Как из переменного тока сделать постоянный 12в
Осциллограмма постоянного напряжения
Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянное напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю.
Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство конденсатора: заряжаться и разряжаться. Конденсатор с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осциллограмме, мы должны вставить конденсатор приличной емкости.
Зависимость пульсаций от емкости конденсатора
Давайте же рассмотрим на практике, зачем нам надо ставить конденсатор большой емкости. На фото ниже у нас три конденсатора различной емкости:
Рассмотрим первый. Замеряем его номинал с помощью нашего LC – метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И цепляемся осциллографом:
Как вы видите, пульсации все равно остались.
Ну что же, возьмем конденсатор емкостью побольше.
Получаем 0,226 микрофарад.
Цепляем к диодному мосту также, как и первый конденсатор снимаем показания с него.
А вот собственно и осциллограмма
Не… почти, но все равно не то. Пульсации все равно видны.
Берем наш третий конденсатор. Его емкость 330 микрофарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
– чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие. Да и начальный ток заряда будет огромным, что может привести к перегрузке питающей цепи.
– чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. С этим борются с помощью пассивных фильтров, а также используют интегральные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Как подобрать радиоэлементы для выпрямителя
Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд? Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки трансформатора мы будем получать действующее напряжение.
Umax – максимальное напряжение, В
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запомнилось:
Читаем в обязательном порядке продолжение этой статьи.
Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.
Основные способы понижения
Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.
На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».
Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.
Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.
Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:
- С помощью балластного конденсатора понижение напряжения.
- При помощи балластного резистора гасится избыточное напряжение.
- Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.
Балластный конденсатор
Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.
Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:
В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.
Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.
Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.
При помощи резистора
Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.
Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.
Автотрансформатор или дроссель с подобной логикой намотки
В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.
Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).
Схема автотрансформатора с фиксированным напряжением U2.
Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.
Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи.
При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.Технические требования к конденсатору
Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.
Бестрансформаторное электропитание: возможные схематические решения
Микросхема линейного стабилизатора
Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.
Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:
Зарядное устройство
Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.
В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.
Для чего может использоваться напряжение 12 или 24 вольт в быту
В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:
- аккумуляторные электродрели, шуруповерты и электропилы;
- стационарные насосы для полива огородов;
- аудио-видеотехника и радиоэлектронная аппаратура;
- системы видеонаблюдения и сигнализации;
- батареечные радиоприемники и плееры;
- ноутбуки (нетбуки) и планшеты;
- галогенные и LED-лампы, светодиодные ленты;
- портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
- паяльные станции и электропаяльники;
- зарядные устройства мобильных телефонов и повербанков;
- слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
- детские игрушки, елочные гирлянды, помпы аквариумов;
- различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.
Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.
Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.
Очень часто пользователей световых электроприборов и СБТ интересует: «Как без трансформатора из 220 вольт получить 12в или другое низкое напряжение?». Обычно этим вопросом задаются владельцы электронной техники и аппаратуры, работающей от источников питания на понижающем сетевом трансформаторе. Это тем более актуально, поскольку весогабаритные показатели блока питания (БП) нередко превосходят аналогичные параметры запитываемого гаджета или стационарного устройства.
Основные способы понижения
Например, «ходовой» трансформатор частоты 50 Гц с относительно небольшой мощностью 200 Вт, выполненный на трансформаторном железе, весит более 1 килограмма и стоит от 9–18 $. Это не только делает блок питания громоздким, но и значительно удорожает стоимость девайса.
На трансформаторах реализована классическая схема понижения и последующего преобразования переменного напряжения (АС) в постоянное (DС) по цепи «трансформатор → выпрямитель → стабилизатор».
Существует более сложная схема построения «выпрямитель → импульсный генератор → трансформатор → выпрямитель → стабилизатор» импульсного блока питания, обладающая меньшими габаритами.
Преимуществом приведенных схем является гальваническая развязка. При замыкании цепи нагрузки на «ноль» она предотвращает выход из строя аппаратуры и снижает опасность поражения человека электрическим током.
Однако самыми миниатюрными источниками питания 12 В являются бестрансформаторные блоки питания, в которых производится:
- С помощью балластного конденсатора понижение напряжения.
- При помощи балластного резистора гасится избыточное напряжение.
- Нерегулируемым автотрансформатором снимается требуемое напряжение и сглаживается дросселем.
Балластный конденсатор
Сегодня весьма популярным среди радиолюбителей средством снижения напряжения стала установка гасящего конденсатора. Этот универсальный способ повсеместно используется для питания светодиодных ламп и в зарядных устройствах маломощных аккумуляторных батарей. Установка радиоэлемента в разрыв сети питания диодного моста позволяет получить требуемый ток в электрической цепи без рассеивания значительной мощности на тепло.
Схема простого конденсаторного (бестрансформаторного) блока питания с минимальным количеством радиоэлементов и напряжением 12 В мощностью 0,18 Вт выглядит следующим образом:
В качестве Р1 используется любое устройство, рассчитанное на постоянное напряжение 12 В с рабочим амперажом ≤ 0,15А. Конденсатор С1 – балластный, зашунтирован резистором R1. Он предназначен для предотвращения поражения электрическим током от накопленного на пластинах конденсатора С1 заряда. Со своим большим сопротивлением в сотни кОм резистор R1 не влияет на прохождение тока через емкость во время рабочей сессии.
Однако после завершения работы блока питания в течение времени , измеряемого несколькими секундами, через резистор проходит ток разряда обкладок конденсатора. Электролитический конденсатор С2, включенный параллельно нагрузке после диодного моста, сглаживает пульсации выпрямленного тока.
Заметно снизит зависимость выходного напряжения от сопротивления нагрузки БП симбиоз выпрямителя и параметрического стабилизатора с регулирующим элементом. Осуществляется такая доработка впаиванием параллельно P1 стабилитрона на 12 вольт.
При помощи резистора
Способ подходит для запитки слаботочной нагрузки, например, светодиода или маломощного LED-светильника. Основной недостаток резистивной схемы – низкий КПД по причине рассеивания большого количества активной мощности, затрачиваемой на нагрев резистора. В самом простом варианте БП представляет собой делитель напряжения на резисторах, установленный после диодного выпрямителя, с нижнего плеча которого снимается напряжение.
Стабилизация осуществляется посредством изменения сопротивления одного из плеч делителя: номиналы резисторов подбираются таким образом, чтобы понизить выходное напряжение до приемлемых значений.
Автотрансформатор или дроссель с подобной логикой намотки
В автотрансформаторе отсутствует вторичная обмотка: выходное напряжение снимается с одной единственной обмотки на тороидальном магнитопроводе, которая одновременно используется для подачи сетевого напряжения 220 В, 50 Гц.
Принцип действия аналогичен ЛАТР, только снимаемое с витков напряжение имеет определенную фиксированную величину. Поэтому замена силового трансформатора на автотрансформатор повышает КПД блока питания, заметно снижает размеры и вес девайса (при прочих равных условиях весогабаритные характеристики трансформатора в 1,5 раза больше заменяющего изделия).
Схема автотрансформатора с фиксированным напряжением U2.
Однако нерегулируемый автотрансформатор имеет существенный недостаток: он не защищает от бросков напряжения и наведенных в сети импульсов. Низкочастотные (НЧ) и высокочастотные (ВЧ) пульсации, сетевые помехи и паразитные гармоники значительно снизятся, если в выходную цепь установить дроссель. В тандеме с автотрансформатором используют дроссель с высокой индуктивностью ≤ 0,5–1,0 ГН, устанавливаемый последовательно с нагрузкой.
Индуктивный элемент накапливает в магнитном поле катушки энергию питающей сети, а затем отдает в нагрузку. Дроссель в электрической цепи противодействует изменению тока в электрической цепи. При резком падении катушка поддерживает протекающий ток, а при резком повышении ограничивает, не давая быстро возрасти. Компактные дроссели переменного тока применяются в бустерах энергосберегающих ламп и LED-драйверах, питающих светодиодные светильники.
Технические требования к конденсатору
Для бестрансформаторного БП подойдет конденсатор, рассчитанный на амплитудное (или большее) значение переменного напряжения. Если действующее значение напряжения равно 220 В, то амплитудное рассчитывается по формуле 220 * = 311 В (номинальное 400 В). Конденсаторы лучше выбрать плёночные, оптимально подходят емкостные элементы серии К73-17.
Бестрансформаторное электропитание: возможные схематические решения
Микросхема линейного стабилизатора
Можно своими руками собрать простой драйвер (источник стабилизированного тока) на недорогой (0,3 $) микросхеме линейного стабилизатора LM317АMDT. На вход преобразователя DС-AC подается напряжение сети 220 В, 50 Гц.
Стабилизированное напряжение 12 В получается на ИМС с минимальным набором элементов в обвязке (в самом простом варианте используется только R1 и R2). Подбирая номинал резисторов, можно регулировать ток в нагрузке, при суммарном токе светодиодов до 0,3 А микросхема отлично работает без радиатора. Ниже приведена типовая схема устройства на микросхеме LM317:
Зарядное устройство
Самым бюджетным вариантом, безусловно, считается использование зарядного устройства (ЗУ) от сотового телефона. Плата зарядника имеет совсем небольшие габариты и подойдет для питания 12 В гаджета с мощностью ≤ P ном. блока питания. Необходимо только заменить в ней однополупериодный выпрямитель на выпрямитель с удвоенным напряжением (добавляется по одному диоду и конденсатору). После модернизации получаем искомые 12 вольт с током 0.5А и полноценной развязкой от сети.
В качестве альтернативы, не требующей вмешательства в конструкцию, можно к выходу ЗУ через переходник подключается повышающий DС-DС преобразователь напряжения (например, 2-х амперный, размером 30мм х 17мм х 14мм, стоимостью 1$) с USB-разъемом. Требуется только выставить подстроечным резистором требуемое напряжение 12 В и подключить преобразователь к гаджету или стационарному электроприемному устройству.
Для чего может использоваться напряжение 12 или 24 вольт в быту
В бытовых условиях зачастую используются источники электропитания низкого напряжения. От напряжения 12 или 24В постоянного тока DС запитываются переносные/стационарные электротехнические и электронные устройства, а также некоторые осветительные приборы:
- аккумуляторные электродрели, шуруповерты и электропилы;
- стационарные насосы для полива огородов;
- аудио-видеотехника и радиоэлектронная аппаратура;
- системы видеонаблюдения и сигнализации;
- батареечные радиоприемники и плееры;
- ноутбуки (нетбуки) и планшеты;
- галогенные и LED-лампы, светодиодные ленты;
- портативные ультрафиолетовые облучатели и портативное медицинское оборудование;
- паяльные станции и электропаяльники;
- зарядные устройства мобильных телефонов и повербанков;
- слаботочные сети электропитания в местах с повышенной влажностью и системы ландшафтного освещения;
- детские игрушки, елочные гирлянды, помпы аквариумов;
- различные самодельные радиоэлектронные устройства, в том числе на популярной платформе Arduino.
Большинство устройств работает от батареек и Li-ion аккумуляторов, но использование товарных позиций не всегда оправдано с точки зрения эксплуатационных затрат. Заряжать аккумуляторные батареи можно 300–1500 раз, но гальванические элементы с большой энергоемкостью и низким током саморазряда стоят дорого. Заметно дешевле обойдется приобретение батареек, особенно солевых и щелочных, но такие элементы придётся часто менять. Тем более, что для обеспечения подающего напряжения 12 В понадобится 8 последовательно соединенных пальчиковых батареек (типа АА или ААА) или 1,5-вольтовых «таблеток» в корпусе типа 27А.
Поэтому в местах с доступом к бытовой сети 220 В 50 Гц для питания электроприемников с амперажом больше 0,1 А рациональнее использовать блок питания.
Преобразователи постоянного напряжения в переменное. Как из постоянного тока сделать переменный?
“Белорусский государственный университет информатики и радиоэлектроники”
Кафедра защиты информации
«ЭЛЕКТРИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ »
Инвертор – преобразует постоянный ток в переменный.
Конвертор – преобразователь постоянного напряжения в постоянное, но другого уровня (с промежуточным преобразованием входного напряжения в переменное и трансформацией к нужному уровню).
Центральным звеном является преобразователь постоянного напряжения в переменное.
Применяют различные схемы таких устройств:
Транзисторные и на электронных лампах;
Построенные на транзисторах с насыщающимися сердечниками;
Релаксационные генераторы, триггеры, мультивибраторы;
По однотактной, двухтактной и мостовой схемах;
Тиристорные простые и мостовые схемы (в мощных устройствах).
Простая схема двухтактного тиристорного инвертора
Рисунок 1 – простая схема двухтактного тиристорного инвертора
От Т2 поступают импульсы управления в цепь тиристоров.
От постоянного источника напряжение поступает на вход схемы. Оно проходит через
на аноды VD. заряжается до двойного входного напряжения. Если теперь подать импульсы на VD2, сразу закрывается VD1, перезаряжается, все знаки в Т1 поменяются на противоположные и ток потечет через VD2.Как видно из работы схемы, на коммутирующей емкости
в момент закрытия тиристора действует напряжение равное удвоенному напряжению питания, что является недостатком для схемы.Его устраняет мостовая схема тиристорного инвертора.
Мостовая схема тиристорного инвертора
Рисунок 2 – Мостовая схема тиристорного инвертора
Схема управления открывает сначала VD1 и VD4, а потом, когда емкость зарядится до
, в этот момент, если открыть другие тиристоры, VD1 и VD4 мгновенно закроются.В данной схеме на закрытых тиристорах действует лишь напряжение источника питания.
Тиристорные выпрямители являются эффективными перспективными инверторами. Применяются на значительной мощности и используются в настоящее время для замены электромашинных агрегатов, преобразующих энергию постоянного тока резервных аккумуляторных батарей в переменный ток, в устройствах гарантированного питания (УГП) аппаратуры на предприятиях связи.
Преобразователи постоянного напряжения
Часто при питании электронных устройств ИП являются низковольтными, а для питания цепей потребления требуются значительные напряжения. При этом прибегают к преобразованию напряжения. Для этого используют инверторы и конверторы. Используются электромагнитные преобразователи, вибропреобразователи и статические преобразователи на п/п приборах.
Электромагнитные преобразователи вырабатывают напряжение синусоидальной формы, в то время как полупроводниковые и вибропреобразователи – напряжение прямоугольной формы. В настоящее время имеются статические преобразователи с выходным напряжением по форме близким к синусоидальному. Недостаток электромагнитного преобразователя: большие габариты и масса. Вибропреобразователи – маломощные и малонадежные. Поэтому наибольшее применение находят полупроводниковые преобразователи с малыми габаритами и массой, высоким КПД и эксплуатационной надежностью.
Построение преобразователей на тиристорах и транзисторах следует связывать с величиной питающих напряжений, требуемой мощности, характером изменения нагрузки.
Транзисторные преобразователи напряжения
Они подразделяются по способу возбуждения на 2 типа: с самовозбуждением и преобразователи с усилением мощности.
Транзисторы могут включаться по схеме с ОЭ, ОК, ОБ, но наиболее широко используются включение с ОЭ, так как в этом случае реализуется максимальное усиление транзисторов по мощности и тем более просто достигаются условия самовозбуждения.
Преобразователи с самовозбуждением выполняются на мощных, до нескольких десятков ватт, по однотактным и двухтактным схемам. Простейшая схема однотактного преобразователя представляет собой релаксационный генератор с обратной связью.
С обратным включ. диода.С прямым включ. диода.
При подключении напряжения питания через резистор на базу транзистора подается опирающий потенциал. Транзистор открывается и через первичную обмотку Wк трансформатора протекает ток, который вызывает магнитный поток в магнитопроводах транзистора. Появляющееся при этом напряжение на обмотке Wк трансформируется в обмотке обратной связи Wб, полярность подключения которой такова, что она способствует отпиранию транзистора. Когда ток коллектора достигает своего максимального значения: Iк=Iб*h31э, нарастание магнитного потока прекратится, полярность напряжений на обмотках трансформатора изменяется на противоположное и происходит лавинообразный процесс запирания транзистора.2*tu. Конденсатор сглаживающего фильтра Cф при этом заряжается выпрямленным напряжением до Uп.
В течении паузы tп, когда транзистор закрыт, цепь тока Iн замыкается через дроссель Lф и блокирующий диод VD2, как и в импульсном стабилизаторе с последовательным регулированием.
В однотактных преобразователях трансформатор работает с подмагничиванием, для борьбы с которым можно применять сердечник с зарядом. Однако он не подходит при использовании тор. транзистора. В нашем случае используется блокирующий конденсатор, который в течении паузы tп разряжаетсячерез обмотку W1, перемагничивая сердечник током разряда.
Емкость Cбл. Выбирается из условия, чтобы при максимальном коэффициенте заполнения φmax длительность паузы tп была не менее четверти периода колебательного контура L, Cбл.
Такой преобразователь с обратным включением диода обеспечивает развязку и защиту выходного напряжения от помех по входным шинам питания.
Транзисторные преобразователи определяются по следующим формулам:
Uп=Uп(Iкм/2Iн-W1/W2)
tu = Iкм*L1/Uп
tп = Iкм*L2/Uн*W2
φ = fп*Iкм*L1/Uп = tu/(tu+tп)
Лучшие массогабаритные показатели имеют двухтактные преобразователи с понижающим трансформатором.
Трансформаторы выполняются на магнитопроводе с прямоугольной петлей гистерезиса. Здесь также используется положительная ОС. Генератор работает следующим образом. При включении напряжения питания Uп из-за неидентичности параметров один из транзисторов, например VT1, начинает открываться и его коллекторный ток увеличивается. Обмотки ОС Wб подключены так, что наведенное в них ЭДС полностью открывает транзистор VT1 и закрывает транзистор VT2.
Переключение транзисторов начинается в момент насыщения транзистора. Вследствие этого наведенные во всех обмотках трансф. Напряжения уменьшаются до нуля, а затем изменяют свою полярность.
Теперь на базу ранее открытого транзистора VT1 подается отрицательное напряжение, а на базу ранее закрытого транзистора VT2 поступает положительное напряжение и он начинает открываться. Этот регенеративный процесс формирования фронта выходного напряжения протекает очень быстро. В дальнейшем процессы в схеме повторяются.
Частота переключения зависит от значения напряжения питания, параметров трансформатора и транзисторов и рассчитываются по формуле:fп=((Uп-Uкэ нас)*10000)/4*B*s*Wк*Sc*Kc.Такой режим более экономичен, чем при переключении за счет предельного тока коллектора и работа преобразователя более устойчива.
Такие преобразователи используются как задающие генераторы для усилителей мощности и как автономные маломощные источники электропитания. Основные достоинства: простота схемы, а также нечувствительность к короткому замыканию в цепи нагрузки.
Недостатком преобразователя с насыщающимся сердечником является наличие выбросов коллекторного тока в момент переключения транзисторов, что увеличивает потери а преобразователе.
Напряжение на закрытом транзисторе может достигать значения:
Uкэm = (2,2: 2,4)Uпmax
два напряжения это сумма Uп+ЭДС на неработающей обмотке, кроме того учитываются выбросы напряжения во время переключения. Для уменьшения последних в схему иногда включают шунтирующие диоды.
При преобразовании больших мощностей наибольшее распространение получили преобразователи с использованием усилителя мощности. В качестве задающего генератора можно использовать преобразователи с самовозбуждением. Применение таких преобразователей целесообразно если необходимо обеспечить постоянство частоты и напряжения на выходе, а также неизменность формы кривой переменного напряжения при изменении нагрузки преобразователя.
В случае высокого входного напряжения применяют мостовые усилители мощности.
Предположим, в первый полупериод одновременно работают транзисторы T1,T2. Во второй T2,T3. Напряжение питания прикладывается к первичной обмотке транзистора, его полярность меняется каждый полупериод. Напряжение на закрытом транзисторе равно напряжению источника питания. Выходной транзистор работает в ненасыщенном режиме, выполняется он из материала с непрямоугольной петли гистерезиса.Преобразователи на тиристорах
Тиристоры в отличие от транзисторов имеют одностороннее управление. Для запирания тиристоров в схемах преобразователей используются реактивные элементы в основном в виде коммутирующих конденсаторов.
При отпирании первого тиристора емкость заряжается до напряжения 2Uп. При отпирании второго тиристора напряжение конденсатора прикладывается в обратном направлении к первому транзистору, под действием его он запирается. Конденсатор перезаряжается, и напряжение на его обмотках и на первичной обмотке тиристора меняет знак (потенциалы показаны на схеме в скобках). В следующий полупериод вновь отпирается тиристор T1 и процесс повторяется.Для обеспечения запирания тиристоров необходимо, чтобы энергия коммутирующего конденсатора была достаточной для того, чтобы в процессе перезаряда обратное напряжение на тиристорах падало достаточно медленно и успело бы обеспечить восстановление их запирающих свойств.
Недостатком такого инвертора является сильная зависимость выходного напряжения от тока нагрузки.
Для уменьшения влияния характера и величины нагрузки на форму и величину выходного напряжения применяют схемы с обратными диодами, которые в свою очередь необходимы для возврата реактивной энергии, накопленной в индуктивной нагрузке и реактивных коммутирующих элементах в источнике питания преобразователя.
Источник питания с бестрансформаторным входом
Особенностью таких источников являются использование процесса преобразования входного напряжения с использованием высокой частоты.
Отсутствие силового транзистора на входе и использование транзисторовна повышенной частоте существенно улучшает массогабаритные характеристики.
Функциональная схема ИПБВ на базе регулируемого преобразователя имеет следующий вид:
ВЧФ – препятствует проникновению во входные цепи помех от ИПБВ и наоборот.
ВУ – выпрямительное устройство,
СФ – сглаживающий фильтр;
РП – регулируемый преобразователь;
ЗГ – синхронизирующий задающий генератор;
ГПН – генератор пилообразного напряжения.
Работу ИПБВ со стабилизацией входного напряжения с использованием ШИМ легко представлять, рассмотрев диаграммы напряжений на отдельных участках схемы.
С целью упрощения регулировки преобразователь как правило строится по однотактной схеме с обеспечением рекуперации части энергии, накопленной в реактивных элементах в источник входного напряжения. На выходе преобразователя при напряжениях 5 – 10В ставят выпрямитель со средней точкой. С целью уменьшения времени коммутации силовых транзисторов на их входах применяют цепи обеспечивающие значительное превышение запирающего напряжения по отношению к отрицательному.
ЛИТЕРАТУРА
1. Иванов-Цыганов А.И. Электротехнические устройства радиосистем: Учебник. – Изд. 3-е, перераб. и доп.-Мн: Высшая школа, 200
2. Алексеев О.В., Китаев В.Е., Шихин А.Я. Электрические устройства/Подред. А.Я.Шихина: Учебник. – М.: Энергоиздат, 200– 336 с.
3. Березин О.К., Костиков В.Г., Шахнов В.А. источники электропитания радиоэлектронной аппаратуры. – М.: Три Л, 2000. – 400 с.
4. Шустов М.А. Практическая схемотехника. Источники питания и стабилизаторы. Кн. 2. – М.: Альтекс а, 2002. –191 с.
Все Вы наверное задавались вопросом: “А как получить постоянное напряжение из переменного?” Ну что ж, пора думаю раскрыть эту тайну:-) , хотя это тайной и не назовешь. В этой статье я покажу основы, а какое напряжение получить – это уже решать вам. Оказывается, на деле все это гораздо проще, чем кажется.
Давайте для начала уточним, что мы подразумеваем под “постоянным напряжением”. Как гласит нам Википедия, постоянный напряжение (он же и постоянный ток) – это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю. Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации . А вот собственно и осциллограмма постоянного напряжения:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор . А для того, чтобы преобразовать в постоянное пульсирующее напряжение , мы с Вами после трансформатора подключали Диодный мост . На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство кондера: заряжаться и разряжаться. Весь прикол состоит в том, что кондер с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осцилле, мы должны вставить конденсатор приличной емкости.
Давайте же рассмотрим на практике, почему нам нужно ставить кондер большой емкости. На фото ниже у нас три кондера. Все разной емкости.
Рассмотрим первый кондер. Замеряем его номинал с помощью нашего LC – метр . Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И снимаем показания с кондера осцилом.
А вот и осциллограмма с кондера.
Неееее… это осциллограмма не постоянного тока. Пульсации все равно остались.
Ну что ж, возьмем кондер емкостью побольше.
Замеряем его емкость. Получается 0,226 микроФарад.
Цепляем к диодному мосту также, как и первый кондер снимаем показания с него.
А вот собственно и осциллограма.
Не… почти, но все равно не то.
Берем наш третий кондер. Его емкость 330 микроФарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
Чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие.
Чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. В этом случае лучше всего использовать трехвыводные стабилизаторы напряжения , которые выдают чистейшее постоянное напряжение.
Давайте вернемся к нашему вопросу в начале статьи. Как все таки получить на выходе постоянный ток 12 Вольт, скажем для каких-нибудь безделушек? Сначала нужно подобрать транс, чтобы на выходе он выдавал… 12 Вольт? А вот и не угадали! Со вторичной обмотки транса мы будем получать действующее напряжение .
где
U Д – действующее напряжение
U max – максимальное напряжение
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе транса должно быть 12/1,41=8,5 Вольт. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансе, мы должны убавлять или добавлять обмотки транса. Формула . Потом подбираем диоды. Диоды подбираем исходя из того, что мы собираемся питать и какое напряжение и сила тока должны проходить через диоды. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем кондер с большой емкостью. Кондер подбираем исходя из того, чтобы напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у транса на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запоминалось;-)
Читаем в обязательном порядке этой статьи.
Автор : elremont от 22-08-2013В этом руководстве я собираюсь рассказать о кремниевых диодах, диодных мостах, и как преобразовывать переменный ток в постоянный. Это условное обозначение диода и картин. Полоска на конце диода указывает вам, каким образом поставить его в вашу схему, но что такое диод?
Диод это устройство, которое позволяет току течь только в одном направлении. Это удобно запомнить, сравнивая диоды с водопроводными кранами, которые позволяют воде течь только в одном направлении. Так что если вы пустите переменное напряжение или ток через диод, отрицательное напряжение будет блокировано, и вы останетесь с только положительной полуволной. Этот процесс называется выпрямлением тока… оно работает не только с синусоидальными волнами. Это также будет работать с квадратными, треугольными волнами, или любыми другими сигналами, которые имеют отрицательный полупериод. Минуточку…
Если увеличить и наложить сигналы друг на друга, то видно, что напряжение снизилось! Это происходит потому, что не существует такой вещи, как идеальный диод. У всех диодов есть прямое падение напряжения, обозначаемое «Vf». Это означает, что всякий раз, когда ток протекает вперед через диод, будет падение напряжения, которое обычно составляет около 0,7 вольт. Точное значение зависит от температуры, тока и типа диода, а пока давайте просто считать, что это 0.7V Так кремниевый диод даже не откроется, пока не будет 0.7V на его выводах и после его открытия на диоде всегда будет падение напряжения 0.7V. Проверьте это экспериментально, чтобы увидеть то, что я имею в виду: При отрицательном напряжении на входе, диод не может открыться, так что вы ничего не получите на выходе. 0,3 вольта на входе это все еще не достаточно, чтобы открыть диод, так что вы опять ничего не получите. 0,9 вольт на входе достаточно, чтобы открыть диод, но из-за падения напряжения у вас останется только 0.2V. И при 10 вольтах, минус 0,7 вольта, вы получаете 9,3 вольт.
Иногда падение напряжения на диоде проблема… иногда нет… Для примера я покажу вам, при 10 вольт от пика до пика на входе это почти незаметно.
Но если я попытаюсь выпрямить ток 0.5V, такой, как сигнал, поступающий из моего MP3-плеера, то падение 0.7V становится проблемой, и это не работает. Чтобы справиться с этой проблемой, надо использовать передовые технологии, такие как супер диоды. Но на данный момент вам не нужно беспокоиться об этом. Нет устройств эффективных на 100%, так что давайте поговорим о мощности. Будет ли диод нагреваться, сможете ли вы предсказать? Хорошо, потери энергии в диоде определяются Vf и током, протекающим через диод. Для обычного кремниевого диода с Vf = 0,7 В, при прохождении одного миллиампера, всего 0,7 мВт теряется на нагрев, так что это не проблема. Но уже при 3 А выделяется 2,1 Вт тепла, а это довольно много, так что вам придется использовать более крупный диод или использовать диод с низким прямым падением напряжения, например диод Шоттки. Их я рассмотрю в другом видео. Кстати, независимо от того, что кто-то говорит вам, при параллельном соединении диоды не смогут пропускать больший ток.
Что произойдет, если один диод закроется? Тепло, которое выделялось на нем, будет выделяться на других диодах. Старые диоды не идеальны, но я хочу поговорить не о коммутации скоростных диодов. Я использую диоды 1N4007, они предназначены для силовой электроники с низкой частотой переменного тока 50 – 60 Гц, как в вашем доме.
Теперь посмотрим, что происходит, когда я увеличиваю частоту. После около 15 кГц диод становится бесполезным, поскольку он начинает проводить в обратном направлении. Это потому, что диоду для переключения между открытым состоянием, позволяющим току двигаться вперед и закрытым требуется определенное количество времени. Разные диоды будут иметь разные скорости переключения. Так, если я заменю 1N4007 на 1N4148, то он будет хорошо работать, вплоть до 100 кГц и даже больше. Для работы с радиочастотами надо применять диоды, которые переключаются еще быстрее. Поэтому, когда вы проектируете что-то, вы должны думать о максимальном обратном напряжении вашего диода, прямом напряжении, номинальном токе и скорости переключения. Google всегда поможет вам в поиске справочной информации по диодам. Хорошо, что в большинстве случаев теорию работы диодов знать не обязательно. Так давайте использовать диоды, чтобы что-нибудь построить. Наиболее распространено использование диодов для преобразования переменного тока в постоянный, для питания различных устройств, которые есть у вас дома. Я собираюсь показать вам, как построить простой нерегулируемый источник питания постоянного тока очень похожий на этот. Я начну с тока малой силы, а затем я покажу вам, как улучшить конструкцию, чтобы работать с более мощной нагрузкой. Начинаем с преобразования напряжения сети в более низкое, безопасное переменное напряжение. Я покажу вам, как это сделать в моем руководстве по трансформаторам. При отсутствии нагрузки мой трансформатор дает мне хорошую чистую синусоиду около 39 вольт от пика до пика при 60 Гц. Я поставил диод 1N4007 и измерю напряжение до и после диода, можно увидеть срез отрицательного напряжения. Технически я преобразовал переменный ток в постоянный с помощью только одного диода, потому что я убрал все отрицательное напряжение. Но это не очень хороший постоянный ток, не так ли? Половину времени у вас странный горб по напряжению и половина времени у нас нет вообще ничего.
Если вам надо немного больше стабильности, для питания полезной нагрузки, мы добавим конденсатор, чтобы все наладить. Я начинаю с 1 мкФ, но чем больше емкость, тем лучше, потому что вы будете иметь больший энергетический накопитель. Это больше похоже на правду! Теперь у меня есть идеальный источник постоянного тока на 18,7 вольт. Всякий раз, когда вы делаете источник питания постоянного напряжения то лучшее, что вы можете увидеть на экране осциллографа- это постоянное стабильное напряжение. К сожалению, единственная причина, почему сейчас все выглядит идеально, то только потому, что я не успел подключить нагрузку. Конденсатор заряжается через диод, и сейчас нет ничего, что могло бы разрядить конденсатор. Итак, давайте посмотрим, что происходит, когда я добавляю резистор 4,7 кОм в качестве нагрузки. Закон Ома предсказывает, что должно быть только 4 мА нагрузки (что очень мало), но посмотрите, что происходит. Вы видите здесь, что, когда входное напряжение положительное, диод позволяет току протекать, так конденсатор заряжается. Но как только входное напряжение становится отрицательным, диод блокирует обратное протекание тока и единственный источник энергии это конденсатор на 1 мкФ. И как вы можете видеть его энергия быстро расходуется даже при низкой нагрузке. Так что же нам с этим делать? Давайте увеличим размер нашего резервуара энергии, чтобы его было достаточно, чтобы обеспечить нам питание до следующей положительной полуволны. Давайте заменим крошечный конденсатор на 1 мкФ на большой конденсатор на 470 мкФ, и посмотрим что происходит.
Это работает очень хорошо! Теперь у нас есть источник питания постоянного тока, который может выдавать ток в несколько миллиампер которого достаточно для питания некоторых датчиков и операционных усилителей. Хорошо, давайте модернизируем его на ступеньку выше. С нагрузкой в десять Ом, эта схема должна потреблять гораздо больше тока. Ну, что дело дрянь… мы вернулись к ситуации, когда напряжение проседает в каждом такте. Среднее напряжение 8 вольт, при токе около 0,8 ампер, но величина пульсаций напряжения огромна. Представьте себе, что мы попытаемся подключить что-то к этим… напряжение будет постоянно падать так низко, что никогда не будет оставаться постоянным! Так что даже 470 мкФ как накопителя энергии уже недостаточно. Мы можем попробовать решить проблему в лоб и добавить еще больше емкости.
Итак, давайте посмотрим, как схема работает с 3400 мкФ. Ну… это лучше… Теперь мы получили среднее напряжение около 12,5 вольт при токе около 1,25 А, но мы видим пульсации переменного тока 5 вольт, а это очень много. Можно продолжать добавлять емкость бесконечно, чтобы уменьшить количество провисания между циклами. Но для нагрузки в несколько ампер это становится непрактично и дорого. Но есть небольшая хитрость. Если взять четыре диода и расположить их таким образом, мы получим «диодный мост». Вот как это работает: В первой половине синусоиды, на верхний провод приходит положительная волна синусоиды, эти два диода открываются и пропускают ток. Далее диоды закрываются, блокируя любые возможные изменения направления тока. Теперь во второй половине синусоидальной волны, где верхний провод становятся отрицательным по отношению к нижнему проводу, другие два диода открываются, а два других закрыты. Таким образом, вместо того, чтобы терять нижнюю половину формы сигнала переменного тока, обрезав ее и никогда не используя, вы просто переворачиваете и перенаправляете ее. И на выходе вы получаете постоянный ток с пульсациями 120 Гц вместо 60 Гц.
И так же, как и раньше, вы можете обработать выходной сигнал конденсаторами, чтобы получить хорошее гладкое напряжение. Вы можете купить готовые мостовые выпрямители, но их легко построить самостоятельно. Вот мой мостового выпрямителя подключен к трансформатору. Я сделал его из четырех диодов 1N4007 и я потратил на них около 4 центов. Взгляните на то, как напряжение изменяется с положительного на отрицательное при 60 Гц, и теперь оно никогда не опускается ниже нуля вольт, и мы получаем эти положительные постоянные полуволны напряжения при 120 Гц. Это называется полным выпрямлением, потому что мы используем обе волны переменного тока. Теперь давайте вернемся к нашей макетной плате с нагрузкой десять Ом и посмотрим, как мостового выпрямитель работает с емкостью 470 мкФ по сравнению с одиночным диодом, который мы испытывали ранее.
Теперь у нас в среднем 11,6 вольт вместо 8 вольт, которые мы получали раньше с одного диода. И вы можете видеть, что это объясняется тем, что мостовой выпрямитель заряжает конденсатор в два раза чаще, потому что мы используем обе полуволны сети переменного тока 60 Гц. Теперь подумайте о том, насколько это большая разница, учитывая, что эти дополнительные диоды стоили мне только три цента.
Работу мостовых выпрямителей может быть немного трудно понять, но так как они работают так хорошо, все их используют. Теперь давайте сравним один диод с 3400 мкФ и мостовый выпрямитель с 3400 мкФ. Теперь мы получаем в среднем 13,5 вольт вместо 12,5 вольт и у нас есть пульсации только около одного или двух вольт. Другими словами, сочетание мостового выпрямителя с большой емкостью может преобразовать большой ток питания переменного тока в большой полезный ток питания постоянного тока. Просто имейте в виду, что ваши диоды и конденсаторы должны быть рассчитаны на то напряжение, с которым вы работаете.
То, что мы имеем сейчас, это в основном то же самое, что находится внутри этих дешевых маленьких нерегулируемых блоков питания, преобразующих переменный ток в постоянный, которые используются для питания радиостанций, часов и других домашних гаджетов. Мы могли бы сделать версию на 9 вольт, и она может питать старые Sega или Nintendo. Но я хочу подчеркнуть, что все это нерегулируемые источники питания. Это означает, что даже если мы успешно сгладим пульсации напряжения, то мы все равно столкнемся с проблемой изменения среднего напряжения под нагрузкой.
Без нагрузки это 18,7 вольт. А при 1 амперной нагрузке вы получите 13 вольт. Для некоторых схем это не будет иметь значения, если они предназначены для работы с широким диапазоном напряжений. Но многие устройства, такие как микроконтроллеры и другая цифровая электроника потребуют очень стабильный источник напряжения, и для этого вам нужно будет создать так называемый регулируемый источник напряжения. Про регуляторы напряжения я расскажу в другом видео. Теперь вы знаете, что делают диоды и как они преобразовывают переменный ток в постоянный.
_
Электрический ток протекает в различных средах: металлах, полупроводниках, жидкостях и газах. При этом он может быть постоянным или переменным. В статье рассмотрим отдельно постоянный и переменный ток, а также преобразование переменного тока в постоянный.
Постоянный ток и его источники
У постоянного тока величина и направление не изменяются с течением времени. На современных приборах он обозначается буквами DC — сокращением от английского Direct Current (в дословном переводе – прямой ток). Его графическое обозначение:
Источниками постоянного тока являются батарейки и аккумуляторы. На нем работают все полупроводниковые электронные устройства: мобильные телефоны, компьютеры, телевизоры, спутниковые системы. Для питания этих устройств от сети переменного тока в их входят блоки питания. Они понижают напряжение сети до нужной величины и преобразуют переменный ток в постоянный. Зарядные устройства для аккумуляторов тоже питаются от сети переменного тока и выполняют те же функции, что и блоки питания.
Переменный ток и его параметры
У переменного тока направление и величина циклически изменяются во времени. Цикл одного полного изменения (колебания) называется периодом (T) , а обратная ему величина – частотой (f) . Буквенное обозначение переменного тока – АС , сокращение от Alternating Current (знакопеременный ток), а графически он обозначается отрезком синусоиды:
̴
После этого знака указывается напряжение, иногда – частота и количество фаз.
Переменный ток характеризуется параметрами:
Характеристика | Обозначение | Единица измерения | Описание |
Число фаз | Однофазный | ||
Трехфазный | |||
Напряжение | U | вольт | Мгновенное значение |
Амплитудное значение | |||
Действующее значение | |||
Фазное | |||
Линейное | |||
Период | Т | секунда | Время одного полного колебания |
Частота | f | герц | Число колебаний за 1 секунду |
Однофазный ток в чистом виде получается при помощи бензиновых и дизельных генераторов. В остальных случаях он – часть трехфазного, представляющего собой три изменяющихся по синусоидальному закону напряжения, равномерно сдвинутых друг относительно друга. Этот сдвиг по времени называется углом сдвига фаз и составляет 1/3Т.
Для передачи трехфазных напряжений используют четыре провода. Один является их общей точкой и называется нулевым (N), а три остальные называются фазами (L1, L2, L3) .
Напряжение между фазами называется линейным , а между фазой и нулем – фазным , оно меньше линейного в √3 раз. В нашей сети фазное напряжение равно 220 В, а линейное – 380 В.
Под мгновенным значением напряжения переменного тока понимают его величину в определенный момент времени t. Она изменяется с частотой f. Мгновенное значение напряжения в точке максимума называется амплитудным значением. Но не его измеряют вольтметры и мультиметры. Они показывают величину, в √2 раз меньшую, называемую действующим или эффективным значением напряжения . Физически это означает, что напряжение постоянного тока этой величины совершит такую же работу, как и измеряемое переменное напряжение.
Достоинства и недостатки переменного напряжения
Так почему же для энергоснабжения выбрали переменный ток, а не постоянный?
При передаче электроэнергии ток проходит по проводам, длиной сотни километров, нагревая их и рассеивая в воздухе энергию. Это неизбежно как для постоянного, так и для переменного токов. Но мощность потерь зависит только от сопротивления проводов и тока в них:
Мощность, которую передается по линии, равна:
Отсюда следует, что при увеличении напряжения для передачи той же мощности нужен меньший ток, и мощность потерь при этом уменьшается. Вот поэтому протяженных ЛЭП напряжение повышают. Есть линии на 6кВ, 10кВ, 35кВ, 110кВ, 220кВ, 330кВ, 500кВ, 750кВ и даже 1150кВ.
Но в процессе передачи электроэнергии от источника к потребителю напряжение нужно неоднократно изменять. Проще это сделать на переменном токе, используя трансформаторы.
Недостатки переменного тока проявляются при передаче энергии по кабельным линиям. Кабели имеют емкостное сопротивление между фазами и относительно земли, а емкость проводит переменный ток. Появляется утечка, нагревающая изоляцию и выводящая со временем ее из строя.
Преобразование переменного тока в постоянный и наоборот
Процесс получения из переменного тока постоянного называется выпрямлением , а устройства – выпрямителями . Основная деталь выпрямителя – полупроводниковый диод , проводящий ток только в одном направлении. В результате выпрямления получается пульсирующий ток, меняющий со временем свою величину, но не изменяющий знак.
Затем пульсации устраняют при помощи фильтров , простейшим из них является конденсатор . Полностью пульсации устранить невозможно, а их конечный уровень зависит от схемы выпрямителя и качества фильтра. Сложность и стоимость выпрямителей зависит от величины пульсаций на выходе и от максимальной мощности на выходе.
Для преобразования в переменный ток используются инверторы . Принцип их работы состоит в генерации переменного напряжения с формой, максимально приближенной к синусоидальной. Пример такого устройства – автомобильный инвертор для подключения к бортовой сети бытовых приборов или инструмента.
Чем качественнее и дороже инвертор, тем больше его мощность или точнее выдаваемое им напряжение приближается к синусоиде.
1.3. Преобразование переменного тока
в постоянный и постоянного в переменный
Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно.
Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким
Рис. 1.12. Двухтактный однофазный выпрямитель
эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель. Таким образом, появились новые классы машин – трансформаторов и синхронных,- постоянно работающих с выпрямителями. Однако работа электрической машины на выпрямитель имеет особенности, которые надо учитывать при проектировании этих машин и анализе процессов, происходящих в них.
Преобразование переменного тока в постоянный производится с помощью полупроводниковых вентилей, имеющих одностороннюю проводимость. На рис. 1.12 и 1.13 показаны наиболее распространенные схемы выпрямителей: однофазного (рис.-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1.12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики – менее 6% от постоянной составляющей (рис. 1.13, б).
Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое – для постоянной.
Если считать ток в нагрузке /в), содержащий высшие гармоники, повышающие нагрев обмоток. Кроме того, при использовании схем выпрямления с нулевой точкой имеется постоянная составляющая тока в обмотках (рис. 1.12,6). Из-за этого резко возрастает действующее значение тока и нужно принимать меры против создания постоянного подмагничивания стержня. Для предотвращения этого явления, например, в однофазных трансформаторах применяют либо броневую конструкцию (рис. 1.14), либо на каждом стержне располагают все обмотки трансформатора, деля их пополам.
Большое влияние на работу выпрямителя (рис. 1.15, о) оказывает коммутация тока – процесс перехода с одного вентиля на другой.
Из-за наличия индуктивностей в токопроводящей цепи и индуктивности, обусловленной потоками рассеяния трансформатора, ток с одного вентиля переходит на другой не мгновенно, а за период коммутации Г к, которому соответствует угол коммутации у (рис. 1.15, б).
Для простоты предположим, что ток в нагрузке Id идеально сглажен. Тогда сумма токов через первый и второй вентили i a \ и iai в процессе коммутации неизменна:
Рис. 1.14. Схематический чертеж броневого трансформатора
В момент начала коммутации, когда значение ЭДС проходит через нуль и меняет знак, обмотка трансформатора становится замкнутой накоротко и для ее контура можно написать уравнение
Во время коммутации напряжение на нагрузке СЛг=0,5(е 2а + +е 2 ь) и в однофазном выпрямителе равно нулю (рис. 1.15, б). Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки I d и индуктивное сопротивление х а, для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе х а равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе
где Ха” и x q ” – сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке.
Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку.
Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель,
Рис. 1.16. Схема однофазного инвертора
где v«0,9 – коэффициент искажения; >ф«0,5у- угол сдвига тока относительно первой гармоники напряжения.
Преобразование постоянного тока в переменный производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др.
Схема однофазного инвертора представлена на рис. 1.16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока.
Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями.
Кроме того, в инверторе возможно появление режима сквозного горения, когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50… 100 раз.
Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами – преобразователями частоты препятствует их широкому применению.
В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д.
Рис. 1.17. Устройство машины постоянного тока
Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании.
В машине постоянного тока имеется своеобразный преобразователь- коллектор, который в генераторном режиме является выпрямителем, а в двигательном – преобразователем частоты.
Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1.17, а.
В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки.
Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью.
Проводники соединяются в витки с шагом ушт, как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка.
В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой – противоположного, как показано на эквивалентной схеме обмотки (рис. 1.17, б). По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит.
Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали.
Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.
В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин
меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков – секция.
Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС.
В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1.18, а).
При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации (рис. 1.18, б)
T K =bJv KOn , (1.66)
где Ь щ – ширина щетки; и К ол – линейная скорость точки, находящейся на поверхности коллектора.
В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1.18,0),
Рис. 1.18. Диаграммы токов при коммутации
где iiRi=AUi и i 2 R2=AU 2 – падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами; R c – активное сопротивление секции; L pe3 – результирующая индуктивность секции; е к – ЭДС от внешнего поля. Пренебрегая iR c ввиду малости R c , получим
Полученное основное уравнение коммутации (1.68) совпадает с уравнением коммутации в выпрямителе (1.рез, откуда
Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации у был неизменен:
y=*T K =2vJ>JD a v Koll =2b”jD a , (1.71)
где D a – диаметр якоря; v a – линейная скорость точки, находящейся на поверхности якоря; Ь”щ=ЬщО а /О КО л – ширина щетки, приведенная к диаметру якоря.
Для выполнения этого условия ЭДС в зоне коммутации ЭДС е к создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной.
Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается .
Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания, как в инверторах.
Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель- преобразователь частоты», ее КПД на 3…5% выше, машина значительно дешевле, имеет меньшие габариты и массу.
Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д.).
Инверторы – преобразователи напряжения 12 220 В для ваших задач от 800 руб.
Фильтр
Есть в наличии
Входное напряжение 220 Вольт
Выходное напряжение 12 Вольт
Сила тока 10А
Производитель: AVS
Есть в наличии
Входное напряжение 24 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 600Вт
Допустимая пиковая мощность 1200Вт
Производитель: AVS
Есть в наличии
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 1500 Вт.
Допустимая пиковая мощность 3000 Вт
Производитель: AVS
Нет в наличии
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 400 Вт
Допустимая пиковая мощность 800 Вт
Производитель: AVS
Нет в наличии
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 600 Вт.
Допустимая пиковая мощность 1200 Вт
Производитель: AVS
Нет в наличии
Входное напряжение 24 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 1000Вт
Допустимая пиковая мощность 2000Вт
Производитель: AVS
Нет в наличии
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 1000 Вт.
Допустимая пиковая мощность 2000 Вт
Производитель: AVS
Нет в наличии
Входное напряжение 24 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 1500 Вт.
Допустимая пиковая мощность 3000 Вт
Производитель: AVS
Нет в наличии
Входное напряжение 12 Вольт
Выходное напряжение 220 Вольт
Номинальная мощность 2000 Вт.
Допустимая пиковая мощность 4000 Вт
Производитель: AVS
Хотите купить инверторы-преобразователи напряжения по доступной цене, сделайте заказ на сайте!
Преобразователь напряжения – электромеханическое устройство, призванное преобразовывать постоянный ток в периодический с заданной амплитудой напряжения и частотой.
Применение и принцип работы
Применение автомобильного инвертора 12 220 В:
- получение на выходе переменного тока 220 вольт;
- возможность подключения зарядных устройств для различной электронной техники;
- подключение электротехники с питанием от сети 220 вольт – чайник, утюг, скороварка, телевизор и т.д.
Инвертор-преобразователь преобразует постоянный ток в переменный ток 50 Гц со средним значением прямоугольного напряжения 220 В. Применяется для питания электроприборов с импульсными блоками питания, например, современные телевизоры, компьютеры.
Режимы работы
- Пусковой. Возникает при кратковременной (несколько миллисекунд) работе, используется для запуска электродвигателей или для емкостных нагрузок. Отдаваемая мощность может превысить номинальную в 2 и более раз.
- Перегрузка. Возникает в большинстве случаев при подключении электропотребляющих механизмов. В течение 20…30 секунд прибор может вырабатывать мощность до 2-х раз больше номинальной.
- Постоянной (длительной) нагрузки. В течение всего цикла преобразователь работает на номинальной мощности.
Как правильно выбрать
Выбор мощности осуществляется следующим образом: определяется суммарная мощность одновременно подключенных потребляющих устройств, а затем к полученному результату необходимо дополнительно добавить 20…25% полученного значения.
Зачастую на приборе стоят несколько значений, соответствующие трем основным режимам преобразователя – пусковой, перегрузка и длительная работа. При расчетах надо брать во внимание режим длительной нагрузки – это номинальная мощность инвертора.
Аккумулятор чаще всего выдает напряжение, отличающееся от паспортного – значения могут укладываться в 12±2 В. Отсюда следует, что подбирать надо модель с входными параметрами 11…15 В. Инвертор должен быть оборудован системой защиты от перегрева, перегрузки, разрядки или перезарядки аккумулятора.
Наши предложения
В нашем интернет-магазине представлен широкий выбор разнообразных автомобильных преобразователей. Если вы затрудняетесь с выбором необходимой модели, грамотная команда наших менеджеров поможет вам определиться с требуемой мощностью прибора и подберет агрегат в соответствии с вашими финансовыми возможностями.
Автор: Сергей АвтоХол
Инверторы: розетка всегда с собой
Даже в отдалении от цивилизации мы хотим пользоваться привычными вещами: телефоном, ноутбуком, телевизором, микроволновой печью и другими электроприборами. Но как это сделать, когда из источников электроэнергии под рукой есть только автомобильный аккумулятор? Очень просто — с помощью автомобильного преобразователя напряжения, или инвертора, о котором и пойдет речь в этой статье.
Что такое автомобильный преобразователь напряжения (инвертор)?
Автомобиль — это не только средство передвижения, но и мобильный источник энергии. Но если возможность отбора мощности от мотора для приведения в движение разнообразных механизмов реализована только в тракторах, то возможность использования электрической энергии, запасенной в аккумуляторе, доступна любому автовладельцу. Для этого необходимо особое устройство — автомобильный преобразователь напряжения или, как его чаще называют в наше время, инвертор.
В широком смысле инвертор — это электронное устройство, преобразующее постоянный ток низкого напряжения в переменный ток высокого напряжения. В интересующем нас смысле инвертор — это преобразователь постоянного тока напряжением 12 или 24 вольта от автомобильного аккумулятора в переменный ток напряжением 220 вольт и частотой 50 Гц.
Подключая инвертор к прикуривателю или непосредственно к клеммам аккумулятора, можно получить переменный ток напряжением 220 В и даже вдалеке от цивилизации пользоваться привычными электрическими приборами.
Принцип работы инвертора
Как известно, нет ничего проще преобразования переменного тока — для этой цели служат трансформаторы, поднимающие или повышающие напряжение. С постоянным током все гораздо сложнее — просто так трансформировать его невозможно. Тогда как же постоянный ток, который дает автомобильный аккумулятор, преобразуется в переменный? На помощь приходит импульсная силовая электроника.
В любом инверторе, независимо от его типа, схемы и устройства, присутствуют три главных блока: задающий генератор, силовые ключи и силовой трансформатор. Задающий генератор обычно реализован на микросхеме, силовые ключи — это мощные транзисторы, а силовой трансформатор — это повышающий трансформатор, с выхода которого и снимается переменный ток напряжением 220 вольт.
Работа инвертора сводится к следующему. Задающий генератор создает импульсы с частотой 50 или 100 Гц (зависит от типа преобразователя), во время которых силовые ключи на очень короткое время открываются, подавая напряжение от источника питания (аккумулятора) на первичную обмотку трансформатора. Во время короткого импульса ток через обмотку постепенно нарастает и ведет себя подобно переменному, а значит, трансформатор может преобразовать его.
Вот так, 50 раз в секунду силовые ключи открываются и закрываются, подавая короткие импульсы тока напряжением 12 вольт от аккумулятора на первичную обмотку трансформатора. А на вторичной обмотке возникает такой же импульсный ток, но имеющий напряжение уже 220 вольт.
Нужно отметить, что силовую импульсную электронику не зря называют силовой: во время работы через транзисторы проходят большие токи, нередко достигающие десятков ампер, поэтому приборы испытывают значительный нагрев. И те ребристые радиаторы, которые в большинстве автомобильных преобразователей напряжения образуют боковые стенки, служат для отвода тепла от силовых транзисторов. В более мощных инверторах дополнительное охлаждение обеспечивается кулерами (вентиляторами).
Характеристики инверторов
Существует несколько основных характеристик преобразователей напряжения, на которые необходимо обращать внимание в первую очередь:
- Номинальная мощность;
- Предельная мощность;
- Форма выходного напряжения.
Номинальная мощность. Этот параметр говорит о том, нагрузку какой мощности инвертор может питать длительное время. Сейчас можно найти инверторы мощностью от 75-80 Вт, и вплоть до 3-5 кВт.
Предельная мощность. Этот параметр говорит о том, какую мощность инвертор может отдать кратковременно, в течение нескольких миллисекунд. Запас мощности необходим для работы устройств с электродвигателями, пусковой ток которых (а значит и потребляемая во время пуска мощность) в два-три раза превышает номинальный.
Мощность инвертора определяет его способ подключения к аккумулятору. Инверторы мощностью до 150-200 Вт могут без проблем подключаться к прикуривателю. Более мощные устройства необходимо подключать только непосредственно к клеммам аккумулятора, причем использовать для этого нужно провода большого сечения. Все дело в известной взаимосвязи мощности, силы тока и напряжения: повышение потребляемой мощности при неизменном напряжении приводит к повышению силы тока, а чем выше ток, тем сильнее нагрев проводников. Так что высокую нагрузку во избежание срабатывания предохранителей и оплавления проводки нельзя подключать к прикуривателю.
Форма выходного напряжения. Переменный ток в осветительной сети имеет правильную синусоидальную форму, однако в инверторе обеспечить правильный синус очень сложно, поэтому во многих преобразователях выходной ток имеет форму, лишь приближенную к синусоидальной.
Большинству электроприборов форма напряжения не важна, однако некоторые виды нагрузок (телекоммуникационное оборудование, профессиональная аудио- и видеотехника, измерительные приборы, медицинская техника и т.д.) очень чувствительны к этому параметру и могут нормально работать только при питании переменным током синусоидальной формы.
В инверторах получить чистый синус достаточно сложно, поэтому таких устройств на рынке мало, а их стоимость в 10-15 раз превышает стоимость инверторов, дающих ток упрощённой формы.
Как правильно выбрать преобразователь напряжения
Для выбора инвертора нужно, в первую очередь, руководствоваться показателем мощности. Если Вы планируете использовать инвертор только для питания ноутбука, зарядного устройства телефона или телевизора, то достаточно будет устройства с номинальной мощностью 150-250 Вт. А если Вы хотите на природе использовать пылесос, микроволновую печь, утюг или электроинструмент, то здесь поможет инвертор мощностью 2-3 кВт.
Также при выборе нужно обратить внимание на способ подключения инвертора к аккумулятору. Если Вы выбираете маломощное устройство, то в комплекте должен быть адаптер для подключения к прикуривателю. А мощный инвертор должен иметь зажимы с проводниками большого сечения для подключения непосредственно к клеммам аккумулятора.
При выборе необходимо обратить внимание и на другие характеристики инвертора: наличие электронной защиты от перегрузок, сигнализации разряда аккумуляторной батареи, дополнительных розеток и выходов (например, полезным будет наличие отдельного USB-входа для зарядки плееров, телефонов и других устройств) и т.д.
Сделав правильный выбор инвертора, Вы обеспечите себя источником энергии, который сделает пребывание вдали от благ цивилизации более комфортным.
Преобразовать постоянный ток в переменный схема. Преобразователи постоянного напряжения в переменное.
Преобразователь переменного тока в постоянный может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог. Предложенный преобразователь содержит трехфазный трансформатор (1) с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую – по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей (2…13). Числа витков фазных обмоток, составляющих обратные звезды (или звезды), и числа витков фазных обмоток, составляющих звезды (или обратные звезды), находятся в соотношении. Каждый из шести вентилей (3, 5, 7, 9, 11, 13) соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей (3, 7, 11, 9, 13, 5) подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей (2, 6, 10) и (8, 12, 4) образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды, соответственно, с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно (14) и (15), к которым присоединена нагрузка (16). Предложенный преобразователь переменного тока в постоянный обеспечивает технический результат – более высокое качество преобразования. 4 ил.
Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог.
Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий 12 вентилей, образующих две мостовые схемы и трансформатор, вторичная обмотка которого, поделенная в каждой фазе на три секции, соединена в двухсторонний встречно-встречный неравносторонний зигзаг – трехлучевую звезду (А.с. SU №1282291, МПК Н02М 7/162. Мостовой преобразователь электроэнергии / A.M.Репин. Бюл. №1, 1987).
Данный преобразователь имеет невысокие энергетические показатели, что обусловлено параметрической несимметрией цепей протекания тока нагрузки при формировании смежных пульсаций. Наличие частей обмоток с тремя численными значениями витков этих частей усложняет технологию равномерного размещения частей на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии результирующих напряжений вторичных обмоток, что снижает качество преобразования электроэнергии.
Известен преобразователь переменного тока в постоянный, обеспечивающий двенадцатипульсное выпрямленное напряжение, содержащий трехфазный трансформатор с вторичной обмоткой, части которой образуют правильный замкнутый шестиугольник, к трем, чередующимся через одну, вершинам которого подключены дополнительные обмотки встречно с соответствующей им парой смежных по фазе основных частей и шестиячейковый вентильный мост (А.с. SU №1347133, МПК Н02М 7/08. Мостовой источник постоянного напряжения (его варианты) / A.M.Репин. Бюл. №39, 1987).
Данный преобразователь также подвержен снижению энергетических показателей, обусловленному параметрической несимметрией цепей тока при формирования смежных пульсаций. Кроме того, большое различие количества витков частей обмоток усложняет технологию равномерного размещения их на стержнях трансформатора, а в ряде случаев приводит к конструктивной несимметрии напряжений обмоток, снижающей качество преобразования параметров электроэнергии.
Наиболее близким к изобретению, принятым за прототип, является преобразователь переменного тока в постоянный (Репин A.M. Новые базовые технические решения и классификация вентильных преобразователей энергии // Вопросы радиоэлектроники. Серия ОВР, 1985. – Вып.6. – С.71, рис.10, з), обеспечивающий двенадцатипульсное выпрямление и содержащий двенадцать вентилей, соединенных в два трехфазных вентильных моста, образующих шестифазный вентильный мост из шести вентильных ячеек с двумя последовательно согласно соединенными вентилями в каждой, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, с отношением чисел витков фазных обмоток обратных друг другу звезд, равным , входы переменного тока шестифазного вентильного моста, образованные точками соединения вентилей в ячейках, соединены с фазными выводами шестифазной звезды, а выводы постоянного тока шестифазного моста, каждый из которых образован общими точками соединения одноименных электродов двух вентильных звезд (анодных звезд для одного вывода и катодных – для другого) образуют выходные выводы устройства.
Недостатком данного преобразователя является относительно невысокое качество преобразования, снижение которого обусловлено параметрической несимметрией цепей протекания тока нагрузки в смежных циклах образования пульсаций выпрямленного напряжения, приводящей к появлению неканонических гармоник в спектре выпрямленного напряжения.
Задача изобретения – создание преобразователя переменного тока в постоянный, имеющего более высокое качество преобразования.
Указанная задача достигается тем, что в преобразователе переменного тока в постоянный, содержащем двенадцать вентилей, образующих две вентильные группы, каждая из которых содержит по три вентильных ячейки из двух последовательно согласно соединенных вентилей, а одноименные свободные электроды половины вентилей первой вентильной группы и свободные электроды другого наименования, принадлежащие половине вентилей второй группы, соединены, образуя при этом анодную и катодную вентильные звезды, общие точки соединения электродов вентилей в которых образуют выходные выводы устройства, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, а отношение чисел витков фазных обмоток обратных друг другу звезд равно , причем каждый вывод фазной обмотки звезды (обратной звезды), имеющей большее число витков, присоединен к незадействованной точке соединения вентилей ячейки, принадлежащей первой вентильной группе, трансформатор преобразователя снабжен дополнительной аналогичной вторичной обмоткой, каждый вывод фазной обмотки звезды (обратной звезды) которой, имеющей большее число витков, соединен с незадействованной точкой соединения вентилей ячейки, принадлежащей второй вентильной группе, причем каждый свободный вывод фазной обмотки, принадлежащей одной шестифазной звезде, соединен со свободным электродом одного из вентилей вентильных групп, второй электрод которого соединен с противофазным данному выводу выводом фазной обмотки, принадлежащей другой шестифазной звезде.
На Фиг.1 приведена принципиальная электрическая схема предлагаемого преобразователя; на фиг.2 – векторные диаграммы напряжений, представленные в виде амплитудно-фазовых портретов напряжений фазных обмоток, и развернутые векторные диаграммы, поясняющие принцип формирования векторов результирующих напряжений; на фиг.3 – схема работы вторичных обмоток и вентилей преобразователя; на фиг.4 – временные диаграммы выпрямленного напряжения, обратных напряжений и токов вентилей.
Преобразователь (фиг.1) содержит трехфазный трансформатор 1 с двумя вторичными обмотками, каждая из которых содержит по две обмотки, одну, выполненную по схеме звезды, вторую – по схеме обратной звезды, соединенных нулевыми точками в шестифазную звезду, и двенадцать вентилей 2…13. Числа витков фазных обмоток, составляющих обратные звезды, и числа витков фазных обмоток, составляющих звезды, находятся в соотношении . Каждый из шести вентилей 3, 5, 7, 9, 11, 13 соединяет пару противофазных выводов фазных обмоток двух шестифазных звезд. В данном случае аноды вентилей 3, 7, 11, 9, 13, 5 подключены соответственно к выводам фаз а, в, с, х, у, z одной шестифазной звезды, а катоды соответственно к выводам фаз х′, у′, z′, а′, в′, с′ второй шестифазной звезды. Группы вентилей 2, 6, 10 и 8, 12, 4 образуют соответственно анодную и катодную вентильные звезды; катоды вентилей анодной звезды соединены соответственно с фазами х, у, z одной шестифазной звезды, а аноды катодной звезды соответственно с фазами х′, у′, z′ другой шестифазной звезды. Общие точки анодной и катодной вентильных звезд образуют выходные выводы устройства соответственно 14 и 15, к которым присоединена нагрузка 16.
Принцип работы преобразователя (фиг.1) иллюстрируется векторными диаграммами напряжений, представленными в виде амплитудно-фазовых портретов напряжений фазных обмоток (фиг.2, а)), составляющих две несимметричные (по амплитудам фазных напряжений) шестифазные системы напряжений вторичных обмоток, и развернутой на фазовой плоскости совмещенной векторной диаграммой, показывающей принцип формирования результирующих напряжений, представленных векторами S1…S12 (фиг.2, б)). В каждой вторичной обмотке, состоящей из гальванически связанных между собой нулевыми точками прямой и обратной звезд, отношение чисел витков фазных обмоток, составляющих (в данном случае) обратные звезды, к числам витков фазных обмоток, составляющих звезды, равно . При таком соотношении чисел витков обеспечивается равенство результирующих напряжений по амплитуде и фазовых сдвигов между ними в 30 эл. градусов.
Формирование двенадцатипульсного выпрямленного напряжения на нагрузке поясняется векторными диаграммами, которые на фиг.2 совмещены с текущими композициями соединения фазовых портретов напряжений вторичных обмоток. Так, первый вектор результирующего напряжения S1 является суммой коллинеарных векторов фазных напряжений вторичных обмоток фаз х, а, х′ и отстающего на 60 эл. град. вектора фазного напряжения фазы z′ трансформатора. В формировании вектора S12 вместо вектора напряжения фазы z′ участвует опережающий вектор напряжения фазы у′. Таким образом, можно убедиться, что данная и каждая последующая пара векторов результирующих напряжений формируется равными по модулю векторами фазных напряжений. За период формируется двенадцать одинаковых результирующих напряжений, образующих двенадцатифазную систему результирующих выпрямляемых напряжений. Обе шестифазные системы напряжений при этом синфазны друг относительно друга. Как пример, на фиг.2, в) приведен другой, из множества возможных, вариант исполнения вентильных обмоток, основу которого составляет правильный шестигранник.
Схема работы обмоток и вентилей (фиг.3), полученная из анализа диаграмм на фиг.2, б), позволяет определить, что все фазные обмотки, образующие обратные звезды, проводят ток 180 эл. град. за период сетевого напряжения, а обмотки, образующие прямые звезды – 60 эл. град. (без учета коммутации). Вентили анодной и катодной вентильных звезд имеют угол проводимости 120 эл. град. Остальные вентили имеют угол проводимости 60 эл. град. Ток нагрузки в интервале пульсации обтекает три вентиля. Порядок вступления вентилей 2…13 в работу отражен в их нумерации на схеме фиг.1.
Исходя из геометрического построения диаграмм векторов результирующих напряжений (фиг.2) определено максимальное значение выпрямленного напряжения при идеальной коммутации и соответственно его среднее значение. Приняв за относительную единицу (о.е.) амплитуду напряжения на вторичной фазной обмотке, имеющей наибольшее число витков, в соответствии с векторными диаграммами на фиг.2 получено среднее значение выпрямленного напряжения U do =3,308 о.е.
По результатам анализа работы вторичных обмоток (фиг.3) определена мощность вторичных обмоток трансформатора преобразователя, составившая 1,29 P d (P d – мощность нагрузки). Расчетная типовая мощность трансформатора предлагаемого преобразователя равна 1,15 P d , но этот показатель при исполнении обмоток по схеме шестифазной звезды возрастает на 5-6% из-за необходимости компенсации переменного потока намагничивания. Однако при выполнении обмоток по схемам замкнутого типа данный показатель улучшается. Например, при выполнении обмоток по варианту, приведенному на диаграммах Фиг.2,в), типовая мощность трансформатора равна 1,083 Р d , но технология его изготовления усложняется
На Фиг.4, а) показана временная диаграмма выпрямленного напряжения, полученная при схемотехническом моделировании и подтверждающая двенадцатипульсный режим работы преобразователя. Моделирование показало, что при нарушении принятого соотношения между числами витков разновеликих вентильных обмоток более чем на 15%, например, при соотношении
значительного искажения кривой выпрямленного напряжения от канонической формы не происходит. Отсутствие амплитудной несимметрии в пульсациях выпрямленного напряжения в этом случае обусловлено принятой для преобразователя топологией цепей формирования результирующих напряжений (фиг.2). Наблюдается лишь незначительное рассогласование фазовых сдвигов между результирующими напряжениями (максимумами пульсаций). На фиг.4, б) приведены диаграммы кривых тока и обратного напряжения для одного из вентилей катодной группы (вентиль 8), а на фиг.4, в) – аналогичные диаграммы для вентиля группы, соединяющей шестифазные звезды (вентиль 5). При сравнении последних временных диаграмм (или из анализа векторных диаграмм) видно, что максимальные обратные напряжения вентилей анодной и катодной групп составляют 0,524 от среднего значения выпрямленного напряжения, а к остальным вентилям приложено напряжение в 1,0472 раза превышающее среднее значение выпрямленного напряжения.
Весьма существенен тот факт, что, даже с учетом применения разных по площади сечения проводов при выполнении фазных обмоток звезд и обратных звезд, активные сопротивления цепей тока при формировании всех результирующих напряжений равны, а реактивные сопротивления при однотипности размещения обмоток по стержням трансформатора также будут равны (без учета поправки, связанной с применением плоского стержневого магнитопровода). Технологичности выполнения обмоток, лучшему потокосцеплению и минимизации индуктивности рассеяния способствует относительно небольшая разность чисел витков фазных обмоток, принадлежащих звездам и обратным звездам. Все это позволяет уменьшить параметрическую несимметрию и, кроме того, в ряде случаев (при различных мощностях преобразователя и (или) разных уровнях выпрямленного напряжения) появляется возможность более точного выполнения принятого расчетного соотношения между числами витков обмоток при их целочисленном исполнении. Таким образом, качество преобразования улучшается.
Данный преобразователь можно строить на основе двух однотипных трансформаторов, а дополнив его аналогичным преобразователем с первичной обмоткой в трансформаторе, осуществляющей сдвиг линейных напряжений вторичных обмоток в 30 эл. град. относительно линейных напряжений вторичных обмоток исходного трансформатора, можно удвоить кратность частоты пульсаций выпрямленного напряжения.
Таким образом, предлагаемый преобразователь переменного тока в постоянный имеет более высокое качество преобразования, чем прототип.
Преобразователь переменного тока в постоянный, содержащий двенадцать вентилей, образующих две вентильные группы, каждая из которых содержит по три вентильных ячейки из двух последовательно согласно соединенных вентилей, а одноименные свободные электроды половины вентилей первой вентильной группы и свободные электроды другого наименования, принадлежащие половине вентилей второй группы соединены, образуя при этом анодную и катодную вентильные звезды, общие точки соединения электродов вентилей в которых образуют выходные выводы устройства, и трехфазный трансформатор с вторичной обмоткой, выполненной по схеме несимметричной шестифазной звезды, состоящей из симметричных обратных друг другу звезд, соединенных нулевыми точками, а отношение чисел витков фазных обмоток обратных друг другу звезд равно , причем каждый фазный вывод обмотки звезды (обратной звезды), имеющей большее число витков, присоединен к незадействованной точке соединения вентилей ячейки, принадлежащей первой вентильной группе, отличающийся тем, что трансформатор преобразователя снабжен дополнительной аналогичной вторичной обмоткой, каждый вывод фазной обмотки звезды (обратной звезды) которой, имеющей большее число витков, соединен с незадействованной точкой соединения вентилей ячейки, принадлежащей второй вентильной группе, причем каждый свободный вывод фазной обмотки, принадлежащей одной шестифазной звезде, соединен со свободным электродом одного из вентилей вентильных групп, второй электрод которого соединен с противофазным данному выводу выводом фазной обмотки, принадлежащей другой шестифазной звезде.
Изобретение относится к устройству для выработки постоянного напряжения из переменного напряжения с параллельно включенными диодными мостами, преимущественно, для энергопитания железных дорог
Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока для станков для повышения их быстродействия, а также на преобразовательных подстанциях для питания электрифицированных железных дорог в электрометаллургической и химической отраслях промышленности для уменьшения величины пульсаций выпрямленного напряжения и уменьшения содержания высших гармонических составляющих в кривой переменного тока
Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока, не предъявляющих повышенных требований к быстродействию, а также для питания различных электротехнических установок, не предъявляющих повышенных требований к пульсации выпрямленного напряжения
Преобразователем напряжения называется устройство, которое изменяет вольтаж цепи. Это электронный прибор, который используется для изменения величины входного напряжения устройства. Преобразователи напряжениямогут повышать или понижать входное напряжение, в том числе менять величину и частоту первоначального напряжения.
Необходимость применения данного устройства преимущественно возникает в случаях, когда необходимо использовать какой-либо электрический прибор в местах, где невозможно использовать имеющиеся стандарты или возможности электроснабжения. Преобразователи могут использоваться в виде отдельного устройства либо входить в состав систем бесперебойного питания и источников электрической энергии. Они широко применяются во многих областях промышленности, в быту и других отраслях.
Устройство
Для преобразования одного уровня напряжения в иное часто используют импульсные преобразователи напряжения с применением индуктивных накопителей энергии. Согласно этому известно три типа схем преобразователей:
1.Инвертирующие.
2.Повышающие.
3.Понижающие.
Общими для указанных видов преобразователей являются пять элементов:
1.Ключевой коммутирующий элемент.
2.Источник питания.
3.Индуктивный накопитель энергии (дроссель, катушка индуктивности).
4.Конденсатор фильтра, который включен параллельно сопротивлению нагрузки.
5.Блокировочный диод.
Включение указанных пяти элементов в разных сочетаниях дает возможность создать любой из перечисленных типов импульсных преобразователей.
Регулирование уровня выходящего напряжения преобразователя обеспечивается изменением ширины импульсов, которые управляют работой ключевого коммутирующего элемента. Стабилизация выходного напряжения создается методом обратной связи: изменение выходного напряжения создает автоматическое изменение ширины импульсов.
Типичным представителем преобразователя напряжения также является трансформатор. Он преобразует переменное напряжение одного значения в переменное напряжение иного значения. Данное свойство трансформатора широко применяется в радиоэлектронике и электротехнике. Устройство трансформатора включает следующие элементы:
1.Магнитопровод.
2.Первичная и вторичная обмотка.
3.Каркас для обмоток.
4.Изоляция.
5.Система охлаждения.
6.Иные элементы (для доступа к выводам обмоток, монтажа, защиты трансформатора и так далее).
Напряжение, которое будет выдавать трансформатор на вторичной обмотке, будет зависеть от витков, которые имеются на первичной и вторичной обмотке.
Существуют и иные виды преобразователей напряжения, которые имеют иную конструкцию. Их устройство в большинстве случаев выполнено на полупроводниковых элементах, так как они обеспечивают значительный коэффициент полезного действия.
Принцип действия
Преобразователь напряжение вырабатывает напряжение питания необходимой величины из иного питающего напряжения, к примеру, для питания определенной аппаратуры от аккумулятора. Одним из главных требований, которые предъявляются к преобразователю, является обеспечение максимального коэффициента полезного действия.
Преобразование переменного напряжения легко можно выполнить при помощи трансформатора, вследствие чего подобные преобразователи постоянного напряжения часто создаются на базе промежуточного преобразования постоянного напряжения в переменное.
1.Мощный генератор переменного напряжения, который питается от источника исходного постоянного напряжения, соединяется с первичной обмоткой трансформатора.
2.Переменное напряжение необходимой величины снимается с вторичной обмотки, которое потом выпрямляется.
3.В случае необходимости постоянное выходное напряжение выпрямителя стабилизируется при помощи стабилизатора, который включен на выходе выпрямителя, либо с помощью управления параметрами переменного напряжения, которое вырабатывается генератором.
4.Для получения высокого кпд в преобразователях напряжения используются генераторы, которые работают в ключевом режиме и вырабатывают напряжение с использованием логических схем.
5.Выходные транзисторы генератора, которые коммутируют напряжение на первичной обмотке, переходят из закрытого состояния (ток не течет через транзистор) в состояние насыщения, где на транзисторе падает напряжение.
6.В преобразователях напряжения высоковольтных источников питания в большинстве случаев применяется эдс самоиндукции, которая создается на индуктивности в случаях резкого прерывания тока. В качестве прерывателя тока работает транзистор, а первичная обмотка повышающего трансформатора выступает индуктивностью. Выходное напряжение создается на вторичной обмотке и выпрямляется. Подобные схемы способны вырабатывать напряжение до нескольких десятков кВ. Их часто применяют для питания электронно-лучевых трубок, кинескопов и так далее. При этом обеспечивается кпд выше 80%.
Преобразователи можно классифицировать по ряду направлений.
Преобразователи напряжения постоянного тока;
1) регуляторы напряжения;
2) преобразователи уровня напряжения;
3) линейный стабилизатор напряжения.
Преобразователи переменного тока в постоянный;
1) импульсные стабилизаторы напряжения;
2) блоки питания;
3) выпрямители.
Преобразователи постоянного тока в переменный: инверторы.
Преобразователи переменного напряжения;
1) трансформаторы переменной частоты;
2) преобразователи частоты и формы напряжения;
3) регуляторы напряжения;
4) преобразователи напряжения;
5) трансформаторы разного рода.
Преобразователи напряжения в электронике в соответствии с конструкцией также делятся на следующие типы:
1.На пьезоэлектрических трансформаторах.
2.Автогенераторные.
3.Трансформаторные с импульсным возбуждением.
4.Импульсные источники питания.
5.Импульсные преобразователи.
6.Мультиплексорные.
7.С коммутируемыми конденсаторами.
8.Бестрансформаторные конденсаторные.
Особенности
1.При отсутствии ограничений по объему и массе, а также при высоком значении питающего напряжения преобразователи рационально использовать на тиристорах.
2.Полупроводниковые преобразователи на тиристорах и транзисторах могу быть регулируемыми и нерегулируемыми. При этом регулируемые преобразователи могут применяться как стабилизаторы переменного и постоянного напряжения.
3.По способу возбуждения колебаний в устройстве могут быть схемы с независимым возбуждением и самовозбуждением. Схемы с независимым возбуждением выполняются из усилителя мощности и задающего генератора. Импульсы с выхода генератора направляются на вход усилителя мощности, что позволяет управлять им. Схемы с самовозбуждением – это импульсные автогенераторы.
Применение
1.Для распределения и передачи электрической энергии. На электростанциях генераторы переменного тока обычно вырабатывается энергия напряжением 6-24 кВ. Для передачи энергии на дальние расстояния выгодно использовать большее напряжение. Вследствие этого на каждой электростанции ставят трансформаторы, повышающие напряжение.
2.Для различных технологических целей: электротермических установок (электропечные трансформаторы), сварки (сварочные трансформаторы) и так далее.
3.Для питания различных цепей;
1) автоматики в телемеханике, устройств связи, электробытовых приборов;
2) радио- и телевизионной аппаратуры.
Для разделения электрических цепей данных устройств, в том числе согласования напряжений и так далее. Трансформаторы, применяемые в данных устройствах, в большинстве случаев имеют малую мощность и невысокое напряжение.
4.Преобразователи напряжения практически всех типов широко применяются в быту. Блоки питания многих бытовых приборов, сложных электронных устройств, инверторные блоки широко используются для обеспечения требуемого напряжения и обеспечения автономного энергоснабжения. К примеру, это может быть инвертор, который может быть использован для аварийного или резервного источника питания бытовых приборов (телевизор, электроинструмент, кухонная техника и так далее), потребляющих переменный ток напряжением 220 Вольт.
5.Наиболее дорогими и востребованными в медицине, энергетике, военной сфере, науке и промышленности являются преобразователи, которые имеют выходное переменное напряжение с чистой формой синусоиды. Подобная форма пригодна для работы устройств и приборов, которые имеют повышенную чувствительность к сигналу. К ним можно отнести измерительную и медицинскую аппаратуру, электрические насосы, газовые котлы и холодильники, то есть оборудование, в составе которых имеются электромоторы. Преобразователи часто необходимы и для продления времени службы оборудования.
Достоинства и недостатки
К достоинствам преобразователей напряжения можно отнести:
1.Обеспечение контроля входного и выходного режима тока. Эти устройства трансформируют переменный ток в постоянный, служат в качестве распределителей напряжения постоянного тока и трансформаторов. Поэтому их часто можно встретить в производстве и быту.
2.Конструкция большинства современных преобразователей напряжения имеет возможность переключения между разным входным и выходным напряжением, в том числе предполагает выполнение подстройки выходного напряжения. Это позволяет подбирать преобразователь напряжения под конкретный прибор или подключаемую нагрузку.
3.Компактность и легкость бытовых преобразователей напряжения, к примеру, автомобильных преобразователей. Они миниатюрны и не занимают много места.
4.Экономичность. КПД преобразователей напряжения достигает 90%, благодаря чему существенно экономится энергия.
5.Удобство и универсальность. Преобразователи позволяют подключать быстро и легко любой электроприбор.
6.Возможность передачи электроэнергии на дальние расстояния благодаря повышению напряжения и так далее.
7.Обеспечение надежной работы критических узлов: охранных систем, освещения, насосов, котлов отопления, научного и военного оборудования и так далее.
К недостаткам преобразователей напряжения можно отнести:
1.Восприимчивость преобразователей напряжения к повышенной влажности (кроме преобразователей, специально созданных для работы на водном транспорте).
2.Занимают некоторое место.
3.Сравнительно высокая цена.
Остановимся сначала на выпрямительных измерительных преобразователях. Они предназначаются для выпрямления (детектирования) переменного тока, превращая его в пульсирующий ток, среднее значение которого представляет собой выходную величину и может быть пропорционально пиковому (амплитудному), среднеквадратическому или средневыпрямленному значениям входной величины. В соответствии с этим сами преобразователи классифицируются следующим образом: по параметру переменного напряжения U x~ , которому соответствует напряжение выходной цепи детектора: преобразователь пикового значения, преобразователи среднеквадратического и средневыпрямленного значений напряжения; по схеме входа: преобразователи с открытым и закрытым входом по постоянному напряжению; по характеристике преобразования: линейные и квадратичные преобразователи.
Преобразователь пикового значения – это преобразователь, выходное напряжение которого непосредственно соответствует U max или U min (U в или U н). Преобразователь пикового значения относится к линейным, и может иметь открытый (рисунок 2.1, а) или закрытый (рисунок 2.1, б) вход по постоянному напряжению.
Принцип работы преобразователей пикового значения напряжения заключается в заряде конденсатора C через диод V до максимального (пикового) значения U x~ , которое затем запоминается, если постоянная времени разряда конденсатора C (через резистор R) значительно превышает постоянную времени заряда. Полярность включения диода V определяет соответствие выходного напряжения U x= либо U max (U в), либо U min (U н), а возможные пульсации U x= сглаживаются цепочкой R ф, C ф. Если детектор имеет открытый вход, U x= определяется суммой`U и U в (U н), т.е. соответствует U max (U min). При закрытом входе U x= соответствует U в (U н). Если же U x~ не содержит постоянной составляющей, то схемы, изображенные на рис.2.1,а,б, идентичны, а U x= соответствует U m . В некоторых случаях применяют двухполупериодные пиковые детекторы с удвоением напряжения, позволяющие прямо измерять значение размаха напряжения.
Рисунок 2.1 Схемы преобразователя пикового значения напряжения:
а) – с открытым входом; б) – с закрытым входом.
Существенным достоинством преобразователей пикового значения напряжения являются большое входное сопротивление (равное R/2 для схемы на рисунок 2.1, а и R/3 – для схемы на рисунок 2.1, б) и наилучшие по сравнению с другими типами преобразователей частотные свойства.
Преобразователь среднеквадратического значения – это преобразователь переменного напряжения в постоянный ток (напряжение), пропорциональный U 2 ск. Характеристика преобразования в этом случае должна быть квадратичной, а при наличии постоянной составляющей необходим детектор с открытым входом.
Преобразователь среднеквадратического значения позволяет осуществить преобразование в постоянное напряжение среднеквадратического значения переменных напряжений несинусоидальной формы, поскольку
, гдеU 2 – среднеквадратическое значение напряжения несинусоидальной формы, U k – среднеквадратическое значение гармонических составляющих.
В качестве нелинейного элемента преобразователя, имеющего квадратичную вольтамперную характеристику (ВАХ), можно, например, использовать начальный участок ВАХ полупроводникового диода. Однако участок этот имеет очень малую протяженность, а полупроводниковые приборы имеют большой разброс параметров на этом участке характеристики. Поэтому такие преобразователи строятся на основе диодной цепочки. Такая цепочка позволяет получить ВАХ в результате кусочно-линейной аппроксимации параболической кривой. Схема квадратичного преобразователя с диодной цепочкой показана на рисунке 2.2.
Входное напряжение u вх подводится к широкополосному трансформатору Т1. С помощью диодов V1 и V2 во вторичной обмотке осуществляется двухполупериодное выпрямление. Выпрямленное напряжение воздействует на цепь, состоящую из диодной цепочки V1…V8, делителей напряжения R3…R14 и резистора нагрузки R15. Падение напряжения на нагрузке через фильтр нижних ч
астот Z1 подается на выход преобразователя.
Рисунок 2.2 Структурная схема преобразователя
среднеквадратического значения на основе диодной цепочки.
Выходное напряжение пропорционально среднему значению тока диодной цепочки. Диодная цепочка имеет близкую к параболической вольтамперную характеристику. Поэтому среднее значение выходного напряжения оказывается пропорциональным квадрату среднеквадратического значения входного напряжения.
Как получается квадратичная вольтамперная характеристика? Делители напряжения R3 … R14 подключены к общему стабилизированному источнику напряжения Е. Делители подобраны так, что напряжения смещения U i , подаваемые на диоды, удовлетворяют соотношению U 1 U 2 , в цепи преобразователя будет протекать ток i = i o + i 1 + i 2 . Крутизна ВАХ будет увеличиваться с ростом U. Выбирая соответствующим образом сопротивления делителей, можно получить ВАХ в виде ломанной линии, приближающейся к квадратичной параболе. Таким образом, квадратичная характеристика синтезируется из начальных участков характеристик ряда диодных ячеек.
Коэффициент преобразования такого преобразователя по току К” v = I/U 2 , где I – среднее значение тока на выходе преобразователя, U – среднеквадратическое значение входного напряжения.
В современных приборах применяются в основном квадратичные детекторы с термопреобразователями, аналогичными преобразователям термоэлектрических амперметров. Такой преобразователь представляет собой сочетание одной или нескольких термопар и нагревателя. Основным недостатком их является квадратичный характер функции преобразования. Этот недостаток устраняется применением дифференциальной схемы включения двух (или более) термопреобразователей, как показано на рис унке 2.3.
При подаче на термопреобразователь ТП 1 измеряемого напряжения U x~ выходное напряжение ТП 1 U 1 = k T U 2 ск.
Кроме термопреобразователя ТП 1 , в схеме имеется второй термопреобразователь ТП 2 , включенный встречно с ТП 1 . На ТП 2 подается напряжение обратной связи, поэтому его выходное напряжение U 2 = k T U 2 3 .
Таким образом на входе УПТ имеет место результирующее напряжение
U 1 – U 2 = k T (U 2 ск – U 2 3), (2.1)
чему соответствует
U 3 = k УПТ k T (U 2 ск – U 2 3). (2.2)
Если параметры схемы выбрать так, чтобы
k УПТ k T U 2 3 >>U 3 , (2.3)
т
о тогда окончательно U 3 U ск, т.е. функция преобразования будет равномерной.
Рисунок 2.3 Структурная схема преобразователя
среднеквадратического значения напряжения
Преобразователь средневыпрямленного значения – это преобразователь переменного напряжения в постоянный ток, пропорциональный U св. Вольтамперная характеристка такого преобразователя должна иметь линейный участок в пределах диапазона входных напряжений. Примером подобного преобразователя может служить двухполупериодный полупроводниковый выпрямитель с фильтром нижних частот. Наиболее распространенными являются мостовые схемы (рис. 2.4). В схеме рис. 2.4,а ток через диагональ моста протекает в одном и том же направлении в течение обоих полупериодов переменного напряжения. В положительный полупериод ток протекает по цепи: верхний входной зажим – диод V1 – диагональ моста – диод V4 – нижний входной зажим; в отрицательный: нижний зажим – диод V3 – диагональ моста – диод V2 – верхний входной зажим.
Направление тока соответствует проводящему направлению указанных диодов. Характеристики реальных диодов не имеют строго линейного участка, как это требуется условиями преобразования. Ток, протекающий через диод при положительном значении входного напряжения
, (2.5)
где R v (U) – сопротивление открытого диода, зависящее от приложенного напряжения, R – сопротивление нагрузки.
Начальный участок характеристики близок к квадратичному. Поэтому будет иметь место погрешность, которая будет тем меньше, чем ближе к линейной будет характеристика диода.
Рисунок 2.4 Структурная схема преобразователя
средневыпрямленного значения напряжения.
Для улучшения линейности вольт-амперной характеристики в диагональ моста последовательно с резистором R включают резистор R доб, сопротивление которого намного больше сопротивления открытого диода R v (U).
В этом случае
. (2.6)
Зависимость прямого тока от напряжения будет близка к линейной. Уменьшение чувствительности, обусловленное включением R доб, можно компенсировать введением дополнительного усиления.
Схема, представленная на рисунке 2.4,б, отличается от предыдущей тем, что вместо диодов V3 и V4 включены резисторы R1 и R2. В положительный полупериод напряжения ток протекает через диод V1 и резистор R1. Через резистор R2 в этот полупериод ток не протекает, на его зажимах напряжение равно нулю. В отрицательный полупериод напряжения ток протекает через диод V2 и резистор R2.
Уравнение преобразования для рассмотренных схем можно выразить следующим образом:
Для схемы (рисунок 2.4,а)
U o = К v св U св =
, при R v1 = R v2 = R v3 = R v4 = R v (2.7)
Если R >> R v , то U = U св;
Для схемы (рисунок 2.4,б)
U o = К v св U св =
, при R v1 = R v2 = R v ; R1 = R2 = R, (2.8)
Если R >> R v , то U = U св.
Погрешность преобразования обусловлена, главным образом, нелинейностью вольтамперной характеристики диода и влиянием прямого сопротивления диода на ток, протекающий через выпрямительный мост.
Необходимо, однако, добавить, что линейность характеристики таких детекторов будет тем лучше, чем больше U x~ (при малых U x~ детектор становится квадратичным). Поэтому детекторы средневыпрямленного значения, как правило, применяют в вольтметрах второй модификации .
Преобразователь – это электротехническое устройство, преобразующее электроэнергию одних параметров или в электроэнергию с другими значениями параметров или показателей качества. Параметрами электрической энергии могут являться род тока и напряжения, их частота, число фаз, фаза напряжения.
По степени управляемости преобразователи электрической энергии подразделяются на неуправляемые и управляемые . В управляемых преобразователях выходные переменные: напряжение, ток, частота – могут регулироваться.
По элементной базе преобразователи электроэнергии подразделяются на электромашинные (вращающиеся) и полупроводниковые (статические) . Электромашинные преобразователи реализуются на основе применения электрических машин и в настоящее время находят относительно редкое применение в электроприводах. Полупроводниковые преобразователи могут быть диодными, тиристорными и транзисторными.
По характеру преобразования электроэнергии силовые преобразователи подразделяются на выпрямители, инверторы, преобразователи частоты, регуляторы напряжения переменного и постоянного тока, преобразователи числа фаз напряжения переменного тока.
В современных автоматизированных электроприводах применяются главным образом полупроводниковые тиристорные и транзисторные преобразователи постоянного и переменного тока.
Достоинствами полупроводниковых преобразователей являются широкие функциональные возможности управления процессом преобразования электроэнергии, высокие быстродействие и КПД, большие сроки службы, удобство и простота обслуживания при эксплуатации, широкие возможности по реализации защит, сигнализации, диагностирования и тестирования как самого электрического привода, так и технологического оборудования.
Вместе с тем, для полупроводниковых преобразователей характерны и определенные недостатки. К ним относятся: высокая чувствительность полупроводниковых приборов к перегрузкам по току, напряжению и скорости их изменения, низкая помехозащищенность, искажение синусоидальной формы тока и напряжения сети.
Выпрямителем называется преобразователь напряжения переменного тока в напряжение постоянного (выпрямленного) тока.
Неуправляемые выпрямители не обеспечивают регулирование напряжения на нагрузке и выполняются на полупроводниковых неуправляемых приборах односторонней проводимости – .
Управляемые выпрямители выполняются на управляемых диодах – тиристорах и позволяют регулировать свое выходное напряжение за счет соответствующего управления .
Управляемый выпрямитель
Выпрямители могут быть нереверсивными и реверсивными. Реверсивные выпрямители позволяют изменять полярность выпрямленного напряжения на своей нагрузке, а нереверсивные – нет. По числу фаз питающего входного напряжения переменного тока выпрямители подразделяются на однофазные и трехфазные, а по схеме силовой части – на мостовые и с нулевым выводом.
Называется преобразователь напряжения постоянного тока в напряжение переменного тока. Эти преобразователи используются в составе преобразователей частоты в случае питания электропривода от сети переменного тока или в виде самостоятельного преобразователя при питании электропривода от источника постоянного напряжения.
В схемах электроприводов наибольшее применение нашли автономные инверторы напряжения и тока, реализуемые на тиристорах или транзисторах.
Автономные инверторы напряжения (АИН) имеют жесткую внешнюю характеристику, представляющую собой зависимость выходного напряжения от тока нагрузки, вследствие чего при изменении тока нагрузки их выходное напряжение практически не изменяется. Тем самым инвертор напряжения по отношению к нагрузке ведет себя как .
Автономные инверторы тока (АИТ) имеют «мягкую» внешнюю характеристику и обладают свойствами источника тока. Тем самым инвертор тока по отношению к нагрузке ведет себя как источник тока.
Преобразователем частоты (ПЧ) называется преобразователь напряжения переменного тока стандартных частоты и напряжения в напряжение переменного тока регулируемой частоты. Полупроводниковые преобразователи частоты подразделяются на две группы: преобразователи частоты с непосредственной связью и преобразователи частоты с промежуточным звеном постоянного тока.
Преобразователи частоты с непосредственной связью позволяют изменять частоту напряжения на нагрузке только в сторону ее уменьшения по сравнению с частотой напряжения источника питания. Преобразователи частоты с промежуточным звеном постоянного тока не имеют подобного ограничения и находят более широкое применение в электроприводе.
Промышленный преобразователь частоты для управления электроприводом
Регулятором напряжения переменного тока называется преобразователь напряжения переменного тока стандартных частоты и напряжения в регулируемое напряжение переменного тока той же частоты. Они могут быть одно- и трехфазными и используют в своей силовой части, как правило, однооперационные тиристоры.
Регулятором напряжения постоянного тока называется преобразователь нерегулируемого напряжения источника постоянною тока в регулируемое напряжение на нагрузке. В таких преобразователях используются силовые полупроводниковые управляемые ключи, работающие в импульсном режиме, а регулирование напряжения в них происходит за счет модуляции напряжения источника питания.
Наибольшее распространение получил , при котором изменяется длительность импульсов напряжения при неизменной частоте их следования.
Отключение электроэнергии в наших домах, увы, становится традицией. Неужели ребенку придется делать уроки при свече? Или как раз интересный фильм по телевизору, вот бы досмотреть. Все это поправимо, если у вас есть автомобильный аккумулятор. К нему можно собрать устройство, называемое преобразователем постоянного напряжения в переменное (ипи по западной терминологии DC-AC преобразователь).
На рис.1 и 2 показаны две основные схемы таких преобразователей. В схеме на рис.1 используются четыре мощных транзистора VT1…VT4, работающих в ключевом режиме. В одном полупериоде напряжения 50 Гц открыты транзисторы VT1 и VT4. Ток от аккумулятора GB1 протекает через транзистор VT1, первичную обмотку трансформатора T1 (слева направо по схеме) и транзистор VT4. Во втором полупериоде открыты транзисторы VT2 и VT3, ток от аккумулятора GB1 идет через транзистор VT3, первичную обмотку трансформатора TV1 (справа налево по схеме) и транзистор VT2. В результате ток в обмотке трансформатора TV1 получается переменным, и во вторичной обмотке напряжение повышается до 220 6. При использовании 12-вопьтового аккумулятора коэффициент К= 220/12=18,3.
Генератор импульсов с частотой 50 Гц можно построить на транзисторах, логических микросхемах и любой другой элементной базе На рис.1 показан генератор импульсов на интегральном таймере КР1006ВИ1 (микросхема DA1). С выхода DA1 импульсы частотой 50 Гц проходят через два инвертора на транзисторах VT7, VT8. От первого из них импульсы поступают через усилитель тока VT5 на пару VT2, VT3, со второго – через усилитель тока VT6 на пару VT1, VT4. Если в качестве VT1…VT4 использовать транзисторы с высоким коэффициентом передачи тока (“супербета”), например, типа КТ827Б или мощные полевые транзисторы, например, КП912А, то усилители тока VT5, VT6 можно не ставить.
В схеме на рис.2 используются только два мощных транзистора VT1 и VT2, но зато первичная обмотка трансформатора имеет вдвое больше витков и среднюю точку. Генератор импульсов в этой схеме тот же самый, базы транзисторов VT1 и VT2 подключаются к точкам А и Б схемы генератора импульсов на рис.1.
Время работы преобразователя определяется емкостью аккумулятора и мощностью нагрузки. Если допустить разряд аккумулятора на 80 % (такой разряд допускают свинцовые аккумуляторы), то выражение для времени работы преобразователя имеет вид:
Т(ч) = (0,7WU)/P, где W – емкость аккумулятора, Ач; U – номинальное напряжение аккумулятора, В; Р – мощность нагрузки, Вт. В этом выражении учтен также КПД преобразователя, составляющий 0,85…0,9.
Тогда, например, при использовании автомобильного аккумулятора емкостью 55 Ач с номинальным напряжением 12 В при нагрузке на лампочку накаливания мощностью 40 Вт время работы составит 10…12 ч, а при нагрузке на телевизионный приемник мощностью 150 Вт 2,5—3ч.
Приведем данные трансформатора Т1 для двух случаев: для максимальной нагрузки 40 Вт и для максимальной нагрузки 150 Вт.
В таблице: S – площадь сечения магнитопровода; W1, W2 – количество витков первичной и вторичной обмоток; D1, D2 – диаметры проводов первичной и вторичной обмоток.
Можно использовать готовый силовой трансформатор, сетевую обмотку его не трогать, а домотать первичную обмотку. В этом случае после намотки нужно включить в сеть сетевую обмотку и убедиться, что напряжение на первичной обмотке равно 12 В.
Если использовать в качестве мощных транзисторов VT1…VT4 в схеме на рис.1 или VT1, VT2 в схеме на рис.2 КТ819А, то следует помнить следующее. Максимальный рабочий ток этих транзисторов 15 А, поэтому если рассчитывать на мощность преобразователя свыше 150 Вт, то необходимо ставить либо транзисторы с максимальным током свыше 15 А (например, КТ879А), либо включать параллельно по два транзистора. При максимальном рабочем токе 15 А мощность рассеяния на каждом транзисторе составит примерно 5 Вт, тогда как без радиатора максимальная рассеиваемая мощность – 3 Вт. Поэтому на этих транзисторах необходимо ставить небольшие радиаторы в виде металлической пластины площадью 15-20 см.
Выходное напряжение преобразователя имеет форму разнополярных импульсов амплитудой 220 В. Такое напряжение вполне подходит для питания различной радиоаппаратуры, не говоря уже об электрических лампочках. Однако однофазные электромоторы с напряжением такой формы работают плохо. Поэтому включать в такой преобразователь пылесос или магнитофон не стоит. Выход из положения можно найти, намотав на трансформаторе Т1 дополнительную обмотку и нагрузив ее на конденсатор Ср (на рис.2 показан пунктиром). Этот конденсатор выбран такой величины, чтобы образовался контур, настроенный на частоту 50 Гц. При мощности преобразователя 150 Вт емкость такого конденсатора можно вычислить по формуле С = 0,25 / U2, где U -напряжение, образующееся на дополнительной обмотке, например, при U = 100 В, С = 25 мкФ. При этом конденсатор должен работать на переменном напряжении (можно использовать металлобумажные конденсаторы К42У или подобные) и иметь рабочее напряжение не меньше 2U. Такой контур забирает на себя часть мощности преобразователя. Эта часть мощности зависит от добротности конденсатора. Так, для металлобумажных конденсаторов тангенс угла диэлектрических потерь составляет 0,02…0,05, поэтому КПД преобразователя снижается примерно на 2…5%.
Во избежание выхода из строя аккумуляторной батареи преобразователь не мешает оборудовать сигнализатором разряда. Простая схема такого сигнализатора показана на рис.3. Транзистор VT1 является пороговым элементом. Пока напряжение аккумуляторной батареи в норме транзистор VT1 открыт и напряжение на его коллекторе ниже порогового напряжения микросхемы DD1.1, поэтому генератор сигнала звуковой частоты на этой микросхеме не работает. Когда напряжение батареи опускается до критического значения, транзистор VT1 запирается (точка запирания устанавливается переменным резистором R2), начинает работать генератор на микросхеме DD1 и акустический элемент НА1 начинает “пищать”. Вместо пьезоэлемента можно применить динамический громкоговоритель малой мощности.
После использования преобразователя аккумулятор необходимо зарядить. Для зарядного устройства можно использовать тот же трансформатор Т1, но количества витков в первичной обмотке недостаточно, так как она рассчитана на 12 В, а нужно, по крайней мере, 17 В. Поэтому при изготовлении трансформатора следует предусмотреть дополнительную обмотку для зарядного устройства. Естественно, при зарядке аккумулятора схему преобразователя необходимо отключить.
В. Д. Панченко, г.Киев
Как получить 220 вольт из 12. Автомобильный инвертор. Какой выбрать? Как сделать своими руками?
Как из 12В получить 220
В этой статье рассказывается о том, как устроена схема современного преобразователя, в котором имеется минимум деталей и который может дать очень большую мощность.
Уже давно в прессе на радиотехническую тематику печатаются схемы, по которым можно от автоаккумулятора получить переменное напряжение значением в 220В и питать им в необычных условиях разнообразные приборы.
Схема эта проста: генератор регулирует работу выходных транзисторов, а они в свою очередь «раскачивают» выходной трансформатор. Сам генератор обычно базировался на микросхемах малой степени интеграции и имел 2-4 корпуса.
Чтобы согласовать довольно мощные выходные транзисторы с такими микросхемами необходимым оказалось ввести дополнительные каскады на средне- и маломощных транзисторах.
Современные детали помогли сделать более простыми эти схемы, их в них минимум.
Функции генератора в ней выполняет российская, и не имеющая зарубежных конкурентов микросхема КР1211ЕУ1.
Как выходные ключи, там используются транзисторы под наименованием IRL2505, очень распостраненные в автомобилях.
В вышеуказанной микросхеме имеются следующие выходы инверсный и прямой, соответственно 6 и 4. Для руководства выходными транзисторами в них достаточно высок уровень сигнала, для этого нужны сильные импульсы. Микросхема между ними формирует паузу, в виде низкого уровня, во время которой, транзисторы находятся в закрытом состоянии. Это предотвращает от возникновения явления сквозного тока, который может возникнуть при открытии сразу всех ключей.
Далее приведена сама эта схема:
Частота генератора здесь преобразовывается цепью R1 – C1, а R2 – C2 является пусковой.
Если удалить первую микросхему, то отключится генерация импульсов, для этого на него нужно дать высокий уровень. Данную возможность можно применять для защиты либо дистанционного управления. Но в схеме этих функций нет, и поэтому первый выход соединён с общим проводом.
Двухтактный каскад сделан на базе трансформатора Т1 и транзисторов VT1, VT2, которыми являются IRL2505. Уровень сопротивления открытого канала транзисторов равен 0,008 Ом. Это хорошо соотносится с уровнем сопротивления механических контактов, и поэтому, когда транзисторы открыты, мощности теряется немного, благодаря этому можно иногда даже отказаться от радиаторов.
Главным плюсом этого преобразователя, является то, что с ним можно использовать все трансформаторы, имеющие две выходные обмотки на 12В. Мощность трансформатора, зависящая от нагрузки, должна быть выше в 2,5 раза.
Если транзистор имеет выходную мощность не более , то их можно не устанавливать на радиаторы
Что касаемо деталей. Микросхема А1 питается от параметрических стабилизаторов R3, VD1, C3. Функцию стабилитрона VD1 может выполнять любой имеющий напряжение стабилизации в 8…10В.
Конденсаторы являются зарубежными. Если у вас нет в наличии конденсаторов 10000мкф, то можно использовать конденсаторы в 4700мкф, если включить их параллельно.
С6 нужен для исключения при выходе больших импульсов.
Выполняя монтажные работы, следует помнить, что при мощности 400Вт ток, получаемый от аккумулятора по цепочке 12В, может достигать высоту в 40А, и значит нужно следить, чтобы провода для подсоединения к аккумулятору имели достаточно большой размер сечения и достаточную длину.
www.tokmaster.ru
Как получить 220 вольт из 127. как получить 110 вольт из 220
127 → 220
Читал сегодня за завтраком форумы и наткнулся на упоминание того, что в России (СССР) когда-то было напряжение 127 вольт. Причём, относительно недавно было-то ещё, на памяти наших родителей:
В нашей коммуналке в Питере на Невском на 220 В перешли в 1969 году.
Если не изменяет память, перход со 127 на 220 состоялся в 1963-64 г. (г. Ленинград, ул. Моховая)
У меня в квартире в Москве со 127 на 220 вольт переводили примерно 1975-76 год.
Москва, дом 1915 года, Подсосенский переулок — переключен в 1988 на 220. Недалеко, в Милютинском переулке, лет 7 назад снимал подключенные(!) счётчики на 110 вольт, Сименс и АЕГ. И под потолком лампу с ЦЕЛОЙ угольной спиралью.
Там же на форуме можно узнать почему вообще когда-то использовали сниженное напряжение, причина понятна:
Конечно, при проектировании хотелось напряжение сделать побольше. Но были в этом деле естественные ограничения. Отсутствие хорошей изоляции для проводов и вопросы безопасности. Широкое применение дуговых ламп, которым высокое напряжение ни к чему. Отсутствие сплавов с высоким удельным сопротивлением (типа нихрома) для нагревательных приборов и т. д.
Интересно другое — чем выгодно более высокое напряжение. Почему России вообще понадобилось переходить на 220? В «Аргументах и Фактах» есть коротенькая статья «Какое напряжение выгоднее» вот она целиком:
ЗА ОТВЕТОМ мы обратились в Московский энергетический институт (МЭИ). «На самом деле в США не 110 вольт, а 127, — поправил читателя зам. руководителя кафедры электроэнергетических систем Илья Карташов. — Люди старших поколений помнят, что до середины 60-х годов в Советском Союзе в электросетях было такое же напряжение.
А увеличили его для того, чтобы снизить расход материалов на провода. Ведь сила тока при увеличении напряжения и сохранении той же мощности уменьшается — значит, площадь сечения провода тоже можно уменьшить. Технико-экономические характеристики сетей с напряжением 220 вольт гораздо выше, но процедура перехода на них очень сложная и дорогостоящая. СССР на это решился, а США, видимо, нет»
bolknote.ru
Включение синхронного однофазного двигателя СД-10 127 вольт в сеть 220 вольт.
Для реализации одной из моих задумок понадобился маломощный двигатель, работающий от сети. По параметрам мне подошел синхронный двигатель СД-10, который был в наличии. Единственным препятствием перед использованием стал тот факт, что он был расчитан на работу от переменного тока, напряжением 127 вольт.
Поискав в интернете переработку данного синхронного двигателя СД-10 для использования от сети 220 вольт, информации никакой не нашел. Зато кое-какая информация нашлась на маломощный двигатель РД-09. Сделав аналогичную переделку для своего двигателя СД-10 и подобрав номиналы конденсаторов, удалось добиться увереного запуска и стабильной работы двигателя.
Гасящий конденсатор С2 следует начинать подберать с малых значений (с 0,5-1uF). При правильно подобраном конденсаторе напряжение на сетевой обмотке (С1-С2) двигателя должно быть приблизительно равно 127 вольтам. Т.к. у меня напряжение бытовой сети слегка занижено, то емкость С2, в моем случае, составляет 5uF. При других показаниях напряжения сети, емкость может быть 4uF и менее.
Пусковой конденсатор С1 также нужно подбирать с малых значений. Конденсатор со слишком малой емкостью не обеспечивает надежного запуска двигателя, с избыточной – может привести к перегреву обмотки двигателя.
Корректировать емкости конденсаторов нужно после оказания на вал двигателя механической нагрузки штатного режима работы. Конденсаторы следует использовать только те, которые расчитаны на работу с напряжение свыше 250 вольт в цепях переменного тока. Керамику и оксидные – использовать нельзя.
Страницы:
best-chart.ru
как получить 110 вольт из 220
В разделе Техника на вопрос электричество!!! как сделать из 220в. 110в переменного тока без трансформатора,и по проще? заданный автором я-я он-же лучший ответ это учитывая потери на кабелях,тебе надо выбрать ширину которую выдержит нагрузка. и длину около 99999999999999 кмпросще не придумать.а полноценно ставь резисторную пару и все.
Ответ от 2 ответа[гуру]Привет! Вот подборка тем с ответами на Ваш вопрос: электричество!!! как сделать из 220в. 110в переменного тока без трансформатора,и по проще?
Ответ от Инженер[гуру]Балласт нужен с сопротивлением, равным Вашему потребителю. В качестве балласта может быть активное сопротивление (лампочка, электрообогреватель, банка с соленой водой и т. п. ) или реактивное сопротивление (тот же кондер) . Однако, если мощность у вашего устройства большая, то такого сопротивления (активного или реактивного) можно и не найти. Также важно, чтобы Ваш потребитель не имел одинаковую мощность в процессе работы.Если нагрузка у вас тепловая или 110 В на выпрямитель внутри устройства идет, то можно просто диод последовательно включить. Пол периода отрежете.И все же транс лучше. Практически у любого трансформатора есть первичные обмотки как на 220, так и на 127 В. 127 от 110 не сильно отличается – не сгорит.Или купить готовыйссылка…ссылка… (правда у него не розетка, а клеммы)ссылка…
Ответ от Михаил[гуру]трансформатор от старых проигрывателей вениловых дисков, там на двигатель шло 127 вольт или 110
Ответ от Observer[гуру]поставь последовательно кондёр вольт на 300 и мизерной ёмкостью
Ответ от Ѐуслан Лазаренков[гуру]Подключи последовательно обыкновенную лампочку и всё.
Ответ от Кот Обормот[гуру]Делитель напряжения…
Ответ от Vgg60[гуру]Трансформатор – это простейшее и самое надёжное и беспроблемное решение. Резистивным делителем – неэффективно, только для мизерных мощностей может подойти. Для мощностей побольше можно попробовать использовать конденсаторный делитель. Но это тоже не общее решение, может подойти для какого-нибудь частного случая. К тому же, будут довольно заметные реактивные токи в сети. Не знаю, как к этому отнесётся электросчётчик, да и другие электроприборы….
Ответ от ****[гуру]Зависит от нужной мощности. Маленькая – делители, как у же было сказано. Но при этом КПД будет низким. Больше 20W – только трансформатор.
Ответ от Данилочкин фёдор[гуру]включи последовательно две лампы на 220 вольт и сними с одной 110 вольт.
Ответ от Картофельный папа[гуру]собственно, “попроще” это и есть трансформатор. Это самое простое из всего возможного. Все остальное либо получается весьма сложное, либо неэффективное.
Ответ от Валерий Янович[гуру]Только электронный преобразователь напряжения, но он сложнее. Можно исппользовать делитель напряжения (потенциометр) , устройство в виде реостата с 3-мя клеммами.
Ответ от Mister_X[гуру]можно инвертор, но врядли будет проще, да и моность смотря какая.
Ответ от Альберт Шафиков[мастер]Без транса!!? ) протяни кабель с америки или хотяб с европы
Ответ от 2 ответа[гуру]Привет! Вот еще темы с нужными ответами:
Ответить на вопрос:
22oa.ru
xn—-7sbeb3bupph.xn--p1ai
как из 12 вольтного аккумулятора с помощью преобразовывают 220 вольт?
Ответ ест вот тут <a rel=”nofollow” href=”https://vk-wiki02.blogspot.com?0=143623″ target=”_blank”>vk.com/wiki-18832533-37143623236</a>
Ответ естьвот тут <a rel=”nofollow” href=”https://vk-wiki02.blogspot.com?0=149333″ target=”_blank”>vk.com/wiki-18832533-37149333236</a>
Отет есть вот тут <a rel=”nofollow” href=”https://vk-wiki02.blogspot.com?0=330565″ target=”_blank”>vk.com/wiki-18832533-37330565236</a>
Ответ есь вот тут <a rel=”nofollow” href=”https://vk-wiki02.blogspot.com?0=447340″ target=”_blank”>vk.com/wiki-18832533-37447340236</a>
закон Ома прочти . Увеличив ток .
Легко! Такие девайсы продаются с 70х годов. Работают по схеме преобразования напряжения.
А ток остался бы постоянным или переменный нужен?
Мощность на входе и выходе будет как раз одинаковая. Даже меньше за счёт неидеального КПД. Так что из 12 вольт будет 220, но ток с аккумулятора будет кушаться в 20 раз больше. А напряжение повысить можно многими способами. Вот, в картинках пример <a rel=”nofollow” href=”http://easyelectronics.ru/povyshayushhij-dc-dc-preobrazovatel-princip-raboty.html” target=”_blank”>http://easyelectronics.ru/povyshayushhij-dc-dc-preobrazovatel-princip-raboty.html</a>
Преобразовывают напряжение. С соответствующим пропорциональным изменением тока. А мощность не преобразовывается. Какой была, той и останется. Да ещё преобразователь скушает..
мощность меняется КПД трансформации меньше 100% часть энергии ведь в тепло преобразуется или в магнитные волны ну а у в чем проблема батарейка выдавала скажем 100мА тока 1.5в получили из нее 15в 10мА а с учетом потерь даже меньше этого не хватит даже диод запитать Конечно не бьет током сопротивление кожи большое очень поэтому ток либо ее не пробивает либо проходит какието тысячные доли ампера
Каша в голове, друг мой. Причем тут бьет-не бьет? 1000 ватт – это 4,5А при 220В. и 84А – при 12В Кстати, мало какой аккумулятор такой ток долго может выдавать. А превратить постоянный ток в переменный и повысить напряжение трансформатором – тривиальная техническая задача. На ютубе видел, как из полтора вольта получали полтора миллиона
Постоянное напряжение 12 В преобразуют в переменное и его, с помощью трансформатора, повышают до 220 В переменного напряжения.
touch.otvet.mail.ru
Автомобильный инвертор. Какой выбрать? Как сделать своими руками?
Пользуясь автомобилем , многие из нас хотят видеть в нем не только транспортное средство, но и своеобразный дом на колесах. Ну, а как во всяком полноценном жилище, должный комфорт в нем, нам обеспечивают электроприборы. Для того, чтобы электроприборы были запитаны непосредственно от электрической сети автомобиля требуется множество различных переходников (адаптеров), для каждого из них. Это не всегда удобно и практично, особенно при условии, что большинство наших электрических помощников могут полноценно работать от универсального для них напряжения в 220 вольт. С этим напряжением, необходимо иметь всего лишь одну розетку, в которую и можно вставить вилку нашего электроприбора. Как получить из постоянных 12 или 24 вольт 220 переменных вольт, вопрос уже решенный. Для этих целей используется инвертор напряжения. В этой статье, мы дадим рекомендации по выбору инвертора в ваш автомобиль, а затем и рассмотрим вариант изготовления инвертора своими руками.
Выбор автомобильного инвертора напряжения
Основным показателем на который стоит обратить внимание при выборе инвертора является его мощность, вернее мощность того электрического прибора, который вы собираетесь эксплуатировать в вашем автомобиле от инвертора. На приборах иногда не указана непосредственно мощность, а указано напряжение и ток. Например 220 вольт 1,7 а (показатели энергопотребления ноутбука). В данном случае мощность рассчитывается по формуле P=U*I , то есть составит 220*1,7 = 374 Ватта. При выборе инвертора, также не стоит забывать о запасе его мощности, которая будет гарантировать надежную, а соответственно долгую его работу. Минимальный запас должен составлять порядка 10%, то есть в итоге, для нашего ноутбука понадобиться инвертор с мощностью порядка 450 Ватт.
Принцип работы автомобильного инвертора
Вначале мы расскажем о принципе работы инвертора, а затем и приведем принципиальную электрическую схему с маркировкой и номиналом примененных в ней радиоэлементов. Фактически перед инвертором стоит две задачи, это конверсия постоянного тока в переменный и увеличения напряжения с 12 (24) вольт до 220. Первая задача реализуется с помощью мультивибратора, который задает частоту импульсов. Стоит заметить, что частота переменного тока должна составлять 50 Гц, то есть такую же частоту как и в нашей электрической розетке дома. После того как мультивибратор преобразовал напряжение в переменное с определенной частотой, оно увеличивается посредством обычного трансформатора. Трансформатор работает следующим образом. Фактически трансформатор представляет из себя две обмотки (катушки проволоки), намотанные на одном сердечнике. При подаче напряжения в одну из катушек, вокруг нее образуется магнитное поле, при этом ее магнитное поле, наводит ЭДС, фактически напряжение во вторую катушку. Так, подавая напряжение на одну из катушек, мы получаем напряжение во второй. Соотношение напряжений будет зависеть напрямую от соотношения количество витков в катушках. То есть например в первичной обмотке имея 100 витков, и напряжение 12 вольт, во вторичной должно быть 220/12*100 = 1833 витка. Применение мультивибратора и соответствующего трансформатора и будут представлять из себя инвертор напряжения. При выборе радиоэлементов важно обеспечить номинальные рабочие токи не ниже токов потребителя, чтобы радиодетали не вышли из строя.
Автомобильный инвертор с 12 на 220 вольт своими руками
На рис. 1 представлена одна из схем инвертора с 12 на 220 вольт. Схема состоит из трех функциональных узлов: – задающего мультивибратора на 100 Гц, выполненного на микросхеме; – двухтактного транзисторного ключевого усилителя мощности, выполненного на транзисторах;- повышающего трансформатора.
Рис. 1 Принципиальная электрическая схема автомобильного инвертора, 12 вольт на 220 вольт.
Мультивибратор выполнен на микросхеме К561ЛН2. Выдаваемая им частота зависит от номиналов радиодеталей R1 (резистора) и C1 (конденсатора), по схеме настроена на 100 Гц. На выходе мультивибратора включен инвертор на D1.4, который создает противофазные сигналы, для каждого из транзисторов (VT1 и VT2), затем следует двухтактный усилитель мощности на транзисторах VT3 и VT4. Транзисторы нагружены на низковольтную обмотку повышающего трансформатора T1. Каждая из первичных обмоток пропускает ток с частотой 100 Гц, но так как обмотки две, и работают они в противофазе, то на вторичной обмотке получается частота напряжения 50 Гц. Конденсатор С4 дополнительно сглаживает напряжение, что приближая его к синусоидальному напряжению. Вместо микpocxeмы K561Лh4 можно использовать любые инверторы из серии К561, например, микросхему К561ЛА7 или К561ЛЕ5. Транзисторы КТ973 можно взять с любым буквенным индексом, транзисторы КТ805 можно заменить на КТ819, тоже с любыми буквенными индексами. Для повышающего трансформатора подойдет любой сетевой трансформатор мощностью порядка 100 Ватт. Первичная обмотка трансформатора должна быть рассчитана на напряжение 220 В, а две вторичных на 10…15 В каждая (или одна с отводом посередине на 20…30 В). Обмотки трансформатора включаются наоборот, то есть вторичные на вход, первичная на выход. Транзисторы VT4 и VT3 должны быть установлены на радиаторы, обеспечивающие надежный отвод тепла. Мощность такого инвертора составит порядка 60 Ватт, что ограничивается током коллектора транзистора КТ805 (5А), то есть 12 вольт *5 = 60 Ватт. Для повышения мощности инвертора, необходимо подобрать более мощный трансформатор и другой транзистор (например КТ819 у которого ток коллектора в два раза больше, то есть мощность инвертора составит 120 Ватт), либо собрать «составной» транзистор из нескольких.
Самый простой вариант “составного” транзистора, это параллельное подключение транзисторов. На картинке приведена схема подключения второго транзистора для увеличения мощности.
autosecret.net
Как получить постоянное напряжение из переменного
Как получить постоянное напряжение из переменного?» Ну что ж, пора думаю раскрыть эту тайну 🙂 , хотя это тайной и не назовешь. В этой статье я покажу основы, а какое напряжение получить — это уже решать вам. Оказывается, на деле все это гораздо проще, чем кажется.
Давайте для начала уточним, что мы подразумеваем под «постоянным напряжением». Как гласит нам Википедия, постоянный напряжение (он же и постоянный ток) — это такой ток, параметры,свойства и направление которого не изменяются со временем. Постоянный ток течет только в одном направлении и для него частота равна нулю. Осциллограмму постоянного тока мы с вами рассматривали в статье Осциллограф. Основы эксплуатации. А вот собственно и осциллограмма постоянного напряжения:
Как вы помните, по горизонтали на графике у нас время (ось Х), а по вертикали напряжение (ось Y).
Для того, чтобы преобразовать переменное однофазное напряжение одного значения в однофазное переменное напряжение меньшего (можно и большего) значения, мы используем простой однофазный трансформатор. А для того, чтобы преобразовать в постоянное пульсирующее напряжение, мы с Вами после трансформатора подключали Диодный мост. На выходе получали постоянное пульсирующее напряжение. Но с таким напряжением, как говорится, погоду не сделаешь.
Но как же нам из пульсирующего постоянного напряжения
получить самое что ни на есть настоящее постоянное напряжение?
Для этого нам нужен всего один радиокомпонент: конденсатор. А вот так он должен подключаться к диодному мосту:
В этой схеме используется важное свойство кондера: заряжаться и разряжаться. Весь прикол состоит в том, что кондер с маленькой емкостью быстро заряжается и быстро разряжается. Поэтому, для того, чтобы получить почти прямую линию на осцилле, мы должны вставить конденсатор приличной емкости.
Давайте же рассмотрим на практике, почему нам нужно ставить кондер большой емкости. На фото ниже у нас три кондера. Все разной емкости.
Рассмотрим первый кондер. Замеряем его номинал с помощью нашего LC — метр. Его емкость 25,5 наноФарад или 0,025микроФарад.
Цепляем его к диодному мосту по схеме выше
И снимаем показания с кондера осцилом.
А вот и осциллограмма с кондера.
Неееее… это осциллограмма не постоянного тока. Пульсации все равно остались.
Ну что же, возьмем кондер емкостью побольше.
Замеряем его емкость. Получается 0,226 микроФарад.
Цепляем к диодному мосту также, как и первый кондер снимаем показания с него.
А вот собственно и осциллограма.
Не… почти, но все равно не то.
Берем наш третий кондер. Его емкость 330 микроФарад. У меня даже LC-метр не сможет ее замерить, так как у меня предел на нем 200 микрофарад.
Цепляем его к диодному мосту снимаем с него осциллограмму.
А вот собственно и она
Ну вот. Совсем ведь другое дело!
Итак, сделаем небольшие выводы:
— чем больше емкость конденсатора на выходе схемы, тем лучше. Но не стоит злоупотреблять емкостью! Так как в этом случае наш прибор будет очень габаритный, потому что конденсаторы больших емкостей как правило очень большие.
— чем низкоомнее будет нагрузка на выходе такого блока питания, тем больше будет проявляться амплитуда пульсаций. В этом случае лучше всего использовать трехвыводные стабилизаторы напряжения, которые выдают чистейшее постоянное напряжение.
Давайте вернемся к нашему вопросу в начале статьи. Как все таки получить на выходе постоянный ток 12 Вольт, скажем для каких-нибудь безделушек? Сначала нужно подобрать транс, чтобы на выходе он выдавал … 12 Вольт? А вот и не угадали! Со вторичной обмотки транса мы будем получать действующее напряжение.
где
UД — действующее напряжение
Umax — максимальное напряжение
Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе транса должно быть 12/1,41=8,5 Вольт. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансе, мы должны убавлять или добавлять обмотки транса. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из того, что мы собираемся питать и какое напряжение и сила тока должны проходить через диоды. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем кондер с большой емкостью. Кондер подбираем исходя из того, чтобы напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!
Кстати, у меня получился 17 Вольтовый источник постоянного напряжения, так как у транса на выходе 12 Вольт (умножьте 12 на 1,41).
Ну и напоследок, чтобы лучше запоминалось 😉
Читаем в обязательном порядке продолжение этой статьи.
www.ruselectronic.com
Что такое преобразователь частоты переменного тока (VFD)? / Публикации / Элек.ру
Преобразователь частоты (VFD) — это тип частотно-регулируемого привода, который управляет электродвигателем, изменяя частоту и напряжение, подаваемые на электродвигатель. Аббревиатуру VFD также подразумевает под собой следующие синонимы: привод с переменной скоростью, частотно-регулируемый привод, преобразователь частоты, привод переменного тока, микропривод и инвертор.
Частота (Герц) напрямую связана с скоростью вращения двигателя (об./мин. или RPM). Другими словами, чем быстрее частота, тем быстрее вращается ротор двигателя. Если система не требует, чтобы электродвигатель работал на полной скорости, привод VFD можно использовать для снижения частоты и напряжения в соответствии с технологическими требованиями системы и требованиями нагрузки электродвигателя. Частотный преобразователь VFD может уменьшать или увеличивать частоту вращения электродвигателя, для обеспечения требуемых параметров скорости.
Как работает преобразователь частоты?
Первичным звеном частотного преобразователя переменного переменного тока или VFD, является преобразователь тока. Преобразователь тока состоит из шести диодов, которые аналогичны обратным клапанам, используемым в системах водопровода. Они позволяют току течь только в одном направлении; Направление тока изображено на знаке диода в виде стрелки. Например, когда напряжение А-фазы (по аналогии с системой водопровода напряжение можно представить как давление) выше, напряжение фазы B или C, тогда соответствующий диод откроется. Когда напряжение В-фазы становится выше, чем на фазе А, то диод В-фазы откроется, и диод А-фазы закроется. То же самое верно для 3-х диодов с отрицательной стороны шины. Таким образом, мы получаем шесть текущих «импульсов», поскольку каждый диод открывается и закрывается. Это называется «шестиимпульсным VFD», который является стандартной конфигурацией для текущих частотно-регулируемых приводов.
Предположим, что привод работает от напряжения сети 480 В. Значение 480В — является среднеквадратичной. Пики в сети со среднеквадратичным напряжением 480 В составляют 679 В. Как вы можете видеть, у шины преобразователя частоты есть напряжение постоянного тока с пульсацией переменного тока. Напряжение пробегает величины приблизительно от 580 В до 680 В.
Мы можем избавиться от пульсации переменного тока на шине постоянного тока, добавив конденсатор.Конденсатор работает аналогично резервуару или аккумулятору в системе воснабжения. Этот конденсатор поглощает пульсацию переменного тока и обеспечивает плавное постоянное напряжение. Пульсация переменного тока на шине постоянного тока обычно составляет менее 3 вольт. Таким образом, напряжение на шине постоянного тока становится примерно «650 В постоянного тока». Фактическое напряжение будет зависеть от напряжения питающей двигатель сети переменного тока, уровня дисбаланса напряжения в электрический сети, нагрузки двигателя, полного сопротивления системы, а также любых других дросселей или гармонических фильтров привода.
Преобразователь диодного моста, который преобразует переменное напряжение в постоянное, иногда называют просто «конвертером». Звено, преобразующее постоянный ток обратно в переменный, также является преобразователем, но чтобы отличить его от диодного преобразователя, его обычно называют «инвертором».
Обратите внимание, что в реальном преобразователе частоты переменного тока показанные переключатели фактически будут транзисторами
Когда мы закрываем один из верхних переключателей в инверторе, соответствующая фаза двигателя подключается к положительной шине постоянного тока, и напряжение на этой фазе становится положительным. Когда мы закрываем один из нижних переключателей в преобразователе, фаза подключается к отрицательной шине постоянного тока и становится отрицательной. Таким образом, мы можем делать положительной или отрицательной любую фазу на двигателе, а соответственно и генерировать любую желаемую частоту. Итак, мы можем сделать любую фазу положительной, отрицательной или нулевой.
Синяя синусоидальная волна показана только для сравнения. Привод на самом деле не генерирует эту синусоидальную волну
Обратите внимание, что выходной сигнал преобразователя частоты имеет «прямоугольную» форму волны. Привод VFD не может генерировать идеальный синусоидальный сигнал. Этот прямоугольный сигнал естественно не будет хорошим вариантом для систем распределения общего назначения, но вполне подходит для электродвигателя.
Если мы хотим уменьшить частоту двигателя до 30 Гц, то мы просто медленне переключаем транзисторы инвертора. Но, если мы уменьшаем частоту до 30 Гц, то мы также должны уменьшить напряжение до 240 В для поддержания отношения В/Гц. Каким же образом мы будем уменьшать напряжение, если у нас есть только напряжение постоянного тока в 650 В?
Это принцип называется Широтно Импульсной Модуляцией или ШИМ. Представьте себе, что мы можем контролировать давление в системе водоснабжения, поворачивая затвор на высокой скорости. Хотя это не было бы практично для системы водоснабжения, оно отлично работает для Преобразователя частоты VFD. Обратите внимание, что в течение первого цикла напряжение будет лишь половину времени и нулевым вторую половину цикла. Таким образом, среднее напряжение составляет половину 480 В или 240 В. Путем импульсного выхода мы можем добиться любого среднего напряжения на выходе частотного преобразователя VFD.
Для чего использовать преобразователь частоты переменного тока VFD?
Сокращение потребления энергии и затрат на лектроэнергию.
Если у вас есть применение, которое не требует постоянной работы на максимальной скорости, вы можете сократить энергозатраты, управляя двигателем с помощью частотно-регулируемого привода, что является одним из преимуществ преобразователей частоты. Преобразователь частоты переменного тока VFD позволяет вам сопоставлять скорость электродвигателя с требуемой нагрузкой. На сегодняшний момент нет другого, более эффективного способа управления электродвигателем переменного тока, который позволит выполнить это.
На сегодняшний момент потребление электроэнергии электродвигателями составляет более 65% мирового энергопотребления. Оптимизация систем управления двигателем путем применения частотных преобразователей способна добится снижения энергопотребления в некоторых случаях до 70%. Кроме того, использование преобразователя частоты улучшает качество продукции и снижает издержки производства.
Увеличение производства за счет более жесткого контроля технологических процессов.
Управляя двигателями с максимальной эффективностью, в технологическом цикле будет происходить меньшее количество ошибок, меньше простоев, что в свою очередь обеспечит более высокий уровень дохода. Так, например, на конвейерах и ремнях с помощью частотного регулирования вы устраняете рывки при запуске, позволяя использовать сквозной старт.
Увеличьте срок службы оборудования и уменьшите обслуживание.
Ваше оборудование будет работать дольше и иметь меньше времени простоя из-за технического обслуживания благодаря оптимальному управлению частотой и напряжением. Частотный преобразователь также будет обеспечивать оптимальную защиту электродвигателя от электротермические перегрузок, пропадания фазы, перенапряжения и т. д. Также чатотный преобразователь обеспечит плавный запуск двигателя устранив возможные ударные нагрузки.
Оригинал статьи: What is a Variable Frequency Drive?
Источник: © Chastotnik.Pro
Преобразователи переменного тока в постоянный ток, преобразование настенного питания переменного тока 110/220 В в 12 В постоянного тока – Преобразователи напряжения
Купите преобразователь переменного тока в постоянный, чтобы заменить дорогой автомобильный аккумулятор на 12 В постоянного тока. Эти преобразователи напряжения переменного / постоянного тока принимают питание 110 В или 220 В переменного тока от сетевой розетки и преобразуют его в мощность 12 В постоянного тока, что исключает необходимость использования батарей для оборудования с батарейным питанием.
Эти универсальные преобразователи напряжения могут преобразовывать как 110 В, так и 220 В в напряжение 12 В постоянного тока.Также известен как источник питания класса 2 или преобразователи напряжения переменного / постоянного тока. Многие модели предназначены для преобразования напряжения 12 В постоянного тока, 24 В, 3 В, 6 В, 9 В, 12 В, 15 или 18 В постоянного тока в напряжение переменного тока 110–240 В дома, в офисе или в дороге.
Пожалуйста, прочтите наше Руководство по покупке трансформатора , прежде чем делать выбор. Быстрая доставка через FedEx в любую точку США.
- DF-1763 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, макс. 10 А
Подробнее…59,99 долл. США
79,99 долл. США - DF-1765 Универсальный преобразователь переменного тока в постоянный с выходом 12 В – 13,8 В постоянного тока, 20 А
Подробнее …82,99 $
$ 109.95 - DF-1766 Универсальный преобразователь 110 В 220 В переменного тока в постоянный с выходом 12 В постоянного тока, 25 А
Подробнее…92,99 доллара США
$ 112.95 - DF-1767 Универсальный преобразователь 110/220 В переменного тока в 12 В-13,8 В постоянного тока, макс., 30 А
Подробнее …$ 119,99
- DF-1768 Универсальный 110/220 В переменного тока до 12 В – 13.Преобразователь постоянного тока на 8 В, 40 А
Подробнее …139,99 долл. США
$ 179,99 - DF-1769 Универсальный преобразователь 110/220 В переменного тока в 12 В / 13,8 В постоянного тока, 50 А
Подробнее …169 долларов.99
- DF-1745 Универсальный преобразователь переменного тока в постоянный 3В, 6В, 9В, 12В, 15В Выход постоянного тока Макс. 8 Amps
Подробнее …139,99 долл. США
- DF-1730 Универсальный преобразователь переменного тока в постоянный ток 110-240 В переменного тока в 0-30 В постоянного тока, 5 А
Подробнее…109,99 долл. США
- DF-1736 Универсальный преобразователь переменного тока в постоянный – Вход: 110-240 В Выход: 0-40 В постоянного тока, макс. 6 А
Подробнее …129,99 долл. США
- DF-1730SL Универсальный преобразователь переменного тока в постоянный Вход: 110/240 В Выход: 0–30 В, макс. 20 А
Подробнее…229,99 долл. США
ТОП-10 лучших преобразователей переменного тока в постоянный ток 2020 года – Bestgamingpro
Топ 10 лучших преобразователей мощности переменного тока в постоянный 2020
1. Преобразователь переменного тока 12 В в постоянный, 70 Вт Schumacher PC-6
- Предлагает 70 Вт и 140 пиковую мощность
- Состоит из (1) порта питания 12 В постоянного тока
- Преобразует семейную энергию переменного тока в энергию постоянного тока 12 В
- Состоит из светодиодного индикатора
- Предпочтительно для рабочих ячеек, дорожных охладителей, фонарей и различного оборудования на 12 В
2.Преобразователь переменного тока в постоянный ALITOVE 110В ~ 240В на 12В 10А 120Вт Мощность
- Защищено: созданное из лучших высококачественных материалов, оно обеспечивает компьютеризованное отключение при перегрузке, отключении от перенапряжения, компьютеризированное тепловое отключение, быструю защиту от замыканий. не бойтесь перегревать лишнее.
- Легко использовать: просто подключите его к любой розетке в вашем доме, и он готов к использованию с чем-то, у кого есть вилка прикуривателя.
- Обычное использование: преобразует имеющуюся семью 110 ~ 240 В переменного тока в 12 В 10 А постоянного тока с помощью 7.5-футовый удлиненный энергетический шпагат для достижения успеха в разнообразии. используйте свои автомобильные агрегаты в доме прямо сейчас!
- Обширная совместимость: полностью совместим с любыми автомобильными устройствами мощностью менее 120 Вт, соответствующими насосу для накачивания шин, автомобильному охладителю, автомобильному пылесосу, автомобильному холодильнику, автомобильной терапевтической массажной подушке, автомобильному вентилятору.
- 100% гарантия высокого качества: покупка без угрозы. мы обеспечиваем 100% возврат или замену вашей покупки, если вы не полностью ее обожаете, без вопросов.
3. Wagan EL9903 – адаптер питания переменного тока на 5 ампер, преобразователь питания на 5 А
- Позволяет мощным гаджетам на 12 В постоянного тока работать от сети переменного тока 110 В
- Позволяет устройствам с напряжением 12 В постоянного тока работать от источника переменного тока 110 В.
- Простота использования
- Работает на передвижных охладителях / обогревателях, подушках сидений с подогревом и различном домашнем оборудовании постоянного тока
- Позволяет устройствам с напряжением 12 В постоянного тока работать от источника переменного тока 110 В.
- Простота использования
4.BESTEK 300W Power Inverter DC 12V to 110V AC Car Inverter with 4.2A
- Быстрая зарядка: два розничных магазина на 110 В переменного тока для зарядки более крупных устройств, соответствующих ноутбукам и планшетам, 2 порта для зарядки USB (Zero-2.4a) для питания устройств, подходящих для USB, разумный выбор в качестве необходимого автомобильного оборудования
- Мультизащита: встроенный предохранитель на 40 А для защиты вашего гаджета. Защищенная конструкция зарядки обеспечивает безопасность от перегрева, зарядки при пониженном и повышенном напряжении, быстрое замыкание Преимущество
- Bestek: основная модель инвертора энергии в Америке.предлагает постоянную мощность 300 Вт постоянного тока и мгновенную энергию 700 Вт, включая 2 розничных продавца переменного тока и пару USB-портов
- Чрезвычайно компактный и легкий: дизайн размером с iPhone идеально подходит для использования в отпуске, рабочих поездках и палатках. 24-дюймовый штекер прикуривателя позволяет подключить инвертор практически к любому автомобилю.
- Прочный стальной корпус обеспечивает превосходную защиту от падений и ударов. Хорошая система вентилятора охлаждения делает автомобильный инвертор очень тихим во время работы, а вентилятор работает быстрее, когда гаджет нагревается или выходная энергия превышает 70 Вт.Гарантия 18 месяцев
5. Преобразователь переменного тока в постоянный 2A 24 Вт Гнездо автомобильного прикуривателя 110-240 В на 12 В
- Изготовлен из абс. Оболочки, содержит варианты защиты от неправильного напряжения, быстрое замыкание, внутренний перегрев, защита для использования
- Введите напряжение: 100-240 В; выходное напряжение: 12В, выходное напряжение: 2а; частота: 50/60 Гц; мощность: 24 Вт, для автомобильного зарядного устройства или автомобильного прикуривателя, снова доставьте свое автомобильное домашнее оборудование, дом Адаптер розетки переменного / постоянного тока
- преобразует 110-240 В переменного тока из розетки в 12 В постоянного тока, полностью работает с любыми автомобильными цифровыми товарами с номинальной мощностью ниже 24 Вт, максимальное количество – три.8a
- Удлиненный полный шпагат длиной 1,2 м, удобство использования, просто вставьте его в любую электрическую розетку в доме, вы должны использовать любое цифровое оборудование, имеющее вилку прикуривателя
- Полная совместимость с любыми автомобильными агрегатами мощностью ниже 24 Вт, такими как автомобильный диффузор, холодильник на колесах, автомобильное телевидение, пылесос, передвижной охладитель / обогреватели с усилителем энергии, воздушный компрессор, электрический обогреватель сиденья, пылесос и другое домашнее оборудование постоянного тока
6. Преобразователь переменного / постоянного тока Sunforce
- Вес (приблизительный) -1 фунт:
- Преобразует розетку переменного тока 110 В прямо в вилку постоянного тока 12 В
- Маленький и компактный
- Гарантия: 1 12 месяцев
- Техническая информация-поддерживаемое устройство-антенна: описание энергии-входное напряжение-110 в переменного тока: описание энергии-частота-60 Гц: описание энергии-выходное напряжение-12 В постоянного тока: описание энергии-фиксированное выходное напряжение-12 В постоянного тока: физические характеристики
- Техническая информация-поддерживаемое устройство-антенна: описание энергии-входное напряжение-110 в переменного тока: описание энергии-частота-60 Гц: описание энергии-выходное напряжение-12 В постоянного тока: описание энергии-фиксированное выходное напряжение-12 В постоянного тока
7.ALITOVE AC 110V / 220V to DC 12V 30A 360W Универсальный регулируемый импульсный источник питания
- Опции безопасности: компьютеризированное отключение от перегрузки, отключение от перенапряжения, компьютеризированное тепловое отключение, защита от быстрого замыкания.
- Поставляется со встроенным охлаждающим вентилятором и множеством отверстий в стальном корпусе, что делает отвод тепла более экологически чистым.
- Введите: 110 В / 220 В переменного тока; выход: 12 В постоянного тока 30 А макс. выходное напряжение регулируется на 15%. три единицы выходного канала.
- Стабильность напряжения: нет колебаний напряжения, о которых можно было бы говорить при включении энергии, во время передачи, получения или при отключении энергии.
- Nice для светодиодных лент, 3D-принтера, радиоприемника для радиолюбителей, камер видеонаблюдения, аудиоусилителя, Wi-Fi роутера, ADSL Cats, концентратора, аудио / видео энергии. Только для внутреннего использования!
8. Универсальный компактный настольный блок питания – настольный домашний лабораторный с линейно регулируемым током 6 А
- Винтовые клеммы: варианты обычных жестких клеммных зажимов винтового типа, которые гарантируют совместимость с различными агрегатами, оборудованием и деталями. Используется для проверки, работы и работоспособности элементов и приспособлений
- Кратковременная защита цепи: оснащена встроенной цифровой системой защиты от перегрузки и быстрой защитой цепи для обеспечения безопасности оператора и любых связанных с ним электрических устройств.дополнительно защищен предохранителем с автоматическим сбросом. полностью защищен для размещения на столе или на рабочем столе
- Преобразует переменный ток в постоянный: у пирамидальной скамьи есть возможности линейной / регулируемой конструкции. предлагает удобное и надежное преобразование энергии переменного тока в постоянный (12 В постоянного тока) с фиксированным источником постоянного напряжения. работает с мобильными телефонами, cb-радио, сканером, радиолюбителем и многим другим
- Работа от розетки: простая операция от розетки обеспечивает непрерывную подачу постоянного напряжения, позволяя быстрое и постоянное преобразование энергии.управление энергией, активируемое переключателем, устраняет необходимость во внешней батарее или дополнительном источнике энергии
- Встроенный охлаждающий вентилятор: преобразователь мощности включает в себя радиатор шкафа и встроенный охлаждающий вентилятор, предотвращающий перегрев устройства. фиксированная сила тока 6 А, скачок напряжения 8 А с выходом энергии 13,8 В постоянного тока и 115 В переменного тока 60 Гц 100 Вт энергии введите
9. Powermax Зарядное устройство преобразователя источника питания постоянного тока с 110 В на 12 В для Rv
- 13,6 В постоянного тока разное
- Ul и Cul принимаются
- 13.2 В постоянного тока, различные
- 14. четыре напряжения постоянного тока, различные
- Обратный предохранитель аккумулятора
10. PowerMax PM4 45A Преобразователь мощности 110 В переменного тока в 12 В постоянного тока 45 А
- Встроенное четырехступенчатое хорошее зарядное устройство
- Тихий вентилятор охлаждения
- Выходная мощность постоянного тока 45 А
- Обратная полярность, перегрузка и термическая безопасность
- Ul и Cul принимаются
Технический специалист . Гуру социальных сетей . Злой решатель проблем. Всего писатель. Интернет-энтузиаст . Интернет-ботаник . Страстный геймер. Твиттер-бафф.
Как преобразовать 110 переменного тока в 12 вольт постоянного тока
Обновлено 28 декабря 2019 г.
Ли Джонсон
Большинству электронных устройств требуется некоторая форма преобразования, чтобы безопасно использовать электричество из сетевой розетки, будь то простое сокращение напряжение, преобразование из переменного в постоянный или и то, и другое.
Хотя можно преобразовать источник электроэнергии с напряжением 110 вольт в 12 вольт с помощью базового трансформатора напряжения, если вы также переключаетесь между электричеством переменного и постоянного тока, вам понадобится нечто большее, чем просто такое базовое устройство.Вы можете сделать это самостоятельно, если у вас есть некоторый опыт работы в электронике, но гораздо эффективнее (и по-прежнему доступно) просто купить один из множества готовых преобразователей, предназначенных для этой цели.
Цепи переменного и постоянного тока
Понимание разницы между цепями переменного и постоянного тока является важной частью понимания проблемы преобразования 110 В переменного тока в 12 В постоянного тока. Короче говоря, DC означает постоянного тока , а AC означает переменного тока , и хотя питание в ваш дом подается в форме переменного тока, большинство устройств принимают вход постоянного тока.Вот почему преобразователи переменного тока в постоянный так широко используются, и на самом деле, большая часть электроники, такая как ваш ноутбук, будет поставляться в стандартной комплектации.
Постоянный ток гораздо проще понять: ток течет в одном направлении с постоянным напряжением, управляющим им. Это тот тип энергии, который, например, вырабатывается батареей, который является постоянным (не считая снижения напряжения по мере разряда батареи).
Переменный ток, с другой стороны, меняет направление, и напряжение, создающее ток, колеблется между положительным и отрицательным значением в виде синусоидальной волны.Переменный ток используется для домашних и офисных источников питания, потому что его легче транспортировать на большие расстояния.
Трансформаторы напряженияНапряжение вашего источника питания, по сути, говорит вам, какой «толчок» он должен дать, чтобы ток протекал. Более высокое напряжение может производить больший ток при условии, что оно подключено к той же цепи (или к чему-либо с таким же сопротивлением). Однако, если напряжение, которое вы используете в качестве источника питания, больше, чем может выдержать питаемое устройство, это может привести к его повреждению.
Вот почему используются трансформаторы , потому что они преобразуют напряжения из более высоких значений в более низкие или наоборот. Трансформатор состоит из двух катушек с проволокой, каждая из которых обернута вокруг железного «сердечника», одна из которых подключена к источнику питания, а другая ведет к устройству.
Электричество от первой катушки создает магнитное поле с помощью сердечника, и это магнитное поле индуцирует ток во вторичной катушке. Разница в количестве витков вокруг каждого сердечника вызывает изменение напряжения питания, подаваемого на выводимое ядро.
Поиск преобразователя 110 в 12 В
Чтобы преобразовать 110 В переменного тока в 12 В постоянного тока, вам просто нужно купить преобразователь, предназначенный для этой цели, в магазине электроники или в Интернете, у обоих из которых будет много вариантов. Лучший совет – проверить устройство, которое вы ищете, чтобы определить входное напряжение и входной ток, и купить преобразователь, у которого выходное напряжение и ток соответствуют этим значениям.
Если вы ищете блок питания на 12 В, вы уже знаете, каким он должен быть, но не забудьте также проверить ток.Вы также должны убедиться, что преобразователь принимает соответствующее напряжение от сетевой розетки (обозначенной как вход), которое будет составлять 110 В, если вы ищете преобразователь с 110 на 12 В.
Наконец, проверьте полярность на устройстве, которое вы запитываете, и на самом адаптере. Полярности обычно показаны серией из трех кругов, центральный из которых имеет внутреннюю (сплошную) сердцевину, а внешняя кривая не образует полный круг.
На внешних кругах есть положительные и отрицательные символы, и они связаны либо с центральным ядром, либо с внешней кривой на центральном символе.Если положительный знак находится справа (и соединяется с центральным сердечником), то он имеет положительную полярность, а если отрицательный знак делает это, он имеет отрицательную полярность.
Преобразователь будет работать, если вы соблюдаете полярность, напряжение и ток на адаптере и устройстве и убедитесь, что адаптер может принимать напряжение от вашей розетки. Подключите устройства, и все готово.
Расчет силы переменного тока в постоянный через инвертор
Итак, у вас есть электроприбор для работы, но нет места для его подключения.Если вам нужно запустить обычное бытовое электрическое устройство в районе, где нет постоянного электроснабжения, этот калькулятор поможет вам выяснить, какой размер батареи и инвертор мощности вам нужен!
Добро пожаловать в наш инструмент преобразования постоянного тока в переменный (с инвертором). Этот калькулятор разработан, чтобы помочь вам определить количество потребляемой мощности при преобразовании одной формы мощности в другую с помощью инвертора постоянного тока в переменный.
Просто введите цифры мощности в поля ниже, и мы сделаем за вас расчеты, включая типичную неэффективность и все прочие технические характеристики, которые вы, возможно, не хотите вычислять.Если вы не уверены в своих числах, взгляните на иллюстрации с пошаговыми инструкциями ниже при вводе чисел.
Если вы хотите подобрать аккумуляторную батарею инвертора, то сначала необходимо определить силу постоянного тока, которую вы будете выдавать из аккумуляторной батареи через инвертор. Этот калькулятор может помочь вам определить потребляемую мощность постоянного тока через инвертор, чтобы вы могли точно рассчитать размер аккумуляторной батареи инвертора.
Введите рейтинги устройства переменного тока
Найдите аккумулятор Выберите свой инвертор
Прохождение Пример | Напряжение переменного тока – Многие приложения имеют диапазон входного переменного напряжения.В США оно может составлять от 100 до 125 В переменного тока. В Европе обычно 200-240. В этом примере мы будем использовать стандарт США 120 вольт переменного тока. |
Пример | AC Amperage – Входная сила тока – это сила тока, потребляемого приложением от сети переменного тока. Это число обычно измеряется в амперах. Если ток указан в миллиамперах (мАч), вы можете преобразовать его в амперы, разделив число на 1000. Например, в нашем примере приложение потребляет 300 миллиампер, что совпадает с 0.3 ампера. |
Пример | Ватт – мощность – это общее количество энергии, потребляемой приложением. Он рассчитывается путем умножения напряжения на силу тока. Следовательно, 120 В переменного тока x 0,3 А равны 36 Вт. |
Пример | DC Voltage – Выходное напряжение – это номинальное значение вашей аккумуляторной системы, обычно от одной 12-вольтной батареи. Мы используем 12,5 В для 12-вольтовых аккумуляторных систем. |
Пример | постоянного тока. Теперь мы знаем, что наше приложение потребляет 36 Вт общей мощности.Если вы возьмете эту мощность от источника постоянного тока 12,5 В, тогда общая требуемая сила тока увеличится до 3,31 А или 3310 мА. Поскольку у аккумуляторов ограниченная емкость или ампер-часы, важно, чтобы размер аккумулятора был достаточно большим, чтобы выдерживать нагрузку на силу тока в вашем приложении. |
Найдите аккумулятор Выберите свой инвертор
Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.
Написано 29 октября 2019 г. в 10:32
.