Содержание

Как добыть электричество из тепла без турбин

Попытки приспособить феномен термо-ЭДС для получения электричества предпринимались неоднократно. Соответствующие устройства, называемые термоэлектрическими конверторами, довольно активно разрабатывались в течение последних 50-ти лет и даже нашли свое применение в некоторых областях промышленности. Однако для массового производства электроэнергии они явно непригодны. Во-первых, КПД подобных преобразователей не поднимается выше 7%, в то время как у паровых турбин это показатель достигает 20%. А главное — эффективной термопаре требуются редкие металлы — висмут, теллурий, платина и др. Это обстоятельство делает термоэлектрические конверторы очень дорогими и весьма непрактичными устройствами.

Однако специалисты из Калифорнийского университета сумели получить эффект термо-ЭДС с помощью искусственно синтезированной органической молекулы, соединяющей два металлических проводника. По мнению ученых, это означает настоящий прорыв в преобразовании тепла в электричество: органика очень дешева и проста в производстве. В ходе экспериментов ученые соединяли пары золотых проводников через прослойки из трех различных органических соединений — бензен-дитиола, дибензен-дитиола и трибензен-дитиола. Затем один из проводников начинали нагревать для создания разницы в температурах. На каждый градус разницы исследователи регистрировали рост напряжения в 8,7 мкВ для первого, 12,9 мкВ для второго, и 14,2 мкВ для третьего соединения, соответственно. Максимальная разница температур, достигнутая в ходе тестов, составила всего 30О по Цельсию.

«Эти цифры могут показаться не слишком значительным, однако они вполне доказывают правильность нашей концепции. Органическое термоэлектричество сделало свой первый шаг,» — заявил Прамод Редди (Pramod Reddy), один из участников исследования. В ближайшее время ученые намереваются протестировать ряд других органических соединений и металлов, чтобы добиться более выраженного эффекта термо-ЭДС.

Новый материал бьет рекорды по преобразованию тепла в электричество

Георгий Голованов

Материал нового типа, созданный австрийскими учеными, использует разницу температур для выработки электрического тока. Изобретение открывает дорогу к изготовлению энергонезависимых сенсоров и даже небольших процессоров.

19

Термоэлектрические материалы превращают тепло в электроэнергию в результате эффекта Зеебека: если между двумя концами такого материала есть разница в температуре, возникает электрическое напряжение. Объем электрической энергии, которая вырабатывается таким образом, измеряется в показатели добротности, или ZT: чем он выше, тем лучше термоэлектрические свойства, пишет Phys.org.

«Хороший термоэлектрический материал должен в достаточной мере демонстрировать эффект Зеебека и отвечать двум важным требованиям, которые сложно примирить в одном материале, — объяснил профессор Эрнст Бауэр. — С одной стороны, он должен проводить электричество как можно лучше; с другой — он должен проводить тепло как можно хуже. Это непросто, поскольку электро- и теплопроводность обычно идут рука об руку».

До сих пор наивысшим показателем ZT было значение около 2,5 — 2,8. Ученые из Технического университета Вены разработали совершенно новый материал с добротностью 5-6. Это тонкий слой железа, ванадия, вольфрама и алюминия на кристалле кремния.

Новый материал оказался настолько эффективным, что его можно использовать для питания сенсоров или даже небольших компьютерных процессоров, то есть он идеально подходит для устройств интернета вещей. Такая «батарейка» сделает их дешевле и компактнее, ведь дополнительных аккумуляторов или подвода питания не нужно — они сами будут генерировать достаточно электроэнергии за счет разницы температур.

Специалисты MIT решили проблему замены батареек в сенсорах на морском дне. Передатчик на поверхности посылает акустические волны, заставляя вибрировать пьезоэлектрический материал внутри сенсора. В результате колебаний возникает электрический ток, с помощью которого сенсор отражает модифицированный акустический сигнал обратно в приемник.

FacebookВконтакте19WhatsAppTelegram


Термоэлектрический генератор – конвертируем тепло в электричество термогенератором

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.

Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Файлы

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

Как получить электричество из раскалённого металла?

Можно ли запасать энергию, разогрев вещество до очень высокой температуры – порядка 2000°C? Каковы были бы преимущества такой технологии? И какие проблемы стоят на пути её разработки? Ответы на эти жгучие вопросы пытаются найти учёные из этой металлургической лаборатории в Норвегии.

Необходима тщательная подготовка при работе с жидким сплавом, нагретым до 1700°C. Учёные, занятые в этом европейском исследовательском проекте, стремятся выяснить, можно ли получать электричество из тепловой энергии, когда металл раскалён до столь высоких температур. В данном опыте используется железо с добавками кремния и бора.

Учёный-материаловед Мерет Тангстад из Норвежского научно-технического университета поясняет:

– Мы начали с тех материалов, у которых наибольшая разница в энергии в жидком и твёрдом состоянии. Это, пожалуй, главный эффект, который мы изучаем. Он важен, потому что позволит нам запасать очень большую энергию в очень маленьких объёмах.

При таких температурах процесс теплопередачи смещается от проводимости или конвекции к излучению. Но процедура должна быть предельно эффективной, надёжной, стабильной и безопасной, чтобы исключить несчастные случаи, технические сбои и потери энергии. Поэтому необходимо вести мониторинг в реальном времени.

– При высоких температурах всё реагирует со всем, – говорит Наталия Собчак из Польского исследовательского литейного института. – И каждая из этих реакций может вызвать огромные изменения свойств контейнера, он даже может треснуть. В идеале мы ищем условия, которые гарантировали бы контролируемые химические реакции в процессе плавления.

Здесь, в Мадриде, ведутся дополнительные исследования по разработке первых готовых к использованию систем. Учёные рассчитывают, что их работа вскоре позволит создать недорогую тепловую электростанцию, где энергия, полученная из устойчивых источников, будет храниться в системах скрытого накопления тепловой энергии, которые смогут снабжать электроэнергией потребителей.

– Мы можем запасать от одного до двух киловатт-часов на литр, – поясняет Алехандро Датас из института Солнечной энергии. – Это примерно в 10 раз больше, чем позволяет обычная электрохимическая батарея. Вся энергия, которая производится в процессе плавления – это нерастраченная энергия. Она сохраняется в тепловой форме.

Для достижения такого результата, исследователи хотят добиться наибольшей степени преобразования накопленного тепла в электричество. А для этого требуется обратить особое внимание на электроны.

– Когда некий материал достигает определённой высокой температуры, он выделяет электроны, – говорит Даниэль Мариа Трукчи, электроинженер из CNR-ISM. – Наша задача – обеспечить эффективное высвобождение этих электронов при не слишком высокой температуре. Тогда мы сможем добиться максимального преобразования тепловой энергии в электричество. Электроны становятся транспортёрами электричества.

Уже готов первый прототип, который должен продемонстрировать осуществимость всей концепции. В нём используется мало материалов, что упрощает сборку и сокращает затраты на дальнейшее обслуживание. Если испытания пройдут успешно, учёные намерены представить свою разработку на рынке.

– Преимущество небольших систем, которые мы разрабатываем, состоит в том, что за счёт объёма продаж мы сможем увеличить производство и значительно повысить нашу производительность, – поясняет Алехандро Датас. – В краткосрочной перспективе, лет примерно через пять, мы рассчитываем выйти с этой новой технологией на рынок.

Дешевый, безопасный, экологичный, но редкий способ получения электричества в промышленных масштабах – Наука – Коммерсантъ

После Чернобыля мир не испугался и не прекратил строительство атомных электростанций. Мир решил, наверное, что это сработал специфически советский человеческий фактор. После катастрофы на АЭС “Фукусима” в Японии человечество осознало, что атомная энергия опасна даже в руках осторожных, ответственных, и технически продвинутых цивилизаций. Германия и другие страны ЕС уже думают о полном прекращении использования АЭС. Поэтому поиск новых, менее опасных источников энергии сейчас актуален как никогда. Одним из таких источников может стать тепло земли.

Сидим на грелке

Под наружной оболочкой Земли — земной корой — находится разогретая мантия, где, возможно, зарождаются вулканы (по другим теориям, вулканы зарождаются во внешней, расплавленной оболочке ядра). Горячая магма поднимается вверх по тектоническим трещинам и вступает в контакт с океанической водой, которая инфильтрируется из придонных областей океана в околомагматические зоны.

Там вода нагревается, вбирает часть растворенных в магме газов — таких как сероводород и углекислый газ — и других химических веществ, захватывая и элементы из пород, сквозь которые она фильтруется. Увеличение содержания СО2 вызывает образование сильного адсорбента — кальциевого силикагеля, что ведет к изменению проницаемости водовмещающих комплексов и, в конечном счете, к тепловой и геохимической самоизоляции геотермальной системы. Считается, что наличие силикагеля обусловливает высокие концентрации разных веществ в термальных водах.

На континентах земная кора обычно очень мощная — до 70, иногда до 100 километров. Более древние магматические породы обычно перекрыты толстым осадочным чехлом, и магме его просто не прорвать. Там же, где земная кора тоньше — например, в зонах перехода от континентальной коры к океанической — магме, раскаленным газам и перегретому водяному пару легче выбраться на поверхность. Именно в таких районах случаются самые интересные геологические события наших дней — извержения вулканов, землетрясения, именно там фыркают и плюются гейзеры, дымят фумаролы, и именно там сравнительно легок доступ к подземным источникам тепла.

Вообще-то наиболее активные проявления вулканизма отмечаются в областях, где кора тоньше всего — на дне океанов, в зонах срединно-океанических хребтов, но ни видеть, ни толком изучать, ни тем более использовать этот вулканизм мы пока не научились.

Основная часть территории России расположена на двух древних, 2,5 – 3,5 млрд лет, платформах (Восточно-Европейской и Сибирской). Между ними лежит сравнительно молодая (всего 250-400 млн лет), но тоже надежная Западно-Сибирская плита. Поэтому в России районы с тонкой корой находятся только на дальних окраинах — на Камчатке и Курильских островах, которые входят в зону активных геологических процессов. “В областях современного вулканизма формируются и геотермальные месторождения, — говорит доктор геолого-минералогических наук, заведующий лабораторией тепломассопереноса ИВиС ДВО РАН Алексей Кирюхин. – Условия их формирования могут быть разными. Довольно часто работает правило: чем больше и активнее вулкан, тем меньше шансов найти в его окрестностях геотермальное месторождение (пример — вулкан Ключевский), чем крупнее геотермальное месторождение, тем меньше шансов увидеть в его пределах большой вулкан (пример — Долина гейзеров в Калифорнии)”.

Окраины Тихого океана образуют Тихоокеанское огненное кольцо. Огненное оно потому, что здесь сосредоточено большинство действующих вулканов. Здесь же происходит субдукция

Области современного активного вулканизма в основном сосредоточены в так называемом Тихоокеанском огненном кольце — это практически все окраины Тихого Океана, включая Камчатку, Курилы, Японию, Индонезию, Филиппины, Анды и Кордильеры, цепочку Алеутских островов и архипелаг Огненная Земля. Все эти территории относятся к зонам самой молодой, альпийской складчатости, и на окраинах материков подвержены процессу субдукции — поддвиганию океанической коры под континентальную. В процессе субдукции окраинные участки континентальной коры вздымаются, формируя горные хребты, а “ныряющая” фронтальная зона тонкой океанической коры плавится, давая “сырье” для современных вулканов.

К зонам альпийской складчатости относятся также Альпы и Пиренеи, Крым, Кавказ, Памир, Гималаи. Многие вулканы здесь уже прошли активную стадию, и в породах, перекрывающих остывающую магму, происходят постмагматические процессы. В таких районах затухающего или “дремлющего” вулканизма — который проявляется не столько извержениями, сколько работой гейзеров, фумарол, грязевых вулканов — как раз и существует возможность получения электричества в промышленных масштабах. В других, менее активных, областях, впрочем, тоже можно использовать земное тепло. Даже в стабильных платформенных областях встречаются источники термальных вод, да и геотермический градиент может быть достаточно высоким.

Креативная, дешевая и чистая технология

Использовать геотермальное тепло можно по-разному. Во-первых, как древние римляне, можно непосредственно применять термальные воды для обогрева и ванн. Бесчисленные горячие источники в Европе ли, в Америке, на Филиппинах, — это проявления все тех же поствулканических процессов. В России тепло подземных вод используется для обогрева зданий и теплиц в Калининградской области, в Западной Сибири, в Краснодарском крае. Такое “прямое” использование тепла позволяет сэкономить и снизить нагрузку на окружающую среду.

Новозеландская геотермальная станция Ваиракеи открыта в 1958 году, первой после войны и второй в мире (самая первая построена в итальянском городе Лардерелло в 1904 году).

Фото: National Geographic/Getty Images/Fotobank

Можно использовать тепловые насосы, позволяющие обогревать или охлаждать жилые дома за счет разницы температур между воздухом и грунтом. А можно — в дополнение к простому обогреву — построить геотермальную электростанцию и получать очень дешевую электроэнергию. В зависимости от геологических условий, — то есть от температуры пород, наличия и состава воды в них — могут использоваться разные типы гидротермоэлектростанций.

В некоторых случаях геотермальная энергия позволяет убить сразу нескольких зайцев. Например, “Шеврон” использует для ее получения горячие воды, выкачиваемые из недр вместе с нефтью. На поверхности раскаленная смесь воды и пара отделяется от нефти, сепарируется, пар вращает турбины и дает электроэнергию, вода же закачивается обратно в породу. Это позволяет одновременно решить проблему токсичных сбросов и поддержать давление в нефтяном пласте, тем самым улучшая его нефтеотдачу и увеличивая срок использования скважины.

Геотермальная энергетика, новая отрасль на стыке нескольких наук и промышленности, привлекает внимание ученых и практиков разных специальностей. Одни задумываются, как добыть редкие и благородные металлы, растворенные в горячих подземных водах. Может быть, именно в фазе охлаждения этих вод когда-нибудь и удастся извлечь золото и платину.

Другие изобретают способы применения низкотемпературных вод. Главный инженер ОАО “Геотерм” Дмитрий Колесников считает, что вскоре будет разработана технология вторичного использования сепарата, то есть частично охлажденной воды: “Ее можно будет использовать на любых промышленных предприятиях, где есть горячие стоки. Больших мощностей ожидать не стоит, но, во-первых, горячая вода идет на второй цикл, то есть снижается непроизводственное использование энергии, а во-вторых, можно будет решать проблему энергоснабжения самого предприятия”.

Россия отличается стабильностью

Геотермальная энергетика в России начала развиваться в 1960 годах. Тогда были построены первые — по сути, экспериментальные — электростанции. Паужетская ГеоЭС (11 МВт), на одноименном геотермальном месторождении была построена в 1967 году. “Эта электростанция служила как бы опытной площадкой, на ней опробовались технологии, испытывалась паро-водяная смесь”, — рассказал Колесников. Неподалеку от нее расположены Мутновская ГеоЭС (50 МВт) и Верхне-Мутновская (12 МВт) ГеоЭС. На Курилах, на островах Кунашир и Итуруп, тоже работают две относительно небольшие ГеоЭС — 6 и 2,6 МВт. Собственно, этим недлинным списком и ограничивается действующая российская геотермальная энергетика.

Первая в России геотермальная электростанция – Паужетская – введена в эксплуатацию в 1966 году.

Фото: РИА НОВОСТИ

Не в силу политико-экономических или исторических причин, не потому, что за рубежом лучше головы или технологии, но исключительно из-за высокого уровня стабильности российского геологического устройства западные, восточные, юго-восточные и даже некоторые африканские страны оставили нас далеко позади в области геотермальной энергетики. В Исландии на геотермальных электростанциях получают 30% электроэнергии, на Филиппинах – более 25%, в Сальвадоре и Коста-Рике – около 15%, в Новой Зеландии и Никарагуа – 10%. В США доля “геотермального” электричества невелика, всего 0,3%, но по объемам выработки США опережают все остальные страны мира.

В США к широко известным геотермальным электростанциям в Калифорнии и Неваде в 2006 году добавилась маленькая, но необычная электростанция в самой что ни на есть глубокой американской глубинке — на Аляске, на курорте China Hot Springs. Хотя термальные источники там горячи для человека (74С), эта температура все же слишком низка для производства энергии по обычной технологии. Тем не менее, решение — применение бинарного цикла — было найдено: в теплообменнике природная вода отдает свое тепло специальному реагенту, который закипает даже при столь низкой температуре. Слегка охлажденная (примерно до 70 градусов) вода честно возвращается в исходный горизонт. За пять лет эксплуатации температура поступающей воды упала примерно на градус. Три генератора могут давать 650 кВт в час, что достаточно, например, для обслуживания целого поселка. Каждый генератор стоит около $800 000, и окупаемости за полгода ожидать не стоит. Но лет за 10 эти инвестиции окупятся даже при цене электричества в 6 центов за киловатт. Генератор, работающий на мазуте, “стоил” 30 центов за киловатт, так что разница очевидна.

А бинарная технология, использованная на Аляске, вообще-то изобретена в России еще в 1967 году, и использована на Паратунском геотермальном месторождении на Камчатке.

Экономика горячей воды

Как считает Дмитрий Колесников, преимущества геотермальной энергетики — в простоте процесса и дешевизне получаемой энергии. “Собственно, бурится скважина, из которой идет паро-водяная смесь, которая на станции сепарируется, пар вращает турбину, и дальше все работает как в обычной котельной”, — объяснил он принцип работы.

Возле исландского города Гриндавика геотермальная электростанция совмещена со spa-курортом

Фото: AFP/EASTNEWS

Геотермальная энергия действительно обходится очень дешево, прежде всего за счет экономии на углеводородном сырье. Самое дорогое — это скважины и линии электропередач. Правда, там, где можно построить ГЭС, геотермальные электростанции будут не столь экономически привлекательными. Но в России мощнейшие ГЭС строились тогда, когда понятия частной собственности на землю не было. Сегодня, чтобы затопить гигантские территории, нужно будет их у кого-то выкупить, что сильно поднимет цену киловатт-часа. Да и землю жалко (поэтому современные ГЭС строятся в основном в горах, где площадь затопления минимальна). А вот при сравнении цены “геотермального” киловатт-часа с ценой электричества, вырабатываемого ТЭС, разница уже сегодня не в пользу углеводородной энергетики.

Экология соленой воды

Люди, которые занимаются геотермальной энергетикой, как-то с восхищением к ней относятся. Они понимают, что это сравнительно дешевый, сравнительно безопасный способ получения электроэнергии из возобновляемых источников. Тем не менее, как и во всех отраслях промышленности, здесь есть свои проблемы.

Да, углеводородного топлива на ГеоЭС нет, но проблема отходов существует. “Отходы” — это остывшая подземная вода, часто сильно соленая. Ее нельзя сбросить в ближайшую речку, она слишком токсична. Кроме того, при изъятии материала из недр обычно повышается сейсмическая активность, и из-за сейсмодислокаций приток пароводяной смеси на поверхность может вообще прекратиться. “Воды у нас (на Паужетской электростанции) — 1000 тонн в час, в идеале должен быть замкнутый цикл, на поверхность мы эту воду сливать не можем. Воду — сепарат — мы закачиваем обратно в пласт. Правда, не в то место, откуда мы ее берем, иначе мы быстро охладим “дающий” участок. Поэтому закачиваем не в него, а в соседние зоны”, — объясняет Колесников.

В связи с высокой агрессивностью горячих подземных вод возникает проблема коррозии, износа оборудования. Но с коррозией, по мнению Колесникова, бороться можно — надо просто правильно подбирать материалы.

Геотермальную энергию добывать не всегда легко. Часто геотермальные месторождения находятся в труднодоступных местах или в зонах повышенной сейсмической активности. В сейсмически активных зонах постройка ГеоЭС не только сопряжена с угрозой для работников, но может оказаться экономически бессмысленной: при структурных подвижках геотермальное месторождение может просто исчезнуть или поменять режим так, что работа станции станет невыгодной.

Геотермы вообще недостаточно изучены. Поверхностные, более легкодоступные геотермы часто имеют довольно короткий срок жизни. Исследования же глубоко залегающих, более крупных геотермальных месторождений требуют больших средств. Пока российская экономика живет за счет высоких цен на углеводородное сырье, научные и практические работы по геотермам будут оставаться недофинансированными. Это приведет к тому, что Россия, некогда первой применившая бинарную технологию, вновь окажется в хвосте, как и со сланцевым газом.

“Хотим, не хотим, а развивать будем”

Вряд ли геотермальная энергия придет в каждый дом. В России, во всяком случае, не завтра. Низкотемпературные технологии получения электричества пока еще дороги, а самое главное — в платформенных областях, где проживает большая часть населения России, горячие напорные подземные воды редки. Поэтому в ближайшее время можно ожидать только развития применения тепловых насосов, которые позволяют напрямую использовать тепло земли.

Возможности для постройки ГеоТЭС, кроме Камчатки и Курил, существуют на Урале, в Краснодарском крае, на Ставрополье. Анализируются возможности строительства ГеоЭС в южных областях Западной Сибири. “А вообще, должна быть энергетическая стратегия по регионам, комплексный подход. Если есть возможность построить геотермальную электростанцию — надо строить: это и дешевая энергия, и отсутствие потребности в углеводородном сырье”, — считает Колесников.

Алексей Кирюхин уверен, что геотермальную энергию можно получать всюду — вопрос в количестве и качестве. Но, конечно, для гидротермальных электростанций главным ограничивающим фактором еще долго будет служить строгая привязанность к источникам тепла.

Даже если экономия на геотермальной электроэнергии окажется меньше ожидаемой, выигрыш для природы очевиден. Валентина Свалова из Института геоэкологии РАН в работе “Геотермальные ресурсы России и их комплексное использование” показала, что если за счет геотермальной энергетики удастся достичь выработки электричества в 7800 ГВт.ч, то это позволит сэкономить 15,4 млн баррелей нефти, что исключит выброс приблизительно 7 млн тонн СО2.

Возобновляемость и дешевизна делают геотермальную энергию крайне привлекательной. “Хотя геотермальные электростанции имеют более низкий потенциал, дают меньшую мощность, они не требуют использования углеводородного сырья, — повторяет Колесников. — Ситуация с нефтью понятна, цены будут только расти, поэтому, хотим мы или не хотим, а геотермальную энергетику развивать будем”.

Суммарная мощность геотермальных электростанций



Страна
Установленная
мощность,
(МВт)
США3,086
Филиппины1,904
Индонезия1,197
Мексика958
Италия843
Новая Зеландия628
Исландия575
Япония536
Сальвадор204
Кения167
Коста-Рика166
Никарагуа88
Россия82
Турция82
Папуа – Новая Гвинея56
Гватемала52
Португалия29
Китай24
Франция16
Эфиопия7,3
Германия6,6
Австрия1,4
Австралия1,1
Тайланд0,3

Татьяна Крупина


Использование газовой тепловой пушки для получения электроэнергии | Архив С.О.К. | 2018

Россия включает в себя самые холодные регионы в мире, поэтому проблема отопления помещений всегда находилась если не на первом месте, то, как минимум, в числе важнейших. В различное время для этих целей применялись самые разнообразные устройства — от печки до калорифера. У каждого из них имелся один большой недостаток — низкая мощность и, как следствие, большой промежуток времени, необходимый для достижения комфортной температуры в отапливаемом помещении. Именно это подтолкнуло к быстрому росту популярности такого вида обогревателя, как тепловая пушка.

Так, появление первых тепловых пушек в России сразу сделало их необычайно популярными из-за условий нашего климата и в связи с тем, что большинство зданий в России не имеют централизованного отопления, а также учитывая мобильность и эффективность этих обогревателей. Все эти причины сформировали стабильный, увеличивающийся с каждым годом спрос. Мировой и российский рынок газовых нагревателей воздуха или газовых тепловых пушек переполнен такими агрегатами китайского, корейского, американского, немецкого, итальянского, польского производства. И все они служат для получения тепла от сгораемого топлива, но не могут служить для получения электроэнергии.

Использование тепловой пушки также для получения электрической энергии ещё более увеличит спрос на такой универсальный когенератор.

Задача одновременного получения тепла и электроэнергии от газовой тепловой пушки и превращения её в теплоэлектрогенератор (ТЭГ) является весьма актуальной задачей автономной малой энергетики. Круг заказчиков и потребителей таких когенераторов (рис. 1) расширится по сравнению с количеством заказчиков тепловых пушек многократно. Они могут стать предметом экспорта из России.

При разработке ТЭГ на газовом топливе можно использовать простой газовый нагреватель воздуха прямого действия, то есть не имеющий теплообменника. Такие устройства безопасны, количество выделяемых ими вредных веществ такое же, как и у обычной газовой плиты при одинаковой мощности.

Поэтому на начальном этапе исследования за основу взят наиболее простой газовый нагреватель воздуха. При проведении исследования планируется применить струйный аппарат — газовый эжектор для смешивания продуктов сгорания топлива с воздухом и получения сжатой смеси на выходе из эжектора, а для создания разрежения в горелке использовать компрессор и турбину.

Целью создания разрежения в горелке является подсос воздуха из окружающей среды для горения газа. Целью смешивания продуктов сгорания топлива с воздухом в эжекторе является подвод энергии к рабочему телу. Целью сжатия смеси в эжекторе является использование потенциальной энергии давления рабочего тела для работы турбины. 

В этом состоит отличие эжекторного ТЭГ от других энергетических установок (ДВС, ГТД), в которых сгорание топлива производится при переменном или постоянном давлении в предварительно сжатом воздухе с целью подвода энергии к рабочему телу и получения полезной работы при расширении рабочего тела (продуктов сгорания) в цилиндре ДВС или на лопатках турбины.

В эжекторе ТЭГ низкопотенциальная энергия окружающей среды и тепловая энергия смеси воздуха и продуктов сгорания топлива преобразуются в повышенную потенциальную энергию общего потока смеси, которая используется для получения механической работы в ТЭГ.

Эжектирование — приведение в движение пара, газа или жидкости путём разрежения среды, которая создаётся в соответствии с законом Бернулли другим, движущимся с большей скоростью, рабочим потоком путём нагнетания газа в получаемую разреженную среду. Источником энергии может становиться потенциальная энергия сжатого силой гравитации атмосферного воздуха. Под действием полученного разрежения воздух поступает в смеситель эжектора, расширяясь и ускоряясь, подобно природному процессу, а при прохождении диффузора на выходе из эжектора давление газовоздушной смеси повышается и смесь поступает в расширительную машину (турбину). Газовый эжектор (рис. 2) — устройство, в котором избыточное давление высоконапорных газов используется на компримирование газов низкого давления.

Газовый эжектор прост по конструкции, надёжен в работе, имеет малый срок окупаемости, работает в широком диапазоне изменения параметров газа. Использование в работе эжекторного оборудования элементарных физических законов (Бернулли) позволяет получать эффективные и надёжные технические решения (по сравнению с механическими нагнетателями — компрессорами, насосами, вентиляторами и др.). Эжектор относится к струйным аппаратам, в которых осуществляется процесс, заключающийся в передаче кинетической энергии одного потока другому потоку путём непосредственного контакта (смешения).

Поток, вступающий в процесс смешения с большей скоростью, называется эжектирующим или рабочим потоком, а с меньшей скоростью — эжектируемым.

Эжекторы используются для вентиляции помещений, для откачки горячих газов, а также могут использоваться для всасывания и прокачки атмосферного воздуха через теплообменник и откачки горячих продуктов сгорания топлива.

Как правило, в струйных аппаратах происходит сначала преобразование потенциальной энергии и теплоты в кинетическую энергию. В процессе движения через проточную часть струйного аппарата происходит выравнивание скоростей смешиваемых потоков, а затем обратное преобразование кинетической энергии смешанного потока в потенциальную энергию. Обычно давление смешанного потока на выходе из струйного аппарата выше давления эжектируемого потока перед аппаратом, но ниже давления рабочего потока. На сжатие газовой смеси в эжекторе затрачивается меньше энергии, чем расходуется энергии турбины на работу воздушного компрессора в ГТД.

В конструкции струйного насоса (эжектора) нет механического привода. За счёт этого он обладает хорошими производственными характеристиками. Простота схем включения струйных аппаратов в различные установки связана с исключительной простотой их конструкции, а также несложностью их изготовления, что уже обеспечило широкую область использования этих аппаратов в технике.

Первым учёным, обратившим внимание на необходимость поиска нетрадиционных источников в энергетике, был Никола Тесла. В 1892 году он высказал такую мысль: «Мы проходим с непостижимой скоростью через бесконечное пространство. Всё окружающее нас находится в движении, и энергия есть повсюду. Должен быть найден более прямой способ утилизировать эту энергию, чем известные в настоящее время. Когда свет получится из окружающей нас среды, и когда таким же образом без усилий будут получаться все формы энергии из этого неисчерпаемого источника, человечество пойдёт вперёд гигантскими шагами».

Эта идея Николы Тесла является призывом к поискам альтернативных источников энергии. В поисках таких источников многие специалисты обращают внимание на струйную энергетику. Сегодня учёные уже практически подошли к реализации именно этой идеи.

Пример использования струйного аппарата — трансзвуковой струйный насосподогреватель «Фисоник» (рис. 3), в котором за счёт пара производится нагревание воды при смешивании пара с водой и нагнетание горячей воды в тепловую сеть. «Фисоник» — это теплообменник, в котором не создаётся механическая работа, а используется только давление воды, и рабочим телом служит водяной пар.

Другим примером многолетнего использования струйного аппарата является карбюратор двигателя внутреннего сгорания с искровым зажиганием. В таком двигателе при движении поршня создаётся разрежение в карбюраторе, в который, как в эжектор, засасывается топливо, а получаемая топливно-воздушная смесь после сжатия сгорает в двигателе.

Основой внедрения эжекционного процесса в энергетике стало научное открытие №314 (от 2 июля 1951 года) О. И. Кудрина, А. В. Квасникова и В. Н. Челомея «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струёй». Позднее было доказано, что данный эффект оказался полезен не только для создания дополнительной реактивной тяги авиационного движителя, но и для использования его в эжекторном сопловом аппарате ГТД с целью получения дополнительной мощности на валу [2].

К сожалению, открытие не получило широкого применения. Вероятно, потому, что изначально исследования проводились в авиационной отрасли и были направлены только на получение дополнительной реактивной тяги летательных аппаратов. Это обстоятельство, наряду с закрытостью информации об экспериментальных исследованиях в авиационной отрасли, стало препятствием для его внедрения в других отраслях, где энергию воздушной массы, получаемую в результате управляемого преобразования энергии атмосферы, можно использовать не только для получения реактивной тяги, а более эффективно и в других вариантах преобразования энергии атмосферы. Вместе с тем, атмосфера до сих пор не стала объектом тщательного научного исследования с целью разработки процессов управляемого преобразования энергии для последующего использования в энергетических системах.

На начальном этапе исследований предлагается энергию окружающей среды использовать в комбинированной энергетической установке (КЭУ) с внешним сгоранием топлива при внедрении струйной технологии, в которой потенциальная энергия сжатого силой гравитации атмосферного воздуха является дополнительным источником энергии (рис. 4).

В исследуемом эжекторном теплоэлектрогенераторе с целью использования низкопотенциальной энергии внешней среды в компрессоре сжимают воздух и подают его в сопловой аппарат эжектора, на выходе из которого активной воздушной струёй создаётся разрежение и через горелку в зону разрежения происходит всасывание из внешней среды воздуха, который обеспечивает горение топлива. Затем воздух, отходящий из соплового аппарата эжектора, смешивается с продуктами сгорания топлива и дополнительно с воздухом, поступающим из внешней среды, и горячая газовоздушная смесь после сжатия в диффузоре эжектора поступает на лопатки турбины, служащей приводом компрессора и генератора.

Тем самым, за счёт создаваемого в эжекторе разрежения, дополнительным источником энергии становится потенциальная энергия сжатого силой гравитации атмосферного воздуха, который под действием разности давлений всасывается в смеситель, где также смешивается с продуктами сгорания топлива и воздухом от компрессора, образуя при прохождении через диффузор эжектора высокопотенциальную смесь, воздействующую непосредственно на лопатки турбины.

Алгоритм работы теплоэлектрогенератора с газовой горелкой и эжектором может быть таким. Перед запуском эжекторного ТЭГ включается вентилятор, воздух проходит через горелку и поступает на турбину, которая раскручивается вместе с компрессором и генератором. Воздух от компрессора пропускается через сопло эжектора, создаёт разрежение на входе в эжектор и увеличивает поток воздуха через горелку. Затем поджигается топливо (газ), и начинается процесс горения с нагнетанием вентилятором воздуха на горение топлива. Продукты сгорания топлива под действием нагнетания от вентилятора и разрежения от эжектора выходят из горелки и с высокой температурой поступают в камеру смешения эжектора, где смешиваются с воздухом.

Рабочая смесь из воздуха и продуктов сгорания с высоким теплосодержанием от тепла сгораемого топлива проходит через эжектор, давление смеси в диффузоре эжектора повышается, и смесь с повышенным давлением подаётся в турбину, мощность турбины и, соответственно, частота вращения вала компрессора и расход воздуха через сопло эжектора увеличиваются. Разрежение в горелке возрастает и поступающего атмосферного воздуха становится достаточно для обеспечения автономного горения топлива в горелке. После запуска теплоэлектрогенератора и выхода его на режим автономного поддержания работы горелки и вращения турбины с компрессором электрический вентилятор отключается.

Атмосферный воздух, обладающий потенциальной энергией давления от гравитационного сжатия, поступает через горелку вместе с горячей газовоздушной смесью в зону разрежения — камеру смешения эжектора, при этом уменьшаются затраты энергии на подвод воздуха к горелке и обеспечивается полное сгорание топлива с избытком воздуха. За счёт экономии энергии на подачу воздуха для горения топлива можно получить более высокий КПД преобразования энергии топлива, чем в ГТД. А если в горелке турбинного когенератора с эжектором будет использован природный газ низкого давления без применения дожимного компрессора, то появится возможность иметь свою электростанцию и источник тепла в каждом сельском доме.

Предлагаемая технология с использованием продуктов сгорания топлива, смешиваемых с воздухом с помощью струйного аппарата (эжектора), может быть использована для работы экономичного газотурбинного двигателя. В КЭУ потенциальная энергия окружающей среды и тепловая энергия смеси продуктов сгорания топлива с воздухом преобразуются в кинетическую энергию общего потока смеси, которая после преобразования в диффузоре эжектора используется для работы турбины. В итоге на получение общего потока рабочей газовоздушной смеси в КЭУ с эжектором затрачивается меньше энергии, чем расходуется энергии турбины на работу воздушного компрессора в обычном ГТД, что ведёт к повышению общего КПД и снижению удельного расхода топлива в КЭУ.

В этом отличие КЭУ от других энергоустановок, позволяющее формировать рабочее тело для газовой турбины путём перемешивания продуктов сгорания любого топлива с воздухом и повышения давления этой смеси в диффузоре эжектора, чтобы направить её в расширительную машину — газовую турбину.

В турбине рабочая смесь с большим содержанием чистого воздуха, совершая работу на привод компрессора и электрического генератора, расширяется, её температура понижается, и отходящая смесь при умеренной температуре и минимальном содержании СО2 поступает в теплицы, сушильные и другие отапливаемые объекты. Учитывая небольшое содержание СО2 в продуктах сгорания и повышенное содержание в отходящей смеси воздуха, смесь может также нагнетаться в фермы для животных и жилые помещения.

Несомненно одно — создание высокоэкономичного теплоэлектрогенератора с применением тепловой пушки на газовом топливе в сочетании с эжектором и турбокомпрессором, с частичным использованием окружающей нас энергии атмосферы может стать важным шагом на пути освоения бестопливной энергетики в России.

Выводы

1. Для автономной работы ТЭГ не требуется подводить энергию от внешнего источника, то есть агрегат может начать работу в местах, не имеющих никакой энергии, кроме газа, который надо поджечь.

2. Отсутствие воды и пара в ТЭГ нового типа важно при работе в арктических условиях эксплуатации.

3. В отличие от паротурбинной энергетической установки с замкнутым циклом, с атмосферной газовой горелкой и внешним подогревом рабочей низкокипящей жидкости в новом ТЭГ используются продукты сгорания газа в качестве источника тепла и для одновременного получения рабочей газовоздушной смеси для обеспечения работы газовой турбины.

4. В отличие от авиационной ВСУ с камерой сгорания, турбокомпрессором и генератором, ТЭГ не имеет в своём составе камеры сгорания, работающей при повышенном постоянном давлении рабочего тела, как в любом ГТД. Для получения рабочей газовоздушной смеси используются атмосферная газовая горелка и эжектор с камерой смешения продуктов сгорания и воздуха.

5. Эжектор позволяет иметь пониженную температуру рабочего тела на выходе из ТЭГ. Использование газовоздушной смеси с большим содержанием воздуха и невысокой температурой на выхлопе позволит уменьшить выброс тепла и СО2 в атмосферу по сравнению с современными бензиновыми и дизельными двигателями и угольными котельными.

6. Разрабатываемый теплоэлектрогенератор как эжекторно-турбинный когенератор на газовом топливе не имеет аналогов даже за рубежом.

7. Использование эжекторного струйного аппарата для работы эжекторно-турбинного когенератора на газовом или ином топливе позволит сочетать в одном агрегате автономный электрический турбогенератор небольшой мощности и эффективный источник тепла для систем отопления и горячего водоснабжения.

Если в горелке эжекторно-турбинного когенератора будет использован бытовой газ низкого давления без применения дожимного компрессора, то появится возможность иметь свою электростанцию и источник тепла в каждом сельском доме в нашей стране.

Энергия тепла и холода: зачем нужны термоэлектрики

Термоэлектрики – материалы, способные преобразовывать электрическую энергию в разницу температур или, наоборот, из разницы температур получить электричество – давно известны ученым, но новые технологии могут расширить сферу их применения. Сейчас термоэлектрики используются, например, для создания холода под действием напряжения. Правда, здесь речь идет не об обычных бытовых холодильниках, а о том, что через некоторые устройства, состоящие из полупроводниковых материалов, пропускается электрический ток и в результате возникает активное охлаждение. Такие устройства можно использовать, в том числе и в быту. Например, в корзинках для пикника, которые можно подключить к прикуривателю автомобиля, и от 12 вольт получать достаточно холода, чтобы продукты не испортились.  

Что касается генерации электроэнергии, то здесь использование термоэлектрических материалов пока на стадии экспериментальных моделей. Например, термоэлектрическое устройство устанавливается на автомобиль, и бросовое тепло, потерянное или в результате торможения, или в результате работы двигателя на холостом ходу, преобразуется в некоторую мощность. Около 40% потерянного тепла можно таким образом перевести в дополнительное электричество, в дополнительное питание бортовой системы.

Такого же типа устройства могут быть использованы в ЖКХ. Если в доме имеются нагревательные системы, значит есть и условия для создания разницы температур. А термоэлектрические материалы уже преобразуют избыточную часть тепла в дополнительное электричество. Правда, пока они это делают с очень малым КПД (6–7%).

Но и этого может хватить для обеспечения энергией телевизора или компьютера.

Термоэлектрические материалы были открыты довольно давно. Сначала немецкий ученый Томас Иоганн Зеебек обнаружил взаимосвязь между теплом и электричеством. Затем термоэлектрические явления более подробно изучил французский физик Жан Пельтье. Сумма законов Зеебека и Пельтье послужила основой для первого экспериментального наблюдения термоэлектрического эффекта. Его в середине XIX века произвел российский физик Эмилий Христианович Ленц. Он взял спай из проволок висмута и сурьмы, поместил на него каплю воды, пропустил электричество, и капля замерзла.

С тех пор прошло довольно много времени, прежде чем термоэлектрические материалы нашли практическое применение. Произошло это благодаря нашему соотечественнику академику Абраму Федоровичу Иоффе, который еще в 1940-е годы высказал идею, что термоэлектрические материалы из очень тяжелых элементов могут быть достаточно эффективны для применения. Иоффе предложил два соединения: теллурид висмута и теллурид свинца. Свои работы он опубликовал на рубеже 1940-1950-х годов, после чего началось развитие исследований в области термоэлектрических материалов с целью создать своего рода отрасль промышленности, которая эти термоэлектрические материалы будет выпускать.

Реклама на Forbes

Для того чтобы определить, насколько велика эффективность тех или иных термоэлектрических материалов, нужна была система измерения. И тогда придумали такую безразмерную величину, которая называется «добротность термоэлектрического материала». Она учитывает эффект передачи носителей заряда и эффект передачи носителей тепла в одном соединении.

Для соединений, предложенных академиком Иоффе, величина добротности составила примерно 0,6. Благодаря усилиям по легированию, допированию этих соединений, они за довольно короткое время были доведены до большей эффективности, равной уже 0,9, и началось промышленное производство.

С тех пор все попытки улучшить эффективность термоэлектрического материала были бесплодными, пока в середине 90-х годов XX века новую идею не выдвинул Слэк, американский физик из Ренселеровского политехнического университета. Он сказал, что раз огромную роль играют два процесса: транспорта носителей зарядов, то есть электронов или дырок, и транспорта фононов, то есть транспорта тепла, — то нужно создать такое соединение, в котором эти два типа транспорта будут разделены. И он придумал концепцию с названием «фононное стекло — электронный кристалл».

На базе этой концепции, которая уточнялась, видоизменялась (превратившись в «фононную жидкость и электронный кристалл»), в течение последних 15 лет были созданы новые термоэлектрические материалы. У каждого из них есть свои плюсы и минусы, но, если суммировать все, что мы имеем на сегодняшний день, то для того чтобы создать холод под действием электричества, нет ничего лучше теллурида висмута. А вот для того чтобы создавать электричество под действием температур в диапазоне 200-600 градусов, были найдены новые соединения.

Вопрос в том, как довести эти соединения до промышленных технологий.

Чем эти новые соединения интересны? Например, они не содержат такого элемента, как теллур, который является одним из самых редких элементов на Земле. А до сих пор без теллура не обходится производство ни одного термоэлектрического материала. То есть появилась возможность заменить его на более доступные вещества: железо, медь, сурьму, никель, серу, селен.

Появились и новые направления использования термоэлектрических материалов. Еще в 50-е — начале 60-х годов XX века их стали использовать в космосе. Идея заключалась в том, что тепло, необходимое для работы термоэлектрического материала, должен дать радиоактивный источник. Были созданы такие устройства, в которых образец плутония, саморазогреваясь, давал достаточно тепла для того, чтобы на автономных системах — спутниках, космических объектах — работали термоэлектрические материалы и давали бортовое питание.

Сегодня мы хорошо понимаем, что использование радиоактивных материалов небезопасно и уж никак нельзя перенести этот опыт на то, что мы называем объектами народного хозяйства или объектами быта — безопасность здесь превыше всего. Тем не менее, существуют идеи использования альтернативных источников тепла (например, инфракрасного излучения Солнца) для работы термоэлектрических материалов и преобразования тепловой энергии в электрическую.

На сегодняшний день ведется много разработок по всему миру, в том числе в МГУ и питерском Физтехе. Они показывают, что идеи, выдвинутые Слэком в середине 1990-х годов, все еще живы, и на их основе можно создать новые термоэлектрические материалы с более высоким КПД.

Уровень развития термоэлектрических разработок пока таков, что весь рынок составляет порядка $6 млрд в год, и его сильного увеличения пока не предвидится. Тем не менее, эффективность термоэлектрического материала, как материала, который работает, по сути дела, автономно, обеспечивая небольшое, но заметное замещение углеводородных источников энергии, нельзя сбрасывать со счетов.

Превращение тепла в электричество | MIT News

Что, если бы вы могли использовать кондиционер не от обычного электричества, а от солнечного тепла в теплый летний день? Благодаря достижениям в термоэлектрических технологиях это устойчивое решение может однажды стать реальностью.

Термоэлектрические устройства изготавливаются из материалов, которые могут преобразовывать разницу температур в электричество, не требуя каких-либо движущихся частей – качество, которое делает термоэлектрики потенциально привлекательным источником электричества.Это явление обратимо: если электричество приложить к термоэлектрическому устройству, оно может вызвать разницу температур. Сегодня термоэлектрические устройства используются для приложений с относительно низким энергопотреблением, таких как питание небольших датчиков вдоль нефтепроводов, резервное питание от космических зондов и охлаждение мини-холодильников.

Но ученые надеются разработать более мощные термоэлектрические устройства, которые будут собирать тепло, производимое в качестве побочного продукта промышленных процессов и двигателей внутреннего сгорания, и превращать это тепло в электричество.Однако эффективность термоэлектрических устройств или количество энергии, которую они могут производить, в настоящее время ограничены.

Теперь исследователи из Массачусетского технологического института открыли способ увеличить эту эффективность втрое, используя «топологические» материалы, которые обладают уникальными электронными свойствами. В то время как прошлые работы предполагали, что топологические материалы могут служить эффективными термоэлектрическими системами, было мало понимания того, как электроны в таких топологических материалах будут перемещаться в ответ на разницу температур, чтобы вызвать термоэлектрический эффект.

В статье, опубликованной на этой неделе в журнале Proceedings of the National Academy of Sciences , исследователи из Массачусетского технологического института идентифицируют основное свойство, которое делает определенные топологические материалы потенциально более эффективными термоэлектрическими материалами по сравнению с существующими устройствами.

«Мы обнаружили, что можем раздвинуть границы этого наноструктурированного материала таким образом, чтобы топологические материалы стали хорошим термоэлектрическим материалом, в большей степени, чем обычные полупроводники, такие как кремний», – говорит Те-Хуан Лю, постдок факультета машиностроения Массачусетского технологического института. .«В конце концов, это может быть экологически чистый способ помочь нам использовать источник тепла для выработки электричества, что уменьшит выбросы углекислого газа».

Лю – первый автор статьи PNAS , в которую входят аспиранты Цзявэй Чжоу, Чживэй Дин и Цичэнь Сун; Минда Ли, доцент кафедры ядерной науки и техники; бывший аспирант Болин Ляо, ныне доцент Калифорнийского университета в Санта-Барбаре; Лян Фу, доцент кафедры физики Биденхарна; и Ганг Чен, профессор Содерберга и заведующий кафедрой машиностроения.

Свободный путь

Когда термоэлектрический материал подвергается воздействию температурного градиента – например, один конец нагревается, а другой охлаждается, – электроны в этом материале начинают течь от горячего конца к холодному концу, генерируя электрический ток. Чем больше разница температур, тем больше вырабатывается электрического тока и вырабатывается больше энергии. Количество энергии, которое может быть сгенерировано, зависит от конкретных транспортных свойств электронов в данном материале.

Ученые заметили, что некоторые топологические материалы могут быть превращены в эффективные термоэлектрические устройства с помощью наноструктурирования – метода, который ученые используют для синтеза материала, моделируя его свойства в масштабе нанометров. Ученые полагают, что термоэлектрическое преимущество топологических материалов связано с пониженной теплопроводностью в их наноструктурах. Но неясно, как это повышение эффективности связано с присущими материалу топологическими свойствами.

Чтобы попытаться ответить на этот вопрос, Лю и его коллеги изучили термоэлектрические характеристики теллурида олова, топологического материала, который, как известно, является хорошим термоэлектрическим материалом. Электроны в теллуриде олова также проявляют особые свойства, имитирующие класс топологических материалов, известных как материалы Дирака.

Команда стремилась понять влияние наноструктурирования на термоэлектрические характеристики теллурида олова, моделируя путь электронов через материал.Чтобы охарактеризовать перенос электронов, ученые часто используют измерение, называемое «средним свободным пробегом», или средним расстоянием, на которое электрон с заданной энергией может свободно пройти в материале, прежде чем будет рассеян различными объектами или дефектами в этом материале.

Наноструктурированные материалы напоминают лоскутное одеяло из крошечных кристаллов, каждый из которых имеет границы, известные как границы зерен, которые отделяют один кристалл от другого. Когда электроны сталкиваются с этими границами, они имеют тенденцию различным образом рассеиваться.Электроны с большой длиной свободного пробега будут сильно рассеиваться, как пули, рикошетирующие от стенки, в то время как электроны с более короткой длиной свободного пробега подвержены гораздо меньшему влиянию.

В ходе моделирования исследователи обнаружили, что электронные характеристики теллурида олова оказывают значительное влияние на их длину свободного пробега. Они построили график диапазона энергий электронов теллурида олова в зависимости от соответствующей длины свободного пробега и обнаружили, что полученный график сильно отличался от графика для большинства обычных полупроводников.В частности, для теллурида олова и, возможно, других топологических материалов, результаты показывают, что электроны с более высокой энергией имеют более короткую длину свободного пробега, в то время как электроны с более низкой энергией обычно обладают большей длиной свободного пробега.

Затем группа исследовала, как эти электронные свойства влияют на термоэлектрические характеристики теллурида олова, суммируя термоэлектрические вклады электронов с разной энергией и длиной свободного пробега. Оказывается, способность материала проводить электричество или генерировать поток электронов при градиенте температуры в значительной степени зависит от энергии электронов.

В частности, они обнаружили, что электроны с более низкой энергией имеют тенденцию оказывать негативное влияние на генерацию разности напряжений и, следовательно, на электрический ток. Эти низкоэнергетические электроны также имеют более длинные длины свободного пробега, что означает, что они могут рассеиваться границами зерен более интенсивно, чем электроны более высоких энергий.

Уменьшение размера

Сделав еще один шаг в своем моделировании, команда поиграла с размером отдельных зерен теллурида олова, чтобы увидеть, влияет ли это на поток электронов при температурном градиенте.Они обнаружили, что, когда они уменьшили диаметр среднего зерна примерно до 10 нанометров, сближая его границы, они наблюдали повышенный вклад электронов более высоких энергий.

То есть с меньшими размерами зерен электроны с более высокой энергией вносят гораздо больший вклад в электрическую проводимость материала, чем электроны с более низкой энергией, поскольку они имеют более короткие длины свободного пробега и с меньшей вероятностью рассеиваются по границам зерен. Это приводит к возникновению большей разницы напряжений.

Более того, исследователи обнаружили, что уменьшение среднего размера зерен теллурида олова примерно до 10 нанометров дает в три раза больше электричества, чем материал мог бы произвести с более крупными зернами.

Лю говорит, что, хотя результаты основаны на моделировании, исследователи могут достичь аналогичных характеристик, синтезируя теллурид олова и другие топологические материалы и регулируя размер их зерен с помощью техники наноструктурирования. Другие исследователи предположили, что уменьшение размера зерна материала может повысить его термоэлектрические характеристики, но Лю говорит, что они в основном предполагали, что идеальный размер будет намного больше, чем 10 нанометров.

«В ходе моделирования мы обнаружили, что можем уменьшить размер зерна топологического материала намного больше, чем предполагалось ранее, и, основываясь на этой концепции, мы можем повысить его эффективность», – говорит Лю.

Теллурид олова – лишь один из примеров многих топологических материалов, которые еще предстоит изучить. По словам Лю, если исследователи смогут определить идеальный размер зерна для каждого из этих материалов, топологические материалы могут вскоре стать жизнеспособной и более эффективной альтернативой производству чистой энергии.

«Я думаю, что топологические материалы очень хороши для термоэлектрических материалов, и наши результаты показывают, что это очень многообещающий материал для будущих приложений», – говорит Лю.

Это исследование было частично поддержано Центром преобразования твердотельной солнечной тепловой энергии, Научно-исследовательским центром Energy Frontier Министерства энергетики США; и Агентство перспективных оборонных исследовательских проектов (DARPA).

Как работают термоэлектрики? – Силовой практический

А теперь вернемся к термоэлектрике!

Строго говоря, термоэлектрические генераторы принимают разницу температур и превращают ее в электрическую энергию. Удивительно, но эти материалы можно использовать и в обратном направлении! Если вы включите термоэлектрический генератор, вы создадите разницу температур.В небольших мини-холодильниках, рассчитанных всего на несколько напитков, используются термоэлектрические генераторы для эффективного охлаждения нескольких напитков.


Чтобы понять, как термоэлектрики генерируют электричество из-за разницы температур, мы должны немного узнать о том, как электроны движутся в металле. Металлы являются хорошими проводниками, потому что электроны могут свободно перемещаться внутри них, как жидкость в трубе. Представьте, что у вас есть труба, полная воды, и вы поднимаете один конец, что происходит? Вода будет стекать по трубе от верхнего конца к нижнему.Это потому, что, когда вы поднимаете трубу, вы увеличиваете потенциальную энергию, и вода хочет течь вниз. В термоэлектрическом материале то же самое происходит с жидкообразными электронами, когда вы его нагреваете.

Нагрев одного конца термоэлектрического материала заставляет электроны перемещаться от горячего конца к холодному концу. Когда электроны переходят с горячей стороны на холодную, это вызывает электрический ток, который PowerPot использует для зарядки USB-устройств. Чем больше разница температур, тем больше вырабатывается электрического тока и, следовательно, больше энергии.

Сложность термоэлектрических генераторов заключается в том, что при нагревании горячей стороны нагревается и холодная сторона генератора. Для выработки энергии с помощью термоэлектрического генератора вам понадобится как источник тепла, так и способ рассеивания тепла, чтобы поддерживать разницу температур между термоэлектрическими материалами. Это делается без движущихся частей путем нагрева воды в PowerPot. Вода удерживает в несколько раз больше тепла, чем алюминий на фунт, поэтому из нее получается прекрасный радиатор.Кроме того, вода никогда не нагревается выше 212 F (100 C) при кипении, что эффективно ограничивает максимальную температуру «холодной» стороны термоэлектрического генератора. Поэтому в PowerPot всегда должно быть что-то водянистое, иначе термоэлектрический генератор может перегреться.

Новый материал побил мировой рекорд по превращению тепла в электричество

Профессор Эрнст Бауэр в лаборатории. Предоставлено: TU Wien.

Новый тип материала очень эффективно генерирует электрический ток из-за разницы температур.Это позволяет датчикам и небольшим процессорам обеспечивать себя энергией по беспроводной сети.

Термоэлектрические материалы могут преобразовывать тепло в электрическую энергию. Это происходит из-за так называемого эффекта Зеебека: если между двумя концами такого материала существует разница температур, может возникнуть электрическое напряжение, и ток может протечь. Количество электроэнергии, которое может быть произведено при заданной разнице температур, измеряется так называемым значением ZT: чем выше значение ZT материала, тем лучше его термоэлектрические свойства.

Лучшие на сегодняшний день термоэлектрики были измерены при значениях ZT от 2,5 до 2,8. Ученым из TU Wien (Вена) теперь удалось разработать совершенно новый материал со значением ZT от 5 до 6. Это тонкий слой железа, ванадия, вольфрама и алюминия, нанесенный на кристалл кремния.

Новый материал настолько эффективен, что его можно использовать для обеспечения энергией датчиков или даже небольших компьютерных процессоров. Вместо того, чтобы подключать небольшие электрические устройства к кабелям, они могли вырабатывать собственное электричество за счет разницы температур.Новый материал теперь представлен в журнале Nature .

Электроэнергия и температура

«Хороший термоэлектрический материал должен обладать сильным эффектом Зеебека и соответствовать двум важным требованиям, которые трудно согласовать», – говорит профессор Эрнст Бауэр из Института физики твердого тела в Венском техническом университете. «С одной стороны, он должен как можно лучше проводить электричество, с другой – как можно хуже передавать тепло.Это проблема, потому что электропроводность и теплопроводность обычно тесно связаны ».

В Лаборатории термоэлектричества им. Христиана Доплера, которую Эрнст Бауэр основал в Венском техническом университете в 2013 году, в течение последних нескольких лет изучались различные термоэлектрические материалы для различных применений. Это исследование привело к открытию особенно замечательного материала – комбинации железа, ванадия, вольфрама и алюминия.

«Атомы в этом материале обычно расположены строго регулярным образом в так называемой гранецентрированной кубической решетке», – говорит Эрнст Бауэр.«Расстояние между двумя атомами железа всегда одинаково, и то же самое верно для других типов атомов. Таким образом, весь кристалл является полностью регулярным».

Однако, когда на кремний наносится тонкий слой материала, происходит нечто удивительное: кардинально меняется структура. Хотя атомы по-прежнему образуют кубический узор, теперь они расположены в пространственно-центрированной структуре, и распределение различных типов атомов становится полностью случайным. «Два атома железа могут располагаться рядом друг с другом, места рядом с ними могут быть заняты ванадием или алюминием, и больше нет никакого правила, определяющего, где должен находиться следующий атом железа в кристалле», – объясняет Бауэр.

Эта смесь регулярности и неправильности расположения атомов также изменяет электронную структуру, которая определяет движение электронов в твердом теле. «Электрический заряд движется через материал особым образом, так что он защищен от процессов рассеяния. Части заряда, проходящие через материал, называются фермионами Вейля», – говорит Эрнст Бауэр. Таким образом достигается очень низкое электрическое сопротивление.

С другой стороны, колебания решетки, которые переносят тепло из мест с высокой температурой в места с низкой температурой, подавляются из-за неоднородностей кристаллической структуры.Следовательно, теплопроводность снижается. Это важно, если электрическая энергия должна постоянно вырабатываться из-за разницы температур – потому что, если разницы температур могут уравновеситься очень быстро и весь материал вскоре будет иметь одинаковую температуру повсюду, термоэлектрический эффект прекратится.

Электроэнергия для Интернета вещей

«Конечно, такой тонкий слой не может генерировать особенно большое количество энергии, но он имеет то преимущество, что он чрезвычайно компактен и легко адаптируется», – говорит Эрнст Бауэр.«Мы хотим использовать его для обеспечения энергией датчиков и небольших электронных устройств». Спрос на такие маломасштабные генераторы быстро растет: в «Интернете вещей» все больше и больше устройств связаны друг с другом в сети, чтобы они автоматически координировали свое поведение друг с другом. Это особенно многообещающе для будущих производственных предприятий, где одна машина должна динамически реагировать на другую.

«Если вам нужно большое количество датчиков на заводе, вы не можете соединить их все вместе.Гораздо разумнее, чтобы датчики могли генерировать собственную энергию с помощью небольшого термоэлектрического устройства », – говорит Бауэр.


Как заморозить теплопроводность
Дополнительная информация: B. Hinterleitner et al.Термоэлектрические характеристики метастабильного тонкопленочного сплава Гейслера, Nature (2019). DOI: 10.1038 / s41586-019-1751-9 Предоставлено Венский технологический университет

Цитата : Новый материал побил мировой рекорд по превращению тепла в электричество (2019, 14 ноября) получено 17 сентября 2021 г. с https: // физ.org / news / 2019-11-material-world-electric.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

Новый комплекс «золотой стандарт» для выработки электроэнергии из тепла

Термоэлектрические генераторы, вырабатывающие электроэнергию из отработанного тепла, были бы полезным инструментом для снижения выбросов парниковых газов, если бы не было самой неприятной проблемы: необходимости подключать электрические контакты к их горячей стороне, которая часто бывает слишком горячей для материалы, которые могут генерировать ток.

Из-за тепла устройства со временем выходят из строя.

Устройства, известные как поперечные термоэлектрики, позволяют избежать этой проблемы, создавая ток, идущий перпендикулярно проводящему устройству, требуя контактов только на холодном конце генератора. Несмотря на то, что они считаются многообещающей технологией, материалы, которые, как известно, создают такое поперечное напряжение, практически неэффективны – по крайней мере, так думали ученые.

Ученые из Университета штата Огайо показывают в новом исследовании, что единый материал, слоистый кристалл, состоящий из элементов рения и кремния, оказывается золотым стандартом для поперечных термоэлектрических устройств.

Ученые продемонстрировали, что это единственное соединение функционирует как высокоэффективный термоэлектрический генератор из-за редкого свойства: одновременно несут как положительные, так и отрицательные заряды, которые могут двигаться независимо, а не идти параллельно друг другу, что заставляет их двигаться зигзагами. к контактам для генерации электрического тока.

Построив термоэлектрический генератор с кристаллом длиной около двух дюймов, исследователи также определили, что, когда кристалл расположен в устройстве под определенным углом, он может производить впечатляющее количество энергии.

«Мы показали, что эти материалы столь же эффективны, как и традиционные технологии термоэлектрических генераторов, но преодолевают их основные недостатки», – сказал соавтор исследования Джошуа Голдбергер, профессор химии и биохимии в штате Огайо.

«Это первый раз, когда было доказано, что такое устройство возможно. Обладая эффективностью, которая на порядки выше, чем у любого предыдущего поперечного устройства, это соединение так же хорошо, как и то, что вы можете купить в коммерческих целях, но обещает быть намного проще и надежнее.”

Исследование опубликовано в Интернете в журнале Energy & Environmental Science .

Хотя 97% энергии вырабатывается за счет тепла, мы выбрасываем большую часть тепла, позволяя ему улетучиваться из дымовых труб, выхлопных труб автомобилей и т.п.

«Отработанное тепло действительно важно. Всегда было стремление повысить эффективность всех двигателей, которые вырабатывают энергию из тепла – объем работы, который вы можете получить от них, который вы можете использовать », – сказал соавтор исследования Джозеф Хереманс, профессор механики и аэрокосмической промышленности. инженера и выдающийся ученый в области нанотехнологий штата Огайо.

«В течение долгого времени мы мечтали найти маленькие двигатели, у которых не было бы движущихся частей, способных принимать тепло и вырабатывать электричество».

А теперь у них есть.

Большинство материалов проводят заряд только одного типа, что приводит к тому, что большинство термоэлектрических устройств состоит из нескольких соединений, однако сложность установления контактов с ними препятствует попыткам создать эффективный и эффективный термоэлектрический генератор, который легко построить и может выдерживать высокие нагрузки. температуры.

Два года назад эта исследовательская группа обнаружила неожиданные свойства в другом соединении, которое позволяло электронам и дыркам, источникам отрицательных и положительных зарядов, соответственно, которые генерируют электрический ток, перемещаться по тому, что может напоминать шоссе с севера на юг. за одну плату и шоссе восток-запад за другую.

После этого открытия исследователи просмотрели существующие исследования других кристаллов, которые, как было установлено другими учеными, делают то же самое.

«Мы заинтересовались этим, потому что сначала мы не осознавали, что это может существовать. Когда мы выяснили, что он может существовать, мы очень постарались найти эти материалы », – сказал Голдбергер. На сегодняшний день они экспериментально подтвердили 15 материалов с этими свойствами – из более чем 110 000 кристаллических структур, обнаруженных и занесенных в международную базу данных.

«Некоторые из них были обнаружены, но ни одна из них не использовалась для повышения функциональности. Мы обнаружили, что мы действительно можем что-то с этим сделать », – сказал Вольфганг Виндл, профессор материаловедения и инженерии в штате Огайо и соавтор исследования.

«Все, что нам нужно сделать, это подвести провода к одному концу и сориентировать кристалл определенным образом, и внезапно у нас есть генератор энергии без движущихся частей. И вы согреваете его с помощью любого отходящего тепла, которое у вас есть в вашем доме, машине или ракете, и это будет генерировать электроэнергию без выбросов самостоятельно и практически бесконечно. Для меня это немного похоже на черную магию.

Теоретически, генератор, сделанный из этого соединения, можно было бы использовать в любом месте, где генерируется тепло – размер кристалла может варьироваться, и в этом исследовании он был продиктован размером печи, в которой он выращивался.

Хереманс сказал, что генератор может производить достаточно электроэнергии из выхлопных газов автомобиля, чтобы двигать автомобиль вперед, но он поддерживает идею использования этой технологии в меньшем масштабе: «В небольших приложениях сложные решения не приветствуются, потому что они слишком дорого », – сказал он. «Вот где такое простое решение, вероятно, лучше всего».

Эта работа была поддержана Управлением научных исследований ВВС США, Министерством энергетики США и Национальным научным фондом Emerging Frontiers in Research and Innovation.Рост кристаллов поддерживался платформой Национального научного фонда для ускоренной реализации, анализа и открытия интерфейсных материалов (PARADIM).

Соавторы: Майкл Скаддер, Бен Хе (сейчас работает в Институте Макса Планка) и Яксиан Ван (сейчас работает в Гарвардском университете) из штата Огайо, а также Акаш Рай и Дэвид Кэхилл из Университета Иллинойса в Урбана-Шампейн.

Использование отходящего тепла для производства электроэнергии

1.Активируйте предыдущие знания учащихся.

Спросите учащихся, что они чувствуют на дне или по бокам ноутбука, который был включен в течение некоторого времени. Обсудите, как тепло, которое они чувствуют, означает потерю эффективности; некоторая часть электроэнергии тратится впустую при преобразовании в тепловую энергию. Спросите: Как изменилось бы общее количество энергетических ресурсов, необходимых для работы портативного компьютера в течение часа, если бы меньшее количество ресурсов было преобразовано в тепловую энергию? Что, если бы вы могли улавливать и использовать тепловую энергию? Расширите обсуждение на бытовые приборы, которые выделяют тепло, например сушилку или духовку.Спросите: Вы когда-нибудь хотели выйти из кухни в жаркий день, когда духовка включена? Какие преимущества могли бы быть, если бы это отработанное тепло (тепловая энергия) можно было бы улавливать и использовать для обогрева вашего дома или воды? Как это поможет сберечь энергию? Объясните, что промышленные операции, такие как производство и производство электроэнергии, могут производить большое количество отработанного тепла. Улавливание отходящего тепла – это способ перепрофилировать и использовать отходящее тепло.

2. Изучите и обсудите диаграмму, показывающую улавливание отходящего тепла.

Спроецируйте диаграмму улавливания отходящего тепла для просмотра учащимися. Используйте диаграмму, чтобы описать, как отходящее тепло может улавливаться из промышленного процесса, такого как стекловаренная печь, и использоваться для нагрева воды для создания пара. Затем этот пар можно использовать для вращения турбины и выработки электроэнергии. Пар также можно было использовать для приведения в действие другого механического процесса на заводе или для предварительного нагрева воды, поэтому для нагрева воды до требуемой температуры потребовалось бы меньше энергии из других источников.Отработанное тепло можно также использовать для непосредственного обогрева фабрики. Объясните, что когенерация – это тип улавливания отработанного тепла, который использует потерянную тепловую энергию от термоэлектрических электростанций для преднамеренного производства как электроэнергии, так и полезного тепла из одного источника. Когенерация может повысить эффективность электростанции с 30 до 80 процентов.

3. Дайте студентам обзор задачи подкаста с тематическим исследованием.

Объясните, что учащиеся проведут исследование, чтобы узнать больше о различных способах улавливания отработанного тепла и его использования в различных условиях.Раздайте копии рабочего листа «Примечания по улавливанию отходящего тепла» и задайте следующие исследовательские вопросы: Что такое отходящее тепло? Как в промышленных процессах выделяется отходящее тепло? Каково основное влияние отходящего тепла на окружающую среду? Как улавливать отходящее тепло и преобразовывать его в электричество? Как промышленность может использовать отходящее тепло с когенерационной технологией? Объясните, что, исследуя эти вопросы, студенты будут определять конкретный пример технологии улавливания отходов, которую они позже будут использовать в качестве темы подкаста.

4. Смоделируйте стратегии поиска и попросите студентов провести исследования в Интернете.

Разделите учащихся на небольшие группы. Попросите каждую группу просмотреть вопросы исследования и убедиться, что они понимают, что задает каждый вопрос. Затем попросите каждую группу составить список ключевых слов, которые можно использовать при исследовании вопросов. Попросите группы поделиться своими результатами с классом и составить общий список возможных условий поиска. Попросите учащихся просмотреть основной список и добавить любые синонимы или связанные условия поиска, которые, по их мнению, могут быть полезны.Попросите их определить, какие поисковые запросы они могли бы использовать вместе при поиске, чтобы повысить свои шансы на получение хорошего результата. Отобразите страницу поиска для всего класса и введите одно или несколько условий поиска. Прокрутите результаты поиска на первом экране и смоделируйте, как классифицировать каждый из них как потенциально полезный или непригодный для запроса, в зависимости от того, что вы можете сказать по заголовку и видимому описанию на странице поиска. Затем смоделируйте, как оценить каждую потенциально полезную ссылку, щелкнув ссылку, чтобы определить, кто создал ресурс, оценить профессионализм и авторитет веб-сайта и выявить любые врожденные предубеждения.Введите другой набор из одного или нескольких условий поиска и попросите учащихся оценить результаты в своих небольших группах. Как только вы почувствуете, что учащиеся понимают, как использовать условия поиска и оценивать результаты поиска, предложите им начать исследования в своих небольших группах. Попросите их использовать рабочий лист «Примечания по улавливанию тепла», чтобы ответить на вопросы исследования. Напомните учащимся о необходимости найти полезные и авторитетные ресурсы. Поощряйте студентов отмечать любые потенциальные тематические исследования во время исследования. Когда учащиеся завершат свое исследование, обсудите полученные результаты в классе.

5. Представьте задачу подкаста.

Объясните: теперь группы сосредоточатся на конкретном примере места, в котором отработанное тепло используется для выработки электроэнергии, отопления, охлаждения и / или выполнения другой работы. Объясните, что они создадут подкаст, который будет использовать этот пример для описания и объяснения улавливания и использования отходящего тепла. Распространите Рубрику подкастов и ознакомьтесь с ней со студентами. Включите подкаст Future Tense, Nova, National Geographic News или Natural Selections или любой другой подкаст по вашему выбору.Попросите каждого учащегося делать заметки о том, что они считают успешным или неуспешным, когда они слушают. Включите хотя бы один дополнительный подкаст, снова попросив учащихся отметить успехи и недостатки. Попросите учащихся поделиться своими заметками с классом и составить для класса список лучших практик и подводных камней для подкастов.

6. Попросите студентов определить свой пример и создать подкаст.

Попросите учащихся выбрать из предоставленного списка тематических исследований или определить своего кандидата для тематического исследования из своего местного региона или из своих более ранних исследований.Утвердите все тематические исследования, прежде чем студенты приступят к работе. Попросите каждую группу прочитать о проекте по улавливанию отходящего тепла, который они используют в качестве примера, отметив важные моменты. Попросите учащихся составить план, в котором рассматриваются важные моменты, которые они хотят высказать по поводу улавливания отходящего тепла, используя конкретные примеры из своего тематического исследования, чтобы проиллюстрировать эти моменты. Когда студенты составят план, попросите их распределить рабочую нагрузку между членами группы. Попросите учащихся написать сценарий своего подкаста и определить место проведения тематического исследования с помощью MapMaker Interactive.Студенты должны связаться с вами на этом этапе для обратной связи, прежде чем записывать свой подкаст.

7. Попросите учащихся записать свой подкаст.

Студенты могут записывать свой подкаст на компьютер с помощью любого приложения для записи звука (например, Audacity), а затем загружать запись в любую программу для создания подкастов (например, AudioBoo). В зависимости от того, какую программу подкастинга вы используете, студенты также могут записывать свой подкаст непосредственно в программу через микрофон компьютера или даже телефон.После того, как группы закончат запись своих подкастов, попросите каждую группу использовать «Рубрику подкастов» для экспертной оценки подкаста другой группы. Напомните им о необходимости дать конкретный конструктивный отзыв.

8. Попросите учащихся опубликовать свои подкасты с помощью MapMaker Interactive.

Попросите учащихся отредактировать свои подкасты на основе отзывов коллег и записать свою окончательную версию. Затем попросите все группы использовать MapMaker Interactive, чтобы отметить избранные места своих подкастов на карте США.Каждая группа должна поставить маркер в соответствующее место для своего тематического исследования и использовать инструмент метки, чтобы пронумеровать и назвать тематическое исследование. Затем учащиеся могут использовать инструмент надписи для создания нумерованного списка в левой нижней части экрана карты. Список должен включать номер тематического исследования, записанный на этикетке карты, и URL-адрес соответствующего подкаста. Обратите внимание, что URL-адреса не будут содержать гиперссылок, но могут использоваться в качестве справочных. Скачайте и сохраните карту.

Постройте термоэлектрический генератор, подобный тем, которые используются для миссий в глубоком космосе

Как вы можете видеть по вольтметру, я получаю 1.2 милливольт. Это немного, но кое-что. (Если вам интересно, масса на горячей пластине прижимает соединение медь-сталь вниз для обеспечения хорошего контакта.)

То, что вы видите, – это эффект Зеебека (названный в честь Томаса Зеебека). Два разных металла вместе при двух разных температурах могут создавать электрический ток. Эффект более выражен при большей разнице температур, и некоторые комбинации металлов работают лучше, чем другие, но вот он, ваш термоэлектрический генератор.

На самом деле, вы можете сделать генератор лучше, используя полупроводник вместо двух разных металлов, но двухметаллический вариант построить намного проще. Вот демонстрация полупроводника. Устройство зажато между двумя алюминиевыми ножками, одна ножка находится в горячей воде, а другая – в холодной. Выход из устройства идет в небольшой электродвигатель сверху.

Итак, как это работает? Почему из-за разницы температур (для разных металлов) возникает электрический ток? Я не буду вдаваться в полную историю , так как это займет слишком много времени.Но вот мой суперкороткий ответ: у электрического проводника есть свободные заряды, которые могут перемещаться (в некоторой степени). Когда вы прикладываете электрическое поле, эти заряды перемещаются и создают электрический ток. Обычно мы думаем об этих зарядах как об электронах, но это может быть что-то еще. Если вы возьмете металл и сделаете один конец горячим, а другой – холодным, электроны на горячей стороне будут иметь больше энергии и двигаться дальше. Эти более горячие электроны распространяются, и на холодном конце электроны имеют меньше энергии. Степень разделения заряда зависит от конкретного металла.

Теперь возьмем другой металл с двумя концами при разных температурах. Но поскольку этот металл отличается от первого, у него будет другое разделение заряда на горячем и холодном концах. Когда эти разные металлы соединяются вместе, они образуют батарею – не очень хорошую батарею, но все же это похоже на батарею. И бум – вот и твой термоэлектрический генератор.

Если вы думаете о создании термоэлектрического генератора для питания вашего дома, у меня плохие новости.Эти вещи очень неэффективны. Чтобы извлечь из них что-то полезное, нужны довольно большие перепады температур. Однако есть и хорошие новости. Эти термоэлектрические генераторы не имеют движущихся частей. Отсутствие движущихся частей означает, что они маленькие и довольно надежные. И поэтому они используются в некоторых космических кораблях (например, «Вояджер», «Кассини» и др.). Чтобы изменить температуру, космический корабль будет использовать радиоактивный источник, который остается очень горячим – вот и все. Так работает ваш радиоизотопный термоэлектрический генератор (РИТЭГ).Это как скрепка и генератор из медной проволоки, только лучше.

Инновационные технологии улавливают энергию из отходящего тепла

Генераторы без топлива и выбросов преобразуют низкопотенциальные отходы дизельных генераторов в энергию.

В 2014 году были установлены три генератора органического цикла Ренкина (ORC) для преобразования отработанного тепла от трех дизельных генераторов на электростанции Датч-Харбор на отдаленных Алеутских островах Аляски.Генераторы улавливают отходящее тепло при температуре всего 170 ° F из воды рубашки охлаждения двух дизельных двигателей Wärtsilä W12V32 и двух дизельных двигателей Caterpillar C280-16.

Даже при такой низкой температуре отходящего тепла генераторы вырабатывают около 75 кВт полной мощности для объекта. Вырабатываемая энергия направляется непосредственно в сеть, где затраты на электроэнергию для жилых домов достигают 0,50 доллара США / кВтч, что является одним из самых высоких показателей в Северной Америке и в четыре раза превышает средний показатель по США (0,12 доллара США / кВтч).

1.POWER + GENERATOR 4400 вырабатывает до 75 кВт и идеально подходит для низкотемпературного сброса тепла. На этом изображении оператор наблюдает за работой устройства с помощью человеко-машинного интерфейса. Предоставлено: ElectraTherm

.

Город Уналаска и Управление энергетики Аляски приобрели три генератора (рис. 1), чтобы использовать неиспользованные существующие ресурсы отработанного тепла на электростанции, реализовав потенциал экономии десятков тысяч долларов в год на расходах на топливо. .Снижение охлаждающих нагрузок является дополнительным преимуществом, поскольку установки сокращают необходимое охлаждение радиатора для дизельных двигателей. Все три генератора ORC используют один контур охлаждения, обеспечиваемый морской водой со средней входной температурой 45 ° F.

Генераторы были предоставлены ElectraTherm и управляются программируемым логическим контроллером (ПЛК) AutomationDirect, который обеспечивает все необходимые функции управления и мониторинга. Человеко-машинный интерфейс (HMI) также предоставляется AutomationDirect, что позволяет операторам просматривать и настраивать операции по мере необходимости.

Теплая, зеленая история

В типичном стационарном поршневом двигателе, работающем на дизельном топливе, природном газе или биогазе, только около 33% потребляемой энергии топлива (сгорание) преобразуется в энергию, а оставшаяся энергия теряется в виде отработанного тепла. Некоторые из основных низкотемпературных потерь включают 27% потерь тепла радиатора и 5% потерь на трение. Еще 35% теряется в виде высокотемпературного тепла в выхлопных газах.

Этот уровень отходящего тепла является обычным для поршневых двигателей.Кроме того, горячие выхлопные газы практически от всех процессов сгорания – например, тех, которые используются в топках, обжиговых печах, печах, инсинераторах, термоокислителях и котлах – содержат значительную долю первоначальной энергии потребляемого топлива. Когда это тепло рекуперируется и преобразуется в электричество, общая эффективность установки увеличивается.

Раньше было не так много проверенных коммерческих продуктов для преобразования этих типов отработанного тепла в энергию, поэтому у операторов не было другого выбора, кроме как смириться с потерями тепла в атмосферу.Сегодня компания ElectraTherm развернула более 70 устройств по всему миру с более чем 1,2 миллиона часов совокупного опыта работы с парком, сэкономив при этом клиентам миллионы долларов.

Конструкция POWER + GENERATOR и связанные с ней запатентованные технологии позволяют вырабатывать электроэнергию из низкотемпературных источников тепла в диапазоне от 170F до 270F. Эта технология преобразования отработанного тепла в энергию преобразует различные источники энергии в электроэнергию, включая отработанное тепло, вырабатываемое двигателями внутреннего сгорания, небольшую геотермальную энергию, биомассу, концентрированную солнечную энергию и технологическое тепло.

Основное применение – преобразование отработанного тепла от стационарных двигателей внутреннего сгорания в энергию. Типичные места установки включают производство электроэнергии в отдаленных районах, на островах и в развивающихся странах; биогазовые генераторы, включая свалки и очистные сооружения; компрессорные станции природного газа; и возобновляемое биотопливо.

Процесс ORC

ElectraTherm использует технологию ORC (рис. 2), процесс, аналогичный тому, который используется в паровом двигателе. Основное отличие технологии ORC заключается в том, что вода, используемая в паровом двигателе, заменяется жидкостью с гораздо более низкой температурой кипения.Процесс ORC подобен работе холодильника в обратном направлении, где тепловой поток используется для выработки энергии.

Этапы процесса ORC включают:

    ■ Избыточное тепло используется для кипячения рабочего тела в испарителе.
    ■ Под давлением пар проходит через двухвинтовой расширитель (силовой блок), вращая его для вращения электрогенератора.
    ■ Пар охлаждается и снова конденсируется в конденсаторе в жидкость.
    ■ Рабочая жидкость, жидкий хладагент, нагнетается до более высокого давления и возвращается в испаритель для повторения процесса.

Тепло, вырабатываемое большими стационарными двигателями, обычно имеет слишком низкие температуры, чтобы приводить в действие паровой двигатель для производства электроэнергии. Замена воды и пара альтернативными жидкостями с низкой точкой кипения позволяет модифицированной версии традиционного цикла Ренкина успешно использовать отходящее тепло.

Такие жидкости включают органические молекулы, такие как углеводороды, такие как пентан или фторуглеродные хладагенты, отсюда и название ORC. Электроэнергетические генераторы ORC компании ElectraTherm используют гидрофторуглерод под названием R-245fa (1,1,1,3,3-пентафторпропан), негорючую, нетоксичную жидкость с температурой кипения немного ниже комнатной температуры, около 58 ° F.

Двойные винты обеспечивают множество преимуществ

Вместо радиальных или осевых турбин ElectraTherm использует двухвинтовой детандер в своей системе выработки тепла для выработки электроэнергии. Детандер – один из основных компонентов, используемых для выработки электроэнергии из различных источников тепла.

Двухшнековые расширители обеспечивают преимущества в низкотемпературных и небольших приложениях, в том числе:

    ■ Простой и компактный дизайн.
    ■ Работа на низкой скорости с возможностью обработки изменений тепловложения и двухфазного потока рабочей жидкости.
    ■ Без коробки передач или масляного насоса.

Двухвинтовой детандер имеет скорость вращения 1 800–4 900 об / мин, что значительно меньше, чем у турбодетандеров. В отличие от высокоскоростных турбодетандеров, винтовые детандеры допускают «мокрый» двухфазный поток. Это позволяет POWER + GENERATOR использовать более экономичные и компактные теплообменники, которые могут выдерживать перебои как в температуре, так и в потоке, с диапазоном изменения 6: 1, доступным по запросу. Это особенно выгодно для низкотемпературных потоков отработанного тепла, таких как вода в рубашке двигателя с возвратно-поступательным движением.В системе также используется запатентованная схема смазки, которая упрощает конструкцию и исключает резервуары для смазки, маслоохладители, насосы и соответствующие фильтры. Такая конструкция создает простую, надежную и эффективную систему с меньшим количеством паразитных нагрузок и требований к техническому обслуживанию. Это также упрощает автоматизацию и эксплуатацию оборудования.

Автоматизация системы

ГЕНЕРАТОР POWER + разработан для автоматической работы с минимальным надзором или контролем со стороны заказчика. После запуска функция пропорционально-интегрально-производной (ПИД) в ПЛК поддерживает выходную мощность системы на заданном уровне.ПЛК (рис. 3) был выбран из-за его расширяемости, функций ПИД-регулирования и простоты использования. Другой причиной выбора компонентов AutomationDirect была поддержка его реселлера Quantum Automation. Компания оказывала помощь с первоначальным проектированием и поддержку на протяжении всего процесса интеграции новой системы автоматизации в генераторы Power +.

3. Программируемые логические контроллеры (ПЛК) AutomationDirect управляют активным парком электрогенераторов ElectraTherm.Предоставлено: ElectraTherm

.

Контурное ПИД-регулирование ПЛК включает в себя автонастройку, используемую для быстрого обеспечения почти оптимальных настроек контура, а также различные режимы управления, включая автоматический, ручной и каскадный. Было запрограммировано множество сигналов тревоги, включая переменную процесса, скорость изменения и отклонение.

ПЛК управляет насосом подачи рабочей жидкости, предохранительными клапанами и различными другими подсистемами и подключаемыми на месте устройствами. На основе входного сигнала датчика ПЛК может остановить процесс при возникновении нежелательных или небезопасных условий.Он также управляет трехходовым клапаном на стороне воды с рубашкой для обхода теплообменника, если это необходимо. Дополнительный насос для циркуляции воды через теплообменник выхлопных газов также управляется ПЛК, если он установлен.

Помимо дискретного ввода-вывода (I / O), в системе используются различные датчики температуры и преобразователи давления, которые контролируются ПЛК, включая температуру воды на входе и выходе, а также температуру и давление на входе и выходе расширителя. Эти датчики используются для наблюдения за стабильностью и безопасностью процесса.Выходная мощность также контролируется и контролируется.

HMI был выбран для интерфейса оператора на основании простоты использования, доступности регистрации данных, функций загрузки и низкой стоимости. В дополнение к функциям графического отображения, он обеспечивает аварийную сигнализацию, удаленный доступ, логику, математику и поддержку многочисленных протоколов связи. Состояние машины можно просматривать напрямую или удаленно.

Повышенная эффективность

Примерно 60% топлива, потребляемого тремя дизельными генераторами на электростанции в Голландской гавани, преобразуется в отработанное тепло через воду рубашки охлаждения и выхлопные газы.По оценкам Управления энергетики Аляски, с помощью Power + за счет преобразования части этого отработанного тепла в электроэнергию можно сэкономить 100 000 долларов в год.

В системе также был удален один из трех радиаторов двигателя из-за охлаждающего эффекта системы POWER +, обеспечивающего дополнительную мощность дизельных генераторов. Поскольку POWER + GENERATOR может снизить охлаждающую нагрузку водяного контура рубашки охлаждения на 70–100%, он также снизил температуру радиатора низкотемпературного промежуточного охладителя.Это увеличило плотность наддувочного воздуха и эффективную мощность двигателя, что, в свою очередь, увеличило топливную экономичность до 10%.

Помимо выгоды от выработки электроэнергии, POWER + GENERATOR также сократил работу по охлаждению радиатора. Это снижение температуры сократило требуемую работу двигателей по тепловому охлаждению в месяц примерно на 8000 кВт, что позволяет экономить примерно 500 галлонов топлива в год. ■

Джо Тибедо – инженер по системам управления, E.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *