф) и пикофарадах, но нередко и в нанофарадах (1 нФ = 1·10 −9 Ф). При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, то есть постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения. Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мкФ x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180».

Основные параметры конденсаторов:

  1. Основной характеристикой конденсатора является его ёмкость , характеризующая способность конденсатора накапливать электрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками. Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до тысяч микрофарад. Однако существуют конденсаторы (ионисторы) с ёмкостью до десятков фарад.
  2. Конденсаторы также характеризуются удельной ёмкостью – отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.
  3. Плотность энергии электролитического конденсатора зависит от конструктивного исполнения. Максимальная плотность достигается у больших конденсаторов, где масса корпуса невелика по сравнению с массой обкладок и электролита.
  4. Другой, не менее важной характеристикой конденсаторов является номинальное напряжение – значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается, что связано с увеличением тепловой скорости движения носителей заряда и, соответственно, снижению требований для образования электрического пробоя.
  5. Полярность . Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Обозначение на схемах:

Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.

По виду диэлектрика различают:

  1. Конденсаторы вакуумные (между обкладками находится вакуум).
  2. Конденсаторы с газообразным диэлектриком.
  3. Конденсаторы с жидким диэлектриком.
  4. Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные), слюдяные, керамические, тонкослойные из неорганических плёнок.
  5. Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные – бумажноплёночные, тонкослойные из органических синтетических плёнок.
  6. Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) – это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичнного электролитического конденсатора 3000-5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105°С. Рабочая температура – основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. Твердотельные конденсаторы – вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.

Вакуумный конденсатор:

Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:

  1. Постоянные конденсаторы – основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
  2. Переменные конденсаторы – конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
  3. Подстроечные конденсаторы – конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.

Два бумажных электролитических конденсатора 1930 года:

В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические, пусковые и другие конденсаторы.

Серебрянный конденсатор для аудио.

Также различают конденсаторы по форме обкладок:

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие “конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 … 2 и длиной 15 … 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2… 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.

Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.

Классификация

Конденсаторы делятся на виды по следующим факторам.

Назначению
  • Общего назначения . Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
  • Специальные . Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости
  • Постоянной емкости . Не имеют возможности изменения емкости.
  • Переменной емкости . Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
    Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
    Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами , от температуры – термоконденсаторами .
Способу защиты
  • Незащищенные работают в обычных условиях, не имеют никакой защиты.
  • Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
  • Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
  • Изолированные конденсаторы выполнены в закрытом корпусе.
  • Уплотненные имеют корпус, заполненный специальными материалами.
  • Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа
  • Навесные делятся на несколько видов с;
    — ленточными выводами;
    — опорным винтом;
    — круглыми электродами;
    — радиальными или аксиальными выводами.
  • Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
  • Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
  • Конденсаторы, предназначенные для поверхностной установки , имеют особенность конструкции: части корпуса являются выводами.
  • Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика

Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры. Рассмотрим виды конденсаторов, которые имеют различные материалы диэлектрика.

  • Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
  • Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
  • Высокочастотные модели содержат пленки из фторопласта и полистирола.
  • Импульсные модели высокого напряжения имеют изолятор из комбинированных материалов.
  • В конденсаторах постоянного напряжени я в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
  • Низковольтные модели работают при напряжении до 1,6 кВ.
  • Высоковольтные модели функционируют при напряжении свыше 1,6 кВ.
  • Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
  • Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
  • Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
  • Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой .
Форме пластин
  • Сферические.
  • Плоские.
  • Цилиндрические.
Полярности
  • Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
  • Неполярные конденсаторы могут включаться в схему без соблюдения полярности.
Конструктивные особенности

Рассмотренные выше виды конденсаторов далеко не все имеют большую популярность. Поэтому подробнее рассмотрим конструктивные особенности наиболее применяемых видов конденсаторов.

Воздушные виды конденсаторов

В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.

Керамические

Такие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.

Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.

Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.

Пленочные

В таких моделях в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.

Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.

Параметры пленочных конденсаторов
  • Применяются для резонансных цепей.
  • Наименьший ток утечки.
  • Малая емкость.
  • Высокая прочность.
  • Выдерживают большой ток.
  • Устойчивы к электрическому пробою (выдерживают большое напряжение).
  • Наибольшая эксплуатационная температура до 125 градусов.
Полимерные

Эти модели имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.

Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.

Электролитические

От бумажных моделей электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.

Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.

Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.

К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.

Танталовые электролитические

Устройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.

Параметры
  • Незначительный ток утечки, в отличие от алюминиевых видов.
  • Малые размеры.
  • Невосприимчивость к внешним воздействиям.
  • Малое активное сопротивление.
  • Высокая чувствительность при ошибочном подключении полюсов.
Алюминиевые электролитические

Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.

Параметры
  • Большая емкость.
  • Корректная работа только на низких частотах.
  • Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
  • Большая утечка тока.
  • Низкая индуктивность.
Бумажные

Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.

Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.

Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано – и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада 0,00001 мкф(!) )


При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три – емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .

Принцип работы конденсатора

Чтобы продемонстрировать принцип работы конденсатора , давайте рассмотрим самую простую структуру конденсатора. Он состоит из двух параллельных проводящих пластин, разделенных диэлектриком, то есть параллельным пластинчатым конденсатором. Когда мы подключаем батарею (источник постоянного напряжения) через конденсатор, одна пластина (пластина-I) присоединяется к положительному концу, а другая пластина (пластина-II) к отрицательному концу батареи. Теперь потенциал этой батареи приложен к этому конденсатору.В этой ситуации пластина-I находится в положительной потенции по отношению к пластине-II. В установившемся режиме ток от батареи пытается пройти через этот конденсатор от его положительной пластины (пластина-I) к отрицательной пластине (пластина-II), но не может течь из-за разделения этих пластин изоляционным материалом.

На конденсаторе появляется электрическое поле. Со временем положительная пластина (пластина I) будет накапливать положительный заряд от батареи, а отрицательная пластина (пластина II) будет накапливать отрицательный заряд от батареи.Через определенное время конденсатор удерживает максимальный заряд в соответствии с его емкостью по отношению к этому напряжению. Этот промежуток времени называется временем зарядки этого конденсатора.

После извлечения этой батареи из этого конденсатора эти две пластины удерживают положительный и отрицательный заряд в течение определенного времени. Таким образом, этот конденсатор действует как источник электрической энергии.

Если два конца (пластина I и пластина II) подключены к нагрузке, ток будет течь через эту нагрузку от пластины I к пластине II до тех пор, пока все заряды не исчезнут с обеих пластин.Этот промежуток времени известен как время разряда конденсатора.

Конденсатор в цепи постоянного тока

Предположим, конденсатор подключен к батарее через переключатель.

При включении ключа, т. е. при t = + 0, через этот конденсатор начнет протекать ток. По прошествии определенного времени (т. е. времени зарядки) конденсатор никогда не позволяет току течь через него дальше. Это связано с тем, что максимальные заряды накапливаются на обеих пластинах, и конденсатор действует как источник, у которого положительный конец подключен к положительному концу батареи, а отрицательный конец подключен к отрицательному концу батареи с той же мощностью.

Из-за нулевой разности потенциалов между аккумулятором и конденсатором через него не будет протекать ток. Таким образом, можно сказать, что первоначально конденсатор закорочен и, наконец, разомкнут цепь, когда он подключен к батарее или источнику постоянного тока.

Конденсатор в цепи переменного тока

Предположим, что конденсатор подключен к источнику переменного тока. Учтите, что в определенный момент положительной половины этого переменного напряжения пластина-I получает положительную полярность, а пластина-II – отрицательную. Именно в этот момент пластина-I накапливает положительный заряд, а пластина-II накапливает отрицательный заряд.

Но при отрицательной половине этого приложенного переменного напряжения пластина-I получает отрицательный заряд, а пластина-II положительный заряд. Между этими двумя пластинами нет потока электронов из-за диэлектрика, расположенного между пластинами, но они меняют свою полярность при изменении полярности источника. Пластины конденсатора попеременно заряжаются и разряжаются переменным током.

Принцип работы конденсатора — StudiousGuy

Конденсатор — это электронное устройство, используемое для накопления электрического заряда.Это одно из самых важных электронных устройств в схемотехнике. Конденсатор — это пассивный компонент, способный накапливать как отрицательные, так и положительные заряды. По этой причине он может временно вести себя как батарея. В зависимости от дизайна, конструкции, размера и емкости конденсатора его можно использовать в различных приложениях. Свойство хранения зарядов, связанных с конденсаторами, известно как емкость. Емкость определяется как отношение электрических зарядов, накопленных на проводящих пластинах конденсатора, к существующей между ними разности потенциалов.Емкость измеряется в фарадах, названных в честь английского физика Майкла Фарадея.

Указатель статей (щелкните, чтобы перейти)

Конструкция конденсатора

Конденсатор с плоскими пластинами имеет самую простую конструкцию из всех конденсаторов. Он состоит из двух проводящих пластин, расположенных параллельно друг другу и разделенных диэлектриком. Диэлектрический материал, присутствующий между двумя пластинами, действует как изолятор, препятствующий прохождению тока между пластинами.Размер и форма пластин конденсатора варьируются в зависимости от применения. Диэлектрическая среда, используемая между двумя пластинами конденсатора, может быть воздухом, керамикой, полимером, бумагой и т. д.

Работа конденсатора

Первоначально проводящие пластины конденсатора состоят из равного количества положительных и отрицательных зарядов; поэтому пластины считаются электрически нейтральными. Когда батарея подключена через конденсатор, пластина, подключенная к положительной клемме батареи, накапливает на себе положительный заряд, а равное количество отрицательного заряда осаждается на другой пластине, подключенной к отрицательной клемме батареи.Диэлектрический материал, присутствующий между двумя пластинами, действует как барьер, препятствующий дальнейшему прохождению зарядов. Из-за наличия зарядов на обеих пластинах вокруг конденсатора создается электрическое поле, прямо пропорциональное разности потенциалов и обратно пропорциональное расстоянию между двумя пластинами. Когда конденсатор развивает потенциал, равный потенциалу, развиваемому подключенной к нему батареей, он считается полностью заряженным. Время, необходимое конденсатору для накопления максимального количества заряда на своих пластинах, называется временем зарядки.Когда батарея удалена, конденсатор действует как источник энергии. После подключения заряженного конденсатора к нагрузке заряды покидают пластины конденсатора, вызывая протекание тока в цепи. Этот процесс продолжается до тех пор, пока пластины конденсатора не приобретут электрически нейтральное состояние, и называется разрядкой конденсатора.

Конденсатор Символ

Каждая страна имеет свой собственный способ символического обозначения конденсаторов.Некоторые из стандартных обозначений конденсаторов имеют вид:

.

Конденсатор Типы

1. Фиксированный конденсатор

Как следует из названия, фиксированный конденсатор — это тип конденсатора, который создает фиксированную величину емкости. Это означает, что он способен хранить в себе только заданное количество зарядов. Другие фиксированные конденсаторы можно классифицировать по диэлектрическому материалу, используемому между проводящими пластинами, например, бумажный конденсатор, пластиковый конденсатор, керамический конденсатор и т. д.

1. Поляризованные конденсаторы

Поляризованные конденсаторы — это конденсаторы с предопределенной полярностью контактов. Перед подключением полярного конденсатора к цепи важно помнить о полярности контактов конденсатора. Наиболее распространенными поляризованными конденсаторами являются электролитические конденсаторы.

2. Неполяризованные конденсаторы

Неполяризованные или неполярные конденсаторы — это конденсаторы, которые можно включать в цепь независимо от полярности контактов.Это означает, что неполярные конденсаторы не имеют предполагаемой полярности контактов. Они также известны как биполярные конденсаторы.

2. Переменные конденсаторы

Конденсаторы, емкость которых может изменяться электронным или механическим способом, называются переменными конденсаторами. Переменный конденсатор состоит из неподвижной пластины и переменной пластины. Изменяя расстояние между двумя пластинами, можно изменять емкость.Эти конденсаторы используются в антеннах для согласования импеданса.

1. Настройка Конденсаторы

Подстроечный конденсатор или подстроечные конденсаторы состоят из статора, ротора и корпуса. Статор является неподвижной частью, а ротор движется с помощью подвижного вала. Когда лопасти ротора входят в паз статора, они действуют как пластины конденсатора. Значение емкости максимально, когда лопасти ротора входят в пазы статора, а значение емкости минимально, когда лопасти находятся вдали от пазов.Емкость подстроечных конденсаторов колеблется от нескольких пикофарад до нескольких десятков пикофарад. В основном они используются в LC-цепях радиоприёмников.

2. Триммер Конденсаторы

Подстроечные конденсаторы состоят из трех выводов; один подключен к неподвижной пластине, один к поворотной пластине, а другой является общим штифтом. Емкость подстроечного конденсатора можно изменять с помощью отвертки. Подвижная пластина конденсатора имеет полукруглую форму.Емкость зависит от площади, противоположной подвижному полукруглому диску и неподвижной пластине. Когда противоположная площадь больше, значение емкости будет выше, тогда как с уменьшением противоположной области емкость соответственно уменьшается.

3. Электролитические конденсаторы

Первый электрод электролитического конденсатора состоит из тонкой металлической пленки, тогда как второй электрод или катод состоит из полужидкого раствора электролита в форме желе или пасты.Между двумя электродами образуется тонкий слой оксида, который действует как диэлектрическая среда. Электролитический конденсатор используется в приложениях, где требуются высокие значения емкости.

4. Керамика Конденсатор

Керамические конденсаторы — это конденсаторы, в которых в качестве диэлектрической среды между двумя электродами используется керамика. Как правило, они имеют низкое значение емкости и являются неполярными конденсаторами. Керамический конденсатор обычно имеет круглую форму и оранжевый цвет.

5. Пленочный конденсатор

В пленочных конденсаторах в качестве диэлектрического материала используется пластиковая пленка. Они чаще всего используются в приложениях, где желательны стабильность, низкая индуктивность и низкая цена. Кроме того, пленочные конденсаторы можно разделить на полиэфирную пленку, металлизированную пленку, полипропиленовую пленку, пленку PTE и пленочные конденсаторы из полистирола.

6. Слюда Конденсатор

Слюда — это минерал, естественным образом присутствующий в горных породах, присутствующих на поверхности земли.Благодаря отличным изоляционным свойствам слюда используется в качестве диэлектрической среды в конденсаторах. Слюдяные конденсаторы имеют высокие индуктивные и резистивные потери, поэтому они способны проявлять высокочастотные свойства. Конструкция слюдяного конденсатора состоит из тонкого листа слюды, наложенного на тонкий лист серебра, помещенного между двумя электродами. Диапазон слюдяных конденсаторов лежит между несколькими пФ и несколькими нФ. Они обладают высокой точностью и достаточно стабильны по своей природе.

7.Бумага Конденсатор

Бумажный конденсатор состоит из двух алюминиевых электродных пластин, разделенных бумагой в качестве диэлектрической среды. Бумажные конденсаторы обеспечивают высокие токи утечки и имеют значение емкости в диапазоне от 500 пФ до 50 нФ. Эти конденсаторы чаще всего используются в таких устройствах, как автомобильные аудиосистемы, аналоговые эквалайзеры, радиоприемники и т. д.

Применение Конденсатор

1. Вентиляторы

Вы, должно быть, заметили, что во время устранения неполадок вентилятора техник подходит к цилиндрическому электронному устройству, подключенному к внутреннему механизму вентилятора. Это цилиндрическое устройство на самом деле является конденсатором. Конденсатор используется в потолочных вентиляторах, чтобы помочь вентилятору запуститься, а также помогает вентилятору вращаться. Магнитный поток, создаваемый конденсатором, используется для создания крутящего момента. Крутящий момент дополнительно помогает вращать вентилятор.

2. Фильтрация сигналов

Одним из основных применений конденсаторов является фильтрация шумов. Схемы фильтрации сигналов имеют определенную временную характеристику, которая помогает отсеивать частоты выше или ниже определенного порогового уровня.В первую очередь фильтрация сигналов применяется в громкоговорителях, вуферах, твиттерах и т. д.

3. Устройства накопления энергии

Конденсаторы могут временно выступать в качестве источника энергии. Энергия, выдаваемая конденсатором, ниже, чем у батареи с аналогичными характеристиками; однако они имеют сравнительно долгий срок службы. Кроме того, конденсатор подает энергию с большей скоростью, что делает его наиболее подходящим для приложений, где требуется всплеск мощности.

4.Преобразователь переменного тока в постоянный Диодные выпрямители

в основном используются для преобразования переменного тока в постоянный; однако работа таких схем во многом зависит от конденсаторов. Выход выпрямителя представляет собой пульсирующую форму волны. Следовательно, зарядку и разрядку конденсатора можно использовать для преобразования пульсирующего сигнала в устойчивый постоянный ток.

5. Устройства синхронизации

Время зарядки и разрядки конденсаторов можно легко определить, рассчитав постоянную времени RC.Следовательно, их можно легко использовать в качестве часовых устройств. В таких схемах, как схемы с временной задержкой, также используются конденсаторы.

Принцип работы конденсатора | Репетитор 4 Физика

Что такое конденсатор

Это устройство, используемое для накопления заряда в электрической цепи

Ежедневное использование

Для устранения искрения в системе зажигания автомобиля. Когда электрический ток включается или выключается, возникает наведенный ток, который может вызвать искрообразование.Если поставить конденсатор цепь вместо этого заряжает конденсатор, что позволяет избежать искрения.

Заряд пропорционален потенциалу

Когда проводник получает заряд, его потенциал возрастает. Если мы сообщим проводнику заряд Q тогда его потенциал возрастает. Чем больше заряд, тем больше потенциал. Поэтому они пропорциональны каждому другой и может быть выражен как

Q ∝ В

Это означает, что заряд Q прямо пропорционален потенциалу V или что потенциал прямо пропорционален пропорциональна заряду, переданному проводнику

Мы можем переписать это как следующее уравнение

К = С В

Здесь С – емкость проводника

Факторы, определяющие емкость

1.Форма и размер проводника

2. Окружающая среда

3. Наличие других проводников

Мы можем переписать уравнение как:

К=К/В

Где C — заряд, накопленный на единицу повышения потенциала в проводнике

Единица СИ для емкости

Это Фарад

1 Фарад = 1 Кулон/Вольт

или

1 F = 1 C/V

Однако фарады — очень большая единица, поэтому мы используем меньшие единицы, такие как

мкФ

это

10

-6 F

Емкость изолированного сферического проводника

Рассмотрим емкость изолированного сферического проводника. Скажем, у нас есть сфера радиуса r и говорят, что проводнику передан заряд Q.

Мы можем написать, что потенциал

V=Q/4π Ε
0 r

Мы знаем, что

C=Q/V

или

Q/V=4π Ε
0 r

, таким образом, емкость сферического проводника равна

C=4π Ε
0 r

Это выражение показывает, что емкость C прямо пропорциональна радиусу р шаровой жилы

Чем больше радиус, тем больше емкость сферического проводника

Принцип действия конденсатора

Скажем, у нас есть большая тарелка, и мы даем ей положительный заряд

Существует ограничение на количество заряда, которое может быть передано пластине, потому что заряду дается его потенциал, и после определенного предела заряды начинают протекать.

Если мы возьмем другую тарелку и поместим ее рядом с этой положительно заряженной тарелкой, то отрицательный заряд будет тянуться к стороне этой пластины, которая ближе к положительно заряженной пластине и положительный заряд на дальней стороне.

Этот отрицательный заряд на пластине 2 уменьшит потенциал на пластине 1. В то же время положительный заряд на пластине 2 будет пытаться увеличить потенциал пластины 1. Однако эффект более близкой стороны пластины 2, содержащей отрицательный заряд, будет больше.Это приводит к уменьшению потенциала пластины 1. Итак, теперь дополнительная плата может быть отдана за табличку 1

Теперь, если мы заземлим внешнюю сторону второй пластины. Тогда положительный заряд на этой стороне отправится на Землю. С этой пластиной 1 сможет удерживать еще больше положительного заряда.

Это принцип работы конденсатора

Типовой конденсатор, представляющий собой конденсатор с параллельными пластинами, состоит из двух параллельных плиты, разделенные расстоянием d. А – площадь поперечного сечения этих пластин и если заряд +Q дан одной пластине, то на другой пластине будет заряд -Q.

Как зарядить такой конденсатор? Давайте посмотрим на электрическую цепь. Конденсатор С обозначаются двумя параллельными линиями. В схеме также есть батарейка V и выключатель K. Когда ключ включается, электроны с первой пластины начинают двигаться к положительному концу батареи. Это означает, что ток течет от положительного конца батареи к ее отрицательному концу.

Таким образом, положительный конец батареи извлекает электроны из одной пластины и осаждает их на другой. тарелка.В результате одна пластина приобретет положительный заряд, а другая – отрицательный. обвинение. Этот процесс будет продолжаться до тех пор, пока конденсатор не приобретет потенциал V что в точности равно потенциалу батареи. Тогда ток прекратится. Теперь конденсатор имеет накопленный заряд, а разность потенциалов на пластинах в точности равна разность потенциалов на аккумуляторе. Или сохраненный заряд можно записать как

Q=CV

Каков принцип работы конденсатора?

Небольшое устройство, используемое для хранения огромного количества электрического заряда в небольшой комнате, называется конденсатором.

Возьмите изолированную металлическую пластину A. Зарядите пластину до максимального потенциала. Теперь возьмите другую изолированную пластину B. Поднесите пластину B ближе к пластине A. Вы заметите, что отрицательный заряд будет производиться на пластине рядом с пластиной A, а такое же количество положительного заряда будет производиться с другой стороны пластины B.

Теперь пластина B начнет медленно воздействовать на пластину A. Отрицательный заряд начнет уменьшать электрический потенциал пластины А.Но положительный заряд помогает увеличить потенциал. Но влияние отрицательного заряда намного больше, чем положительного, потому что отрицательная сторона пластины находится рядом с пластиной А. Таким образом, потенциал А начнет уменьшаться, и его можно будет снова зарядить, чтобы поднять его потенциал до максимума.

Результат: Из вышеприведенного обсуждения следует, что емкость проводника для переноса заряда может быть увеличена путем размещения незаряженного проводника в близлежащей области. Он показан на рисунке выше.

Давайте обсудим это еще раз. Теперь в этом случае соедините пластину B с землей. Весь положительный заряд, присутствующий на пластине B, уйдет в землю. Итак, на пластине В останется только отрицательный заряд. Так что электрический потенциал пластины А станет меньше в большей степени. Таким образом, в результате А потребуется гораздо больше заряда, чтобы получить свой потерянный потенциал из-за эффекта отрицательного заряда, присутствующего на пластине Б.

Примечание. Поднеся незаряженный проводник к изолированному проводнику, емкость изолированного проводника можно увеличить до большей величины.

Конденсаторы бывают разных типов:
Конденсаторы с параллельными пластинами — это конденсаторы, в которых в качестве проводников используются простые параллельные пластины.

Сферические проводники – те, в которых используются сферические проводники.

Третьи типы проводников – это те, в которых используются проводники цилиндрического типа .

Теперь вы будете думать, как узнать Емкость накопления заряда внутри конденсатора. Вот ваша формула.
К=К/В.

Его можно рассчитать, разделив заряд (Q), присутствующий на пластинах проводника, на потенциал (V) проводника. Обычное слово, используемое в нашей повседневной жизни для конденсаторов, — это конденсаторы, которые мы используем в большинстве наших электрических приборов. Основное их предназначение – обеспечить первоначальный запуск устройства, в котором он установлен.

Что такое конденсатор? Принцип работы, типы и как это работает

Я полагаю, что вы использовали конденсаторы в электронных схемах.

Вы понимаете принципы и использование этого?

Позвольте мне объяснить вам узнать больше.

Вы можете применить их. Для разработки электронных проектов Или может решить вашу работу.

Обладает следующими уникальными характеристиками.

  • Накопитель электрического тока.
  • Блокировать постоянный ток, не пропуская его
  • Разрешить протекание переменного тока через него.

Вы готовы?

Что такое конденсатор?

Конденсатор — это простое электронное устройство для накопления электрических зарядов.Вы можете не видеть достаточно изображений.

Рекомендовано: Краткий принцип работы конденсатора

Посмотрите на изображение. Вы когда-нибудь смотрели фильм о Древней войне?

Представьте, что мы можем сравнить конденсатор с обычной пружиной.

Во-первых, разрушается пружина. Затем растягиваем или вытягиваем пружину. Это значит, что мы отдаем энергию весне.

Он хранит нашу энергию!

После этого мы его выпустили. Пружина вернется в исходное состояние.Это приводит к выбросу камня.

И что?

Базовая конструкция конденсатора

Посмотрите на базовую конструкцию конденсатора ниже.

Состоит из 2 проводников. Называется «Плиты». И разделены «Диэлектриком».

Изготовлен из электрической изоляции, такой как бумага, слюда, керамика, воздух и т. д.

Еще раз посмотрите на изображение, это постоянный конденсатор.

Мы часто называем тип конденсатора в соответствии с веществами, используемыми для изготовления диэлектрика.

Например, керамические конденсаторы также будут иметь керамический диэлектрик.

Факторы, влияющие на емкость

Вариант, который увеличивает или уменьшает емкость конденсатора, имеет следующие 3 вещи.

  • Случай 1# Площадь пластин, параллельных друг другу. У конденсатора площадь пластин очень большая. Так что это больше емкость.
  • Вариант 2# Если расстояние между пластинами больше, емкость уменьшится.
  • Случай 3# Заменить диэлектрическое вещество. Это также приводит к изменению емкости.

Указание и значение конденсатора

Значение конденсатора мы назвали емкостью. Это способность хранить электроны.

Конденсаторный блок Фарада. Мы можем написать аббревиатуру: F.

Конденсатор емкостью 1 фарад, подключенный к источнику питания 1 вольт, будет хранить 6 280 000 000 000 000 000 (6,28 × 10-18) электронов!

Так что на практике 1 фарад очень ценен.Большинство конденсаторов имеют гораздо меньшие номиналы.

Мы часто видим большинство конденсаторов:

  • Микрофарад (Миллионные доли фарад) Большие указанные конденсаторы.
  • Пикофарад (триллионные доли фарада) Меньшие указанные конденсаторы.

Вывод:

  • 1- Farad = 1F = 1F
  • 1-Microfarad = 1 мкВФ = 0,00000 мл = 1/1000,00F
  • 1-Picofarad = 1PF = 0,000 000 000 001f = 1 /1 000 000 000 000F
    или
  • 1-Пикофарад = 0. 000001 μf = 1/1000 000 μ F

Microfarad = Picofarad / 1 000 0002

Farad (F) Microfarad (мкФ) Picofarad (PF)
0.001 0,001 1000 мкФ 1 000 000 000
0,0001
0,0001 100 мкФ 100 000 000 PF
0,00001 10 мкФ 10 000 000 pf
0.000001 1 мкФ 1 000 000 pf
0,0000001 0,1 мкФ 100 000 PF
0,01 0,01 мкФ
10 000 PF
0.000000001 0,001 мкФ 1000 пФ

Конденсатор Принцип работы

Как и выше, мы знаем, что конденсатор работает с зарядом и разрядом. Но некоторые могут не совсем понять.

Я надеюсь, что вы получите 2 идеи ниже.

Зарядка конденсатора

Предназначен для хранения электронов на пластине конденсатора. Что мы подробно объяснили на диаграмме ниже (B).

При подключении аккумулятора к конденсатору. Электроны с минуса батареи соберутся на пластине.

Вызывает отрицательные ионы. И также посылает электрическое поле, чтобы оттолкнуть электрон противоположной пластины.

Как если бы магниты с одинаковой полярностью приблизились друг к другу, они столкнулись бы друг с другом.

Обычно в пластинах смешаны + и – ионы. При этом электроны из этой пластины выталкиваются наружу.

Положительный ион больше отрицательного.

Чем больше электронов будет оттолкнуто, тем положительнее будет пластина. (По сравнению с другой стороной)

Примечание: Если мой текст непонятен, лучше посмотрите на схему.

Если мы хотим более наглядно наблюдать за работой конденсатора. У нас есть простой метод — последовательное подключение токоограничивающих резисторов.

Посмотрите на электрическую схему ниже.

Вы можете замедлить время зарядки. Поместив резистор между конденсатором и батареей 9В.

И вы можете легко увидеть график времени зарядки.

Во-первых, пиковый ток течет через конденсатор и замедляется до нуля. Во время задержки со значением резистора и конденсатора.

Разрядка конденсатора А

Конденсатор заряжен. Если мы еще не соединили выводы конденсатора вместе.Электроны все еще находятся на пластине.

Затем он будет постепенно просачиваться через диэлектрик, пока обе пластины не будут иметь одинаковый заряд.

Но при коротком замыкании или полном замыкании между пластинами. Как показано на рисунке ниже.

Электроны немедленно замкнут цепь от отрицательной пластины к положительной. Мы называем это событие «Разрядка»

Что еще?

Как и выше, добавляем резистор. Конденсатор будет разряжаться медленнее. И смотрите график времени разряда.

Напряжение конденсатора постепенно снизится до OV.

Узнайте: Связь между током и напряжением

Тип конденсаторов

Мы часто видим два наиболее распространенных конденсатора: конденсаторы постоянной емкости и конденсаторы переменной емкости. Они обсуждаются ниже.

Конденсаторы постоянной емкости

Используемые сегодня конденсаторы постоянной емкости бывают разных типов. Мы маркируем их в соответствии с их диэлектрической проницаемостью.

Например, керамические, слюдяные, лавсановые, полистирольные, полиэфирные, бумажные, электролитические, танталовые и многие другие.

Но мне нравится использовать только 3 типа: электролитический, керамический и майларовый. Потому что они подходят для общих работ И недороги в том числе.

А вот только два типа примеров, только электролитические и керамические.

Керамические конденсаторы

В целом выглядит круглым, плоским, оранжевым. Как показано на рисунке.

Большинство из них менее 1 мкФ.

И это будет конденсатор неполярного типа. (При использовании вообще не нужно учитывать полярность.)

И выдерживает напряжение около 50В – 100В.

Емкость керамического конденсатора, который мы сейчас используем, составляет от 1 пФ до 1 мкФ.

Электролитические конденсаторы

Конденсаторы этого типа требуют осторожности при использовании. Потому что есть очень специфическая полярность.

Он будет напечатан для четкого обозначения стороны тела.

Не ошибитесь Полярность

При вводе напряжения для конденсатора в неправильная полярность. Он сразу же получит урон.

Выводы этого типа конденсатора можно легко увидеть.

При покупке в магазине длинные ноги являются положительными, а короткие — отрицательными.

Предостережения Рабочее напряжение конденсатора

Первое предостережение: Все конденсаторы имеют номинальное напряжение. Или мы назвали рабочее напряжение (WV).

Мы должны подать на конденсатор напряжение, которое ниже этой нормы.

Если вы пренебрегаете или игнорируете это требование. Я пропустил это.

Я не хочу видеть тебя грустным, как я.Слишком высокое напряжение может убить его.

При обычном использовании мы резервируем напряжение конденсатора примерно в 2 раза по сравнению с фактическим рабочим напряжением.

Например, керамический конденсатор будет иметь номинальное напряжение 50 вольт (В). Мы должны использовать входное напряжение около 25 В или ниже.

Запасной конденсатор

Вы когда-нибудь читали методы покупки стоящих электронных устройств?

Мы всегда должны сначала выбирать тот, у которого рабочее напряжение выше.

Например:

Между значениями 50В и 100В. Мы должны выбрать 100В. Потому что его можно использовать для замены 50В.

Предупреждение Высокое напряжение в конденсаторе

Ой! что-то пошло не так.

На кончике испытательного щупа искрит. Пока я измерял резистор на плате блока питания.

Что случилось?

В большой электролитический конденсатор может заряжаться напряжением от 100 до 200 вольт.

Когда кончик металла касается обоих выводов. Самый высокий ток короткого замыкания в быстром.Он может расплавить что угодно.

Конечно, это слишком опасно. Изображение, если ваш палец? потрогай это. Это может убить и вас.

Из соображений безопасности я всегда буду его разряжать. При работе с ним.

Простой метод заключается в использовании лампочки для подключения каждого из электролитических конденсаторов.

Переменные конденсаторы

Они часто имеют неподвижные и подвижные пластины. Емкость изменяется вращением стержня, прикрепленного к одной стороне подвижных мест.

Мы можем регулировать емкости, поворачивая ось конденсатора.

При вращении стержня закрепляются подвижные места. Емкости будут меняться при нашем вращении.

Мы можем разделить их на 2 типа

Подстроечные конденсаторы

Посмотрите на схему ниже.

Этот тип используется для настройки генератора. Я часто вижу в FM беспроводной передатчик или цифровые часы. Они маленькие.

Переменный конденсатор

Мы используем этот тип для настройки радиоприемников и передатчиков.Диэлектриком обычно является воздух. Смотрите схему ниже.

Как читать код конденсатора

Поскольку большинство керамических и майларовых конденсаторов имеют небольшие размеры. Производители должны маркировать код вместо емкости.

Ниже приведен способ расшифровки конденсатора. В начале может быть сложно.

Но когда смотришь на пример Наверное понимаешь его технику.

  • Первая и вторая цифры — это фиксированные числа, измеряемые в пФ.
  • Третий – Множитель с числом десять, возведенным в степень.Например 10³.
  • Четвертый уровень допуска, такой как J = 5%, K = 10%, M = 20%.

Как сделать?

  • Какой номинал конденсатора 101K?
    Первая цифра = 1
    Вторая цифра = 0
    Множитель = 10 1 , или Это означает: 0 пФ (ноль пикофарад)
    Допуск K = 10%
    101K = 100 пФ = 0,00101 % допуск.

    Что еще?

  • Значение конденсатора 473K?
    Первая цифра = 4
    Вторая цифра = 7
    Множитель = 10 3 , или Это означает: 000 пФ (три пикофарад)
    Допуск K = 10%
    473K = 47 000 пФ = 0.047 мкФ и допуск 10 %
  • 102M : 10 x 10 2 пФ = 10 00 пФ. Который составляет 0,001 мкФ и допуск 20%.
  • 103J : 10 x 10 3  пФ = 10 000 пФ. Который составляет 0,01 мкФ и допуск 5%.
  • 104J : 10 x 10 4  пФ = 10 0000 пФ. Который составляет 0,1 мкФ и допуск 5%.

    Вы понимаете?

Применение Конденсаторы

Мы используем конденсаторы во многих электронных схемах. Они являются важными компонентами. Вот некоторые причины, по которым мы их используем.

Фильтр блока питания

Мы всегда используем конденсаторы в фильтре блока питания. Они сгладят пульсирующее напряжение в устойчивый постоянный ток (DC).

Связанный: Конденсатор фильтра обучения в цепи питания

Цифровой инструмент для удаления шипов

Почему моя цифровая схема работает с ошибкой? Это не стабильно.

Давайте попробуем этот совет. Добавьте конденсатор 0,1 мкФ на клеммы источника питания.Как на схеме ниже.

Но это имеет огромное влияние. Для близлежащих цепей. Посмотрите на сигнал на графике изображения.

Сравните уровни напряжения при добавлении конденсатора.

  • A: Уровень напряжения без конденсатора.
  • B: Уровень напряжения с конденсатором.

Конденсаторный выключатель защиты от переходных процессов

При включении и выключении электрического выключателя в доме. Вы когда-нибудь слышали кратковременный шум?

Как это случилось?

Это вызвано касанием контактов выключателей друг друга.Это пиковое напряжение.

Даже на короткое время Но ток очень сильный. Что выше нормы.

Итак, способный нарушить работу ближайших электронных схем.

Как мы можем уменьшить эту проблему?

Как мы знаем принцип работы конденсатора. Он любит высокие частоты. Затем мы помещаем его через переключатель.

Посмотрите на принципиальную схему.

Я использую майларовый или керамический конденсатор емкостью 0,1 мкФ 630 В.

Он хорошо поглощает переходные процессы или скачки напряжения.Вы заметите, что шум исчез.

Вывод

Конденсаторы являются основными компонентами. Но они очень полезны для всей электроники. Вы можете их использовать?

Загрузите этот пост в формате PDF и все изображения в полном размере

Вот несколько связанных сообщений, которые могут оказаться полезными: Электроника Легкое обучение .

По какому принципу конденсатор выводит выражение?

По какому принципу конденсатор выводит выражение?

Принцип действия конденсатора : Конденсатор работает по принципу , что емкость проводника заметно увеличивается , когда к нему приближается заземленный проводник .Таким образом, конденсатор состоит из двух пластин, разделенных расстоянием, имеющих одинаковые и противоположные заряды.

Каков принцип работы конденсатора, определяющего единицу измерения емкости в системе СИ?

Емкость выражается как отношение электрического заряда на каждом проводнике к разности потенциалов (т. е. напряжению) между ними . Емкость конденсатора измеряется в фарадах (Ф), единицах, названных в честь английского физика Майкла Фарадея (1791–1867).Фарад – это большая емкость.

Какова работа емкости?

Конденсатор (первоначально известный как конденсатор) представляет собой пассивный двухконтактный электрический компонент , используемый для электростатического накопления энергии в электрическом поле . Формы практических конденсаторов сильно различаются, но все они содержат по крайней мере два электрических проводника (пластины), разделенных диэлектриком (то есть изолятором).

Каков принцип плоскопараллельного конденсатора?

Две пластины конденсатора с параллельными пластинами имеют одинаковые размеры .Они подключены к источнику питания. Пластина, соединенная с плюсовой клеммой аккумулятора, приобретает положительный заряд. С другой стороны, пластина, соединенная с минусовой клеммой аккумулятора, приобретает отрицательный заряд.

Какие бывают типы конденсаторов?

Различные типы конденсаторов

  • Электролитический конденсатор.
  • Слюдяной конденсатор.
  • Бумажный конденсатор.
  • Пленочный конденсатор.
  • Неполяризованный конденсатор.
  • Керамический конденсатор.

Для чего нужен конденсатор?

Конденсаторы – это устройства, накапливающие электрический заряд. Они являются основным компонентом электроники и имеют множество различных применений. Конденсаторы чаще всего используются для хранения энергии . Дополнительные области применения включают преобразование мощности, соединение или развязку сигналов, электронную фильтрацию шума и дистанционное зондирование.

Какова формула конденсатора?

Основное уравнение для расчета конденсатора: C = εA/d , В этом уравнении C — емкость; ε – диэлектрическая проницаемость, показатель того, насколько хорошо диэлектрический материал удерживает электрическое поле; А — площадь параллельной пластины; d — расстояние между двумя проводящими пластинами.

Что такое символ конденсатора?

Единицей емкости в системе СИ является фарад ( Символ: F ).

Каковы преимущества конденсаторов?

Преимущества. Поскольку конденсатор может разрядиться за доли секунды, он имеет очень большое преимущество. Конденсаторы используются для устройств , которые требуют высокоскоростного использования, например, во вспышках фотоаппаратов и лазерных технологиях. Конденсаторы используются для устранения пульсаций путем удаления пиков и заполнения впадин.

Для чего нужен конденсатор?

Конденсатор — это электронный компонент, который хранит и высвобождает электричество в цепи . Он также пропускает переменный ток, не пропуская постоянный ток.

Как описать принцип работы конденсатора?

Выведите выражение для емкости плоского конденсатора, пластины которого разделены диэлектрической средой > Кратко объясните принцип… Кратко объясните принцип работы конденсатора. Получите выражение для емкости плоского конденсатора, пластины которого разделены диэлектрической средой

Какая формула для емкости заряда является правильной?

Формула емкости выглядит следующим образом: Кроме того, есть еще одна формула, которая выглядит следующим образом: Предположим, что у вас есть конденсатор площадью 0,1 метра в квадрате, пластины которого находятся на расстоянии 0,01 метра друг от друга. Кроме того, между пластинами есть воздух.Итак, каков будет заряд, который могут хранить пластины, если он подключен к 9-вольтовой батарее?

Как работает принцип емкостного измерения уровня?

Принцип работы: Принцип емкостного измерения уровня основан на изменении емкости. Изолированный электрод действует как одна пластина конденсатора, а стенка резервуара (или электрод сравнения в неметаллическом сосуде) действует как другая пластина. Емкость зависит от уровня жидкости.

Каков принцип плоскопараллельного конденсатора?

Конденсатор с параллельными пластинами: Рассмотрим конденсатор с параллельными пластинами, имеющий две плоские металлические пластины A и B, расположенные параллельно друг другу (рис.). Пластины несут равные и противоположные заряды +Q и -Q соответственно.

⇐ Что такое инструмент оценки? Симус — популярное имя? ⇒
Похожие сообщения:

Принцип конденсатора с плоскими пластинами. Определение, емкость

Загрузите сейчас лучшее приложение для подготовки к экзаменам в Индии

Класс 9-10, JEE и NEET

Скачать приложение ЭСарал Эй, вы хотите узнать о принципе конденсатора с параллельными пластинами? Если да.Тогда продолжайте читать.

Принцип конденсатора с параллельными пластинами Пусть изолированная металлическая пластина А заряжается положительно до тех пор, пока ее потенциал не станет максимальным. Когда другую изолированную пластину B подносят к A. Тогда за счет индукции внутренняя поверхность B становится отрицательно заряженной, а внешняя сторона становится положительно заряженной. Отрицательный заряд пытается уменьшить потенциал А, а положительный заряд пытается его увеличить. Когда внешняя поверхность B заземлена, положительный заряд течет к земле, а отрицательный заряд остается, вызывая уменьшение потенциала A.Таким образом, к А можно придать большее количество заряда, чтобы поднять его до максимального потенциала.

Важные моменты
  1. Емкость изолированного проводника увеличивается за счет приближения к нему незаряженного заземленного проводника.
  2. Говорят, что расположение двух проводников с одинаковым и противоположным зарядом, разделенных диэлектрической средой, образует конденсатор .
  3. Конденсатор представляет собой устройство для хранения большого количества заряда и, следовательно, электрической энергии в небольшом пространстве.
  4. Емкость конденсатора определяется как отношение заряда Q на обкладках к разности потенциалов между обкладками, т.е. $C=\frac{Q}{V}$
  5. Конденсаторы используются в различных электрических цепях, таких как генераторы, схемы настройки, схемы фильтров, электрические вентиляторы, двигатели и т. д.
  6. Форма проводников может быть плоской, сферической или цилиндрической. Изготавливают параллельные пластинчатые, сферические или цилиндрические конденсаторы.

Параллельные конденсаторы
  1. Говорят, что конденсаторы соединены параллельно между двумя точками, если из одной точки в другую можно пройти разными путями.
  2. Конденсаторы называются параллельными, если потенциал на каждом отдельном конденсаторе одинаков и равен приложенному потенциалу.
  3. Заряд на каждом конденсаторе разный и пропорционален емкости конденсатора $Q \propto C$ поэтому $\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}$ , $\mathrm{Q}_{2}=\mathrm{C}_{2} \ матрм{~V}$ , $Q_{3}=C_{3} V$
  4. Параллельная комбинация подчиняется закону сохранения заряда So

    $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}$

    $=C_{1} В+C_{2} В+C_{3} В$

    $=\left(C_{1}+C_{2}+C_{3}\right) V$эквивалентная емкость $C_{p}=\frac{Q}{V}$

    $=C_{1}+C_{2}+C_{3}$

  5. Эквивалентная емкость может быть определена как емкость отдельного конденсатора, который приобрел бы тот же общий заряд Q при той же разности потенциалов V.
  6. Эквивалентная емкость при параллельном подключении равна сумме отдельных емкостей.
  7. Эквивалентная емкость больше наибольшей из отдельных емкостей.
  8. Конденсаторы соединены параллельно (а) для увеличения емкости (б), когда требуется большая емкость при низком потенциале.{2}$

    $=\frac{1}{2}\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots .{2}+\ldots \ldots=\mathrm{U}_{1}+\mathrm{U}_{2}$

    $+U_{3}+\ldots \ldots$

    Общая энергия, накопленная в параллельной комбинации, равна сумме энергий, накопленных в отдельных конденсаторах.

  9. Если n пластин расположены так, как показано, они образуют (n–1) параллельно соединенных конденсаторов емкостью $\frac{\varepsilon_{0} \mathrm{~A}}{\mathrm{~d}}$
Эквивалентная емкость $C_{P}=(n-1) \frac{\varepsilon_{0} A}{d}$

Емкость плоского конденсатора с проводящей пластиной Исходное однородное поле $E_{0}$ существует на расстоянии d-t, поэтому разность потенциалов между пластинами

$V=E_{0}(dt)=\frac{\sigma}{\varepsilon_{0}}(dt)$

$=\frac{Q}{\varepsilon_{0} A}(dt)$

Емкость $C=\frac{Q}{V}$

$=\frac{\varepsilon_{0} A}{d(1-t / d)}=\frac{C_{0}}{1-t / d}$

$c>c_{0}$, поэтому емкость увеличивается при введении металлической пластины между пластинами.

Емкость плоского конденсатора с диэлектрической пластиной

Когда между пластинами вводится диэлектрик, то поле $\mathrm{E}_{0}$ существует вне диэлектрика, а поле E существует внутри диэлектрика. Разность потенциалов между пластинами

$V=E_{0}(d-t)+E t=E_{0}(d-t)$

$+\frac{E_{0} t}{K}=E_{0}\left[d-t\left(1-\frac{1}{K}\right)\right]$

$\mathrm{V}=\frac{\sigma}{\varepsilon_{0}}\left[\mathrm{~d}-\mathrm{t}\left(1-\frac{1}{\mathrm {~K}}\справа)\справа]$

$=\frac{\mathrm{Qd}}{\varepsilon_{0} \mathrm{~A}}\left[1-\frac{\mathrm{t}}{\mathrm{d}}\left( 1-\frac{1}{\mathrm{~K}}\right)\right]$

Емкость $C=\frac{Q}{V} \frac{\varepsilon_{0} A}{d\left[1-\frac{t}{d}\left(1-\frac{1}{ К}\справа)\справа]}$

$=\frac{C_{0}}{1-\frac{t}{d}\left(1-\frac{1}{K}\right)}$

  1. $C>C_{0}$, поэтому емкость увеличивается при введении диэлектрической пластины между пластинами конденсатора.
  2. Емкость не зависит от положения диэлектрической пластины между пластинами.
  3. Если все пространство заполнено диэлектриком, чем t = d и $C=K C_{0}$

Энергия, накопленная в конденсаторе Зарядка конденсатора включает перенос электронов с одной пластины на другую. Аккумулятор переносит положительный заряд с отрицательной пластины на положительную. Некоторая работа совершается при переносе этого заряда, который запасается в виде электростатической энергии в поле.{2}=\frac{1}{2} Q V$

Важные моменты
  1. Энергия запасается в электрическом поле между обкладками конденсаторов.
  2. Запасенная энергия зависит от емкости, заряда и разности потенциалов. Это не зависит от формы конденсатора.
  3. Энергия получается за счет химической энергии батареи

Вот и все из этой статьи. Если вам понравилась эта статья о принципе конденсаторов с параллельными пластинами, поделитесь ею с друзьями.Если у вас есть какие-либо затруднения, связанные с этой темой, не стесняйтесь спрашивать в разделе комментариев ниже.

Добавить комментарий

Ваш адрес email не будет опубликован.