Содержание

Откуда берется падение напряжения в проводах, как его починить

Откуда берется падение напряжения в проводах, как его починить

В этой статье ЭлектроВести расскажут, что такое потеря напряжения в кабеле и как его починить.

Электрическая энергия, при передаче по проводам на расстояние от источника к потребителю, всегда по пути расходуется. Будь то передача энергии от электростанции до подстанции, или от электрораспределительного щитка в нашем подъезде - до розетки и до потребителя (до того или иного электрического прибора, подключенного к розетке).

Любого обывателя больше всего беспокоит тот отрезок цепи, который расположен между счетчиком и потребителем, ведь именно за насчитанные счетчиком ватты нам и приходится платить. И лучше бы, чтобы бесполезных потерь энергии было бы как можно меньше.

Но уже здесь за бесполезные потери энергии отвечают как проводка, так и соединительные провода (шнуры), идущие от приборов к вилкам (и в конце концов — к розеткам). Дело в том, что провода эти, по закону Джоуля-Ленца, нагреваются, особенно если потребитель достаточно мощный. В общем и целом, нагрев проводов — это следствие падения напряжения на них, поскольку провода наши вполне реальны и обладают конечным электрическим сопротивлением R.

Для наглядной демонстрации предлагается устроить следующий эксперимент. Включите в сеть водонагреватель мощностью 2 кВт, и через минуту потрогайте провод, соединяющий его с розеткой. Провод ощутимо теплый, не так ли? Еще бы, ведь через него идет ток около 9 ампер.

Если сечение провода 1,5 кв. мм, то сопротивление двух жил метра такого провода составляет 0,024 Ом, а значит при токе в 9 ампер на нем постоянно, пока водонагреватель работает, в форме тепла рассеивается мощность примерно 2 Вт! А если взять электрический чайник с его метром двухжильного провода, а утюг, а масляный обогреватель… Да еще и попробовать подключить их к розетке через обычный дешевый удлинитель «для телевизора». Провод ощутимо разогреется, а это - явные потери.

В конце концов каждый провод, соединяющий какой бы то ни было прибор с розеткой, сам по себе всегда расходует определенную активную мощность, которую безжалостно учитывает счетчик. Мы уже и не говорим о сечении электропроводки, на меди в которой порой желают сэкономить бережливые хозяева. Начнем с того, что сопротивление любого реального проводника можно легко вычислить по следующей формуле:

Итак, в чем же суть потерь энергии на проводах, как эти расходы прикинуть, и как их в конце концов уменьшить? Начнем с того, что в проводах, шнурах, кабелях, принято использовать медь.

Медь имеет удельное электрическое сопротивление 0,018 Ом*м/кв.мм. Это значит, что сопротивление одной жилы медного провода сечением 1 кв.мм, длиной 1 км составит 18 Ом. А если провод двухжильный, то сопротивление окажется 36 Ом. А один метр ДВУХЖИЛЬНОГО провода сечением 1 кв.мм даст сопротивление 0,036 Ом.

Падение напряжения на проводе зависит от электрического тока, который по нему в данный момент течет. Зная ток (поделив мощность прибора на напряжение в сети), из Закона Ома для участка цепи можно найти это падение напряжения:

Умножив падение напряжения на номинальный ток прибора, находим мощность, рассеиваемую на проводе. Вывод напрашивается сам собой: чем меньше сечение соединительного провода и чем он длиннее — тем больше падение напряжения на данном проводе, и, соответственно, — больше электрические потери, получаемые в форме тепла.

Вредные последствия неадекватно большого падения напряжения на проводах давно известны электрикам.

Во-первых, перегревается проводка, что практически повышает вероятность возгорания и возникновения пожара в помещении.

Во-вторых, расход энергии на бесполезный нагрев проводки ведет к лишним материальным расходам на оплату счетов за электричество.

В-третьих, падение напряжения на проводах отнимается по сути у прибора, который должен получить все напряжение полностью.

В-четвертых, ресурс проводов из-за их перегрева тратится быстрее, как и ресурс импульсных блоков питания потребителей, получающих напряжение меньше номинала, и поэтому вынужденных потреблять больше тока.

В заключении хотелось бы отметить, что никогда не стоит экономить на площади сечения медных проводов при выполнения проводки в помещении. К примеру: двухжильный медный провод сечением 2,5 кв.мм на 5 метрах даст 7,2 Вт тепла уже при токе в 10 А. Насколько это экономично? Лучше выбирать сечение провода таким образом, чтобы при максимальной нагрузке на сеть плотность тока была бы не более 4 А на кв.мм жилы.

Ранее ЭлектроВести писали, что до недавнего времени жители Хмельницкого неоднократно наблюдали за масштабными пожарами на свалке, справиться с которыми представители Государственной службы по чрезвычайным ситациям не могли по несколько суток. При этом жители близлежащих территорий задыхались от нестерпимой дыма и вони. Поэтому в 2016 году был проведен аудит на определение объемов газа в городе, после чего - объявлен конкурс на определение инвестора для строительства станции по дегазации полигона и производства электроэнергии. Победителем конкурса стал один из производителей электрической энергии, который в 2017 году установил установку для откачки и сжигания «свалочного» газа.

По материалам: electrik.info.

Потеря напряжения в проводах | Электрикам

Как известно, простейшая электрическая схема состоит из источника, приемника и соединяющих их линии передачи. В тех или иных случаях может еще учитываться внутреннее сопротивление самого источника. В расчетных схемах с маломощными источниками и приемниками сопротивление соединяющих их проводников принято принимать равными нулю. Однако, когда речь идет об относительно мощных источниках и потребителях, а также соединяющей их линии в виде проводов протяженной длины, в расчетах следует учитывать сопротивление самой этой линии, так как она обладает собственным сопротивлением и, так скажем, «оседающее» на ней напряжение создает определенные потери мощности, вследствие чего до потребителя доходит напряжение, которое меньше напряжения самого источника. В общем виде такую линию передачи можно представить в виде схемы, показанной на рис.1.

Рис.1. Двухпроводная линия с приемником

При рассмотрении данной цепи сопротивление линии (проводов) можно найти по формуле

Рассмотрим величины, участвующие в данном расчете:

  • r – сопротивление линии передачи
  • – длина линии передачи (в нашем примере это верхний и нижний провода, выделенные толстой линией)
  • – удельная проводимость материала применяемого провода
  • S – сечение провода линии

Вместо величины удельной проводимости часто используют обратную ей величину – удельное сопротивление. В этом случае расчетная формула примет вид:

И в том, и в другом случае мы получим одинаковый результат, поэтому можно пользоваться любой из этих формул.

Значения удельных проводимостей и удельных сопротивлений некоторых металлов приведены в табл.1

Пользуясь законом Ома, легко найти величину потери напряжения в данной линии. Она определится по формуле:

Либо пользуясь величиной удельного сопротивления вместо удельной проводимости получим, что:

А исходя из рис.1 становится также ясно, что

т.е. в данном случае потерю напряжения можно найти как разность напряжения в начале и конце линии. Или иными словами как разность напряжения источника и напряжения на потребителе.

Зачастую при расчетах ставится задача определить необходимое сечение провода при заданной величине потери напряжения. В этом случае из приведенных выше формул очевидно, что

При постановке конкретных технических задач бывает необходимым вычислить или принять потерю напряжения, выразив ее в процентном отношении относительно напряжения на потребителе. Тогда получим, что

Соответственно, при необходимости вычисления допустимого значения падения напряжения по заданному в процентном отношении значения падения напряжения, необходимо воспользоваться формулой

А соответствующее этим расчетам сечение составит

либо использовав вместо удельной проводимости  значение удельного сопротивления ρ получим

  

А если использовать известные данные потребляемой мощности P, то можно использовать расчетное выражение вида

Получив расчетное значение искомого сечения, необходимо его проверить по допустимому току, от величины которого зависит его нагрев (табл.2):

Анализируя приведенные формулы, видно, что наиболее эффективным методом снижения потерь мощности является повышение напряжения, так как потери мощности будут определяться выражением

Поэтому на большие расстояния передача энергии производится под высоким напряжением и при малых токах.

КПД такой линии будет определять выражением

где Р1 и Р2 мощность источника и потребителя соответственно.

Таким образом, с увеличением нагрузки КПД уменьшается, и при допустимых принятыми стандартом потерях напряжения в 2 – 5 % КПД обычно составляет 95 – 98 %.

Падение напряжения на проводах - расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация - это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах - суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений - сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы - провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему - провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V ∕ I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедея] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W - мощность в ваттах потребителей тока на конце провода;
  • V - напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L - длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S - площадь сечения провода
    в мм²
    ;
  • ρ - значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т. е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться - просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить различные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, чем толще провод, тем падение напряжения меньше.

При этом падение напряжения обратно пропорционально площади сечения проводника.

Двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют.

Падение напряжения на проводе линейно падает с увеличением напряжения источника тока.

Двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности - 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше - возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение - увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза - примерно в два раза уменьшаем потери на проводах.

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос - подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

§ 15. Передача электрической энергии по проводам

Потеря напряжения в проводах линии. Передача электрической энергии от источника I (рис. 33) к приемнику 2 происходит по проводам, образующим электрическую линию. При передаче энергии возникает потеря напряжения в проводах линии

?Uл = IRл (36)

где Rл, — сопротивление проводов линии.

В результате этого напряжение U2 в конце электрической линии оказывается меньше напряжения U1 в начале линии. Потеря напряжения в проводах линии ?Uл не является постоянной величиной, она колеблется в зависимости от силы тока нагрузки от нуля (при I = 0) до наибольшего значения (при максимальной нагрузке). Кроме того, она зависит от сопротивления Rл проводов линии,

Рис. 33. Схема передачи электрической энергии от источника к приемнику

т. е. от их удельной проводимости ?, площади поперечного сечения s и длины линии lл.

На электрифицированных железных дорогах одним из проводов, соединяющих источник питания — тяговую подстанцию с потребителем — электровозом, является контактный провод, а другим — рельсы. Поэтому под потерей напряжения в проводах ?Uл этом случае понимается суммарная потеря напряжения в контактной сети и рельсах. Потеря напряжения в линии увеличивается по мере удаления электровоза от тяговой подстанции, в соответствии с этим уменьшается и напряжение на его токоприемнике.

Потери мощности в линии и ее к. п. д. При прохождении по линии тока I часть мощности Р1, поступающей от источника, теряется в линии вызывая нагрев проводов, эти потери мощности

?Pл = I2Rл = I?Uл (37)

Следовательно, приемник электрической энергии включенный на конце линии, будет получать меньшую мощность

P2 = P1 – ?Pл (38)

При увеличении тока I возрастают потери мощности в проводах линии ?Pл и уменьшаются к. п.д. линии и напряжение U2, подаваемое на нагрузку.

Практически электрическую энергию передают по проводам при ? = 0,9- 0,95, при этом сопротивление проводов линии составляет 5—10 % сопротивления нагрузки и потери энергии в них не превышают 5—10 % передаваемой мощности.
Рассмотрим теперь, как зависят потери мощности в линии и ее к. п. д. от напряжения U2, при котором осуществляется передача электроэнергии. Потери мощности в проводах линии

?Pл = I2Rл= P22/U22 * 2?lл/sл (39)

Следовательно, чем больше передаваемая мощность Р2 и расстояние lл, на которое она передается, тем больше потери мощности и энергии в проводах; чем больше площадь сечения проводов Sл и напряжение U2 в линии передачи, тем меньше эти потери, поэтому выгоднее передавать электрическую энергию при более высоких напряжениях.


Принципы расчета проводов. Для правильной работы приемников электрической энергии весьма важно, чтобы подаваемое к ним напряжение поддерживалось по возможности постоянным и было равно их номинальному напряжению. Понижение напряжения вызывает существенное ослабление накала электрических ламп и ухудшение режима работы электродвигателей, а увеличение по сравнению с номинальным — сокращение срока службы ламп и электрических машин.
Электрические провода обычно рассчитывают по допустимой потере напряжения. Потеря напряжения в проводах допускается небольшой по сравнению с напряжением сети для экономии электрической энергии и обеспечения малого колебания напряжения на приемниках. В электрических сетях различного назначения допустимые потери напряжения составляют примерно 2—6 %. Исходя из этих условий и проводят расчет электрических проводов, т. е. подбор площади Sл их поперечного сечения. Ее выбирают такой, чтобы при максимальной нагрузке потери напряжения на участке от источника питания до самого удаленного приемника не превышали 2—6 % номинального напряжения. При электрической тяге выбор площади сечения контактных проводов также производят из условия, чтобы на токоприемнике электровоза действовало напряжение U2, достаточное для нормальной работы электрических машин локомотива.

Относительная потеря напряжения в линии, %,

?=(?Uл/U2) 100 %.

Заменяя в этой формуле ?Uл = IRл = I2?lл/Sл и I = P2/U2, получим, что поперечное сечение проводов линии

Sл = (200?/?) (P2iл/U22) (39′)

Из формулы (39′) следует:

1) чем больше передаваемая мощность и чем на большее расстояние она передается, тем больше должно быть поперечное сечение проводов линии;

2) увеличение напряжения в линии позволяет в значительной
степени уменьшить сечение проводов линии и снизить потери мощности в ней.

При передаче электрической энергии на дальнее расстояние широко используются выгоды, которые дает повышение напряжения. Чем большую мощность требуется передать и чем больше расстояние, на которое она передается, тем более высокое напряжение применяют в линиях электропередачи. Например, при передаче энергии от мощных электростанций (Куйбышевской, Волгоградской и др.) на расстояние 800—1000 км используют напряжение 500—750 кВ; при передаче энергии на расстояние 100—200 км— 110—220 кВ; при передаче сравнительно небольшого количества энергии на расстояние нескольких километров или десятков километров— 35 кВ. В электрических установках небольшой мощности при расположении электрических приемников вблизи от источников
питания применяют напряжения 110, 220, 440 В (при постоянном
токе) и 127, 220, 380, 660 В (при переменном токе).

При электрической тяге, чем больше напряжение в контактном проводе, тем меньшую площадь сечения он будет иметь и тем на большем расстоянии могут быть расположены источники питания контактной сети (тяговые подстанции). Например, для снабжения электрической энергией трамвая, двигатели которого имеют сравнительно небольшую мощность, а контактная сеть — небольшую протяженность, используют напряжение 600 В, а на магистральных железных дорогах, электрифицированных на постоянном токе (где эксплуатируются мощные локомотивы),— 3300 В. Электрификация железных дорог на переменном токе дает возможность поднять напряжение в контактной сети до 27500 В что позволяет значительно уменьшить площадь сечения проводов контактной сети и увеличить расстояние между тяговыми подстанциями по сравнению с дорогами постоянного тока. В последнее время ведутся работы по дальнейшему повышению напряжения в контактной сети на дорогах переменного тока до 2*25 кВ.

Расчет напряжения, потери напряжения (страница 1)

1. Как скажется на потере напряжения в двухпроводной линии длиной l=200 м замена медных проводов с площадью поперечного сечения на алюминиевые того же сечения, если ток в линии I=100 A?

Решение:
Потеря напряжения в проводах линии прямо пропорциональна току и сопротивлению линии. Ток в линии предполагается в обоих случаях одинаковым. Следовательно, на изменение потери напряжения может повлиять только изменение электрического сопротивления линии в результате замены медных проводов алюминиевыми. Так как длина линии и сечение проводов остаются прежними, то необходимо сравнить величины удельных сопротивлений алюминия и меди:

Таким образом, при алюминиевых проводах потеря напряжения будет в 1,65 раза больше. Чтобы знать числовое значение потери напряжения, следует определить электрические сопротивления проводов.
При медных проводах

При алюминиевых проводах

Потери напряжения:

  • при медных проводах


  • при алюминиевых проводах


2. Вольтметр присоединен к зажимам генератора, имеющего внутреннее сопротивление 0,2 Ом. При холостом ходе генератора показание вольтметра 232 В.
Определить показания вольтметра при нагружении генератора токами 20, 40, 50 и 100 А, считая э.д.с. и внутреннее сопротивление постоянными.

Решение:
Показание вольтметра, присоединенного к зажимам генератора, не нагруженного током, равно его э. д. с; следовательно, Е = 232 В. Напряжение между зажимами источника меньше этой э.д.с. на величину внутренних потерь , т. е.

Подставив числовые значения в это выражение, вычислим искомые показания вольтметра по табл. 3.
Таким образом, если не регулировать э.д.с. источника, то по мере нагружения генератора током напряжение между его зажимами будет уменьшаться.
Это может привести к заметному уменьшению светового потока электрических ламп.

 

Таблица 3

232

232

232

232

20

40

50

100

0,2

0,2

0,2

0,2

228

224

222

212

 

3. При токе 2 А напряжение между зажимами аккумулятора было равно 2,1 В, а при токе 4 А оно стало равно 2 В.
Определить э. д. с. источника, внутреннее сопротивление и ток короткого замыкания.
Примечание: Э.д.с. и внутреннее сопротивление источника не зависят от тока нагрузки.

Решение:
На основании закона Ома сопротивление внешней цепи равно:

  • в первом случае


  • во втором случае


На основании закона Ома для всей цепи э.д.с. равна:

  • в первом случае


  • во втором случае


или

Вычтя уравнение (3) из уравнения (2), получим

Подставив в уравнение (3), найдем

Ток короткого замыкания источника ограничивается лишь внутренним сопротивлением и равен

Такой ток опасен для пластин аккумулятора типа СК-1 емкостью , допускающего ток 18,5 а при одночасовой работе.

4. Двухпроводная линия, соединяющая приемники энергии со станцией, выполнена алюминиевыми проводами сечением и имеет длину l=50 м. Мощность приемников энергии, имеющих номинальное напряжение , изменяется во время работы и принимает значения 1,1; 5,5; 11,0; 0; 2,75 кВт.
Как должно изменяться напряжение на станции, чтобы обеспечить номинальное напряжение приемников?

Решение:
Сопротивление одного провода линии

Сопротивление двухпроводной линии

Суммарный ток приемников энергии, проходящий в проводах линии, в первом случае

Потеря напряжения в линии

Напряжение в начале линии

 

Аналогичное вычисление проведем для всех случаев и данные впишем в табл. 5.
Следовательно, в результате потери напряжения в линии, изменяющейся пропорционально току, приходится регулировать напряжение в начале линии. Напротив, неизменное напряжение в начале линии приведет к заметным колебаниям напряжения в конце линии при включении и отключении приемников энергии. Это отражается на световом потоке электрических ламп и скорости вращения электродвигателей.

Таблица 5

0,28

0,28

0,28

0,28

0,28

220

220

220

220

220

1100

5500

11000

0

2750

5

25

50

0

12,5

1,4

7

14

0

3,5

221,4

227

234

220

223,5

 

5. Э.д.с. аккумуляторной батареи составляла 20 В в начале зарядки при токе 10 А и повысилась до 26 В в конце зарядки при токе 1 А.
Как изменится напряжение, приложенное к батарее, если внутреннее сопротивление ее равно 1 Ом и принимается постоянным?

Решение:
Приложенное к батарее напряжение должно при зарядке уравновешивать направленную встречно э.д.с. и покрывать потери напряжения во внутреннем сопротивлении батареи. Следовательно,

Если заряжающий источник имеет напряжение больше, чем , то последовательно с батареей следует включить реостат для компенсации избытка напряжения, причем сопротивление реостата приходится увеличивать ввиду уменьшения тока к концу зарядки батареи.

6. Батарея составлена из четырех первичных элементов с разными э.д.с. и различными внутренними сопротивлениями (рис. 12).
Выяснить условия наиболее благоприятного взаимосоединения источников, если соединение «групповое».

Решение:

В каждой группе источники соединены последовательно, причем зажим «+» одного источника соединен с зажимом «—» другого источника. Поэтому в пределах каждой группы имеем сложение э.д.с, например в 1-й группе, во 2-й группе.
Одноименные зажимы группы соединяем между собой. При обходе контура батареи направление двух э.д.с, например , совпадают с направлением обхода, а направления э.д.с. противоположны направлению обхода. Поэтому получаем алгебраическую сумму э.д.с.

Такой контур существует и при холостом ходе батареи, когда к полюсам батареи не присоединена нагрузка. Чтобы при холостом ходе не было тока в контуре батареи, нужно алгебраическую сумму э.д.с. приравнять нулю, т. е. необходимо равенство сумм э.д.с. той и другой групп:

Допустим, что это условие выполнено. Чтобы при нагрузке ток внешней цепи распределялся между группами батареи поровну, требуется равенство сопротивлений групп, т. е. В этом случае при обходе контура батареи получим


где , т. е. токи групп равны друг другу и составляют половину тока нагрузки.

Допустимая потеря напряжения в линии 10 кв. Потеря напряжения

В распределительных сетях 0,4 кВ существует проблема, связанная со значительными перекосами напряжений по фазам: на нагруженных фазах напряжение падает до 200...208 В, а на менее нагруженных за счет смещения «нуля» может возрастать до 240 В и более. Повышенное напряжение может привести к выходу из строя электрических приборов и оборудования потребителей. Асимметрия напряжений возникает из-за разного падения напряжения в проводах линии при перекосах фазных токов, вызванных неравномерным распределением однофазных нагрузок. При этом в нулевом проводе четырехпроводной линии появляется ток, равный геометрической сумме фазных токов. В некоторых случаях (например, при отключении нагрузки одной или двух фаз) по нулевому проводу может протекать ток, равный фазному току нагрузки. Это приводит к дополнительным потерям в ЛЭП (линии электропередач) 0,4 кВ, распределительных трансформаторах 10/0,4 кВ и, соответственно, в высоковольтных сетях.

Подобная ситуация характерна для многих сельских районов и может возникнуть в жилых многоквартирных домах, где практически не реально равномерно распределить нагрузку по фазам питания, в результате чего в нулевом проводе появляются достаточно большие токи, что приводит к дополнительным потерям в проводниках групповых и питающих линий и вызывает необходимость увеличения сечение нулевого рабочего провода до уровня фазных.

Перекосы напряжений сильно сказываются на работе оборудования [Л.1]. Так небольшая асиметрия напряжения (например, до 2%) на зажимах асинхронного двигателя приводит к значительному увеличению потерь мощности (до 33% в статоре и 12% в роторе), что в свою очередь, вызывает дополнительный нагрев обмоток и снижает срок службы их изоляции (на 10,8%), а при перекосах в 5% общие потери возрастают в 1,5 раза и, соответственно, растет потребляемый ток. Причем, дополнительные потери, обусловленные несиметрией напряжений, не зависят от нагрузки двигателя.

При увеличении напряжения на лампах накаливания до 5% световой поток увеличивается на 20%, а срок службы сокращается в два раза.

На трансформаторных подстанциях 10/0,4 кВ, как правило, установлены трансформаторы со схемой соединений У/У н. Уменьшить потери и симметрировать напряжение в ЛЭП 10 кВ возможно, применив со схемой соединений Y/Zjj или A/Zjj, или (выпускаемый УП МЭТЗ им. В.И. Козлова), но такая замена связана с большими финансовыми затратами и не компенсирует дополнительные потери в ЛЭП 0,4 кВ.

Для компенсации перекоса напряжений целесообразно перераспределить токи нагрузки по фазам, выровняв их значения.

Необходимость ограничения тока нулевого провода вызвана еще и тем, что в распределительных сетях 0,4 кВ, выполненных кабелем, сечение нулевого провода обычно принимается на ступень меньше сечения фазного провода.

В целях уменьшения потерь электроэнергии в сетях 0,4 кВ за счет перераспределения токов по фазам, ограничения тока в нулевом проводе и снижения перекосов напряжений, предлагается использовать трехфазный симметрирующий автотрансформатор, устанавливая его в конце ЛЭП, в узлах нагрузки. При этом, если на линии 0,4 кВ до узла нагрузки произойдет короткое замыкание одной из фаз на нулевой провод (что в сожалению не редко бывает на воздушных ЛЭП в сельских районах), потребители за установленным автотрансформатором будут защищены от больших перенапряжений.

Автотрансформатор трехфазный, сухой, симметрирующий (сокращенно - АТС-С) содержит трехстержневой магнитопровод, первичные обмотки W 1 размещенные на всех трех стержнях, соединенные в звезду с нейтралью и подключаются к сетевому напряжению, компенсационная обмотка W K выполнена в виде открытого треугольника (некоторые авторы называют его разомкнутым [Л.3]) и включена последовательно с нагрузкой.

Основные электрические схемы автотрансформатора представлены на рис.1...4.

На рис.1 представлена электрическая схема автотрансформатора с компенсационной обмоткой, когда секции этой обмотки, выполненные на каждой фазе, соединены в классический открытый треугольник и подключены к нейтрали сети, и к нагрузке.

На рис.2 представлена электрическая схема автотрансформатора с компенсационной обмоткой, выполненной в виде витков из проводникового материала, лежащих поверх обмоток всех трех фаз автотрансформатора, образуя открытый треугольник. Применение этой схемы, по сравнению с предыдущей, позволяет не только уменьшить расход обмоточного провода дополнительной обмотки, но и габаритную мощность автотрансформатора за счет освобождения окна магнитопровода и уменьшения межосевого расстояния между первичными обмотками.

Эти схемы применимы в тех случаях, когда нулевой провод нагрузки не имеет жесткой связи с заземлением и во всех случаях в пятипроводной системе с РЕ- и N-проводниками.

На рис.3 представлена электрическая схема автотрансформатора с компенсационными обмотками, выполненными в виде фазных обмоток соединенных в открытые треугольники, включенные согласно к фазным обмоткам автотрансформатора.

Конструктивно схема, представленная на рис.4, может быть выполнена аналогично схеме рис.2, т.е. фазные компенсационные обмотки выполнены поверх обмоток всех трех фаз автотрансформатора и включены в разрыв фазных проводов сети со стороны нагрузки.


Данные схемы могут использоваться, в том числе, когда нейтраль нагрузки глухо заземлена, т. е. когда нет возможности включить компенсационную обмотку автотрансформатора в разрыв нулевого провода между нагрузкой и сетью, или когда нулевой провод нагрузки по требованиям безопасности должен быть «жестко» заземлен.

При асимметрии токов нагрузки и, соответственно, токов в компенсационных обмотках, магнитные потоки, создаваемые этими обмотками в магнитопроводе автотрансформатора, будут геометрически складываться. В стержнях магнитопровода будут возникать направленные в одну сторону во всех фазах автотрансформатора потоки нулевой последовательности. Эти магнитные потоки, создают э.д.с. нулевой последовательности и, соответственно, токи I 01 в первичной обмотке пропорционально коэффициенту трансформации к тр (обратно пропорционально соотношению числа витков W1/Wk).

Подключение обмотки W K выбрано таким образом, чтобы фазные токи автотрансформатора векторно вычитались из фазного тока линии наиболее нагруженной фазы и добавлялись к токам менее нагруженных фаз. Такое перераспределение приводит к более симметричному распределению токов по фазам в ЛЭП, выравниванию падений напряжения в проводах линии и, следовательно, к симметрированию напряжения на нагрузке, а так же к уменьшению тока нулевого провода и потерь в линии электропередач, и силовых распределительных трансформаторах, обеспечивая экономию электроэнергии.

Максимальная компенсация тока в нулевом проводе выполняется при равенстве ампервитков (магнитодвижущей силы) рабочей I 01 -W 1 и компенсационной I 02 -W K обмоток, т.е. при I 01 -W 1 =3I 02 -W K , или W K =W 1 /3. При этом габаритная мощность автотрансформатора Р ат, в зависимости от схемы подключения компенсационных обмоток, может быть в 3 раза меньше потребляемой мощности нагрузки Р н.

Для ограничения тока нулевого провода до уровня допустимого для ЛЭП, число витков компенсационной обмотки может быть соответственно уменьшено: например, для ограничения тока нулевого провода на уровне 1/3 фазного, должно быть скомпенсировано 2/3 его величины, следовательно, W K =W 1 /4,5. При этом габаритная мощность автотрансформатора может быть в 4,5 раза меньше потребляемой мощности нагрузки.

Перекосы фазных токов приводят к дополнительным потерям в ЛЭП 0,4кВ и далее по всей цепи транспортирования электроэнергии. Рассмотрим это на примере условной линии электропередач длиной 300м, выполненной алюминиевым кабелем сечением (3х25+1х16)мм (сопротивление фазных проводов 0,34 Ом, нулевого провода 0,54 Ом) при активной нагрузке по фазам 40, 30 и 10А. Ток в нулевом проводе, равный векторной сумме фазных токов, будет (см.). Потери в фазных проводах, соответственно, составят -40 2 -0,34=544 Вт, 30 2 -0,34=3 06 Вт, 10 2 -0,34=34 Вт, в нулевом проводе -26,5 -0,54=379 Вт, суммарные потери в линии - 1263 Вт.

Применение АТС-С позволит перераспределить токи в линии. При коэффициенте трансформации 1/3 одна треть тока нулевого провода векторно вычитается из токов нагруженных фаз и прибавляется к току менее нагруженной фазы. Токи, соответственно, станут

Равными 33,8, 29,6 и 18,6 А, при этом ток нулевого провода (учитывая некоторую асимметрию магнитной системы автотрансформатора) может составлять до 10% среднего фазного тока т.е. 2,7 А.

При таком перераспределении токов суммарные потери в линии составят (33,82+29,62+18,62)·0,34+2,72·0,54 = 805Вт.

Таким образом, установка автотрансформатора АТС-С позволяет снизить потери в ЛЭП-0,4 кВ на 36 %.

Очевидно, что уменьшение падения напряжения в проводах линии пропорционально изменению тока по фазам, существенно выравнивает напряжение в узле нагрузки, в первую очередь за счет смещения «нуля».

Увеличение коэффициента трансформации выше 1/3 для трехфазных нагрузок не целесообразно и, несмотря на более равномерное перераспределение токов по фазам, приводит к увеличению потерь в ЛЭП за счет более существенного увеличения тока нулевого провода, а так же потребует больших затрат на материалы.

Относительное значение мощности автотрансформатора АТС-С составит – S*ат= k·Sн, где: Sн – мощность нагрузки; k – коэффициент в зависимости от схемы автотрансформатора и коэффициента трансформации (kтр), представленный в таблице 1.

Таблица 1 значения коэффициента к

Схема, рис. 1 2 3 4
ктр= 1/3 0,58 0,33 0,90 0,55
ктр = 1/4,5 0,38 0,22 0,66 0,33

Если гарантированно известен максимальный ток, протекающий в нулевом проводе нагрузки, то габаритная мощность автотрансформатора по схеме рис.1 может быть рассчитана, исходя из этого тока - Б ат = 1 02 -и л /л/3, а по схеме рис.2 - Б ат = 1 02 -и л /3 и для выше приведенного примера трехфазной несимметричной нагрузки составит, соответственно, 8,3 и 4,8 кВ-А.

Наиболее эффективным является установка автотрансформатора непосредственно у потребителя, в точке разветвления трехфазной линии в однофазные, например на вводе дачного кооператива, где практически невозможно выровнять нагрузку по фазам. В жилых многоквартирных домах установка АТС-С на ответвлениях к каждому стояку, питающему квартиры жилых домов, позволяет симметрировать напряжение, и снизить потери в трехфазных групповых и питающих линиях распределительной сети. На малых промышленных предприятиях он может применяться для питания однофазных нагрузок большой мощности: сварочных трансформаторов, выпрямителей, водонагревателей и т. д.

В настоящее время все большее применение находят статические преобразователи (выпрямители, тиристорные регуляторы, высокочастотные преобразователи), газоразрядные осветительные устройства с электромагнитными и электронными балластами, электродвигатели переменного тока с регулируемой скоростью вращения и т.д. Указанные устройства, а также сварочные трансформаторы, специальные медицинские и другие приборы могут генерировать высшие гармоники тока в системе электропитания. Например, однофазные выпрямители могут генерировать все нечетные гармоники, а трехфазные все, не кратные трем, что отражено на рис. 6 [Л.2].

Гармоники тока, создаваемые нелинейными нагрузками, могут представлять собой серьезные проблемы для систем электропитания. Гармонические составляющие представляют собой токи с частотами, кратными основной частоте источника питания. Высшие гармоники тока, накладываемые на основную гармонику, приводят к искажению формы тока. В свою очередь, искажения тока влияют на форму напряжения в системе электропитания, вызывая недопустимые воздействия на нагрузки системы. Увеличение общего действующего значения тока при наличии высших гармонических составляющих в системе может привести к перегреву всего оборудования распределенной сети. При несинусоидальных токах возрастают потери в трансформаторах, главным образом за счет потерь на вихревые токи, что требует увеличения их установочной мощности. Как правило, для ограничения гармоник в этих случаях устанавливаются высокочастотные фильтры, состоящие из сетевых реакторов и конденсаторов.

К достоинствам АТС-С следует отнести то, что они обладают способностью фильтрации токов высших гармоник, кратных трем (т.е. 3, 9, 15 и т.д.), ограничивая их протекание как из сети к нагрузке, так и наоборот. Этим самым повышается качество сети и снижаются колебания напряжения.

Как уже указывалось выше, электромагнитные балластные пускорегулирующие аппараты (ПРА) газоразрядных ламп генерируют высшие гармоники. Так, в токах натриевых ламп ДНаТ, широко используемых для целей уличного освещения, третья гармоника является превалирующей и, в зависимости от мощности лампы и типа ПРА, составляет до 5% и более (по [Л.4] третья гармоника допускается до 17,5%). Токи третьих гармоник совпадают по фазе и арифметически складываются в нулевом проводе трехфазной сети, создавая ощутимые добавочные потери, что вынуждает выполнять сечение нулевых рабочих проводников трехфазных питающих и групповых линий, равным фазному.

В этой ситуации применение АТС-С позволяет уменьшить сечение нулевых проводников, как минимум, в два раза и решить три задачи: компенсировать потери от третьей гармоники, обеспечить перевод системы освещения на «ночной режим» (одна или две фазы распределительной сети отключаются в ночные часы), перераспределяя нагрузку на три фазы; и выйти на энергосберегающий режим, выполнив отводы на автотрансформаторе для понижения напряжения. Для решения только первой задачи можно применить автотрансформатор минимальной мощности, рассчитанный на ток нулевого провода (суммарный ток третьей гармоники).

При необходимости компенсировать 5, 7 или 11 гармоники можно воспользоваться схемами рис.3 или 4. В этом случае затраты на сетевые реакторы могут быть уменьшены, т.к. компенсационные обмотки, обладая повышенным индуктивным сопротивлением для высокочастотных гармоник, могут выполнять роль сетевого реактора и, в совокупности с конденсаторами, образовывать фильтр высших гармоник. Конденсаторы подключаются между точками соединения в открытые треугольники секций компенсационных обмоток и нулевым проводом, и могу образовывать одно (см. рис.7), двух или трехступенчатый фильтр для разных частот. Величину индуктивности
секции компенсационной обмотки с достаточной достоверностью можно определить из номинальных параметров - номинального тока и коэффициента трансформации. Например, при номинальном токе I н =25А и коэффициенте трансформации kтр=1/3 напряжение секции
будет U сек =Uф к тр =220/3=73В, сопротивление Z сек =Uсек/Iном=73/25=2,9Ом (пренебрегая малым активным сопротивлением обмотки) считаем индуктивным, и тогда индуктивность секции

Lсек =Z сек /w=2,9/314-10 =9,2мГн. При этом надо учитывать нелинейный характер сопротивления: с уменьшением нагрузки сопротивление возрастает.

При заказе автотрансформатора возможность подключения конденсаторов должна быть оговорена в заявке на изготовление.

Частным случаем является симметрирующий автотрансформатор, целенаправленно предназначенный для питания однофазной нагрузки (см. рис.8 и 9). Для большей симметрии токов по фазам коэффициент трансформации можно сделать больше, чем 1/3, с некоторым увеличением тока нулевого провода.


Рассмотрим это на примере. На вводе трехфазной сети установлен автоматический выключатель, рассчитанный на длительно допустимый ток 25 А. Требуется подключить сварочный трансформатор мощностью 10 кВА (напряжение сети 220 В, ток сварки 160 А, напряжение холостого хода 60 В, ПВ 60%). Потребляемый сварочным трансформатором ток составит 10-1000/220=45,5 А, а с учетом ПВ эквивалентный ток будет 45,5-//0,6=35,2 А, что в 1,4 раза превышает допустимый. Конечно, можно применить обычный автотрансформатор 380/220 В, выполненный на базе трансформатора ОСМР-6,3 (мощностью 6,3 кВА), в этом случае нагрузка будет перераспределена только на две фазы (линейный ток - 20,3 А), но можно применить симметрирующий автотрансформатор (см. схему рис.9) с коэффициентом трансформации 1/2, преобразующий однофазную нагрузку в трехфазную и выровнять нагрузку по всем фазам, снизив ток в сети до 17,6 А, при этом ток в нейтрали, при отсутствии других нагрузок так же будет 17,6 А.

В этом случае автотрансформатор можно изготовить на базе трансформатора ТСР-6,3. Можно также использовать симметрирующий автотрансформатор с коэффициентом трансформации 1/3, ограничив ток в рабочей фазе длительно допустимым для автоматических выключателей - током 23,4А, при этом в двух других фазах будет протекать ток 11,8А при отсутствии тока в нулевом проводе.

Автотрансформатор может быть сделан на базе трансформатора ТСР-2,5.

Снижение потерь в сети по сравнению с прямым включением приведено в таблице 2.

Таблица 2

Автотрансформатор На базе ОСМР-6,3 Симметрирующий АТС-С
Коэффициент трансформации 1/1,73 1/3 1/2

Учитывая, что сварочный трансформатор генерирует высокочастотные гармоники, в том числе кратные трем, предпочтение следует отдавать симметрирующему автотрансформатору.

Проведенные испытания автотрансформаторов АТС-С в лаборатории УП МЭТЗ им. В.И. Козлова показали положительные результаты и полностью подтвердили свою эффективность (см. Приложение 1 «Результаты испытаний автотрансформатора АТС-С-25»).

Планируется разработка серии автотрансформаторов от 25 до 100 кВА как в открытом исполнении IP00, так и в защитных кожухах исполнений IP21 для установки под навесом и IP54 для установки на открытом воздухе, в том числе непосредственно на опорах ЛЭП 0,4кВ. В автотрансформаторах, при необходимости, в целях повышения или понижения напряжения, может быть предусмотрена возможность переключений регулировочных отводов при его монтаже.

В настоящее время заводом принимаются индивидуальные заказы на автотрансформаторы АТС-С мощностью до 100 кВА.

Приложение 1

Результаты испытаний автотрансформатора АТС-С-25

На примере четырехпроводной ЛЭП-0,4кВ

Длина линии, м 300
Провод алюминиевый сечением, мм² фазы - 25 нуля - 10
Сопротивление провода, Ом фазы - 0,34 нуля - 0,86
Сопротивление нагрузки (активное), Ом Фаза: А-5,99 В-5,83 С-5,59
Режим нагрузки без автотрансформатора 3х-ф 2х-ф 1о-ф
Линейные токи нагрузки, А
фаза А 36,5 36,5 36,5
фаза В 37,5 37,5 0,0
фаза С 39,0 0,0 0,0
в нулевом провода N 2,2 37,0 36,5
фаза А 456 456 456
фаза В 481 481 0
520 0 0
в нулевом провода "N" 4 1172 1140
ИТОГО 1461 2109 1596
Режим нагрузки с автотрансформатором 3х-ф 2х-ф 1о-ф
Линейные токи до АТС-С, А
фаза А 36,0 32,5 27,3
фаза В 36,0 34,1 9,3
фаза С 39,0 9,0 8,4
в нулевом проводе "n" 3,8 11,0 11
Потери мощности в линии, Вт
фаза А 443 361 255
фаза В 443 398 30
фаза С 520 28 24
в нулевом проводе N 12 103 103
ИТОГО в линии 1419 890 412
с учетом потерь в АТС-С
сопротивление фазной обмотки, Ом 0,2443
сопротивление компенсирующей обмотки, Ом 0,038
Токи фазной обмотки АТС-С, А
фаза А 0,4 8,1 8,9
фаза В 1,4 9,2 9,3
фаза С 1,3 8,9 8
Потери мощности в обмотках АТС-С, Вт
фаза А 0,04 16,03 19,35
фаза В 0,48 20,68 21,13
фаза С 0,41 19,35 15,64
в нулевом проводе N 0,18 52,09 50,67
Потери холостого хола АТС-С, Вт 50
ИТОГО в АТС-С 51,1 158,1 156,8
ИТОГО 1470,1 1048,2 568,8
Экономия электроэнергии, Вт -8,7 1061 1027

Лекция № 10

Расчет местных сетей (сетей напряжением ) по потере

напряжения

    Допустимые потери напряжения в линиях местных сетей.

    Допущения, положенные в основу расчета местных сетей.

    Определение наибольшей потери напряжения.

    Частные случаи расчета местных сетей.

    Потеря напряжения в ЛЭП с равномерно распределенной нагрузкой.

К местным сетям относятся сети номинальным напряжение 6 – 35 кВ. Местные сети по протяженности значительно превосходят протяженность сетей районного значения. Расход проводникового материала и изоляционных материалов значительно превосходят их потребность в сетях районного значения. Это обстоятельство требует ответственно подходить к проектированию сетей местного значения.

Передача электроэнергии от источников питания к электроприемникам сопровождается потерей напряжения в линиях и трансформаторах. Поэтому напряжение у потребителей не сохраняет постоянного значения.

Различают отклонения и колебания напряжения.

Отклонения напряжения обусловлены медленно протекающими процессами изменения нагрузок в отдельных элементах сети, изменением режимов напряжения на источниках питания. В результате таких изменений напряжения в отдельных точках сети меняется по величине, отклоняясь от номинального значения.

Колебания напряжения – это быстро протекающие (со скоростью не менее 1% в минуту) кратковременные изменения напряжения. Возникают при резких нарушениях нормального режима работы при резких включениях или отключениях мощных потребителей, коротких замыканиях.

Отклонения напряжения выражаются в процентах по отношению к номинальному напряжению сети


Колебания напряжения рассчитываются следующим образом:


где

наибольшее и наименьшее значения напряжения в одной и той же точке сети.

Чтобы обеспечить нормальную работу электроприемников, на их шинах необходимо поддерживать напряжение, близкое к номинальному.

ГОСТ устанавливает следующие допустимые отклонения в нормальном режиме работы:

В послеаварийных режимах допускается дополнительное понижение напряжения на 5% к указанным величинам.

Чтобы обеспечить должный уровень напряжения на шинах электроприемников, применяют следующие меры:


При коэффициенте трансформации

фактическое напряжение на шинах низкого напряжения будет ближе к номинальному:


    Обмотки трансформаторов снабжаются ответвлениями, которые позволяют менять коэффициент трансформации в некоторых пределах. Напряжение, в узлах схемы, расположенных ближе к источнику питания обычно выше номинального, а в удаленных – ниже номинального. Чтобы на вторичной стороне трансформаторов, включенных в этих узлах, получить напряжение требуемого уровня, необходимо подобрать ответвления в обмотках трансформаторов. В узлах с повышенным уровнем напряжения устанавливаются коэффициенты трансформации выше номинального, а в узлах с пониженным уровнем напряжения коэффициенты трансформации трансформаторов устанавливаются ниже номинальных.

    Схему сети, номинальное напряжения, сечения проводов выбирают таким образом, чтобы потеря напряжения не превышала допустимого значения.

Допустимая потеря напряжения устанавливается с некоторой степенью точности, исходя из нормированных значений отклонений напряжения на шинах электроприемников:

    для сетей напряжением 220 – 380 В на всем протяжении от источника питания до последнего электроприемника от 5 – 6,5%;

    для питающей сети напряжением 6 – 35 кВ – от 6 до 8% в нормальном режиме; от 10 до 12 % в послеаварийном режиме;

    для сельских сетей напряжением 6 – 35 кВ –до 10 % в нормальном режиме.

Эти значения допустимой потери напряжения подобраны таким образом, чтобы при надлежащем регулировании напряжения в сети удовлетворялись требования ПУЭ в отношении отклонений напряжений на шинах электроприемников.

Допущения, положенные в основу расчета местных сетей

При расчете сетей напряжением до 35 кВ включительно принимаются следующие допущения:

    не учитывается зарядная мощность ЛЭП;

    не учитывается индуктивное сопротивление кабельных ЛЭП;

    не учитываются потери мощности в стали трансформаторов. Потери мощности в стали трансформаторов учитываются лишь при подсчете потерь активной мощности и электроэнергии во всей сети;

    при расчете потоков мощности не учитываются потери мощности, т.е. мощность в начале участка равна мощности в конце участка;

    не учитывается поперечная составляющая падения напряжения. Это значит, что не учитывается сдвиг напряжения по фазе между узлами схемы;

    расчет потерь напряжения ведется по номинальному напряжению, а не по реальному напряжению в узлах сети.

Определение наибольшей потери напряжения

С учетом допущений, принятых при расчете местных сетей, напряжение в любом i -м узле сети рассчитывается по упрощенной формуле:

где

соответственно активная и реактивная мощности, протекающие по участкуj ;


соответственно активное и индуктивное сопротивления участка j .

Неучет потери мощности в местных сетях позволяет рассчитывать потери напряжения либо по мощностям участков, либо по мощностям нагрузок.

Если расчет ведется по мощностям участков, то учитываются активное и реактивное сопротивления этих же участков. Если расчет ведется по мощности нагрузок, то необходимо учитывать суммарные активные и реактивные сопротивления от ИП до узла подключения нагрузки. Применительно к рис. 10.2 имеем:



.

В неразветвленной сети наибольшая потеря напряжения – это потеря напряжения от ИП до конечной точки сети.

В разветвленной сети наибольшая потеря напряжения определяется следующим образом:

    рассчитывается потеря напряжения от ИП до каждой конечной точки;

    среди этих потерь выбирается наибольшая. Ее величина не должна превышать допустимую потерю напряжения для данной сети.

Частные случаи расчета местных сетей

На практике встречаются следующие частные случаи расчета местных сетей (формулы приведены для расчета по мощностям участков):

    ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными


    ЛЭП по всей длине выполнена проводами одного сечения одинаково рас-положенными. Нагрузки имеют одинаковый cosφ


    ЛЭП, питающие чисто активные нагрузки (Q = 0, cosφ =1), или кабельные ЛЭП напряжением до 10 кВ (Х =0)

Методы арифметического подсчета воздушных электронных сетей с проводами из различных материалов по потере напряжения. Допустимую потерю напряжения в электронной сети определяют по вероятно разрешенным отклонениям напряжения у потенциальных пользователей. Поэтому рассмотрению запроса для ответа об отклонениях напряжения уделено значительный интерес.

Для всякого приемника электрической энергии возможны конкретные падения вольтажа. К примеру, неодновременные силовые агрегаты в стандартных нормах допустимое отклонение аномалий напряжения ±5%. Это обозначает следовательно, что в курьезном инциденте если номинальное вольтажа предоставленного электрического двигателя составит 380 В, из этого вольтажа U"доп = 1,05 Uн = 380 х 1,05 = 399 В и U"доп = 0,95 Uн = 380 х 0,95 = 361 В нужно исходить из его наиболее вероятно дозволительными индикаторами вольтажа. Конечно же, что все буферные вольтажи, вмещенные среди обозначениями 361 и 399 В, еще будут довольствовать покупающего пользователя и скомпонуют некий диапазон, тот или иной без вариантов можно прозвать диапазоном желаемых напряжений.

Допустимая потеря напряжения в линии


Пользователи электронной энергетической активности трудовую загрузку делают нормально, когда на их зажимы подается то напряжение, опираясь на математический подсчет изготовленного электрического прибора либо аппарата. При передаче электрической энергии по линиям часть вольтажа пропадает на противодействие самих линий и в итоге под самый конец полосы, т. е. у покупающего пользователя, вольтажа выходит падение, чем в начале линии. Падение вольтажа у покупающего пользователя, если сравнивать с обыденным, отражается на работе приемника тока, хоть силовая либо световая нагрузка.

Из-за чего при подсчете каждый полосы электропередачи отличия вольтажа не обязаны превосходить с большой вероятностью возможных норм, сети, общепризнанные выбором электрической загрузки и подсчитанные на подогрев, в главном, измеряют по потере, падении вольтажа.

Падением вольтажа ΔU именуют разность вольтажа на начале линии и на ее конце. ΔU принято предопределять в условно сравнительных единицах измерения - по отношению к обозначенному вольтажу.
При пользовании встречного урегулирования вольтажа есть возможность усилить вероятно допустимую потерю напряжения. К сожалению, район внедрения его имеет ограничения. Большинство деревенских пользователей запитано от шин подстанций энергетической системы своего района, индустриальных либо коммунальных электрических установок. При этом может быть электроэнергия от подстанций напряжением 35/10 либо 110/35 кВ.

Потерю напряжения на линиях воздушных рядов вычисляют методикой для наибольшей возможной нагрузки. Поскольку потеря напряжения примерно равно увеличена нагрузке при наименьше возможной потребляемой мощи, на линиях деревенской воздушной сети она имеет наибольшее значение 25%.

Допустимая потеря напряжения ПУЭ

ПУЭ – это главный документ, подсчитывающий запросы к разнообразным формам электрического оборудования. Точность реализации запросов ПУЭ гарантирует безошибочность и защищенность работы электрических установок.

Запросы ПУЭ непременны для всех учреждений безотносительно от формальной собственности и организационно правовых форм, равно как для частных предпринимателей и физических лиц, работающими проектировщиками, сборкой, настройкой и использования электрических установок.


ПУЭ 7-го издания

Уровни и контроль вольтажа, возмещения реактивной мощи:

  • Пункт 1.2.22. Для электросетей надлежит оговорить инженерные процедуры по гарантии свойств электроэнергии в соотношении с запросом ГОСТ 13109
  • Пункт 1.2.23. Установка корректировки вольтажа обязана создать стабилизацию вольтажа на шинах вольтажом 3-20 кВ подстанций и электростанций, где тот или иной подключены электрораспределительный сети, в диапазоне не менее 105 %, обозначенного в промежуток максимальных нагрузок и не более 100%, обозначенного в промежуток минимальных нагрузок этих же сетей. Неточность от упомянутого уровней вольтажа обязана быть оправданной
  • Пункт 1.2.24. Альтернативность и позиционирование аппаратов возмещения реактивной мощности в электросетях делается от безысходности снабжения нужной пропускной возможности сети в нормальных и после аварийных порядках при удержании нужных уровней вольтажа и резервов выносливости.

Рассмотрение допустимых падений напряжения в электрической сети.

Цель лекции:

Ознакомление с расчетами нагрузки отдельных ветвей сети.

Допустимые падения напряжения

При любом потреблении из электрической сети происходит возникновение электрического тока. Он при своем прохождении вызывает на этих проводках падения напряжения, следовательно, напряжение, подведенное к электроприемнику не равно напряжению на клеммах источника питания, а оно ниже. Для отдельных частей электрической проводки в то же время предписаны различные падения напряжения.

Для падения напряжения от источника питания к месту потребления можно исходить из предписанных отклонений напряжения (IEC 60 038), которые должны находиться в пределах + 6 % и  10 % от номинального значения (с 2003 года данные пределы должны быть ). Это означает, что общее падение напряжения от источника питания к самому месту потребления может составлять до 16 %.

В самой электрической инсталляции здания (т. е. внутри объекта) согласно IEC 60 634-5-52 рекомендовано, чтобы падение напряжения между началом инсталляции и эксплуатируемым оборудованием пользователя не было больше 4 % номинального напряжения инсталляции. Эта рекомендация в некоторой степени противоречит требованиям других национальных стандартов (например, CSN 33 2130 в Чешской Республике).

Можно допустить, что с учетом выполнения остальных требований при расчете параметров проводки могут возникнуть в некотором отрезке падения больше, чем указано выше, если в проводке от шкафа присоединения до самого электроприемника не будут превышены следующие падения: у осветительных выводов 4 %; у выводов для плит и отопительных приборов (стиральные машины) 6 %; у штепсельных розеток и остальных выводов 8 %.

«Правила устройств электроустановок» (ПУЭ) устанавливают наибольшие длительные допустимые нагрузки (силы тока в амперах) для изолированных проводов. Кабелей и голых проводов, которые приведены в виде таблицы. Таблицы эти составлены на основании теоретических расчетов и результатов непосредственных испытаний проводов и кабелей на нагревание.

Максимально допустимые по условиям нагрева нагрузки для проводов и кабелей с алюминиевыми жилами при одинаковым геометрическом сечении и одинаковом периметре с медными проводниками следует принимать равным 77% нагрузок для соответствующих медных проводников. Для силовых сетей допустимая длительная потеря напряжения не должна превышать 5%, а для сетей освещения 2,5% номинального.

Видно, что при суммировании всех допустимых падений напряжения (в распределительной сети и в электрической инсталляции) можем попасть на сам предел работоспособности некоторых приборов и оборудования. Например, у реле и контакторов гарантирована их функция от 85 % номинального напряжения и выше, у электродвигателей это, начиная с 90 % номинального напряжения. Поэтому необходимо руководствоваться выше указанной рекомендацией (падение напряжения до 4 %), приведенной в IEC 60 634-5-52.

Отмечаем, что требования национальных стандартов не касаются падений напряжения на некоторой части проводки, а требования, насколько напряжение может упасть по отношению к номинальному напряжению. На клеммах трансформатора может быть, например, напряжение равное 110 % номинального напряжения, от них потом падения напряжения могут быть 15 %, или же 13 %. Значит, у проектировщика определенное свободный простор, каким образом распределить падения напряжения в этих случаях от источника к электроприемнику.

Необходимо сказать, каким образом падения напряжения рассчитываются, или же, как они суммируются. Что касается чисто активных нагрузок, какими являются электрическое тепловое электрооборудование, и небольших сечений проводки, ситуация простая. Падения напряжения - это произведения токов и сопротивлений проводки, которые можно простым способом суммировать. В том случае, если речь идет об электрооборудовании, например, двигателях, характер потребления которых активный и индуктивный, и об общем импедансе Z проводки, состоящем из реальной составляющей (активное сопротивление) R и мнимой составляющей (индуктивное сопротивление) X, то данные комплексные величины взаимно умножаются. Результатом этого произведения опять является комплексная величина, значит комплексное падение напряжения. Она описывает падения напряжения в реальной и мнимой оси координат. Абсолютные значения этих падений напряжения на отдельных частях проводки от источника к электроприемнику поэтому не должны суммироваться стандартным способом, а должны суммироваться опять только как комплексные величины (т. е. реальные и мнимые составляющие отдельно).

Поэтому не должно удивлять то, что суммы абсолютных значений падений напряжения часто не являются точной суммой их абсолютных значений на отдельных, связанных друг с другом проводках.

Расчет нагрузки отдельных ветвей сети

Токовые нагрузки отдельных ветвей невозможно суммировать просто как арифметическую сумму абсолютных значений токов, а нужно суммировать отдельно реальные и мнимые составляющие. При соблюдении этих правил можно определить нагрузку при любой конфигурации сети. Аналогичные правила соблюдаются и при расчете токов короткого замыкания. И при коротком замыкании вычисления выполняются с импедансом сети, выраженным в комплексной форме.

Влияние нагрузки на ток короткого замыкания.

Нагрузка может оказывать существенное влияние на токи короткого замыкания. На рисунке 1 приведены простейшие схемы включения нагрузки. Характер нагрузок и соотношения их разные (асинхронные и синхронные двигатели, бытовая нагрузка, освещение), величина меняется в разные дни года, время суток, для различной сменности работ предприятий. Определить действительное значение нагрузки и увеличение ее сопротивления в момент короткого замыкания практически невозможно.

Условно считается, что сопротивление нагрузки постоянно по и величину , определенную по (1).

В нормальном режиме сопротивление нагрузки определяется по соотношению:

, (1)

где U – расчетное напряжение, равное вторичному напряжению питающего трансформатора;

I н и S н – ток и мощность нагрузки.

Мощность нагрузки принимается в зависимости от числа питающих трансформаторов. При одном трансформаторе мощность нагрузки принимается равной мощности трансформатора. При двух одинаковых трансформаторах мощность нагрузки принимается равной 0,65-0,7 мощности одного трансформатора. При аварийном отключении одного из двух трансформаторов всю нагрузку должен принять оставшийся в работе трансформатор. Нагрузка его при этом составит 130-140 % номинальной мощности.

Рисунок 1 - Распределение тока с учетом нагрузки, подключенной

к линии (а) и к шинам (б)

Из рисунка 1 видно, что при удаленном КЗ, когда напряжение на шинах снижается не до нуля, полный ток , проходящий через трансформатор, состоит из тока, ответвляющегося в нагрузку , и тока в месте короткого замыкания . Для схемы на рисунке 1,а полный ток КЗ определится по соотношению:

, (2)

а для схемы на рисунке 1 б – по соотношению:

, (3)

В действительности сопротивления имеют разные соотно- шения х/r и вычислять токи по формулам (2) и (3) следовало бы в комплексной форме. Но для большинства сетей отношение z и L нагрузки и линий близки, мало по сравнению с , и для упрощения расчетов уравнения (2) и (3) решаются в полных сопротивлениях z. Такое допущение тем более оправдано, что действительная нагрузка в момент КЗ неизвестна.

Полный ток делится на две части: часть тока , идущая к месту КЗ в схеме на рисунке 1,а, определяется:

, (4)

а для схемы на рисунке 1,б – по формуле:

, (5)

Из выражения (5) видно, что при z с = 0 ток к месту КЗ составляет , то есть нагрузка не влияет на значение тока короткого замыкания, если она подключена к шинам бесконечной мощности.

Влияние длины и сечения кабеля на потери по напряжению

Потери электроэнергии – неизбежная плата за ее транспортировку по проводам, вне зависимости от длины передающей линии. Существуют они и на воздушных линиях электропередач длиною в сотни километров и на отрезках электропроводки в несколько десятков метров домашней электрической сети. Происходят они, прежде всего потому, что любые провода имеют конечное сопротивление электрическому току. Закон Ома, с которым каждый из нас имел возможность познакомиться на школьных уроках физики, гласит, что напряжение (U) связано с током (I) и сопротивлением (R) следующим выражением:

U = I·R,

из него следует что чем выше сопротивление проводника, тем больше на нем падение (потери) напряжения при постоянных значениях тока. Это напряжение приводит к нагреву проводников, который может грозить плавлением изоляции, коротким замыканием и возгоранием электропроводки.

При передаче электроэнергии на большие расстояния потерь удается избегать за счет снижения силы передаваемого тока, достигается это многократным повышением напряжения до сотен киловольт. В случае низковольтных сетей, напряжением 220 (380) В, потери можно минимизировать только выбором правильного сечения кабеля.

Почему падает напряжение и как это зависит от длины и сечения проводников

Для начала остановимся на простом житейском примере частного сектора в черте города или большого поселка, в центре которого находится трансформаторная подстанция. Жильцы домов, расположенных в непосредственной близости к ней жалуются на постоянную замену быстро перегорающих лампочек, что вполне закономерно, ведь напряжение в их сети достигает 250 В и выше. В то время как на окраине села при максимальных нагрузках на сеть оно может опускаться до 150 вольт. Вывод в таком случае напрашивается один, падение напряжение зависит от длины проводников, представленных линейными проводами.

Конкретизируем, от чего зависит величина сопротивления проводника на примере медных проводов, которым сегодня отдается предпочтение. Для этого опять вернемся к школьному курсу физики, из которого известно, что сопротивление проводника зависит от трех величин:

  • удельного сопротивления материала – ρ;
  • длины отрезка проводника – l;
  • площади поперечного сечения (при условии, что по всей длине оно одинаковое) – S.

Все четыре параметра связывает следующее соотношение:

R = ρ·l/S,

очевидно, что сопротивление растет по мере увеличения длины проводника и падает по мере увеличения сечения жилы.

Для медных проводников удельное сопротивление составляет 0.0175 Ом·мм²/м, это значит, что километр медного провода сечением 1 мм² будет иметь сопротивление 17.5 Ом, в реальной ситуации оно может отличаться, например, из-за чистоты металла (наличия в сплаве примесей).

Для алюминиевых проводников величина сопротивления еще выше, поскольку удельное сопротивление алюминиевых проводов составляет 0.028 Ом·мм²/м.

Теперь вернемся к нашему примеру. Пусть от подстанции до самого крайнего дома расстояние составляет 1 км и электропитание напряжения 220 вольт до него проложено алюминиевым проводом марки А, с минимальным сечением 10 мм². Расстояние, которое необходимо пройти электрическому току складывается из длины нулевых и фазных проводов, то есть в нашем примере необходимо применить коэффициент 2, таким образом максимальная длина составит 2000 м. Подставляя наши значения в последнюю формулу, получим величину сопротивления равную 5.6 Ом.

Много это или мало, понятно из упомянутого выше закона Ома, так для потребителя с номинальным током всего 10 ампер, в приведенном примере падение напряжения составит 56 В, которые уйдут на обогрев улицы.

Конечно же, если нельзя уменьшить расстояние, следует выбрать сечение проводов большей площади, это касается и внутренних проводок, однако это ведет к увеличению затрат на кабельно-проводниковую продукцию. Оптимальным решением будет правильно рассчитать сечения проводов, учитывая максимальную допустимую нагрузку.

Смотрите также другие статьи :

Классификация помещений по степени опасности

К помещениям первой категории относятся сухие помещения с нормальными климатическими условиями, в которых отсутствуют любые из приведенных выше факторов. Такая характеристика может соответствовать, например складскому помещению.

Подробнее…

Что такое гармоники в электричестве

На практике синусоидальные напряжения электрических сетей подвержены искажениям и вместо идеальной синусоиды на экране осциллографа мы видим искаженный, испещренный провалами, зазубринами и всплесками сигнал. Эти искажения следствие влияния гармоник – паразитных колебаний кратных основной частоте сигнала, вызванных включением в сеть нелинейных нагрузок.

Подробнее…

Высокое напряжение и потеря энергии

Обобщенное решение:

  • Потери резистивной мощности как в абсолютном выражении, так и в процентах от переносимой энергии падают с увеличением напряжения.

  • Уменьшение потерь и / или материала (медный и / или алюминиевый проводник) настолько велико, что использование высокого напряжения очень желательно.


Потери мощности при передаче энергии на расстояние в основном (но не полностью) связаны с резистивными потерями.{2} \ cdot R_ {line}) \ over {(V \ cdot I)}} = {I \ cdot R \ over V} $$

Обратите внимание, что здесь есть единицы напряжения / напряжения, которые отменяются, чтобы получить безразмерное соотношение (как и следовало ожидать). Напряжение в верхней строке - это падение напряжения I x R в линии, а напряжение в нижней строке - это напряжение передачи. Таким образом, коэффициент потерь фактически равен resistive_voltage_drop / line_Voltage.

Итак, для данного проводника с сопротивлением R процент потери мощности будет увеличиваться с увеличением тока и уменьшаться с увеличением напряжения.

Но поскольку передаваемая мощность = V x I, если мы удвоим V, мы уменьшим I.
Если мы умножим V x 10, мы уменьшим I на 10.
Это беспроигрышная ситуация для высокого напряжения.

Это можно выразить двумя способами.

  • Для данной линии передачи передача той же мощности при более высоком напряжении снизит потери в%.

и

  • Для заданной желаемой потери мощности (скажем, 1% от конца до конца) мы можем использовать линии с все более высоким сопротивлением (и, следовательно, меньше металла) по мере увеличения напряжения.

Простой расчет показывает, что% потерь уменьшается пропорционально КВАДРАТУ напряжения!. Увеличьте напряжение в 10 раз, и при том же сопротивлении линии потери уменьшатся в 100 раз !. В тот день Мерфи спал!

Коэффициенты усиления настолько велики, что если бы это был единственный фактор, то имело бы смысл использовать как можно более высокое напряжение.

Существуют и другие факторы, такие как потери из-за коронного разряда и необходимость обеспечения значительно увеличенной изоляции, зазоров и размеров опор, поскольку напряжение возрастает, НО с экономической точки зрения все это приводит к появлению больших высоких уродливых опор с очень высоким напряжением.2 x 10 = 10 Вт.
10/1000 = 1%.
Потеряно 1% мощности. Даже когда в линии используется 10% проводящего материала исходной схемы, увеличение напряжения в 10 раз снижает потери мощности в 10 раз !!

!!!!!!!!!!!!!!!!!!!!!!!!

Уменьшение потерь и / или материала (медный и / или алюминиевый проводник) настолько велико, что очевидно, что использование высокого напряжения очень желательно.

Существуют и другие факторы, которые делают выигрыш менее значительным на практике, НО существование больших и больших опор мощности демонстрирует, что реальность по-прежнему хорошо обслуживается более высокими напряжениями.

Снижение затрат на электроэнергию: понимание потерь в кабеле.

Потеря мощности требует затрат энергии. Энергия стоит денег. Таким образом, потеря мощности в кабелях стоит денег. Кто платит?


Установка кабеля меньшего размера может быть дешевле, но в долгосрочной перспективе это будет стоить.
Как потребитель электроэнергии вы платите за то, что проходит через ваш счетчик. (Вы также можете заплатить за пиковое потребление, или когда вы берете мощность, но в основном это общая мощность.) Так, если есть убытки до вашего счетчика, вы не платите, это проблема поставщика электроэнергии.

Точно так же, если вы пользуетесь водомером, вы не платите за утечку воды в дорога (во всяком случае, не напрямую). Это потеря водной доски. Но вы платите за любые утечки на вашем сторона счетчика. Вы оплачиваете потери в кабеле в собственной проводке.

В небольших объектах, таких как дома, магазины и небольшие фабрики, кабели проходят между источники питания и приборы или «электрические нагрузки» короткие, поэтому потери в кабеле обычно невелики.Но на крупных заводах и особенно фермах электрические нагрузки могут достигать сотен метров. вдали от входящего электроснабжения и счетчика электроэнергии. Потери мощности могут быть весьма значительными.

Производители часто не осознают, что платят за это дважды. Во-первых, падение напряжения означает это оборудование работает хуже. Вентиляторы не дают такой большой пропускной способности, а светильники - нет. дать как можно больше света. Но во-вторых, они платят за потери в кабеле и более высокими счета за электричество.

В следующей таблице приведена стоимость обеспечения 1000 единиц энергии (кВтч) для нагрузки на конец кабелей разного диаметра с разной степенью падения напряжения.

Отключение кабеля Падение напряжения Поставить 1000кВтч Дополнительная стоимость
0,0% 0 £ 50,00 0,0%
0,5% 1,2 £ 50,50 1,0%
1,0% 2,4 £ 51,00 2,0%
2,5% 6,0 £ 52,60 5.2%
5,0% 12,0 £ 55,40 10,8%
10,0% 24,0 £ 61,70 23,5%

Например, если падение напряжения составляет 2,5% (потеря 6 В от источника питания 240 В) по сравнению с 1% падение напряжения, то счет за электроэнергию на 2,10 фунта выше. Эти 2,10 фунта стерлингов электроэнергии - 4% от суммы счета - просто тратятся на кабель.

Причина того, что дополнительные расходы превышают падение напряжения, заключается в том, что падение напряжения пропорционально нагрузки, но потери мощности пропорциональны квадрату падения напряжения.

Правила электромонтажа допускают падение напряжения в установке до 2,5% - 6 вольт. Однако, многие свинофермы имеют гораздо более высокое падение напряжения, в основном потому, что они были добавлены и доработанный с годами. Падение напряжения 5% является обычным явлением, а 10% (при максимальной нагрузке) - нет. неслыханно. При падении напряжения на 10% колоссальные £ 11,70 тратятся на кабели.

При некоторых типах нагрузки производительность снижается, но не обязательно увеличивается Стоимость. Например, если у вас номинальная мощность освещения 1000 Вт, а падение напряжения составляет 5 В, вы все равно используйте около 1000 Вт, но вы получите меньше света за свои деньги.

Однако с электрическими нагрузками, которые «выполняют свою работу» - где требуется определенное количество энергии. доставлен в нагрузку - есть значительный эффект. Например, чтобы вскипятить чайник (довести определенное количество воды до точки кипения), требуется очень много джоули нагрева. Если уровень мощности на нагрузке снижается (потому что он теряется в кабелях), тогда требуется больше времени, чтобы доставить столько джоулей тепла в воду. При падении напряжения на 1% потребуется на 2% больше времени; при падении на 2,5% потребуется на 5% больше времени.(С чайник, это немного хуже, потому что чайник тоже теряет тепло.)

Проверка падения напряжения

Если вы не знаете свое падение напряжения, вы действительно не знаете, стоит ли платить за это. внимание или нет. Это делается на удивление редко, но сделать это очень просто. Это займет всего несколько минут и потребует просто дешевый цифровой вольтметр.

Сначала проверьте основную схему проводки питания. Может быть несколько основных питающих кабелей. идущие от основного источника питания и отдельных зданий или групп зданий.Это падение напряжения в каждом интересующем ответвлении главной проводки.

  • На этом главном ответвлении включите все - или столько, сколько разумно может быть включено одновременно. Если у вас есть автоматическое управление, настройте его так, чтобы нагрузки включались и работали.

  • Измерьте напряжение вблизи входящего источника питания, например, в розетке на 13 ампер рядом со счетчиком входящего источника питания. Теперь измерьте напряжение на конце ответвления - например, в розетке на самом дальнем конце. строительство.Это разница в напряжении, которая вас интересует. См. Таблицу на предыдущей странице. Теперь верните все ваши элементы управления и настройки в нормальное состояние!

Входящее напряжение питания может быть намного ниже, чем вы ожидаете, и вполне может сделать оборудование работать хуже или менее эффективно. Но, по крайней мере, поставщик электроэнергии оплачивает убытки. на вашу ферму. Вы платите за убытки на ферме. Следует иметь в виду, что это падение напряжения пропорционально исходному напряжению. 6В в 240В равно 2.5%; 6В в 220В составляет 2,7%.

Как минимизировать падение напряжения
  • Используйте кабели большего диаметра
  • Распределите нагрузку
  • Разделите нагрузку
  • Уменьшите нагрузку там, где это не влияет на производительность
  • Улучшить контроль
  • Управление спросом

Самый простой и очевидный способ - использовать кабели большего диаметра. Падение напряжения может оправдывать или не оправдывать замена существующих кабелей, но, безусловно, стоит подумать о том, чтобы увеличить размер кабеля, когда у вас установлены новые расходные материалы.

Когда вы спрашиваете электрического подрядчика о его «лучшей цене» за работу, вы не можете ожидать от него для подключения кабелей большего диаметра, чем требуется по правилам. Падение на 2,5% может быть «приемлемым», но это не обязательно лучший выбор для фермы.

Чем длиннее кабель, тем больше разница в стоимости и тем больше соблазн купить минимальный размер. Если разница составляет 2 фунта стерлингов за метр, это не большие деньги на электромонтаж с 10 метрового кабеля, но тогда на 10-метровом участке не будет большого падения напряжения.Но стоимость 400 фунтов стерлингов разница выглядит стоящей экономией на работе с бегом на 200 метров. Не ждите электрического подрядчик должен рассчитать размер кабеля, чтобы минимизировать потери мощности и снизить стоимость работы.

Как видно из таблицы на предыдущей странице, кабель большего размера не займет много времени. окупить себя. Или, наоборот, «наименьший размер кабеля» быстро окупит все деньги, сэкономленные на установке.

На самом деле, по всей стране есть много установок, на которых даже не было падения напряжения. считается.Кабели рассчитаны на основе номинального максимального тока. (Вот почему на многих свинофермах падение напряжения намного больше, чем следовало бы.) Максимальный номинальный ток кабеля зависит от его способности терять тепло. То есть, если кабель при работе с максимальным номинальным током он будет теплым, поэтому будет терять много энергии.

Распределение больших нагрузок по разным фазам также приносит дивиденды. Это означает, что ток переносится несколькими проводниками, поэтому при любой данной электрической нагрузке падение напряжения уменьшается.

Разделение больших нагрузок на несколько ступеней выгодно, поскольку в большинстве случаев полная мощность не необходимо большую часть времени. Например, в отдельной комнате может быть 10 кВт отопления. мощность (для максимального потребления), но в большинстве случаев требуется 5 кВт или меньше. Разделение двухступенчатый нагрев (по 5 кВт) не снижает необходимого нагрева - чтобы обеспечить то же самое количества тепла, он будет включен в два раза дольше, но это означает меньшее падение напряжения, когда это находится на.

Снижение электрической нагрузки там, где это возможно - за счет использования оборудования с более высоким КПД - снижает падение напряжения на другом оборудовании, где, возможно, нельзя снизить потребление энергии.Низкий энергетические лампы производят больше света на единицу электроэнергии, чем вольфрамовые лампы. Они больше эффективны, поэтому они экономят энергию. Но резистивные нагреватели невозможно сделать намного более эффективными. Это Независимо от того, как вы это делаете, для производства 1 кВт тепла требуется кВтч электроэнергии. Однако, если вы устанавливаете лампы с низким энергопотреблением, это снижает общую электрическую нагрузку, что снижает падение напряжения, Таким образом, больше электричества попадает в обогреватель и меньше теряется в кабеле. Так что экономия в одном месте помогает с экономией в другом.

При рассмотрении такого рода изменений вы должны учитывать, влияет ли оно на производство. Скажем, установка нагревателей меньшего размера не означает снижение потребления электроэнергии, если это означает: что свиньям сложно набрать вес.

Очевидно, что следует учитывать вышеуказанные методы, особенно в новых установках, но переналадка или обширная замена оборудования может быть дорогостоящим и окупаемым - хотя стоящее - надолго. Более быстрое и экономичное снижение падения напряжения может часто достигается улучшенными методами контроля.

Большинство тяжелых электрических нагрузок в большей или меньшей степени регулируются автоматически, и большинство из них не используются или используются не полностью большую часть времени. Улучшенные методы контроля могут быть используется, чтобы сократить время, в течение которого одновременно находятся тяжелые нагрузки.

Проведя аналогию - если вам нужно вскипятить два чайника, вы получите меньше падения напряжения, и, следовательно, платите за меньшее количество электроэнергии, если вы вскипятите одну, а затем закипятите другую (так что время), а не варить их вместе.

Для некоторого оборудования это может быть довольно просто. Например, большинство систем произвольного кормления работают на таймерах - им разрешено работать в определенное время дня. Вместо того, чтобы иметь все системы кормления, работающие в 10 утра, вы можете настроить одну на 10 утра, другую в 10:15, другой в 10:30 и так далее. Или вместо того, чтобы настраивать их так, чтобы они запускались один или два раза в день, запускайте их чаще. Это означает, что они бегают в течение более короткого времени, поэтому они с меньшей вероятностью совпадают с другими электрическими нагрузками.

На большинстве свиноферм основными потребителями электроэнергии являются вентиляторы и обогреватели. Большинство марок Управление вентиляцией и отоплением предлагает очень ограниченные возможности для влияния на то, одновременно. Фактически, производители часто гордятся тем, что «делают все просто».

Настолько просто, что они тратят энергию впустую. Например, они предлагают только двухпозиционное регулирование отопления (часто крупнейший потребитель электроэнергии). Это может быть "просто", но это означает, что нагрузки переключаются на намного дольше за один раз и повышает вероятность одновременного включения больших электрических нагрузок. время.(Управление включением-выключением также дает менее стабильные температуры и, как правило, приводит к более высокому электрическому напряжению. также используйте - как показано в более раннем исследовании - но это уже другая проблема.)

Управление спросом

Более сложный подход - «Управление со стороны спроса». Это означает, что производство сайт активно управляет спросом на электроэнергию, а не просто полагается на "пассивные" методы например, большие размеры кабеля.

Это означает «объединенный» подход к ресурсам. Вместо того, чтобы воспринимать какое-либо оборудование как много энергии, сколько он хочет, когда он этого хочет, мощность распределяется в соответствии с потребностями, доступностью или приоритет.

«Автономные» системы управления не могут этого сделать. Они действуют как индивидуальные потребители. Они только осознают, чего хотят сами. Вот почему наблюдается всплеск спроса на электроэнергию на конец особого события на Улице Коронации и почему дороги забиты в праздничный день выходные дни. Резкий скачок спроса со стороны многих потребителей - проблема для электроснабжения. компании, но не для индивидуальных потребителей, если только сбытовые компании не могут поставлять достаточно. Потребителю это больше не стоит, потому что он платит только за то, что идет. через метр.Потери счетчика потребителя или проблемы с поставкой достаточного количества поставщику электроэнергии.

Но это проблема на ферме, где поставщик одновременно является потребителем. Потери в пути (в собственные кабели фермы) или нехватка поставок являются проблемой потребителя и потребителя Стоимость.

Энергоснабжающие компании не могут в значительной степени контролировать спрос, но у них есть команды людей, реагирующих на это. Люди, которые регулируют выходы генератора, включают и направляют мощность по мере необходимости.

Фермы не могут позволить себе, чтобы люди занимались этим 24 часа в сутки, но они могут иметь автоматические оборудование, которое делает это за них. Сетевые системы управления могут иметь дополнительное программное обеспечение, которое лучше выясняет, какое оборудование может быть включено и когда. Например, если есть номер нагрузки, которые должны быть включены в течение некоторого времени, программное обеспечение находит способ дать им все сколько угодно, но не использовать его одновременно.

Это то, что мы, как потребители, делаем сами - и стараемся делать, если есть возможность.У всех нас есть чтобы добраться из пункта А в пункт Б, но нам всем необязательно находиться в одной и той же точке на автомагистраль заодно. Многие из нас пытаются делать это сами, избегая пиковых периодов, но это не так эффективно изолированно. Если бы мы знали, что есть слот именно в таком и такое время, и если бы мы использовали его, мы бы добирались туда быстрее, эффективнее, и мы бы не придется платить за строительство большего количества автомагистралей, я думаю, мы все ухватимся за этот шанс.

Как говорится, нужно работать умнее, а не работать усерднее.Вместо того, чтобы вставлять кабели большего размера или трансформатор большего размера, мы организуем использование так, чтобы все оборудование столько, сколько ему нужно, но мы избегаем того, чтобы все одновременно нуждалось в энергии.

Управление спросом на основе программного обеспечения все еще находится в зачаточном состоянии в области контроля свиноводческих хозяйств и стало возможным только за счет более широкого использования сетевых систем, но предлагает значительный потенциал преимущества как в снижении капитальных затрат, так и в повышении эффективности работы и сокращении времени эксплуатации расходы.

Источник: FarmEx - апрель 2004 г.

Длина кабеля vs.Падение мощности

Падение мощности или потеря мощности в кабеле зависит от длины кабеля, его размера и силы тока в кабеле. Кабели большего размера имеют меньшее сопротивление и поэтому могут передавать большую мощность без больших потерь. Потери в кабелях меньшего диаметра остаются низкими, если передаваемая мощность мала или если кабель не очень длинный. Инженеры должны спроектировать систему питания таким образом, чтобы потери мощности в кабелях были приемлемы для длины кабеля, необходимого для питания нагрузки.

Основы

Электрические кабели имеют сопротивление на фут, и чем длиннее кабель, тем больше сопротивление.Когда ток течет по кабелю, ток, протекающий через сопротивление, приводит к падению напряжения в соответствии с законом Ома, напряжение = ток x сопротивление. Мощность в ваттах - это напряжение x ток. Заданный ток и сопротивление кабеля определяют допустимое падение напряжения. Если это 10 вольт для тока 10 ампер, мощность, потерянная в кабеле, составит 100 ватт.

Размер кабеля

Кабели большего размера имеют меньшее сопротивление на фут, чем кабели меньшего диаметра. Типичная бытовая проводка - AWG 12 или 14 калибра с сопротивлением 1.6 и 2,5 Ом на 1000 футов. Для типичного дома длина кабеля может составлять до 50 футов. Соответствующие сопротивления для этих распространенных размеров кабелей составляют 0,08 и 0,13 Ом. У большего кабеля сопротивление на 36 процентов меньше, чем у меньшего кабеля, и он будет терять на 36 процентов меньше энергии. Для более длинных кабелей, таких как внешние соединения, кабель калибра AWG 10 с сопротивлением 1 Ом на 1000 футов будет иметь падение мощности на 60 процентов меньше, чем кабель калибра 14.

Напряжение

В то время как сопротивление кабелей показывает, какой кабель потеряет наименьшую мощность, потеря мощности в ваттах определяется падением напряжения.Для 100-футовых трасс сопротивление кабелей AWG 10, 12 и 14 составляет 0,1, 0,16 и 0,25 Ом. Бытовая цепь рассчитана на 15 ампер. Пропускание тока 15 ампер через 100 футов этих кабелей приведет к падению напряжения на 1,5, 2,4 и 3,75 В соответственно.

Мощность

Падение напряжения, умноженное на ток, дает мощность в ваттах. Три кабеля длиной 100 футов, несущие ток 15 ампер, будут иметь падение мощности 22,5, 36 и 56,25 Вт для кабелей калибра 10, 12 и 14 соответственно.Эта мощность нагревает кабель, и падение напряжения снижает доступное для нагрузки напряжение. Падение напряжения от 3,6 до 6 вольт дает приемлемое падение мощности для цепи на 120 вольт. Кабель калибра AWG 14 является пограничным, о чем свидетельствуют потери мощности, превышающие потери 40-ваттной лампочки.

Физика повседневных вещей

Фото любезно предоставлено AEM.

Все современные страны пронизаны высоковольтными линии электропередачи, которые транспортировать электроэнергию от генераторов на электростанциях к подстанциям и в конечном итоге потребители.Почему используются высокие напряжения? В чем преимущества переменный ток (AC) в сравнении с постоянным током (DC)? Сколько энергии теряется в передаче электроэнергии на большие расстояния? Главный принцип физики Этот раздел посвящен электрическому сопротивлению .

Электрическое сопротивление

Электрический ток, поток заряда, имеет своего рода трение. связанные с этим, что называется сопротивлением.Хорошие проводники, как и большинство металлов, позволить току течь без особых потерь. Плохие проводники, как и большинство неметаллов, препятствуют прохождению тока в значительной степени. Сверхпроводники вроде очень холодные ниобий-олово, особые вещества, позволяющие ток течет с практически нулевыми потерями; полупроводники , как и кремний, в зависимости от определенных условий являются либо хорошими, либо плохими проводниками.

Вы заставляете ток течь через проводник, прикладывая напряжение к Это.Количество протекающего тока измеряется в ампер , или ампер, назван в честь французского физика 19 века и сокращенно А. Ампер - это довольно большая величина тока: 0,1 А, протекающего между твои руки на сердце убьют тебя. (К счастью, ваше тело имеет довольно высокое сопротивление, поэтому для привода требуется значительное напряжение такой большой ток.) ​​Напряжение или электрический потенциал измеряется в вольтах, названный в честь физик по имени Вольта, сокращенно В.Большинство маленьких батареек (размер AAA, AA, C, D) - 1,5 В; Здесь знакомый коробчатый транзистор 9 В аккумулятор, а автомобильные аккумуляторы - 12 В. Напротив, высоковольтные линии между ними много тысяч вольт.

Сопротивление количественно определяет, какой ток вы проходите через что-то на приложен вольт. А именно, если вы подаете напряжение В через Проведите и измерьте ток I , сопротивление R равно определяется

R = V / I

Следовательно, сопротивление имеет единицы В / А, которые получили другое название, Ом, представлен греческой буквой.

Электроэнергетика

Все мы знаем, что электрический ток может переносить энергию из из одного места в другое: энергия, излучаемая 100-ваттным светом лампочка в вашей спальне возникла из-за сжигания угля или замедления падающая вода или выброс ядерной энергии на электростанции, для пример. Выражение для электроэнергии происходит от определения электрического потенциала (вольт) и электрического ток (амперы).

Единицей энергии MKS является джоуль (Дж), а Единицей электрического заряда МКС является кулон (Кл), количество заряда, которое проходит за одну секунду, если ток один ампер. Следовательно, вольт определяется следующим образом: если заряд 1 C перемещается через падение потенциала 1 В, которое он поднимает энергия 1 Дж:

1 В = 1 Дж / К

В общем то заряд Q забирает энергию

U = QV

когда он движется через падение потенциала В .

Электрическая мощность - скорость , при которой энергия перевезен. Поскольку ток - это скорость переноса заряда, электрическая мощность определяется приведенным выше выражением, но с использованием ток I вместо заряда Q :

P = IV

Это очень удобная формула. Например, вы можете увидеть написанное на вашем фене, что он потребляет ток 10 А в горячем режиме от стандартной розетки 110 В.Это означает, что мощность потянутая феном составляет 10x110 = 1100 Вт, или 1,1 кВт. Это примерно такой же мощности, как у бытовой техники, и это не так уж и далеко от отключения 15 А автоматический выключатель, стандартный в современных домах США. Для очень высоких электрические приборы, такие как стиральная машина или сушилка, вам могут понадобиться специальные розетка и специальный автоматический выключатель. (Примечание: хотя дом переменный ток или переменный ток, 60 циклов / сек (50 в Европе), эта формула работает, потому что среднее значение или среднеквадратичное значение тока и напряжения, и вы поэтому получаем среднюю мощность.)

Другой удобный вариант формулы мощности заменяет напряжение В с сопротивлением и током: В = IR :

P = I²R

Линии передачи высокого напряжения

Итак, мы наконец подошли к теме этой страницы: транспорт большого количества электроэнергии на большие расстояния.Этот делается с высоковольтными линиями электропередачи, и вопрос есть: почему высокое напряжение? Это, безусловно, имеет негативный аспект безопасности, так как линия низкого напряжения не будет вредна (вы можете положить руки на автомобильный аккумулятор на 12 В, например, вы даже не почувствуете Это; но убедитесь, что вы не кладете металлический на клеммы, вы получите сильный ток и неприятную искру!). Электроэнергия транспортируется по сельской местности с высоковольтные линии, потому что потери в линии значительно меньше, чем с низковольтными линиями.

Все используемые в настоящее время провода имеют некоторое сопротивление (разработка высокотемпературных сверхпроводников, вероятно, изменит это когда-нибудь). Назовем полное сопротивление трансмиссии линия, ведущая от электростанции к вашей местной подстанции R . Допустим, местное сообщество требует мощность P = IV от этой подстанции. Это означает ток, потребляемый подстанцией, составляет I = P / V , а чем выше напряжение в линии передачи, тем меньше ток.Потери в линии равны P потери = I²R , или, заменив I ,

P потери = P²R / V²

Поскольку P фиксируется по требованию сообщества, и R настолько мал, насколько вы можете его сделать (используя большой жир медный кабель, например), Потери в линии сильно уменьшаются с увеличением напряжения .Причина в том, что вам нужно наименьшее количество ток, который можно использовать для подачи питания P . Еще одно важное замечание: доля потерь

P потери / P = PR / V²

увеличивается с увеличением нагрузки P : передача энергии менее эффективна более высокий спрос. Опять же, это потому, что мощность пропорциональна тока, но потери в линии пропорциональны текущему квадрату.Линия потери могут быть довольно большими на больших расстояниях, до 30% или около того. Кстати, потеря мощности в линии идет на нагрев трансмиссии. линейный кабель, который на метр длины не сильно нагревается.

Переменный ток в зависимости от постоянного тока

Учитывая, что мы хотим уменьшить потери в линии за счет использования высокого напряжения, выбор между переменным и постоянным током становится очевидным. это довольно сложно снизить высокое напряжение постоянного тока до низкого напряжения без дополнительных потерь; легко снизить высокое напряжение переменного тока на низкое напряжение с помощью понижающего трансформатора .Понимаете их много, когда вы проходите мимо подстанции. Идеальный трансформатор уменьшает В и увеличивает I , поэтому что мощность IV постоянна. Район подстанция обычно снижает напряжение до разумного значения для уличных линий скажем 330 В, а потом небольшой трансформатор снаружи и / или внутри вашего дома снижает его до 110 В (220 в Европа). Поскольку ток и напряжение чередуются с синусоидальные волны, мощность, подаваемая, скажем, на тостер, также колеблется.Частота колебаний тока или напряжения 60 циклов / сек (60 Гц) в США и 50 Гц в Европе. Фигура ниже показано, как ток, напряжение и мощность выглядят как функция времени вместе со средними (RMS) значениями нагрузки рисунок 10 А в США.


Напряжение, ток и мощность резистивного прибора, потребляющего 10 ампер (как тостер). Показаны средние (RMS) значения. пунктирными линиями.Этот прибор потребляет 1100 Вт RMS.

Уравнения

  • электрическое сопротивление: R = V / I
  • электрическая мощность: P = IV = I²R

Сводка

  • Сопротивление определяет количество тока, который будет течь в проводе на вольт.
  • Потери мощности из-за сопротивления провода возрастают по мере увеличения в квадрате тока и, следовательно, уменьшается как квадрат напряжение при фиксированной общей мощности.Доля потерь в линия передачи увеличивается с увеличением спроса.

Снижение потерь мощности из-за нагрева проводов

Уменьшение количества энергии, теряемой в виде тепла в проводах

На предыдущей странице мы видели, что перевод серьезных сумм отключения электрического провода на 230 В приведет к в проводе теряется невероятное количество тепла. Что можно сделать с помощь?

Мощность, потерянная в электрическом проводе, регулируется уравнение Мощность = Текущий квадрат в квадрате x сопротивление.Итак, чтобы уменьшить мощность потерь, нам просто нужно уменьшить либо ток, либо сопротивление. К уменьшать сопротивление провода, нам нужно сделать его больше. Там будет больше металл для проведения тока, поэтому сопротивление будет ниже. К сожалению, вскоре у нас получился огромный провод, который быть ужасно дорогим.

Лучшее решение - уменьшить ток. Это преимущество что если мы сможем уменьшить ток в десять раз, мы уменьшим потеря мощности в сто раз! (Помните, потери мощности в проводах равны к текущему в квадрате раз сопротивление.)

Как уменьшить ток и при этом передать ту же мощность?

Просто увеличьте напряжение. Помните, мощность = напряжение x ток. Если мы увеличиваем напряжение в 10 раз, ток уменьшаем в 10 раз, и это снижает потери мощности в проводе в 100 раз.

Итак, давайте вернемся в наш маленький город, используя мощность 23 МВт. Если мы пытался передать эту мощность в город по проводам 230 вольт с помощью сопротивление 1 Ом, он бы имел потребовалось 100 000 ампер тока, что привело к потере мощности 10 000 МВт.Однако что, если бы мы использовали высоковольтную линию электропередачи на 132 000 вольт? (132 кВ) Это снизит требуемый ток до 174 ампер. Передача этого по проводу с сопротивлением 1 Ом приведет к всего 0,03 МВт энергии, теряемой в виде тепла. Чтобы обеспечить наш город 23 МВт, мы придется отправить 23,03 МВт по линии электропередачи.

Чем длиннее провод, тем выше будет его сопротивление. Если кусок провода имеет сопротивление 1 Ом, то отрезок провода вдвое длиннее будет иметь удвоенное сопротивление, т.е.е. 2 Ом. Это означает, что дольше провода теряют больше мощности из-за сопротивления, поэтому чем дальше вы передаете мощность, тем больше вы теряете в виде тепла.

Ясно, что вы были бы безумны, пытаясь послать электричество на длительный срок. расстояние при низком напряжении. Вы должны использовать достаточно высокое напряжение, чтобы уменьшить потери мощности до приемлемого уровня, и именно это и происходит в реальная жизнь.

Но как изменить напряжение? Как я сказал ранее, два способа генерирующие электроэнергию бывают постоянного или постоянного тока, а переменные ток или переменный ток.Причина, по которой мы используем кондиционер в наших домах, заключается в том, что это легко изменить напряжение, тогда как с постоянным током было бы очень сложно. В причина этого кроется в связи между электричеством и магнетизм.

Далее мы рассмотрим, как использовать магнетизм для изменения напряжение переменного тока.

<Предыдущий страница | Следующая страница>

Передача электроэнергии при высоком напряжении

От побережья к побережью электричество передается по высоковольтным линиям электропередачи, чтобы обеспечить электроэнергией наши дома.В некоторых частях сети в Соединенных Штатах электричество передается с напряжением до 500 000 вольт. Потребность в высоком передающем напряжении возникает, когда необходимо передать большое количество энергии на большое расстояние.

Почему высокое напряжение

Основная причина того, что мощность передается при высоком напряжении, заключается в повышении эффективности. Поскольку электричество передается на большие расстояния, в пути возникают потери энергии. Передача высокого напряжения сводит к минимуму потери мощности при перетекании электричества из одного места в другое.Как? Чем выше напряжение, тем меньше ток. Чем меньше ток, тем меньше потери сопротивления в проводниках. А когда потери сопротивления малы, потери энергии также малы. Инженеры-электрики учитывают такие факторы, как передаваемая мощность и расстояние, необходимое для передачи, при определении оптимального напряжения передачи.

Есть также экономическая выгода, связанная с передачей высокого напряжения. Более низкий ток, который сопровождает передачу высокого напряжения, снижает сопротивление в проводниках, поскольку электричество течет по кабелям.Это означает, что тонкие и легкие провода можно использовать для передачи на большие расстояния. В результате опоры передачи не нужно проектировать, чтобы выдерживать вес более тяжелых проводов, которые были бы связаны с большим током. Эти соображения делают передачу высокого напряжения на большие расстояния экономичным решением.

Рынок высокого напряжения

Быстро растущий рынок возобновляемых источников энергии сыграл особенно большую роль на рынке высокого напряжения в последние годы. По мере того, как появляется все больше возобновляемых источников локальной генерации электроэнергии, спрос на передачу высокого напряжения будет продолжать расти.

В Соединенных Штатах замена и модернизация существующей инфраструктуры передачи, а также добавление новых мощностей генерации и передачи являются ключевыми движущими силами для рынка высокого напряжения.

О Beta

Beta Engineering спроектировала и построила множество высоковольтных проектов по всей стране. Мы специализируемся на EPC-услугах для проектов распределительных устройств с элегазовой изоляцией (GIS), распределительных устройств и подстанций, FACTS и линий передачи высокого напряжения. Взгляните на избранные проекты из нашего портфолио, чтобы узнать больше о решениях EPC, которые может предоставить вам бета-версия.

101 Таблица потерь в проводе

101 Таблица потерь в проводе

Используйте эту таблицу потерь в проводке в качестве руководства для определения

размер провода или кабеля, который понадобится вашей системе.

Следующие таблицы потерь в проводе любезно предоставлены AEE Solar.

Таблицы потерь в проводах - 12 В и 24 В постоянного тока

Используйте эти таблицы для определения максимального расстояния в одну сторону в футах для различных

калибра двухжильного медного провода

от источника питания до нагрузки при падении на 2% в проводке системы на 12 и 24 вольт.

Вы можете пройти вдвое большее расстояние, где допустима потеря 4%. Не превышайте 2%

капля для провода между фотоэлектрическими модулями

и аккумуляторы.

Потери от 4% до 5% обычно допустимы между батареями и цепями освещения в большинстве случаев.

Обратите внимание, что если вы измените массив с 12 вольт на 24 вольт, а мощность останется прежней,

тогда ток отключается

пополам. Это позволяет продвинуться в 2 раза дальше с тем же калибром проводов с 24-вольтовой матрицей

.

, как вы могли бы с

12-вольтная матрица.

12 система вольт - падение напряжения 2%


А

14 га.

12 га.

10 га.

8 га.

6 га.

4 га.

2 га.

1/0 га.

2/0 га.

4/0 га.

1

45

70

115

180

290

456

720

2

22.5

35

57,5 ​​

90

145

228

360

580

720

1060

4

10

17.5

27,5

45

72,5

114

180

290

360

580

6

7.5

12

17,5

30

47,5

75

120

193

243

380

8

5.5

8,5

15

22,5

35,5

57

90

145

180

290

10

4.5

7

12

18

28,5

45,5

72,5

115

145

230

15

3

4.5

7

12

19

30

48

76,5

96

150

20

2

3.5

5,5

9

14,5

22,5

36

57,5 ​​

72.5

116

25

1,8

2,8

4,5

7

11.5

18

29

46

58

92

30

1.5

2,4

3,5

6

9,5

15

24

38.5

48,5

77

40

2,8

3,6

5.5

9

14,5

23

29

46

50

2.3

3,6

5,5

9

14,5

23

29

46

100

2.9

4,6

7,2

11,5

14,5

23

150

4.8

7,7

9,7

15

200

3.6

5,8

7,3

11


24 система вольт - падение напряжения 2%

А

14 га.

12 га.

10 га.

8 га.

6 га.

4 га.

2 га.

1/0 га.

2/0 га.

4/0 га.

1

90

140

230

360

580

912

1440

2

45

70

115

180

290

456

720

1160

1440

2120

4

20

35

55

90

145

228

360

580

720

1160

6

15

24

35

60

95

150

240

386

486

760

8

11

17

30

45

71

114

180

290

360

580

10

9

14

24

36

57

91

145

230

290

460

15

6

9

14

24

38

60

96

153

192

300

20

4

7

11

18

29

45

72

115

145

232

25

3.6

5,6

9

14

23

36

58

92

116

184

30

3

4.8

7

12

19

30

48

77

97

154

40

5.6

9

14

23

36

58

72

112

50

4.6

7,2

11

18

29

46

58

92

100

5.8

9,2

14,4

23

29

46

150

9.6

15,4

19,4

30

200

7.2

11,6

14,6

22


Таблицы потерь в проводах - 48 В и 120 В постоянного тока

Используйте эти таблицы для определения максимального одностороннего расстояния в футах для двухжильных медных проводов различного калибра.

от источника питания до нагрузки при падении напряжения 48 и 120 вольт на 2%.

Вы можете пройти вдвое большее расстояние, где допустима потеря 4%. Не превышайте падение на 2% для провода между фотоэлектрическими модулями

и аккумуляторы. Потери от 4% до 5% обычно допустимы между батареями и цепями освещения в большинстве случаев.

48 система вольт - падение напряжения 2%


А

14 га.

12 га.

10 га.

8 га.

6 га.

4 га.

2 га.

1/0 га.

2/0 га.

4/0 га.

1

180

280

460

720

1160

1824

2880

2

90

140

230

360

580

912

1440

2320

2880

4240

4

40

70

110

180

290

456

720

1160

1440

2320

6

30

48

70

120

190

300

480

772

972

1520

8

22

34

60

90

142

228

360

580

720

1160

10

18

28

48

72

114

182

290

460

580

920

15

12

18

28

48

76

120

192

306

384

600

20

8

14

22

36

58

90

144

230

290

464

25

7.2

11,2

18

28

46

72

116

184

232

368

30

6

9.6

14

24

38

60

96

154

194

308

40

11.2

18

28

46

72

116

144

224

50

9.2

14,4

22

36

58

92

116

184

100

11.6

18,4

28,8

46

58

92

150

19.2

30,8

38,8

60

200

14.4

23,2

29,2

44


120 система вольт - падение напряжения 2%


А

14 га.

12 га.

10 га.

8 га.

6 га.

4 га.

2 га.

1/0 га.

2/0 га.

4/0 га.

1

450

700

1150

1800

2900

4560

7200

2

225

350

575

900

1450

2280

3600

5800

7200

10600

4

100

175

275

450

725

1140

1800

2900

3600

5800

6

75

120

175

300

475

750

1200

1930

2430

3800

8

55

85

150

225

355

570

900

1450

1800

2900

10

45

70

120

180

285

455

725

1150

1450

2300

15

30

45

70

120

190

300

480

765

960

1500

20

20

35

55

90

145

225

360

575

725

1160

25

18

28

45

70

115

180

290

460

580

920

30

15

24

35

60

95

150

240

385

485

770

40

28

45

70

115

180

290

360

560

50

23

36

55

90

145

230

290

460

100

18

29

46

72

115

145

230

150

48

77

97

150

200

36

58

73

110


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *