Содержание

404 page not found | Fluke

Talk to a Fluke sales expert

Связаться с Fluke по вопросам обслуживания, технической поддержки и другим вопросам»

What is your favorite color?

Имя *

Фамилия *

Электронная почта *

FörКомпанияetag *

Номер телефона *

Страна * United States (Estados Unidos)CanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAzerbaijanBahamasBahrainBangladeshBarbadosБеларусь (Belarus)Belgien/Belgique (Belgium)BelizeBeninBermudaBhutanBoliviaBonaireBosnia and HerzegovinaBouvet IslandBotswanaBrasil (Brazil)British Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral African RepublicČeská republika (Czech Republic)ChadChile中国 (China)Christmas IslandCittà Di VaticanCocos (Keeling) IslandsCook IslandsColombiaComorosCongoThe Democratic Republic of CongoCosta RicaCroatiaCyprusCôte D’IvoireDanmark (Denmark)Deutschland (Germany)DjiboutiDominicaEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEspaña (Spain)EstoniaEthiopiaFaroese FøroyarFijiFranceFrench Southern TerritoriesFrench GuianaGabonGambiaGeorgiaGhanaGilbralterGreeceGreenlandGrenadaGuatemalaGuadeloupeGuam (USA)GuineaGuinea-BissauGuyanaHaitiHeard Island and McDonald IslandsHondurasHong KongHungaryIcelandIndiaIndonesiaIraqIrelandIsraelIslas MalvinasItalia (Italy)Jamaica日本 (Japan)JordanKazakhstanKenyaKiribati대한민국 (Korea Republic of)KuwaitKyrgyzstanLaosLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacaoMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMéxico (Mexico)MicronesiaMoldovaMonacoMongoliaMontenegroMonserratMoroccoMozambiqueMyanmarNamibiaNauruNederland (Netherlands)Netherlands AntillesNepalNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorge (Norway)Norfolk IslandNorthern Mariana IslandsOmanÖsterreich (Austria)PakistanPalauPalestinePanamaPapua New GuineaParaguayPerú (Peru)PhilippinesPitcairn IslandPuerto RicoРоссия (Russia)Polska (Poland)Polynesia (French)PortugalQatarRepública Dominicana (Dominican Republic)RéunionRomânia (Romania)RwandaSaint HelenaSaint Pierre and MiquelonSaint Kitts and NevisSaint LuciaSaint Vincent and The GrenadinesSan MarinoSao Tome and PrincipeSaudi ArabiaSchweiz (Switzerland)SenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and The South Sandwich IslandsSouth SudanSri LankaSudanSuomi (Finland)SurinameSvalbard and Jan MayenSverige (Sweden)SwazilandTaiwanTajikistanTanzaniaThailandTimor-LesteTokelauTogoTongaTrinidad and TobagoTunisiaTürkiye (Turkey)TurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited States Minor Outlying IslandsUruguayUzbekistanVanuatuVirgin Islands (British)Virgin Islands (USA)VenezuelaVietnamWallis and FutunaWestern SaharaWestern SamoaYemenZambiaZimbabwe

Почтовый индекс *

Интересующие приборы

iGLastMSCRMCampaignID

?Отмечая галочкой этот пункт, я даю свое согласие на получение маркетинговых материалов и специальных предложений по электронной почте от Fluke Electronics Corporation, действующей от лица компании Fluke Industrial или ее партнеров в соответствии с политикой конфиденциальности.

consentLanguage

Политика конфиденциальности

Что такое постоянный и переменный ток: разница и 5 особенностей


Ток переменный и постоянный: разница и особенности

Отличие переменного тока от постоянного, можно понять исходя из определений. Для того чтобы лучше разобраться в принципе работы и особенностях, необходимо знать следующие факторы.

Основные отличия:

  • Движение заряженных частиц;
  • Способ производства.

Переменным, называют такой ток, в котором заряженные частицы, способны изменять направление движения и величину в определенное время. К главным параметрам переменного тока относят его напряжение и частоту.

В настоящее время, общественные электрические сети и различные объекты, используют переменный ток, с определенным напряжением и частотой. Данные параметры определяются оборудованием и устройствами.

Обратите внимание! В бытовых электросетях, используется ток величиной 220 Вольт и тактовой частотой 50 Гц.

Направление движения и частота заряженных частиц в постоянном токе неизменны. Данный ток для питания используют различные бытовые устройства, такие как телевизоры и компьютеры.

В связи с тем, что переменный ток, проще и экономичнее по способу производства и передачи на различные расстояния, он стал основой электрификации объектов. Производят переменный ток на различных электростанциях, с которых посредством проводников, то поступает к потребителю.

Постоянный ток, получают при преобразовании переменного тока или путем химических реакций (например, щелочная батарейка). Для преобразования, используют трансформаторы тока.

Какой уровень напряжения является допустимым для человека: особенности

Для того чтобы знать, какие значения электрического тока являются допустимыми для человека, составлены соответствующие таблицы, в которых указаны величины переменного и постоянного тока и время.

Параметры воздействия электрического тока:

  • Сила;
  • Частота;
  • Время;
  • Относительная влажность.

Допустимое напряжение прикосновения и ток, которые протекают через человеческое тело в различных режимах электроустановок, не превышают следующих значений.

Переменный ток 50 Гц, должен быть не более 2,0 Вольт и силой тока 0,3 мА. Ток с частотой 400 Гц напряжением 3,0 Вольт и сила тока 0,4 мА. Постоянный ток напряжением 8 и силой тока 1 мА. Безопасное воздействие тока с такими показателями, до 10 минут.

Обратите внимание! Если электромонтажные работы производятся при повышенных температурах и высокой относительной влажности, данные значения уменьшаются в три раза.

В электроустановках с напряжением до 100 Вольт, которые глухо заземлены, или изолирована нейтраль, безопасные токи прикосновения следующие.

Переменный ток 50 Гц с разбросом напряжения от 550 до 20 Вольт и силой тока от 650 до 6 мА, переменный ток 400Гц с напряжением от 650 до 36 Вольт, и постоянный ток от 650 до 40 Вольт, не должен воздействовать на тело человека в пределах от 0,01 до 1 секунды.

Опасный переменный ток для человека

Считается, что для жизни человека, переменный электрический ток наиболее опасен. Но это при условии, если не вдаваться в подробности. Многое зависит от различных величин и факторов.

Факторы, влияющие на опасное воздействие:

  • Продолжительность контакта;
  • Путь прохождения электрического тока;
  • Сила тока и напряжение;
  • Какое сопротивление тела.

Согласно правилам ПУЭ, самый опасный ток для человека, это переменный с частотой, которая варьируется в пределах от 50 до 500 Гц.

Стоит отметить, что при условии, сила тока не превышает 9 мА, то любой, может сам освободиться от токоведущей части электроустановки.

Если данное значение превышено, то для того чтобы освободиться от воздействия электрического тока, человеку нужно стронная помощь. Связано это с тем, что ток переменный, намного сильнее способен возбуждать нервные окончания, и вызывать непроизвольные судороги мышц.

Например, при касании токоведущей части устройства внутренней частью ладони, мышечная судорога будет сильнее сжимать кулак, с течением времени.

Почему еще переменный ток опаснее? При одинаковых значениях силы тока, переменный в несколько раз сильнее воздействует на организм.

Так как, переменный ток воздействует на нервные окончания и мышцы, то стоит понимать, что этим, том влияет и на работу сердечной мышцы. Из чего следует, что при контакте с переменным током, возрастает риск летального исхода.

Важным показателем, является сопротивление тела человека. Но при ударе переменным током с высокими частотами, сопротивление тела значительно снижается.

Какой величины опасен для человека постоянный ток

Опасным для человека, может быть и постоянный ток. Конечно переменный, в десятки раз опаснее. Но если рассматривать токи в различных величинах, то постоянный может быть намного опаснее переменного.

Воздействие постоянного тока на человека разделяют:

  • 1 порог;
  • 2 порог;
  • 3 порог.

При воздействии постоянного тока перового порога (ток ощутимый), начинают немного дрожать руки, и появляется легкое покалывание.

Второй порог (ток не отпускающий), в пределах от 5 до 7 мА, является наименьшим значением, при котором человек, не может освободиться от проводника самостоятельно.

Данный ток считается не опасным, так как сопротивление тела человека выше, чем его значения.

Третий порог (фибрилляционный), при значениях от 100 мА и выше, ток сильно воздействует на организм и на внутренние органы. При этом ток при данных значениях, способен вызвать хаотичное сокращение сердечной мышцы и привести к его остановке.

На силу воздействия, влияют и другие факторы. Например сухая кожа человека, обладает сопротивлением от 10 до 100 кОм. Но если касание произошло мокрой поверхностью кожи, то сопротивление значительно снижается.

Этот фактор относится и к повышенной влажности, которая влияет на особенности проведения электромонтажных работ.

Что такое постоянный и переменный ток: разница (видео)

Теперь, вы сможете понять, в чем разница между током постоянным и переменным. Конечно различий много, но становится понятно, что при наличии определенных факторов, опасность представляют оба вида.

Разница между переменным и постоянным током – Разница Между

Разница Между 2021

Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки вре

Содержание:

Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки постоянных магнитов на провод. Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов.

Переменный ток и постоянный ток – это две различные формы токов, которые используются для передачи электроэнергии по всему миру. Оба тока одинаковы, так как для передачи электричества используются потоки электронов, но на этом сходство заканчивается. Переменный ток – это наиболее распространенный тип электроэнергии, который передается электростанциями и используется для питания зданий, офисов, домов и т. Д.

Постоянный ток (DC) был преобладающей формой электричества, которое использовалось в 19го века и был также использован в первой коммерческой передаче электроэнергии Томаса Эдисона. Постоянный ток означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки на провод постоянных магнитов, которые помогают электронам оставаться на устойчивом пути. Первоначально постоянный ток назывался «гальваническим током». Постоянные токи протекают в проводниках, таких как провода, но также могут проходить через полупроводники, изоляторы или даже через вакуум. Постоянные токи могут быть получены с использованием таких источников, как батареи, термопары и солнечные элементы. Химическая энергия внутри батареи обладает достаточной мощностью, чтобы толкать электроны, а не тянуть, в результате чего энергия течет в одном направлении.

Постоянный ток чаще всего встречается в приложениях, которые требуют малой мощности и могут работать от батарей или солнечных батарей. Однако другое популярное приложение, в котором используются постоянные токи, – это автомобили, в которых большинство автомобильных деталей работают от постоянного тока и преобразовываются из переменного тока с использованием генераторов переменного тока. DC был прекращен как основной метод питания домов и зданий, поскольку они не могли путешествовать на большие расстояния без потери энергии.
Мощность и напряжение в постоянном токе остаются неизменными в стабильных условиях, в результате чего скорость передачи энергии источником остается неизменной. Напряжения постоянного тока имеют ненулевую временную кривую напряжения и всегда положительны, но могут увеличиваться и уменьшаться.

Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов. Сегодня переменный ток используется для передачи электроэнергии и электроэнергии в домах, офисах и т. Д., Так как его легче транспортировать. Никола Тесла заслужил звание за разработку основ электроснабжения переменного тока благодаря своим линиям электропередачи переменного тока. Мощность переменного тока обычно течет в форме синусоидальной волны, но также может течь в форме трапеции, треугольника и квадрата. Радио и аудио сигналы являются примерами переменного тока.

Электростанции производят переменные токи с помощью вращающихся турбин, которые создают магнитные поля, которые толкают и тянут электроны, заставляя их чередоваться в потоке. Постоянное нажатие и вытягивание постоянно изменяет магнитную поляризацию, в результате чего электроны также меняют направление. Напряжение переменного тока также постоянно изменяется между положительным и отрицательным. Переменный ток подает ток и напряжение в синусоидальной форме волны, что приводит к пиковому значению (VP) и минимальному значению. Постоянное изменение направления известно как частота тока и измеряется в герцах. AC обычно имеет частоту 50 Гц или 60 Гц, в зависимости от страны.

Переменный ток стал основным методом питания по сравнению с постоянным током из-за возможности легко производить и передавать. Переменные характеристики переменного тока сводят к минимуму потери энергии из-за сопротивления в проводниках при передаче на большие расстояния. Напряжения переменного тока легче производить и передавать по сравнению с напряжениями постоянного тока. Конденсатор пропустит напряжение переменного тока, но заблокирует сигнал постоянного тока, в то время как индуктор пропустит напряжение постоянного тока и заблокирует сигнал переменного тока. Мощность переменного тока больше подходит для таких устройств, как лампы и обогреватели, в то время как постоянный ток больше подходит для электронной схемы. Переменный ток может быть преобразован из одного напряжения в другое с помощью трансформатора, тогда как постоянный ток может быть преобразован в переменный ток с помощью электродвигателя-генератора или электронной инверторной цепи.

Постоянный ток (DC)

Переменного тока (переменного тока)

Передача энергии

Напряжение постоянного тока не может путешествовать очень далеко и начинает терять энергию

Безопаснее переносить на большие расстояния по городу и обеспечить большую мощность

Поток электронов

Течет в одном направлении

Продолжайте переключать энергию вперед и назад

Вызывает поток электронов

Установленные магниты на проводе

Вращающиеся магниты вдоль провода

частота

0 частота

От 50 Гц до 60 Гц; в зависимости от страны

направление

Электричество течет в одном направлении

Энергия постоянно меняет направление

Текущий

Это ток постоянной величины

Это величина, изменяющаяся со временем

Типы

Чистый и пульсирующий

Синусоидальный, Трапециевидный, Треугольный, Квадратный,

Нашел в

Аккумуляторы, солнечные батареи

Генератор переменного тока и электростанции

Фактор силы

Всегда 1

Лежит между 0 и 1

Сравнение постоянного и переменного токов

Deprecated: Non-static method Date_TimeZone::isValidID() should not be called statically, assuming $this from incompatible context in /home/carkey/hitech/hardtech/kernel/pear/date/Date.php on line 576

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Notice: Undefined offset: 1 in /home/carkey/hitech/hardtech/kernel/common/common/common.class.php on line 343

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135

Deprecated: mysql_escape_string(): This function is deprecated; use mysql_real_escape_string() instead. in /home/carkey/hitech/hardtech/kernel/common/db/mysql.class.php on line 135


­Переменный ток подобно постоянному производит тепловое, магнитное и химическое действия. В этом параграфе будут рассмотрены сходства и отличия в действиях постоянного и пе-ременного токов.

1. Тепловое действие переменного тока
Переменный ток, как и постоянный, представляет собой движение электронов по проводнику, только при постоянном токе электроны движутся все время в одном направлении, а при переменном совершают колебательное движение. Понятно, что при этом происходят столкновения электронов с атомами проводника. Поэтому переменный ток производит такое же тепловое действие, как и постоянный. Тепловое действие переменного тока используется в различных электронагревательных приборах.

2. Магнитное действие переменного тока
Переменный ток создает переменное магнитное поле. Когда ток увеличивается, магнитное поле усиливается, его магнитные силовые линии растягиваются; когда ток уменьшается, ослабевает и магнитное поле, а его магнитные силовые линии сжимаются; когда ток равен нулю, исчезает и магнитное поле; когда ток меняет направление, меняет направление и магнитное поле. Переменное магнитное поле никак не влияет на качество печати каталогов и его нельзя наблюдать при помощи магнитной стрелки, так как стрелка обладает инерцией: она не успевает следовать за изменениями магнитного поля и остается на месте.

3. Химическое действие переменного тока
Переменный ток, как и постоянный, способен проходить через электролиты и разлагать их. Однако его химическое действие значительно отличается от химического действия постоянного тока. Так, если при разложении воды постоянным током на положительном полюсе выделяется газ кислород, а на отрицательном – газ водород, то при разложении воды переменным током на обоих полюсах выделяется смесь этих газов. Для химических целей переменный ток не применяется.
4. Физиологическое действие переменного тока. Переменный ток, применяемый в промышленности, производит такое же физиологическое действие, как и постоянный ток. Переменный ток сверхвысокой частоты, применяемый в радиолокации, проходит только по коже человека и поэтому может вызвать только местные ожоги. ­

Наша продукция

Warning: Unknown: Failed to write session data (files). Please verify that the current setting of session.save_path is correct (/opt/alt/php56/var/lib/php/session) in Unknown on line 0

Значит переменный ток. Переменное напряжение. Основные отличия переменного и постоянного тока

Постоянный и переменный то к

В предыдущей статье, что такое электрический ток ты узнал, как происходит упорядоченное движение электронов в замкнутой цепи. Теперь, я расскажу тебе, каким бывает электрический ток. Электрический ток бывает постоянный и переменный. Чем отличается переменный ток от постоянного? Характеристики постоянного тока.

Постоянный ток

Direct Current или DC так по-английски обозначают электрический ток который на протяжении любого отрезка времени не меняет направление движения и всегда движется от плюса к минусу. На схеме обозначается как плюс (+) и минус (-), на корпусе прибора, работающего от постоянного тока наносят обозначение в виде одной (-) или (=) полос. Важная особенность постоянного электрического тока – это возможность его аккумулирования, т.е. накопления в аккумуляторах или получения его за счет химической реакции в батарейках. Множество современных переносных электрических устройств, работают, используя накопленный электрический заряд постоянного тока, который находится в аккумуляторах или батарейках этих самых устройств.

Переменный ток

(Alternating Current) или АС английская аббревиатура обозначающая ток, который меняет на временном отрезке свое направление и величину. На электрических схемах и корпусах электрических аппаратов, работающих от переменного тока, символ переменного тока обозначают как отрезок синусоиды «~». Если говорить о переменном токе простыми словами , то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное. На рисунке обратное направление – это область графика ниже нуля.

Теперь давай разберемся, что такое частота. Частота это – период времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц) . В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. Эта ве6личина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние. Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду – это и есть, частота переменного тока. Для чего нужен такой “переменчивый “ переменный ток, почему не использовать только постоянный? Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов. Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.


Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

Преобразование переменного тока в постоянный

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” . Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.


что такое диод и как работает диодный мост , ты можешь узнать в моих следующих статьях.

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению — это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

Электрический ток — это то, без чего не мыслима сегодня наша жизнь, и без чего люди могли обходиться еще каких-то 150 лет назад. Все, на чем строится бытие современного человека, основано на токе. Телевизоры, компьютеры, освещение, холодильники и стиральные машины имеют в своей основе явление электропроводности, и заменить его чем-то другим пока не представляется возможным.

Что же представляет из себя ток и какие бывают его виды, мы рассмотрим в этой статье.

Что такое ток

Итак, электрический ток — это целенаправленное движение электрических зарядов под действием электрического поля, а вернее, не самих зарядов, а их носителей, ведь заряды не могут существовать сами по себе, без какой-либо материальной основы. Одна движущаяся заряженная частица еще не ток, а вот две — уже ток. Правда, не ясно на каком расстоянии они должны быть друг от друга, чтобы быть током. Если, предположим, два электрона на расстоянии в километр друг от друга движутся в одну сторону с одинаковой скоростью, будут ли они током? Будут, но не током проводимости, а током конвекции.

По характеру токи бывают двух видов — постоянный и переменный, а протекать они могут в проводниках, в полупроводниках, в жидкостях и газах, и даже в вакууме.

Основными параметрами тока можно назвать напряжение и силу тока, а параметром проводящей среды — сопротивление, или проводимость.

Что нужно для того, чтобы тек ток

Для каждой среды минимальные условия протекания электрического тока свои. Например, для электролита достаточно, чтобы была лишь разность потенциалов, тогда как для проводящей электрической цепи необходима еще и замкнутость контура на себя . В космосе же могут просто пролетать две заряженные частицы, даже на огромном расстоянии друг от друга, и это будет ток, ибо в определении понятия «электрический ток» нет критерия удаленности зарядов, но всякое направленное движение заряженных частиц под действием электрического поля есть электрический ток.

Давайте разберем, что значит, под действием электрического поля. Дело в том, что в природе не существует изолированного электрического поля, ибо любое электрическое поле порождает магнитное и наоборот. В итоге, может существовать лишь электромагнитное поле, поэтому любое электромагнитное поле, разогнавшее заряженные частицы, автоматически порождает электрический ток, даже если его источником был постоянный магнит.

Что такое постоянный ток

Постоянный ток — это такое направленное движение заряженных частиц, параметры которого не меняются со временем . То есть, если сила тока, напряжение и сопротивление электрической цепи постоянны, а также ток течет все время только в одну сторону, то такой ток постоянен.

Для того, чтобы постоянный ток проходил в металле, необходимо, чтобы источник постоянного напряжения был замкнут на себя при помощи проводника (этого самого металла).

Постоянный ток используется сегодня практически во всей электронной технике, такой как компьютеры, мобильные телефоны, и вообще все, где есть большие блоки питания — это адаптеры, которые превращают переменный ток в постоянный.

Для того, чтобы получить постоянный ток, можно использовать химический источник энергии, который называют гальваническим элементом, можно применить аккумулятор а можно пользоваться генератором постоянного тока, который сегодня используют на производствах и на некоторых специфических объектах энергетики.

Переменный ток

Переменный ток в проводниках характеризуется тем, что он меняет свое направление и/или величину силы тока и напряжения, причем, он может делать это как периодически, так и не периодически.

Переменный ток запатентовал Никола Тесла и с тех пор он прочно вошел в нашу жизнь. Сейчас по проводам линий электроснабжения течет переменный ток, как и по нашим розеткам, и почти все бытовые электроприборы работают на переменном токе. Получить переменный ток можно при помощи специального источника, либо при помощи генератора (машины, которая преобразует движение в электричество).

Основные отличия переменного и постоянного тока

Давайте ответим на вопрос, почему вообще появилась необходимость создания переменного тока, ну был себе постоянный ток и был бы, ничего же плохого в нем не было. А дело вот в чем. Переменный ток нужен был для того, чтобы создать принципиально новый способ связи, такой, которого до этого еще не было на Земле — беспроводной способ передачи информации на расстоянии. Видимо почтовые голуби и телеграфы с телефонами уже не могли удовлетворять растущих потребностей цивилизации, а постоянный ток не может позволить электромагнитным волнам распространяться в пространстве . И в этом есть первое отличие этих двух видов токов.

Переменный ток может вызвать распространение электромагнитны волн, а постоянный нет. Все антенны существуют благодаря переменному току.

Во-вторых, появилась необходимость передавать электроэнергию на сверхдальние расстояния , а при транспортировке постоянного тока появлялись большие индукционные потери. Переменный ток значительно сокращает эти потери, и в этом второе важное отличие.

При передаче переменного тока по проводам, потерь меньше, чем при передаче постоянного.

В -третьих, переменный ток дает возможность конденсатору и катушке накапливать заряд, в результате чего появляется, как бы, батарейка, которой не нужны внутри электролиты. А обычные батарейки и аккумуляторы, наподобие тех, что стоят в мобильных телефонах и ноутбуках заряжаются от постоянного тока. И это третье отличие.

Переменный ток может заряжать только конденсатор и катушку, а постоянный — химический источник энергии(аккумулятор).

Люди давно привыкли к благам электричества и многим все равно, какой ток в розетке. На планете 98% вырабатываемой электроэнергии – это переменный ток. Его намного легче производить и передавать на значительные расстояния, чем постоянный. При этом напряжение может многократно изменяться по величине в сторону понижения и повышения. Сила тока существенно влияет на потери в проводах.

Передача электроэнергии на расстояние

Параметры домашней сети всегда известны: переменный ток, напряжение 220 вольт и частота 50 герц. Они подходят преимущественно для электродвигателей, холодильников и пылесосов, а также ламп накаливания и многих других приборов. Многие потребители работают при постоянном напряжении в 6-12 вольт. Особенно это относится к электронике. Но питание приборов должно приводиться к одному типу. Поэтому для всех потребителей ток в розетке должен быть переменным, с одним напряжением и частотой.

Различие между токами

Переменный ток периодически изменяется по величине и направлению. С генераторов электростанции выходит переменный ток с напряжением 220-400 тыс. вольт. До многоэтажного дома оно снижается до 12 тыс. вольт, а затем на трансформаторной подстанции преобразуется до 380 вольт.

Ввод в частный дом может быть трехфазным или однофазным. Три фазы заходят в многоэтажный дом, а затем в каждую квартиру с межэтажного щитка, через снимается 220 вольт между нейтральным проводом и фазой.

Схема подключений в квартире от однофазной сети переменного тока

В квартире напряжение подается на счетчик, а с него поступает через отдельные автоматы на соединительные коробки каждого помещения. С коробок делается разводка по комнате на две цепи осветительных приборов и розеток. В схеме рисунка на каждое помещение приходится по одному автомату. Возможен другой способ подключений, когда на осветительную и розеточную цепи устанавливается по одному защитному устройству. В зависимости от того, на сколько ампер рассчитана розетка, она может быть в группе или к ней подключается отдельный автомат. Постоянный ток отличается тем, что его направление и свойства не изменяются со временем. Он применяется во всей электронике дома, светодиодной подсветке и в бытовых приборах. При этом многие не знают, какой ток в розетке. Он приходит из сети переменным, а затем преобразуется в постоянный внутри электроприборов, если в этом есть необходимость.

Если сделать схему снабжения квартиры постоянным током, обратное его преобразование в переменный обойдется значительно дороже.

Преобразователь постоянного тока

Параметры розеток

Определяющими характеристиками для розеток являются уровень защиты и контактная группа. Для хозяина квартиры при выборе розетки необходимо учитывать:

  • место установки: внешняя, скрытая, в помещении или снаружи;
  • форма и соответствие друг другу вилки и розетки, безопасность использования;
  • характеристики сети, особенно, сколько ампер через нее может проходить.

Требования к соединениям

Для подключения электроприбора к сети розетка с вилкой являются соответственно источником и приемником энергии, образуя штепсельное соединение. К нему предъявляются следующие требования.

  1. Надежный контакт. Слабое соединение приводит к разогреву и выходу его из строя. Важно также обеспечить надежную фиксацию от самопроизвольного отключения. Здесь удобно применять пружинящие контакты в розетке.
  2. Изоляция токонесущих частей друг от друга.
  3. Защита от прикосновения руками или разными предметами к деталям, находящимся под напряжением. Для защиты от детей в розетках предусматриваются специальные шторки, открывающиеся только тогда, когда вставляется вилка.
  4. Обеспечение полярности при подключении. Это важно, если через соединение течет постоянный ток или устройство применяется в сочетании с однополюсным выключателем. Конструкция розетки не допускает неправильного подключения.
  5. Наличие заземления для приборов 1 класса защиты. В розетках важно правильно подключить заземление.

В зависимости от условий эксплуатации розетки выполняют с разными уровнями защиты, которые обозначаются кодом IP и следующими за ним двумя числами. Первое (0-6) означает, насколько устройство не допускает попадание внутрь предметов, пыли и т.п. Следующее (0-8) предусматривает защиту от воды. Если розетка обозначена кодом IP68, значит, она имеет самую высокую защиту от внешних воздействий.

По типам изделия обозначаются латинскими буквами. Отечественные выпускаются без заземления (С) и с заземлением (F).

Разновидности розеток

Приборы группы AC (~) предназначены для переменного тока. Постоянный ток обозначается DC (-).

Главным показателем является сила тока, которая допускается для той или иной розетки. Если на ней есть обозначение 6 А, то суммарная подключаемая нагрузка не должна превышать указанного количества ампер. При этом не имеет особого значения, переменный ток через нее проходит или постоянный.

Сколько нагрузки выдержит соединение, оценивают по общей мощности всех подключенных приборов. Для таких потребителей, как микроволновая печь, посудомоечная или стиральная машина используются отдельные розетки не менее чем на 16 ампер с обозначением типа тока. Особое место занимает электроплита, для которой сила номинального тока составляет 25 ампер или больше. Ее следует подключать через отдельное УЗО. За основу берется номинальный ток – количество ампер, которое способна пропустить розетка в течение длительного времени.

Ампер – это единица измерения, по которой измеряется сила тока. Если указана только паспортная мощность, допустимый ток составит I = P/U, где U = 220 вольт. Тогда при мощности 2200 ватт сила тока будет равна 10 ампер.

Обратите внимание на подключение к розеткам электроприборов через удлинители. Здесь легко можно ошибиться с определением, сколько потребуется суммарной мощности нагрузки. Кроме того, удлинитель также должен соответствовать предъявляемым требованиям, поскольку у него имеются свои розетки с маркировкой.

Для переменного тока полярность в штепсельных соединениях особенно не нужна. Фазу обычно находят, если надо подключать к светильникам автомат или однополюсный выключатель. При их отключении прикосновение к нулевому проводу будет не таким опасным.

Розетки расширенной функциональности

Сейчас выпускают новые типы розеток с новыми функциями:

  1. Встроенные таймеры отключения.
  2. Переключение типа тока.
  3. С индикацией величины нагрузки (цвет меняется от зеленого до красного).
  4. Со встроенным УЗО.
  5. С автоматической блокировкой.

Проверка подключения

Напряжение проверяется в розетке подключением вольтметра или тестера. При его наличии прибор укажет, сколько в ней вольт.

Тестер напряжения в розетке

Сила тока может определяться амперметром, подключенным последовательно с работающей нагрузкой.

Электрики проверяют наличие напряжения индикатором. Однополюсный – выполняется в виде отвертки с лампочкой. С его помощью можно найти фазу, но подключение нулевого провода он не покажет. Это можно сделать двухполюсным индикатором, подключив его между фазой и нулем. Легко можно проверить напряжение в розетке контрольной лампой, которому она должна соответствовать.

Говоря о постоянном токе (см. раздел «Про ток»), мы выяснили, что он протекает в одном направлении – от плюса источника к минусу(так было принято, хотя на самом деле наоборот). Однако в большинстве случаев приходится иметь дело с током переменным. При переменном токе электроны движутся не в одном направлении, а попеременно то в одном, то в другом, меняя свое направление. Поэтому, когда осветительная лампа включена, электроны в ее накаленной нити(да и в проводах тоже)движутся то в одну, то в другую сторону. Это движение условно показано на рис.1 и рис.2. Попробуйте пробежаться то в одну, то в другую сторону. Нетрудно догадаться, что при таком движении, прежде чем изменить направление движения, нужно сначала его замедлить, потом застыть на месте, а уж потом ринуться в другую сторону. Какая взаимосвязь с током? Перед тем как изменить движение, электроны должны притормозить(всё это мы рассматриваем в замедленном времени). Значит ток уменьшится, а лампа должна уменьшить яркость. А уж когда они остановятся перед изменением движения – и вовсе должна погаснуть. Но мы этого не видим. Почему? Потому что накаленная нить имеет тепловую инертность и за долю секунды не может остыть. Поэтому мигания мы не видим. Однако, каждый из нас слышал жужжание работающего трансформатора, что и связано с попеременным направлением движения тока.

А теперь стоит задуматься. Означает ли это, что за долю секунды электроны от электростанции доходят до дома, а за следующую долю секунды – обратно? Ранее, в разделе«Про ток» мы выяснили, что электрическое поле в проводниках распространяется со скоростью 300000км/с., а сами электроны движутся в проводниках со скоростью примерно 0,1мм/с. Но за 1/100 часть секунды (именно столько длится один полупериод, в течение которого электроны движутся в одну сторону) электроны только успевают переместиться в одном направлении, как электрическое поле начнет действовать в противоположном направлении. Вот почему электроны отклоняются то в одну, то в другую сторону и не покидают, так сказать, предела наших жилищ. То есть, у вас в доме(квартире) есть свои «домашние» электроны. Если мы могли бы замедлить время и включили бы в розетку вольтметр параллельно нагрузке, т.е. лампе (рис.3) или амперметр последовательно через нагрузку (рис.4), то увидели бы как стрелка прибора плавно изменяет свое показание от нуля до максимального значения при замере напряжения (рис.3) или тока (рис.4). На рисунке рядом это продемонстрировано. В действительности мы, конечно, этого не увидим. Причина в инертности стрелки, из-за которой она не может произвести сотню за секунду. Кстати, к рис.3 и рис.4 приведен пояснительный рис.5, где уж точно без особых усилий можно увидеть, как подключаются вольтметр и амперметр при измерении напряжения и тока в электрической цепи. Где вольтметр, а где амперметр, я думаю, можно без труда догадаться. На схемах они обозначаются как V и А соответственно.

Итак, первое, что необходимо знать – это то, что изменения тока и напряжения в электрической цепи происходят по так называемому синусоидальному закону. Второе – любое синусоидальное колебание (ток или напряжение) характеризуются следующими важными величинами:

Период Т – время совершения одного полного колебания. Половина этого времени называется полупериодом. Очевидно, что в один полупериод ток течет(ну или как мы оговаривали – электроны движутся) в одном направлении, которое условно можем принять за положительное, а в другой полупериод он течет в другом направлении, которое можем принять за отрицательное. На графиках положительный полупериод будет представлен верхней полуволной над осью Х, а отрицательный – нижней. Говоря про нашу сеть, можно указать, что период переменного тока Т = 1/50сек – 0,02сек.

Частота f – это число колебаний в секунду. Теперь давайте подсчитаем. Если одно колебание у нас происходит за время периода Т, которое равно 0,02сек, то тогда за одну секунду у нас произойдет 50 колебаний (1/0,02=50). А одно колебание представляет собой движение электронов сначала в одну сторону, потом в другую(два полупериода). Т.е. за 1сек электроны будут двигаться поочередно то в одну то в другую сторону 50раз. Вот вам и наша частота тока в сети, которая равна 50Гц (Герц).

Амплитуда – наибольшая величина тока(Imах) или напряжения (Umах=310В) за время периода Т. Очевидно, что за один период синусоидальный ток и напряжение достигают два раза своей максимальной величины.

Мгновенное значение – мы уже знаем, что переменный ток непрерывно изменяет свое направление и величину. Величина напряжения в данный момент называется мгновенным значением напряжения. Это же относится и к величине тока.

В качестве иллюстрации на рис.6 указаны несколько мгновенных значений (200В, 300В, 310В, – 150В, – 310В, – 100В) величины напряжения в электрической цепи в течение одного периода. Видно, что в начальный момент напряжение равно равно нулю, после чего постепенно нарастает до 100В, 200В и т.д. Достигнув максимального значения 310В, напряжение начинает постепенно уменьшаться до нуля, после чего изменяет свое направление и снова возрастает, достигая величины минус 310В (- 310В) и т.д. Если кто-то с трудом может себе представить, что такое смена направления, может представить себе, что плюс и минус в розетке меняются местами – т.е. если мы условно примем ноль(землю) за минус, а фазу за плюс. И происходит это 50 раз в секунду. Ну, вот где-то примерно так…

Действующее значение

Итак, зададимся вопросом – а какому постоянному напряжению равно по своему действию наше переменное напряжение в сети, показанное на рис.6? Теория и практика показывают, что оно равняется постоянному напряжению величиной 220В – рис.7. Взять это на веру не так уж и сложно, поскольку несложно увидеть, что рассматриваемое в течение одного периода напряжение имеет значение 310В только в два момента, а в остальное время оно меньше. Так как наше синусоидальное напряжение изменяется непрерывно, то целесообразно было ввести такое понятие как – действующее напряжение . Ведь именно по какому-либо конкретному значению напряжения(или тока), а не его меняющемуся значению мы можем «прикинуть» его силу. Так вот, под действующим значением переменного тока (ну или напряжения) мы понимаем такой постоянный ток, который за то же самое время совершает ту же работу (или выделяет такое же количество тепла), что и данный переменный ток.

Поэтому, наша обыкновенная лампочка (или, например, обогревательный прибор) будет одинаково работать как при переменном напряжении, изменяющегося от нуля до 310В, так и при постоянном напряжении 220В. А 12-вольтовая лампочка будет одинаково светить как от источника переменного напряжения величиной 12В(изменяющегося от нуля до 16,8В), так и от любой батарейки или аккумулятора(а они являются, как известно, источниками постоянного напряжения).

Итак, запомните!!!
Электрический ток(напряжение), который периодически изменяет свое направление и величину, называется переменным током. Любой переменный ток характеризуется в основном своей частотой, амплитудой и действующим значением;
Приборы, предназначенные для измерения переменного тока, показывают его действующее значение;
Напряжение измеряют вольтметром(или комбинированным прибором – авометром), ток – амперметром(или комбинированным прибором – авометром). Также ток можно измерять так называемыми токовыми клещами . Служат они для бесконтактного измерения тока – рабочая часть прибора образует кольцо вокруг измеряемого провода и по величине электромагнитного поля, действующего на рабочую часть прибора, выводится информация на его небольшой дисплей о величине протекающего тока. Авометр – это комбинированный прибор(его в простонародье еще называют просто тестером), который полностью в своем техпаспорте называется ампервольтомметром и служит для измерения и тока, и напряжения, и сопротивлений. А цифровые модели могут измерять и частоту напряжения(тока), и емкости конденсаторов и другие вещи – это уж как задумает разработчик;
Зная значение (действующее) переменного напряжения, всегда можно узнать его максимальное значение (не забудьте – оно меняется по синусоидальному закону). А связь здесь такая – Umax = 1,4U , где U – действующее значение, а Umax- максимальное значение (амплитуда).

В чем разница между сваркой переменным и постоянным током? – Всё для сварки

Если вы уже работали со сваркой или хотя бы немного знакомы с ней, то, скорее всего, слышали термины “AC” и “DC”. AC и DC – это различные типы токов, которые используются в процессе сварки. Поскольку при сварке используется электрическая дуга, создающая тепло, необходимое для расплавления металла, ей необходим стабильный ток с различной полярностью, которая зависит от свариваемого материала.

Чтобы сделать качественный сварной шов, для начала нужно понять, что означают эти два тока на сварочном аппарате, а также на электродах.

Но сначала: в чем разница между сваркой переменным и постоянным током?

Сварка DC и AC относится к полярности тока, проходящего через электрод аппарата. AC означает переменный ток, а DC – постоянный. Прочность и качество сварного шва будут зависеть от полярности электрода.

Что такое полярность?

Скорее всего, вы знакомы с термином “полярность”.

Электрические цепи имеют полюса – отрицательный и положительный. В цепи с постоянным током (DC) движение электронов идет в одном направлении от плюса к минусу. Применительно к сварке отрицательный полюс получает меньше тепловой нагрузки.

Переменный ток (AC), как следует из названия, меняется в направлении, в котором он идет. Половину времени он идет в одном направлении, а другую половину – в противоположном. Переменный ток меняет свою полярность примерно 120 раз в секунду при токе 60 Гц.

Прямая полярность при сварке постоянным током дает более глубокое проплавление металла. А обратная полярность отлично подходит для сварки тонколистовых заготовок за счет меньшего тепловложения.

Покрытые электроды иногда могут использовать любую полярность, в то время как некоторые будут работать только на одной.

Качественный сварной шов предполагает правильное проплавление и равномерное наплавление валика, а для этого необходимо использовать правильную полярность. При неправильной полярности вы не только получаете плохое проплавление и неравномерное образование валика, но и чрезмерное разбрызгивание и перегрев, а в некоторых случаях можно даже потерять контроль над дугой.

Электрод также может быстро сгореть.

Большинство сварочных аппаратов для дуговой сваркиимеют обозначенные клеммы или направления, чтобы сварщики точно знали, как настроить сварочный аппарат на переменный или постоянный ток. Некоторые сварочные аппараты также используют переключатели для изменения полярности, а некоторые требуют переподключение клемм кабеля.

Сварка различными токами

Различные типы сварных швов требуют разного вида токов из-за природы их возникновения и оказываемого ими воздействия.

Сварка переменным током

Сварка переменным током считается уступающей сварке постоянным током и поэтому используется редко. Сварочные аппараты переменного тока чаще всего используются только при отсутствии аппаратов постоянного тока.

Сварку переменным током чаще всего используют для соединения толстолистового металла, быстрой наплавки и TIG-сварки с высокой частотой, хотя иногда она также используется для устранения проблем, связанных со сварочной дугой. Проблемы с дугой возникают, когда она прерывает сварное соединение, которое должно свариваться при более высоких уровнях тока, что происходит в основном при работе с электродами, имеющими большой диаметр.

Сварка переменным током также может использоваться для намагниченных металлов, что невозможно при сварке постоянным током. Постоянное изменение направления тока при сварке переменным током означает, что намагниченный металл не будет влиять на электрическую дугу.

Переменный ток также лучше подходит при работе с высокими температурами. Так как он обеспечивает высокий уровень тока, что создает глубокий провар, и поэтому используется для сварки при строительстве кораблей.

Сварка переменным током хорошо подходит для ремонта оборудования, так как многие из них имеют намагниченные поля и участки, подвергшиеся ржавчине.

Однако, нестабильность направления при сварке переменным током также может быть недостатком в том, что процесс имеет меньшую производительность, чем при сварке постоянным током.

Сварка постоянным током

Сварка постоянным током, как и сварка переменным током, имеет свои преимущества, и используется в случаях, когда сварка переменным током не может обеспечить должного результата, например, вертикальная сварка, пайка одним припоем или TIG-сварка нержавеющей стали.

Сварка на постоянном токе имеет более высокую скорость осаждения, она лучше всего подходит для сварщиков, которым требуются большие размеры наплавленного слоя. Несмотря на то, что сварка переменным током обеспечивает лучшее проплавление, она имеет более низкую скорость осаждения, что может быть непригодно.

При сварке постоянным током образуется также меньше брызг, чем при сварке переменным током, что делает сварочный шов более равномерным и гладким. Постоянный ток также является более надежным, и поэтому с ним легче работать, так как электрическая дуга остается стабильной.

Сварка постоянным током часто используется для сварки тонких металлов. Оборудование, работающее с этим типом тока, также дешевле, что помогает сократить расходы.

Однако, несмотря на то, что само оборудование имеет более низкую стоимость, процесс фактического использования постоянного тока немного дороже.

Это происходит из-за того, что необходимо специальное оборудование для преобразования переменного тока на постоянный, потому что это не предусмотрено электрической сетью. Однако, поскольку постоянный ток лучше подходит для большинства видов сварочных процессов, эти затраты считаются необходимыми.

Хотя сварка постоянным током лучше для многих металлов, она не рекомендуется при работе с алюминием, так как для этого требуется выделение тепла высокой интенсивности, что невозможно при использовании постоянного тока. Кроме того, если при работе с постоянным током будет создаваться магнитное поле, то возрастет риск дугового разряда, что может быть опасно.

Какой электрод использовать?

Так как вид используемого тока влияет на полярность на электроде, надо учитывать используемый электрод.

Для сварки методом TIG чаще применяют постоянный ток прямой полярности. Иногда также используют ток обратной полярности или переменный ток. В этих случаях применяют вольфрамовые электроды с легирующими добавками для улучшения стабильности дуги.

Например, используют:

  • WP – вольфрамовые электроды для сварки на переменном токе;
  • WL-20 и WL-15 – легированные вольфрамовые электроды для сварки на постоянном и переменном токах.

Для ММА сварки в основном использую покрытые плавящиеся электроды.

В настоящее время производители выпускают электроды с четырьмя видами обмазки:

  • Кислое (маркировка “А”). В его составе железо и марганец в довольно большом объеме. Можно сваривать неочищенный металл.
  • Основное (маркировка “Б”). Эти электроды можно использовать для работы на переменном токе, но из-за малого потенциала ионизации не рекомендуется этого делать.
  • Рутиловое (маркировка “Р”). Лучше всего подходит для работы на переменном токе. Небольшое разбрызгивание металла и хорошее качество шва.
  • Целлюлозное (маркировка “Ц/С”). Подходит для работы на переменном и постоянном токе, но выдает много брызг металла.

Существует несколько различных видов электродов для сварки переменным током, но многие из них могут использоваться как для сварки переменным током, так и для сварки постоянным током.

Выбор правильной полярности и тока, а также правильного электрода может иметь решающее значение для выполнения хорошего сварного шва.

Сила тока постоянный и переменный ток. Переменный ток

Виды тока

Среди видов электрического тока различают:

Постоянный ток:

Обозначение (-) или DC (Direct Current = постоянный ток).

Переменный ток:

Обозначение (

) или AC (Alternating Current = переменный ток).

В случае постоянного тока (-) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.

В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «-».

В случае переменного тока (

) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.

При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты – герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.

Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.

Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами

Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.

О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.

Преобразователи переменного постоянного тока. Устройство.

Василий Сонькин

Если вдоль всего Садового кольца встанут люди, возьмутся за руки, и одновременно будут шагать в одну сторону, то через каждый перекресток будет проходить много людей. Это постоянный ток. Если же они будут делать пару шагов вправо, потом влево, через каждый перекресток пройдет много людей, но это будут одни и те же люди. Это переменный ток.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди – получается ток.

Генератор – как насос для воды, а провод – как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток – это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает – это и есть смена направлений движения. А 220 вольт – это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток – это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Что такое переменный ток и чем он отличается от тока постоянного

Переменный ток. в отличие от тока постоянного. непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами равномерное магнитное поле. т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки – нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя явление электромагнитной индукции. можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, – значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки – противоположного направления, которое принято называть отрицательным.

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Построение графика переменной ЭДС

Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой. а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока – самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.

Период, амплитуда и частота – параметры переменного тока

Переменный ток характеризуется двумя параметрами – периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um – общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока. однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i. е и u – общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени – T/4 его амплитудному значению. Ток также достигает своего амплитудного значения но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды. необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем.

Если мы имеем переменный ток. частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока – период, амплитуду и частоту. – которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.

Круговая частота обозначается буквой #969 и связана с частотой f соотношением #969 = 2#960 f

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается р а мка в 1 секунду, и выражает собой ско р ость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна #969 = 360°f.

Итак, мы пришли к выводу, что #969 = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2 #960 радиан, где #960 =3,14. Таким образом, окончательно получим #969 = 2 #960 f. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

Наш сайт в Facebook:

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

И . Прежде чем подробно разбирать эти термины следует вспомнить, что понятие электрического тока заключается в упорядоченном движении частиц, имеющих электрические заряды. Если электроны постоянно осуществляют движение в одном направлении, то ток носит название постоянного. Но, когда электроны в один момент времени двигаются в одном направлении, а в другой момент осуществляется движение в другом направлении, то это является упорядоченным движением заряженных частиц, двигающихся без остановки. этот ток называют переменным. Существенным различием между ними считают то, что у постоянного значения «+» и «-» постоянно находятся на одном определенном месте.

Что такое постоянное напряжение

В качестве примера постоянного напряжения служит обычная батарейка. На корпусе любой батарейки есть обозначения «+» и «-». Это говорит о том, что при постоянном токе эти значения имеют постоянное местоположение. У переменного наоборот, значения «+» и «-» изменяются через определенные короткие промежутки времени. Поэтому обозначение постоянного тока применяется в виде одной прямой линии, а обозначение переменного – в виде одной волнистой линии.

Отличие постоянного тока от переменного

Большинство устройств, использующих постоянный ток, не позволяют при подключении источника питания путать контакты, поскольку в таком случае прибор может просто выйти из строя. При переменном этого не произойдет. Если вставить вилку в розетку любой стороной, то прибор все равно будет работать. Кроме того, существует такое понятие, как частота переменного тока. Она показывает, сколько раз в течение секунду меняются местами «минус» с «плюсом». Например, частота в 50 герц означает, изменение полярности напряжения за секунду 50 раз.

На представленных графиках видно изменение напряжения в различные временные моменты. На графике слева, для примера показано напряжение на контактах лампочки карманного фонарика. На отрезке времени с «0» до точки «а» напряжение вообще отсутствует, так как фонарик выключен. В точке времени «а» возникает напряжение U1, которое не меняется в промежутке времени «а» – «б», когда фонарик включен. При выключении фонарика в момент времени «б» напряжение снова становится равным нулю.

На графике переменного напряжения можно наглядно увидеть, что напряжение в различных точках, то поднимается до максимума, то становится равным нулю, то падает до минимума. Это движение происходит равномерно, через одинаковые промежутки времени и повторяется до тех пор, пока не отключат свет.

Электрическим током называется перенос заряда или движение заряженных частиц между точками, с разными электрическими потенциалами. Переносить электрический заряд могут ионы, протоны и/или электроны. В повседневной жизни практически везде применяется движение электронов по проводникам. Обычно встречаются две разновидности электричества – переменное и постоянное. Важно знать, чем постоянный ток отличается от переменного.

Постоянный и переменный ток

Любое явление, которое нельзя увидеть или «пощупать» непосредственно, легче понять с помощью аналогий. В случае с электричеством можно рассмотреть воду в трубе как самый близкий пример. Вода и электричество текут по своим проводникам – проводам и трубам.

  • Объём протекающей воды – сила тока.
  • Давление в трубе – напряжение.
  • Диаметр трубы – проводимость, обратная сопротивлению.
  • Объём на давление – мощность.

Давление в трубе создаётся насосом – сильнее насос качает, давление выше, воды течёт больше. Диаметр трубы больше – сопротивление меньше, воды протекает больше. Источник выдаёт напряжение больше – электричества протекает больше. Провода толще – сопротивление меньше, ток выше.

Для примера можно взять любой химический источник питания – батарейку или аккумулятор. На его клеммах имеются обозначения полюсов: плюс или минус. Если к батарейке, через провода и выключатель подключить соответствующую лампочку, то она загорится. Что при этом происходит? Минусовая клемма источника испускает электроны – элементарные частицы, несущие отрицательный заряд. По проводам, через разъёмы выключателя и спираль лампы они движутся к положительной клемме, стремясь уровнять потенциал клемм. Пока цепь замкнута по разъёмам выключателя и батарейка не села – по спирали бегут электроны и лампочка горит.

Направление движения зарядов остаётся неизменным всё время – от минуса к плюсу. Это и есть постоянный ток, он может быть пульсирующим – слабеть или увеличиваться.

По многим причинам применение только постоянного напряжения нецелесообразно : взять хотя бы невозможность использовать трансформаторы. Поэтому к настоящему времени сложилась система подачи и потребления переменного напряжения питания, под которую и создаются бытовые приборы.

Существует простой ответ, какова разница между постоянным и переменным током. В этом примере с лампочкой на одной клемме источника питания напряжение всегда будет равно нулю. Это нулевой провод, а вот на другом – фазном, напряжение изменяется. И не только по величине, но и по направлению – с плюса на минус. Электроны не текут стройными рядами в одну сторону, наоборот мечутся вперёд-назад, одни и те же частицы пробегают по спирали накаливания туда-сюда и производят всю работу. Изменение направления движения электричества и даёт само понятие «переменный».

Дополнительные параметры сети

Помимо напряжения, силы, мощности и сопротивления/проводимости появляются два новых признака, описывающих процессы. Эти параметры являются обязательными, как и первые четыре. При изменении любого из них изменяются свойства всей цепи.

  • Форма.
  • Частота.

Большую роль играет вид графика изменения напряжения. В идеале он имеет вид синусоиды с плавными переходами от значения к значению. Отклонения от синусоидальной формы могут привести к снижению качества энергии.

Частота – это количество переходов из одного крайнего состояния в другое за определённое время. Европейский стандарт в 50 Гц (герц) означает, что напряжение меняет плюс на минус 50 раз за секунду, а электроны сто раз поменяют направление движения. Для справки: увеличение частоты в два раза приводит к четырёхкратному уменьшению габаритов устройств .

Если в розетке переменный ток 50 Гц и 220 В (вольт), то это значит, что максимальное напряжение питания в сети достигает 380 В. Откуда это? В постоянной сети значение напряжения неизменно, а при переменке оно то падает, то растёт. Вот эти 220 В и являются значением действующего напряжения синусоидального тока с амплитудой в 380 В. Потому так важна форма изменения значений, что при сильном отличии от синусоиды сильно изменится и действующее напряжение.

Практическое значение различий

Вот такой он, переменный и постоянный ток. В чем разница, разобраться не так уж сложно. Различие есть и очень большое. Источник постоянного тока не позволит подключить сварочный, да и любой другой, трансформатор. При расчёте изоляции или конденсаторов на пробой берётся не действующее, а максимальное значение напряжения. Ведь наверняка может возникнуть мысль: «а зачем в сети 220 вольт конденсаторы на 400?». Вот и ответ, в сети 220 В напряжение доходит и до 380 В при нормальной работе, а при небольшом сбое и 400 В не предел.

Ещё один «парадокс». Конденсатор имеет бесконечное сопротивление в сети постоянного тока, и проводимость в сети переменного, чем выше частота, тем меньше сопротивление конденсатора. С катушками иначе – увеличение частоты вызывает рост индуктивного сопротивления. Это их свойство используется в колебательном контуре – основе всей связи.

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток – отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное – в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).


Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.


Горизонтальная ось отображает угол поворота в градусах, вертикальная – величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)


Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле: . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.


Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.


Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

Разница между постоянным и переменным током

И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.

  1. В чем разница между переменным и постоянным током?
  2. Почему переменный ток используется вместо постоянного?
  3. Почему в домах используется переменный ток?
  4. Почему переменный ток лучше постоянного?
  5. Что означает AC DC в сексуальном плане?
  6. Почему в домах не используется постоянный ток?
  7. Может ли постоянный ток убить вас?
  8. Что лучше постоянного или переменного тока?
  9. Есть телефоны переменного или постоянного тока?
  10. Использует ли телевизор переменный или постоянный ток?
  11. Используется ли сегодня переменный или постоянный ток?
  12. Что безопаснее постоянного или переменного тока?

В чем разница между переменным и постоянным током?

Постоянный ток (DC) – это поток электрического заряда только в одном направлении…. Переменный ток (AC) – это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.

Почему переменный ток используется вместо постоянного?

Основное преимущество переменного тока перед электричеством постоянного тока состоит в том, что напряжения переменного тока могут быть легко преобразованы в более высокие или более низкие уровни напряжения, в то время как это трудно сделать с напряжениями постоянного тока. Поскольку высокое напряжение более эффективно для передачи электричества на большие расстояния, электричество переменного тока имеет преимущество перед постоянным током.

Почему в домах используется переменный ток?

Почему мы используем переменное напряжение в наших домах, несмотря на то, что постоянное напряжение набирает обороты. … Проще говоря, переменное напряжение способно преобразовывать уровни напряжения с помощью одного трансформатора, что значительно упрощает транспортировку на большие расстояния, чем постоянное напряжение, преобразование которого требует более сложной электронной схемы.

Почему переменный ток лучше постоянного?

Переменный ток дешевле генерировать и имеет меньше потерь энергии, чем постоянный ток при передаче электроэнергии на большие расстояния…. Хотя для очень больших расстояний (более 1000 км) постоянный ток часто может быть лучше.

Что означает AC DC в сексуальном плане?

AC / DC в американском английском

(ˌeisiˈdisi) прилагательное. сленг. сексуально реагирует как на мужчин, так и на женщин; бисексуал.

Почему в домах не используется постоянный ток?

DC в основном не применяется для этих целей по тем или иным причинам. Например, выделение тепла из-за больших потерь мощности по сравнению с переменным током, более значительной опасности возникновения пожара, больших затрат и проблем, связанных с преобразованием высокого напряжения и низкого тока в низкое напряжение и высокий ток с помощью трансформаторов.

Может ли постоянный ток убить вас?

Как переменный, так и постоянный ток могут вызвать фибрилляцию сердца на достаточно высоких уровнях. Обычно это происходит при 30 мА переменного тока (среднеквадратичное значение, 60 Гц) или 300–500 мА постоянного тока. Хотя как переменный, так и постоянный токи и удары смертельны, требуется больше постоянного тока, чтобы иметь тот же эффект, что и переменный ток.

Что лучше AC или DC?

Питание постоянного тока значительно более энергоэффективно, чем питание переменного тока. Двигатели и устройства постоянного тока имеют более высокий КПД и габаритные характеристики.Освещение на основе постоянного тока (LED) на 75% эффективнее, чем освещение лампами накаливания.

Есть телефоны переменного или постоянного тока?

Поэтому портативная электроника – фонарики, сотовые телефоны, ноутбуки – использует питание постоянного тока; они должны хранить это. … Поскольку электрическая сеть обеспечивает переменный ток, электричество должно преобразовываться в постоянный ток, когда вы хотите зарядить портативное устройство.

Использует ли телевизор переменный или постоянный ток?

Батареи и электронные устройства, такие как телевизоры, компьютеры и DVD-плееры, используют электричество постоянного тока – как только переменный ток поступает в устройство, он преобразуется в постоянный ток.Типичная батарея обеспечивает около 1,5 вольт постоянного тока.

Используется ли сегодня переменный или постоянный ток?

Сегодня наша электроэнергия по-прежнему питается преимущественно от переменного тока, но компьютеры, светодиоды, солнечные элементы и электромобили работают от постоянного тока. Теперь доступны методы преобразования постоянного тока в более высокие и более низкие напряжения.

Что безопаснее переменного или постоянного тока?

Поражение электрическим током может вызвать фибрилляцию желудочков, которая может привести к сердечной недостаточности и смерти.Предпочтительно избегать любой формы поражения электрическим током, но постоянный ток считается более безопасным в этих обстоятельствах, поскольку порог человеческого тела для постоянного тока значительно выше, чем для переменного тока.

Разница между переменным током (AC) и постоянным током (DC)

Автор: Оливия

Переменный ток (AC) против постоянного (DC)

Переменный ток (AC) и постоянный ток (DC) – это два типа токов, которые используются для передачи электроэнергии во все части мира.Оба тока имеют свои особенности и преимущества, а также используются в различных устройствах. В то время как постоянный ток однонаправлен и течет только в одном направлении, переменный ток растет и падает, постоянно меняя направление. Однако они похожи по своей природе, поскольку оба связаны с потоком электронов. Но на этом их сходство заканчивается, поскольку они фундаментально различны, и их различие начинается со способа их создания, а также того, как они передаются и используются.

Переменный ток

AC – это тип тока, который используется для обеспечения электричеством домов и предприятий.Причина, по которой его предпочитают постоянному току, заключается в простоте его производства и передачи. На электростанциях, будь то угольные, ветряные или гидроэнергетические, ток вырабатывается вращающимися турбинами, которые, таким образом, производят переменный ток. При вращении турбина создает магнитное поле, которое толкает и притягивает электроны в проводе. Это постоянное толкание и вытягивание производит ток, который постоянно меняет направление, и, следовательно, переменный ток.

Постоянный ток

DC – это тип тока, который вырабатывается источником, не имеющим движущихся частей.Хорошими примерами постоянного тока являются солнечные батареи и обычные батареи. Химическая энергия внутри батареи толкает электроны только в одном направлении, и поэтому производимый ток также является однонаправленным. Одна уникальная вещь, о которой вы, возможно, не знаете, – это то, что большинство электронных устройств, таких как телевизоры и DVD, имеют встроенный адаптер переменного / постоянного тока, поскольку они работают от постоянного тока, а в домах – от переменного тока.

DC больше подходит для перевозки на большие расстояния, несмотря на то, что не используется потребителями.Он преобразуется обратно в кондиционер перед отправкой в ​​дома и на предприятия.

Электронным устройствам требуется постоянный ток, что невозможно при переменном токе, поскольку он постоянно меняет направление. Однако существуют такие устройства, как лампочки, вентиляторы, КЛЛ и т. Д., Которые могут работать как от переменного, так и от постоянного тока, поскольку для них требуется только поток электронов, а их направление не имеет значения. Вы можете не заметить, но когда лампочка горит от переменного тока, она постоянно включается и выключается, поскольку переменный ток меняет направление 50-60 раз в секунду. Но поскольку это изменение происходит так быстро, мы даже не можем заметить, горит ли лампочка и горит ли она.Такие устройства, как стиральные машины, могут работать только от переменного тока, так как их двигатель может вращаться только от переменного тока. С автоматическими стиральными машинами это действительно усложнилось: двигатель работает от переменного тока, а его экран и компьютер работают от постоянного тока с помощью преобразователя постоянного тока.

Невозможно сравнить переменный ток и постоянный ток, поскольку оба имеют свои преимущества, которые объясняются использованием устройств в домашних условиях. Оба они необходимы, и без них многие из устройств, на которые мы так сильно полагаемся, не будут работать.

В чем разница между двигателями переменного тока и двигателями постоянного тока?

Между двигателями переменного и постоянного тока существует много различий.Наиболее очевидное различие – это тип тока, который каждый двигатель превращает в энергию: переменный ток в случае двигателей переменного тока и постоянный ток в случае двигателей постоянного тока. Двигатели переменного тока известны своей повышенной выходной мощностью и эффективностью, в то время как двигатели постоянного тока ценятся за их контроль скорости и диапазон выходной мощности. Двигатели переменного тока доступны в одно- или трехфазной конфигурации, тогда как двигатели постоянного тока всегда однофазные.

Подробнее о электродвигателях переменного тока

В двигателе переменного тока энергия поступает из магнитных полей, создаваемых через катушки, намотанные вокруг выходного вала.Двигатели переменного тока состоят из нескольких частей, включая статор и ротор. Двигатели переменного тока эффективны, долговечны, бесшумны и универсальны, что делает их жизнеспособным решением для многих потребностей в производстве электроэнергии.

К двум типам двигателей переменного тока относятся:

  • Синхронный: Синхронный двигатель вращается с той же скоростью, что и частота тока питания, что и дало ему название. Синхронные двигатели состоят из статора, ротора и синхронных двигателей, которые используются в широком спектре приложений.
  • Индукция: Асинхронные двигатели – это самые простые и надежные электродвигатели на рынке. Эти электродвигатели переменного тока состоят из двух электрических узлов: статора с обмоткой и узла ротора. Электрический ток, необходимый для вращения ротора, создается за счет электромагнитной индукции, создаваемой обмоткой статора. Асинхронные двигатели являются одними из наиболее часто используемых типов двигателей в мире.
  • Электродвигатели переменного тока

используются в различных сферах, в том числе в насосах для предприятий общественного питания, водонагревателях, оборудовании для газонов и сада и т. Д.

Подробнее о двигателях постоянного тока

Энергия, используемая двигателем постоянного тока, поступает от батарей или другого генерируемого источника энергии, обеспечивающего постоянное напряжение. Двигатели постоянного тока состоят из нескольких частей, наиболее известными из которых являются подшипники, валы и редуктор или шестерни. Двигатели постоянного тока обеспечивают лучшее изменение скорости и управление, а также обеспечивают больший крутящий момент, чем двигатели переменного тока.

К двум типам двигателей постоянного тока относятся:

  • Матовый: Один из самых старых типов двигателей, щеточные двигатели – это электродвигатели с внутренней коммутацией, работающие от постоянного тока.Щеточные двигатели состоят из ротора, щеток, оси, а заряд и полярность щеток управляют направлением и скоростью двигателя.
  • Бесщеточный: В последние годы бесщеточные двигатели приобрели популярность во многих сферах применения, в основном из-за их эффективности. Бесщеточные двигатели устроены так же, как и щеточные двигатели, за исключением, конечно, щеток. Бесщеточные двигатели также включают специализированную схему для управления скоростью и направлением. В бесщеточных двигателях вокруг ротора установлены магниты, что повышает эффективность.

Двигатели постоянного тока используются в широком диапазоне применений, включая электрические инвалидные коляски, ручные распылители и насосы, кофеварки, внедорожное оборудование и многое другое.

AC vs. DC – разница между переменным постоянным током

переменного и постоянного тока. Как они работают?

1. Переменный ток

Переменный ток (AC) – это электрический ток, который меняет свое направление в цепи с течением времени .Ваш дом работает от сети переменного тока. Короче говоря, мы используем переменный ток в наших домах, потому что он лучше всего проходит на большие расстояния (например, от электростанции) и его легко преобразовать с высокого напряжения на более низкое.

Напряжение переменного тока имеет переменную форму синусоидальной волны, которая периодически меняет свое значение (амплитуду) во времени.

Электроэнергия переменного тока вырабатывается специальным генератором, называемым генератором переменного тока, который преобразует механическую энергию в электрическую в виде переменного тока. Эти устройства имеют ротор (внутренняя металлическая ось, состоящая из медных катушек), который соединен с вращающейся турбиной (такой как ветряная турбина, пар или вода) для создания изменяющегося электромагнитного поля, которое индуцирует ток на выходе машины. Когда ротор вращается вокруг своей оси на 360 механических градусов, электромагнитное поле изменяется, и выходное напряжение также изменяется на 360 электрических градусов. Это обеспечивает переменную и синусоидальную форму переменного тока (синусоидальную волну).

2.Постоянный ток

Постоянный ток (DC) – это электрический ток, который течет в одном направлении и имеет стабильное напряжение в цепи . Примерами устройств, использующих постоянный ток, могут быть фонарики с батарейным питанием или ваш автомобиль. Ваши солнечные панели тоже постоянного тока. Однако, как упоминалось выше, в наших домах используется переменный ток (AC). Итак, чтобы использовать мощность постоянного тока в доме, она должна проходить через устройство, называемое инвертором , чтобы изменить мощность с постоянного на переменный. Напряжение постоянного тока не изменяется во времени, вместо этого оно имеет постоянное значение.

Основное различие между постоянным и переменным током заключается в переменной форме сигнала переменного тока.

Важны и другие отличия. Например, для транспортировки электроэнергии переменного тока по линиям передачи необходимо также производить активную мощность (потребляемую потребителями) и реактивную мощность (необходимую для создания магнитных полей по линиям передачи). С другой стороны, постоянный ток вырабатывает только активную мощность и не требует передачи реактивной мощности. Однако мощность переменного тока дешевле передавать, чем мощность постоянного тока, что является одной из причин, по которой переменный ток в конечном итоге правит миром (кроме случаев, когда вы рассматриваете передачу сверхвысокого напряжения).

Посмотрите это видео, чтобы подробнее узнать о различиях между переменным и постоянным током / напряжением.

Война токов

Еще в 19 веке Томас Эдисон (владелец Edison Electric) и Никола Тесла (спонсируемый Westinghouse) вели войну, чтобы установить тип тока, который будет править миром. Эдисон был пропагандистом постоянного тока (DC), а Тесла – сторонником переменного тока (переменного тока). Решающую битву за контроль над электроэнергетической отраслью решил победитель крупнейшего в мире контракта на электростанцию ​​в 1893 году – проект Niagara Falls Power Project в Соединенных Штатах.Кто бы ни выиграл контракт (Edison Electric или Westinghouse), он будет доминировать в сфере производства электроэнергии во всем мире.

Местом битвы была Всемирная выставка, проходившая в том же году в Чикаго, организаторы которой хотели, чтобы она была освещена электричеством вместо свечей. Организаторы пригласили Edison Electric (использующий постоянный ток) и Westinghouse (использующий переменный ток) принять участие в торгах по контракту. Когда предложения были получены, Westinghouse запросила четверть того, что требовала Edison Electric для освещения ярмарки, и таким образом Westinghouse выиграла контракт на освещение этого мероприятия.Это событие резко изменило баланс в пользу компании Westinghouse, которая затем выиграла контракт на снабжение Энергетического проекта Ниагарского водопада энергией переменного тока. Электростанция питала всю западную часть Соединенных Штатов и продемонстрировала, что мощность переменного тока безопасна и что она будет ведущим электрическим током в ближайшие годы.

Это истинная причина, по которой ваш дом питается от сети переменного тока.

DC возвращается

Энергия постоянного тока

снова в бизнесе благодаря солнечным батареям. Солнечные модули вырабатывают электроэнергию на постоянном токе, но концепция и технология полностью отличаются от генераторов переменного тока.Однако, поскольку Westinghouse выиграла войну токов, мир теперь работает на переменном токе, и поэтому мощность постоянного тока, генерируемая панелями, должна быть преобразована в переменный ток. Именно здесь вступает в действие центральное ядро ​​солнечной системы – инвертор. Это устройство действует как преобразователь постоянного тока в переменный, который использует сигнал постоянного напряжения, генерируемый модулями, для создания переменного напряжения.

Мы изучили историю и различия между питанием переменного и постоянного тока, и, что наиболее важно, теперь вы знаете, что все, что было до инвертора (модули, фотоэлектрические кабели, блоки сумматора постоянного тока, батареи), работает на постоянном токе, и все, что происходит после инвертора. инвертор работает в сети переменного тока (нагрузки) .Здесь важно упомянуть, что, когда вы решите очистить свои солнечные панели, вы всегда должны помнить о выключении системы, отключая выключатель нагрузки постоянного тока в коробке сумматора постоянного тока, потому что постоянный ток может быть столь же опасен, как и переменный ток.

Для получения дополнительной информации посетите Как работает солнечная энергия!

Различия между питанием переменного и постоянного тока и их применение

>> Различия между питанием переменного и постоянного тока и их использование

Мы ежедневно используем как переменный, так и постоянный ток для цифровой электроники и различных розеток.Однако люди до сих пор не знают основных различий между этими двумя вещами и того, зачем нам и то, и другое.

Имея это в виду, мы собираемся изучить некоторые ключевые различия между переменным и постоянным током, а также поговорим об их использовании в нашей повседневной жизни.

allaboutcircuits.com

Переменный ток – это не что иное, как периодическое изменение направления потока заряда. Проще говоря, переменный ток здесь для описания потока электричества через проводник. Как следует из названия, течение тока периодически изменяется, сохраняя при этом уровень напряжения.Переменный ток подается в домохозяйства и офисные здания и при необходимости может быть преобразован в постоянный ток.

Можно ли генерировать переменный ток? Конечно вы можете. Самым популярным устройством для генерации переменного тока является генератор переменного тока. Внутри генератора переменного тока находится магнитное поле, а также скрученная внутри проволочная петля, используемая для индукции тока. Чтобы производить ток, этот провод должен иметь какое-то вращение, которое может быть произведено текущей водой, паровой турбиной или ветряной турбиной.В процессе вращения проволока периодически меняет свою магнитную полярность, что приводит к чередованию тока и напряжения.

Когда дело доходит до формы волны, переменный ток сильно отличается от постоянного тока. Как вы, наверное, догадались, сигналы переменного тока имеют форму синусоидальной волны. В этом легко убедиться, если подключить осциллограф к цепи переменного тока. Здесь мы можем увидеть несколько форм сигналов, в которых синусоидальная волна является наиболее распространенной. В большинстве случаев переменный ток, который вы используете в своем доме, имеет точно такую ​​же синусоидальную волну.Это указывает на то, что амплитуда тока изменяется со временем, что и есть переменный ток.

Поскольку мы упомянули разные типы сигналов, важно упомянуть прямоугольную волну. Прямоугольная волна часто используется в коммутационной и цифровой электронике для тестирования. Этот тип волны указывает на то, что амплитуда остается неизменной в течение определенного периода времени, а затем падает до отрицательного значения и остается там в течение того же периода времени. Процесс повторяется во время операции.

Наконец, у нас есть треугольная волна, которая встречается немного реже. В основном он используется для тестирования усилителей и другой линейной электроники.

Как мы упоминали ранее, кондиционер используется в наших домах и офисах. Основное преимущество переменного тока заключается в том, что его можно легко генерировать и транспортировать на большие расстояния, поэтому он является выбором номер один для вышеупомянутой цели. Только представьте, что вам нужно снабжать весь город или часть города с помощью одной электростанции. AC делает это возможным – это быстро и легко генерируется.Вдобавок ко всему, электростанции могут использовать трансформаторы для преобразования в / из высокого напряжения, если это необходимо. Чем выше напряжение, тем меньше ток, и в линии электропередачи выделяется меньше тепла.

Во многих бытовых приборах, таких как холодильники и посудомоечные машины, также используется кондиционер. Переменный ток может приводить в действие электродвигатели, которые преобразуют эту электрическую энергию в механическую (вращение, поступательное движение, крутящий момент и т. Д.).

Постоянный ток гораздо легче понять, поскольку это совершенно другой термин, чем переменный ток.Пока переменный ток движется вперед и назад, постоянный ток обеспечивает постоянный ток в одном направлении. Самый распространенный пример постоянного тока – это аккумулятор в фонарике или смартфоне, а также блок питания на вашем ПК.

DC можно генерировать множеством способов. Чаще всего используется выпрямитель. Выпрямитель – это именно то, на что он похож. Только представьте себе синусоидальную волну, которую нужно выпрямить или выпрямить, чтобы она выглядела как форма волны постоянного тока.Он имеет электронные или электромеханические элементы, которые пропускают ток в одном направлении. В качестве альтернативы, типичный генератор переменного тока с коммутатором может также производить постоянный ток, а также батареи, которые производят постоянный ток из-за химических реакций внутри них.

Direct Current имеет только одну форму волны, состоящую из прямой горизонтальной линии. Эта линия представляет изменение (или отсутствие изменения) напряжения во времени. На практике сила напряжения и тока может изменяться, но направление потока остается неизменным.Некоторые источники постоянного тока не могут постоянно отображать такой график, типичным примером являются батареи. Со временем они теряют свою мощность, и в какой-то момент напряжение начинает падать, создавая другой сюжет. В большинстве случаев мы можем предположить, что график выглядит именно так, как мы его описали – прямая горизонтальная линия, показывающая постоянное напряжение.

Постоянный ток используется в небольшой электронике, такой как смартфоны, фонарики и компьютеры. Вот почему вам нужен специальный блок питания в вашем компьютере – для преобразования переменного тока в постоянный.К другим типичным приложениям относятся телевизоры, а также электромобили нового поколения, поскольку они используют аккумуляторные батареи в качестве источников питания.

И переменный, и постоянный ток имеют свои собственные цели, и нельзя сказать, что одно лучше другого. В то время как переменный ток подходит для наших домашних хозяйств из-за простоты его производства и распределения, постоянный ток – единственный способ питания электроники и электромобилей на батарейках. Несмотря на огромную популярность и внедрение переменного тока, большая часть электроники, которую мы используем, использует преимущества постоянного тока, а это означает, что они оба нам нужны в равной степени.

Разница между переменным и постоянным током

Основное различие – переменный и постоянный ток

Электроэнергия может подаваться как переменного тока (AC) или как постоянного тока (DC) . Основное различие , между переменным и постоянным током, состоит в том, что при постоянном токе, электроны непрерывно текут в одном направлении, , тогда как при переменном токе, электроны периодически колеблются вперед и назад .

Что такое постоянный ток

При постоянном токе электроны текут только в одном направлении.Постоянный ток можно сформировать, соединив проводником две точки с разными электрическими потенциалами. Электроны будут течь от более отрицательного потенциала к менее отрицательному, пока эти потенциалы поддерживаются. Например, если мы соединим две точки с электрическими потенциалами -2 В и -5 В, электроны будут течь от конца -5 В к концу -2 В.

По историческим причинам направление тока считается противоположным направлению потока электронов.Направление тока в приведенном выше примере составляет от -2 В до -5 В. В этом направлении ничего не течет: это всего лишь условность.

Что такое переменный ток

В переменном токе электроны колеблются взад и вперед. Дома обычно питаются от сети переменного тока. Здесь проводник подключен между потенциалом, который периодически меняет свое значение, и потенциалом, который остается на уровне 0 В. Переменный потенциал изменяет свое значение между положительными и отрицательными значениями, так что электроны в проводнике перемещаются вперед и назад.Разность потенциалов, приложенная к проводнику, затем изменяется на синусоидально :

Как напряжение меняется со временем в цепях переменного тока (синий) и постоянного тока (красный)

Большая часть электронного оборудования работает с постоянным током. Часто переменный ток от источника питания необходимо преобразовать в постоянный, прежде чем устройство сможет использовать этот ток. Основная причина использования переменного тока для передачи (а не постоянного) заключается в том, что исторически было легко изменить напряжение переменного тока с помощью трансформатора.Это означало, что электричество можно было передавать на большие расстояния при высоком напряжении и небольшом токе. Когда электричество передается с меньшим током, потери мощности во время передачи значительно ниже. При подаче электроэнергии в дома можно использовать трансформатор для простого преобразования меньшего тока с высоким напряжением в линиях передачи в больший ток с меньшим напряжением, используемым в домах.

Поскольку ток постоянно колеблется, мощность, рассеиваемая через любое устройство, подключенное к переменному току, также будет периодически изменяться.Однако для переменного тока напряжение может быть охарактеризовано одним числом, называемым среднеквадратичным (RMS) напряжением . Для синусоидального переменного тока среднеквадратичное напряжение может быть выражено в терминах максимального напряжения () как:

Среднеквадратичное (RMS) напряжение и максимальное (пиковое) напряжение для синусоидального напряжения

Часто мощность, рассеиваемая компонентом, рассчитывается с использованием среднеквадратичного значения напряжения. Среднеквадратичное значение напряжения и частота (сколько раз ток меняет направление на противоположное в секунду) варьируются от страны к стране.Обычно используются среднеквадратичные значения напряжения 230 В с частотой 50 Гц. В США питание подается среднеквадратичным напряжением 120 В при частоте 60 Гц.

AC против DC: Война токов

В конце 1800-х Томас Эдисон выступал за использование постоянного тока для передачи электричества. Однако Никола Тесла и Джордж Вестингауз были убеждены в преимуществах переменного тока для передачи на большие расстояния. Соревнование между двумя группами было названо «Войной течений». Говорят, что Эдисон пошел на все, чтобы сделать переменный ток непопулярным, в том числе убивал животных переменным током, чтобы люди почувствовали, что это опасно.Однако, в конце концов, победил переменный ток, и большая часть передачи сегодня осуществляется с использованием переменного тока. Однако передача постоянного тока может быть относительно намного дешевле, и в настоящее время нетрудно изменить напряжение постоянного тока. Поэтому для передачи энергии иногда также используются высоковольтные постоянные токи.

Война токов: Эдисон (слева) хотел распределять электричество с помощью постоянного тока, а Тесла (справа) хотел распределять электричество с помощью переменного тока.

Разница между переменным и постоянным током

Транспортные средства потока

В DC current носители заряда текут только в одном направлении.

В переменный ток , носители заряда текут вперед и назад.

Вариация мощности

В DC current мощность, рассеиваемая через нагрузку, остается почти постоянной.

В переменный ток мощность, рассеиваемая через нагрузку, непрерывно изменяется.

Кабель

Постоянный ток можно передавать с помощью только двух кабелей.

Переменный ток (3-фазный) требует 3 кабеля для передачи.

Изображение предоставлено:

«Томас Альва Эдисон, портрет в три четверти, сидит, лицом вперед» Луи Бахраха, Bachrach Studios, реставрирован Мишелем Вуйлстеке (цифровое удостоверение личности Отдела эстампов и фотографий Библиотеки Конгресса США cph.3c05139) [Public Domain], через Wikimedia Commons

«Фотография Николы Теслы (1856-1943) в возрасте 34 лет». Наполеон Сарони (открытка (radiographics.rsna.org)) [Public Domain], через Wikimedia Commons

Разница между переменным и постоянным током (со сравнительной таблицей)

Переменный ток является аббревиатурой переменного тока , а постоянного тока является аббревиатурой постоянного тока . Основное различие между переменным и постоянным током состоит в том, что постоянный ток равен однонаправленному току , а переменный – двунаправленному току. Постоянный ток постоянен во времени, в то время как переменный ток изменяется в каждый момент времени.

Главный недостаток использования постоянного тока в том, что он начинает ухудшаться с увеличением расстояния. Мощность, подаваемая от источника постоянного тока, неудобна для больших расстояний, так как она будет уменьшаться с увеличением расстояния. В случае с AC дело обстоит иначе. Таким образом, он надежен для передачи.

AC и DC, оба являются типами электрического тока, но оба отличаются друг от друга в отношении генерации, протекания в цепи и приложений.Еще одно важное различие между переменным и постоянным током – это величина напряжения. Напряжение постоянного тока – , напряжение низкого уровня – , а переменного – – высокое напряжение.

Содержание: AC и DC

  1. Сравнительная таблица
  2. Определение
  3. Ключевые отличия
  4. Заключение


Сравнительная таблица
Параметры AC (переменный ток) DC (постоянный ток)
Определение Переменный ток – это тип электрического тока, который мгновенно изменяется во времени. Постоянный ток – это тип электрического тока, который остается постоянным во времени.
Передача на большие расстояния Подходит для передачи на большие расстояния, поскольку потери мощности минимальны. Не подходит, поскольку потеря мощности прямо пропорциональна расстоянию.
Поток электронов Двунаправленный поток электронов Однонаправленный поток электронов
Частота Между 50 Гц и 60 Гц, в разных странах разная Частота постоянного тока равна нулю.
Коэффициент мощности Он находится в пределах от 0 до 1. В постоянном токе всегда равен 1.
Графическое представление Синусоидальная волна Постоянная линия
Механизм генерации Поместив катушку с током во вращающееся магнитное поле. Поместив катушку с током в постоянное магнитное поле.
Генераторы Генераторы Элементы или батареи
Тип нагрузки Может быть резистивной, индуктивной или емкостной. Только резистивный
Емкостный импеданс Конденсатор позволяет постоянному току проходить через него, поэтому емкостное сопротивление будет низким. Конденсатор блокирует постоянный ток, поэтому емкостное сопротивление будет бесконечным.
Приложения Высоковольтные приложения, такие как бытовая техника, офисное оборудование. Низковольтные приложения в электронных схемах


Определение

AC (переменный ток)

AC – это тип электрического тока, при котором полярность тока не остается постоянной.Ток – это следствие потока электронов. Если электроны текут в одном направлении, это однонаправленный ток, но если он течет в двух направлениях, то есть вперед и назад, это называется двунаправленным током .

AC – двунаправленный ток. Вы, должно быть, думаете, , что заставляет переменный ток вести себя двунаправленно. Ваш ответ заключается в поколении переменного тока. Токоведущий провод помещен во вращающееся магнитное поле. Теперь направление потока электронов также меняется с движением магнитного поля.

переменного тока также можно создать, поместив провод в статическое магнитное поле, но теперь токопроводящий провод нужно вращать. Вывод истории таков: либо нам нужно повернуть токоведущий провод, либо нам нужно повернуть магнитное поле при условии, что оставшийся параметр постоянен.

Позвольте мне обсудить, что именно происходит, когда провод, по которому проходит ток, помещается во вращающееся магнитное поле? Электроны, протекающие по проводу, испытывают магнитную силу, и они будут притягиваться к одному из полюсов магнитного поля.Если поле повернуть снова, направление притяжения электронов изменится.

Это изменяет направление потока электронов и, таким образом, происходит генерация переменного тока. Генерация переменного тока намного проще и удобнее, чем постоянного тока. Более того, мощность переменного тока не уменьшается с увеличением расстояния. Таким образом, он подходит для передачи на большие расстояния.

Представление сигнала переменного тока или переменного тока можно более четко понять с помощью графической диаграммы , представленной ниже.

DC (постоянный ток)

Постоянный ток также вызывается потоком электронов, но процесс генерации постоянного тока противоположен процессу генерации переменного тока. Однонаправленный ток может генерироваться, если провод, по которому проходит ток, помещен в статическое магнитное поле .

Электроны, текущие в проводе, будут испытывать силу в одном направлении только потому, что магнитное поле стабильно. Таким образом, поток электронов в одном направлении будет генерировать постоянный ток.Мощность постоянного тока уменьшается с увеличением расстояния передачи. Это делает его непригодным для передачи на большие расстояния.

Примерами устройств генерации постоянного тока являются элемент, батарея и т. Д. Эти устройства обладают определенным значением постоянного напряжения. Обычно это низкие значения. Таким образом, элемент или батарея обладают энергией, чтобы толкать электроны, заставляя их течь по цепи. Но этим устройствам не хватает энергии, чтобы тянуть эти электроны. Таким образом, генерируется только однонаправленный ток.

Если мы рассмотрим графическое представление постоянного тока, очевидно, что постоянный ток постоянен во времени.

Ключевые различия между переменным и постоянным током

  1. Направленная характеристика: Это одна из ключевых характеристик, которая отличает переменный и постоянный ток. Постоянный ток – это однонаправленный электрический ток, а переменный – двунаправленный электрический ток.
  2. Поколение: AC и DC имеют разные процедуры и устройства генерации. Постоянный ток генерируется статическим магнитным полем, а переменный ток генерируется с помощью динамического магнитного поля.Кроме того, переменный ток генерируется генераторами, в то время как постоянный ток генерируется элементом, батареями путем преобразования химической энергии элемента или батареи в электрическую энергию.
  3. Частота сигнала: Частота сигнала переменного тока варьируется от 50 Гц до 60 Гц. В разных странах все по-разному. Сигнал постоянного тока имеет нулевую частоту. Частота – это количество циклов в секунду. Поскольку сигнал постоянного тока не изменяется во времени циклически, поэтому он имеет нулевую частоту.
  4. Тип нагрузки: Нагрузка, подключенная к переменному току, может быть емкостной, резистивной или индуктивной.Напротив, нагрузка, подключенная к цепи постоянного тока, всегда является резистивной.
  5. Коэффициент мощности: Коэффициент мощности переменного тока находится в пределах от 0 до 1, а коэффициент мощности постоянного тока равен 1.
  6. Легкость передачи: Мощность переменного тока может передаваться легко и эффективно по сравнению с мощностью постоянного тока.
  7. Уровень напряжения: Напряжение постоянного тока – это напряжение низкого уровня, а напряжение переменного тока – высокое.
  8. Хранение: Нельзя хранить переменный ток, а постоянный ток можно хранить в элементе или батареях.Мы можем преобразовывать переменный ток в постоянный с помощью выпрямителя в наших зарядных устройствах, а мы можем преобразовывать постоянный ток в переменный с помощью инверторов. Но хранение переменного тока невозможно.


Заключение

Переменный ток – это двунаправленный ток большой величины, который может передаваться на большие расстояния без потери мощности. Напротив, постоянный ток – это однонаправленный ток небольшой величины, который не подходит для передачи на большие расстояния. Пассивный параметр в переменном токе – это импеданс, а в постоянном токе пассивный параметр – это сопротивление.

.

Добавить комментарий

Ваш адрес email не будет опубликован.