Содержание

Короткое замыкание (КЗ) – К – Русский алфавит – Словарь-справочник электрика

1). Короткое замыкание – случайный или преднамеренный проводящий путь между двумя или более проводящими частями, принуждающий различия электрических потенциалов между этими проводящими частями становиться равными или близкими к нулю.

Короткое замыкание обычно возникает в аварийном режиме электроустановки здания при повреждении изоляции токоведущих частей, находящихся под разными электрическими потенциалами, и возникновении между этими частями электрического контакта, имеющего пренебрежимо малое полное сопротивление. Короткое замыкание также может быть следствием ошибочных действий, совершаемых персоналом при монтаже и эксплуатации электроустановки здания, когда соединяют между собой проводящие части, которые в нормальном режиме находятся под разными электрическими потенциалами.

Короткое замыкание характеризуется током короткого замыкания, который, многократно превышая номинальный ток электрической цепи, может вызвать возгорание её элементов и явиться причиной пожара в здании.

Поэтому в электроустановках зданий всегда проводят мероприятия, направленные на снижение вероятности возникновения короткого замыкания, а также выполняют защиту от короткого замыкания с помощью устройств защиты от сверхтока.
 

2). Короткое замыкание (КЗ) – образование электрического контакта вследствие соединения проводников электрической цепи, не предусмотренного нормальными условиями работы. Ток короткого замыкания, в десятки и сотни раз превышающий номинальный ток установки, может вызвать механические или тепловые повреждения отдельных ее частей. Для предотвращения опасных последствий КЗ применяют релейную защиту или установку плавких предохранителей, которые обеспечивают быстрое отключение участка с КЗ.


3). Короткое замыкание – не предусмотренное нормальными условиями работы соединение точек электрической цепи, имеющих различные потенциалы, друг с другом или с другими цепями через пренебрежимо малое сопротивление (например, при касании неизолированных проводов электрической сети между собой).

При коротком замыкании как правило срабатывает релейная защита, и участок электросети, на котором произошло короткое замыкание отключается.


4). Короткое замыкание (КЗ) – электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

5). КОРОТКОЕ ЗАМЫКАНИЕ

 – не предусмотренное нормальными условиями работы соединение точек электрической цепи, имеющих различные потенциалы, друг с другом или с другими цепями через малое сопротивление (например, при касании неизолированных проводов электрической сети между собой).

Пожарная опасность короткого замыкания в электропроводках связана в основном с высокой температурой дуги в зоне замыкания (около 2000-4000 град.  С) и характеризуется такими показателями, как:

  • способность изоляции кабеля и провода возгораться от нагрева токопроводящей жилы током или дугой короткого замыкания;
  • способность образования в момент короткого замыкания расплавленных (горящих) частиц проводниковых материалов, которые, разлетаясь на значительные расстояния, могут создавать самостоятельные очаги пожаров.

Непосредственно с высокой пожарной опасностью короткого замыкания в электропроводках связана проблема определения их действительной причастности к возникающим пожарам.

6). КЗ (Короткое Замыкание) – не предусмотренное нормальными условиями работы электрическое соединение точек электрической цепи с различными потенциалами через малое сопротивлении. Известно с момента открытия электричества.

Ток короткого замыкания элемента, определение

    Значения токов короткого замыкания зависят от сопротивления цепи, по которой они проходят от источника электроснабжения до места повреждения — чем больше суммарное сопротивление, тем меньше значение тока короткого замыкания. Поэтому расчет токов короткого замыкания в основном сводится к определению сопротивления всех элементов сети, входящих в электрическую цепь, от источника электроснабжения до места короткого замыкания, а по ним и значения токов короткого замыкания. При этом сопротивления отдельных участков сети с разным напряжением приводят к одному напряжению места короткого замыкания. Ниже приводится порядок расчета. 
[c.163]

    Надежность работы электродвигателя в целом зависит от надежности работы его отдельных узлов в тепловом режиме зависит от нагрева отдельных частей как во время работы, так и в момент пуска, и если температура той или иной части будет превосходить допустимую, то вследствие значительного ослабления изоляции на данном участке наступит ее местное разрушение и пробой, который приведет к полному разрушению изоляционного слоя. В цепи обмотки произойдет короткое замыкание между витками обмотки или на корпус статора, и электродвигатель выйдет из строя. Поэтому тепловому режиму электродвигателя должно быть уделено должное внимание. Тепловые нагрузки на отдельные части экранированного электродвигателя очень велики, так как коэффициент полезного действия у них н же по сравнению с двигателями нормального исполнения и, следовательно, большая часть мощности бесполезно теряется в виде тепловых потерь. Определение температурных нагрузок в отдельных элементах электродвигателя является более сложной задачей, чем это может показаться вначале. 
[c.126]

    Сила токов короткого замыкания вычисляется обычно по> методу сопротивлений. Сущность метода заключается в определении величины сопротивления отдельных элементов системы, затем общего (суммарного) сопротивления всей сети от источника электроснабжения до места повреждения, а по величине общего сопротивления — силы тока короткого замыкания. При этом сопротивления отдельных участков сети с разным напряжением относят к напряжению места короткого замыкания. [c.243]

    Последовательность операций при ремонте выпрямителей приведена на рис.

91. Каждый узел после ремонта испытывают. В объем испытаний входят проверка электрической прочности изоляции трансформатора приложенным и индуктированным напряжением определение напряжения на всех ответвлениях вторичных обмоток трансформатора на холостом ходу и под нагрузкой измерение потерь холостого хода трансформатора измерение потерь и напряжения короткого замыкания трансформатора проверка изоляции стяжных шпилек трансформатора испытание электрической прочности монтажа электропроводки, измерительных приборов, переключателей и т. п. испытание на нагрев трансформатора и выпрямительных элементов определение прямого падения напряжения в выпрямительных элементах. [c.232]

    Для защиты электроустановок от короткого замыкания применяют плавкие предохранители. Основным элементом предохранителя является цинковая или медная плавкая вставка. Принцип действия предохранителей с плавкой вставкой основан на тепловом действии электрического тока, протекающего по проводнику.

Плавкая вставка имеет малое сечение. Поэтому при резком увеличении силы тока в цепи она нагревается значительнее по сравнению с другими участками цепи. При определенном значении силы тока вставка расплавляется. Для защиты электрооборудования используют различные типы разборных и неразборных предохранителей, в том числе пробочных и трубчатых конструкций. [c.188]


    Примечание. До сих пор предполагалось, что моделируются постепенные отказы, когда эксплуатационный персонал, реагируя на определенные внешние проявления, имеет возможность подготовить вывод элемента из работы (разгрузить агрегат, изменить режим работы системы и т. д.). В этих случаях, как правило, возможность нарушения устойчивости системы исключается. При внезапных же отказах (например, коротких замыканиях на линиях электропередачи) возможны нарушения устойчивости, а при неблагоприятных условиях — и дальнейшее (каскадное) развитие аварии. 
[c. 536]

    Рассмотрим элемент, состоящий из цинкового и медного электродов, погруженных в растворы ZnSOi и USO4, соответственно (элемент Даниэля). Пусть внешняя цепь включает переменное сопротивление R, вольтметр V и амперметр А (рис. 4.1). Разность потенциалов (э. д. с.) между цинковым и медным электродами в отсутствие тока близка к 1 В. Если теперь, подобрав соответствующее сопротивление R, обеспечить протекание во внешней цепи небольшого тока, то измеряемая разность потенциалов станет меньше 1 В вследствие поляризации обоих электродов. По мере роста тока напряжение падает. Наконец, при коротком замыкании разность потенциалов между медным и цинковым электродами приближается к нулю. Влияние силы тока в цепи на напряжение элемента Даниэля можно графически изобразить с помощью поляризационной диаграммы, представляющей собой зависимость потенциалов Е медного и цинкового электродов от полного тока I (рис. 4.2). Способ определения этих потенциалов будет пояснен в разделе 4.3. Символами Ezn и Еси обозначены так называемые потенциалы разомкнутого элемента, отвечающие отсутствию тока в цепи.

Поляризации цинкового электрода отвечает кривая ab , медного — кривая def. При силе тока, равной / , поляризация цинка в вольтах определяется как разность между [c.47]

    В последнее время широкое распространение получил новый метод полярографического анализа, основанный на предварительном электролитическом концентрировании металлов на стационарных электродах и последуюш,ем анодном растворении их при постепенно снижаюш,емся отрицательном потенциале [1—4]. Брос-ковый ток на стационарном электроде, полученный в определенных условиях, правильно отражает явление концентрационной поляризации и может быть использован для построения полярографических 1—Е кривых [5—6]. Необходимым условием воспроизводимости бросковых токов является полная гальваническая деполяризация электрода после каждого измерения, осуш,ест-вляемая коротким замыканием электродов. При коротком замыкании электродов после предварительного электролиза наблюдается обратный бросок тока, являюш,ийся следствием разрядки гальванического элемента.

До последнего времени обратный брос-ковый ток не привлекал достаточного внимания исследователей, и поэтому в настояш ей работе нами была предпринята попытка изучить это явление и выяснить возможности применения его в полярографии. [c.179]

    Моделирование короткозамкнутой цементационной пары применяется довольно широко [18, 23, 73, 115, 116] и осуществляется путем погружения в исследуемый электролит пары металлов, замкнутых на токоизмерительный прибор. Ток между электродами быстро падает, а потенциалы сближаются до некоторой постоянной разности, обусловленной сопротивлением системы. Для определения зависимости потенциал—ток для каждого электрода во вяешнюю цепь пары вводят и затем постепенно уменьшают до нуля дополнительное сопротивление [23, 102, 115]. Экстраполяция катодных и анодных кривых до их пересечения позволяет найти максимальный ток системы и потенциал, отвечающий короткому замыканию гальванического элемента. При наличии диффузионных ограничений частных реакций потенциалы металлов резко изменяются с увеличением тока и экстраполяция поляризационных кривых может внести значительные погрешности в определение потенциала и тока короткого замыкания. В этом 1случае величины s и / иороткозамюнутой цементационной пары можно измерить, компенсируя с помощью внешнего источника тока омическое сопротивление системы и поляризуя оба металла до одного и того же потенциала [5,12]. [c.158]

    Аккумуляторная батарея, имеющая хотя бы один короткозамкнутый аккумулятор, к дальнейшей эксплуатации непригодна. Причины коротких замыканий определяют после разборки батареи осмотром неисправного аккумулятора. Перед осмотром аккумуляторную батарею разряжают током /р = 0,1 СгоА до конечного напряжения 1,75 В на элемент. После определения причин коротких замыканий их устраняют, поврежденные сепараторы заменяют, удаляют наросты с кромок элёкт- [c.129]

    Выпрямительная установка состоит из следующих основных частей трансформатораи выпрямительных элементов 8, собранных по определенной схеме. Для защиты от коротких замыканий и перегрузки со стороны переменного и выпрямленного токов устанавливают предохранители 3, 4, 10. Режим работы установки контролируется амперметром 7 и вольтметром 9. Электроэнергия учитывается электросчетчиком 15. Выпрямительная установка подключается к сети переменного тока через клеммы 1, 2, цепь катодной защиты — к клеммам 11, 12. [c.55]


    Автоматические выключатели и тепловые реле. Плавкие предохранители плохо защищают асинхронные короткозамкнутые электродвигатели от перегрузок. Нередко бывает, что перегорает лишь один предохранитель и двигатель, оставшийся работать на двух фазах, перегревается и выходит из строя. Кроме того, плавкие предохранители не всегда обеспечивают избирательность (селективность) защиты сети. Это и привело к широкому использованию на предприятиях химических волокон автоматических выключателей с тепловыми и электромагнитными элементами. Обладая большой инерцией, тепловые элементы не реагируют на пусковые токи электродвигателей и хорошо защищают их от перегрузки. В то же время тепловые реле имеют характеристику, подобную характеристике предохранителей, и при коротких замыканиях не успевают быстро отключить электрическую цепь, что приводит к развитию аварии и повреждениям при замыкании в электродвигателях. Поэтому в дополнение к магнитным пускателям, контакторам и автоматам устанавливают предохранители, защищающие двигатели от короткого замыкания. Применяются также комбинированные автоматы с тепловыми и электромагнитными расцепителями. Электромагнитные расцепители отключают автоматиче-,ские выключатели мгновенно при прохождении через их катушки токов больше определенной величины. Таким образом, они защищают электрооборудование от коротких замыканий, заменяя предохранители. [c.198]

    Одним из электрических параметров ДСП является эквивалент ное реактивное (индуктивное) сопротивление X электрической цепи одной фазы, определяемое из опыта короткого замыкания на действующей ДСП или расчетным путем для проектируемой ДСП. В последнем случае рассчитывают индуктивное сопротивление всех элементов силовой цепи, приводя значение X- к силе тока стороны НН. Индуктивное сопротивление элементов токопровода стороны ВН ввиду его относительно малого значения после пересчета на сторону НН при определении эквивалентного сопротивления X обычно пренебрегают. Индуктивное сопротивление проводников определяют как алгебраическую (для однофазной сети) или геометрическую (для трехфазной сети) сумму индуктивного сопротивления, вызванного магнитным потоком собственного тока, т.е. самоиндукцией, и сопротивлений, создаваемых взаимной индукцией магнитных потоков соседних проводников  [c.100]


Определение токов короткого замыкания для выбора аппаратов и проводников

Внимание!

Ссылка на главу, вышедшую в другом издании

Нумерация может измениться

Данный документ находится в библиотеке сайта ElectroShock

Перейдите по ссылке, чтобы посмотреть список доступных документов

Там же находится ПУЭ в формате справки windows

1.4.9. В электроустановках до 1 кВ и выше при определении токов КЗ для выбора аппаратов и проводников и определения воздействия на несущие конструкции следует исходить из следующего:

1. Все источники, участвующие в питании рассматриваемой точки КЗ, работают одновременно с номинальной нагрузкой.

2. Все синхронные машины имеют автоматические регуляторы напряжения и устройства форсировки возбуждения.

3. Короткое замыкание наступает в такой момент времени, при котором ток КЗ будет иметь наибольшее значение.

4. Электродвижущие силы всех источников питания совпадают по фазе.

5. Расчетное напряжение каждой ступени принимается на 5 % выше номинального напряжения сети.

6. Должно учитываться влияние на токи КЗ присоединенных к данной сети синхронных компенсаторов, синхронных и асинхронных электродвигателей. Влияние асинхронных электродвигателей на токи КЗ не учитывается при мощности электродвигателей до 100 кВТ в единице, если электродвигатели отделены от места КЗ одной ступенью трансформации, а также при любой мощности, если они отделены от места КЗ двумя или более ступенями трансформации либо если ток от них может поступать к месту КЗ только через те элементы, через которые проходит основной ток КЗ от сети и которые имеют существенное сопротивление (линии, трансформаторы и т. п.).

1.4.10. В электроустановках выше 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные сопротивления электрических машин, силовых трансформаторов и автотрансформаторов, реакторов, воздушных и кабельных линий, а также токопроводов. Активное сопротивление следует учитывать только для ВЛ с проводами малых сечений и стальными проводами, а также для протяженных кабельных сетей малых сечений с большим активным сопротивлением.

1.4.11. В электроустановках до 1 кВ в качестве расчетных сопротивлений следует принимать индуктивные и активные сопротивления всех элементов цепи, включая активные сопротивления переходных контактов цепи. Допустимо пренебречь сопротивлениями одного вида (активными или индуктивными), если при этом полное сопротивление цепи уменьшается не более чем на 10 %.

1.4.12. В случае питания электрических сетей до 1 кВ от понижающих трансформаторов при расчете токов КЗ следует исходить из условия, что подведенное к трансформатору напряжение неизменно и равно его номинальному напряжению.

1.4.13. Элементы цепи, защищенной плавким предохранителем с токоограничивающим действием, следует проверять на электродинамическую стойкость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

 

Что вызывает короткое замыкание и как этого избежать?

от Aleksey | Инструменты Советы Декор Мастерская | Вторник, 09 февраля 2021

Подпишитесь на Make-Self.net в Facebook и читайте наши статьи первыми.

Термин «короткое замыкание» часто используется несколько неправильно для обозначения любой проблемы с проводкой в электрической цепи. Истинное короткое замыкание происходит, когда провода электрической цепи или соединения проводов обнажены или повреждены. Они должны быть диагностированы и отремонтированы как можно скорее.

Что такое короткое замыкание?

Короткое замыкание относится к определенному состоянию, при котором электричество выходит за пределы установленного пути электрической цепи. Короткое замыкание происходит, когда электрический поток завершает свой путь через более короткое расстояние.

Определение короткого замыкания

По своей природе электричество стремится вернуться на землю, и в правильно функционирующей цепи это означает, что ток течет через установленную электрическую цепь обратно к сервисной панели и далее через электрические провода. Однако, если соединения внутри проводки ослабнут или разорвутся, может произойти утечка. В этом случае электрический ток мгновенно стремится вернуться к земле по более короткому пути. Этот путь вполне может идти через горючие материалы или даже через человека, поэтому короткое замыкание представляет опасность пожара или смертельного шока.

Причина этого заключается в том, что другие материалы предлагают путь с меньшим сопротивлением, чем в медной проводке цепи. Например, в выключателе света с неисправной проводкой или ненадежным соединением проводов, если оголенный медный провод касается металлической распределительной коробки или металлической лицевой панели на переключателе, ток будет прыгать в сторону любого пути с наименьшим сопротивлением, что вполне может проходить через палец, руку и тело того, кто прикасается к переключателю.

Читайте также: 12 Вещей, которые никогда не стоит делать с обогревателем

2 типа замыкания

В общих чертах, короткое замыкание – это любое состояние, при котором установленная электрическая цепь прерывается из-за дефекта проводки или электрических соединений. На самом деле, есть две ситуации, которые квалифицируются как короткие замыкания, хотя имеют разные названия.

Короткое замыкание

Термин «короткое замыкание» чаще всего используется электриками для обозначения ситуации, когда фаза, по которому проходит постоянный ток, касается провода ноль. Когда это происходит, сопротивление мгновенно уменьшается, и большой объем тока протекает неожиданным путем. Когда происходит это классическое короткое замыкание, иногда разлетаются искры, вы можете услышать треск, а иногда возникает дым и пламя.

3 причины короткого замыкания

Есть несколько причин короткого замыкания, мы рассмотрим три, которые чаще всего случаются.

Неисправная изоляция провода цепи

Старая или поврежденная изоляция может привести к соприкосновению ноль и фазы, что может вызвать короткое замыкание. Проколы гвоздями и шурупами, а также старение могут привести к повреждению изоляции проводов и возникновению коротких замыканий. Или, если животные-вредители, такие как мыши, крысы или белки, грызут проводку, провода могут быть оголены, что вызовет короткое замыкание.

Ослабленные соединения проводов

Крепления могут ослабнуть, что приведет к соприкосновению ноль и фазы. Исправить соединения проводов сложно, и с этим лучше всего справятся те, кто хорошо знаком с электромонтажными работами.

Читайте также: 10 Причин обзавестись портативным генератором в частном доме

Неисправная проводка устройства

Когда устройство подключено к розетке, его проводка фактически становится продолжением цепи, а любые проблемы в проводке устройства становятся проблемами цепи. В старых или сломанных приборах со временем могут возникнуть внутренние короткие замыкания. Короткое замыкание в электроприборах может происходить в вилках, шнурах питания или внутри самого устройства. 

Чтобы защитить дом от коротких замыканий используйте автоматические выключатели или предохранители

Практически все новые или обновленные системы электропроводки защищены главной сервисной панелью, на которой размещены отдельные автоматические выключателями, управляющие отдельными цепями в доме. В старых установках проводки аналогичная защита обеспечивается предохранителями. В автоматических выключателях используется внутренняя система пружин или сжатого воздуха, чтобы определять изменения в протекании тока и разрывать соединение цепи при возникновении нарушений, таких как внезапное беспрепятственное протекание тока, возникающее во время короткого замыкания.

Читайте также: Как самостоятельно установить детектор дыма?

Работа с короткими замыканиями

Самый распространенный признак короткого замыкания – это срабатывание автоматического выключателя и отключение цепи. Однако есть и другие условия, которые могут вызвать срабатывание автоматического выключателя, например, перегрузка по мощности, поэтому важно определить, почему срабатывает автоматический выключатель. Если автоматический выключатель продолжает отключаться сразу после включения, это явный признак того, что есть проблема с проводкой где-то в цепи или в одном из приборов, подключенных к этой цепи.

Следуйте этой процедуре, если вы подозреваете короткое замыкание:

  1. Найдите сработавший автоматический выключатель: На главной сервисной панели найдите отдельный автоматический выключатель с лапкой, которая находится в положении ВЫКЛ. Некоторые выключатели могут иметь красный или оранжевый индикатор в маленьком окошке, чтобы их было легче обнаружить. Этот сработавший прерыватель идентифицирует цепь, в которой существует проблема. При осмотре цепи оставьте автоматический выключатель выключенным.
  2. Осмотрите шнуры питания устройства: проверьте все шнуры питания, подключенные к розеткам в цепи, которая отключилась. Если вы обнаружите что-либо поврежденное или на котором пластиковая изоляция расплавилась, велика вероятность, что короткое замыкание произошло внутри самого прибора или устройства. Отключите эти приборы от электрической сети. Если вы обнаружите подозрительные устройства, снова включите автоматический выключатель после их отключения. Если цепь теперь остается активной и не срабатывает снова, вполне вероятно, что проблема возникла в приборе. Однако, если автоматический выключатель сразу же сработает, перейдите к следующему шагу.
  3. Выключите все выключатели света и приборов в цепи. Затем верните автоматический выключатель в положение ВКЛ.
  4. Включите каждый выключатель света или выключатель прибора по очереди. Если вы дойдете до переключателя, который снова вызывает срабатывание автоматического выключателя, вы определили участок электрической проводки, в котором имеется слабое соединение или проблема с проводкой.
  5. Устранить проблему с электропроводкой. Это шаг, который может потребовать помощи профессионального электрика. Не пытайтесь сделать это, если вы не уверены в своих знаниях и уровне навыков. Этот ремонт будет включать отключение цепи, затем открытие розеток и распределительных коробок для проверки проводов и соединений проводов и выполнения любого необходимого ремонта.

Если вы не можете найти очевидную проблему в одном из подключаемых устройств или проводных соединениях, проблема, вероятно, скрыта где-то в настенной проводке. Для решения этой проблемы вам потребуется вызвать квалифицированного электрика. Не включайте цепь повторно, пока проблема не будет обнаружена и устранена – это может привести к пожару и поражению электрическим током вас и вашей семьи. Любой запах дыма, следы обугливания или расплавленного пластика – признак серьезной проблемы.

Подписывайтесь на нас в Pinterest, где вы найдете еще больше интересных статей.

Полезные короткие видео от Make-Self. net

Подписывайтесь на наш уютный Telegram канал

СВЕЖИЕ СТАТЬИ

ПОПУЛЯРНЫЕ СТАТЬИ

Что происходит при коротком замыкании. Короткое замыкание. Что это такое, и какие замыкания бывают

Любой человек, чья работа связана с обслуживанием электротехники, очень хорошо знает о тех неприятностях, которые таит в себе короткое замыкание (к.з.). Иногда считается, что оно представляет собой повреждение. Это не так. Короткое замыкание – это процесс, или, если угодно, аварийный режим работы какого-либо участка электроустановки. А вот последствия его действительно приводят к повреждениям. Общепринятое определение гласит: «Короткое замыкание – это непосредственное соединение двух или более точек электрической цепи, обладающих различным потенциалом. Является ненормальным (непредусмотренным) режимом работы».

Чтобы понять, что именно происходит в цепи в тот момент, когда там возникает короткое замыкание, необходимо вспомнить принципы функционирования элементов контура. Представим простейшую цепь, состоящую из двух проводников и нагрузки (например, лампочки). В обычных условиях в проводнике существует направленное движение заряженных элементарных частиц, обусловленное постоянным воздействием источника. Они перемещаются от одного полюса источника к другому через два участка провода и лампу. Соответственно, лампа излучает свет, так как частицы совершают в ней определенную работу.

При направление движения постоянно изменяется, но в данном случае это не принципиально. Количество электронов, проходящих по определенному участку цепи за единицу времени, ограничивается сопротивлением лампы, проводников, источника ЭДС. Другими словами, ток не растет бесконечно, а соответствует установившемуся режиму.

Но вот по какой-либо причине повреждается изоляция на участке цепи. К примеру, лампу залило водой. В этом случае ее уменьшается. В результате текущий по контуру ток ограничивается суммарным сопротивлением источника питания, проводов и водного «перешейка» на лампе. Обычно эта сумма настолько ничтожна, что в расчетах не учитывается (исключение составляют специализированные вычисления).

Итогом является практически бесконечный рост тока, определяемого по классическому закону Ома. В данном случае часто упоминают мощность короткого замыкания. Она определяется предельным значением электрического тока, который способен выдать источник питания до выхода из строя. Кстати, именно поэтому запрещается соединять проводком (закорачивать) противоположные контакты батареек.

Хотя в примере мы рассматриваем устранение из цепи сопротивления лампы вследствие попадания на нее воды, причин короткого замыкания множество. К примеру, если говорить об этой же схеме, то к.з. также может возникнуть, если будет нарушена изоляция хотя бы одного провода и он соприкоснется с землей. В этом случае ток от источника питания последует по пути наименьшего сопротивления, то есть в землю, обладающую огромной емкостью. Повреждение изоляции сразу двух проводов и их соприкосновение приведет к тому же самому результату.

Вышесказанное можно обобщить: к.з могут быть с землей и без нее. На происходящие процессы это не влияет.

О каких же повреждениях шла речь в начале статьи? Как известно, чем выше значение тока, протекающего по участкам цепи, тем больше их нагрев. При достаточной мощности источника при к.з. некоторые участки цепи попросту выгорают, превращаясь в медную пыль (для медных элементов).

Защита от короткого замыкания довольно проста и эффективна. Сообщения о разрушениях из-за замыкания возникают, прежде всего, по причине неправильно подобранных параметров аппаратов защиты, неверной селективности. Если речь идет о бытовой цепи 220 В, то применяют В них при чрезмерном возрастании тока электромагнитный расцепитель, находящийся внутри, разрывает цепь.

Наверняка многие слышали такое словосочетание как короткое замыкание, но мало кто понимает, из-за чего возникает данное явление, чем оно опасно и какие процессы происходят во время КЗ. В этой статье мы подробно рассмотрим данный вопрос, так как «коротыш в проводке» — это достаточно частая ситуация, которая является очень опасной и может привести к неблагоприятным последствиям. Итак, причины возникновения короткого замыкания, способы предотвращения и последствия мы рассмотрели ниже.

Что это такое?

Электрическая цепь — это, как правило, два проводника с разноименным потенциалом и подключенным потребителем тока. Каждый конечный потребитель имеет свое внутреннее сопротивление, которое сопротивляется току и ограничивает, тем самым дозируя его количество и плотность в проводнике, заставляя производить работу.

В момент, когда сопротивление резко уменьшается до статической погрешности сопротивления проводников, электрический ток, ничем практически не ограниченный, возрастает до такой величины, что сечение проводников становится малым и проходя через них, разогревает жилы до температуры разрушения и плавления. Поэтому частый спутник короткого замыкания — это огонь, расплавленный металл проводников и вспомогательных механизмов.

Признаками замыкания в проводке являются запах гари, искрение и возгорание проводов, а также отключение электричества на определенном участке или же во всей сети.

Как возникает КЗ?

Итак, рассмотрим основные причины возникновения короткого замыкания в электропроводке и электроустановках.

Высокое напряжение . В момент выше допустимых параметров, присутствует возможность электрического пробоя изоляции проводника или электрической схемы. В результате развивается утечка тока до размеров КЗ, с созданием кратковременного стабильного дугового разряда.

Старая изоляция . Жилые и промышленные фонды, не проводившие замену электрической проводки — это первые претенденты на спонтанные КЗ. Любая изоляция, используемая в электропроводке, имеет свой ресурс. Со временем она разрушается под воздействием внешних факторов, что и приводит к возникновению замыкания.

Внешнее механическое воздействие. Снятие изоляции с провода, ее перетирание и прочее воздействие на защитную оболочку, ослабляющее ее свойства, рано или поздно вызовут возгорание и КЗ. К примеру, в быту часто причиной возникновения короткого замыкания является повреждение проводки при сверлении стен. О том, читайте в нашей статье.

Посторонние предметы . Сюда относится пыль различного происхождения, мелкие животные, детали с соседних узлов, волей случая попавших на электрические проводники, вызвав и развив таким образом КЗ.

Прямой удар молнии. Происходит тоже, что и при (смотри выше).

Пример последствия от возникновения КЗ в электроустановке демонстрируется на видео:

Последствия короткого замыкания — это выгоревшие участки проводки и ее возгорание!

Виды явлений

Самое распространенное — это замыкание на землю, когда либо одна фаза взаимодействует с землей, либо две фазы взаимодействует с землей, на одном или нескольких участках. Короткое замыкание на землю, встречается в системах с глухозаземленной нейтралью и составляют до 70% всех случаев.

Существует также межфазное КЗ, когда происходит взаимодействие двух фаз между собой. Происходит в следствии нарушении изоляции в трехфазном оборудовании.

Ну и последний вид КЗ — трехфазное, когда взаимодействуют все три фазы. На схеме ниже изображены основные виды коротких замыканий:

Способы предотвращения

Для предотвращения развития КЗ и защиты электрических устройств и линий электроснабжения самым эффективным методом является или же плавких предохранителей. Автомат (на фото ниже) при возникновении «коротыша» своевременно отключит питание, тем самым предотвратит возникновение опасной ситуации.

Еще один способ предотвратить возникновение короткого замыкания — своевременная , благодаря которой можно визуально определить место оплавления изоляции и перейти к устранению неполадки.

Добрый день, уважаемые читатели сайта «Заметки электрика».

Давно хотел написать статью про короткое замыкание. Но все как то не доходили руки.

Сегодня решился, потому как повлияли на меня последние события, произошедшие на распределительной подстанции нашего предприятия.

Ранее в статьях мы говорили, что вызывают короткие замыкания, или сокращенно, к.з.

Короткое замыкание — это одно из самых тяжелых и опасных видов повреждения.

Вы спросите почему? Читайте ниже.

Что же такое короткое замыкание?

Википедия на этот вопрос отвечает, что короткое замыкание — это:

Определение прочитали.

А теперь давайте рассмотрим подробно, что же происходит с параметрами электроустановки в момент короткого замыкания.

При возникновении короткого замыкания, напряжение на источнике питания, а правильнее назвать ЭДС, замыкается «накоротко» через небольшое (малой величины) сопротивление кабельных и воздушных линий, обмоток трансформаторов и генераторов. Отсюда и название «короткое замыкание».

В «накоротко» замкнутой цепи появляется ток очень большой величины, который и называется током короткого замыкания.

Рассмотрим классификацию коротких замыканий.

Короткие замыкания разделяются по количеству замкнувшихся фаз:

  • трехфазные короткие замыкания
  • двухфазные короткие замыкания
  • однофазные короткие замыкания

Короткие замыкания разделяются по замыканию:

  • с землей
  • без земли

Короткие замыкания разделяются по количеству замкнувшихся точек в сети:

  • в одной точке
  • в двух точках
  • в нескольких точках (более двух)

Пример

Рассмотрим пример.

Допустим, что наш потребитель питается с подстанции через воздушную линию (ВЛ) электропередач. Питающая линия является транзитной, поэтому питание потребителя осуществляется отпайкой от линии ВЛ в точке «О».

Пунктирной линией под номером 2 показан уровень напряжения на протяжении всей воздушной линии до возникновения короткого замыкания.

По рисунку видно, что напряжение в любой точке электрической сети равно разнице ЭДС источника питания и падения напряжения в электрической цепи до необходимой нам точки.

Например, напряжение в точке «О» можно рассчитать по формуле:

Uо = E — I*Zo, где

  • E — ЭДС источника питания, в нашем случае генератора
  • Zo — полное сопротивление воздушной линий от источника питания до точки «О» (состоит из активного и реактивного сопротивления)
  • I — ток, протекающий по воздушной линии в данный момент времени.

Предположим, что по каким-либо причинам произошло короткое замыкание на воздушной линии, но за пределами нашей отпайки. Назовем эту точку короткого замыкания буквой «К».

Что же произойдет в момент короткого замыкания?

В момент короткого замыкания по воздушной линии проходит уже не номинальный ток, а ток короткого замыкания большой величины, поэтому возрастает падение напряжения на каждом элементе электрической цепи. А именно на сопротивлении Zo и Zк.

Самое наибольшее снижение напряжения будет в месте короткого замыкания, т.е. в точке «К». В остальных точках воздушной линии, удаленных от места к.з., напряжение снизится чуть меньше (это видно на рисунке — линия под номером 1).

В одной из своих статей я привел наглядный . Переходите по ссылочке и знакомьтесь с материалами.

Последствия от короткого замыкания

Мы уже выяснили, что в момент короткого замыкания происходит резкое увеличение величины тока и снижение напряжения, что приводит к следующим последствиям.

1. Разрушения

Вспомним немного физику.

По закону известного физика Джоуля-Ленца, ток короткого замыкания, протекая по активному сопротивлению электрической цепи в течение некоторого времени, выделяет в нем тепло, которое рассчитывается по формуле:

В точке короткого замыкания это тепло, а также пламя электрической дуги, производят огромные разрушения. И чем больше ток короткого замыкания и время его прохождения по цепи, тем больше будут разрушения.

Чтобы было понятно Вам насколько эти разрушения масштабны, ниже приведу примеры из своей практики.

Привод переключающего устройства РПН. Короткое замыкание произошло в обмотке асинхронного двигателя

2. Повреждение изоляции

Во время прохождения тока короткого замыкания по неповрежденным линиям, происходит их нагрев выше предельной допустимой температуры, что приводит к повреждению их изоляции.

Активная часть трансформатора. Короткое замыкание произошло по причине повреждения изоляции

Короткое замыкание кабеля. Последствия

3. Потребители и электроприемники

Снижение напряжения при коротком замыкании нарушает нормальную работу потребителей и электроприемников .

Например, асинхронный при снижении напряжения сети может вообще остановиться, т.к. момент его вращения может оказаться меньше момента сопротивления и трения механизмов.

Также нарушается нормальная работа и осветительных остановок. Здесь я думаю объяснять не требуется.

Смотрите наглядное видео про причины и последствия короткого замыкания в электроустановке 400 (В) на одной из наших подстанций:

А вот уже случай по-серьезнее — трехфазное короткое замыкание в сети 10 (кВ).

Вот еще фрагменты аварии, которая возникла по причине короткого замыкания в разделке кабеля 10 (кВ):

P.S. В завершении статьи на тему короткое замыкание, хочется подтвердить сказанное в начале своей статьи, что короткое замыкание является самым опасным и тяжелым видом повреждения, которое требует мгновенного и быстрого реагирования и отключения поврежденного участка цепи.

Нормальным установившимся режимом работы электроустановки считается такой режим, параметры которого находятся в пределах нормы. Ток короткого замыкания (ток КЗ) возникает при аварии в работе электроустановки. Он чаще всего появляется из-за повреждения изоляции токоведущих частей.

В результате короткого замыкания нарушается бесперебойное питание потребителей, и влечет за собой неисправности и выход из строя оборудования. Вследствие этого при подборе токоведущих элементов и аппаратов необходимо производить их расчет не только для нормальной работы, но и производить проверку по условиям предполагаемого аварийного режима, который может быть вызван коротким замыканием.

Причины повреждения изоляции
  • Воздействие на изоляцию механическим путем.
  • Электрический пробой токоведущих частей вследствие чрезмерных нагрузок или перенапряжения.
  • Подобно нарушению изоляции можно считать причиной повреждения схлестывание неизолированных проводов воздушных линий от сильного ветра.
  • Наброс металлических предметов на линию.
  • Воздействие животных на проводники, находящиеся под напряжением.
  • Ошибки в работе обслуживающего персонала в электроустановках.
  • Сбой в функционировании защит и автоматики.
  • Техническое старение оборудования.
  • Умышленное действие, направленное на повреждение изоляции.
Последствия короткого замыкания

Ток короткого замыкания во много раз превышает ток при нормальной работе оборудования. Возможными последствиями такого замыкания могут быть:

  • Перегрев токоведущих частей.
  • Чрезмерные динамические нагрузки.
  • Прекращение подачи электрической энергии потребителям.
  • Нарушение нормального функционирования других взаимосвязанных приемников, которые подключены к исправным участкам цепи, из-за резкого снижения напряжения.
  • Расстройство системы электроснабжения.
Виды коротких замыканий

Понятие короткого замыкания подразумевает электрическое соединение, которое не предусмотрено условиями эксплуатации оборудования между точками различных фаз, либо нейтрального проводника с фазой или земли с фазой (при наличии контура заземления нейтрали источника питания).

При эксплуатации потребителей напряжение питания может подключаться различными способами:

В каждом отдельном случае может возникнуть нарушение изоляции в некоторых точках, вследствие чего возникает ток короткого замыкания.

Для 3-фазной сети переменного тока существуют разновидности короткого замыкания:

  1. Трехфазное замыкание.
  2. Двухфазное замыкание.
  3. Однофазное замыкание на землю.
  4. Однофазное замыкание на землю (Изолированная нейтраль).
  5. Двухфазное замыкание на землю.
  6. Трехфазное замыкание на землю.

При выполнении проекта снабжения электрической энергией предприятия или оборудования подобные режимы требуют определенных расчетов.

Принцип действия короткого замыкания

До начала возникновения короткого замыкания величина тока в электрической цепи имела установившееся значение i п. При резком коротком замыкании в этой цепи из-за сильного уменьшения общего сопротивления цепи электрический ток значительно повышается до значения i к. Вначале, когда время t равно нулю, электрический ток не может резко измениться до другого установившегося значения, так как в замкнутой цепи кроме активного сопротивления R, есть еще и индуктивное сопротивление L. Это увеличивает во времени процесс возрастания тока при переходе на новый режим.

В результате в начальный период короткого замыкания электрический ток сохраняет первоначальное значение iK = i но. Чтобы ток изменился, необходимо некоторое время. В первые мгновения этого времени ток повышается до максимального значения, далее немного снижается, а затем через определенный период времени принимает установившийся режим.

Период времени от начала замыкания до установившегося режима считается переходным процессом. Ток короткого замыкания можно рассчитать для любого момента в течение переходного процесса.

Ток КЗ при режиме перехода лучше рассматривать в виде суммы составляющих: периодического тока i пt с наибольшей периодической составляющей I пт и апериодического тока i аt (его наибольшее значение – I am).

Апериодическая составляющая тока КЗ во время замыкания постепенно затухает до нулевого значения. При этом ее изменение происходит по экспоненциальной зависимости.

Возможный максимальный ток КЗ считают ударным током i у. Когда нет затухания в начальный момент замыкания, ударный ток определяется:

I у – i п m + i а t=0 ’, где i п m является амплитудой периодической токовой составляющей.

Полезное короткое замыкание

Считается, что короткое замыкание является отрицательным и нежелательным явлением, от которого происходят разрушительные последствия в электроустановках. Оно может создать условия для пожара, отключения защитной аппаратуры, обесточиванию объектов и другим последствиям.

Однако ток короткого замыкания может принести реальную пользу на практике. Есть немало устройств, функционирующих в режиме повышенных значений тока. Для примера можно рассмотреть . Наиболее ярким примером для этого послужит электродуговая сварка, при работе которой накоротко замыкается сварочный электрод с заземляющим контуром.

Такие режимы короткого замыкания действуют кратковременно. Мощность сварочного трансформатора обеспечивает работу при таких значительных перегрузках. Во время сварки в точке соприкосновения электрода возникает очень большой ток. В итоге выделяется значительное количество теплоты, достаточное для расплавления металла в месте касания, и образования сварочного шва достаточной прочности.

Способы защиты

Еще в начале развития электротехники появилась проблема защиты электрических устройств от чрезмерных токовых нагрузок, в том числе и короткого замыкания. Наиболее простым решением стала установка , которые перегорали от их нагревания вследствие превышения тока определенной величины.

Такие плавкие вставки функционируют и в настоящее время. Их основным достоинством является надежность, простота и невысокая стоимость. Однако имеются и недостатки. Простая конструкция предохранителя побуждает человека после сгорания плавкого элемента заменить его самостоятельно подручными материалами в виде скрепок, проволочек и даже гвоздей.

Такая защита не способна обеспечить необходимой защиты от короткого замыкания, так как она не рассчитана на определенную нагрузку. На производстве для отключения цепей, в которых возникло замыкание, используют . Они намного удобнее обычных плавких предохранителей, не требуют замены сгоревшего элемента. После устранения причины замыкания и остывания тепловых элементов, автомат можно просто включить, тем самым подав напряжение в цепь.

Существуют также более сложные системы защиты в виде . Они имеют высокую стоимость. Такие устройства отключают напряжение цепи в случае наименьшей утечки тока. Такая утечка может возникнуть при поражении работника током.

Другим способом защиты от короткого замыкания является токоограничивающий реактор. Он служит для защиты цепей в сетях высокого напряжения, где величина тока КЗ способна достичь такого размера, при котором невозможно подобрать защитные устройства, выдерживающие большие электродинамические силы.

Реактор представляет собой катушку с индуктивным сопротивлением. Он подключен в цепь по последовательной схеме. При нормальной работе на реакторе имеется падение напряжения около 4%. В случае возникновения КЗ основная часть напряжения приходится на реактор. Существует несколько видов реакторов: бетонные, масляные. Каждый из них имеет свои особенности.

Закон Ома при КЗ

В основе расчета замыканий цепи лежит принцип, который определяет вычисление силы тока по напряжению, путем его деления на подключенное сопротивление. Такой же принцип работает и при определении номинальных нагрузок. Отличие в следующем:

  • При возникновении аварийного режима процесс протекает случайным образом, стихийно. Однако он поддается некоторым расчетам по разработанным специалистами методикам.
  • В процессе нормальной работы электрической цепи сопротивление и напряжение находятся в уравновешенном режиме и могут незначительно изменяться в рабочих диапазонах в пределах нормы.
Мощность источника питания

По этой мощности выполняют оценку энергетической силовой возможности разрушительного действия, которое может осуществить ток короткого замыкания, проводят анализ времени протекания, размер.

Для примера рассмотрим, что отрезок медного проводника с площадью сечения 1,5 мм 2 длиной 50 см сначала подсоединили непосредственно к батарее «Крона». А в другом случае этот же кусок провода вставили в бытовую розетку.

В случае с «Кроной» по проводнику будет протекать ток КЗ, который нагреет эту батарею до выхода ее из строя, так как мощности батареи не достаточно для того, чтобы нагреть и расплавить подключенный проводник для разрыва цепи.

В случае с бытовой розеткой сработают защитные устройства. Представим, что эти защиты вышли из строя, и не сработали. В этом случае ток короткого замыкания будет протекать по бытовой проводке, затем по проводке всего подъезда, дома, и далее по воздушной линии или кабеля. Так он дойдет до на подстанции.

В результате к трансформатору подсоединяется длинная цепь с множеством кабелей, проводов, различных соединений. Они намного повысят электрическое сопротивление нашего опытного отрезка провода. Однако даже в таком случае остается большая вероятность того, что этот кусок провода расплавится и сгорит.

Сопротивление цепи

Участок линии электропередач от источника питания до места короткого замыкания обладает некоторым электрическим сопротивлением. Его значение влияет на величину тока короткого замыкания. Обмотки трансформаторов, катушек, дросселей, пластин конденсаторов вносят свой вклад в суммарное сопротивление цепи в виде емкостных и индуктивных сопротивлений. При этом создаются апериодические составляющие, которые искажают симметричность основных форм гармонических колебаний.

Существует множество различных методик, с помощью которых производится расчет ток короткого замыкания. Они позволяют рассчитать с необходимой точностью ток короткого замыкания по имеющейся информации. Практически можно измерить сопротивление имеющейся схемы по методике «фаза-ноль». Это сопротивление делает расчет более точным, вносит соответствующие коррективы при подборе защиты от короткого замыкания.

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет – она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I – величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? – спросит настырный оппонент, – Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U – та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R – электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников – малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P – мощность, Ватт или Вольт-Ампер;

U – напряжение, Вольт;

I – ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) – это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки – страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки – емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

I к.з. – величина тока короткого замыкания, А;

Uph – фазное напряжение, В;

Zn – полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt – полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина – соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание – явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем – к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.

причины возникновения и основные виды, признаки и последствия негативного явления

Коротким замыканием называется нештатное соединение двух точек электрической сети, обладающих разными потенциалами. При этом явлении происходит нарушение нормальной работы цепи, не предусмотренное конструкцией оборудования. Такая ситуация может возникать при повреждении изоляции проводников или прикосновении оголенных их частей. Резкое падение сопротивления нагрузки при подключении к сети также относится к короткому замыканию.

Природа негативного явления

Чтобы лучше понять происхождение этого явления, следует сделать короткое замыкание своими руками. Для этого нужно собрать простейшую электрическую цепь из батарейки, лампочки и оголенных проводов. Как только будут соединены проводами источник питания и устройство, то по цепи пойдет ток, и лампочка загорится. Провода, идущие к лампочке, необходимо замкнуть любым металлическим отрезком. Ток начнет проходить по новому проводнику и через лампочку.

Но так как сопротивление провода очень мало, то весь ток будет протекать через него. Если говорить простым языком, короткое замыкание — это кратчайшее прохождение электрического тока по пути, где наименьшее сопротивление в цепи. Проводок сильно нагреется, так как, согласно Закону Ома из физики, по нему потечет ток большого значения. В результате сильного нагрева возможен обрыв проводов или их возгорание. В больших масштабах часто из-за этого явления возникают пожары.

Причины возникновения

Считается, что короткое замыкание (КЗ) — явление случайное, которое может произойти в любое время. Существует ряд прямых и косвенных причин, приводящих к этому негативному событию. К ним относятся:

  1. В процессе длительной эксплуатации большой износ энергетических систем или бытовой электрической сети. Провода со временем теряют качество изоляции, что приводит к непреднамеренным соединениям. Проверяется такая ситуация в местах соединения электрической проводки по степени ее нагрева. Если происходит большой нагрев проводников, значит, где-то произошло нарушение изоляции.
  2. Часто причиной короткого замыкания считается удар молнии в высоковольтную линию. Происходит кратковременное перенапряжение сети с последующим замыканием. Если даже молния ударила рядом с линией, все равно это вызывает ионизацию воздуха, что приводит к увеличению электрической проводимости. Вследствие чего образуется дуга, соединяющая линии электрических передач.
  3. В бытовых условиях происходит механическое повреждение изоляции. Особенно часто такая ситуация возникает во время проведения ремонта.
  4. Возможно попадание на токоведущие элементы посторонних металлических предметов. Такая ситуация говорит о неудовлетворительном уходе за электрическим оборудованием.
  5. Подключение к сети неисправных приборов, у которых низкое внутреннее сопротивление.

Кроме того, большое значение имеют действия человека, которые иногда могут привести к замыканию. Особенно такие моменты часто происходят при неправильном монтаже электрической проводки.

Основные виды

Существует несколько видов КЗ. Все они описываются и подтверждаются документально национальным стандартом. В перечень входят:

  1. Трехфазное — электрический контакт осуществляется между тремя фазами цепи. В отличие от других видов, этот процесс протекает симметрично, поэтому более точно можно рассчитать силу тока в этот период. Такой вид замыкания считается самым опасным по тепловым и электродинамическим воздействиям. Наличие контакта с землей никак не влияет на параметры процесса.
  2. Двухфазное — это короткое замыкание в электрической цепи, как все последующие, вызывает неравномерное распределение напряжения в сети. Такой вид негативного явления в кабельных линиях может быстро перейти в трехфазное замыкание из-за разрушения изоляции проводников.
  3. Двухфазное с землей — обычно такой процесс наблюдается в электрических магистралях с заземленной нейтралью.
  4. Однофазное с землей — наиболее часто встречающаяся ситуация, которая происходит в бытовых или промышленных электросетях и подключенным к ним устройствам.
  5. Двойное замыкание на землю — когда две фазы замыкаются через землю, не взаимодействуя напрямую друг с другом. Наблюдается в сетях с заземленной нейтралью.

Характерные признаки и последствия

Визуально такой процесс можно определить по ярким вспышкам, появлению дыма, обугленным проводам и перегоревшим плавким предохранителям. Кроме того, при этом происходит падение напряжения и рост силы тока в электрической магистрали. Все эти явления представляют большую опасность, а именно:

  1. В месте соприкосновения проводников или элементов устройств появляется источник возгорания, который часто приводит к возникновению пожара.
  2. Падение напряжения приводит к сбою в работе электрического оборудования и бытовой техники.
  3. Возникают электромагнитные волны, которые оказывают влияние на линии связи и коммуникаций.
  4. Происходит цепь различных аварий, приводящих к отключению потребителей от энергетической системы до устранения последствий.

Последствия негативного явления считаются очень серьезными, поэтому при проектировании и монтаже электрооборудования обязательно устанавливаются средства защиты от КЗ.

Методы защиты

Так как возникновение этого явления полностью нельзя исключить, поэтому все меры защиты основаны на профилактике и предупреждении КЗ. Основной задачей считается применение мероприятий, понижающих вероятность возникновения аварийной ситуации. К ним относятся:

  1. Наблюдение за состоянием изолирующего материала на токоведущих элементах или линиях электрических передач. Раз в три года проводятся испытания изоляции электрических проводов в производственных помещениях, а в бытовых магистралях определение ее надежности осуществляется согласно сроку эксплуатации. Для медного провода он составляет 40 лет.
  2. Перед проведением ремонтных работ, связанных со сверлением стен, необходимо с помощью специального прибора определить месторасположение скрытых проводов.
  3. Отказаться или минимизировать использование электрического оборудования в ванной комнате и в других помещениях с повышенной влажностью.

Для обеспечения безопасности электрического оборудования проводится установка автоматических выключателей как на ввод, так и на каждую внутреннюю линию. Выключатель срабатывает при протекании через него большого тока, который образуется в результате замыкания в электрической сети или бытовом приборе.

В некоторых распределительных устройствах используются плавкие предохранители, рассчитанные на определенную силу тока. На производстве для защиты электрических двигателей устанавливается специальное реле, которое разрывает цепь при замыкании якоря или обмотки статора устройства.

Применение короткого замыкания

Помимо негативных характеристик, это явление широко применяется в некотором электрическом оборудовании. По этому принципу работают короткозамыкатели, которые представляют собой быстродействующие приводы.

Используются они для создания преднамеренного замыкания с целью вызвать защитное отключение. Такие приборы применяются при аварийных ситуациях в высоковольтных линиях. При поломке силового трансформатора устройство вызывает замыкание между фазами в электрических магистралях до 35 кВ или фазой и землей при напряжении от 110 кВ.

Прибор включается как автоматически, так и вручную, если есть необходимость. На основе замыкания работает электродуговая сварка, которая позволяет получить крепкие металлические соединения. Чаще всего такое устройство используется для соединения кузовных деталей автомобилей.

Что такое короткое замыкание? – Онлайн-журнал “Толковый электрик”

Каждый день, будь то дома или на работе мы замыкаем электрическую цепь, и ничего взрывоопасного не происходит. Замыкая цепь с помощью штепсельной вилки электроприбора,  электроэнергия превращается:

  • — в механическую энергию — двигатели насосов, пылесосов и различных электрических приспособлений.
  • — в тепловую энергию — горячий воздух фена, кипяток  электрического чайника, тепловое излучение электрического конвектора.

Это хорошее замыкание, назовем ее условно в противопоставлении короткому, “длинное” замыкание электрической цепи.

Короткое замыкание имеет отрицательный результат, то есть, энергия  позиционирует себя в виде искр, хлопка, часто возгорание проводки и легко возгораемых материалов — пожар.

Что же такое короткое замыкание?

Пример: Локомотив должен доставить груз, допустим из города Нижний Новгород в такой  мегаполис  как Москва. Путь состава должен быть длинным.  Локомотив, таща за собой 50 вагонов угля, набирает большую скорость. Но вдруг, в городе Владимир диспетчер совершает роковую ошибку, переключив стрелку на путь, где находится другой состав — аварии не миновать.

Состав набравший большую скорость быстро не остановить. Наглядный пример может показаться примитивным, но хочется показать принцип лежащий в основе – это сила, мощь, использованная не по назначению, несущая разрушение. Путь следования локомотива с множеством вагонов оказался коротким, не завершенным, не достиг цели.

Именно СИЛА тока производит разрушение, при коротком замыкании ток увеличивается в 20 раз, количество тепла возрастает примерно в 400 раз.

Вот еще одно яркое объяснение, что такое короткое замыкание

Известно, что неисправная электропроводка приводит к короткому замыканию, от него чаще всего и возникает возгорание. Об этом частенько упоминается в пожарных отчетах. Что же такое короткое замыкание, чем оно опасно?

В нормальном режиме работы ток в проводке между фазным и нулевым проводами протекает через нагрузку, которая этот ток ограничивает на безопасном для проводки уровне. При разрушении изоляции ток протекает, минуя нагрузку, сразу между проводами. Такой контакт, называется коротким, поскольку происходит помимо электроприбора.

Вспомним закон Ома: I = U/R, что словами, обычно, произносится так: «Ток в цепи прямо пропорционален напряжению, и обратно пропорционален СОПРОТИВЛЕНИЮ». Именно на СОПРОТИВЛЕНИЕ здесь и стоит обратить внимание.

Сопротивление ТПЖ электропроводки, как правило, невелико, поэтому им можно пренебречь, считать его равным нулю. Согласно законам математики деление на ноль невозможно, а результат будет стремиться к бесконечности. В случае короткого замыкания к этой самой бесконечности будет стремиться ток в цепи.

Конечно, это не совсем так, провода имеют какое-то конечное сопротивление, поэтому до бесконечности ток, конечно же, не дойдет, но будет достаточной силы, чтобы произвести разрушительное действие, достаточно мощный взрыв. Возникает вольтова дуга, температура которой достигает 5000 градусов по Цельсию.

 

Причины короткого замыкания

  • Ошибки персонала обслуживающего электрические сети.
  • Из-за износа (устаревшей) электропроводки.
  • Неправильный монтаж электропроводки.
  • Плохой контакт в соединениях проводки и электроприборов
  • Из-за перегрузки электрической цепи.
  • Может возникнуть по причине механического повреждения проводов.
  • КЗ могут спровоцировать грызуны.

Как не допустить короткое замыкание?

Для предупреждения короткого замыкания необходимо.

  •  Грамотно монтировать и эксплуатировать электроустановки.
  • Подбирать электропроводку в соответствии с величиной тока.
  • Регулярно проводить плановые осмотры и измерения сопротивления изоляции;
  • Правильно выбирать автоматику защиты, которые предназначены отключать поврежденный участок.
  • Прежде чем производить работы с проводкой ее необходимо обесточить.

Польза короткого замыкания

На основе короткого замыкания зародилась дуговая сварка, которая используется на производстве. Точка контакта стержня и металлическая поверхность нагревается до температуры плавления, металлическая конструкция соединяется в единое целое. Например, современные кузова автомобилей скреплены именно посредством короткого замыкания  –  дуговой сварки.

Как мы увидели, короткое замыкание может приносить разрушения, если сила тока используется не по назначению. Если правильно управлять энергией, можно достичь отличных технических достижений.

Самый быстрый словарь в мире | Vocabulary.com

  • короткое замыкание случайный контакт между двумя точками электрической цепи, имеющими разность потенциалов

  • ” word=”short-circuit” freq=”69119.78″>

    короткое замыкание создать короткое замыкание в

  • шунтирующая цепь: Замкнутая цепь, в которой ток разделяется на два или более пути перед повторным объединением для замыкания цепи

  • последовательная цепь: цепь, части которой соединены последовательно

  • 16″>

    печатная плата компьютерная схема, состоящая из электронного узла

  • borsht Circuit (неофициальный) курортная зона в горах Катскилл в Нью-Йорке, которую в основном посещали гости-евреи

  • Затвор X-OR для эксклюзивного OR

  • Элемент XOR для исключающего ИЛИ

  • ИЛИ схема схемы затвора в компьютере, который срабатывает при срабатывании любого из его входов

  • борщ (неофициальный) курортный район в горах Катскилл в Нью-Йорке, который посещали в основном гости-евреи

  • проводка цепи освещения, обеспечивающая питание электрических ламп

  • 86″>

    сократить маршрут короче обычного

  • параллельная цепь: Замкнутая цепь, в которой ток разделяется на два или более пути перед повторным объединением для замыкания цепи

  • краткосрочное и невнимательное внимание или лечение

  • мостовая схема: цепь, состоящая из двух ветвей (4 плеча, расположенных в форме ромба), к которым подключен счетчик

  • короткий сюжет короткометражный фильм; часто отображается перед показом функции

  • схема управления цепь обратной связи, которая вычитает из входа

  • шортлист список кандидатов, отобранных из более длинного списка, которые были сочтены подходящими и из которых будет выбрано успешное лицо

  • 23″>

    короткошерстные с короткой шерстью

  • Схема И-НЕ логический вентиль, который создает выходной сигнал, обратный выходному сигналу вентиля И

  • Короткие замыкания: Урок для детей – Видео и стенограмма урока

    Что происходит?

    Когда цепь работает правильно, ток идет от элемента или источника питания, такого как батарея, по электрическим проводам по определенному пути.Это похоже на то, как вы бегаете кругами по дорожке во время урока физкультуры со скоростью около 1860 миль в секунду. Разговор о мировом рекорде темпа!

    Ток в конце концов сталкивается с резистором, таким как свет или двигатель, который потребляет часть электричества для производства тепла, света, звука и т. д. Давление или сила тока, называемая его напряжением , падает, потому что часть электричества был использован резистор. В конце концов ослабленный ток возвращается обратно в ячейку.

    При коротком замыкании ток не достигает резистора.Это все равно, что срезать путь во время бега и пропустить целую милю забега. В результате резистор не получает электричества, а свет, двигатель или другой механизм не работают. Кроме того, напряжение тока никогда не становится ниже. А когда напряжение остается высоким, в проводах накапливается тепло.

    Если станет слишком жарко, провода могут:

    • расплавиться
    • излучает очень яркий свет, как миниатюрный взрыв
    • загореться
    • курить и вызывать ужасный запах

    Причины короткого замыкания

    Короткое замыкание может произойти по ряду причин, но есть и способы его предотвращения.Короткое замыкание может произойти, потому что:

    • Провода не изолированы должным образом и касаются друг друга. Это увеличивает напряжение, поскольку ток двух отрезков провода объединяется в точке, где они соприкасаются. Во время монтажа возможны порезы и разрывы изоляции, а вода может повредить провода.
    • Цепь подключена неправильно. Провода должны быть соединены так, чтобы ток шел от ячейки к резистору и обратно. Подобно GPS в вашем автомобиле, провода должны направлять ток точно туда, куда он должен идти.
    • Расположение и конструкция проводки слишком быстро разряжают элемент или аккумулятор, вызывая ток более высокого напряжения через провода.

    Для защиты от опасности короткого замыкания:

    • Провода должны быть проверены, их изоляция должна быть полностью неповрежденной.
    • Электрики должны включать заземляющий провод в каждую цепь, который направляет любое избыточное напряжение от электрического тока к земле.Это снижает вероятность поражения электрическим током и возгорания.
    • Плавкие предохранители и автоматические выключатели могут быть использованы для прекращения подачи электроэнергии, если напряжение станет слишком высоким. Если напряжение тока становится слишком высоким, предохранитель расплавится или автоматический выключатель «сработает» и будет действовать как контрольно-пропускной пункт, чтобы разомкнуть цепь.

    Краткий обзор урока

    Короткое замыкание происходит, когда ток не проходит по намеченному пути электрической цепи. ток — это поток электричества. Давление или сила тока, называемая напряжением , становится слишком высокой, что может привести к электрическому возгоранию. Существуют способы защиты от опасностей короткого замыкания, такие как проверка проводов и обеспечение полной целостности их изоляции, в том числе заземляющий провод в каждой цепи, а также использование предохранителей и автоматических выключателей для отключения потока электроэнергии, если напряжение становится слишком высоким. .

    короткое замыкание – WordReference.com Словарь английского языка


    Словарь американского английского для учащихся WordReference Random House © 2022
    ˈshort ˈcir•cuit,  n. [исчисляемый]
    1. Электричество Плохое электрическое соединение, из-за которого в цепь поступает слишком большой ток: короткое замыкание привело к перегоранию предохранителя.

    Короткое замыкание, с. 
    1. Электричество
      • [~ + [объект] для прекращения работы (прибора, выключателя и т. д.) путем короткого замыкания в: Плохое соединение привело к короткому замыканию электрического смесителя.
      • [нет объекта] (прибора, выключателя и т. д.), чтобы выйти из строя из-за короткого замыкания: Смеситель снова закоротил.
    2. [ ~ + [объект], чтобы обойти, заблокировать или предотвратить выполнение: Он постоянно прерывал все наши планы.

    WordReference Random House Полный словарь американского английского © 2022 г. , что обычно приводит к протеканию избыточного тока.
    короткое замыкание (short′sûr kit), произношение США в.т.
    1. Электричество
      • вывести из строя (прибор, выключатель и т. д.) путем короткого замыкания.
      • провести (ток) как короткое замыкание.
    2. , чтобы обойти, помешать, помешать или расстроить: Плохая погода сорвала мои планы на отпуск.

    в.и.
    1. Электричество для образования короткого замыкания или выхода из строя из-за короткого замыкания.

    Collins Concise English Dictionary © HarperCollins Publishers::

    короткое замыкание n
    1. неправильное или случайное соединение между двумя точками с разным потенциалом в электрической цепи, в обход нагрузки и с образованием пути низкого сопротивления, по которому может протекать чрезмерный ток. Это может привести к повреждению компонентов, если цепь не защищена предохранителем
    vb
    Иногда (для датчиков 1, 2) сокращается до: короткий

    короткое замыкание ‘ также встречается в этих статьях (примечание: многие из них не являются синонимами или переводами):

    Короткие замыкания — обзор

    4.

    4.1 Затухающие волны

    До сих пор мы рассматривали случай, когда k k z , так что длина волны в аксиальном направлении больше акустической длины волны (см. рис. 4.11). Ввиду результатов исследования плоских волн можно было бы ожидать, что затухающие волны будут генерироваться, когда длина акустической волны больше, чем длина волны в осевом и/или окружном направлении. Однако, в отличие от случая плоской волны, существует разница между аксиальным и окружным случаями: первый приводит к истинному экспоненциальному затуханию, а второй – к степенному затуханию.Мы рассмотрим оба случая. Длина волны в окружном направлении определяется как

    (4,59)λo=2πa/n.

    , где 2π a — длина окружности, а n — количество полных циклов по окружности.

    Сначала рассмотрим осевой случай. Когда длина волны в аксиальном направлении меньше длины акустической волны λ(λ=2π/k), можно было бы ожидать спада энергии с поверхности при r = a . Эти затухающие нераспространяющиеся волны называются дозвуковыми или затухающими волнами и демонстрируют экспоненциальное затухание при удалении от поверхности.То есть, когда λ z < λ, то k z > k и k r , заданные в уравнении. (4.58) становится чисто мнимым числом. В этом случае уравнение (4.58) можно записать как

    (4.60)pn(r,kz)=Kn(kr′r)Kn(kr′a)pn(a,kz),

    с

    (4.61)kr′≡ kz2−k2,

    и K n — модифицированная функция Бесселя, возникающая, когда аргумент функции Ханкеля является мнимым, уравнение (4.34) на стр. 120.На рис. 4.4 показано, что Kn(kr′r) в числителе уравнения (4.60) сильно затухает при увеличении r . Чтобы показать это математически, мы предполагаем, что аргументы модифицированных функций Бесселя велики, и используем их асимптотические формы, уравнение (4.39), что дает

    (4.62)Kn(kr′r)Kn(kr′a)undefined≈are−kr′(r−a).

    Таким образом, амплитуда винтовой волны P n экспоненциально затухает в r , указывая на исчезающую волну. Можно показать, что радиальная скорость для этой волны находится в квадратуре по фазе с давлением, так что эта волна не уносит никакой энергии от оболочки.

    Теперь рассмотрим условия затухания в окружном направлении, которые возникают, когда окружная длина волны λ o меньше λ. Предположим, что осевая волна сверхзвуковая, т. е. k z < k , а k r действительна. В частности, установите k z = 0 (бесконечная осевая длина волны) и обратите внимание, что уравнение (4.58), т. е. функции Ганкеля действительного аргумента управляют распадом.При r >> n отношение функций Ганкеля приближается к

    ареикр(r−a).

    , и поле затухает, как и ожидалось для цилиндрической волны, пропорционально квадратному корню из радиального расстояния. Здесь нет мимолетного поведения. Однако, поскольку λ o < λ, можно ожидать некоторого короткого замыкания излучения этой волны с поверхности r = a , так как среда поддерживает излучение только на характерной длине волны λ, как следует из Волновое уравнение Гельмгольца. Более того, это короткое замыкание должно стать более полным по мере увеличения индекса функции Ганкеля n , так как n — это число длин волн, умещающихся по окружности цилиндра (см. уравнение (4.59)).

    Это короткое замыкание может быть продемонстрировано математически, если оставить фиксированным аргумент функций Ганкеля и позволить увеличить порядок, чтобы мы могли использовать асимптотические разложения для больших порядков. 2 В этом случае асимптотическое разложение ( n → ∞) для функции Ганкеля равно

    (4.63)Hn(ζ)≈12πn(eζ2n)n−i2πn(eζ2n)−n.

    где ζ = k r r = kr , так как мы положили k z = 0. Когда ζ/ n < 1, то действительную часть уравнения можно игнорировать. (4.63) и второе слагаемое предсказывает, что функция Ганкеля будет затухать как (1/ kr ) n . Используя этот результат для двух функций Ганкеля в уравнении. (4.58) находим, что n-я компонента давления P n становится

    (4. 64)pn(r,0)≈(ar)npn(a,0).

    Это уравнение выполняется, когда kr < n , что эквивалентно условию затухающей волны

    (4.65)2πrλ

    Отношение в левой части представляет собой количество длин волн, которые соответствуют окружности волнового фронта радиусом r . Таким образом, всякий раз, когда число длин волн меньше n, P n будет убывать обратно пропорционально n -й степени расстояния.Это популярное мимолетное состояние. Однако, в отличие от затухающих волн, генерируемых в осевом случае, уравнение. Согласно (4.62), эти волны затухают не экспоненциально, а по степенному закону. Кроме того, можно показать, что радиальная скорость больше не отличается по фазе от давления на 90 градусов, так что небольшая часть энергии излучается в сторону от цилиндра.

    Рисунок 4.12 иллюстрирует степенной закон затухания. Здесь точные значения отношения функций Ганкеля нанесены как функция 20log(r/a), где k z нуль и ка = 5, для трех различных значений n. Логарифмическая абсцисса выбрана таким образом, чтобы степенное затухание ближнего поля обозначалось линиями постоянного наклона. Обратите внимание, что максимальное значение по оси абсцисс представляет собой r значение 10 a , что соответствует 20 дБ. На рисунке показано, что каждую кривую можно приблизительно разбить на два прямолинейных сегмента: степенной закон ближнего поля и дальнее поле с цилиндрическим расширением. Асимптоты, показанные на рисунке, представляют линии точного степенного закона, как они помечены. Из рисунка видно, например, что составляющая n = 20 давления затухла примерно на 110 дБ на расстоянии, равном удвоенному a (значение по оси абсцисс 6 дБ).Отрезки вертикальных линий, нарисованные на каждой кривой, представляют собой значение по оси абсцисс, когда число длин волн на окружности равно n, условие равенства уравнения (4.65) выше. Обратите внимание, что эти линии разделяют различные области наклона на каждой кривой. Справа от этих линий волна цилиндрически растекается, а слева затухает.

    Другой способ объяснить кривые на рис. 4.12 состоит в том, чтобы отметить, что по мере того, как спиральная волна распространяется наружу, окружная длина волны (определяемая как 2π r / n ) увеличивается из-за расширения окружности.В какой-то момент уравнение (4.65) перестает быть верным, и длина волны в окружном направлении становится больше, чем акустическая длина волны. В этой точке λ ϕ = λ и исчезающее распространение становится неисчезающим, распространяясь цилиндрически от этой точки в дальнее поле. Спиральная волна больше не находится в состоянии короткого замыкания.

    Рисунок 4.12. Отношение дБ функций Ганкеля, когда ка = 5,0 и k z = 0. Нарисованные асимптоты показывают, как в ближнем поле преобладает степенной спад давления, пропорциональный ( r / а ) п .Вертикальные деления указывают приблизительную точку, в которой распространение изменяется от степенного к цилиндрическому расширению, указывая на переход от мимолетного к не исчезающему распространению.

    Что такое короткое замыкание и чем оно опасно?

    Электроэнергетические системы промышленных предприятий, коммерческих и административных зданий предназначены для безопасного и надежного обслуживания нагрузок. Электрическое короткое замыкание является опасным явлением. Ниже я объясню определение короткого замыкания простыми словами, и вы точно поймете, что это такое.

    Что такое короткое замыкание в электричестве?

    Короткое замыкание — это перегрузка по току, вызванная незначительным замыканием импеданса между проводниками с разными потенциалами. Это случайно и может быть из-за неуклюжести или дефекта оборудования.

    Короткое замыкание опасно тем, что при коротком замыкании сопротивление цепи падает почти до нуля. Это быстро увеличивает ток и нагревает проводники или оборудование.

    Что вызывает короткое замыкание?

    Короткое замыкание обычно возникает из-за случайного прикосновения или изношенной изоляции. Короткое замыкание более опасно, чем перегрузка, поскольку повреждение происходит почти мгновенно. Примеры коротких замыканий включают случайное касание двух или более проводников, прикосновение кого-либо к проводникам под напряжением или падение инструментов на проводники под напряжением или случайное соединение между проводниками под напряжением и землей. Такие замыкания на землю могут варьироваться от нескольких ампер до максимально доступного тока короткого замыкания.

    Должны быть предусмотрены защитные устройства для ограничения и отключения токов короткого замыкания до того, как их тепловое (нагрев проводников, электрические дуги) и механическое (электродинамические силы) воздействия станут вредными и опасными.Защита от коротких замыканий может быть обеспечена предохранителями и автоматическими выключателями. Их отключающая способность и время размыкания цепи должны соответствовать защищаемой цепи.

    Чем опасно короткое замыкание?

    При коротком замыкании электрический ток может в сотни и тысячи раз превышать нормальный рабочий ток. Короткие замыкания высокого уровня могут быть до 30 кА или 200 кА. Это может иметь серьезные негативные последствия.

    Короткое замыкание должно быть прервано как можно быстрее, чтобы свести к минимуму ущерб, который может включать:

    • Высокие магнитные силы, которые деформируют и искажают сборные шины и связанные с ними крепления, не подлежащие ремонту.
    • Серьезное повреждение изоляции.
    • Плавление или испарение проводников.
    • Испаряющийся металл, включая шины в электрооборудовании.
    • Ионизированные газы.
    • Дуговые пожары.
    • Взрывы.

    Может ли короткое замыкание убить вас?

    Короткое замыкание может убить человека. При коротком замыкании ток обходит обычную нагрузку. Токи короткого замыкания могут варьироваться от долей ампера до 200 000 ампер и более.

    Как короткое замыкание может вызвать пожар?

    Короткое замыкание обычно возникает, когда к потребляющему устройству подводится провод с низким сопротивлением. Большее количество электронов будет течь по пути наименьшего сопротивления, а не через потребляющее устройство. Короткое замыкание обычно создает избыточный ток в кабелях, что приводит к перегреву и возможному возгоранию.

    Что используется в электрической цепи для предотвращения короткого замыкания?

    Патронные предохранители, предохранители HRC, миниатюрные автоматические выключатели, автоматические выключатели в литом корпусе, воздушные автоматические выключатели, ручные пускатели двигателей могут использоваться для предотвращения короткого замыкания.Эти устройства быстро срабатывают, как только обнаруживают короткое замыкание.

    Если вы хотите узнать больше о коротких замыканиях, вы можете проверить и купить эту замечательную книгу:

    Продолжить чтение

    Прямое короткое замыкание – Engineer-Educators.

    com

    Одной из самых серьезных неисправностей, которые могут возникнуть в цепи, является ПРЯМОЕ КОРОТКОЕ ЗАМЫКАНИЕ. Другим термином, используемым для описания этого состояния, является КОРОТКОЕ ЗАМЫКАНИЕ.Эти два термина означают одно и то же, и в этом курсе будет использоваться термин «прямой шорт». Этот термин используется для описания ситуации, в которой некоторая точка цепи, где присутствует полное системное напряжение, вступает в непосредственный контакт с землей или обратной стороной цепи. Это устанавливает путь для протекания тока, который содержит только очень небольшое сопротивление, присутствующее в проводах, по которым течет ток.

    Согласно закону Ома, если сопротивление в цепи очень мало, ток будет очень большим.Поэтому при прямом коротком замыкании по проводам будет очень большой ток. Предположим, например, что два провода от батареи к двигателю соприкасаются друг с другом. Если бы провода были оголены в месте контакта, было бы прямое короткое замыкание. Двигатель перестанет работать, потому что весь ток будет протекать через короткое замыкание, а не через двигатель. Аккумулятор быстро разрядится (возможно, выйдет из строя) и может возникнуть опасность возгорания или взрыва.

    Аккумуляторные кабели в нашем примере представляют собой большие провода, способные проводить большие токи. Большинство проводов, используемых в электрических цепях, имеют меньшие размеры, и их пропускная способность по току ограничена. Размер провода, используемого в любой данной цепи, определяется соображениями пространства, стоимостными факторами и величиной тока, который провод, как ожидается, будет нести при нормальных условиях эксплуатации. Любой ток, значительно превышающий нормальный, например, в случае прямого короткого замыкания, вызовет быстрое выделение тепла в проводе.

    Если не контролировать чрезмерный ток, вызванный прямым коротким замыканием, нагрев провода будет продолжать увеличиваться до тех пор, пока какая-то часть цепи не сгорит. Возможно, часть провода расплавится и разомкнет цепь, так что ничего не будет повреждено, кроме задействованного провода. Однако существует вероятность того, что это приведет к гораздо большему ущербу. Тепло в проводе может обуглить и сжечь изоляцию провода и других связанных с ним проводов, что может привести к новым коротким замыканиям.Если утечка топлива или масла произойдет рядом с любым из горячих проводов, может начаться катастрофический пожар.

    Короткое замыкание: причины и способы устранения?

    Что такое короткое замыкание? Термин «короткое замыкание» часто неправильно используется для описания любого отказа проводки в электрической цепи. Когда провода электрической цепи или проводные соединения оголены или повреждены, происходит истинное короткое замыкание; они должны быть распознаны и исправлены как можно быстрее. Короткое замыкание возникает, когда два проводника, подающие электроэнергию в цепь, имеют соединение с низким сопротивлением.Это может привести к избыточному потоку напряжения и избыточному току, проходящему через источник питания. Если электричество протекает по «короткому» маршруту, произойдет короткое замыкание.

    Что такое короткое замыкание?

    Короткое замыкание — это состояние, при котором электричество выходит за пределы предварительно определенного маршрута электрической цепи. Когда электрический поток завершает свое путешествие по цепи на более короткое расстояние, чем в существующей проводке, происходит короткое замыкание.

    Определение короткого замыкания

    Электричество по своей природе имеет тенденцию возвращаться в землю, что в правильно функционирующей цепи означает, что ток течет по установленной цепи электропроводки обратно в сервисный щит, а затем обратно через инженерные коммуникации. Электрический ток может «просачиваться», если соединения внутри проводки ослабевают или рвутся. В этом случае электрический ток немедленно пытается вернуться на землю по более короткому пути. Поскольку маршрут может проходить через легковоспламеняющиеся предметы или даже людей, короткое замыкание создает риск возгорания или смертельного удара током.

    Что такое короткое замыкание? (Ссылка: dfliq.net )

    Это происходит потому, что эти другие материалы обеспечивают канал с более низким сопротивлением, чем медная проводка в цепи. Если оголенный медный горячий провод касается металлической электрической коробки или металлической лицевой панели выключателя в выключателе света с неисправной проводкой или неплотным соединением проводов, ток прыгнет по пути с наименьшим сопротивлением, который вполне может проходить через палец. , рука и тело того, кто касается выключателя.

    2 Типы короткого замыкания

    Короткое замыкание определяется как любой случай, когда установленная цепь проводки нарушается из-за неисправности проводки или проводных соединений. Однако, несмотря на разные названия, есть два типа, которые квалифицируются как короткие замыкания.

    Нормальное короткое замыкание

    Электрики чаще всего используют слово «короткое замыкание» для описания обстоятельств, при которых горячий провод, по которому течет ток, входит в контакт с нейтральным проводом. Когда это происходит, сопротивление быстро падает, и большой ток течет в неожиданном направлении. Когда происходит это классическое короткое замыкание, могут летать искры, может быть слышен треск, а также может возникнуть дым и пламя.

    Электрический пожар из-за короткого замыкания (Ссылка: davidgrayonline.com )

    Это происходит, когда нагретый провод с током входит в контакт с нейтральным проводом. Когда это происходит, сопротивление мгновенно падает, и большой ток течет в неожиданном направлении.

    Замыкание на землю Короткое замыкание

    Замыкание на землю происходит, когда токоведущий горячий провод вступает в контакт с заземленным компонентом системы, таким как оголенный медный провод заземления, заземленная металлическая настенная коробка или заземленная деталь прибора. Замыкание на землю, как и классическое короткое замыкание, вызывает быстрое падение сопротивления, позволяя значительному количеству тока свободно течь по неожиданному пути. Здесь меньше вероятность возгорания и пламени, но есть значительный риск поражения электрическим током.

    При соприкосновении горячего провода с током с заземленным компонентом системы возникает короткое замыкание при замыкании на землю. Можно использовать заземленную металлическую настенную коробку, оголенный заземляющий провод или заземленную часть прибора.

    3 Причины короткого замыкания

    Короткое замыкание может быть вызвано различными факторами, наиболее распространенными из которых являются три.

    Неисправность изоляции проводов цепи

    При соприкосновении нулевого и горячего проводов из-за ремонта или нарушения изоляции может произойти короткое замыкание.Оболочки проводов и изоляция могут испортиться из-за неизолированных скоб, проколов гвоздями и шурупами, а также со временем, что приведет к коротким замыканиям. Если мыши, крысы или белки грызут проводку цепи, внутренние жилы провода могут оголиться, что приведет к короткому замыканию.

    Ослабленные соединения проводов

    Крепления могут ослабнуть, что приведет к соприкосновению нейтральных и токоведущих проводов. Исправить разорванные соединения проводов сложно, и этим должны заниматься только люди, которые очень хорошо разбираются в проводке.

    Пример короткого замыкания (Ссылка: thespruce.com )

    Неисправность проводки прибора

    Когда вы включаете прибор в настенную розетку, его проводка фактически становится продолжением цепи, и любые неисправности проводки прибора становятся проблемы со схемой. Со временем старые или неисправные приборы могут вызывать внутренние короткие замыкания. Короткое замыкание может произойти в штепсельных вилках, шнурах питания или внутри самого устройства. Короткие замыкания в более крупных приборах, таких как духовки и посудомоечные машины, должны проверяться профессионалом.Небольшие предметы, такие как лампы, часто могут быть заменены домовладельцем.

    Для получения дополнительной информации о факторах, вызывающих короткие замыкания, посетите здесь.

    3 Средства защиты от коротких замыканий

    Поскольку как традиционные короткие замыкания, так и замыкания на землю могут привести к поражению электрическим током и возгоранию, в вашей электропроводке предусмотрены различные средства защиты для вашей защиты.

    Автоматические выключатели или плавкие предохранители

    С 1960-х годов почти все новые или модифицированные системы электропроводки были защищены главной сервисной панелью, содержащей отдельные автоматические выключатели, которые контролируют отдельные цепи в доме.Защита предохранителями также доступна в старых установках электропроводки. При возникновении отклонений, таких как быстрое неограниченное протекание тока, которое происходит во время короткого замыкания, автоматические выключатели используют внутреннюю систему пружин или сжатого воздуха для управления изменениями протекания тока и размыкания цепи.

    Прерыватели цепи замыкания на землю (GFCI)

    Защита от замыкания на землю с помощью специальных автоматических выключателей GFCI или розеток GFCI требуется в соответствии с Электрическими нормами с 1971 года. Эти устройства выполняют ту же функцию, что и автоматические выключатели, в том, что они обнаруживают изменения в протекании тока, но они гораздо более чувствительны, чем автоматические выключатели, и отключают ток при обнаружении даже самых незначительных изменений тока. GFCI очень полезны для предотвращения ударов, вызванных короткими замыканиями типа замыкания на землю.

    Прерыватели цепи дугового замыкания (AFCI)

    Начиная с 1999 года электротехнические нормы и правила требуют новый тип защиты от дуги. Дуговой разряд возникает, когда электрический ток скачет между металлическими контактами, например, когда проводное соединение ослабло, но не полностью разъединено.AFCI можно рассматривать как устройство, которое обнаруживает короткие замыкания и отключает питание до того, как короткое замыкание произойдет. В отличие от GFCI, которые предназначены для защиты от ударов, AFCI лучше всего подходят для предотвращения дугового возгорания. Автоматические выключатели AFCI и розетки AFCI могут обеспечивать защиту AFCI.

    Действия при коротких замыканиях

    Срабатывание автоматического выключателя и размыкание цепи является наиболее распространенным признаком короткого замыкания. Однако другие факторы, такие как перегрузки по мощности, могут вызвать срабатывание автоматического выключателя, поэтому очень важно выяснить, почему он срабатывает.Если автоматический выключатель продолжает срабатывать после сброса, это признак того, что где-то в цепи или в одном из подключенных к ней устройств возникла проблема с проводкой.

    Следуйте этой процедуре, если вы подозреваете короткое замыкание

    Найдите сработавший автоматический выключатель: Найдите отдельный автоматический выключатель с рукояткой, которая защелкнулась в положение ВЫКЛ на главной сервисной панели. Для облегчения обнаружения некоторые выключатели снабжены красным или оранжевым оконным индикатором.Цепь, в которой существует проблема, будет идентифицирована этим отключенным выключателем. Во время осмотра цепи выключите автоматический выключатель.

    Осмотрите силовые линии устройства: осмотрите все шнуры питания, подключенные к розеткам, на сработавшей цепи. Если вы обнаружите какие-либо из них, которые сломаны или имеют расплавленную пластиковую изоляцию, короткое замыкание, вероятно, произошло внутри самого прибора или устройства.

    Отключите это оборудование от источника питания. После отключения любых подозрительных устройств снова включите автоматический выключатель.Если цепь теперь остается активной без отключения, ваша проблема почти наверняка была вызвана устройством. Перейдите к следующему шагу, если автоматический выключатель сразу снова сработает.

    Выключите все освещение и приборы на цепи. После этого автоматический выключатель следует снова включить.

    Включите один за другим все выключатели освещения или электроприборов. Если вы доберетесь до выключателя, который снова вызывает срабатывание автоматического выключателя, вы обнаружили часть проводки цепи с неплотным соединением или неисправностью проводки.

    Устранить неисправность проводки цепи. На этом этапе может потребоваться помощь квалифицированного электрика. Не делайте этого, если вы полностью не уверены в своих знаниях и способностях. Этот ремонт начнется с отключения цепи с последующим открытием розеток и распределительных коробок для осмотра проводов и проводных соединений и выполнения необходимого ремонта.

    Если вы не можете обнаружить проблему с одним из электроприборов или подключением электропроводки светильника, проблема, скорее всего, связана с настенной электропроводкой.Чтобы решить эту проблему, вам нужно будет обратиться к лицензированному электрику. Не активируйте цепь повторно, пока проблема не будет найдена и устранена; в противном случае вы и ваша семья рискуете получить пожар и ударить током. Любой запах дыма, а также следы обугливания или расплавленного пластика указывают на серьезную озабоченность.

    Различное использование короткого замыкания и разомкнутой цепи

    Использование в практических измерениях

    Идеальный вольтметр — это разомкнутая цепь. Настоящий вольтметр будет иметь некоторое высокое (но не бесконечное) сопротивление; следовательно, разомкнутая цепь является предельным приближением.С другой стороны, идеальный амперметр имеет короткое замыкание. Короткое замыкание является предельным приближением для истинного амперметра, имеющего некоторое сопротивление (но не нулевое).

    Использование в теоретическом анализе

    Теоретический анализ обычно проводится путем изучения всего двух узлов цепи, аналогично тому, как вольтметр и амперметр измеряют, подключая два щупа к цепи. На кривой V-I обрыв и короткое замыкание дают две полезные точки. Напряжение холостого хода, в частности, представляет собой разницу в напряжении между двумя клеммами, когда ток не потребляется и не подается.Ток короткого замыкания — это ток, который протекает, когда разность напряжений между клеммами становится равной нулю. В схемах, эквивалентных Norton и Thevenin, мы будем использовать эти два значения.

    Использование в надежной конструкции

    На практике мы хотим, чтобы схемы, которые мы разрабатываем, были в состоянии выдерживать как типичные условия, для которых они были созданы, так и те исключительные ситуации, которые возникают время от времени, но не должны вызывать постоянный вред. Даже когда они не нужны, происходят открытые цепи. Например, когда что-то отключено или отключено, у нас есть разомкнутая цепь.

    Короткое замыкание и разомкнутая цепь (Ссылка: Ultimateelectronicsbook.com )

    Короткие замыкания могут возникать, даже если они нежелательны. Короткое замыкание возникает, когда соединение внезапно замыкает две клеммы во время установки или когда крошечная металлическая стружка оказывается в неправильном положении. Мы должны спроектировать так, чтобы обрывы и короткие замыкания происходили в различных точках цепи, особенно на любых открытых входах и выходах, если это вообще возможно.Мы должны планировать временные и/или восстанавливаемые сбои, например, с автоматическим выключателем.

    Использование в производстве

    Преднамеренно резисторы R=0 (короткое замыкание) иногда помещают на печатную плату, потому что разработчику нужна гибкость для регулировки значения в будущем без необходимости переделывать печатную плату.

    Добавить комментарий

    Ваш адрес email не будет опубликован.