Содержание

Закон Ленца в физике

Э.Х. Ленцем установлен закон, позволяющий определить направление тока индукции. Получив информацию об открытии М. Фарадеем явления электромагнитной индукции, Ленц провел ряд экспериментов для того, чтобы получить количественные законы индукции. Он полагал, что «сила мгновенного тока» работает как удар. И сила данного удара измеряется по скорости, которая сообщается стрелке индикатора электрического тока. Ленц сделал вывод о том, что появление тока индукции зависит от скорости «отрыва» катушки от магнита, ЭДС, которая возбуждается в катушке, пропорциональна количеству витков и равна результирующей ЭДС, которые возбуждаются в каждом витке, при этом на нее не влияют материал и диаметр обмотки якоря. Но самым важным открытием, которое сделал Ленц, стал закон (часто его называют правилом) о направлении тока индукции. До него, сам Фарадей и ряд других ученых, предлагали весьма сложные правила, которые давали возможность определить направление индукционного тока для частных случаев.

Формулировка закона Ленца

Индукционный ток всегда направлен так, что его действие противоположно действию причины, вызвавшей этот ток.

Закон Ленца применим, когда проводники движутся, а магнитное поле постоянно и в случае, когда проводники неподвижны, а переменным является магнитное поле (сила тока). Индукционные токи всегда вызывают поле, которое стремится противодействовать изменениям внешнего поля, вызвавшим эти токи.

Закон Ленца является следствием закона сохранения энергии. Так, токи индукции, как и любые другие токи, совершают определенную работу. Это означает, что при движении замкнутого проводника в магнитном поле должна произвестись дополнительная работа внешних сил. Эта работа появляется, так как токи индукции взаимодействуют с магнитным полем, вызывают силы, которые направлены в сторону, противоположную движению (то есть движению препятствуют).

Если записать закон электромагнитной индукции в формулировке Максвелла:

   

где — ЭДС индукции, Ф —магнитный поток. Знак минус в формуле (1) соответствует закону Ленца.

Допустим, что положительное направление нормали совпадает с направлением магнитной индукции. В таком случае поток через контур является положительным. Если магнитное поле, в рассматриваемом случае, будет увеличиваться (то есть ), то в соответствии (1), а это значит, что сила тока . Получается, что направление тока индукции является противоположным к избранному нами положительному направлению.

Следствием закона Ленца считают принцип обратимости электрических машин:

Электрическая машина обратима, то есть она может работать и как генератор, и как двигатель.

План использования правила Ленца

Правило Ленца, например, можно применять, используя следующую последовательность действий (удобно для замкнутого контура):

  1. Определить (рассмотреть) как направлен вектор внешнего магнитного поля.
  2. Определить уменьшается или увеличивается магнитный поток сквозь контур.
  3. Указать направление вектора магнитной индукции поля тока индукции. В том случае, если магнитный поток внешнего поля уменьшается, то вектор магнитной индукции поля индукционного тока является сонаправленным с внешним полем.
  4. Применяя правило буравчика (для кругового тока) или правила правой руки для прямого тока определить направление тока индукции.

Примеры решения задач

Урок 30. закон джоуля-ленца. эдс – Физика – 10 класс

Физика, 10 класс

Урок 30. Закон Джоуля – Ленца. ЭДС

Перечень вопросов, рассматриваемых на уроке:

1) Работа электрического тока;

2) Мощность электрического тока;

3) Закон Джоуля – Ленца;

4) Сторонние силы;

5) Электродвижущая сила.

Глоссарий по теме

Работа тока на участке цепи равна произведению силы тока, напряжения на этом участке и времени, в течении которого совершалась работа.

Мощность тока равна отношению работы тока ко времени прохождения тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.

Любые силы, действующие на электрически заряженные частицы, за исключением электростатических (кулоновских) сил, называются сторонними силами.

Электродвижущая сила (ЭДС) в замкнутом проводящем контуре равна отношению работы сторонних сил по перемещению заряда вдоль контура к этому заряду.

Основная и дополнительная литература по теме урока:

Обязательная литература:

1. Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 343 – 347.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. – М.: Дрофа,2009.- 68 – 74.

Дополнительная литература.

http://kvant.mccme.ru/1972/10/zakon_dzhoulya-lenca.htm

Основное содержание урока

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу, равную произведению заряда, прошедшего через проводник, и напряжения.

Сила тока равна отношению заряда прошедшего через проводник ко времени прохождения

Выразим заряд из формулы силы тока

через силу тока и время:

после подстановки в формулу (1) получим

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого шёл ток.

Из закона Ома для участка цепи выразим напряжение через силу тока и напряжение

и подставив в формулу работы получим:

При последовательном соединении проводников для определения работы тока удобнее пользоваться этой формулой, так как сила тока одинакова во всех проводниках.

При параллельном соединении проводников формулой:

так как напряжение на всех проводниках одинаково.

Работа тока показывает, сколько электроэнергии превратилось в другие виды энергии за конкретный период времени. Для электроэнергии справедлив закон сохранения энергии.

Мощность определяется по формуле:

Мощность тока равна отношению работы тока ко времени прохождения тока.

Так же формулу для мощности можно переписать в нескольких эквивалентных формах:

Если на участке цепи не совершается механическая работа и ток не производит химических действий, то происходит только нагревание проводника.

Электрическое поле действует с силой на свободные электроны, которые начинают упорядоченно двигаться, одновременно участвуя в хаотическом движении, ускоряясь в промежутках между столкновениями с ионами кристаллической решетки.

Во время этих столкновений расходуется кинетическая энергия заряженных частиц. Именно эта энергия и становится теплом. Последующие столкновения электронов с другими ионами увеличивают амплитуду их колебаний и соответственно температуру всего проводника.

В неподвижных металлических проводниках вся работа тока идет на увеличение их внутренней энергии:

Количество теплоты, выделяемое проводником, по которому течет ток, равно работе тока.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При последовательном соединении большее количество теплоты выделяется в проводнике с большим сопротивлением, а при параллельном соединении – с меньшим.

Измерения, приводящие к закону Джоуля-Ленца, можно выполнить, поместив в калориметр с водой проводник с известным сопротивлением и пропуская через него ток определенной силы в течение известного времени. Количество выделяющейся при этом теплоты определяют, составив уравнение теплового баланса.

Если соединить проводником два металлических шарика, несущих заряды противоположных знаков, под влиянием электрического поля этих зарядов в проводнике возникает кратковременный электрический ток. Заряды быстро нейтрализуют друг друга, и электрическое поле исчезнет.

Чтобы ток был постоянным, надо поддерживать постоянное напряжение между шариками. Для этого необходимо устройство, которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со стороны электрического поля шариков. В таком устройстве на заряды, должны действовать силы неэлектростатического происхождения. Одно лишь электрическое поле заряженных частиц не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (то есть кулоновских), называют сторонними силами. Необходимости сторонних сил для поддержания постоянного тока в цепи объясняет закон сохранения энергии.

Электростатическое поле потенциально. Работа этого поля при перемещении в нем заряженных частиц вдоль замкнутой электрической цепи равна нулю. Прохождение же тока по проводникам сопровождается выделением энергии – проводник нагревается. Следовательно, в цепи должен быть какой-то источник энергии, поставляющий ее в цепь. Работа этих сил вдоль замкнутого контура отлична от нуля. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрицательному), а во внешней цепи их приводит в движение электрическое поле.

Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (сокращенно ЭДС).

Электродвижущая сила источника тока равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру к величине этого заряда:

Электродвижущую силу выражают в вольтах.

Разбор тренировочных заданий

1. Электрочайник со спиралью нагревательного элемента сопротивлением 30 Ом включен в сеть напряжением 220 В. Какое количество теплоты выделится в нагревательном элемента за 5 мин?

1) 7260000 Дж;

2) 2200 Дж;

3) 484000 Дж.

Дано:

R=30Ом

U=220B

t=5мин=300с

Найти Q-?

Решение. Количество теплоты выделяемой нагревательным элементом определяется законом Джоуля – Ленца:

Правильный ответ 3) 484000 Дж.

2. Определите работу сторонних сил при перемещении по проводнику заряда 10 Кл, если ЭДС равно 9 В. Ответ округлите до десятых.

Дано:

q=10Кл

=9В

Найти: Аст

Решение. Из формулы ЭДС выражаем

Правильный ответ: 90 Дж.

Направление индукционного тока. Правило Ленца — урок. Физика, 9 класс.

Направление индукционного тока в контуре зависит от того, увеличивается или уменьшается магнитный поток через этот контур.

Убедимся в этом на опыте с помощью прибора, изображённого на рисунке \(1\).

 

 

Рис. \(1\). Опыт № \(1\)

 

Узкая алюминиевая пластинка с двумя алюминиевыми кольцами на концах (одно — сплошное, другое — с разрезом) находится на стойке и может свободно вращаться вокруг вертикальной оси.

Попытаемся внести полосовой магнит северным полюсом в сплошное кольцо (рис. \(1\)). Оно уходит от магнита, как будто отталкивается от него, поворачивая при этом всю пластинку. Повторим эксперимент, будем подносить магнит к кольцу южным полюсом. Результат будет точно таким же. Кольцо оттолкнется. Если подносить магнит к кольцу с прорезью, то ничего не произойдет. Замена полюса магнита изменений тоже не вносит.

Данное явление можно объяснить следующим образом:

при приближении магнита к кольцу без прорези возрастает магнитный поток сквозь площадь кольца. Так как кольцо замкнуто, то в нем возникает индукционный ток.

В кольце с разрезом ток циркулировать не может.

Ток в сплошном кольце создаёт магнитное поле, поэтому кольцо приобретает свойства магнита. Кольцо отталкивается от магнита. Значит, кольцо и магнит обращены друг к другу одноименными полюсами, а векторы магнитной индукции их полей направлены в противоположные стороны (рис. \(2\)).

 

 

Рис. \(2\). Опыт № \(2\)

 

Магнитное поле индукционного тока противодействует увеличению внешнего магнитного потока через кольцо.

Внося полосовой магнит, мы увеличиваем интенсивность магнитного поля, действующего со стороны магнита на кольцо. В кольце возникает магнитное поле, которое ослабляет поле полосового магнита, то есть направлено противоположно внешнему. Значит, ток в кольце будет направлен против часовой стрелки.

Направление индукционного тока в кольце определяется правилом правой руки.

Поменяем направление полосового магнита. Из кольца будем удалять магнит (рис. \(3\)). Кольцо будет двигаться за магнитом. Получается, что кольцо притягивается к магниту.

Объяснение: притяжение возможно только в том случае, если кольцо и магнит обращены друг к другу разноименными полюсами. В этом случае направление векторов магнитной индукции магнитных полей кольца и магнита совпадают.

 

 

Рис. \(3\). Опыт № \(3\)

 

Магнитное поле, создаваемое индукционным током, поддерживает уменьшающийся магнитный поток через площадь кольца.

Убирая полосовой магнит из кольца, мы уменьшаем интенсивность магнитного поля, действующего со стороны магнита на кольцо. Магнитное поле кольца будет поддерживать поле полосового магнита, значит, сонаправлено внешнему магнитному полю. Поэтому, ток в кольце будет направлен по часовой стрелке.

Общее правило впервые сформулировал российский ученый Эмилий Христианович Ленц в \(1834\) году:

правило Ленца
Индукционный ток в замкнутом проводящем контуре принимает такое направление, что он ослабляет первопричину своего возникновения.

Источники:

Рис. 1. Опыт № 1. © ЯКласс.

Рис. 2. Опыт № 2. © ЯКласс.

Рис. 3. Опыт № 3. © ЯКласс.

Правило Ленца в физике с формулами и примерами

Правило Ленца

Правило Ленца (закон Ленца) было установлено Э. X. Ленцем в 1834 г. Оно уточняет закон электромагнитной индукции, открытый в 1831 г. М. Фарадеем. Правило Ленца определяет направление индукционного тока в замкнутом контуре при его движении во внешнем магнитном поле.
Направление индукционного тока всегда таково, что испытываемые им со стороны магнитного поля силы противодействуют движению контура, а создаваемый этим током магнитный поток . стремится компенсировать изменения внешнего магнитного потока .

Закон Ленца является выражением закона сохранения энергии для электромагнитных явлений. Действительно, при движении замкнутого контура в магнитном поле за счёт внешних сил необходимо выполнить некоторую работу против сил, возникающих в результате взаимодействия индуцированного тока с магнитным полем и направленных в сторону, противоположную движению.

Правило Ленца иллюстрируют рис. 132, а и рис. 132, б. Если постоянный магнит вдвигать в катушку, замкнутую на гальванометр, индукционный ток в катушке будет иметь такое направление, которое создаст магнитное поле с вектором , направленным противоположно вектору индукции поля магнита , т. е. будет выталкивать магнит из катушки или препятствовать его движению. При вытягивании магнита из катушки, наоборот, поле, создаваемое индукционным током, будет притягивать катушку, т. е опять препятствовать его движению.

Для применения правила Ленца с целью определения направления индукционного тока в контуре необходимо следовать таким рекомендациям.

Рис. 132

Установить направление линий магнитной индукции внешнего магнитного поля.

Выяснить, увеличивается поток магнитной индукции этого поля через поверхность, ограниченную контуром , или уменьшается .

Установить направление линий магнитной индукции магнитного поля индукционного тока . Эти линии должны быть направлены, согласно правилу Ленца, противоположно линиям , если , и иметь одинаковое с ними направление, если .

Зная направление линий магнитной индукции , определить направление индукционного тока , пользуясь правилом буравчика.

Эта лекция взята со страницы лекций по всем темам предмета физика:

Предмет физика

Возможно эти страницы вам будут полезны:

Нагревание проводников электрическим током. Закон Джоуля–Ленца

Мы уже упоминали о том, что со временем электрический ток нагревает провода. Чтобы объяснить это явление нам нужно вспомнить, что мы знаем о внутренней энергии тела и об электрическом токе. Под словом «нагревание» мы подразумеваем повышение температуры. А температура — это мера средней кинетической энергии молекул тела. Эта энергия увеличивается в результате интенсивного движения свободных электронов под действием электрического поля.

Итак, электрический ток совершает работу, при этом нагревая проводник. Проводя серию опытов, Джеймс Джоуль и Эмилий Ленц доказали, что в неподвижных проводниках вся работа электрического тока идет на нагревание проводника.

Из этого мы можем сделать вывод, что количество теплоты, выделяемое проводником, равно работе электрического тока. Это и есть закон ДжоуляЛенца:

Исходя из этого закона, давайте подумаем, как делаются нагревательные элементы. Мы уже говорили, что производители подстраиваются под стандартное напряжение, поэтому регулировать количество теплоты можно только с помощью регулирования силы тока или сопротивления. Мы видим, что чем больше сопротивление, тем больше выделяемое количество теплоты. Однако, нельзя забывать, что большое сопротивление уменьшает силу тока. К тому же, количество теплоты прямо пропорционально сопротивлению, но, при этом, пропорционально квадрату силы тока. С другой стороны, слишком большой ток может перегреть провода. Поэтому, тут нужно найти так называемую, «золотую середину».

Рассмотрим конкретный пример. Мы подключаем обогреватель к сети с помощью провода.

Поскольку это является последовательным соединением, то и по проводу, и по спирали обогревателя будет проходить одинаковый ток. Поэтому нам нужно сделать так, чтобы сопротивление спирали было значительно больше сопротивления провода. Как мы помним, для достижения этой цели, нам надо либо сделать спираль очень тонкой и длинной, либо сделать её из материала с большим удельным сопротивлением. Также, нельзя забывать, что нагревательный элемент должен выдерживать высокие температуры, иначе он может просто расплавиться при длительной работе.

Примеры решения задач.

Задача 1. Нужно, чтобы нагревательный элемент выделял 11 МДж теплоты за 1 час. Длина провода 2 м, а площадь сечения 1 мм2. Провод перегревается, если за час получает 72 кДж теплоты. Какой длины должна быть нихромовая проволока с площадью сечения 1 мм2?

Нарисуем соответствующую схему. На ней четко разделено сопротивление спирали и сопротивление самого обогревателя, не нужно их путать. В задаче не требуется найти сопротивление самого прибора, но ради интереса мы легко можем это сделать потом.

Задача 2. Спираль рефлектора, подключенного к стандартной розетке, за 2 ч выделила 8 МДж теплоты. Какова сила тока в этой спирали?

План-конспект урока по физике. Тема: Направление индукционного тока. Правило Ленца ❤️

Цель урока: сформировать понятие об индукционном токе, выработать умение определять направление индукционного тока с помощью правила Ленца.

Ход урока

Проверка домашнего задания

Как было открыто явление электромагнитной индукции М. Фарадеем?

— Показать опыты Фарадея по обнаружению электромагнитной индукции.

— Сделать выводы и пояснить, что это за явление — электромагнитная индукция?

— От чего зависит величина индукционного тока в контуре?

— Что называется

магнитным потоком?

— На доске сделать чертеж и вывести формулу для вычисления магнитного потока.

Изучение нового материала

Если к катушке, в которой может возникнуть индукционный ток, подсоединить гальванометр, то можно заметить, что стрелка отклоняется в разные стороны в зависимости от того приближается магнит к катушке или удаляется; зависит отклонение стрелки гальванометра и от полюса магнита.

Значит, индукционный ток меняет свое направление. Катушка с протекающим током подобна магниту с южным и северным полюсом.

Можно предсказать когда катушка будет притягивать магнит ,а когда отталкивать.

Взаимодействие магнита с индукционным током.

Для того чтобы сблизить магнит и катушку надо совершить работу. Так как при приближении магнита к катушке на ближайшем конце у катушки возникает одноименный полюс , то магнит с катушкой отталкиваются. Если бы они притягивались, то был бы нарушен закон сохранения энергии. Доказать это положение. Подтвердить вывод с помощью прибора, изображенного на рисунке. Хорошо видно, как при приближении магнита к замкнутому кольцу, оно будет отталкиваться от магнита. При удалении магнита от кольца оно начинает притягиваться к магниту.

С разрезанным кольцом ничего не происходит, так как в нем не создается индукционный ток.

Отталкивает или притягивает катушка магнит, зависит от направления индукционного тока.

На основании закона сохранения энергии получили правило , позволяющее определять направление индукционного тока.

На первом рисунке видим, что при приближении магнита к катушке магнитный поток пронизывающий витки катушки увеличивается ,а во втором случае – уменьшается.

На первом рисунке вновь созданные линии индукции выходят из верхнего конца катушки (катушка отталкивает магнит), на втором рисунке все наоборот.

Правило Ленца. Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Закрепление изученного материала.

— Как определить направление индукционного тока?

— Что произойдет в кольце, когда в него введут магнит, если кольцо сделано из: а) не проводника;

б) проводника; в) сверхпроводника?

— Что определяется скоростью изменения магнитного потока через контур?

Подведем итоги урока

Домашнее задание: § 10, упр. 2 № 1,2.

Работа и мощность электрического тока. Закон Джоуля-Ленца | Поурочные планы по физике 8 класс

Работа и мощность электрического тока. Закон Джоуля-Ленца