Содержание

Закон Ома | Закон Ома для участка цепи, формула

Как говорится в среде радиолюбителей: “Если не знаешь закон Ома, то сиди-ка лучше дома”.

Закон Ома с точки зрения гидравлики

Как вы уже знаете, электрический ток имеет аналогию с гидравликой. Напряжение – это уровень воды в башне. Сопротивление – это  труба или шланг. Сила тока – это объем воды за какой-то период времени.

Теперь давайте рассмотрим такой случай. Пусть вместо башни у нас будет сосуд с водой, в котором пробиты три одинаковых отверстия на разной высоте сосуда. Так как сосуд у нас наполнен водой, следовательно, на дне сосуда давление будет больше, чем на  его поверхности.

Как вы видите, нижняя струя, которая находится ближе ко дну, стреляет дальше, чем средняя струя. А средняя струя стреляет дальше, чем верхняя.  Заметьте, что отверстия у нас везде  одинакового диаметра. То есть можно сказать, что сопротивление каждого отверстия воде одинаково. За одинаковое время, объем воды, вытекаемый с самого нижнего отверстия намного больше, чем объем воды, вытекаемый со среднего и самого верхнего отверстия. А что у нас такое объем воды  за какое-то время? Да это же сила тока!

Итак, какую закономерность мы тут видим? Учитывая, что сопротивление везде одинаковое, получается что с увеличением напряжения увеличивается и сила тока!

Опыт №1

Думаю, у каждого из вас есть садовый участок. Где-то недалеко от вас всегда есть водонапорная башня

Для чего нужна водонапорная башня? Для контроля уровня расхода воды, а также для создания давления в трубах, иначе как вы  будете поливать свои огурцы? Вы никогда  не замечали, что башню возводят  где-нибудь на возвышенности? Для чего это делается? Как раз для того, чтобы создать давление.

Предположим, что ваш садовый участок находится выше, чем верхушка водобашни. Что произойдет в этом случае? Вода просто-напросто не дойдет до вас! Физика… закон сообщающихся сосудов.

У всех на кухне и в ванной есть краник. После очередного трудового дня вы решили помыть руки. Для этого вы на полную катушку включаете воду, и она начинает течь бурным потоком из краника:

Но вас не устраивает такой поток воды, поэтому, покрутив ручку крана, вы уменьшаете поток воды на минимум:

Что только что сейчас произошло?

Поменяв сопротивление потоку с помощью ручки краника, вы добились того, что этот поток воды стал течь очень слабо.

Давайте же проведем аналогию этой ситуации с электрическим током. Итак, что имеем? Напряжение потока мы не меняли. Где-то там вдалеке стоит водобашня и создает давление в трубах. Мы ведь не имеем права трогать водобашню, а тем более ее сносить). Поэтому уровень воды в башне все время полный, так как насос все время подкачивает воду до максимального уровня. Следовательно, напряжение у нас постоянное и не меняется.

Закрутив обратно ручку краника, мы  только что поменяли сопротивление трубы, из которой сделан краник. В данном случае мы увеличили сопротивление потоку воды. А что у нас получилось с потоком водички? Она стала бежать медленнее! То есть, можно сказать, что количество молекул воды за какое-то время при полностью открытом и полузакрытом кранике получилось разное. Ну-ка, вспоминаем, что такое сила тока 😉 Кто забыл, напомню – это количество электронов протекающих через поперечное сечение проводника за какой-то период времени

. И что у нас стало с этой силой тока? Она уменьшилась!

Делаем вывод:

При увеличении сопротивления, сила тока, проходящая через это сопротивление, уменьшается.

Опыт N2

Итак. Имеем вот такую схему водоснабжения:

Теперь представьте, что вы поливаете огород и вам  надо наполнить  бочку с водой из шланга за 10 минут. Ни секундой раньше и не позже! У вас в огороде поток воды бежит примерно вот так:

Допустим, с водобашни у нас идет простой резиновый шланг. Сосед случайно припарковал свой автомобиль прямо на шланге и чуть-чуть придавил его

У вас поток воды стал убывать. Идти ругаться с соседом? Он уже ушел по делам, а бочку за 10 минут  наполнить не успеете. Потребуется больше времени. Как же быть? А почему бы нам не открыть краник перед водобашней чуток побольше? А это хорошая идея! Открываем краник на полную катушку и добиваемся, чтобы уровень воды в башне стал еще больше, чем был до этого (хотя  в башнях стоят защиты от переполнения какого-либо максимального уровня, но для примера упустим этот момент).

Итак, что у нас получается? Сосед придавил шланг, значит увеличил сопротивление. Поэтому сила тока у нас стала меньше. Чтобы восстановить силу тока, мы для этого увеличивали напряжение, то есть уровень воды в башне.

Вывод: при увеличении напряжения увеличивается и сила тока.

Опыт №3

Но беда не приходит одна. На башне сломалось реле контроля водонасоса! Насос качает воду и не отключается! Башня переполняется и поток воды из шланга с каждой секундой становиться все больше и больше! Что же делать? Мы же переполним нашу бочку за отведенное нам время! Спокойствие, только спокойствие… Выход есть! Для этого бежим и чуток перекрываем краник , добиваясь того, чтобы поток воды из шланга тек также, как и раньше 😉

В этом случае уровень воды (напряжение) на водобашне стал увеличиваться из-за того, что насос не отключался и все время качал воду. Поэтому, поток воды (сила тока) у нас тоже стала  расти. Чтобы выровнять силу тока, мы увеличили сопротивление краника ;-), тем самым привели в норму уровень воды в водобашне (напряжение) до приемлемого уровня.

Формула Закона Ома

Ну как, увидели закономерность из всего вышеописанного? А вот немецкий физик Георг Ом с помощью простых опытов нашел все-таки связь между этими тремя величинами и с тех пор этот закон носит его имя:

где

I – это сила тока, выражается в Амперах (А)

U – напряжение, выражается в Вольтах (В)

R – сопротивление, выражается в Омах (Ом)

Заключение

Закон Ома является самым главным законом в электронике. Абсолютно вся теория цепей построена именно на законе Ома. Поэтому, чтобы научиться читать электрические схемы, вам очень важно знать, как связаны напряжение, сила тока и сопротивление на участке цепи. В этой статье мы с вами разобрали закон Ома для участка цепи, но есть еще закон Ома для полной цепи, о котором можно прочитать в этой статье.

Более подробно про закон Ома для участка цепи вы можете также прочитать в этой статье.

www.ruselectronic.com

Что такое Ом

1 ом представляет собой электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила.

Ом (Ом, Ω) — единица измерения электрического сопротивления. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

\[ Ом = \frac{В}{А} \]

Ом — единица электрического сопротивления в системе СИ. Если проводник соединяет две точки с разными электрическими потенциалами, то через проводник течёт ток. Величина тока зависит от разности потенциалов, а также от сопротивления проводника этому току. Электрическое сопротивление является характеристикой цепи и измеряется в омах.

Что такое Ом?

1 ом представляет собой “электрическое сопротивление между двумя точками проводника, когда постоянная разность потенциалов 1 вольт, приложенная к этим точкам, создаёт в проводнике ток 1 ампер, а в проводнике не действует какая-либо электродвижущая сила”. CIPM, резолюция 2, 1946 год.

Это небольшое сопротивление, в применяемых на практике цепях сопротивление часто измеряется в мегаомах, то есть в миллионах ом. Единица ом названа в честь немецкого физика Георга Симона Ома (1787–1854). Имя Ома впервые было применено в качестве электрической единицы в 1861 году, когда Чарльз Брайт и Латимер Кларк предложили использовать название ohma для единицы электродвижущей силы. В качестве обозначения для ома применяется большая греческая буква омега Ω, поскольку букву O можно легко принять за ноль. Хотя в Юникоде и присутствует значок ома (Ω, Ohm sign, U+2126), но его каноническим разложением[1] является заглавная греческая буква омега (Ω, U+03A9), т. е. эти два символа должны быть неразличимы с точки зрения пользователя. Рекомендуется для обозначения ома использовать омегу.

Закон Ома

Закон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так:
сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника

.

Формула закона Ома записывается в следующем виде:

\[ I = \frac{U}{R} \]

где

I – сила тока в проводнике, единица измерения силы тока - ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления - ом [Ом].

Ом и зависимости от других величин

Еще на заре исследования электричества ученые заметили, что сила тока, проходящего через разные материалы, отличается, хотя эксперимент проводится в одинаковых условиях, образцы подключаются одинаково к одинаковым источникам. Было сделано предположение, что разные образцы обладают разным сопротивлением электрическому току, которое и определяет силу этого тока.

Был экспериментально получен закон, связывающий силу тока и напряжение (закон Ома). Коэффициент в этом законе назвали сопротивлением электрическому току.

Раньше ученые работали только с постоянным током и только со средами, чье сопротивление электричеству не зависит от силы тока, напряжения, времени и условий, то есть постоянно. Сейчас представления усложнились, но для постоянного тока и постоянного сопротивления по-прежнему верен закон Ома.

Определение омического сопротивления электрическому току:

[Сила тока, А] = [Напряжение, В] / [Сопротивление, Ом]

Говорят, что проводник имеет сопротивление один Ом, если при напряжении в один Вольт через него течет ток один Ампер.

Основные соотношения между электрическим сопротивлением (Ом) и другими физическими величинами:

[Выделяемая тепловая мощность, Вт] = [Сила тока, А] ^ 2 × [Сопротивление проводника, Ом]

[Выделяемая тепловая мощность, Вт] = [Напряжение, В] ^ 2 / [Сопротивление проводника, Ом]

[Действующая сила тока, А] = [Действующее напряжение, В] / [Сопротивление, Ом]

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Кратные Дольные
величина название обозначение величина название обозначение
101 Ом декаом даОм daΩ 10−1 Ом дециом дОм
102 Ом гектоом гОм 10−2 Ом сантиом сОм
103 Ом килоом кОм 10−3 Ом миллиом мОм
106 Ом мегаом МОм 10−6 Ом микроом мкОм µΩ
109 Ом гигаом ГОм 10−9 Ом наноом нОм
1012 Ом тераом ТОм 10−12 Ом пикоом пОм
1015 Ом петаом ПОм 10−15 Ом фемтоом фОм
1018 Ом эксаом ЭОм 10−18 Ом аттоом аОм
1021 Ом зеттаом ЗОм 10−21 Ом зептоом зОм
1024 Ом йоттаом ИОм 10−24 Ом йоктоом иОм
     применять не рекомендуется      не применяются или редко применяются на практике

Что такое резисторы?

Радиоэлектронные элементы, имеющие заданное постоянное омическое сопротивление, не проявляющие в разумных пределах индуктивность и емкость, называются в электронике резисторами.

В практике применяются резисторы от долей Ома до десятков мегаомов.

мегаом / мегом МОм MOhm 1E6 Ом 1000000 Ом
килоом кОм kOhm 1E3 Ом 1000 Ом
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

calcsbox.com

Закон Ома. Онлайн расчёт для постоянного и переменного тока.

Онлайн расчёт электрических величин напряжения, тока и мощности для:
участка цепи, полной цепи с резистивными, ёмкостными и индуктивными
элементами.

- А любите ли Вы закон Ома так, как люблю его я? - спросил учитель физики стоящего рядом с щитком и разглядывающего свой обугленный палец электрика, - Всеми силами души Вашей, со всем энтузиазмом и исступлением, к которому только способна пылкая молодость, - никак не угомонялся он, сверкая из-под очков пытливым взглядом.
- Мужик, ты что, дурак? – вежливо поинтересовался обиженный противоестественным вопросом электрик и пошёл, насвистывая "Калинку-Малинку" в направлении ближайшего супермаркета - не ради пьянства окаянного, а дабы залечить свой увечный палец.

А тем временем, закон Ома является в электротехнике основным законом, который устанавливает связь силы электрического тока с сопротивлением и напряжением.

Формулировка закона Ома для участка цепи может быть представлена так: сила тока в проводнике прямо пропорциональна напряжению (разности потенциалов) на его концах и обратно пропорциональна сопротивлению этого проводника и записана в следующем виде:
I=U/R,

где
I – сила тока в проводнике, измеряемая в амперах [А];
U – электрическое напряжение (разность потенциалов), измеряемая в вольтах [В];
R – электрическое сопротивление проводника, измеряемое в омах [Ом].

Производные от этой формулы приобретают такой же незамысловатый вид: R=U/I и U=R×I.

Зная любые два из трёх приведённых параметров можно легко произвести расчёт и величины мощности, рассеиваемой на резисторе.
Мощность является функцией протекающего тока I(А) и приложенного напряжения U(В) и вычисляется по следующим формулам, также являющимся производными от основной формулы закона Ома:
P(Вт) = U(В)×I(А) = I2(А)×R(Ом) = U2(В)/R(Ом)

Можно, конечно, описывая закон Ома обойтись и вообще без формул, а вместо них пользоваться словами или картинками:

С другой стороны, формулы настолько просты, что не стоят выеденного яйца и, возможно, вообще не заслуживают отдельной крупной статьи на страницах уважающего себя сайта.

Не заслуживают, так не заслуживают. Калькулятор Вам в помощь, дамы и рыцари!
Считайте, учитывайте размерность, не стирайте из памяти, что:
1В=1000мВ=1000000мкВ;
1А=1000мА=1000000мкА;
1Ом=0.001кОм=0.000001МОм;
1Вт=1000мВт=100000мкВт.

Ну и так, на всякий случай, чисто для проверки полученных результатов, приведём незамысловатую таблицу, позволяющую в онлайн режиме проверить расчёты, связанные со знанием формул закона Ома.

ТАБЛИЦА ДЛЯ ПРОВЕРКИ РЕЗУЛЬТАТОВ РАСЧЁТОВ ЗАКОНА ОМА.

Вводить в таблицу нужно только два имеющихся у Вас параметра, остальные посчитает таблица.


Все наши расчёты проводились при условии, что значение внешнего сопротивления R значительно превышает внутреннее сопротивление источника напряжения rвнутр.
Если это условие не соблюдается, то под величиной R следует принять сумму внешнего и внутреннего сопротивлений: R = Rвнешн + rвнутр , после чего закон приобретает солидное название - закон Ома для полной цепи:
I=U/(R+r) .

Для многозвенных цепей возникает необходимость преобразования её к эквивалентному виду:

Значения последовательно соединённых резисторов просто суммируются, в то время как значения параллельно соединённых резисторов определяются исходя из формулы: 1/Rll = 1/R4+1/R5.
А онлайн калькулятор для расчёта величин сопротивлений при параллельном соединении нескольких проводников можно найти на странице ссылка на страницу.

Теперь, что касается закона Ома для переменного тока.
Если внешнее сопротивление у нас чисто активное (не содержит ёмкостей и индуктивностей), то формула, приведённая выше, остаётся в силе.
Единственное, что надо иметь в виду для правильной интерпретации закона Ома для переменного тока - под значением U следует понимать действующее (эффективное) значение амплитуды переменного сигнала.

А что такое действующее значение и как оно связано с амплитудой сигнала переменного тока?
Приведём диаграммы для нескольких различных форм сигнала.

Слева направо нарисованы диаграммы синусоидального сигнала, меандра (прямоугольный сигнал со скважностью, равной 2), сигнала треугольной формы, сигнала пилообразной формы.
Глядя на рисунок можно осмыслить, что амплитудное значение приведённых сигналов - это максимальное значение, которого достигает амплитуда в пределах положительной, или отрицательной (в наших случаях они равны) полуволны.

Рассчитываем действующее значение напряжение интересующей нас формы:

Для синуса U = Uд = Uа/√2;
для треугольника и пилы U = Uд = Uа/√3;
для меандра U = Uд = Uа.

С этим разобрались!

Теперь посмотрим, как будет выглядеть формула закона Ома при наличии индуктивности или ёмкости в цепи переменного тока.
В общем случае смотреться это будет так:

А формула остаётся прежней, просто в качестве сопротивления R выступает полное сопротивление цепи Z, состоящее из активного, ёмкостного и индуктивного сопротивлений.
Поскольку фазы протекающего через эти элементы тока не одинаковы, то простым арифметическим сложением сопротивлений этих трёх элементов обойтись не удаётся, и формула приобретает вид:
Реактивные сопротивления конденсаторов и индуктивностей мы с Вами уже рассчитывали на странице ссылка на страницу и знаем, что величины эти зависят от частоты, протекающего через них тока и описываются формулами: XC = 1/(2πƒС) ,   XL = 2πƒL .

Нарисуем таблицу для расчёта полного сопротивления цепи для переменного тока.
Количество вводимых элементов должно быть не менее одного, при наличии индуктивного или емкостного элемента - необходимо указать значение частоты f !

КАЛЬКУЛЯТОР ДЛЯ ОНЛАЙН РАСЧЁТА ПОЛНОГО СОПРОТИВЛЕНИЯ ЦЕПИ.

Теперь давайте рассмотрим практический пример применения закона Ома в цепях переменного тока и рассчитаем простенький бестрансформаторный источник питания.

Токозадающими цепями в данной схеме являются элементы R1 и С1.

Допустим, нас интересует выходное напряжение Uвых = 12 вольт при токе нагрузки 100 мА.
Выбираем стабилитрон Д815Д с напряжением стабилизации 12В и максимально допустимым током стабилизации 1,4А.
Зададимся током через стабилитрон с некоторым запасом - 200мА.
С учётом падения напряжения на стабилитроне, напряжение на токозадающей цепи равно 220в - 12в = 208в.
Теперь рассчитаем сопротивление этой цепи Z для получения тока, равного 200мА: Z = 208в/200мА = 1,04кОм.
Резистор R1 является токоограничивающим и выбирается в пределах 10-100 Ом в зависимости от максимального тока нагрузки.

Зададимся номиналами R1 - 30 Ом, С1 - 1 Мкф, частотой сети f - 50 Гц и подставим всё это хозяйство в таблицу.
Получили полное сопротивление цепи, равное 3,183кОм. Многовато будет - надо увеличивать ёмкость С1.
Поигрались туда-сюда, нашли нужное значение ёмкости - 3,18 Мкф, при котором Z = 1,04кОм.

Всё - закон Ома выполнил свою функцию, расчёт закончен, всем спать полчаса!

 

vpayaem.ru

ЗАКОН ОМА

Электроника сейчас получила большое распространение, у всех дома много радиоприёмников, телефонов, компьютеров, планшетов, телевизоров фонариков и т.д. Это всё радиоэлектроника, поэтому некоторые люди заинтересовываются этим хобби, но не знают с чего начать. Наша цель рассказать в данном материале всё о Законе Ома.

Обозначения напряжения, тока, сопротивления

Всё же многие радиолюбители начинают с закона Ома. В закон Ома входят три единицы: напряжение, ток, сопротивление.

  • Напряжение измеряется  в вольтах (В) и обозначается U.
  • Сопротивление измеряется в Омах (Ом) и обозначается R.
  • Ток в Амперах (А) и обозначается I.

Расчёт напряжения, тока и сопротивления

Закон Ома предназначен для того, чтобы найти неизвестную третью, если известны первая и вторая. С этого по подробней, чтобы облегчить закон Ома, будем пользоваться треугольником Ома. Вот этот треугольник:

Давайте разберёмся с напряжением, чтобы найти напряжение, используя треугольник Ома, надо закрыть рукой напряжение - U, остались только I-ток и R-сопротивление, передними стоит вертикальная черта, вертикальная это черта снизу вверх, это вертикальная линия обозначает  умножение, значит, чтобы найти напряжение надо ток умножить на сопротивление.

   Вот такая формула получилась: U=I*R, где U-напряжение, I-ток, R-сопротивление.

Теперь давайте попробуем найти ток, прикроем рукой I, теперь перед напряжением и сопротивление стоит горизонтальная черта, горизонтальная, это та черта, которая идёт слева направо. Горизонтальная черта означает деление. Значит, чтобы найти ток, надо напряжение разделить на сопротивление.

   Формула получилась следующая: I= U\R, где I-ток, U-напряжение, R-сопротивление. 

Найдём сопротивление, закроем рукой R, то получим опять горизонтальную черту перед напряжением и током, значит нужно делить.

   Формула получилась для расчёта сопротивления: R=U\I, где R-сопротивление, U-напряжение, I-ток. Итак, мы научились пользовать треугольником Ома и узнали о Законе Ома. Теперь, пожалуй, поучимся на примерах.

Примеры расчётов закона Ома

Давайте, найдём напряжение, если ток равен 0,9 Ампер, а сопротивление 100 Ом, пользуясь треугольником, прикрываем напряжение рукой, смотрим, вертикальная черта, значит умножить. Опять пользуемся той формулой, только подставляем числа, U = 0,9 А * 100 Ом, считаем, получиться 90, значит U = 90 вольт. 

Теперь рассчитываем сопротивление, берём те же единицы, только убираем сопротивление, получиться вот такая формула: R = 90 В \ 0,9 А, получим 100 Ом. 

Чтобы рассчитать ток, опять же убираем ток, получаем эту формулу I = 90 В \ 100 Ом, получаем  0,9 Ампер. Итак, на этом всё, кстати, закон Ома действует там, где нет катушек индуктивности и конденсаторов, не забивайте голову конденсаторами и катушками индуктивности, просто, запомните, что закон Ома действует, там, где нет катушек индуктивности и конденсаторов. Надеюсь, моя статья была полезной, всем удачи, с вами был Дмитрий Цывцын.

   Справочники радиодеталей

elwo.ru

Закон Ома | Мозган калькулятор онлайн

На данной странице калькулятор поможет рассчитать сопротивление, напряжение или силу тока по закону Ома онлайн.

Закон Ома - эмпирический физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.

Как найти сопротивление


Электрическое сопротивление определяет силу тока, текущего по цепи при заданном напряжении.

Под Электрическим сопротивлением R понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.

Формула для нахождения сопротивления по закону Ома:

U - напряжение; I - сила тока.
Как найти силу тока


Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Формула для нахождения силы тока по закону Ома:

U - напряжение; R - сопротивление.
Как найти напряжение


Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

Формула для нахождения напряжения по закону Ома:

I - сила тока; R - сопротивление.

www.mozgan.ru

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма.  / / Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.     Вариант для печати.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.
  • P = мощность (Ватт)
  • U = напряжение (Вольт)
  • I = ток (Ампер)
  • R = сопротивление (Ом)
  • r = внутреннее сопротивление источнка ЭДС
  • ε = ЭДС источника
  • Тогда для всей цепи:
    • I=ε/(R +r) - закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I - Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети
частотнонезависимы - данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ 

dpva.ru

4. Расчет электрической мощности | 2. Закон Ома | Часть1

4. Расчет электрической мощности

Расчет электрической мощности

В прошлой статье мы с вами вывели формулу для определения мощности в электрической цепи: умножая напряжение в "вольтах" на силу тока в "амперах", мы получаем мощность в "ваттах". Давайте применим ее к следующей схеме:  

В этой схеме есть две известные нам величины: напряжение батареи составляет 18 вольт, а сопротивление лампы - 3 ома. Используя Закон Ома мы определим третью величину - силу тока:

Теперь, зная силу тока, мы можем умножить ее значение на напряжение и получить мощность:

Это означает что лампа рассеивает 108 ватт энергии в форме сета и тепла.

Давайте в этой же схеме увеличим напряжение батареи и посмотрим что произойдет. Интуиция подсказывает нам, что при увеличении напряжения и неизменном сопротивлении, сила тока в цепи также увеличится. А это значит, что увеличится и мощность:

В этой схеме напряжение батареи изменено и составляет 36 вольт вместо прежних 18. Сопротивление лампы не изменилось, и равно 3 омам. Сила тока теперь будет равна:

Давайте обсудим полученное значение. Если I=U/R, и мы удваиваем значение напряжения (U), оставляя неизменным сопротивление, то по логике вещей сила тока у нас тоже должна удвоиться. Действительно, сила тока в данной схеме имеет значение 12 ампер вместо прежних 6. А сейчас давайте вычислим мощность:

Обратите внимание, что мощность у нас также увеличилась по сравнению  с предыдущим примером, и увеличилась она значительнее, чем увеличилась сила тока. Почему так получилось? Ответ на этот вопрос прост. Мощность является функцией напряжения умноженного на силу тока, а так как обе эти величины удвоились по сравнению с предыдущими значениями, то мощность увеличилась в 2х2 или в 4 раза. Вы можете проверить эту цифру разделив 432 ватта на 108 ватт и увидев, что соотношение между ними равно 4.

Используя математику мы можем преобразовать формулу мощности применительно к тем случаям, когда нам не известно значение напряжения или силы тока:

Историческая справка: первым математическую связь между рассеиваемой мощностью и силой тока через сопротивление открыл не Георг Симон Ом, а Джеймс Прескотт Джоуль. Это открытие, опубликованное в 1841 году и содержащее формулу P=I2R, стало известно как Закон Джоуля. Однако очень часто эти уравнения причисляются к Закону Ома.

Краткий обзор:

www.radiomexanik.spb.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *