Содержание

Отличие переменного тока от постоянного: преобразование, разница, принцип действия

Детей учат, что пальцы в розетку совать нельзя! А почему? Потому что будет плохо. С более подробным объяснением часто бывают проблемы: какое-то там напряжение, ток, что-то куда-то течет. Чтобы вы в будущем могли сами объяснить своим детям, что к чему, мы сейчас объясним вам. Эта статья про переменный и постоянный токи, их отличия, применение и историю электричества вообще. Науку нужно делать интересной, и мы скромно пытаемся этим заниматься по мере сил.

Например: какой ток у нас в розетках?  Переменный, конечно! Напряжением 220 Вольт и частотой 50 Герц. А сеть, по которой передается ток - трехфазная. Кстати, если при словах «фаза» и «ноль» вы впадаете в ступор, почитайте что это такое, и день будет прожит вдвойне не зря! Но не будем забегать вперед. Обо всем по порядку.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного

и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали - остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

 

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Постоянный ток

Сначала напомним, что ток – это движение заряженных частиц.

Постоянный ток – это ток, который течет в одном направлении.

Типичный источник постоянного тока – гальванический элемент. Проще говоря, батарейка или аккумулятор. Один из древнейших артефактов, связанных с электричеством – багдадская батарейка, которой 2000 лет. Предполагают, что она давала ток напряжением 2-4 Вольта.

 

Где используется постоянный ток:

  • в питании большинства бытовых приборов;
  • в батарейках и аккумуляторах для автономного питания приборов;
  • для питания электроники автомобилей;
  • на кораблях и подводных лодках;
  • в общественном транспорте (троллейбусах, трамваях).

Проще всего представить постоянный ток наглядно, на графике. Вот как он выглядит:

Постоянный ток

Бытовые приборы работают на постоянном токе, но в розетки сети в квартире приходит переменный ток. Практически везде постоянный ток получается путем выпрямления переменного.

Переменный ток

Переменный ток – это ток, который меняет величину и направление. Причем меняет в равные промежутки времени.

Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.

Переменный ток - alternating current (AC). Постоянный ток - direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.

А вот и наглядное изображение переменного тока.

Переменный ток

Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе - отрицательным.

Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 - это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.

Война токов

Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.

Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.

В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.

Тесла и Эдисон

Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей - война токов.

Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.

Почему переменный ток опаснее постоянного

В войне токов, чтобы не потерпеть убытки и финансовый крах от внедрения и использования идей Теслы, Эдисон публично демонстрировал, как переменный ток убивает животных. Случай, когда какой-то американский гражданин погиб от удара переменным током, был очень подробно и широко освещен в прессе.

 

Для человека переменный ток в общем случае действительно опаснее постоянного. Хотя всегда нужно учитывать величину тока, его частоту, напряжение, сопротивление человека, которого бьет током. Рассмотрим эти нюансы:

  1. Переменный ток частотой 50 Герц в три-четыре раза опаснее для жизни, чем постоянный ток. Если частота тока более 1000 Герц, то он считается менее опасным.
  2. При напряжениях около 400-600 Вольт переменный и постоянный токи считаются одинаково опасными. При напряжении более 600 Вольт более опасен постоянный ток.
  3. Переменный ток в силу своей природы и частоты сильнее возбуждает нервы, стимулируя мышцы и сердце. Именно поэтому он несет большую опасность для жизни.

С каким бы током вы не работали, соблюдайте осторожность и будьте бдительны! Берегите себя и свои нервы, а также помните: сделать это эффективно поможет профессиональный студенческий сервис с лучшими экспертами.

Чем отличается переменный ток от постоянного

Хотя электрические приборы мы каждый день используем в повседневной жизни, не каждый может ответить, чем отличается переменный ток от постоянного, несмотря на то, что об этом рассказывается в рамках школьной программы. Поэтому имеет смысл напомнить основные догматы.

Обобщенные определения

Физический процесс, при котором заряженные частицы движутся упорядоченно (направленно), называется электротоком. Его принято разделять на переменный и постоянный. У первого направление и величина остаются неизменными, а у второго эти характеристики меняются по определенной закономерности.

Приведенные определения сильно упрощены, хотя и объясняют разницу между постоянным и переменным электротоком. Для лучшего понимания, в чем заключается это различие, необходимо привести графическое изображение каждого из них, а также объяснить, как образуется переменная электродвижущая сила в источнике. Для этого обратимся к электротехнике, точнее ее теоретическим основам.

Источники ЭДС

Источники электротока любого рода бывают двух видов:

  • первичные, с их помощью происходит генерация электроэнергии путем превращения механической, солнечной, тепловой, химической или другой энергии в электрическую;
  • вторичные, они не генерируют электроэнергию, а преобразуют ее, например, из переменной в постоянную или наоборот.

Единственным первичным источником переменного электротока является генератор, упрощенная схема такого устройства показана на рисунке.

Упрощенное изображение конструкции генератора

Обозначения:

  • 1 – направление вращения;
  • 2 – магнит с полюсами S и N;
  • 3 – магнитное поле;
  • 4 – проволочная рамка;
  • 5 – ЭДС;
  • 6 – кольцевые контакты;
  • 7 – токосъемники.

Принцип работы

Механическая энергия преобразуется изображенным на рисунке генератором в электрическую следующим образом:

за счет такого явления, как электромагнитная индукция, при вращении рамки «4», помещенной в магнитное поле «3» (возникающее между различными полюсами магнита «2»), в ней образуется ЭДС «5». Напряжение в сеть  подается через токосъемники «7» с кольцевых контактов «6», к которым подключена рамка «4».

Видео: постоянный и переменный ток — отличия

Что касается величины ЭДС, то она зависит от скорости пересечения силовых линий «3» рамкой «4». Из-за особенностей электромагнитного поля минимальная скорость пересечения, а значит и самое низкое значение электродвижущей силы будет в момент, когда рамка находится в вертикальном положении, соответственно, максимальное — в горизонтальном.

Учитывая изложенное выше, в процессе равномерного вращения индуктируется ЭДС, характеристики величины и направления которого изменяются с определенным периодом.

Графические изображения

Благодаря применению графического метода, можно получить наглядное представление динамических изменений различных величин. Ниже приведен график изменения напряжения с течением времени для гальванического элемента 3336Л (4,5 В).

Горизонтальная ось отображает время, вертикальная – напряжение

Как видим, график представляет собой прямую линию, то есть напряжение источника остается неизменным.

Теперь приведем график динамики изменения напряжения в течение одного цикла (полного оборота рамки) работы генератора,.

Горизонтальная ось отображает угол поворота в градусах, вертикальная — величину ЭДС (напряжение)

Для наглядности покажем начальное положение рамки в генераторе, соответствующее начальной точке отчета на графике (0°)

Начальное положение рамки

Обозначения:

  • 1 – полюса магнита S и N;
  • 2 – рамка;
  • 3 – направление вращения рамки;
  • 4 – магнитное поле.

Теперь посмотрим, как будет изменяться ЭДС в процессе одного цикла вращения рамки. В начальном положении ЭДС будет нулевым. В процессе вращения эта величина начнет плавно возрастать, достигнув максимума в момент, когда рамка будет под углом 90°. Дальнейшее вращение рамки приведет к снижению ЭДС, достигнув минимума в момент поворота на 180°.

Продолжая процесс, можно увидеть, как электродвижущая сила меняет направление. Характер изменений поменявшей направление ЭДС будет таким же. То есть она начнет плавно возрастать, достигнув пика в точке, соответствующей повороту на 270°, после чего будет снижаться, пока рамка не завершит полный цикл вращения (360°).

Если график продолжить на несколько циклов вращения, мы увидим характерную для переменного электротока синусоиду. Ее период будет соответствовать одному обороту рамки, а амплитуда – максимальной величине ЭДС (прямой и обратной).

Теперь перейдем к еще одной важной характеристике переменного электротока – частоте. Для ее обозначения принята латинская буква «f», а единица ее измерения – герц (Гц). Этот параметр отображает количество полных циклов (периодов) изменения ЭДС в течение одной секунды.

Определяется частота по формуле:  . Параметр «Т» отображает время одного полного цикла (периода), измеряется в секундах. Соответственно, зная частоту, несложно определить время периода. Например, в быту используется электроток с частотой 50 Гц, следовательно, время его периода будет две сотых секунды (1/50=0,02).

Трехфазные генераторы

Заметим, что наиболее экономически выгодным способом получения переменного электротока будет использование трехфазного генератора. Упрощенная схема его конструкции показана на рисунке.

Устройство трехфазного генератора

Как видим, в генераторе используются три катушки, размещенные со смещением 120°, соединенные между собой треугольником (на практике такое соединение обмоток генератора не применяется в виду низкого КПД). При прохождении одного из полюсов магнита мимо катушки, в ней индуктируется ЭДС.

Графическое изображение сгенерированного трехфазного электротока

Чем обосновано разнообразие электротоков

У многих может возникнуть вполне обоснованный вопрос – зачем использовать такое разнообразие электротоков, если можно выбрать один и сделать его стандартным? Все дело в том, что не каждый вид электротока подходит для решения той или иной задачи.

В качестве примера приведем условия, при которых использовать постоянное напряжение будет не только не выгодно, ни и иногда невозможно:

  • задача передачи напряжения на расстояния проще реализовывается для переменного напряжения;
  • преобразовать постоянный электроток для разнородных электроцепей, у которых неопределенный уровень потребления, практически невозможно;
  • поддерживать необходимый уровень напряжения в цепях постоянного электротока значительно сложнее и дороже, чем переменного;
  • двигатели для переменного напряжения конструктивно проще и дешевле, чем для постоянного. В данном пункте необходимо заметить, что у таких двигателей (асинхронных) высокий уровень пускового тока, что не позволяет их использовать для решения определенных задач.

Теперь приведем примеры задач, где более целесообразно использовать постоянное напряжение:

  • чтобы изменить скорость вращения асинхронных двигателей требуется, изменить частоту питающей электросети, что требует сложного оборудования. Для двигателей, работающих от постоянного электротока, достаточно изменить напряжение питания. Именно поэтому в электротранспорте устанавливают именно их;
  • питание электронных схем, гальванического оборудования и многих других устройств также осуществляется постоянным электротоком;
  • постоянное напряжение значительно безопаснее для человека, чем переменное.

Исходя из перечисленных выше примеров, возникает необходимость в использовании различных видов напряжения.

преимущества и недостатки ⋆ diodov.net

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями. Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции. Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно. Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.

Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором. А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %. Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения. К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока. Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин. Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока
  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока. Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его. В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной. Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока
  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.
  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя. Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения. Такие инверторы должны получать питание от источника постоянного напряжения.

 

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества. Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции. К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Еще статьи по данной теме

Переменный ток и постоянный ток: отличие

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению – это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Графическое изображение постоянного тока

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).

Графическое изображение переменного тока

Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 – 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.

Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения – это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали – Почему в нашей розетки течет переменный ток, а не постоянный?

Отличие постоянного тока от переменного: история и примеры

Изначально люди не знали, что такое ток. Был известен статический заряд, но никто не понимал и не осознавал природы электричества. Понадобились долгие века, пока Кулон разработал собственную теорию, а немецкий священник фон Клейн обнаружил, что банка способна запасать энергию. К тому времени, как Ван де Грааф создал первый генератор, любой уже знал, в чем отличие постоянного тока от переменного.

История переменного и постоянного электрического тока

Издавна, к примеру, люди видели, что кристалл турмалина притягивает пепел. Кстати, свойства пьезоэлектричества впервые описаны именно на примере турмалина.

Сравнение типов тока

В начала 19-го века было показано, что нагретый кристалл приобретает электрический заряд. За счёт деформации образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём если температура после нагрева остаётся постоянной, электричество исчезает. Потом появление полюсов отмечается уже при охлаждении. Выходит, кристалл турмалина при изменении температуры вырабатывает электричество. Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие факторы влияния на величину заряда не оказывают. Указанное явление получило название пироэлектричества. Диэлектрик турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств. Пока не замкнуть полюса турмалина проводником, кристалл продолжит копить заряд по мере изменения температуры. Линию, объединяющую полюса, назвали пироэлектрической осью.

Пьезоэлектричество открыто известной парой Кюри на основе турмалина в 1880 году. Осознавалось, что при изменении размеров кристалла начнут вырабатываться заряды, осталось лишь придумать методику для проведения опыта. Кюри использовал для этого статическое давление обычной массы. Эксперимент проводится на изолирующей поверхности. К примеру, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда в пределах пяти сотых статических единиц.

Электрический ток

Как появляется электрический ток

Любопытно, что стройная теория по описанному явлению ещё не создана. Важно указание, что в природе присутствуют заряды, получаемые различными методами. Во время грозы это происходит за счёт сил трения воздушных масс, молекул влаги и прочих явлений. Земля заряжена отрицательно, вверх постоянно течёт ток через атмосферу. Током называется движение носителей заряда в силу неких причин. К примеру, разницы потенциалов – перепад в уровне носителей между двумя точками пространства.

Сравним с напором воды. Когда преграда устраняется, поток хлынет в направлении меньшего давления. Теперь возьмём аналогию с кристаллом турмалина. Допустим, появились на его концах заряды. Дальше потребуется вызвать движение, к примеру, медной жилкой провода. Объединим полюса, и потечёт электрический ток. Движение носителей продолжится, пока потенциал не уравняется. При этом кристалл разряжается.

О переменности или постоянстве тока нельзя сказать в ходе указанного ходе процесса. Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.

  1. Под постоянным током понимается такой, когда носители текут в едином направлении. Количество через сечение среды неодинаково. В более широком смысле постоянным (выпрямленным) током называется именно движение носителей заряда в одном направлении. Но исходное понятие в физике требует строгих условий. Ток образовывается именно постоянным количеством носителей, движущихся в общем направлении. Причём носители эти положительные (что противоречит практике, где в качестве таковых рассматриваются электроны по большей части).

    Принцип переменного тока

  2. Переменным током называется не просто тот, где носители двигаются попеременно в разных направлениях, а делают это в такт. Половину периода волна бежит влево, а вторую вправо, образно говоря. Плотность носителей меняется по закону синусоиды. Собственно, это график, отображающий поведение процесса. В точках перехода через нуль ток отсутствует. В сети происходит 100 раз в секунду. Следовательно, половина периода выпадает на движение носителей в положительном направлении, а вторая – в отрицательном. Всего полных циклов в секунду образуется 50, что соответствует сетевой частоте 50 Гц.

Электрический ток в действительности

На практике форма тока (зависимость плотности зарядов от времени) не синусоидальная. По разным причинам вид графика искажается. Это, к примеру, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы. Форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре. Для борьбы с подобной напастью требовались методы, и математики придумали спектральный анализ.

Колебание любой формы возможно представить в виде суммы с различным удельным весом простейших синусоид разной частоты. Получается, что по цепи двигается одновременно масса составляющих, в совокупности дающих ток. Причём не обязательно все составляющие двигаются заодно с основной массой. Представим элементы как группу муравьёв, каждый тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну. Упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает фазой (направлением), а именуется гармоникой.

Схема постоянного тока

Каскады техники устроены так, чтобы полезные частоты (преимущественно 50 Гц) проходили внутрь прибора, а прочее уходило на землю. Указан признак для решения затруднения, упомянутого в начале. Любое колебание представляется в виде набора полезных и вредных сигналов, исходя из этого, аппаратуру полагается конструировать надлежащим образом. К примеру, на описанном принципе работают все приёмники: избирательно пропускают ток нужной частоты. Так удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Примеры использования переменного и постоянного тока

Приблизительно постоянным считается ток разряда автомобильного аккумулятора. Напряжение здесь постепенно падает, а потому даже при одинаковой нагрузке эффект разнится хронометрически. В целом, происходит это плавно. Ток течёт в одном направлении и проявляет приблизительно постоянную плотность. Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

В природе источников постоянного тока (генераторов), за исключением матушки-Земли, нет. Человеку гораздо удобнее создавать роторы, которые, вращаясь с конкретной частотой, создают условия для образования в катушках статора переменного электрического тока. Потом промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Источником постоянного тока допустимо считать адаптеры. Это устройства, выполняющие преобразование переменного тока в постоянный. Допустим, у сотовых телефонов это +5 В, а для мобильных раций характерен большой разброс. Устройство постоянного тока может функционировать исключительно от номинала, для которого сконструировано. В противном случае либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока. Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется. Из соображений экономии двигатели работают от трёх фаз. Каждая считается переменным током частоты 50 Гц. Говорили выше, что у любой гармоники присутствует фаза. В рассматриваемом случае фаза равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что три фазы равно отстоят друг от друга. При подобном раскладе генераторам ГЭС легче производить энергию, поступающую в дома в неизменном виде. Но в квартиру заходит единственная фаза переменного тока.

Поэтому бытовые приборы по внутреннему устройству сильно отличаются от промышленных. Важными признаются параметры переменного тока. В любом государстве они стандартизированы и чётко выдерживаются. К параметрам переменного тока относят:

  1. Действующее значение напряжения – вызывающее в обычном проводнике постоянное идентичного номинала. Действующее значение ниже амплитуды в корень из двух раз либо близко к указанному. Требования для РФ составляют 220-230 В плюс-минус 10% от номинала.
  2. К частоте переменного тока предъявляются повышенные строгие требования. Предел отклонений от 50 Гц измеряется десятыми долями процента. Потому стабилизации движения вала на ГЭС уделяется столько внимания. От скорости его вращения зависит параметр.
  3. Нелинейные искажения считаются отдельной темой. Требований множество, определиться непросто. Особенно строго нормируются гармоники основной частоты, к примеру: 100, 150, 200, 250 Гц.

Подобные требования предъявляются и к параметрам постоянного тока. Допустим, известные автомобильные аккумуляторы в действительности включают в арсенал не 12, а 14 В. По мере разряда вольтаж падает. Если на аккумуляторе зарегистрировано напряжение 11,9 В, банка считается вышедшей из строя. Предлагаем внимательно читать инструкции. Дополним: в отдельных ноутбуках присутствует заряд бережного расхода энергии аккумулятора. В этом случае уровень поддерживается в рамках двух третей от полного. Считается, что тогда батарея прослужит дольше.

Итак, требования направлены на поддержание долгого и правильного функционирования оборудования. Параметры постоянного и переменного тока считаются фактором, определяющим надёжность и работоспособность системы.

Отличие переменного тока от постоянного простыми словами. Чем отличается постоянный электрический ток от переменного

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения .

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени. Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки . К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном. Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.

Современный мир уже сложно представить без электричества. Освещение помещений, работа бытовых приборов, компьютеров, телевизоров – все это давно стало привычными атрибутами жизни человека. Но одни электроприборы питаются от переменного тока, тогда как другие – от постоянного.

Электрический ток представляет собой направленный поток электронов от одного полюса источника тока к другому. Если это направление постоянно и не меняется во времени, говорят о постоянном токе. Один вывод источника тока при этом считается плюсовым, второй – минусовым. Принято считать, что ток течет от плюса к минусу.

Классическим примером источника постоянного тока является обычная пальчиковая батарейка. Такие батарейки широко применяются в качестве источника питания в малогабаритной электронной аппаратуре – например, в пультах дистанционного управления, в фотоаппаратах, радиоприемниках и т.д. и т.п.

Переменный ток, в свою очередь, характеризуется тем, что периодически меняет свое направление. Например, в России принят стандарт, согласно которому напряжение в электрической сети равно 220 В, а частота тока составляет 50 Гц. Именно второй параметр и характеризует, с какой частотой изменяется направление электрического тока. Если частота тока равна 50 Гц, то он меняет свое направление 50 раз в секунду.

Значит ли это, что в обычной электрической розетке, имеющей два контакта, периодически меняются плюс с минусом? То есть сначала на одном контакте плюс, на другом минус, потом наоборот и т.д. и т.п.? На самом деле все обстоит немного иначе. Электрические розетки в электросети имеют два вывода: фазовый и заземляющий. Обычно их называют «фазой» и «землей». Заземляющий вывод безопасен, напряжения на нем нет. На фазовом же выводе с частотой 50 Гц в секунду меняются плюс и минус. Если коснуться «земли», ничего не произойдет. Фазового же провода лучше не касаться, так как он всегда находится под напряжением 220 В.

Одни приборы питаются от постоянного тока, другие от переменного. Зачем вообще потребовалось такое разделение? На самом деле большинство электронных приборов используют именно постоянное напряжение, даже если включаются в сеть переменного тока. В этом случае переменный ток преобразуется в постоянный в выпрямителе, в простейшем случае состоящем из диода, срезающего одну полуволну, и конденсатора для сглаживания пульсаций.

Переменный же ток используется только потому, что его очень удобно передавать на большие расстояния, потери в этом случае сводятся к минимуму. Кроме того, он легко поддается трансформации – то есть изменению напряжения. Постоянный ток трансформировать нельзя. Чем выше напряжение, тем ниже потери при передаче переменного тока, поэтому на магистральных линиях напряжение достигает нескольких десятков, а то и сотен тысяч вольт. Для подачи в населенные пункты высокое напряжение снижается на подстанциях, в результате в дома поступает уже достаточно низкое напряжение 220 В.

В разных странах приняты неодинаковые стандарты питающего напряжения. Так, если в европейских странах это 220 В, то в США – 110 В. Интересен и тот факт, что знаменитый изобретатель Томас Эдисон не смог в свое время оценить все преимущества переменного тока и отстаивал необходимость использования в электрических сетях именно постоянного тока. Лишь позже он был вынужден признать, что ошибся.

Июл 22 2017

Изначально люди вообще не знали, что такое ток. Был просто статический заряд, но никто не понимал и не осознавал самой природы электричества.

Понадобились долгие века, пока Кулон разработал свою теорию, а немецкий священник фон Клейн обнаружил, что банка может запасать энергию.

К тому времени, как Ван де Грааф создал свой первый генератор, каждый уже знал, в чем отличие постоянного тока от переменного. А теперь пришла пора и наших читателей обрести для личного пользования эти сведения.

Когда Господь убедился, что бесполезно пугать стадо баранов молниями и громом, он решил продвигать историю несколько другим путём.

В результате человеческое общество пыталось произвести людей путём:

  • Занятий физической культурой.
  • Развитием искусства.
  • Логикой, положившей начало всем наукам.

Так постепенно, шаг за шагом, из зверей получилось нечто более разумное. Сегодня, например, многих шокирует, что в США полицейский может грубо обойтись с негритянкой при аресте, а каких-нибудь 100-200 лет назад африканцев вешали штабелями и считали это примером для подражания.

Нужно сказать, что нравственное развитие общества началось именно в последние десятилетия, когда общество открыто признало фашистов преступниками и начало проповедовать и внедрять так называемые права человека. Наука же развилась гораздо ранее.

Издревле, к примеру, люди видели, что кристалл турмалина притягивает пепел.

Почему так происходит? Следует сказать, что свойства пьезоэлектричества были впервые описаны именно на примере турмалина.

В начала 19-го века было показано, что кристалл, будучи нагрет, приобретает электрический заряд.

За счёт того, что произошла деформация, образовались два полюса:

  • Южный (аналогический).
  • Северный (антилогический).

Причём, если температура после нагрева остаётся постоянной, то электричество исчезает. Затем появление полюсов наблюдается уже при охлаждении.

Иначе говоря, кристалл турмалина при изменении температуры вырабатывает электричество.


Дальнейшие исследования показали, что размер потенциала зависит от:

  1. Поперечного сечения кристалла (среза поперёк полюсов).
  2. Разницы температур.

Прочие же факторы никакого влияния на величину заряда не оказывают.

Благодаря чему это происходит? Данное явление получило название пироэлектричества. Являясь диэлектриком, турмалин потихоньку заряжался от тока, текущего внутри. А заряд оставался на месте (определённые участки поверхности) из-за изолирующих свойств.

Таким образом, пока не замкнуть полюса турмалина проводником, кристалл будет копить заряд по мере изменения температуры. Линию, объединяющую полюса назвали пироэлектрической осью.

Пьезоэлектричество было открыто известной парой Кюри на основе того же турмалина в 1880 году.

Было понятно, что при изменении размеров кристалла будут вырабатываться заряды, осталось только придумать методику для проведения опыта.

Кюри использовал для этого статическое давление обычной массы.

Понятно, что весь эксперимент проводится на изолирующей поверхности.

Так например, масса в 1 кг вызывает появление в кристалле турмалина электрического заряда порядка пяти сотых статических единиц.

Как появляется электрический ток

Любопытно, что стройная теория по данному вопросу ещё не создана. Для нас же важно то, что в природе существуют заряды, и разными методами можно их получать.

Во время грозы это получается за счёт сил трения воздушных масс, молекул влаги и некоторых других явлений.

Земля заряжена отрицательно, и вверх постоянно течёт ток через атмосферу.

То есть током называется движение носителей заряда в силу каких-либо причин. И одной из них является разница потенциалов – перепад в уровне носителей между двумя точками пространства.

Можно сравнить это с напором воды. И как только преграда устраняется, поток хлынет в том направлении, где меньше давление.

Теперь возьмём аналогию с кристаллом турмалина

Допустим, появились на его концах заряды, что делать дальше? Нужно вызвать движение, например, медной жилкой провода.

Объединим полюса, и потечёт электрический ток. Движение носителей будет продолжаться до тех пор, пока потенциал не уравняется.

При этом кристалл разряжается. Но постоянный у нас в этом случае ток или переменный? В данном случае нельзя ничего подобного сказать о ходе процесса.

Переменный и постоянный ток являются физическими идеалами, а используются в силу относительной простоты получения математических моделей и управления при помощи них технологическим оборудованием.

Что представляют собой означенные выше понятия?

1. Под постоянным током понимается такой, когда носители текут в одном направлении.

Это не значит, что их количество через сечение среды одинаково. Нет. В более широком смысле постоянным (выпрямленным) током называется именно движения носителей заряда в одном направлении.

Но исходное понятие именно в физике требует более строгих услови

Ток должен быть образован именно постоянным количеством носителей, движущихся в одном направлении.

Причём носители эти положительные (что противоречит практике, где в качестве таковых рассматриваются электроны по большей части).

2. Переменным током называется не просто тот, где носители двигаются то в одном, то в другом направлении, а делают это в такт.

То есть половину периода волна бежит влево, а вторую вправо.

Это образно говоря. Плотность носителей меняется по закону синусоиды.

Собственно, это и есть график, отображающий поведение процесса. В точках перехода через нуль ток отсутствует вовсе.

И происходит это в нашей сети 100 раз в секунду. Следовательно, половина периода выпадает на движение носителей в положительном направлении, а вторая – в отрицательном.

Всего полных циклов в секунду образуется 50, что и соответствует сетевой частоте 50 Гц.

Как дело обстоит на самом деле с электрическим током

На практике форма тока (зависимость плотности зарядов от времени) не является синусоидальной. По разным причинам вид графика искажается.

Это, например, происходит при запуске оборудования и остановке, из-за наведённых помех различной природы.

Таким образом, форма переменного и постоянного тока искажается. Причём давно установлено, что это вредит аппаратуре.

Поскольку для борьбы с подобной напастью требовались какие-то методы, то математики придумали так называемый спектральный анализ.

Многие слышали о чем-то подобном на фондовом рынке, но в данном случае речь скорее о другом: учёные ищут математическую модель, которая относительно легко бы поддавалась расчёту и предсказанию результатов.

Такой способ действительно был найден, и имя ему – спектральный анализ. В этом случае колебание любой формы можно представить в виде суммы с различным удельным весом простейших синусоид разной частоты.

Получается, что по цепи двигается одновременно много-много составляющих. И целом они дают ток.

Причём не обязательно все составляющие двигаются туда же, куда и основная масса.

Можно это представить, как группу муравьёв, каждый из которых тащит в свою сторону, а результирующий эффект заставляет груз перемещаться лишь в одну.

Мы полагаем, нашим читателям это только забьёт голову.

Поэтому, упомянем, что помимо коэффициента (амплитуды) каждая составляющая обладает и фазой (направлением), а именуется гармоникой.

Так вот, каскады техники устроены так, чтобы полезные частоты (прежде всего 50 Гц) проходили внутрь прибора, а все прочее уходило на землю.

Это и есть тот признак для решения проблемы, о которой мы говорили в начале. Любое колебание можно представить в виде набора полезных и вредных сигналов и, исходя из этого, аппаратуру конструировать надлежащим образом.

Например, на этом принципе работают все приёмники: они избирательно пропускают только ток нужной частоты. За счёт этого удаётся отрезать помехи, а волна передаётся с минимальными искажениями на большие расстояния.

Мы могли бы долго говорить на эту тему, но пришла пора привести примеры того, где используются виды токов.

Примеры использования переменного и постоянного тока

Но, в общем и целом, происходит это достаточно плавно. А ток течёт в одном направлении и имеет примерно постоянную плотность.

Аналогично работают:

  1. Аккумулятор сотового телефона.
  2. Батарейка любого типа.
  3. Аккумулятор питания ноутбуков.

Но это все ёмкости, а как же генераторы?

В природе источников постоянного тока за исключением матушки-Земли не имеется.

Человеку гораздо удобнее создавать роторы, которые вращаясь с некоторой частотой, создают условия для образования в катушках статора переменного электрического тока.

Затем промышленная частота 50 Гц проходит по проводам и через подстанцию подаётся на потребителя.

Как бы то ни было, источником постоянного тока можно считать адаптеры. Это устройства, которые выполняют преобразование переменного тока в постоянный.

Допустим, у сотовых телефонов это обычно порядка +5 В, тогда как для мобильных раций существует большой разброс.

В общем и целом нужно понимать, что устройство постоянного тока может функционировать только от того номинала, для которого сконструировано.

В противном случае, либо работоспособность нарушается, либо – при больших отклонениях – возможен полный выход из строя.

Это касается и переменного, и постоянного тока.

Теперь пришла пора сказать, что в промышленности преобразование постоянного тока в переменный и обратно не практикуется.

Из соображений экономии все двигатели работают от трёх фаз. Каждая из них является переменным током частоты 50 Гц.

Но мы говорили выше, что у каждой гармоники имеется фаза. В нашем случае она равна 120 градусов. А круг образуется за счёт 360 градусов. Получается, что все три фазы равно отстоят друг от друга.

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи - объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного вопроса.

Сложности визуализации

Большинству людей не составляет труда разобраться с такими понятиями, как «давление», «количество» и «поток», поскольку в своей повседневной жизни они постоянно сталкиваются с ними. Например, легко понять, что увеличение потока при поливе цветов увеличит количество воды, выходящей из поливочного шланга, в то время как увеличение давления воды заставит ее двигаться быстрее и с большей силой.

Электрические термины, такие как «напряжение» и «ток», обычно трудно понять, поскольку нельзя увидеть или почувствовать электричество, движущееся по кабелям и электрическим контурам. Даже начинающему электрику чрезвычайно сложно визуализировать происходящее на молекулярном уровне или даже четко понять, что собой представляет, например, электрон. Эта частица находятся вне пределов сенсорных возможностей человека, ее невозможно увидеть и к ней нельзя прикоснуться, за исключением случаев, когда определенное количество их не пройдет через тело человека. Только тогда пострадавший определенно ощутит их и испытывает то, что обычно называют электрическим шоком.

Тем не менее, открытые кабели и провода большинству людей кажутся совершенно безвредными только потому, что они не могут увидеть электронов, только и ждущих того, чтобы пойти по пути наименьшего сопротивления, которым обычно является земля.

Аналогия

Понятно, почему большинство людей не могут визуализировать то, что происходит внутри обычных проводников и кабелей. Попытка объяснить, что что-то движется через металл, идет вразрез со здравым смыслом. На самом базовом уровне электричество не так сильно отличается от воды, поэтому его основные понятия довольно легко освоить, если сравнить электрическую цепь с водопроводной системой. Основное различие между водой и электричеством заключается в том, что первая заполняет что-либо, если ей удастся вырваться из трубы, в то время как второе для передвижения электронов нуждается в проводнике. Визуализируя систему труб, большинству легче понять специальную терминологию.

Напряжение как давление

Напряжение очень похоже на давление электронов и указывает, как быстро и с какой силой они движутся через проводник. Эти физические величины эквивалентны во многих отношениях, включая их отношение к прочности трубопровода-кабеля. Подобно тому, как слишком большое давление разрывает трубу, слишком высокое напряжение разрушает экранирование проводника или пробивает его.


Ток как поток

Ток представляет собой расход электронов, указывающий на то, какое их количество движется по кабелю. Чем он выше, тем больше электронов проходит через проводник. Подобно тому, как большое количество воды требует более толстых труб, большие токи требуют более толстых кабелей.

Использование модели водяного контура позволяет объяснить и множество других терминов. Например, силовые генераторы можно представить как водяные насосы, а электрическую нагрузку - как водяную мельницу, для вращения которой требуется поток и давление воды. Даже электронные диоды можно рассматривать как водяные клапаны, которые позволяют воде течь только в одну сторону.

Постоянный ток

Какая разница между постоянным и переменным током, становится ясно уже из названия. Первый представляет собой движение электронов в одном направлении. Очень просто визуализировать его с использованием модели водяного контура. Достаточно представить, что вода течет по трубе в одном направлении. Обычными устройствами, создающими постоянный ток, являются солнечные элементы, батареи и динамо-машины. Практически любое устройство можно спроектировать так, чтобы оно питалось от такого источника. Это почти исключительная прерогатива низковольтной и портативной электроники.

Постоянный ток довольно прост, и подчиняется закону Ома: U = I × R. измеряется в ваттах и ​​равна: P = U × I.


Из-за простых уравнений и поведения постоянный ток относительно легко осмыслить. Первые системы передачи электроэнергии, разработанные Томасом Эдисоном еще в XIX веке, использовали только его. Однако вскоре разница в переменном токе и постоянном стала очевидной. Передача последнего на значительные расстояния сопровождалась большими потерями, поэтому через несколько десятилетий он был заменен более выгодной (тогда) системой, разработанной Николой Теслой.

Несмотря на то что коммерческие силовые сети всей планеты в настоящее время используют переменный ток, ирония заключается в том, что развитие технологии сделало передачу постоянного тока высокого напряжения на очень больших расстояниях и при экстремальных нагрузках более эффективной. Что, например, используется при соединении отдельных систем, таких как целые страны или даже континенты. В этом заключается еще одна разница в переменном токе и постоянном. Однако первый по-прежнему используется в низковольтных коммерческих сетях.


Постоянный и переменный ток: разница в производстве и использовании

Если переменный ток намного проще производить с помощью генератора, используя кинетическую энергию, то батареи могут создавать только постоянный. Поэтому последний доминирует в схемах питания низковольтных устройств и электроники. Аккумуляторы могут заряжаться только от постоянного тока, поэтому переменный ток сети выпрямляется, когда аккумулятор является основной частью системы.

Широко распространенным примером может служить любое транспортное средство - мотоцикл, автомобиль и грузовик. Генератор, устанавливаемый на них, создает переменный ток, который мгновенно преобразуется в постоянный с помощью выпрямителя, поскольку в системе электроснабжения присутствует аккумулятор, и большинству электроники для работы требуется постоянное напряжение. Солнечные элементы и топливные ячейки также производят только постоянный ток, который затем при необходимости можно преобразовать в переменный с помощью устройства, называемого инвертором.


Направление движения

Это еще один пример разницы постоянного тока и переменного тока. Как следует из названия, последний представляет собой поток электронов, который постоянно меняет свое направление. С конца XIX века почти во всех бытовых и промышленных электрических всего мира используется синусоидальный переменный ток, поскольку его легче получить и гораздо дешевле распределять, за исключением очень немногих случаев передачи на большие расстояния, когда потери мощности вынуждают использовать новейшие высоковольтные системы постоянного тока.

У переменного тока есть еще одно большое преимущество: он позволяет возвращать энергию из точки потребления обратно в сеть. Это очень выгодно в зданиях и сооружениях, которые производят больше энергии, чем потребляют, что вполне возможно при использовании альтернативных источников, таких как солнечные батареи и ветряные турбины. Тот факт, что переменный ток позволяет обеспечить двунаправленный поток энергии, является основной причиной популярности и доступности альтернативных источников питания.


Частота

Когда дело доходит до технического уровня, к сожалению, объяснить, как работает переменный ток, становится сложно, поскольку модель водяного контура к нему не совсем подходит. Однако можно визуализировать систему, в которой вода быстро меняет направление потока, хотя не понятно, как она при этом будет делать что-то полезное. Переменный ток и напряжение постоянно меняют свое направление. Скорость изменения зависит от частоты (измеряемой в герцах) и для бытовых электрических сетей обычно составляет 50 Гц. Это означает, что напряжение и ток меняют свое направление 50 раз в секунду. Вычислить активную составляющую в синусоидальных системах довольно просто. Достаточно разделить их пиковое значение на √2.

Когда переменный ток меняет направление 50 раз в секунду, это означает, что лампы накаливания включаются и выключаются 50 раз в секунду. Человеческий глаз не может это заметить, и мозг просто верит, что освещение работает постоянно. В этом заключается еще одна разница в переменном токе и постоянном.

Векторная математика

Ток и напряжение не только постоянно меняются - их фазы не совпадают (они несинхронизированные). Подавляющее большинство силовых нагрузок переменного тока вызывает разность фаз. Это означает, что даже для самых простых вычислений нужно применять векторную математику. При работе с векторами невозможно просто складывать, вычитать или выполнять любые другие операции скалярной математики. При постоянном токе, если по одному кабелю в некоторую точку поступает 5A, а по другому - 2A, то результат равен 7A. В случае переменного это не так, потому что итог будет зависеть от направления векторов.

Коэффициент мощности

Активная мощность нагрузки с питанием от сети переменного тока может быть рассчитана с помощью простой формулы P = U × I × cos (φ), где φ - угол между напряжением и током, cos (φ) также называется коэффициентом мощности. Это то, чем отличаются постоянный и переменный ток: у первого cos (φ) всегда равен 1. Активная мощность необходима (и оплачивается) бытовыми и промышленными потребителями, но она не равна комплексной, проходящей через проводники (кабели) к нагрузке, которая может быть рассчитана по формуле S = U × I и измеряется в вольт-амперах (ВА).

Разница между постоянным и переменным током в расчетах очевидна - они становятся более сложными. Даже для выполнения самых простых вычислений требуется, по крайней мере, посредственное знание векторной математики.


Сварочные аппараты

Разница между постоянным и переменным током проявляется и при сварке. Полярность дуги оказывает большое влияние на ее качество. Электрод-позитивная сварка проникает глубже, чем электрод-негативная, но последняя ускоряет наплавление металла. При постоянном токе полярность всегда постоянная. При переменном она меняется 100 раз в секунду (при 50 Гц). Сварка при постоянном предпочтительнее, так как она производится более ровно. Разница в сварке переменным и постоянным током заключается в том, что в первом случае движение электронов на долю секунды прерывается, что приводит к пульсации, неустойчивости и пропаданию дуги. Этот вид сварки используется редко, например, для устранения блуждания дуги в случае электродов большого диаметра.

В чём разница переменного и постоянного тока

Общее понятие электрического тока можно выразить как движение различных заряженных частиц (электронов, ионов) в некотором направлении. А его величину охарактеризовать числом заряженных частиц, которые прошли через проводник за определенный промежуток времени.

Если величина заряженных частиц в 1 кулон проходит через определенное сечение проводника за время в 1 секунду, тогда можно говорить о силе тока в 1 ампер протекающего через проводник. Таким образом определяется количество ампер или сила тока. Это общее понятие тока. А теперь рассмотрим понятие переменного и постоянного тока и их различие.

Постоянный электрический ток по определению — это ток, который течёт только в одном направлением и не меняет его со временем. Переменный ток характерен тем, что меняет свое направление и величину со временем. Если графически постоянный ток отображается как прямая линия, то переменный ток течет по проводнику по закону синуса и графически отображается как синусоида.

Так как переменный ток меняется по закону синусоиды, то он имеет такие параметры как период полного цикла, время которого обозначается буквой Т. Частота переменного тока обратна периоду полного цикла. Частота переменного тока выражается числом полных периодов в определенный промежуток времени (1 сек).


Таких периодов в нашей электросети переменного тока равно 50, что соответствует частоте 50 Гц. F = 1/Т, где период для 50 Гц равен 0,02 сек. F =1/0,02 = 50 Гц. Обозначается переменный ток английскими буквами AC и знаком «~». Постоянный ток имеет обозначение DC и значок «-». Кроме того переменный ток может быть однофазным или многофазным. В основном используется трехфазная сеть.

Почему в сети переменное напряжение, а не постоянное

Переменный ток имеет много преимуществ перед постоянным током. Низкие потери при передаче переменного тока в линиях электропередач (ЛЭП) по сравнению с постоянным током. Генераторы переменного тока простые и дешевые. При передаче на большие расстояния по ЛЭП высокое напряжение достигает 330 тысяч вольт с минимальным током.

Чем меньше ток в ЛЭП, тем меньше потерь. Передача постоянного тока на большие расстояния понесет немалые потери. Также высоковольтные генераторы переменного тока значительно проще и дешевле. Из переменного напряжения легко получить более низкое напряжение через простые трансформаторы.

Также, значительно дешевле получить постоянное напряжение из переменного, чем наоборот, использовать дорогие преобразователи постоянного напряжения в переменное. Такие преобразователи имеют низкий КПД и большие потери. По пути передачи переменного тока используют двойное преобразование.

Сначала с генератора получает 220 — 330 Кв, и передают на большие расстояния до трансформаторов, которые понижают высокое напряжение до 10 Кв и далее идут подстанции которые понижают высокое напряжение до 380 В. С этих подстанций электроэнергия расходится по потребителям и поступает в дома и на электрощиты многоквартирного дома.


Три фазы трехфазного тока сдвинутые на 120 градусов

Для однофазного напряжения характерна одна синусоида, а для трехфазного три синусоиды, смещенные на 120 градусов относительно друг друга. Трехфазная сеть также имеет свои преимущества перед однофазными сетями. Это меньше габариты трансформаторов, электродвигатели также конструктивно меньших размеров.

Имеется возможность изменить направление вращения ротора асинхронного электродвигателя. В трехфазной сети можно получить 2 напряжения — это 380 В и 220 В, которые используются для изменения мощности двигателя и регулировки температуры нагревательных элементов. Используя трехфазное напряжение в освещении можно устранить мерцание люминесцентных ламп, для чего их подключают к разным фазам.

Постоянный ток используется в электронике и во всех бытовых приборах, так как он легко преобразуется из переменного за счёт его деления на трансформаторе до нужной величины и дальнейшего выправления. Источником постоянного тока являются аккумуляторы, батареи, генераторы постоянного тока, светодиодные панели. Как видно различие в переменном и постоянном токе немалое. Теперь мы узнали — Почему в нашей розетки течет переменный ток, а не постоянный?

Разница между переменным и постоянным током - Разница Между

Разница Между 2021

Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки вре

Содержание:

Ключевая разница: Постоянный ток (DC) означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки постоянных магнитов на провод. Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов.

Переменный ток и постоянный ток - это две различные формы токов, которые используются для передачи электроэнергии по всему миру. Оба тока одинаковы, так как для передачи электричества используются потоки электронов, но на этом сходство заканчивается. Переменный ток - это наиболее распространенный тип электроэнергии, который передается электростанциями и используется для питания зданий, офисов, домов и т. Д.

Постоянный ток (DC) был преобладающей формой электричества, которое использовалось в 19го века и был также использован в первой коммерческой передаче электроэнергии Томаса Эдисона. Постоянный ток означает, что мощность течет в одном направлении. В постоянном токе поток электронов идет в постоянном направлении, не изменяясь через определенные промежутки времени, и достигается путем установки на провод постоянных магнитов, которые помогают электронам оставаться на устойчивом пути. Первоначально постоянный ток назывался «гальваническим током». Постоянные токи протекают в проводниках, таких как провода, но также могут проходить через полупроводники, изоляторы или даже через вакуум. Постоянные токи могут быть получены с использованием таких источников, как батареи, термопары и солнечные элементы. Химическая энергия внутри батареи обладает достаточной мощностью, чтобы толкать электроны, а не тянуть, в результате чего энергия течет в одном направлении.

Постоянный ток чаще всего встречается в приложениях, которые требуют малой мощности и могут работать от батарей или солнечных батарей. Однако другое популярное приложение, в котором используются постоянные токи, - это автомобили, в которых большинство автомобильных деталей работают от постоянного тока и преобразовываются из переменного тока с использованием генераторов переменного тока. DC был прекращен как основной метод питания домов и зданий, поскольку они не могли путешествовать на большие расстояния без потери энергии. Мощность и напряжение в постоянном токе остаются неизменными в стабильных условиях, в результате чего скорость передачи энергии источником остается неизменной. Напряжения постоянного тока имеют ненулевую временную кривую напряжения и всегда положительны, но могут увеличиваться и уменьшаться.

Мощность переменного тока (AC) отличается от постоянного тока, так как поток электронов в AC постоянно изменяется, от прямого к обратному и так далее. Это возможно путем размещения вращающихся магнитов вдоль проволоки и при изменении поляризации магнитов меняется поток электронов. Сегодня переменный ток используется для передачи электроэнергии и электроэнергии в домах, офисах и т. Д., Так как его легче транспортировать. Никола Тесла заслужил звание за разработку основ электроснабжения переменного тока благодаря своим линиям электропередачи переменного тока. Мощность переменного тока обычно течет в форме синусоидальной волны, но также может течь в форме трапеции, треугольника и квадрата. Радио и аудио сигналы являются примерами переменного тока.

Электростанции производят переменные токи с помощью вращающихся турбин, которые создают магнитные поля, которые толкают и тянут электроны, заставляя их чередоваться в потоке. Постоянное нажатие и вытягивание постоянно изменяет магнитную поляризацию, в результате чего электроны также меняют направление. Напряжение переменного тока также постоянно изменяется между положительным и отрицательным. Переменный ток подает ток и напряжение в синусоидальной форме волны, что приводит к пиковому значению (VP) и минимальному значению. Постоянное изменение направления известно как частота тока и измеряется в герцах. AC обычно имеет частоту 50 Гц или 60 Гц, в зависимости от страны.

Переменный ток стал основным методом питания по сравнению с постоянным током из-за возможности легко производить и передавать. Переменные характеристики переменного тока сводят к минимуму потери энергии из-за сопротивления в проводниках при передаче на большие расстояния. Напряжения переменного тока легче производить и передавать по сравнению с напряжениями постоянного тока. Конденсатор пропустит напряжение переменного тока, но заблокирует сигнал постоянного тока, в то время как индуктор пропустит напряжение постоянного тока и заблокирует сигнал переменного тока. Мощность переменного тока больше подходит для таких устройств, как лампы и обогреватели, в то время как постоянный ток больше подходит для электронной схемы. Переменный ток может быть преобразован из одного напряжения в другое с помощью трансформатора, тогда как постоянный ток может быть преобразован в переменный ток с помощью электродвигателя-генератора или электронной инверторной цепи.

Постоянный ток (DC)

Переменного тока (переменного тока)

Передача энергии

Напряжение постоянного тока не может путешествовать очень далеко и начинает терять энергию

Безопаснее переносить на большие расстояния по городу и обеспечить большую мощность

Поток электронов

Течет в одном направлении

Продолжайте переключать энергию вперед и назад

Вызывает поток электронов

Установленные магниты на проводе

Вращающиеся магниты вдоль провода

частота

0 частота

От 50 Гц до 60 Гц; в зависимости от страны

направление

Электричество течет в одном направлении

Энергия постоянно меняет направление

Текущий

Это ток постоянной величины

Это величина, изменяющаяся со временем

Типы

Чистый и пульсирующий

Синусоидальный, Трапециевидный, Треугольный, Квадратный,

Нашел в

Аккумуляторы, солнечные батареи

Генератор переменного тока и электростанции

Фактор силы

Всегда 1

Лежит между 0 и 1

В чем разница между питанием переменного и постоянного тока?

Электричество В чем разница между питанием переменного и постоянного тока?

| Обновлено 27.04.2021Автор / Редактор: Люк Джеймс / Erika Granath

Электроэнергия бывает двух видов - переменного тока (AC) и постоянного тока (DC). Оба они необходимы для функционирования нашей электроники, но знаете ли вы разницу между ними и то, к чему они относятся?

Связанные компании

И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Напротив, электрический заряд переменного тока периодически меняет направление.

(Источник: Unsplash)

Что такое переменный ток?

Электроэнергия переменного тока (AC) - это стандартное электричество, которое выходит из электрических розеток и определяется как поток заряда, который демонстрирует периодическое изменение направления.

Поток переменного тока изменяется с положительного на отрицательный из-за электронов - электрические токи возникают из-за потока этих электронов, который может двигаться в положительном (вверх) или отрицательном (вниз) направлении.Это известно как синусоидальная волна переменного тока, и эта волна возникает, когда генераторы переменного тока на электростанциях создают мощность переменного тока.

Основной доклад на PCIM Digital Days 2021

Не пропустите ключевой доклад «HVDC Grid Challenges Locks and Opportunities» от Седдика Бача, научного директора программы SuperGrid Institute, на PCIM Digital Days с 3 по 7 мая 2021 года. вся программа!

Генераторы переменного тока вырабатывают переменный ток путем вращения проволочной петли внутри магнитного поля.Волны переменного тока образуются, когда провод движется в области с разной магнитной полярностью - например, ток меняет направление, когда провод вращается от одного полюса магнитного поля к другому. Это волнообразное движение означает, что мощность переменного тока может распространяться дальше, чем мощность постоянного тока, что является огромным преимуществом, когда речь идет о доставке энергии потребителям через розетки.

Что такое питание постоянного тока?

Электропитание постоянного тока (DC), как можно понять из названия, представляет собой линейный электрический ток - он движется по прямой линии.

Постоянный ток может поступать из нескольких источников, включая батареи, солнечные элементы, топливные элементы и некоторые модифицированные генераторы переменного тока. Электропитание постоянного тока также может быть «получено» из переменного тока с помощью выпрямителя, преобразующего переменный ток в постоянный.

Питание

постоянного тока гораздо более стабильно с точки зрения подачи напряжения, а это означает, что большая часть электроники полагается на него и использует источники питания постоянного тока, такие как батареи. Электронные устройства также могут преобразовывать мощность переменного тока из розеток в мощность постоянного тока с помощью выпрямителя, часто встроенного в источник питания устройства.Трансформатор также будет использоваться для повышения или понижения напряжения до уровня, подходящего для рассматриваемого устройства.

Однако не все электрические устройства используют питание постоянного тока. Многие устройства, особенно бытовые приборы, такие как лампы, стиральные машины и холодильники, используют переменный ток, который подается непосредственно из электросети через розетки.

Зачем нужны два разных типа питания?

Хотя многие современные электронные и электрические устройства предпочитают питание постоянного тока из-за его плавного потока и равномерного напряжения, мы не могли бы обойтись без переменного тока.Оба типа власти важны; один не «лучше» другого.

Фактически, AC доминирует на рынке электроэнергии; все электрические розетки подают питание в здания в виде переменного тока, даже если может потребоваться немедленное преобразование тока в мощность постоянного тока. Это связано с тем, что постоянный ток не способен преодолевать такие же большие расстояния от электростанций до зданий, как переменный ток. Также намного проще генерировать переменный ток, чем постоянный, из-за того, как работают генераторы, и система в целом дешевле в эксплуатации - с переменным током мощность может легко передаваться по национальным сетям через мили и мили проводов и опор.

DC в первую очередь вступает в игру, когда устройству необходимо сохранять энергию в батареях для будущего использования. Смартфоны, ноутбуки, портативные генераторы, фонарики, системы наружных камер видеонаблюдения… вы называете это, все, что работает от батарей, требует хранения постоянного тока. Когда батареи заряжаются от сети, переменный ток преобразуется в постоянный ток выпрямителем и сохраняется в батарее.

Однако это не единственный используемый метод зарядки. Если вы когда-либо заряжали свой телефон с помощью блока питания, например, вы используете источник питания постоянного тока, а не переменного тока.В этих ситуациях источникам питания постоянного и постоянного тока может потребоваться изменить выходное напряжение (в данном случае, блок питания) для использования устройства (в данном случае телефона).

Следуйте за нами в LinkedIn

Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.

Следуйте за нами здесь!

(ID: 46408650)

Переменный ток (AC) vs.Постоянный ток (DC)

Пораженный громом!

Откуда австралийская рок-группа AC / DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И переменный, и постоянный ток описывают типы протекания тока в цепи. В постоянного тока (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд в переменного тока (AC), с другой стороны, периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, потому что ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить проект музыкальной шкатулки Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства передачи электроэнергии на большие расстояния.

Что вы узнаете

  • История создания переменного и постоянного тока
  • Различные способы генерации переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

и nbsp

и nbsp

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление.В результате уровень напряжения также меняется на противоположный вместе с током. AC используется для подачи электроэнергии в дома, офисные здания и т. Д.

Генерация переменного тока

переменного тока может производиться с использованием устройства, называемого генератором переменного тока. Это устройство представляет собой особый тип электрического генератора, предназначенный для выработки переменного тока.

Проволочная петля скручена внутри магнитного поля, которое индуцирует ток по проводу. Вращение провода может происходить с помощью любого количества средств: ветряной турбины, паровой турбины, проточной воды и так далее.Поскольку провод вращается и периодически меняет магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, демонстрирующая этот принцип:


(Видео предоставлено: Хуррам Танвир)

Генератор переменного тока можно сравнить с нашей предыдущей аналогией с водой:

Чтобы генерировать переменный ток в наборе водопроводных труб, мы соединяем механический кривошип с поршнем, который перемещает воду в трубах вперед и назад (наш «переменный» ток).Обратите внимание, что защемленный участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

AC может быть разных форм, если напряжение и ток чередуются. Если мы подключим осциллограф к цепи переменного тока и построим график ее напряжения с течением времени, мы можем увидеть несколько различных форм сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колеблющееся напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную волну и треугольную волну:

Прямоугольные волны часто используются в цифровой и переключающей электронике для проверки их работы.

Треугольные волны используются при синтезе звука и используются для тестирования линейной электроники, такой как усилители.

Описание синусоидальной волны

Мы часто хотим описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоидальная волна состоит из трех частей: амплитуда, частота и фаза .

Рассматривая только напряжение, мы можем описать синусоидальную волну как математическую функцию:

V (t) - это наше напряжение как функция времени, что означает, что наше напряжение изменяется с изменением времени. Уравнение справа от знака равенства описывает, как напряжение изменяется во времени.

V P - амплитуда . Это описывает максимальное напряжение, которое наша синусоида может достигать в любом направлении, что означает, что наше напряжение может быть + V P вольт, -V P вольт или где-то посередине.

Функция sin () указывает, что наше напряжение будет в форме периодической синусоидальной волны, которая представляет собой плавные колебания около 0 В.

- это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (радианы в секунду).

f описывает частоту синусоидальной волны. Это дается в виде герц или единиц в секунду . Частота показывает, сколько раз определенная форма волны (в данном случае один цикл нашей синусоидальной волны - подъем и спад) происходит в течение одной секунды.

t - наша независимая переменная: время (измеряется в секундах). По мере того, как меняется время, наша форма волны меняется.

φ описывает фазу синусоидальной волны. Фаза - это мера того, насколько сдвинута форма сигнала во времени. Часто это число от 0 до 360, которое измеряется в градусах. Из-за периодической природы синусоидальной волны, если форма волны сдвинута на 360 °, она снова становится такой же, как если бы она была сдвинута на 0 °.Для простоты мы предполагаем, что в остальной части этого руководства фаза равна 0 °.

Мы можем обратиться к нашей надежной розетке за хорошим примером того, как работает форма сигнала переменного тока. В Соединенных Штатах в наши дома подается питание переменного тока с размахом 170 В (амплитуда) и 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить график этого уравнения. Если графического калькулятора нет, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам может потребоваться использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и понижается до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоидальной волны. Если бы мы измеряли напряжение в розетках с помощью осциллографа, мы бы увидели именно это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ. Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это тоже правильно.Как? Говоря об переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичный корень». (RMS). Часто бывает полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере у нас было напряжение от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Приложения

В розетках дома и в офисе почти всегда есть кондиционер. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно просто.При высоких напряжениях (более 110 кВ) при передаче электроэнергии теряется меньше энергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее тепловыделение в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовывать в высокое напряжение и обратно с помощью трансформаторов.

AC также может приводить в действие электродвигатели. Двигатели и генераторы - это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на выводах генерируется напряжение!).Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. Д., Которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный. Вместо того, чтобы колебаться вперед и назад, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

DC можно создать несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатор», может производить постоянный ток.
  • Использование устройства, называемого «выпрямитель», которое преобразует переменный ток в постоянный ток
  • Батареи обеспечивают постоянный ток, который образуется в результате химической реакции внутри батареи

Используя нашу аналогию с водой снова, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не течет по трубам.

Описание DC

DC определяется как «однонаправленный» ток; ток течет только в одном направлении. Напряжение и ток могут изменяться с течением времени до тех пор, пока направление потока не меняется. Для упрощения предположим, что напряжение является постоянным. Например, мы предполагаем, что батарея AA обеспечивает 1.5 В, что математически можно описать как:

Если мы построим график с течением времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока обеспечат постоянное напряжение во времени. В действительности батарея будет медленно терять заряд, а это означает, что напряжение будет падать по мере использования батареи. В большинстве случаев мы можем предположить, что напряжение постоянно.

Приложения

Почти все проекты электроники и запчасти, выставленные на продажу на SparkFun, работают на DC.Все, что работает от батареи, подключается к стене с помощью адаптера переменного тока или использует USB-кабель для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Сотовые телефоны
  • D&D Dice Gauntlet на основе LilyPad
  • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который конвертируется в постоянный ток)
  • Фонари
  • Гибридные и электромобили

Битва течений

Почти каждый дом или офис подключен к сети переменного тока.Однако это решение не было мгновенным. В конце 1880-х годов различные изобретения в Соединенных Штатах и ​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, приобрел патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

AC против DC

Томас Эдисон (Изображение любезно предоставлено biography.com)

В конце 1800-х годов постоянный ток было нелегко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые питали бы отдельные кварталы или участки города. Электроэнергия распределялась по трем проводам от электростанции: +110 вольт, 0 вольт и -110 вольт. Освещение и двигатели могут быть подключены между розеткой + 110 В или 110 В и 0 В (нейтраль). При напряжении 110 В допускается некоторое падение напряжения между установкой и нагрузкой (дома, в офисе и т. Д.).).

Несмотря на то, что падение напряжения на линиях электропередачи было учтено, электростанции необходимо было располагать в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Используя патенты Tesla, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и его снижения до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо меньшем токе, что означало меньшие потери мощности из-за сопротивления проводов.В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Кампания по выявлению мазков Эдисона

В течение следующих нескольких лет Эдисон провел кампанию по категорическому противодействию использованию AC в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации о AC. Эдисон также приказал нескольким техникам публично казнить животных переменным током, пытаясь показать, что переменный ток более опасен, чем постоянный ток. Пытаясь показать эти опасности, Гарольд П.Браун и Артур Кеннелли, сотрудники Edison, разработали первый электрический стул для штата Нью-Йорк с использованием переменного тока.

Возвышение AC

В 1891 году Международная электротехническая выставка проходила во Франкфурте, Германия, и показала первую передачу трехфазного переменного тока на большие расстояния, которая питала фары и двигатели на выставке. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены дисплеем. В следующем году была создана компания General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса в Ниагарском водопаде, 1896 год (изображение любезно предоставлено teslasociety.com)

Westinghouse выиграл контракт в 1893 году на строительство плотины гидроэлектростанции, чтобы использовать энергию Ниагарского водопада и передавать переменный ток в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и электроэнергия переменного тока начала снабжать электроэнергией промышленные предприятия в Буффало. Эта веха ознаменовала упадок DC в США. В то время как Европа примет стандарт переменного тока 220–240 В при 50 Гц, стандартом в Северной Америке станет 120 В при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри в 1880-х годах использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока, которую можно было использовать для передачи постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury, HVDC никогда не применялся в течение почти столетия.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование между переменным и постоянным током. Для генерации постоянного тока высокого напряжения (иногда до 800 кВ) может использоваться специальное оборудование.Некоторые страны Европы начали использовать линии HVDC для электрического соединения различных стран.

В линиях

HVDC потери меньше, чем в аналогичных линиях переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов, Эдисон, Тесла и Вестингауз могут осуществить свои желания. Переменный ток и постоянный ток могут сосуществовать, и каждый из них служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать разницу между переменным и постоянным током. Переменный ток легче преобразовывать между уровнями напряжения, что делает передачу высокого напряжения более возможной. Напротив, постоянный ток присутствует почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к розетке. С таким пониманием вы должны быть готовы заняться некоторыми более сложными схемами и концепциями, даже если они содержат переменный ток.

Взгляните на следующие учебные пособия, когда будете готовы глубже погрузиться в мир электроники:

и nbsp

Зависимость переменного тока от постоянного

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения. Как только ток установлен, он также становится постоянным. Постоянный ток (DC) - это поток электрического заряда только в одном направлении.Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник напряжения, изменяющийся во времени. Переменный ток (AC) - это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока. Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока.Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Напряжение и ток постоянного тока постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления. Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между клеммами источника переменного напряжения колеблется, как показано.Математическое выражение для V дается как [латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: напряжение переменного тока соответствует

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В, - напряжение в момент времени, t , В, 0, - пиковое напряжение, а f - частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменный ток равен

.

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I - ток в момент времени t , а I 0 = V 0 / R - пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на Рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как управляющее напряжение, поскольку I = V / R .Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и тускнеет 120 раз в секунду, когда ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помашите рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Подключение: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампочкой. Вы наблюдаете то же самое с фарами на своей машине? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас интересует средняя мощность, а не ее колебания - например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на Рисунке 3, средняя мощность P ave составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это видно из графика, поскольку области над и под линией (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или действующий ток I среднеквадратического значения и среднее значение или среднеквадратичное напряжение В среднеквадратичное значение , равное, соответственно,

.

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее (или среднее) значение и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднеквадратичное значение = I среднеквадратичное значение V среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I среднеквадратичного значения , V среднеквадратичного значения и P , среднее значение , а не пиковые значения.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичное значение равно 120 В. Обычный автоматический выключатель на 10 А прервет постоянное значение I среднеквадратичного значения более 10 А. Ваш 1,0-кВт микроволновая печь потребляет P, , средн. = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения для мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (b) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока изменяется от 170 В до –170 В и обратно 60 раз в секунду.Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за каждый цикл), а средняя мощность составляет 60 Вт.

AC и DC (переменный ток и постоянный ток) - разница и сравнение

Электроэнергия течет двумя путями: переменным током (AC) или постоянным током (DC) . Электричество или «ток» - это не что иное, как движение электронов по проводнику, например по проводу. Разница между переменным и постоянным током заключается в направлении потока электронов. В постоянном токе электроны стабильно движутся в одном направлении или «вперед».«В переменном токе электроны постоянно меняют направление, иногда движутся« вперед », а затем« назад ».

Переменный ток - лучший способ передавать электричество на большие расстояния.

Таблица сравнения

Таблица сравнения переменного и постоянного тока
Переменный ток Постоянный ток
Количество энергии, которое может быть перенесено Безопасно для передачи на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Постоянный магнетизм вдоль провода.
Частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
Направление Он меняет направление на противоположное при движении по контуру. Он течет в контуре в одном направлении.
Ток Это ток, величина которого меняется со временем Это ток постоянной величины.
Поток электронов Электроны меняют направление движения - вперед и назад. Электроны стабильно движутся в одном направлении или «вперед».
Получено от Генератор переменного тока и сеть. Элемент или батарея.
Пассивные параметры Импеданс. Только сопротивление
Коэффициент мощности Входит между 0 и 1. всегда 1.
Типы Синусоидальный, трапециевидный, треугольный, квадратный. Чистый и пульсирующий.
Переменный и постоянный ток. По горизонтальной оси отложено время, а по вертикальной оси - напряжение.

Истоки переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне.Так родилась мощность постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока

постепенно заменили систему батарей постоянного тока Эдисона, потому что переменный ток безопаснее передавать на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного приложения магнетизма к проводу ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному положению, но когда ориентация магнита менялась, электроны также вращались.

Видео сравнения переменного и постоянного тока

Применение трансформаторов переменного тока

Еще одно различие между переменным и постоянным током заключается в количестве энергии, которое он может переносить. Каждая батарея предназначена для выработки только одного напряжения, и это напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию. Но напряжение переменного тока от генератора на электростанции может быть увеличено или уменьшено с помощью другого механизма, называемого трансформатором .Трансформаторы располагаются на электрическом столбе на улице, а не на электростанции. Они изменяют очень высокое напряжение на более низкое, подходящее для вашей бытовой техники, такой как лампы и холодильники.

Хранение и преобразование из переменного тока в постоянный и наоборот

AC может даже быть изменен на постоянный ток с помощью адаптера, который вы можете использовать для питания батареи вашего ноутбука. DC можно «подтолкнуть» вверх или вниз, только это немного сложнее. Инверторы изменяют постоянный ток на переменный. Например, для вашего автомобиля инвертор изменит 12 вольт постоянного тока на 120 вольт переменного тока, чтобы запустить небольшое устройство.Хотя постоянный ток можно хранить в батареях, вы не можете хранить переменный ток.

Список литературы

Поделитесь этим сравнением:

Если вы дочитали до этого места, подписывайтесь на нас:

«Переменный ток против постоянного (переменный ток против постоянного)». Diffen.com. Diffen LLC, н.д. Интернет. 12 июня 2021 г. <>

MIT School of Engineering | »В чем разница между переменным и постоянным током?

В чем разница между переменным и постоянным током?

Один выглядит как прямая линия, другой - волна; вместе они питают ваш ноутбук…

Элизабет Эрли

Переменный ток (AC) и постоянный ток (DC) примечательны тем, что вдохновили имя легендарной металлической группы, но они также оказались в самом центре современного мира, каким мы его знаем.Переменный и постоянный ток - это разные типы напряжения или тока, используемые для проведения и передачи электрической энергии. Быстро - подумайте о пяти вещах, которые вы делаете или касаетесь за день, которые никоим образом не связаны с электричеством, не были произведены с использованием электричества и не связаны с внутренним использованием электричества вашим собственным телом ... Хорошая попытка, но ни в коем случае, вы не могу этого сделать. (Или отправьте нам список, если считаете, что можете; мы проверим его.)

Электрический ток - это поток заряженных частиц или, в частности, в случае переменного и постоянного тока, поток электронов.По словам Карла К. Берггрена, профессора электротехники Массачусетского технологического института, фундаментальное различие между переменным и постоянным током - это направление потока. Постоянный ток постоянен и движется в одном направлении. «Простой способ визуализировать разницу состоит в том, что на графике постоянный ток выглядит как плоская линия, тогда как поток переменного тока на графике образует синусоиду или волнообразный узор», - говорит Берггрен. «Это связано с тем, что переменный ток изменяется с течением времени в виде колебательного повторения - восходящая кривая указывает на ток, текущий в положительном направлении, а нисходящая кривая означает альтернативный цикл, в котором ток движется в отрицательном направлении.Это то, что дало AC название ".

Оставив на время в стороне линии и графики, Берггрен предлагает еще один способ различать переменный и постоянный ток, взглянув на то, как они работают в устройствах, которые мы используем. Например, лампа рядом с кроватью работает от переменного тока. Это потому, что источник тока пришел издалека, а волнообразное движение тока делает его эффективным путешественником. Если вы любите читать фонариком, значит, вы являетесь потребителем постоянного тока. Типичная батарея имеет отрицательную и положительную клеммы, и электрический заряд (это те электроны) перемещается в одном направлении от одного к другому с постоянной скоростью (прямая линия на графике).

Интересно, что если вы читаете это на ноутбуке, вы фактически используете оба вида тока. Вилка в форме сопла, которая входит в ваш компьютер, подает постоянный ток на аккумулятор компьютера, но он получает этот заряд от вилки переменного тока, которая входит в стену. Неуклюжий маленький блок между розеткой и компьютером - это адаптер питания, который преобразует переменный ток в постоянный.

Берггрен объясняет, что переменный ток стал популярным в конце 19 века из-за его способности эффективно распределять мощность при низких напряжениях.Первоначально питание проводится при очень высоких напряжениях. Чтобы снизить эти высокие напряжения до низких, необходимых для питания, скажем, бытовой лампочки, необходимо преобразовать ток. Трансформатор, который в основном представляет собой две петли проводов, понижает переменный ток с сотен тысяч вольт до распределения разумных напряжений (до сотен) для питания большей части повседневной электроники. Возможность преобразовывать напряжение из переменного тока означала, что стало возможно более эффективно передавать энергию по стране.

По словам Берггрена, существует забавная история соперничества между AC и DC. В конце 19 века между Эдисоном и Вестингаузом шла гигантская война из-за переменного и постоянного тока. У Эдисона были патенты, которые заставили его вложить средства в широкое использование постоянного тока. Он намеревался убедить мир в том, что постоянный ток лучше всего подходит для передачи и распределения энергии. Он прибегал к сумасшедшим демонстрациям, таким как убийство крупных животных с помощью переменного тока, пытаясь доказать его ужасную опасность. Какое-то время он добивался успеха, и большинство муниципалитетов использовали местные электростанции с источником постоянного тока.Однако передача электроэнергии менее населенным сельским общинам по всей стране с помощью постоянного тока оказалась очень неэффективной, поэтому Westinghouse в конечном итоге выиграла, и переменный ток стал доминирующим источником энергии.

Спасибо 10-летнему Грэму из Провиденса, Род-Айленд, за этот вопрос.

Опубликовано: 17 сентября, 2013

Solar Fundamentals: В чем разница между переменным током и постоянным током?

В солнечной отрасли производство электроэнергии - наш хлеб с маслом. Это означает, что профессионалам в области солнечной энергетики важно хорошо разбираться в основах электроэнергетики.

Если вы новичок в солнечной энергии, вам есть чему поучиться - вы не можете просто подключить панели к стене и закончить это дело. В сегодняшней статье мы рассмотрим одну из основных тем, которые необходимо знать каждому монтажнику об электричестве: разницу между двумя типами электрического тока: переменным и постоянным.

переменного и постоянного тока задействованы в солнечной фотоэлектрической системе. Итак, если ваше знакомство с AC / DC начинается и заканчивается со знаменитой группой, эта статья для вас!

Разница между мощностью переменного тока (AC) и постоянного тока (DC)

AC означает переменный ток, а DC - постоянный ток.Мощность переменного и постоянного тока относится к текущему потоку электрического заряда. Каждый представляет собой тип «потока» или формы, которую может принимать электрический ток.

Как мы объясняем в нашем учебнике по натяжке солнечных панелей, ток - это скорость потока электрического заряда (т. Е. Потока электронов).

Хотя это может показаться немного техническим, разница между ними довольно проста:

  • Постоянный ток всегда течет в одном направлении.
  • Переменный ток, как можно догадаться из названия, часто меняет направление (хотя возвратно-поступательное движение электронов по-прежнему передает энергию конечному устройству).

«Простой способ визуализировать разницу состоит в том, что на графике постоянный ток выглядит как плоская линия, тогда как поток переменного тока на графике образует синусоиду или волнообразный узор», - говорит Карл К. Берггрен, профессор. электротехники в Массачусетском технологическом институте.

История электричества: борьба между переменным и постоянным током

Когда электроэнергия только разрабатывалась и использовалась, было неясно, станет ли переменный или постоянный ток доминирующим способом подачи электроэнергии. Два известных пионера электричества - Томас Эдисон и Никола Тесла - предложили каждый из этих вариантов.

Тесла запатентовал переменный ток, а Эдисон - постоянный ток. Вначале стандарт DC был стандартом. Однако одна проблема с постоянным током заключается в том, что его нелегко преобразовать в более высокие или более низкие напряжения, что, очевидно, полезно для различных приложений.

AC решает эту проблему. Его можно преобразовать в другое напряжение с помощью трансформаторов, а энергетическим компаниям также проще передавать мощность переменного тока на большие расстояния. Итак, несмотря на дезинформационную кампанию Эдисона по дискредитации А.С. как опасного (в которой он зашел так далеко, что публично казнил животных электрическим током!), В конечном итоге она победила.

Используется ли в бытовых предметах постоянный или переменный ток?

Короткий ответ - «оба». Электросеть США и электричество, поступающее в ваш дом, - это переменный ток. В результате большинство подключаемых к электросети бытовых приборов - холодильников, электрических духовок, микроволновых печей и т. Д. - работают от сети переменного тока

. Однако батареи

используют постоянный ток: у них есть положительный и отрицательный полюсы, и ток всегда течет в одном направлении между этими точками - от положительного к отрицательному полюсу, когда они разряжены.

Поскольку батареи работают с постоянным током, многие из используемых вами электронных устройств - например, ваш ноутбук и сотовый телефон - также работают от постоянного тока.

Солнечная энергия - постоянный или переменный ток?

Солнечные панели производят постоянный ток: солнце, падающее на панели, стимулирует поток электронов, создавая ток. Поскольку эти электроны текут в одном направлении, ток прямой.

Инвертор в доме, преобразующий постоянный ток в переменный.
Потребность в инверторах

Вот почему солнечные фотоэлектрические системы используют инверторы.Инвертор преобразует энергию постоянного тока в энергию переменного тока, поэтому его можно использовать дома или отправить обратно в электрическую сеть (в дополнение к некоторым другим функциям).

А что насчет устройств с питанием от постоянного тока? Адаптер питания, входящий в состав зарядного устройства для этих устройств, по сути, представляет собой инвертор. Они преобразуют сеть переменного тока в мощность постоянного тока, которая может использоваться устройством.

Итак, когда вы подключаете свой ноутбук к дому, работающему на солнечной энергии, мощность постоянного тока от солнечных панелей преобразуется в переменный ток вашим инвертором, а затем обратно в постоянный ток инвертором вашего ноутбука, чтобы ваш ноутбук мог его использовать!

Это может показаться много.К счастью, существует программное обеспечение для солнечной энергии, которое может помочь облегчить бремя фактического применения этих концепций на практике при проектировании солнечных систем. В этом руководстве для покупателя программного обеспечения для солнечной энергии подробно описаны некоторые особенности, на которые следует обратить внимание при выборе решения.

А как насчет солнечных панелей переменного тока?

Как мы уже говорили выше, традиционные солнечные панели производят энергию постоянного тока. Затем эта энергия преобразуется инвертором в мощность переменного тока. Это тот случай, если ваша фотоэлектрическая система включает в себя струнный инвертор (который преобразует энергию из одной или нескольких цепочек солнечных панелей) или микроинверторы (которые преобразуют ее для отдельных или, в некоторых случаях, нескольких солнечных панелей).

Однако вы, возможно, слышали также о солнечных панелях переменного тока. Если солнечные панели по своей природе производят постоянный ток, то что это?

Что такое солнечные панели переменного тока?
Панели

AC - это просто солнечные панели, в которые встроены микроинверторы.

Проектирование системы с использованием панелей переменного тока такое же, как проектирование системы с микроинверторами, за исключением того, что установщику не нужно покупать и прикреплять микроинверторы.

А как насчет домашнего хранения?

Домашние аккумуляторные батареи, подключенные к солнечной батарее, используют ту же общую модель.Батареи постоянного тока пропускают энергию через инвертор, чтобы преобразовать ее в переменный ток. «Батареи переменного тока» на рынке просто имеют встроенный инвертор, который позволяет им напрямую преобразовывать постоянный ток в переменный.

Понимание различий между переменным и постоянным током важно в солнечной промышленности. Это важно не только для понимания того, как работает солнечная батарея и как она устроена, эти знания также могут помочь вам обучить клиентов и, в конечном итоге, укрепить доверие в процессе продаж.

Готовы узнать больше? Присоединяйтесь к Aurora Solar на конференции Empower 2021!

Разница между переменным током (AC) и постоянным током (DC)

В проводящих материалах есть свободные электроны, которые перемещаются от одного атома к другому, когда к ним прикладывается разность потенциалов.Этот поток электронов в замкнутой цепи называется током. В зависимости от направления движения электронов в замкнутой цепи электрический ток в основном подразделяется на два типа: переменный ток и постоянный ток.

Одно из основных различий между переменным и постоянным током состоит в том, что в переменном токе полярность и величина тока меняются через равные промежутки времени, тогда как в постоянном токе они остаются постоянными.Некоторые различия поясняются ниже в форме сравнительной таблицы с учетом различных факторов;

Содержание: переменный ток (AC) против постоянного (DC)

  1. Таблица сравнения
  2. Определение
  3. Ключевые отличия
  4. Запомните

Сравнительная таблица

Basis Переменный ток Постоянный ток
Определение Направление тока периодически меняется на противоположное. Направление тока остается прежним.
Причины потока электронов Вращение катушки в однородном магнитном поле или вращение однородного магнитного поля внутри неподвижной катушки Постоянное магнитное поле поперек провода
Частота 50 или 60 Гц Ноль
Направление потока электронов. Двунаправленный Однонаправленный
Коэффициент мощности В пределах от 0 до 1 Всегда 1
Полярность Имеет полярность (+, -) Не имеет полярности
Получено из Генераторы переменного тока Генераторы, батареи, солнечные элементы и т. Д.
Тип нагрузки Их нагрузка является резистивной, индуктивной или емкостной. Их нагрузка обычно резистивная.
Графическое представление Оно представлено нерегулярными волнами, такими как треугольная волна, квадратная волна, квадратная волна, синусоида. Представлен прямой линией.
Передача Может передаваться на большие расстояния с некоторыми потерями. Его можно передавать на очень большие расстояния с незначительными потерями.
Трансформируемый Легко преобразовать в постоянный ток Легко преобразовать в переменный ток
Подстанция Для генерации и передачи требуется несколько подстанций Для генерации и передачи требуется больше подстанций
Пассивный параметр Импеданс Сопротивление
Harazdous Опасно Очень опасно
Приложение Заводы, промышленность и для бытовых целей. Гальваника, электролиз, электронное оборудование и т. Д.

Определение переменного тока

Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Их величина и полярность также меняются со временем. В таких типах тока свободные электроны (электрический заряд) движутся как в прямом, так и в обратном направлении.

Частота (количество циклов, завершенных за одну секунду) переменного тока от 50 до 60 Гц, зависит от страны.Переменный ток легко преобразуется из высокого значения в низкое и наоборот с помощью трансформатора. Таким образом, он в основном используется для передачи и распределения.

Определение постоянного тока

Когда электрический заряд внутри проводника течет в одном направлении, такой тип тока называется постоянным током. Величина постоянного тока всегда остается постоянной, а частота тока равна нулю. Он используется в сотовых телефонах, электромобилях, сварке, электронном оборудовании и т. Д.

Графическое представление переменного тока показано на рисунке ниже.


Ключевые различия между переменным током и постоянным током

  1. Ток, который периодически меняет свое направление, такой вид тока называется переменным током. Постоянный ток однонаправлен или течет только в одном направлении.
  2. Заряды в переменном токе протекают либо путем вращения катушки в магнитном поле, либо путем вращения магнитного поля внутри неподвижной катушки.При постоянном токе заряды текут, поддерживая постоянный магнетизм вдоль провода.
  3. Частота переменного тока составляет от 50 до 60 Гц в зависимости от стандарта страны, тогда как частота постоянного тока всегда остается нулевой.
  4. Коэффициент мощности переменного тока находится в пределах от нуля до единицы, тогда как коэффициент мощности постоянного тока всегда остается равным единице.
  5. Генератор переменного тока вырабатывает ток генератора. Постоянный ток вырабатывается генератором, батареей и элементами.
  6. Нагрузка переменного тока бывает емкостной, индуктивной или резистивной. Нагрузка постоянного тока всегда носит резистивный характер.
  7. Переменный ток может быть графически представлен с помощью различной формы волны неправильной формы, такой как треугольная волна, прямоугольная волна, периодическая волна, пилообразная волна, синусоида и т. Д. Постоянный ток графически представлен прямой линией.
  8. Переменный ток передается на большие расстояния с некоторыми потерями, тогда как постоянный ток передается на очень большие расстояния с незначительными потерями.
  9. Переменный ток преобразуется в постоянный с помощью выпрямителя, а постоянный ток преобразуется в переменный ток с помощью инвертора.
  10. Немногие подстанции требуют производства и передачи переменного тока. Для передачи постоянного тока требуются дополнительные подстанции.
  11. Переменный ток используется в промышленности, на фабриках и в быту. Постоянный ток в основном используется в электронном оборудовании, импульсном освещении, гибридных транспортных средствах, гальванике, электролизе, для возбуждения обмотки возбуждения ротора и т. Д.

Запомните

Постоянный ток опаснее переменного.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *