Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.


Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Файлы

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

masterclub.online

Физики в тысячи раз улучшили процесс превращения тепла в электричество

Как объясняют физики, ферромагнетики содержат в себе две группы электронов, обладающих разным спином - квантовой характеристикой электрона. Скорость движения и другие физические свойства частиц зависят от спина. Из-за этого при появлении разницы в температуре внутри ферромагнетика возникает любопытный эффект - в нем появляются два "канала", по каждому из которых двигаются электроны с разным спином. Разная скорость движения частиц позволяет превращать поток электронов с разным спином в электрический ток.

Хэрэманс и его коллеги обнаружили, что данный эффект возможен не только в ферромагнетиках, но и в других типах проводников, изучая свойства полупроводникового сплава индия и олова.

В ходе своих экспериментов авторы статьи выяснили, что внешнее магнитное поле превращает фрагменты полупроводника в преобразователь тепла в электричество, если температура окружающей среды близка к абсолютному нулю. По расчетам физиков, напряжение тока увеличивается на восемь милливольт при повышении разницы в температуре полюсов устройства на один градус Кельвина. Это примерно в тысячу раз больше, чем удавалось достичь на самых эффективных преобразователях тепла на основе ферромагнетиков.

"На самом деле, это новое поколение теплового двигателя. В 18 веке у нас были паровые двигатели, в 19 веке - двигатели внутреннего сгорания, а в 20 веке появились первые термоэлектрические материалы. Теперь мы пытаемся приспособить для этих целей и магнитное поле", - пояснил Хэрэманс.

Физики полагают, что их открытие будет в конечном итоге использовано для создания генераторов, преобразующих тепло в электричество. Такие устройства не будут иметь движущихся и ломающихся частей, благодаря чему они будут работать практически вечно. Тем не менее, до их появления физикам и инженерам предстоит решить массу проблем - пока такие устройства работают только при низкой температуре и в присутствии сильного магнитного поля.

ria.ru

2.3.Прямэе преобразование тепла в электричество

Поскольку исходным видом энергии в устройствах прямого преобра­зования энергии является теплота, их КПД при получении электроэнер­гии подчиняется ограничениям второго закона термодинамики и не может превосходить КПД цикла Карно для того же интервала температур.

Есть два способа прямого преобразования:

  1. термоэлектрический:

  2. термоэмиссионный.

ТЕРМОЭЛЕКТРОГЕНЕРАТОРЫ

Работа термоэлектрогенераторов (ТЭГ) основана на термоэлектри­ческих эффектах, открытых еще в прошлом веке: эффекте Пельтье и эффекте Зеебека.

ЭФФЕКТ ПЕЛЬТЬЕ

Если через спай разнородных проводников (металлов, полупровод­ников) пропустить постоянный ток I, то в этом спае в зависимости от направления тока выделяется или поглощается теплота

QП=αIT,

где α - коэффициент, зависящий от свойств выбранных проводников, T - температура спая.

ЭФФЕКТ ЗЕЕБЕКА

Если в цепи, состоящей из двух разнородных проводников спаи находятся при разных температурах т, и т2, то возникает электродвижущая сила (э.д.с.) Е, пропорциональная разности температур:

Е=α(T1-T2)

где α - коэффициент термо-э.д.с. или коэффициент Зеебека.

Вполне понятно, что оба эффекта как бы дополняют друг друга и имеют одну и ту же физическую сущность, состоящую в том, что, если в каком-либо теле есть свободные электроны, то они стремятся прийти в тепловое равновесие с окружающими ядрами вещества. Поэтому в обеих формулах коэффициент α один и тот же.

На рис. 2.5. приведена принципиальная схема одного ТЭГ. Термо­электроды 1 и 2, выполненные из различных материалов, электрически соединены в спаях A и B. Электрод 2 разорван, и в этот разрыв включены ключ 3 и нагрузка R.

Если спаи A и B поддерживаются при разных температурах T1 >T2, то при разомкнутом ключе в цепи будет разность потенциалов Е. Если ключ 3 замкнуть, то в цепи и нагрузке потечет ток I. Но, согласно эффекту Пельтье, при протекании тока I через спай разнородных проводников в этом спае поглощается или выделяется теплота Qn. Допустим, в спае A ток течет от проводника 1 к проводнику 2 и за счет этого в нем поглощается теплота Q1=αIТ1, которую необходимо подводить. Тогда в спае B, наоборот, ток течет от проводника 2 к проводнику 1, за счет чего в этом спае выделяется теплота Q

2=αIT2 , которую необходимо отводить.

При протекании тока I в цепи, где действует эдс. Е, будет произведена электрическая энергия Lэл=ЕI, т.е.

Lэл=α(T1-T2)I.

В идеальном случае

Lэл=Q1-Q2

Для такого идеального ТЭГ КПД составил бы

т.е. в этом случае КПД равен КПД цикла Карно.

Однако в реальности такой КПД получить нельзя. Наряду с описан­ными выше процессами в ТЭГ происходят другие, существенно снижающие КПД. Прежде всего, за счет разности температур между спаями по самим электродам 1 и 2, обладающим определенной теплопроводностью, от го­рячего спая к холодному перетекает теплота QT. Ясно, что эта теплота бесполезна. Она при неизменной Lэл увеличивает требуемую теплоту Q1, т.е. уменьшает КПД. Количество теплоты QT при заданной разности T1-T2 пропорционально коэффициенту теплопроводности λ и площади поперечного сечения проводника и обратно пропорционально его длине.

Принято качество ТЭГ измерять коэффициентом добротности

z~α2

Чем больше z, т.е. чем больше производительность ТЭГ, измеряемая ко­эффициентом α, и чем меньше потери тепла, измеряемые коэффициентом теплопроводности λ, тем выше должен быть КПД ТЭГ.

На рис. 2.6 приведены зависимости КПД ТЭГ η от коэффициента добротности z при раз­личных температурах горячего спая. Из него виден тот идеал, к кото­рому следует стремиться при создании ТЭГ: необходимо обеспечить коэ­ффициент добротности не хуже 2*103, материалы должны выдерживать, а системы должны поддерживать температуру горячего спая ~1000 К.

Наиболее удачными материалами для термоэлектродов сейчас счита­ются сплавы и соединения элементов IV-VI групп периодической системы

-олова, свинца, висмута, сурьмы, теллура, селена, германия, кремния (полупроводники). Значения коэффициента добротности z для них могут достигать 2*10

-3 – 3*10-3 1/град. Сильная температурная зависимость z приводит к тому, что реально можно достичь 1.5*10-31/град.

Обычно ТЭГ представляет собой последовательность термоэлемен­тов, соединенных последовательно специальными коммутационными плас­тинами, образующими спаи. В результате получаются группы так называ­емых горячих спаев, работающих при температуре T1. и холодных спаев, работающих при температуре T2 (T1>T2). На рис. 2.7 приведена схема такого ТЭГ. Полная эдс, развиваемая ТЭГ, равна сумме эдс. отдельных элементов. При замыкании ТЭГ (выводы а и В) на нагрузку через все термоэлектроды и коммутационные пластины проходит один и тот же ток.

В результате горячие спаи поглощают, а холодные выделяют теплоту. Для поддержания постоянных температур T1 и T2 к горячим спаям надо подводить теплоту Q1, а от холодных отводить Q2. КПД ТЭГ оказывается несколько меньше, чем отдельного элемента из-за дополнительных потерь в коммутационных пластинах.

Из-за высокой стоимости и малых КПД ТЭГ не используются в крупной стационарной энергетике. Однако в космической энергетике они используются достаточно широко. Источником энергии являются ядерные реакторы или радиоизотопные источники. Достигаемые электрические мощности - до десятков киловатт. Используемые материалы германий-кремниевые сплавы, GeBiTe(p) и PbTe(n).

Оказывается, что поместить ТЭГ в ядерный реактор, организовать подвод и отвод тепла в условиях ограниченности массогабаритов невыгодно. Поэтому в космических энергоустановках ТЭГ вынесены в холодильники-излучатели. Горячие спаи обычно находятся при температуре T1~900к, которая обеспечивается прокачкой жидкометалли­ческого теплоносителя. КПД таких энергоустановок <5%.

ТЕРМОЭМИССИОННЫЕ ПРЕОБРАЗОВАТЕЛИ ЭНЕРГИИ

В основе термоэмиссионных преобразователей энергии (ТЭП) лежит явление термоэлектрической эмиссии, которое состоит в том, что. если какой-либо металл, нагретый до некоторой температуры т, поместить в вакуум, то некоторое количество его электронов перейдет в вакуум. При этом переходе электроны должны преодолеть энергетический барьер, называемый работой выхода φ, составляющей обычно несколько электронвольт.

При низких температурах средняя энергия свободных электронов существенно меньше φ и лишь ничтожная часть электронов испускается в вакуум. С ростом T эго количество резко возрастает.

Явление термоэлектронной эмиссии широко используется в электронных лампах, ускорителях электронов.

Когда нагретое металлическое тело помещено в вакуум, через некоторое время между ним и электронным облаком устанавливается разность потенциалов, прекращающая дальнейшую эмиссию электронов. В этих условиях, сколько электронов выходит из металла, столько же возвращается в него за счет естественной конденсации. Равновесная разность потенциалов между металлом и электронным облаком как раз равна работе выхода металла φ.

Электроны, эммитируемые телом (катодом - эммитером) можно отбирать, например, размещая рядом с катодом анод (коллектор) и прикла­дывая напряжение соответствующего знака. Максимальное количество электричества, которое можно отобрать в единицу времени, называется током насыщения. Плотность i этого тока может быть вычислена по формуле Ричардсона

i=AT2exp(,

где А≈120а/(см2к2) - постоянная Ричардсона, φ- работа выхода метал­ла, к - универсальная постоянная Больцмана.

ГДЕ ВЗЯТЬ НЕОБХОДИМОЕ НАПРЯЖЕНИЕ?

Если к катоду и аноду приложить напряжение от постороннего эле­ктрического источника, действующее непрерывно, и замкнуть цепь через нагрузку, то по цепи потечет ток, определяемый работой выхода φ и температурой т катода. Так работают все электронные лампы. Но это потребители, а не источники энергии!

Работа источников энергии организуется иначе. Если поместить в вакуум два электрода из различных металлов, имеющих разные работы выхода φ1 и φ2, то между ними установится некоторая разность потенци­алов ∆φ(см. рис. 2.8 ).

Понятно, если температура электродов 1 и 2 одинакова, то при замыкании цепи ток не пойдет (иначе это был бы вечный двигатель). Если электрод - эммитер I имеет более высокую тем­пературу, чем электрод-коллектор, то при замыкании цепи электроны с эммитера пойдут на коллектор.

Если температуру эммитера не поддерживать, то он охладится, т.к. при отборе электронов электрод охлаждается (эффект Эдиссона). Чтобы сохранить температуру эммитера постоянной, к нему надо подводить теплоту

на единицу поверхности, где e - заряд электрона, остальные обозначения уже пояснены выше. Когда электроны входят из вакуума в коллектор, в нем выделяется соответствующее количество теплоты (подобно теплоте конденсации) и, чтобы сохранить температуру коллектора постоянной, эту теплоту необходимо отводить.

У идеального ТЭП КПД близок к КПД цикла Карно, осуществляемого при температуре эммитера T1 и температуре коллектора T2 (T1 >T2):

(2.1)

Если бы не последнее слагаемое в знаменателе, эта формула сов­пала бы с формулой для КПД цикла Карно. Отличие возникло из-за того, что помимо работы выхода электроны, уходящие с электрода, должны приобрести энергию, соответствующую температуре данного электрода, а эта энергия не преобразуется в электрическую работу. Обычно это сла­гаемое колеблется от 0.1 до 0.2, т.е. ηmах составляет от 0.8 до 0.9 от КПД цикла Карно.

Действительный КПД ТЭП еще меньше по следующим двум основным причинам.

Первая причина - перенос теплоты с эмиттера на коллектор путем излучения.

Поскольку рабочие температуры ТЭП достаточно высоки (температу­ра эмиттера 1500-2000 K), лучистые потоки qл оказываются весьма существенными и эффективных методов борьбы с ними пока нет. В других (электрических) терминах и с учетом qл формула (2.1) перепи­сывается как

Коль скоро нет возможности уменьшить qл, то надо стремиться увели­чить ток 1 и разность работ φ1 - φ2. Но наибольший ток 1 можно получить, уменьшив φ1 (см. формулу Ричардсона). В общем, в данном случае

при разработке эффективных ТЭП решают оптимизационную задачу для эмиттера и проблему уменьшения φ2 для коллектора.

Вторая причина - в отличие от идеального ТЭП в вакуумном зазо­ре между эмиттером и коллектором реального ТЭП возникает пространст­венный заряд за счет высокой концентрации электронов.Это приводит к

тому, что распределение потенциала между эмиттером и коллектором приобретает вид, как на рис. 2.9, Наличие максимума высотой © при­водит к следующему: чтобы достичь коллектора, электроны эмиттера кроме тепловой энергии 2kT1 и энергии φ1 должны приобрести еще энергию δ. После прохода максимума эта энергия пойдет на сообщение электронам дополнительной кинетической энергии, которая затем беспо­лезно выделится на коллекторе в виде теплоты, требующей дополнитель­ных усилий по ее отводу.

Наличие пространственного заряда существенно снижает характери­стики ТЭП. Есть методы борьбы с ним. Наиболее простой способ - уменьшение расстояния между эмиттером и коллектором. Разумеется, таким способом можно добиться, чтобы δ≈0. Но для этого необходимо поддержи­вать зазор между эмиттером и коллектором на уровне ~0.01-0.001мм. Обеспечить высокую надежность, большие сроки службы ТЭП и (одновре­менно) такие малые зазоры - очень большая технологическая проблема. Более эффективной оказывается компенсация пространственного заряда с помощью положительных ионов. Ясно, что при введении в элек­тронное облако некоторого количества зарядов противоположного знака отрицательный потенциал снизится. На практике это достигается введе­нием в межэлектродный зазор ТЭП паров цезия (Cs). Атомы цезия легко ионизируются,

образуя положительные ионы, которые могут компенсиро­вать пространственный заряд. Для получения паров цезия ТЭП снабжают резервуаром с жидким цезием, который поддерживают при строго опре­деленной температуре, соответствующей требуемому давлению паров Сs.

Помимо компенсации пространственного заряда Cs выполняет еще две очень важные функции.

  1. Работа выхода Cs существенно ниже, чем у обычно применяемых материалов для эмиттеров и коллекторов. Поэтому, когда на коллекторе адсорбируется некоторое количество Cs, работа выхода коллектора φ2 существенно снижается.

  2. Адсорбция цезия на эмиттере (в так называемых ТЭП высокого давления) позволяет существенно повысить токи i с него.

В итоге КПД и мощностные характеристики ТЭП улучшаются. Реально КПД ТЭП могут достигать 10-15% и есть резервы их дальнейшего увеличения.

В ядерной энергоустановке (ЯЭУ), основанной на этом принципе преобразования энергии, можно создать компактный реактор-преобразо­ватель (РП), у которого вся энергопроизводящая часть встроена в саму активную зону и не содержит движущихся частей. Во вне имеется только контур охлаждения. В этой схеме сам твэл выполняется в виде ТЭП (см. рис. 2.10). Такие конструкции уже созданы и успешно работали, например, отечественная космическая ЯЭУ с РП "Топаз". Создание такой установки - сложная инженерная задача, т.к. ТЭП должен работать при высоких температурах, больших токах и нейтронных потоках. Последнее особенно неприятно, т.к. свойства используемых материалов под облучением могут сильно изменяться.

В настоящее время рассматриваются возможности создания комбини­рованных ЯЭУ: прямое преобразование + машинный способ преобразования энергии.

studfiles.net

Преобразование тепла в электричество

Всем известно, что более 50% всей энергии, которая потребляется человечеством, теряется в виде выделения тепла. В настоящее время, учеными из разных стран ведется работа по созданию материалов-термоэлектриков, которые способны осуществить преобразование тепла в электричество. В результате проведенных исследований удалось получить такие термоэлектрические материалы, коэффициент преобразования которых в два раза выше, чем у самых популярных современных термоэлектриков.

Свойства термоэлектрических материалов

Результаты позволяют надеяться, что в ближайшем будущем получатся совершенно новые экологически чистые источники электрической энергии. На молекулярном уровне было произведено соединение кобальта, никеля, олова и марганца. Получился мультиферритовый сплав, обладающий совершенно новыми свойствами. Он объединяет в себе оптимальное сочетание электрических, эластичных и магнитных свойств. За счет этого происходит превращение материалов из одного в другой, а действие температуры приводит к обратимым фазовым превращениям. Во время демонстрации этого материала, он, при поглощении окружающего тепла, вызвал неожиданную выработку электричества в катушке индуктивности, окружающей его.

Таким образом, полученный материал, в перспективе может иметь огромное практическое значение. Например, преобразование тепла, выделяемого автомобилем, может быть использовано для зарядки аккумуляторов.

Принцип действия двигателя-электрогенератора

Кроме термоэлектриков, разрабатывается двигатель-электрогенератор, способный вырабатывать электроэнергию, эквивалентную двигателю внутреннего сгорания с такими же габаритными размерами.

В этом устройстве используется сжатие и расширение газов, происходящее в циклическом варианте. При этом, двигатель преобразует тепловую энергию вначале в механическую, а, затем, в электрическую. Его эффективность на 25% превышает аналогичные показатели стандартного двигателя внутреннего сгорания.

В отличие от обычных двигателей в электрогенераторе совершенно не имеется трущихся или движущихся частей, что позволяет эксплуатировать его в высокотемпературном режиме, не применяя специальных смазок, без всякого износа. При нагревании газа, он увеличивается в объеме и вызывает звуковые колебания, которые приводят к колебаниям пластины, исполняющей роль поршня. В свою очередь, поршень связан с генератором, который и вырабатывает электрическую энергию.

Таким образом, преобразование тепла в электричество имеет вполне реальные перспективы. Данные методы являются достаточно эффективными и экологически чистыми, поэтому, есть необходимость дальнейших разработок в этом направлении.

Вечный генератор электричества

electric-220.ru

Переработка бросового тепла в электричество

Экология потребления.Технологии: Тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.

Благодаря быстрой индустриализации, мир увидел развитие целого ряда технологий, которые генерируют бросовое тепло.  До сих пор это тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.  Теперь, когда физики в Университете штата Аризона находят новые способы генерации энергии за счет тепла, эта мечта на самом деле становится реальностью.

Исследовательская группа университета штата Аризоны:

Профессор физики  Чарльз Стэффорд является руководителем исследовательской группы, и он вместе со своей командой работал над переработкой отходов в энергию. Результат их работы был опубликован в научном журнале  ACS Nano.

Ученый и соискатель степени доктора наук в Колледже Оптических Наук  Аризоны Джастин Бергфильд разделяет мнение, что "Термоэлектричество может преобразовать тепло непосредственно в электрическую энергию  устройством без движущихся частей. Наши коллеги в этой области говорят, что они уверены в том, что устройство, компьютерную модель которого мы разработали, может быть построено с характеристиками, которые мы видим в нашем моделировании ".
 

Преимущества:

Ликвидация озоноразрушающих материалов: Использование сбросного тепла как форма электроэнергии имеет несколько преимуществ. Нужно принять во внимание, что с одной стороны теоретическая модель молекулярного термоэлектрического устройства поможет в повышении эффективности автомобилей, электростанций,  заводов и панелей солнечных батарей, а с другой, что термоэлектрические материалы, такие как  хлорфторуглероды (CFC ), которые разрушают озоновый слой, устарели.

Более эффективная конструкция:

Руководитель исследовательской группы Чарльз Стэффорд надеется на положительный результат. Он ожидает, что разработанный ими проект термоэлектрического устройства будет лучше в 100 раз предидущих достижений. Если конструкция, которую они с командой сделали, действительно заработает, то сбудется мечта всех тех инженеров, которые хотели генерировать энергию из отходов, но не имели требуемого эффективного и экономичного устройства для этого.

Нет необходимости в механизмах:

Изобретенное  Бергфильдом и Стэффордом устройство теплового преобразования не требуют каких-либо машин или озоноразрушающих химических веществ, как это было в случае с холодильниками и паровыми турбинами, которые ранее были использованы для преобразования отходов в электрическую энергию. Теперь же эта работа выполняется прослойкой резиноподобного полимера, что зажат между двумя металлами и действует как электрод. Термоэлектрические устройства являются автономными, не нуждаются в двигательных процессах, просты в изготовлении и обслуживании.

Утилизация отходов энергии:

В основном энергию вырабатывают автомобили и промышленность. Автомобильные и промышленные отходы могут быть использованы для выработки электроэнергии путем покрытия выхлопных труб тонким слоем разработанного материала. Также физики решили воспользоваться законом квантовой физики, который, впрочем, не очень часто используется, но дает отличные результаты, когда речь идет о генерации энергии из отходов.

Преимущества в сравнении с солнечной энергией:

Молекулярные термоэлектрические устройства могут помочь в генерации энергии солнца и уменьшить зависимость от фотоэлементов снизким КПД

Как это работает:

Работая с молекулами и размышляя как их использовать для термоэлектрического устройства Бергфильд и Стэффорд не нашли ничего особенного, пока один студент  не обнаружил, что эти молекулы имеют свою специальную функцию. Большое количество молекул было зажато между электродами и подвергались воздействию стимулирующего источника тепла. Поток электронов вдоль молекул был разделен на две части: первая часть потока сталкивалась с бензольным кольцом,  а вторая с потоком электронов вдоль каждой следующей ветви кольца.

Схема бензольного кольца была разработана таким образом, что электрон перемещается на большее расстояние по кругу, что является причиной выпадения из кольца двух электронов, достигающих друг друга в фазе на другой стороне бензольного кольца. Волны гасят друг-друга на стыке, а разрыв в потоке электрического заряда вызваный разницей температур создает напряжение между электродами.

Термоэлектрические устройства, разработанные Бергфильдом и Стэффордом могут генерировать мощность, которая  зажжет 100 ваттную лампочку  или повысить эффективность автомобиля на 25%.опубликовано econet.ru 

econet.ru

tPOD1 — эффективный преобразователь тепловой энергии в электричество / Habr

То, что тепловую энергию можно преобразовывать в электричество, известно очень давно. Существует и целый спектр портативных устройств, которые совершают подобные преобразования без большого числа промежуточных этапов. Но вскоре может появиться устройство, которое окажется практически идеальным преобразователем тепловой энергии в электрическую для охотников, туристов, путешественников и жителей отдаленных регионов. tPOD1 достаточно эффективен — тепла, выделяемого одной маленькой свечкой (знаете, такие мини-свечки в металлической крышечке, они еще по воде могут плавать) хватит для обеспечения энергией светодиодной лампы (на 25 светодиодов) вплоть до четырех часов.

Этот проект разработан компанией Tellurex, которая в настоящее время собирает средства на реализацию своей идеи в промышленном масштабе на Kickstarter. Всего для начала массового производства tPOD1 нужно 85 тысяч долларов США. 40 тысяч долларов США уже собрано.

Разработчики считают, что их устройство может быть полезным, в первую очередь, для жителей удаленных регионов Африки. Та же мобильная связь добралась и туда, однако иногда жителям приходится проходить несколько километров в день, только для того, чтобы зарядить свой телефон где-нибудь в более цивилизованном районе. А теперь заряжать телефон можно будет буквально «из костра». Вероятно, жители смогут и просто класть tPOD1 куда-нибудь на темный камень, нагревающийся на солнце до 70 градусов (и даже выше).

Правда, стоимость девайса чрезмерно велика для африканца — выложить придется 69-79 долларов США. Так что пока tPOD1, вероятно, станет раскупаться только туристами, рыбаками и прочими категориями граждан, регулярно совершающих путешествия.

На видео, размещенном ниже, показан принцип действия устройства. Там вначале девочка вещает, но с 20-й секунды начинается сама презентация.

Via mashable

habr.com

Пироэлектрическая нанопленка превратит тепло от электрического тока снова в ток

Shishir Pandya

Американские ученые получили пироэлектрический материал, преобразующий тепловую энергию в электрическую с рекордными значениями плотности энергии и коэффициента полезного действия. Этот материал представляет собой пленку сегнетоэлектрического релаксора толщиной 150 нанометров и в будущем его можно использовать для повышения эффективности потребления энергии, пишут ученые в Nature Materials.

Чтобы повысить эффективность потребления энергии, обычно стремятся свести к минимуму все ее возможные потери. Для этого можно или повышать эффективность первичного использования энергии, или каким-то образом использовать вторичную энергию, не использованную изначально. Один из вариантов второго подхода — использование тепловой энергии, которая выделяется в электронных устройствах. Поскольку на ненужный разогрев тратится до 70 процентов всей энергии, разработка эффективных способов преобразования тепла — актуальная проблема для современной энергетики развитых стран. Обычно для этого предлагают использовать термоэлектрические устройства, которые преобразуют в электричество разницу температур или более сложные устройства, например термогальванические ячейки, однако в поиске более эффективных методов ученые иногда предлагают и другие материалы и методы.

Американские ученые под руководством Лейна Мартина (Lane W. Martin) из Калифорнийского университета в Беркли разработали новый способ эффективного преобразования тепла, которое выделяется в проводах, в электрический ток. Для этого они предложили использовать пленку из материала, который на треть состоит из титаната свинца, а на две трети — из смешанного ниобата свинца и магния. Этот материал обладает свойствами сегнетоэлектрического релаксора, то есть при определенной температуре может переходить в поляризованное состояние, при этом такой переход происходит не скачком, а сильно растягивается по температуре. За счет этого материал можно использовать как пироэлектрик, то есть при нагревании в нем происходит разделение зарядов и возникает разность потенциалов.

Исследователи предложили использовать для преобразования тепла не объемный материал, а пленку толщиной всего 150 нанометров, что дает возможность для применения подхода в широком диапазоне температурных колебаний и электрических напряжений. Предложенную концепцию ученые проверили с помощью специального многослойного устройства, в котором можно было измерять пироэлектрический, сегнетоэлектрический и диэлектрический отклик материала в ответ на изменение температуры, а также при приложении внешнего электрического поля.

Схема устройства, в котором выделяющееся тепло используется для получения электрического тока. Пироэлектрическая пленка обозначена розовым цветом

S. Pandya et al./ Nature Materials, 2018

Результаты экспериментальных измерений показали, что использованный учеными материал значительно превосходит другие использующиеся для подобных целей пироэлектрики: его пироэлектрический коэффициент доходит до ​550 микрокулонов на квадратный метр при увеличении температуры на один градус. Кроме того, оказалось, что его пироэлектрический эффект можно контролируемо увеличивать за счет внешнего электрического напряжения. В результате ученым удалось достичь рекордных показателей для пироэлектрических материалов сразу по нескольким параметрам: плотность энергии достигла 1,06 джоуля на кубический сантиметр, плотность мощности — 526 ватт на кубический сантиметр. Эффективность этого материала тоже оказалась максимальной — 19 процентов от КПД цикла Карно. Эти показатели очень близки к параметрам лучших термоэлектрических материалов при разнице температур в 10 градусов.

Ученые отмечают, что следующим этапом работы станет оптимизация геометрии самой пленки и всего устройства для работы с реальными тепловыми потоками от проводящих элементов различных устройств. Однако исходя из полученных данных уже сейчас можно утверждать, что такие пироэлектрические пленки могут стать одним из наиболее эффективных материалов для преобразования вторичного тепла в полезную энергию.

Использованные учеными сегнетоэлектрические релаксоры — довольно необычный класс материалов, свойства которых до конца не изучены. Например, до сих пор не определена точная причина необычного растянутого фазового перехода релаксоров. Недавно ученые обнаружили, что это явление может быть связано с градиентной сменой упорядоченных и неупорядоченных с точки зрения химического состава областей внутри кристалла.

Александр Дубов

nplus1.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *