Содержание

Обозначение деталей: блока питания, звонка на электрической схеме

Проблема чтения электрических схем осложняется следующими факторами:

  • Чем сложнее устроен прибор или узел, тем труднее разобраться в связях между его элементами и понять принцип их работы. Нужно уметь не только правильно читать схемы, но и создавать их. И если вы получаете в руки “чужую” схему, иногда остаётся только гадать о том, чего хотел добиться автор и почему он так сделал.
  • Несмотря на наличие стандартов для обозначения тех или иных элементов/блоков, не все их придерживаются. Здесь сложность даже не в том, что разработчики не знают как этот делать, а скорее в наборе ПО, в котором ведётся проектирование. Стандарты и обозначения в разных странах могут не совпадать, а разработчики софта придерживаются родных норм.

 

Стандарты

Чтобы свести ошибки в понимании к минимуму, следует придерживаться чётких стандартов и правил. В России, как и в любой другой стране, существуют руководящие документы. Речь идёт о ГОСТах, таких как:

  • 2.710 81 г. – о буквенных обозначениях;
  • 21.614 88 г. – об условных обозначениях общего назначения;
  • 21.404 85 г. – здесь прописаны обозначения элементов автоматизации;
  • И т.д.

Несмотря на внушительные даты создания документов, они более чем актуальны.

 

Наиболее востребованные обозначения

Чтобы понять работу схемы, нужно знать условный знак элемента и принцип его работы.

К общим, и потому самым популярным, можно отнести следующие:

Рис. 1. Условные обозначения элементов на схемах

 

Они встречаются во многих схемах. Элементы здесь достаточно простые и понятные.

Но к более сложным деталям – иной подход. По обозначению можно понять не только общее назначение узла, но и дополнительные нюансы.

Например, конденсаторы.

Рис. 2. Условные обозначения конденсаторов на схемах

 

Или сопротивления.

Таблица 1. Условные обозначения сопротивлений на схемах

И это уже не говоря о переменных (подстроечных) вариантах.

Так могут выглядеть транзисторы.

Рис. 3. Условные обозначения транзисторов на схемах

 

А так диоды и другие ограничительные элементы.

Рис. 4. Условные обозначения диодов и других ограничительных элементов на схемах

 

В блоках питания

Теперь непосредственно об обозначениях, которые можно встретить на схемах БП.

В основе любого вторичного источника тока должен лежать или преобразователь (трансформатор) или ограничитель (диоды и аналогичные элементы).

Трансформаторы обозначаются на схемах так.

Рис. 5. Условные обозначения трансформаторов на схемах

 

Или так.

Таблица 2. Варианты обозначения трансформаторов на схемах

 

Количество выводов будет соответствовать имеющимся обмоткам. Здесь очень важный момент – разницы между импульсными и силовыми трансформаторами на схеме вы не увидите. А ещё более частая проблема – отсутствие буквенных обозначений моделей или каких-либо параметров.

Это связано с тем, что в большинстве случаев требуется либо подбор детали под заданные требования, или подразумевается расчёт и намотка его своими силами. Максимум, что будет обозначено на схеме – входное и выходное напряжение.

Обозначение диодов мы привели выше. Но иногда вместо отдельных диодов можно встретить готовые сборки – мосты. Они будут выглядеть так:

Рис. 6. Обозначения мостов на схемах

 

Для удобства понимания, слева – схема из простейших элементов.

Если блок питания работает на импульсном трансформаторе, ему понадобится генератор импульсов, его часто выполняют на базе интегральных микросхем. Их на схеме ни с чем не перепутаешь.

Рис. 7. Обозначения интегральных микросхем

 

Это общее обозначение. Если элемент реализует элементарную логику или другие простые функции, они могут быть обозначены непосредственно на выводах или на специальных блоках внутри.

Например, так.

Рис. 8. Обозначения интегральных микросхем

Или так.

Рис. 9. Обозначения интегральных микросхем

 

Измерительные приборы на схемах обозначаются так.

Рис. 10. Обозначения измерительных приборов на схемах

 

Но иногда можно встретить и более сложные элементы – цифровые индикаторы. Один из вариантов их обозначения.

Рис. 11. Обозначение цифровых индикаторов на схемах

 

Таким образом, схема простого блока питания может выглядеть таким образом.

Рис. 12. Схема простого блока питания

 

Автор: RadioRadar

12. Источники питания, электродвигатели, линии связи – Условные графические обозначения на электрических схемах – Компоненты – Инструкции


Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.

 

 

 
 Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.

 

 Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.

 
 На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.

 
 В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).

 
 В устройствах автоматики и телемеханики, в бытовой радиоаппаратуре для привода различных механизмов применяют электродвигатели. В бытовых магнитофонах и проигрывателях — это чаше всего асинхронные двигатели переменного тока и коллекторные двигатели постоянного тока. Первые из них обычно имеют коротко-замкнутый ротор в виде так называемой «беличьей клетки» и статор с двумя обмотками: рабочей (или основной) и фазосдвигающей (последовательно с ней включают конденсатор, благодаря чему создается вращающееся магнитное поле). УГО такого двигателя состоит из окружности (ротор) и двух статорных обмоток (рис. 12.3, M1). Символ основной обмотки помешают над ротором, а фазосдвигающей — справа от него, под углом 90° к символу основной. Рядом с УГО обычно указывают тип двигателя [13].

 
 Если необходимый сдвиг фазы создается короткозамкнутым витком на полюсе статора, его изображают в виде замкнутой накоротко обмотки, развернутой по отношению к символу основной на угол 45° (см. рис. 12.3, M2).

 
 В электродвигателях постоянного тока на статоре устанавливают постоянные магниты, а обмотку размешают на роторе. Для автоматической коммутации ее секций при вращении ротора используют узел, состоящий из двух щеток и нескольких пластин. Все эти особенности конструкции отражены и в УГО коллекторного двигателя, показанном на рис. 12.3 {M3): здесь окружность, как и ранее, символизирует ротор, касающиеся его узкие прямоугольники — щетки, а светлая П-образная скобка — постоянные магниты на статоре.

 

 Линии электрической связи (ЛЭС) символизируют на схемах реальные электрические соединения между радиокомпонентами и узлами [14]. Для удобства прослеживания этих соединений на схемах ЛЭС чертят, как правило, только в горизонтальном и вертикальном направлениях. Исключение составляют лишь схемы некоторых функциональных узлов, начертание которых давно стало традиционным (измерительные и выпрямительные мосты, мультивибраторы и т. п.).

 

 
 Для удобства чтения схем символы элементов стараются расположить и сориентировать таким образом, чтобы ЛЭС имели возможно меньшее число изломов и пересечений. Если же избежать пересечения не удается, его делают под углом 90° (рис. 12.4, а), изменяя при необходимости направление одной из ЛЭС. В местах пересечений, символизирующих электрическое соединение в виде пайки, сварки, скрутки ставят жирные точки (см. рис. 12.4, б). Аналогично поступают и в тех случаях, когда необходимо показать ответвления от той или иной ЛЭС (см. рис. 12.4, в). Ответвляющиеся ЛЭС допускается проводить на чертеже под углами, кратными 15°. Использовать в качестве точек присоединения ЛЭС элементы УГО, имеющие вид точки (например, переключателей с нейтральным средним положением), излома линий (контакты кнопок и переключателей) и их пересечений (выводы эмиттера и коллектора в местах пересечения с окружностью корпуса и т. п.), нельзя.

 

 При изображении ЛЭС с ответвлениями в несколько параллельных идентичных цепей (рис. 12.4, г) можно использовать следующий прием: показать на схеме лишь одну цепь, а наличие остальных указать Г-образными ответвлениями, рядом с которыми указать общее число параллельных целей, включая изображенную (см. рис. 12.4, д).

 
 Необходимость экранирования того или иного соединения показывают штриховыми линиями по обе стороны от ЛЭС (см. рис. 12.4, е, ж) или небольшим штриховым кружком (см. рис. 12.4, и). Ответвление от линии, символизирующей экранирующую оплетку, допускается изображать как с точкой, так и без нее. Соединение с общим проводом устройства (корпусом) показывают отрезком утолщенной линии на конце ответвления (см. рис. 12.4, х, ц).

 
 Если в общий экран помещены несколько проводов, соответствующие ЛЭС объединяют знаком, изображенным на рис. 12.4, к. Если же разместить эти ЛЭС рядом не удается, поступают, как показано на рис. 12.4, л: от символа экрана проводят линию со стрелками, указывающими на те из них, которые находятся в общем экране. Экран, в который заключены детали того или иного устройства, изображают в виде замкнутого контура, охватывающего их символы (см. рис. 12.4, м).

 
Аналогичные приемы используют и в случаях, если группа ЛЭС символизирует соединение многопроводным кабелем или скрученными проводами. Знак кабеля в виде овала применяют для объединения идущих рядом ЛЭС (см. рис. 12.4, н), кружок со стрелками — для объединения ЛЭС, перемежающихся другими (см. рис. 12.4, п). Точно так же применяют знак скрутки — наклонную линию с засечками на концах (см. рис. 12.4, о,р).

 
Линию электрической связи, символизирующую гибкое соединение (например, гибкий провод, соединяющий измерительный прибор со щупом), изображают волнистой линией (см. рис. 12.4, с).

 
 Для передачи сигналов на высоких частотах используют коаксиальные кабели (см. рис. 12.4, m). Поскольку знак коаксиальной структуры практически символизирует внешний проводник, от него, как и от символа экранирования, при необходимости делают ответвление (см. рис. 12.4, у). В обозначении ЛЭС, выполненной коаксиальным кабелем лишь частично, знак видоизменяют: касательную к кружку направляют только в его сторону. Пример, показанный на рис. 12.4, ф, означает, что коаксиальная структура в данном случае имеется левее знака.

 
 Число ЛЭС на принципиальных схемах сложных электронных устройств очень часто бывает большим. Если к тому же они идут параллельно одна другой и неоднократно меняют направление, то иногда проследить связь между элементами становится очень трудно. Для облегчения чтения схем ГОСТ рекомендует разбивать параллельно идущие ЛЭС на подгруппы из трех линий каждая (считая сверху) и отделять их увеличенными интервалами (рис. 12.5, а).

 
 Однако и этого иногда оказывается недостаточно, если к тому же большое число параллельных ЛЭС сильно загромождает схему и увеличивают её размеры. В подобном случае можно слить параллельные ЛЭС в одну утолщенную линию групповой связи (ЛГС). При выполнении принципиальных схем автоматизированным способом допускается линию групповой связи не утолщать. У входа и выхода из ЛГС каждой ЛЭС присваивается порядковый номер (рис. 12.5, б). Чтобы не спутать эти линии с ЛЭС, просто пересекающей ЛГС, расстояние между соседними линиями, отходящими в разные стороны, должно быть не меньше 2 мм.

 

 

Для облегчения поиска отдельных ЛЭС допускается показывать их направление с помощью излома под углом 45° (рис. 12.5, в). При этом точка излома должна быть удалена от ЛГС не менее чем на 3 мм, а наклонные участки соседних ЛЭС, изображенных по одну сторону от нее, не должны иметь пересечений и общих точек.

Как обозначается блок питания на схеме

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения – это вполне оправдано.

Резистор на схеме обозначается латинской буквой “R”, цифра – условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора – мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.

Далее приводится структура и цоколёвка с обозначением назначения выводов популярных импортных цифровых микросхем серии CD40xx и операционных усилителей LM.

Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей – европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры – для широкого применения. Три буквы и две цифры – для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква – код материала:

А – германий;
В – кремний;
С – арсенид галлия;
R – сульфид кадмия.

Вторая буква – назначение:

А – маломощный диод;
В – варикап;
С – маломощный низкочастотный транзистор;
D – мощный низкочастотный транзистор;
Е – туннельный диод;
F – маломощный высокочастотный транзистор;
G – несколько приборов в одном корпусе;
Н – магнитодиод;
L – мощный высокочастотный транзистор;
М – датчик Холла;
Р – фотодиод, фототранзистор;
Q – светодиод;
R – маломощный регулирующий или переключающий прибор;
S – маломощный переключательный транзистор;
Т – мощный регулирующий или переключающий прибор;
U – мощный переключательный транзистор;
Х – умножительный диод;
Y – мощный выпрямительный диод;
Z – стабилитрон.

Буквенные обозначения радиодеталей на зарубежных и отечественных схемах.
Таблицы в формате DOC ▼
⇩ Зарубежные обозначения
⇩ Отечественные обозначения

Таблицы буквенных обозначений радиодеталей

Зарубежные обозначения радиодеталей

Международный стандарт — IEEE 315.
В данный список ▼ также добавлены обозначения, не отражённые в стандарте, но встречающиеся на практике.

A — Separable assembly or sub-assembly (e.g. printed circuit assembly) — Отдельный модуль или устройство
AE — Aerial — Антенна
ANT — Antenna — Антенна
AR — Amplifier (other than rotating), repeater — Усилитель, повторитель
AT — Attenuator, inductive termination, resistive termination — Аттенюатор, индуктивная оконечная нагрузка, резистивная оконечная нагрузка
B — Bead Ferrite — Ферритовый фильтр
B — Battery — Батарея
B — Motor — Электродвигатель
BR — Bridge rectifier — Диодный мост
BT — Battery — Батарея
BT — Photovoltaic transducer, solar cell — Фотогальванический преобразователь, солнечная батарея
C — Capacitor — Конденсатор
CB — Circuit Board — Монтажная плата
CB — Circuit breaker — Автоматический выключатель
CN — Capacitor network — Конденсаторная сборка
CP — Connector adapter, junction (coaxial or waveguide) — Переходник, cоединение (коаксиала или волновода)
CR — Diode (TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber) — Диод (лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
CRT — Cathode ray tube — Электронно-лучевая трубка
D — Diode (LED, TVS, thyristor, Zener, asymmetrical varistor, photodiode, stabistor, varactor
overvoltage absorber) — Диод (светодиод, лавинный диод, тиристор, стабилитрон, варистор с асимметричной ВАХ, фотодиод, стабистор, варактор, поглотитель перенапряжения)
DC — Directional coupler — Направленный соединитель
DL — Delay line — Линия задержки
DS — Display, alphanumeric display device, annunciator, signal lamp — Дисплей, алфавитно-цифровой индикатор, световой индикатор, сигнальная лампа
DSP — Digital signal processor — Цифровой сигнальный процессор
E — Electrical contact, antenna, binding post, cable termination, electrical contact brush, electrical shield, ferrite bead rings, hall element, insulator, lightning arrester, magnetic core, permanent magnet, short circuit (termination), telephone protector, vibrating reed, miscellaneous electrical part — Электрический контакт, электрод, антенна, клемма, кабельный наконечник, электрическая щётка, электрический экран, ферритовое кольцо, элемент на эффекте холла, изолятор, искровой разрядник, магнитный сердечник, постоянный магнит, перемычка, громполоса, вибрирующий пружинный контакт, прочие радиодетали
EP — Earphone — Головные телефоны
EQ — Equalizer — Эквалайзер
F — Fuse — Предохранитель
FB — Ferrite bead — Ферритовый фильтр
FD — Fiducial — Точка выравнивания
FEB — Ferrite bead — Ферритовый фильтр
FET — Field-effect transistor — Полевой транзистор
FL — Filter — Фильтр
G — Generator or oscillator, electronic chopper, interrupter vibrator, rotating amplifier, telephone magneto — Электрогенератор или осциллятор, электронный чоппер, вибропреобразователь, электромашинный усилитель, телефонный индуктор
GDT — Gas-discharge lamp — Газоразрядная лампа
GN — General network — Общая сеть
H — Hardware, e.g., screws, nuts, washers — Крепёжные элементы (винты, гайки, шайбы)
HP — Hydraulic part — Деталь гидравлики
HR — Heater, heating lamp, heating resistor, infrared lamp, thermomechanical transducer — Нагревательный элемент, нагревательная лампа, нагревательный резистор, инфракрасная лампа, термомеханический преобразователь
HS — Handset, operator’s set — Телефонная трубка, телефонная гарнитура
HT — Earphone — Головной телефон, наушники
HY — Circulator or directional coupler — Циркулятор или направленный ответвитель
I — Lamp — Лампа накаливания
IC — Integrated Circuit — Микросхема, интегральная схема
J — Jack, Receptacle, Terminal Strip, connector — Гнездо, розетка, патрон, клеммник, коннектор
J — Wire link, jumper — Джампер
J — Jumper chip — Резистор нулевого сопротивления (перемычка или SMD-предохранитель)
JFET — Junction gate field-effect transistor — Однопереходный полевой транзистор
JP — Jumper (Link) — Джампер
K — Relay, contactor — Реле, контактор, электромагнитный пускатель
L — Inductor, choke, electrical solenoid, field winding, generator field, lamp ballast, motor field, reactor — Катушка индуктивности, дроссель, соленоид, обмотка электромагнита, обмотка возбуждения генератора, индуктивный балласт, обмотка возбуждения электродвигателя, реактивная катушка
LA — Lightning arrester — Молниезащита
LCD — Liquid-crystal display — ЖК-дисплей
LDR — Light Dependent Resistor, — Фоторезистор
LED — Light-emitting diode — Светодиод
LS — Loudspeaker or buzzer, audible alarm, electric bell, electric horn, siren, telephone ringer, telephone sounder — Громкоговоритель или зуммер, звуковая сигнализация, электрический колокол, ревун, сирена, телефонный звонок, телефонный капсюль
M — Motor — Электродвигатель
M — Meter, electric timer, electrical counter, oscilloscope, position indicator, thermometer — Измеритель (обобщённый), электрический таймер, электрический счётчик, осциллограф, датчик положения, термометр
MCB — Miniature circuit breaker — Миниатюрный автоматический выключатель
MG — Dynamotor, motor-generator — Динамотор, моторгенератор
MIC — Microphone — Микрофон
MK — Microphone — Микрофон
MOSFET — Metal-oxide-semiconductor field-effect transistor — МОП-транзистор
MOV — Metal oxide varistor — Варистор на базе оксида металла
MP — Mechanical part (including screws and fasteners) — Механическая деталь (в том числе крепёж)
MT — Accelerometer — Акселерометр
N — Neon Lamp — Неоновая лампа
NE — Neon Lamp — Неоновая лампа
OP — Operational amplifier — Операционный усилитель
P — Plug — Штекер, штепсельная вилка
PC — Photocell — Фотоэлемент
PCB — Printed circuit board — Печатная плата
PH — Earphone — Головные телефоны
PLC — Programmable logic controller — Программируемый логический контроллер
PS — Power supply, rectifier (complete power-supply assembly) — Вторичный источник электропитания, выпрямитель тока
PU — Pickup, head — Звукосниматель, передающая телевизионная трубка, магнитная головка
Q — Transistor, semiconductor controlled rectifier, semiconductor controlled switch, phototransistor (3 terminal), thyratron (semiconductor device) — Транзистор, полупроводниковый преобразователь, полупроводниковый ключ, фототранзистор трёхконтактный, тиратрон полупроводниковый
R — Resistor, function potentiometer, instrument shunt, magnetoresistor, potentiometer, relay shunt, rheostat — Резистор, функциональный потенциометр, измерительный шунт, магниторезистор, потенциометр, шунт обмотки реле, реостат
RE — Radio receiver — Радиоприёмное устройство
RFC — Radio frequency choke — Высокочастотный дроссель
RJ — Resistor Joint — Резисторная сборка
RLA — Relay — Реле
RN — Resistor Network — Резисторная сборка
RT — Thermistor, ballast lamp, ballast tube, current-regulating resistor, thermal resistor — Терморезистор, термистор, электровакуумный стабилизатор тока, газоразрядный стабилитрон, токорегулирующий резистор, терморезистор
RV — Varistor, symmetrical varistor, voltage-sensitive resistor — Варистор, варистор с симметричной вах, резистор управляемый напряжением
RY — Relay — Реле
S — Switch, contactor (manually, mechanically or thermally operated), flasher (circuit interrupter), governor (electrical contact type), telegraph key, telephone dial, thermal cutout (circuit interrupter) (not visual), thermostat — Переключатель, выключатель, кнопка, пускатель (ручной, механический, термический), прерыватель цепи, регулятор контактного типа, телеграфный ключ, номеронабиратель, термовыключатель, тепловое реле
SCR — Silicon controlled rectifier — Однонаправленный управляемый тиристор
SG — Spark gap — Разрядник
SPK — Speaker — Громкоговоритель
SQ — Electric squib — Электровоспламенитель
SR — Rotating contact, slip ring — Вращающийся контакт, контактное кольцо
SUS — Silicon unilateral switch — Пороговый тринистор
SW — Switch — Переключатель, выключатель, кнопка
T — Transformer — Трансформатор
TB — Connecting strip, test block — Клеммная колодка, тест-блок
TC — Thermocouple — Термопара
TFT — Thin-film-transistor display — TFT-дисплей
TH — Thermistor — Терморезистор, термистор
TP — Test point — Контрольная (измерительная) точка
TR — Transistor — Транзистор
TR — Radio transmitter — Радиопередатчик
TUN — Tuner — Тюнер
U — Integrated Circuit — Микросхема, интегральная схема
U — Photon-coupled isolator — Оптопара
V — Vacuum tube, valve, ionization chamber, klystron, magnetron, phototube, resonator tube (cavity type), solion, thyratron (electron tube), traveling-wave tube, voltage regulator (electron tube) — Радиолампа, ионизационная камера, клистрон, магнетрон, вакуумный фотоэлемент, полостной вакуумный резонатор, хемотронный датчик, тиратрон (радиолампа), лампа бегущей волны, регулятор напряжения (радиолампа)
VC — Variable capacitor — Переменный конденсатор
VDR — Voltage Dependent Resistor — Варистор; резистор, управляемый напряжением
VFD — Vacuum fluorescent display — Вакуумно-люминесцентный индикатор
VLSI — Very-large-scale integration — СБИС — сверхбольшая интегральная схема
VR — Variable resistor (potentiometer or rheostat) — Переменный резистор (потенциометр или реостат)
VR — Voltage regulator — Регулятор (стабилизатор) напряжения
VT — Voltage transformer — Трансформатор напряжения
W — Wire, bus bar, cable, waveguide — Провод, шина, кабель, волновод
WT — Wiring tiepoint — Точка примыкания
X — Solar cell — Солнечный элемент
X — Other converters — Преобразователи, не включаемые в другие категории
X — Ceramic resonator — Керамический резонатор, кварцевый генератор
X_ — Socket connector for another item — Разъём для элементов. Вторая буква соответствует подключаемому элементу
XA — Socket connector for printed circuit assembly connector — Разъём для печатных плат
XDS — Socket connector for light socket — Разъём для патрона
XF — Socket connector for fuse holder — Разъём для предохранителя
XL — Lampholder — Ламповый патрон
XMER — Transformer — Трасформатор
XTAL — Crystal — Кварцевый генератор
XU — Socket connector for integrated circuit connector — Разъём для микросхемы
XV — Socket connector for vacuum tube socket — Разъём для радиолампы
Y — Crystal or oscillator — Кварцевый резонатор или осциллятор
Z — Zener diode — Стабилитрон
Z — Balun, coupled tunable resonator, directional phase shifter (non-reciprocal), gyrator, mode suppressor, multistub tuner, phase shifter, resonator (tuned cavity) — Симметрирующий трансформатор, связанный перестраиваемый резонатор, направленный фазовращатель (не обратный), гиратор, фильтр нежелательных тип.

Отечественные обозначения радиодеталей

Буквенные обозначения электронных компонентов на отечественных схемах регламентированы ГОСТ 2.710-81 «Обозначения буквенно-цифровые в электрических схемах».

A — Устройства
AA — Регулятор тока
AB — Приводы исполнительных механизмов
AC — Устройство АВР
AF — Регулятор частоты
AK — Устройство (комплект) реле защит
AKB — Устройство блокировки типа КРБ
AKS — Устройство АПВ
AKV — Устройство комплектное продольной дифзащиты ЛЭП
AKZ — Устройство комплектное реле сопротивления
AR — Устройство комплектное реле УРОВ
AV — Устройство регулирования напряжения
AW — Регулятор мощности
B — Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот аналоговые или многоразрядные преобразователи или датчики для указания или измерения
BA — Громкоговоритель
BB — Магнитострикционный элемент
BC — Сельсин-датчик
BD — Детектор ионизирующих излучений
BE — Сельсин-приемник
BF — Телефон (капсюль)
BK — Тепловой датчик
BL — Фотоэлемент
BM — Микрофон
BP — Датчик давления
BQ — Пьезоэлемент
BR — Датчик частоты вращения (тахогенератор)
BS — Звукосниматель
BT — Датчик температуры
BV — Датчик скорости
BVA — Счетчик вольтамперчасов реактивных
BW — Счетчик ватт-часов активных
C — Конденсаторы
CB — Конденсаторный силовой блок
CG — Конденсаторный зарядный блок
D — Схемы интегральные, микросборки
DA — Схема интегральная аналоговая
DD — Схема интегральная, цифровая, логический элемент
DS — Устройства хранения информации
DT — Устройство задержки
E — Элементы разные
EK — Нагревательный элемент
EL — Лампа осветительная
ET — Пиропатрон
F — Разрядники, предохранители, устройства защитные
FA — Дискретный элемент защиты по току мгновенного действия
FP — Дискретный элемент защиты по току инерционного действия
FU — Предохранитель плавкий
FV — Дискретный элемент защиты по напряжению, разрядник
G — Генераторы, источники питания, кварцевые осцилляторы
GB — Батарея
GC — Синхронный компенсатор
GE — Возбудитель генератора
GEA — Подвозбудитель (вспомогательный возбудитель)
H — Устройства индикационные и сигнальные
HA — Прибор звуковой сигнализации
HG — Индикатор символьный
HL — Прибор световой сигнализации
HLA — Световое табло
HLG — Лампа сигнализации с линзой зеленой
HLR — Лампа сигнализации с линзой красной
HLW — Лампа сигнализации с линзой белой
HY — Индикатор полупроводниковый
K — Реле, контакторы, пускатели
KA — Реле токовое
KA0 — Реле тока нулевой последовательности, токовая защита нулевой последовательности
KAT — Реле тока с насыщающимся трансформатором, токовая защита с выдержкой времени
KAW — Реле тока с торможением
KAZ — Реле тока фильтровое
KB — Реле блокировки
KBS — Реле блокировки от многократных включений
KCC — Реле команды «включить»
KCT — Реле команды «отключить»
KF — Реле частоты
KH — Реле указательное
KHA — Реле импульсной сигнализации
KK — Реле электротепловое
KLP — Реле давления повторительное
KM — Контактор, магнитный пускатель
KQ — Реле фиксации положения выключателя
KQC — Реле положения «Включено»
KQQ — Реле фиксации команды включения
KQS — Реле фиксации положения разъединителя
KQT — Реле положения «Отключено»
KS — Реле контроля
KSG — Реле газовое
KSH — Реле струи (напора)
KSS — Реле контроля синхронизма
KSV — Реле контроля напряжения
KT — Реле времени
KV — Реле напряжения
KVZ — Фильтр – реле напряжения
KW — Реле мощности
KZ — Реле сопротивления
L — Катушки индуктивности, дроссели
LG — Реактор
LL — Дроссель люминесцентного освещения
LR — Обмотка возбуждения генератора
M — Двигатели
P — Приборы, измерительное оборудование
PA — Амперметр
PC — Счетчик импульсов электромеханический
PF — Частотомер
PG — Осциллограф
PHE — Указатель положения
PI — Счетчик активной энергии
PK — Счетчик реактивной энергии
PR — Омметр
PS — Регистрирующий прибор
PT — Часы, измеритель времени действия
PV — Вольтметр
PVA — Варметр
PW — Ваттметр
Q — Выключатели и разъединители в силовых цепях
QF — Выключатель автоматический
QK — Короткозамыкатель
QN — Короткозамыкатель
QR — Отделитель
QS — Разъединитель
QW — Выключатель нагрузки
R — Резисторы
RK — Терморезистор
RP — Потенциометр
RR — Реостат
RS — Шунт измерительный
RU — Варистор
S — Устройства коммутационные в цепях управления, сигнализации и измерительных
SA — Выключатель или переключатель
SAB — Переключатель, ключ в цепях блокировки
SAC — Переключатель режима
SB — Выключатель кнопочный
SC — Коммутатор
SF — Выключатель автоматический
SK — Выключатель, срабатывающий от температуры
SL — Выключатель, срабатывающий от уровня
SN — Переключатель измерений
SP — Выключатель, срабатывающий от давления
SQ — Путевой выключатель конечный
SQ — Выключатель, срабатывающий от положения (путевой)
SQA — Вспомогательный контакт, фиксирующий аварийное отключение выключателя
SQC — Вспомогательный контакт в цепи электромагнита включения
SQK — Вспомогательный контакт, замыкающийся при отключении выключателя
SQM — Вспомогательный контакт, замыкающийся при включении выключателя (пуск двигателя завода пружин ABM)
SQT — Вспомогательный контакт в цепи электромагнита отключения
SQY — Вспомогательный контакт готовности пружин, управляющий электродвигателем завода пружин ABM
SR — Выключатель, срабатывающий от частоты вращения
SS — Переключатель синхронизации
SX — Накладка оперативная
T — Трансформаторы, автотрансформаторы
TA — Трансформатор тока
TAN — Трансформатор тока нулевой последовательности
TAV — Трансреактор
TL — Трансформатор промежуточный
TLV — Трансформатор отбора напряжения
TS — Электромагнитный стабилизатор
TS — Электромагнитный стабилизатор
TUV — Трансформатор регулировочный
TV — Трансформатор напряжения
U — Преобразователи электрических величин в электрические, устройства связи
UA — Преобразователь тока
UB — Модулятор
UF — Преобразователь частоты
UI — Дискриминатор
UR — Демодулятор
UV — Преобразователь напряжения, фазорегулятор
UZ — Преобразователь частотный, инвертор, генератор частоты, выпрямитель
V — Приборы электровакуумные, полупроводниковые
VD — Диод, стабилитрон
VL — Прибор электровакуумный
VS — Тиристор
VT — Транзистор
W — Линии и элементы сверхвысокой частоты, антенны
WA — Антенна
WE — Ответвитель
WK — Короткозамыкатель
WS — Вентиль
WT — Трансформатор, неоднородность, фазовращатель
WU — Аттенюатор
X — Соединения контактные
XA — Токосъемник, контакт скользящий
XB — Перемычка
XG — Испытательный зажим
XN — Соединение неразборное
XP — Штырь
XS — Гнездо
XT — Соединение разборное
XW — Соединитель высокочастотный
Y — Устройства механические с электромагнитным приводом
YA — Электромагнит
YAB — Замок электромагнитной блокировки
YAC — Электромагнит включения в приводе воздушного выключателя (легкий привод), контактор включения
YAT — Электромагнит отключения (соленоид отключения)
YB — Тормоз с электромагнитным приводом
YC — Муфта с электромагнитным приводом
YH — Электромагнитный патрон или плита
YMC — Электромагнит включения в приводе масляного выключателя (тяжелый привод)
Z — Устройства оконечные, фильтры, ограничители
ZA — Фильтр тока
ZF — Фильтр частоты
ZL — Ограничитель
ZQ — Фильтр кварцевый
ZV — Фильтр напряжения

Буквенные коды функционального назначения радиоэлектронного устройства или элемента
A — Вспомогательный
C — Считающий
D — Дифференцирующий
F — Защитный
G — Испытательный
H — Сигнальный
I — Интегрирующий
M — Гпавный
N — Измерительный
P — Пропорциональный
Q — Состояние (старт, стоп, ограничение)
R — Возврат, сброс
S — Запоминающий, записывающий
т — Синхронизирующий, задерживающий
V — Скорость (ускорение, торможение)
W — Суммирующий
X — Умножение
Y — Аналоговый
Z — Цифровой

Для автономного питания радиоэлектронной аппаратуры широко используют электрохимические источники тока — гальванические элементы и аккумуляторы. Буквенный код элементов питания — G. УГО [11] напоминает символ конденсатора постоянной ёмкости — параллельные линии разной длины: короткая обозначает отрицательный полюс, длинная — положительный (рис. 12.1, G1). Знаки полярности на схемах можно не указывать.

Поскольку для питания приборов чаще всего требуется напряжение, большее того, что обеспечивает один элемент или аккумулятор, их соединяют в батарею. Буквенный код в этом случае — GB. Батарею обозначают упрощенно: изображают только крайние элементы, а наличие остальных показывают штриховой линией (см. рис. 12.1, GB1). ГОСТ допускает изображать батарею и совсем просто — символом одного элемента (GB2 на рис. 12.1). Рядом с позиционным обозначением в любом случае указывают напряжение батареи.

Отводы от части элементов показывают линиями электрической связи, продолжающими черточки, которые обозначают их положительные полюсы (см. рис. 12.1, GB3). В местах присоединения линий-отводов к символам положительных полюсов ставят точки.

На основе символа электрохимического элемента строятся УГО так называемых солнечных фотоэлементов и батарей. Отличительные признаки УГО этих источников тока — корпус в виде кружка или овала и знак фотоэлектрического эффекта (см. рис. 12.1, G2, GB4), На месте буквы п в УГО солнечной батареи можно указывать число образующих ее элементов.
Для защиты от перегрузок по току или коротких замыканий в нагрузке в электронных устройствах часто используют плавкие предохранители. Код этих устройств — латинские буквы FU. УГО [12] напоминает постоянный резистор (и имеет те же размеры 4×10 мм), отличие заключается только в проходящей через весь прямоугольник линии, символизирующей сгорающую при перегрузке металлическую нить (рис. 12.2, FU1). Рядом с УГО предохранителя, как правило, указывают ток, на который он рассчитан, а иногда и его тип.

В аппаратуре с высоковольтным питанием для защиты некоторых элементов от опасных для них перенапряжений применяют разрядники (код — буква F). В простейшем случае — это два электрода, установленных на изоляционном основании на определенном расстоянии один от другого (иногда технологически это печатный проводник, разделенный на две части просечкой в печатной плате насквозь). Символ искрового промежутка — две встречно направленные стрелки (см. рис. 12.2, F1). Если же такое устройство выполнено в виде самостоятельного изделия, используют УГО, показанное на рис. 12.2 под позиционным обозначением F2. УГО вакуумного разрядника получают, заключая символ искрового промежутка в символ баллона электровакуумного прибора (F3).

В устройствах автоматики и телемеханики, в бытовой радиоаппаратуре для привода различных механизмов применяют электродвигатели. В бытовых магнитофонах и проигрывателях — это чаше всего асинхронные двигатели переменного тока и коллекторные двигатели постоянного тока. Первые из них обычно имеют коротко-замкнутый ротор в виде так называемой «беличьей клетки» и статор с двумя обмотками: рабочей (или основной) и фазосдвигающей (последовательно с ней включают конденсатор, благодаря чему создается вращающееся магнитное поле). УГО такого двигателя состоит из окружности (ротор) и двух статорных обмоток (рис. 12.3, M1). Символ основной обмотки помешают над ротором, а фазосдвигающей — справа от него, под углом 90° к символу основной. Рядом с УГО обычно указывают тип двигателя [13].

Если необходимый сдвиг фазы создается короткозамкнутым витком на полюсе статора, его изображают в виде замкнутой накоротко обмотки, развернутой по отношению к символу основной на угол 45° (см. рис. 12.3, M2).

В электродвигателях постоянного тока на статоре устанавливают постоянные магниты, а обмотку размешают на роторе. Для автоматической коммутации ее секций при вращении ротора используют узел, состоящий из двух щеток и нескольких пластин. Все эти особенности конструкции отражены и в УГО коллекторного двигателя, показанном на рис. 12.3

Линии электрической связи (ЛЭС) символизируют на схемах реальные электрические соединения между радиокомпонентами и узлами [14]. Для удобства прослеживания этих соединений на схемах ЛЭС чертят, как правило, только в горизонтальном и вертикальном направлениях. Исключение составляют лишь схемы некоторых функциональных узлов, начертание которых давно стало традиционным (измерительные и выпрямительные мосты, мультивибраторы и т. п.).

Для удобства чтения схем символы элементов стараются расположить и сориентировать таким образом, чтобы ЛЭС имели возможно меньшее число изломов и пересечений. Если же избежать пересечения не удается, его делают под углом 90° (рис. 12.4, а), изменяя при необходимости направление одной из ЛЭС. В местах пересечений, символизирующих электрическое соединение в виде пайки, сварки, скрутки ставят жирные точки (см. рис. 12.4, б). Аналогично поступают и в тех случаях, когда необходимо показать ответвления от той или иной ЛЭС (см. рис. 12.4, в). Ответвляющиеся ЛЭС допускается проводить на чертеже под углами, кратными 15°. Использовать в качестве точек присоединения ЛЭС элементы УГО, имеющие вид точки (например, переключателей с нейтральным средним положением), излома линий (контакты кнопок и переключателей) и их пересечений (выводы эмиттера и коллектора в местах пересечения с окружностью корпуса и т. п.), нельзя.

При изображении ЛЭС с ответвлениями в несколько параллельных идентичных цепей (рис. 12.4, г) можно использовать следующий прием: показать на схеме лишь одну цепь, а наличие остальных указать Г-образными ответвлениями, рядом с которыми указать общее число параллельных целей, включая изображенную (см. рис. 12.4, д).

Необходимость экранирования того или иного соединения показывают штриховыми линиями по обе стороны от ЛЭС (см. рис. 12.4, е, ж) или небольшим штриховым кружком (см. рис. 12.4, и). Ответвление от линии, символизирующей экранирующую оплетку, допускается изображать как с точкой, так и без нее. Соединение с общим проводом устройства (корпусом) показывают отрезком утолщенной линии на конце ответвления (см. рис. 12.4, х, ц).

Если в общий экран помещены несколько проводов, соответствующие ЛЭС объединяют знаком, изображенным на рис. 12.4, к. Если же разместить эти ЛЭС рядом не удается, поступают, как показано на рис. 12.4, л: от символа экрана проводят линию со стрелками, указывающими на те из них, которые находятся в общем экране. Экран, в который заключены детали того или иного устройства, изображают в виде замкнутого контура, охватывающего их символы (см. рис. 12.4, м).

Аналогичные приемы используют и в случаях, если группа ЛЭС символизирует соединение многопроводным кабелем или скрученными проводами. Знак кабеля в виде овала применяют для объединения идущих рядом ЛЭС (см. рис. 12.4, н), кружок со стрелками — для объединения ЛЭС, перемежающихся другими (см. рис. 12.4, п). Точно так же применяют знак скрутки — наклонную линию с засечками на концах (см. рис. 12.4, о,р).

Линию электрической связи, символизирующую гибкое соединение (например, гибкий провод, соединяющий измерительный прибор со щупом), изображают волнистой линией (см. рис. 12.4, с).

Для передачи сигналов на высоких частотах используют коаксиальные кабели (см. рис. 12.4, m). Поскольку знак коаксиальной структуры практически символизирует внешний проводник, от него, как и от символа экранирования, при необходимости делают ответвление (см. рис. 12.4, у). В обозначении ЛЭС, выполненной коаксиальным кабелем лишь частично, знак видоизменяют: касательную к кружку направляют только в его сторону. Пример, показанный на рис. 12.4, ф, означает, что коаксиальная структура в данном случае имеется левее знака.

Число ЛЭС на принципиальных схемах сложных электронных устройств очень часто бывает большим. Если к тому же они идут параллельно одна другой и неоднократно меняют направление, то иногда проследить связь между элементами становится очень трудно. Для облегчения чтения схем ГОСТ рекомендует разбивать параллельно идущие ЛЭС на подгруппы из трех линий каждая (считая сверху) и отделять их увеличенными интервалами (рис. 12.5, а).

Однако и этого иногда оказывается недостаточно, если к тому же большое число параллельных ЛЭС сильно загромождает схему и увеличивают её размеры. В подобном случае можно слить параллельные ЛЭС в одну утолщенную линию групповой связи (ЛГС). При выполнении принципиальных схем автоматизированным способом допускается линию групповой связи не утолщать. У входа и выхода из ЛГС каждой ЛЭС присваивается порядковый номер (рис. 12.5, б). Чтобы не спутать эти линии с ЛЭС, просто пересекающей ЛГС, расстояние между соседними линиями, отходящими в разные стороны, должно быть не меньше 2 мм.

Для облегчения поиска отдельных ЛЭС допускается показывать их направление с помощью излома под углом 45° (рис. 12.5, в). При этом точка излома должна быть удалена от ЛГС не менее чем на 3 мм, а наклонные участки соседних ЛЭС, изображенных по одну сторону от нее, не должны иметь пересечений и общих точек.

ЭЛЕКТРИЧЕСКАЯ СХЕМА БЛОКА ПИТАНИЯ

   Недавно меня попросили собрать какой-нибудь регулируемый источник напряжения с защитой от перегрузки, замыканий и встроенным зарядным устройством для большинства типов аккумуляторов. Тем более, что китайская промышленность присылает нам в основном дешёвые слабенькие адаптере, которыми вообще непонятно что питать – для мощных потребителей не подходят по току, а на слаботочные схемы, типа приёмников, дают кучу помех. Поэтому даже простой 20-ти ваттный трансформатор с регулилируемым компенсационным стабилизатором даст 100 очков форы таким псевдо БП. Электрическая схема на рисунке ниже.


   Данный блок питания был собран по простой электрической схеме из всего, что попало под руку. Два трансформатора ТП20-14 от маленьких чёрно-белых телевизоров Электроника-409, стрелочный вольтметр/амперметр от индикатора уровня записи кассетного магнитофона. Детали самые распространённые – из тех, что валяются у каждого радиолюбител по закромам. И помехоподавляющий металлических корпус из обрезков пластин алюминия.



   Только разьёмы для подключения проводов покупные – пружинящие педальки. Не знаю что вы подумали гляде на переднюю панель блока питания, но два цифровых индикатора АЛС не являются вольтметром, а просто индицируют режим стрелочного прибора (вольты В или амперы А), а второй АЛС показывает своим миганием процесс заряда. Режим измерения переключается кнопкой, расположенной под АЛС. 

   Ничего необычного в электрической схеме зарядного узла нет – напряжение подаётся на гнездо (и далее на аккумулятор) через резистор 50 Ом, который ограничивает ток до 0,2А – этого достаточно для большинства литий ионных и никель кадмиевых аккумуляторов. А процесс заряда контролируется по падению напряжения на резисторе, которое открывает транзистор управляющий мультивибратором. Причём чем больше зарядный ток – тем быстрее мигает буква З (тройка) на АЛС.


   Второй мультивибратор запускается срабатыванием токоограничителя и приводит к миганию синего светодиода – на корпусе сверху слева. Обмотки двух 16-ти вольтовых трансформаторов соединены паралельно, что обеспечило максимальный ток блока питания 1А, а регулировка напряжения получилась от 0 до 15В. Такую шкалу и наклеил на стрелочник, предварительно распечатав её на принтере.


   Данный блок питания – зарядное устройство, работает верой и правдой уже 6 лет, пережив за этот срок не один китайский адаптер:)

   Форум по схемам блоков питания

   Форум по обсуждению материала ЭЛЕКТРИЧЕСКАЯ СХЕМА БЛОКА ПИТАНИЯ

Обозначение мотора на электрических схемах. Как читать схемы радиоэлектронных устройств, обозначения радиодеталей. Правила выполнения общих схем

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать,

какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R – это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это

группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK

– счетчик реактивной энергии

PT – часы

QF

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод , стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


=====================================================================================

С ДРУГОГО САЙТА:

Условные графические обозначения в электрических схемах

Рано или поздно, занимаясь проведением электромонтажных или электроремонтных работ приходиться иметь дело с электрическими схемами, которые содержат множество буквенно-цифровых и условно графических обозначений. О последних и пойдет разговор в этой статье. Существует большое количество видов элементов электрических схем, имеющих самые разные функции, поэтому, нет единого документа, определяющего правильность графического обозначения всех элементов, которые можно встретить на схемах. Ниже, в таблицах приведены некоторые примеры условных графических изображений электрооборудования и проводок, элементов электрических цепей на схемах, взятых из различных действующих в настоящее время документов. Скачать бесплатно нужный ГОСТ целиком можно, перейдя по ссылкам внизу страницы.





Скачать бесплатно ГОСТ

  • ГОСТ 21.614 Изображения условные графические электрооборудования и проводок в оригинале
  • ГОСТ 2.722-68 Обозначения условные графические в схемах. Машины электрические
  • ГОСТ 2.723-68 Обозначения условные графические в схемах. Катушки индуктивности, реакторы, дроссели, трансформаторы, автотрансформаторы и магнитные усилители
  • ГОСТ 2.729-68 Обозначения условные графические в схемах. Приборы электроизмерительные
  • ГОСТ 2.755-87 Обозначения условные графические в схемах. Устройства коммутационные и контактные соединения

Скачать книгу…

Обозначения буквенно-цифровые в электрических схемах (ГОСТ 2.710 – 81)

Буквенные коды элементов приведены в таблице. Позиционные обозначения элементам (устройствам) присваивают в пределах изделия. Порядковые номера элементам (устройствам) следует присваивать, начиная с единицы, в пределах группы элементов, имеющих одинаковый буквенный код в соответствии с последовательностью расположения элементов или устройств на схеме сверху вниз в направлении слева направо.

Позиционные обозначения проставляют на схеме рядом с условным графическим обозначением элементов или устройств с правой стороны или над ними. Цифры и буквы, входящие в позиционное обозначение выполняются одного размера.

Однобук- венный код Группы видов элементов Примеры видов элементов Двухбук- венный код
A Устройства (общее обозначение)

Преобразователи неэлектрических величин в электрические
(кроме генераторов и источников питания) или наоборот

Сельсин – приемник BE
Сельсин – датчик BC
Тепловой датчик BK
Фотоэлемент BL
Датчик давления BP
Тахогенератор BR
Датчик скорости BV
C Конденсаторы

Схемы интегральные,
микросборки

Схема интегральная,аналоговая DA
Схема интегральная,цифровая, логический элемент DD
Устройство задержки DT
Устройство хранения информации DS

Элементы разные

Нагревательный элемент EK
Лампа осветительная EL

Разрядники,предохранители,
устройства защитные

Дискретный элемент защиты по току мгновенного действия FA
Дискретный элемент защиты по току инерционного действия FP
Дискретный элемент защиты по напряжению FV
Предохранитель FU
G Генераторы, источники питания Батарея GB

Элементы индикаторные и сигнальные

Прибор звуковой сигнализации HA
Индикатор символьный HG
Прибор световой сигнализации HL

Реле, контакторы, пускатели

Реле указательное KH
Реле токовое KA
Реле электротепловое KK
Контактор, магнитный пускатель KM
Реле поляризованное KP
Реле времени KT
Реле напряжения KV
L Катушки индуктивности,дроссели Дроссель люминисцентного освещения LL
M Двигатели

Приборы, измерительное оборудование

Амперметр PA
Счётчик импульсов PC
Частотометр PF
Счётчик реактивной энергии PK
Счётчик активной энергии PI
Омметр PR
Регистрирующий прибор PS
Измеритель времени, часы PT
Вольтметр PV
Ваттметр PW

Выключатели и разъединители в силовых цепях

Выключатель автоматический QF
Разъединитель QS

Резисторы

Термистор RK
Потенциометр RP
Шунт измерительный RS
Варистор RU

Устройства коммутационные в цепях управления, сигнализации и измерительных

Примечание . Обозначение применяют для аппаратов не имеющих контактов силовых цепей

Выключатель или переключатель SA
Выключатель кнопочный SB
Выключатель автоматический SF
Выключатели, срабатывающие от различных воздействий: -от уровня SL
-от давления SP
-от положения SQ
-от частоты вращения SR
-от температуры SK

Трансформаторы, автотрансформаторы

Трансформатор тока TA
Трансформатор напряжения TV
Стабилизатор TS
U Преобразователи электрических величин в электрические Преобразователь частоты, инвертор, выпрямитель UZ

Приборы электровакуумные и полупроводниковые

Диод, стабилитрон VD
Приборы электровакуумные VL
Транзистор VT
Тиристор VS

Соединения контактные

Токосъёмник XA
Штырь XP
Гнездо XS
Соединения разборные XT

Устройства механические с электромагнитным приводом

Электромагнит YA
Тормоз с электромагнитным приводом YB
Электромагнитная плита YH

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

Обозначение цепей. Обозначение участков цепей служит для их опознания и может также отражать их функциональное назначение в электрической схеме

Обозначение участков цепей служит для их опознания и может также отражать их функциональное назначение в электрической схеме. Требования к обозначению цепей принципиальных электрических схем определены ГОСТ 2.709-72. Согласно этому стандарту все участки электрических цепей, разделенные контактами аппаратов, обмотками реле, приборов, машин, резисторами и другими элементами, должны иметь разное обозначение. Участки цепей, проходящие через разъемные, разборные или неразборные контактные соединения, должны иметь одинаковое обозначение.

Для обозначения участков цепей принципиальных электрических схем применяют арабские цифры и прописные буквы латинского алфавита. Цифры и буквы, входящие в обозначение, следует выполнять одним размером шрифта.

Чтение принципиальных схем и особенно эксплуатация электрических установок значительно упрощаются, если при разработке схемы производить обозначение цепей по функциональному признаку в зависимости от их назначения. Так, например, может быть рекомендовано для цепей управления, регулирования и измерения использовать группу чисел 1-399, для цепей сигнализации 400-799, для цепей питания 800-999. Вместо групп цифр функциональная принадлежность цепей принципиальной схемы может быть выражена и условно принятыми буквами.


Общие цепи питания переменным током маркируются буквами, обозначающими фазы (например А800, В801 и т.д.). Нулевой провод маркируется с добавлением буквы N.

Силовые цепи постоянного тока обозначаются: нечетными числами – участки цепей положительной полярности, четными – участки цепей отрицательной полярности.

Последовательность обозначений должна быть от ввода источника питания к потребителю, а разветвляющиеся участки обозначают сверху вниз в направлении слева направо.

На рис. 15 представлен пример принципиальной электрической схемы распределительной сети. Схема выполнена с применением АВР – А1, для питания датчиков с унифицированным токовым выходным сигналом применен блок питания для преобразования сетевого напряжения 220В в стабилизированное напряжение 24В – А2. Можно порекомендовать применение следующих модификаций блоков питания: Метран-602, Метран-604, Метран-608, Метран-602-Ех, БП КАРАТ-22, БП-96. Для защиты электропотребителей применены выключатели автоматические – QF, например ВА-47-29. Схема дополняется перечнем элементов принципиальной электрической схемы распределительной сети, где предусмотрено позиционное обозначение, наименование, краткая характеристика и количество блоков питания датчиков с унифицированным выходным сигналом, блоков питания контроллера, выключателей автоматических и т.д. (табл. 4).

Таблица 4

Перечень элементов принципиальной электрической
схемы распределительной сети

Позиционные обозначения Наименование и краткая характеристика Количество Примечание
       

Сокращения в электрических схемах – Ремонт и стройка от Stroi-Sia.ru

11.2.1. Сокращения на электросхемах, идентификация проводов, цветовой код

ОБЩИЕ СВЕДЕНИЯ

AB – воздушная подушка безопасности

ABS – антиблокировочная тормозная система

AC – кондиционирование воздуха

ASP – внешнее зеркало

В – автоматическая трансмиссия

ATC – автоматическое регулирование температуры

AZV – дышло прицепа

BR – бортовой компьютер

CD – переключатель компакт-диска

CRC – управление круиз-контроля

DID – двойной информационный дисплей

DIM – регулятор освещенности

DIS – прямая система зажигания

DS – система защиты

DWA – противоугонная система

ЕЭС – электронный контроль климата

EFC – электрическая крыша (автомобиль типа «кабриолет» с откидным верхом)

EKP – топливный насос

EKS – охрана (окна с электрическим стеклоподъемником)

ETC – электронный контроль тяги

EZ + – плюс с самодиагностики

FH – окна с электрическим стеклоподъемником

FT – дверь водителя

FV – плавкий предохранитель

HRL – лампа багажного отделения

HS – обогреватель стекла

HSF – вещевой ящик

HW – стеклоочиститель заднего стекла

ID – показ информации

IRL – подсветка салона

KAT – каталитический конвертер

КБ – жгут проводов

KV – контакт, распределительный элемент

L3.1 – система впрыска топлива (Bosch L3.1-Jetronic)

LCD – LCD инструмент

LHD – левый двигатель

LWR – корректор фар

M1.5 – система впрыска топлива (Bosch Motronic M1.5)

M2.5 – система впрыска топлива (ESOSCH Motronic M2.5)

MID – многофункциональный дисплей

MOT – система впрыска топлива Motronic

MT – механическая коробка передач

MUL – система впрыска топлива (Multec)

NSL – задний потивотуманный фонарь

NSW – противотуманная фара

OEL – датчик давления масла

OPT – оборудование, поставляемое по особому заказу

Буквенные Обозначения В Электрических Схемах

Принципиальные — на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ.

Как читать электрические схемы

Заключение

Функциональные — здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Звонок на электрической схеме по стандартам УГО с обозначенным размером Размеры УГО в электрических схемах На схемах наносят параметры элементов, включенных в чертеж. С — символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.

Графические обозначения в электрических схемах Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами: 2. Пример такой схемы представлен ниже.
РАЗБОР ПРОСТОЙ СХЕМЫ — Читаем электрические схемы 2 ЧАСТЬ

Таблицы буквенных обозначений радиодеталей

Речь сейчас не об этом. Тип 1 — функциональная схема Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы.


Это также помогает читать схемы. Построение обозначения должно обеспечить возможность однозначного указания места любой части объекта в конструкции. Обозначение элемента в общем случае состоит из трех частей, указывающих вид элемента, его номер и функцию.

Мощность варьируется от 0. Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис.

При разнесенном способе представления допускается к номеру добавлять условный номер изображений части элемента или устройства, отделяя его точкой. Указание функции элемента не служит для идентификации элемента и не является обязательным. Но начнем немного издалека После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.
как научиться читать схемы

Графическое обозначение электроэнергетических объектов на схемах

Графические обозначения Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Для некоторых устройств управления источниками света обозначений нет — например, для кнопочных устройств и диммеров. Буквенные обозначения элементов на схемах: основные и дополнительные В таблице выше приведены международные обозначения.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2. Большая часть обозначений — графические. Это и будет полная принципиальная схема.

Обычно они представляют собой однолинейную схему с обозначением УЗО , автоматических выключателей, контакторов и другого защитного оборудования. D — Символ заземления. Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям. Следует заметить, что чаще в домашней практике используются всего три типа электросхем: Монтажные — для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям.

Парные галочки при изображении розеток — это количество проводов. В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. Вся информация представлена блоками с подписями — наименованиями устройств.

Как изображают выключатели, переключатели, розетки На некоторые виды этого оборудования утвержденных стандартами изображений нет. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Виды и типы. Импульсное реле — тоже довольно легко отличить по характерной форме знака. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны быть присвоены всем элементам и устройствам объекта.

Нормативные документы

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Есть отдельные обозначения для двухклавишных и трехклавшных выключателей.

Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. В — значок электричества, отображающий переменное напряжение. Характерная особенность такой схемы — минимальная детализация. Ко всем этим мелочам надо присматриваться и запоминать. Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания.
Условные графические обозначения радиоэлементов

Условные обозначения в электрических схемах: расшифровка графики и буквенно-цифровых знаков

Чтение чертежей по электрике требует определенных знаний, которые можно почерпнуть из нормативных документов. Своеобразным «языком» чтения являются условные обозначения в электрических схемах система знаков и символов, преимущественно графических и буквенных. Кроме них иногда цифрами проставляются номиналы.

Сгласитесь, понимание стандартных обозначений просто необходимо для любого домашнего мастера. Эти знания помогут прочесть электросхему, самостоятельно составить план разводки в квартире или в частном доме. Предлагаем разобраться во всех тонкостях написания проектной документации.

В статье описаны основные виды электрических схем, а также приведена подробная расшифровка базовых изображений, символов, значков и буквенно-цифровых маркеров, используемых при составлении чертежей по устройству электросети.

Какие виды электросхем могут пригодиться?

Рассмотрим проектную информацию с точки зрения электромонтажника-любителя, желающего своими руками поменять проводку в доме или составить чертеж подключения дачи к электрокоммуникациям.

Сначала нужно понять, какие знания будут полезными, а какие не понадобятся. Первый шаг это знакомство с видами электрических схем.

Вся информация о видах схем изложена в новой редакции ГОСТ 2.702-2011, которая носит название «ЕСКД. Правила выполнения электрических схем».

Это дубликат более раннего документа ГОСТ 2.701-2008, в котором как раз подробно говорится о классификации схем. Всего выделяют 10 видов, но на практике может потребоваться только одна электрическая.

Кроме видовой классификации, существует и типовая, которая подразделяет все чертежные документы на структурные, общие и пр., всего 8 пунктов.

Домашнему мастеру будут интересны 3 типа схем: функциональная, принципиальная, монтажная.

Тип #1 – функциональная схема

Функциональная схема не содержит детализации, в ней указываются основные блоки и узлы. Она дает общее представление о работе системы. Для устройства электроснабжения частного дома не всегда есть смысл составлять такие чертежи, так как они обычно типовые.

А вот при описании сложного электронного устройства или для оснащения электрикой цеха, студии или пункта управления они могут пригодиться.

Тип #2 – принципиальная схема

Принципиальная схема, в отличие от функциональной это набор условных обозначений, без знания которых сложно разобраться в устройстве сети в целом. На чертеже указываются все устройства и связи между ними. Если схема сложная, содержащая, например, резервирующие цепи, то эксплуатационники пользуются оперативным схемами, дающими представление о “сегодняшнем положении коммутационных аппаратов”.

Если же нужно отразить только силовые линии, достаточно начертить линейную схему, а для изображения всех видов цепей с приборами контроля и управления понадобится полная.

Тип #3 – монтажная схема

Монтажная схема документ, которым удобно пользоваться при установке сетей. По ней можно узнать, какие устройства следует подключать, где именно и как далеко друг от друга они находятся.

Указано расположение таких элементов, как выключатели и розетки, светильники, автоматы защиты. Прямо в схеме можно расставить номиналы и длину цепей.

Требования по всем видам схематической документации изложены в ГОСТ 2.702-2011, именно им и следует в дальнейшем руководствоваться при составлении собственных проектов.

Здесь же можно найти в полном объеме ссылки на другие полезные документы, в которых размещены таблицы графических и буквенных обозначений различных элементов, использующихся на электрических схемах, а также правила их использования.

Графические изображения в электросхемах

Чертеж электросети представляет собой набор графических элементов, которые в совокупности образуют неразрывную систему. На практике это комплект устройств, соединенных проводами.

Большая часть обозначений графические. Буквы и цифры применяются для символьного обозначения отдельных элементов, их номиналов и расстояний между объектами.

Основные базовые изображения

Электрические цепи ведут к устройствам и установкам, которые оборудованы контактами, способными разорвать или соединить эти цепи.

Самый простой пример обыкновенный выключатель. Все контакты делятся на замыкающие, размыкающие и переключающие именно они и отображаются в схемах.

Перечисленные графические изображения являются обязательными при составлении принципиальных схем и обычно понятны даже начинающему электрику.

Символика однолинейных схем

Для сборки электрощитов также используют чертежи. Обычно они представляют собой однолинейную схему с обозначением УЗО, автоматических выключателей, контакторов и другого защитного оборудования.

Некоторые графические символы похожи между собой, поэтому при составлении схемы требуется особое внимание. Например, контактор и рубильник обозначаются одинаково, разница – в небольшом элементе на неподвижном контакте.

Специальными символами обозначаются катушки реле во всех изображениях за основу взят прямоугольник.

Для запоминания значков часто используют ассоциации или буквенно-графические подсказки. Например, мотор-привод изображается кружком, внутри которого находится буква «М».

При составлении схемы следует учитывать, что для обозначения некоторых символов также важно количество.

Например, если нужно указать 4-контактный клеммник, то следует начертить четыре перечеркнутых кружочка в ряд, а не один. Парные галочки при изображении розеток это количество проводов.

Как изображаются шины и провода?

Для обозначений шин, кабелей и проводов используется линейная графика практически все символы состоят из прямых линий.

Соединения проводников указываются точками. Если в месте соединения двух линий никакой пометки нет, то это простое пересечение.

Провода бывают разные по виду, назначению, нагрузке, способу прокладки. Все это также можно отобразить схематически.

Дополнительные характеристики облегчают подбор материалов и монтаж электросети. В дальнейшем благодаря указанным на схеме характеристикам можно судить о потенциальных возможностях уже установленной электросистемы.

Розетки и выключатели на схемах

Обозначение выключателей разбито на несколько групп по степени защиты, способу установки (скрытой или открытой). Отдельно вынесены переключатели на два направления. 2- и 3-клавишные выключатели обозначаются по-разному.

Для некоторых устройств управления источниками света обозначений нет – например, для кнопочных устройств и диммеров.

Сейчас для экономии электроэнергии в больших помещениях часто устанавливают проходные переключатели, которыми управляют с 2 или 3 точек. Для них также можно найти соответствующие значки.

Розетки, как и выключатели, поделены на группы по степени защиты. Внутри групп устройства делятся по количеству полюсов, наличию защиты. Для обозначения блоков используются буквенно-цифровые подписи, указывающие на количество и назначение установок в одном блоке.

При запоминании обозначений различных электрических элементов на схемах следует каждое условно изображенное устройство соотносить с реальным изделием.

Например, популярные виды розеток выглядят следующим образом:

На деле же электромонтажные устройства выглядят так:

Обозначение радиоэлементов на схемах

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток. Их задача – соединять радиоэлементы.

Точка, где соединяются три и более проводников, называется узлом. Можно сказать, в этом месте проводки спаиваются:

Если пристально вглядеться в схему, то можно заметить пересечение двух проводников

Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.

Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

G – генераторы, источники питания, кварцевые генераторы

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF – выключатель автоматический

QS – разъединитель

RK – терморезистор

RP – потенциометр

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VL – прибор электровакуумный

VS – тиристор

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Распиновка и разъемы блока питания

ATX

Компьютерные блоки питания (БП) подают питание на оборудование ПК через ряд кабелей с разъемами. Их общие спецификации для различных настольных систем определены в руководствах Intel по проектированию, которые раньше периодически пересматривались. Их последний стандарт – PSU Design Guide rev.2.0, выпущенный в июне 2018 года. Этот документ объединяет требования для ATX12V v2.52 и его пяти вариантов. Обратите внимание, что некоторые производители торговых марок не следовали рекомендациям Intel и использовали нестандартные распиновки.Также смотрите информацию о новом стандарте ATX12VO. Стандартные блоки питания
ATX обычно имеют основной разъем питания P1, дополнительные разъемы 12 В, а также разъемы для периферийных устройств, дисковода гибких дисков, последовательного ATA и PCI Express®, которые мы опишем ниже.

Основы работы с блоком питания SMPS см. В нашем руководстве по источникам питания. Оригинальные системы ATX имели 20-контактный главный разъем P1. Когда была представлена ​​шина PCI Express®, картам PCIe требовалось до 75 Вт дополнительно. Чтобы обеспечить дополнительную мощность, старая часть была заменена новым 24-контактным P1.Соответственно, разные блоки питания в стиле ATX могут использовать разное количество проводов питания: см. Схему расположения выводов справа. Цвета в этой таблице представляют собой рекомендуемые цвета проводов в кабелях блока питания. Эти диаграммы отражают вид спереди . Цвета показаны здесь только для справки (вы не увидите их спереди). В P1 используется корпус Molex Mini-Fit Jr. P / N № 39-01-2240 (старый номер детали был 5557-24R), контакты: 44476-1112. Подключаемый разъем материнской платы – Molex 44206-0007. Старое гнездо было 39-01-2200, а ответный заголовок – 39-29-9202.Люди часто хотят знать, что делать, если есть несоответствие. Что ж, при определенных условиях новый блок питания все еще можно использовать со старым ПК, и наоборот, см. Наше руководство по подключению 20-контактного блока питания к 24-контактной материнской плате.

Если вы хотите провести какое-то тестирование автономного устройства, чтобы запустить его вне корпуса ПК, вам нужно замкнуть линию PS_ON # на общую. В противном случае будет присутствовать только резервное напряжение 5 В.

При нормальной работе PS_ON # активируется, когда вы нажимаете и отпускаете кнопку питания компьютера, когда он находится в режиме ожидания.В некоторых моделях Apple этот сигнал перевернут.

Также обратите внимание, что многие бренды, такие как Apple Power Mac, Dell (в определенные годы), Compaq и HP, использовали проприетарные платы с совершенно разными обозначениями контактов – см. Здесь информацию о некоторых фирменных источниках питания.

Все напряжения относятся к одному и тому же общему проводу (если вам нужно измерить какое-либо напряжение, подключите обратный провод вольтметра к любому из контактов COM).

Номинальный ток основного разъема Molex составляет 6 А на контакт.Это означает, что со старым 20-контактным типом вы не можете получить больше 18 А от 3,3 В и 24 А от 5 В. Вот почему в начале 2000-х на некоторых материнских платах с 3,3 В> 18 А и 5 В> 24 А (в основном, двухпроцессорные системы AMD) использовался вспомогательный 6-контактный кабель питания. Он был удален из спецификации ATX12V v2.0 в 2003 году, потому что к P1 были добавлены дополнительные провода. Для получения дополнительной информации о форм-факторах см. Наше руководство по компьютерному блоку питания.

Когда промышленность начала использовать модули регулирования напряжения (VRM), работающие от 12 В2, для питания ЦП и других компонентов материнской платы, большая часть мощности перешла на шину 12 В.Большинство современных материнских плат снабжают свой ЦП отдельным кабелем на 12 В, который имеет 4 контакта для стиля ATX (иногда называемый P4) или 8 или более контактов для EPS и нестандартных высокомощных систем. Некоторые блоки питания могут иметь три или четыре 12-вольтовых 4-контактных разъема. Номер детали для стандартного P4 – 39-01-2040 или аналогичный.

Разъем периферийного питания для подключения дисководов, охлаждающих вентиляторов и других устройств меньшего размера. Также может быть кабель дисковода гибких дисков.

Обратите внимание, что номера проводов в разъеме Serial Power ATA ( SATA ) не равны 1: 1.Для каждого напряжения есть три контакта. Один вывод от каждого напряжения используется для предварительной зарядки на объединительной плате. Ответный последовательный разъем устройств ATA содержит как сигнальный, так и силовой сегменты.

Некоторые устройства могут также иметь дополнительную розетку 2×3, которая может использоваться для дополнительных функций, таких как мониторинг и управление вентиляторами, источник питания IEEE-1394 и дистанционное считывание 3,3 В.

Блок питания мощностью более 450 Вт, предназначенный для высокопроизводительных дискретных видеокарт, обычно имеет дополнительные разъемы 2×3 или 2×4. Они обеспечивают дополнительный ток для графики, которая требует общей мощности более 75 Вт.
Шестиконтактный разъем PCI Express® – Molex p / n 04555
.

Разъемы и выводы блока питания

Лист данных стандартного разъема заголовка ATX с шагом 4,2 мм

ATX 24-контактный разъем основного кабеля питания

24-контактный основной разъем питания был добавлен в ATX12V 2.0 для обеспечения дополнительного питания, необходимого для слотов PCI Express. В старом 20-контактном главном кабеле питания имеется только одна линия на 12 В. Новый 24-контактный разъем добавил по одной линии для заземления, 3.3, 5 и 12 вольт. Дополнительные контакты сделали вспомогательный кабель питания ненужным, поэтому у большинства блоков питания ATX12V 2.x их нет. 24-контактный разъем поляризован, поэтому его можно вставлять только в правильном направлении.

Распиновка
Контакты с 1 по 12 Контакты с 13 по 24
Описание Цвет провода Номер контакта Номер контакта Цвет провода Описание
+3.3 вольта оранжевый 1 13 оранжевый +3,3 В
+3,3 В оранжевый 2 14 синий-12 вольт
земля черный 3 15 черный земля
+5 В красный 4 16 зеленый ПС_ОН №
земля черный 5 17 черный земля
+5 В красный 6 18 черный земля
земля черный 7 19 черный земля
PWR_OK серый 8 20 белый-5 вольт (опционально)
VSB +5 В фиолетовый 9 21 красный +5 вольт
+12 В желтый 10 22 красный +5 вольт
+12 В желтый 11 23 красный +5 вольт
+3.3 вольта оранжевый 12 24 черный земля

Некоторые линии напряжения на разъеме могут иметь меньшие измерительные провода, которые позволяют источнику питания определять, какое напряжение на самом деле видит материнская плата. Они довольно часто встречаются на линии 3,3 В на выводе 13, но иногда используются и для других напряжений. Линия -5 В на выводе 20 была сделана необязательной в ATX12V 1.3 (введен в 2003 году), потому что -5 редко использовался в течение многих лет. Новые материнские платы практически никогда не требуют -5 вольт, в отличие от многих старых материнских плат. Большинство новых блоков питания не обеспечивают -5 вольт, и в этом случае белый провод отсутствует.

Номера деталей разъема
Разъем материнской платы Кабельный разъем Клеммы Максимальный ток на цепь
Molex 39-28-1243 Molex 39-01-2240 Molex 39-00-0168,
Molex 44476-1111
6 ампер

Неофициальная максимальная мощность кабеля / разъема для главных рельсов
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+3.3 вольта 4 24 А 79,2 Вт
+5 В 5 30 ампер 150 Вт
+12 В 2 12 ампер 144 Вт

Если у вас есть блок питания ATX с 24-контактным основным кабелем, его можно подключить к материнской плате с 20-контактным разъемом.Он был разработан, чтобы работать таким образом. Вы можете увидеть пример на картинке выше. Дополнительные 4 контакта на кабеле просто нависают над концом разъема материнской платы. 24-контактный кабель подходит только к 20-контактному разъему на одном конце, поэтому вы не сможете подключить его неправильно. Дополнительные 4 контакта были добавлены к 24-контактной версии кабеля, чтобы обеспечить один дополнительный провод для заземления, 3,3, 5 и 12 вольт. Но можно оставить эти 4 контакта отключенными, потому что материнской плате с 20-контактным разъемом они не нужны. Единственная проблема, с которой вы можете столкнуться (буквально), – это то, что что-то блокирует место, где 24-контактный кабель свисает с конца.Или иногда конец 20-контактного разъема материнской платы слишком толстый, чтобы поместиться между контактами 24-контактного кабеля. Вы можете решить эту проблему, аккуратно срезав один конец 20-контактного разъема материнской платы. Это просто пластик. Вы его не пропустите. Если у вас не получается совместить их вместе, вы можете приобрести переходной кабель, который заставит их работать. 24-контактный кабель подключается к одному концу адаптера, а затем адаптер подключается к 20-контактной материнской плате. Но вам следует по возможности избегать использования такого адаптера, потому что дополнительный провод и разъем – это всего лишь дополнительные вещи, которые могут выйти из строя.Адаптеры также немного увеличивают падение напряжения, чего стоит избегать. Лучше сначала посмотреть, сможете ли вы получить 24-контактный кабель для подключения к 20-контактной материнской плате, прежде чем прибегать к адаптеру.

ATX 20 + 4-контактный разъем основного кабеля питания


Материнские платы

могут поставляться либо с 20-контактным основным разъемом питания, либо с 24-контактным основным разъемом питания. Многие блоки питания поставляются с кабелем 20 + 4, который совместим как с 20, так и с 24-контактными материнскими платами.Кабель питания 20 + 4 состоит из двух частей: 20-контактного и 4-контактного. Если вы оставите две части отдельно, вы можете подключить 20-контактную часть к 20-контактной материнской плате, а 4-контактную часть оставить отключенной. Обязательно оставьте 4-контактный элемент отключенным, даже если он подходит к другому разъему. 4-контактный разъем не совместим с другими разъемами. Если вы подключите два куска кабеля питания 20 + 4 вместе, у вас будет 24-контактный кабель питания, который можно подключить к 24-контактной материнской плате.

8-контактный разъем EPS +12 В для кабеля питания


Этот кабель был первоначально разработан для рабочих станций, чтобы обеспечить 12 В для питания нескольких процессоров.Но с течением времени многим процессорам требуется больше 12-вольтного питания, и 8-контактный 12-вольтовый кабель часто используется вместо 4-контактного 12-вольтного кабеля. В зависимости от источника питания, разъем может содержать одну шину 12 В на всех 8 контактах или две шины 12 В, занимающие 4 контакта каждая. Его часто называют кабелем «EPS12V».

8-контактный 12-вольтный кабель поляризован, поэтому его можно правильно подключить только к 8-контактному разъему материнской платы. Если вы внимательно посмотрите на изображение выше, вы увидите, что четыре штифта имеют квадратную форму, а четыре других имеют закругленные углы.Разъемы материнской платы также имеют квадратное и закругленное расположение, поэтому кабель питания подходит только для одной стороны. По крайней мере, это правда, если вы не очень сильно пытаетесь вставить его в разъем. С достаточным усилием иногда можно вставить кабель с небольшим количеством контактов в несовместимый разъем. У 8-контактного кабеля достаточно контактов, поэтому довольно сложно вставить его в неправильном направлении, но люди, полные решимости, могут это сделать. Если вы посмотрите внимательно, вы также можете увидеть, что квадратный и закругленный узор соответствует различным положениям на других разъемах материнской платы, таких как 20-контактный основной разъем питания и 24-контактный основной разъем питания.Если вам не нравится запах жареной электроники, вам следует подключать только 8-контактный 12-вольтовый кабель к разъему материнской платы, которому он принадлежит.

Вы также можете подключить 8-контактный 12-вольтовый кабель к 4-контактному 12-вольтовому разъему материнской платы. У меня нет фотографии этого, но он похож на этот. Четыре контакта на 8-контактном кабеле входят в разъем материнской платы, а другие четыре контакта свешиваются с конца. 8-контактный кабель подходит только к одному концу 4-контактного разъема материнской платы, если только вы не попытаетесь принудительно вставить его в неправильное положение.8-контактный кабель электрически совместим, но он может не подходить к 4-контактной материнской плате. Часто есть компонент, который блокирует область, где 4 штифта свисают с конца. Иногда пластиковый конец 4-контактного разъема оказывается слишком толстым, чтобы поместиться между контактами 8-контактного кабеля.

Убедитесь, что вы не пытаетесь подключить 8-контактный 12-вольтовый кабель к 8-контактному разъему питания PCI Express на видеокарте. Два кабеля выглядят очень похожими, поэтому их легко спутать. 8-контактные кабели питания PCI Express обычно имеют маркировку, чтобы отличать их от 8-контактных 12-вольтных кабелей.Кабель PCI Express обычно имеет маркировку «PCI-E» на разъеме. Если этикеток нет, обычно можно использовать цвета проводов, чтобы различить два типа кабелей. Кабель с 8 контактами на 12 В имеет желтые провода на той же стороне, что и зажим разъема. Кабель 8 Pin PCI Express имеет черные провода со стороны зажима. Два кабеля питания также имеют разные ключи, поэтому вы не можете подключить один кабель питания к разъему другого типа. Но, как и в случае с этим типом разъема, иногда вы можете вставить кабель неправильного типа в разъем, если надавите на него достаточно сильно.Перед подключением убедитесь, что у вас правильный кабель. Эти два кабеля определенно несовместимы друг с другом.

Распиновка
Контакты с 1 по 4 Контакты с 5 по 8
Описание Цвет провода Номер контакта Номер контакта Цвет провода Описание
земля черный 1 5 желтый +12 В (12В1)
земля черный 2 6 желтый +12 В (12В1)
земля черный 3 7 желтый +12 В (12В1 или 12В2)
земля черный 4 8 желтый +12 В (12В1 или 12В2)

Номера деталей разъема
Разъем материнской платы Кабельный разъем Клеммы Максимальный ток на цепь
Molex 39-28-1083 Молекс 39-01-2080 Molex 39-00-0168,
Molex 44476-1111
7 ампер

Максимальная мощность неофициального кабеля / разъема
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+12 В 4 28 ампер 336 Вт

Если у вас нет 8-контактного 12-вольтного кабеля, вы можете использовать адаптер, показанный выше.Он преобразует пару 4-контактных кабелей периферийного питания в 8-контактный кабель на 12 В. Если вы используете один из этих адаптеров, обязательно подключите 4-контактные разъемы периферийных устройств к отдельным кабелям, идущим от источника питания. Если вы подключите их оба к одному и тому же кабелю питания, вы потянете всю мощность 8-контактного 12-вольтового разъема через один провод 18 калибра. Часто это может сойти с рук, но нет причин для этого.

4 + 4-контактный разъем +12 В для кабеля питания

Материнские платы

могут поставляться с 4-контактным разъемом на 12 В или 8-контактным разъемом на 12 В.Многие блоки питания поставляются с кабелем на 12 В с 4 + 4 контактами, который совместим как с 4, так и с 8-контактными материнскими платами. Кабель питания 4 + 4 состоит из двух отдельных частей с 4 контактами. Если вы соедините две части кабеля питания 4 + 4 вместе, у вас будет 8-контактный кабель питания, который можно подключить к 8-контактному 12-вольтовому разъему. Если вы оставите две части отдельно, вы можете подключить одну из 4-контактных частей к 4-контактному 12-вольтовому разъему и оставить другой 4-контактный элемент отключенным.

Если вы внимательно посмотрите на изображение выше, то увидите поляризацию контактов, которая не позволяет вам неправильно подключить кабель.Некоторые штифты имеют квадратную форму, а некоторые имеют закругленные углы. Разъемы материнской платы имеют одинаковые квадратные и закругленные углы, чтобы предотвратить неправильное подключение кабеля. Но если вы внимательно посмотрите на правую половину этого конкретного кабеля, а затем посмотрите на 8-контактный 12-вольтовый кабель, изображенный выше, вы заметите, что они не совпадают. Обычный 8-контактный кабель имеет четыре квадратных контакта и четыре закругленных, но показанный выше кабель 4 + 4 имеет два квадратных контакта и 6 закругленных.Левая половина 4 + 4 соответствует левой половине 8-контактного кабеля, но правая половина отличается. Хммм … И это тоже не какой-то диковинный кабель. Я видел много 4 + 4, которые похожи на этот. А есть другие кабели 4 + 4, которые выглядят так же, как 8-контактный кабель, разделенный на две части (что имеет смысл). Поскольку закругленные контакты входят в квадратные отверстия в разъемах материнской платы, этот конкретный кабель идеально подходит для 8-контактного 12-вольтового разъема материнской платы. Но обе половинки этого 4 + 4 поместятся в 4-контактный 12-вольтовый разъем материнской платы.Вы должны использовать левую половину кабеля, показанного выше, при подключении его к 4-контактному разъему материнской платы, но правая половина также подойдет. Как это бывает, любая половина будет нормально работать на 4-контактной материнской плате, потому что обе половины 4 + 4 просто обеспечивают 12 вольт. Распиновка одинакова для обеих половин, поэтому подойдет любая из них. Я не уверен, почему они делают такие кабели, потому что можно подумать, что кабель 4 + 4 будет просто 8-контактным кабелем, который разделяется на две части. И вам понадобится только половина кабеля 4 + 4 для подключения к 4-контактной материнской плате.Другая половина не используется. Но тип кабеля 4 + 4, показанный выше, довольно распространен, поэтому не позволяйте ему сбивать вас с толку.

6-контактный разъем кабеля питания PCI Express (PCIe)

Этот кабель используется для подачи дополнительного питания 12 В на карты расширения PCI Express. Слоты материнской платы PCI Express могут обеспечить максимальную мощность 75 Вт. Многие видеокарты потребляют значительно больше 75 Вт, поэтому был создан 6-контактный кабель питания PCI Express.Эти мощные карты потребляют большую часть своей энергии от шины 12 вольт, поэтому этот кабель обеспечивает только 12 вольт. Иногда их называют «кабелями PCI Express». Их также иногда называют «кабелями PEG», где «PEG» означает графику PCI Express. Если в вашем источнике питания нет 6-контактного кабеля PCI Express, вы можете использовать адаптер, показанный выше справа, для преобразования двух 4-контактных периферийных кабелей в кабель PCI Express. Если вы используете адаптер, обязательно подключите 4-контактные разъемы периферийных устройств к отдельным кабелям, идущим от источника питания.Если вы подключите их к одному и тому же кабелю питания, вы потянете всю мощность разъема PCI Express через один провод 18 калибра. Обычно это может сойти с рук, но нет причин для этого. 6-контактный разъем PCI Express поляризован, поэтому его можно вставлять только в правильном направлении. Но, как и в случае с разъемами этого типа, иногда вы можете вставить их в неправильный разъем, если будете достаточно стараться. Если он не вставляется легко, вероятно, вы вставили его не в то место.

Некоторые видеокарты поставляются с 8-контактным разъемом питания PCI Express для поддержки более высокой мощности, чем 6-контактные разъемы PCI Express. Можно подключить 6-контактный кабель питания PCI Express к 8-контактному разъему PCI Express. Он предназначен для работы таким образом, но будет ограничен меньшей мощностью, обеспечиваемой 6-контактной версией кабеля. 6-контактный кабель подходит только к одному концу 8-контактного разъема, поэтому вы не можете вставить его неправильно, но иногда вы можете заставить 6-контактный кабель неправильным образом, если постараетесь достаточно сильно.Видеокарты могут определять, подключили ли вы 6-контактный или 8-контактный кабель к 8-контактному разъему, поэтому видеокарта может накладывать какие-то ограничения при работе только с 6-контактным кабелем питания. Некоторые карты отказываются работать только с 6-контактным кабелем в 8-контактном разъеме. Другие будут работать с 6-контактным кабелем на нормальной скорости, но не позволят разгоняться. Ознакомьтесь с документацией к видеокарте, чтобы узнать правила. Но если у вас нет другой информации, просто предположите, что если ваша видеокарта имеет 8-контактный разъем, вы должны подключить 8-контактный кабель.

Распиновка
Контакты с 1 по 3 Контакты с 4 по 6
Описание Цвет провода Номер контакта Номер контакта Цвет провода Описание
+12 В желтый 1 4 черный земля
+12 В или не подключено желтый или не подключен 2 5 черный земля
+12 В желтый 3 6 черный земля

Номера деталей разъема
Разъем видеокарты Кабельный разъем Клеммы Максимальный ток на цепь
Molex 45558-0002 Молекс 45559-0002 Molex 39-00-0168,
Molex 44476-1111
8 ампер

Официальная максимальная мощность кабеля / разъема при поставке
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+12 В 3 2.083 ампер 75 Вт


Спецификация PCI Express, к сожалению, не является бесплатной общедоступной спецификацией. Так что большинство людей никогда этого не видели. Включая меня. Спецификация ATX: бесплатный доступ для всех. Спецификация PCI Express: дорогая, поэтому ее почти никто не видел. ATX: хорошо. PCI Express: плохо. Обидно, когда широко используемый стандарт недоступен для широкой публики. Тем не менее, информация просачивается из спецификации, и 6-контактный кабель питания PCI Express на самом деле рассчитан на чрезвычайно скромные 75 Вт.Я понятия не имею, почему мощность такая низкая, потому что спецификации Molex явно допускают значительно большую мощность. Частично причина может заключаться в том, что контакт 2 (указанный выше как линия 12 В) может быть указан как не подключенный в спецификации. Я никогда не видел 6-контактного кабеля питания PCI Express с не подключенным контактом 2. Все они имели 12-вольтовую линию, подключенную к контакту 2. Я также встречал утверждения о том, что в спецификации могут быть нереализованные сенсорные линии. Добро пожаловать в неопределенность, которая возникает, когда у вас нет свободно доступных спецификаций.Даже с двумя линиями на 12 вольт в стандартной реализации силовых кабелей PCI Express используется провод достаточно большого сечения и достаточно хороший разъем, чтобы обеспечить гораздо больше, чем три ампера на провод, необходимые для обеспечения мощности 75 Вт. Тем не менее официально 6-контактный кабель питания PCI Express обеспечивает мощность всего 75 Вт. Однако, по всей вероятности, реальные реализации этого силового кабеля могут обеспечить гораздо более 75 Вт.

8-контактный разъем кабеля питания PCI Express (PCIe)

PCI Express 2.0, выпущенная в январе 2007 года, добавила 8-контактный кабель питания PCI Express. Это просто 8-контактная версия 6-контактного кабеля питания PCI Express. Оба в основном используются для обеспечения дополнительного питания видеокарт. Старая 6-контактная версия официально обеспечивает максимум 75 Вт (хотя неофициально она обычно может обеспечить гораздо больше), тогда как новая 8-контактная версия обеспечивает максимум 150 Вт. Очень легко спутать 8-контактную версию с очень похожим на вид 8-контактным 12-вольтовым кабелем EPS.

8-контактный разъем PCI Express и 8-контактный разъем EPS на 12 В имеют разную поляризацию, поэтому вы не сможете подключить один кабель к разъему другого типа. То есть вы не сможете подключить не тот кабель, если не очень сильно постараетесь. К сожалению, разъемы Molex Mini-fit Jr., используемые в обоих типах силовых кабелей, иногда могут быть вставлены в разъем с другой поляризацией, если у них всего несколько контактов и вы нажимаете достаточно сильно. Если кабель не вставляется легко, вероятно, вы пытаетесь вставить не тот кабель.8-контактный разъем PCI Express имеет небольшую пластиковую перемычку, которая не позволяет подключить его к 8-контактному разъему EPS на 12 В на материнской плате. Вы можете увидеть перемычку на изображении выше между двумя крайними правыми контактами в верхнем ряду разъема. Но нет такой защиты, чтобы предотвратить подключение 8-контактных 12-вольтных кабелей EPS к 8-контактному разъему PCI Express на видеокарте. Эта комбинация может подойти, если вы будете толкать достаточно сильно. А если вы подключите не тот кабель, ждите фейерверк.Некоторые из заземляющих проводов и 12-вольтовых проводов для EPS 8-контактного 12-вольтового разъема поменяны местами по сравнению с 8-контактным PCI Express. К счастью, большинство 8-контактных разъемов PCI Express имеют маркировку «PCI-E», поэтому люди не будут путать их с 8-контактными 12-вольтовыми кабелями EPS. Если на разъемах нет маркировки, то вы можете отличить 8-контактный кабель питания PCI Express от 8-контактного 12-вольтового кабеля EPS, проверив цвет проводов, которые подключаются к зажимной стороне разъема. На 8-контактном кабеле EPS желтые провода (провода 12 В) входят в разъем со стороны зажима.На 8-контактном кабеле PCI Express все провода со стороны зажима черные (заземление). То же самое, что и с 6-контактным кабелем питания PCI Express. Конечно, ничто из этого не поможет, если в вашем кабеле используется модная конструкция проводов одного цвета, которая популярна в модных источниках питания. В этом случае вам просто нужно быть очень осторожным или надеяться, что разъемы помечены.

Распиновка
Контакты с 1 по 3 Контакты с 4 по 6
Описание Цвет провода Номер контакта Номер контакта Цвет провода Описание
+12 В желтый 1 5 черный земля
+12 В желтый 2 6 черный земля
+12 В желтый 3 7 черный земля
земля черный 4 8 черный земля

Номера деталей разъема
Разъем видеокарты Кабельный разъем Клеммы Максимальный ток на цепь
????

Официальная максимальная мощность кабеля / разъема при поставке
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+12 В 3 4.167 150 Вт

6 + 2-контактный разъем кабеля питания PCI Express (PCIe)

Некоторые видеокарты имеют 6-контактные разъемы питания PCI Express, а другие – 8-контактные разъемы питания PCI Express. Многие блоки питания поставляются с кабелем питания 6 + 2 PCI Express, совместимым с обоими типами видеокарт. Кабель питания 6 + 2 PCI Express состоит из двух частей: 6-контактного и 2-контактного.Если соединить эти две части, то получится полноценный 8-контактный кабель питания PCI Express. Но если вы разделите разъем на две части, вы можете подключить 6-контактную часть к более старому 6-контактному разъему PCI Express и оставить 2-контактную часть отключенной. Таким образом, ваш блок питания должен иметь только один кабель 6 + 2, чтобы быть совместимым как с 6-контактными, так и с 8-контактными разъемами PCI Express.

4-контактный разъем кабеля питания для периферийных устройств

Четырехконтактный кабель питания для периферийных устройств восходит к оригинальному ПК.Он использовался для дисководов гибких дисков и жестких дисков. Он все еще существует и теперь также используется для всех видов вещей, включая дополнительные вентиляторы, дополнительное питание видеокарты, дополнительное питание материнской платы и освещение корпуса. Он стар, как холмы, но до сих пор очень широко используется. Коннектор имеет такую ​​форму, что он подходит только одним способом. Вам не нужно беспокоиться о том, что он вставлен неправильно. Люди часто используют термин «4-контактный кабель питания Molex» или «4-контактный кабель Molex» для обозначения четырехконтактного кабеля питания для периферийных устройств. Это технически бесполезный термин, потому что 4-контактный 12-вольтный кабель также является 4-контактным кабелем Molex (Molex делает много разъемов), но «4-контактный Molex» в любом случае обычно используется для обозначения периферийных кабелей.

Распиновка
Номер контакта Цвет провода Описание
1 желтый +12 В
2 черный земля
3 черный земля
4 красный +5 вольт

Номера деталей разъема
Корпус гнезда Гнездо Корпус штыря Штырь Максимальный ток на цепь
AMP 1-480424-0 AMP 60619-1 AMP 1-480426-0 AMP 60620-1 13 ампер


Я не знаю официального определения максимально допустимого тока в периферийном кабеле.По заявлению производителя, разъем может выдерживать ток 13 ампер. Но обычно вы найдете провод 18 AWG в периферийных кабелях. Если у вас есть 18-дюймовый кабель (около полуметра) и вы пропускаете 13 ампер через провод 18 калибра, то вы получите падение напряжения около 0,25 вольт, считая как провод питания, так и землю (он должен идти в обе стороны) и рассеиваемая мощность составляет около 3,3 Вт. Это не хорошо. Я просто рискнул и указал максимальный ток как 5 ампер.

Максимальная мощность неофициального кабеля / разъема
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+5 В 1 5 ампер 25 Вт
+12 В 1 5 ампер 60 Вт


Современные источники питания обычно имеют как минимум два отдельных кабеля питания для периферийных устройств, каждый из которых имеет два или более разъема для периферийных устройств.Когда вы подключаете несколько мощных устройств, рекомендуется распределить нагрузку между всеми вашими кабелями. Не подключайте все свои устройства к одному кабелю, если только они не относительно малонагруженные. Распространение тока между кабелями снижает падение напряжения и потери мощности. Если это относительно слаботочные устройства, такие как вентиляторы, или это просто диск или два, это не имеет особого значения. Но если вы вставляете много жестких дисков в компьютер (некоторые из них могут потреблять почти 3 А при 12 В при выполнении некоторых операций) или подключаете вспомогательное питание видеокарты, то распределите нагрузку между кабелями периферийного питания.Также полезно использовать разъем как можно ближе к блоку питания, а не наклеивать что-то на конец кабеля. Дополнительный провод означает большее падение напряжения. И если вы используете периферийный разъем для адаптера PCI Express, обязательно подключите каждый из периферийных разъемов адаптера к отдельному кабелю блока питания. Не зря дали вам два периферийных разъема. Подключение их обоих к одному и тому же кабелю блока питания заставляет вашу видеокарту потреблять питание 12 В через один провод 18 калибра. Это увеличивает падение напряжения и рассеиваемую мощность в кабеле.Некоторые современные видеокарты высокого класса могут потреблять более 10 ампер при напряжении 12 вольт, большая часть которого проходит через разъем PCI Express, поэтому стоит быть осторожным. Вероятно, это сработает, если вы не распределите нагрузку, но нет оправдания тому, что вы не сделаете это должным образом. Они дали вам несколько кабелей. Вы могли бы также использовать их. К тому же есть что-то жуткое в том, чтобы иметь теплые провода, даже если они не плавятся.

Иногда вы будете сталкиваться с периферийными разъемами, у которых нет всех четырех проводов.Обычно это 12-вольтовые кабели, предназначенные для вентиляторов. Никогда не подключайте один из них к дисководу. Приводы рассчитаны на питание как на 5, так и на 12 вольт. Некоторые из двухпроводных периферийных разъемов предназначены для вентиляторов с регулируемой скоростью. Это означает, что напряжение меняется в зависимости от желаемой скорости вращения вентилятора. Разъем будет обеспечивать только 12 вольт, когда вентилятор работает на полной скорости, а напряжение уменьшается, чтобы замедлить вентилятор. Определенно не подключайте его ни к чему, кроме вентилятора! Обычно на таком периферийном разъеме есть напечатанный «вентилятор», чтобы предупредить вас.Если у периферийного разъема четыре провода: один желтый, два черных и один красный, и к нему не прикреплено какое-то печатное предупреждение, это стандартный периферийный кабель, и вы можете подключить его к чему угодно.

Разъем кабеля питания SATA

SATA был представлен для обновления интерфейса ATA (также называемого IDE) до более продвинутого дизайна. SATA включает в себя кабель для передачи данных и кабель питания. Кабель питания заменяет старый 4-контактный периферийный кабель и добавляет поддержку 3.3 вольта (при полной реализации). Коннектор имеет такую ​​форму, что вставлять его можно только правильным образом.

Распиновка
Номер контакта Номер провода Цвет провода Описание
1 5 оранжевый +3,3 В
2 5 оранжевый +3,3 В
3 5 оранжевый +3.3 вольта
4 4 черный земля
5 4 черный земля
6 4 черный земля
7 3 красный +5 вольт
8 3 красный +5 вольт
9 3 красный +5 вольт
10 2 черный земля
11 2 черный земля
12 2 черный земля
13 1 желтый +12 В
14 1 желтый +12 В
15 1 желтый +12 В

Номера деталей разъема
Кабельный соединитель Клеммы Максимальный ток на цепь
Molex 67582-0000 Molex 67581-0000 1.5 ампер

Официальная максимальная мощность кабеля / разъема при поставке
Шина напряжения Количество линий Максимальный ток Максимальная мощность
+3,3 В 3 4,5 ампер 14,85 Вт
+5 В 3 4,5 ампер 22.5 Вт
+12 В 3 4,5 ампер 54 Вт

Будьте осторожны с кабелями питания SATA. У некоторых из них отсутствует провод на 3,3 В. Люди со старыми блоками питания часто используют адаптеры, которые преобразуют периферийные 4-контактные кабели в силовые кабели SATA. Но поскольку 4-контактные периферийные разъемы подают только 5 и 12 вольт, на разъеме SATA не хватает 3,3 вольт (оранжевого провода нет).Есть также несколько старых блоков питания, в которых по необъяснимой причине есть силовые кабели SATA, в которых отсутствует провод на 3,3 В. В настоящее время диски SATA редко используют 3,3 вольта. Это может быть связано с тем, что слишком много людей используют адаптеры, поэтому производители приводов не хотят головной боли, связанной с использованием 3,3 вольт. Но в будущем накопители на 3,3 вольта могут стать обычным явлением, поэтому вам нужно быть осторожным при использовании кабелей питания SATA, которые не реализуют 3,3 вольта.

Теги:
    Распиновка
  • блока питания и как их проверить
  • какой блок питания имеет 24 контакта
  • Схема подключения разъема питания
  • на распиновке блока питания
  • Распиновка блока питания ПК
  • Спецификация 6-контактного разъема питания

Разница между логикой приемника и источника

Для человека, никогда не имевшего опыта подключения ввода / вывода для управления движением, это может быть пугающим в первый раз.Если устройства подключены неправильно, это может вызвать ряд проблем, поскольку двигатель просто не выполняет ожидаемых действий, что может привести к необратимому повреждению продукта. Я до сих пор испытываю это нервное чувство, прежде чем нажимаю кнопку СТАРТ в демоверсии. Кто-нибудь знает закон Мерфи?

Сложность начинается, когда инженеры или производители используют различную терминологию проводки. Как можно быть уверенным, что вы говорите яблоки с яблоками? Например, совпадает ли логика поиска с логикой PNP? «Мы тонем или берем затонувший источник?» По нашему опыту поддержки приложений управления движением мы все это слышали.

В большинстве случаев инженеры службы поддержки направят вас к электрической схеме и посоветуют ей следовать. Что на самом деле означают логика приемника и логика источника? Начнем с базовой терминологии.

Электронная схема (цифровая)

Электронная схема содержит электронные компоненты, такие как резисторы, транзисторы, конденсаторы, катушки индуктивности и / или диоды. Они соединены токопроводящими проводами или дорожками на печатной плате. Для этого требуется напряжение и земля, где земля действует как земля для измерения потенциального напряжения.Цифровая электронная схема использует постоянное напряжение и дискретные значения (вкл. / Выкл.). Источник питания постоянного тока перетекает с положительного на отрицательный.

В / В

I / O определяется как входы / выходы, которые в простейшем смысле представляют собой все, что выполняет выход на основе входа. Это может быть клавиатура (вход) и монитор (выход). В этом случае ввод / вывод описывает передачу сигналов между двумя устройствами (например, ПЛК и драйвером шагового двигателя) с использованием двоичной логики включения / выключения.

Электрическая нагрузка

Электрическая нагрузка – это электрический компонент или часть цепи, потребляющая электроэнергию.Это противоположность источника питания, такого как батарея или генератор, который производит энергию. Примеры нагрузок – лампочки и моторы. В данном случае мы говорим о входной цепи.

Логическая схема

Логическая схема определяется как электрическая цепь (I / O), выход которой зависит от входа. Он может включать один или несколько двоичных входов (вкл. / Выкл.) И один двоичный выход. Он может состоять из любых двоичных электрических или электронных устройств, включая переключатели, реле, твердотельные диоды и транзисторы.

Приемная логика и исходная логика

Логические схемы приемника и истока обычно связаны с сигналами ввода-вывода ПЛК и применяются только к цепям постоянного тока. Они различаются типом используемого компонента и определяют текущий поток.

  • Логика определяется типом компонентов в схеме.
  • Логика определяет протекание тока в цепи.
  • Какую бы логику вы ни использовали для выхода, для входа требуется обратное.

Логика мойки

Для логики потребителя транзистор NPN обеспечивает путь к земле для электрической нагрузки. Чтобы схема транзистора NPN работала, она должна быть подключена к схеме транзистора PNP. Другими словами, логическая схема приемника должна быть подключена к логической схеме источника.

На рис. 1 показан понижающий цифровой выход, подключенный к исходному цифровому входу. Входная цепь подключена между положительной стороной источника питания (Vcc) и транзистором NPN.

Исходная логика

Для логики истока транзистор PNP обеспечивает путь к напряжению для электрической нагрузки. Чтобы схема транзистора PNP работала, она должна быть подключена к схеме транзистора NPN. Другими словами, логическая схема истока должна быть подключена к логической схеме приемника.

На рис. 2 показан исходный цифровой выход, подключенный к входному цифровому входу. Входная цепь подключена между транзистором PNP и GND источника питания (0 В).

Полезный мнемонический трюк для логики «сток против истока» состоит в том, чтобы рассматривать логическую схему истока как источник напряжения (она обеспечивает путь к источнику), а логическую схему приемника как опускающуюся к земле (она обеспечивает путь к земле).

СОВЕТ: сравните расположенные рядом электрические схемы

Когда я имею дело с проводкой ввода-вывода между ПЛК и сервоприводом или шаговым драйвером, полезный трюк, который сработал для меня, – это распечатать электрические схемы как от ПЛК, так и от драйвера, а затем положить их рядом.Это помогает визуализировать ток, протекающий от источника напряжения до нагрузки на землю.

Большая часть моей поддержки осуществлялась удаленно по телефону. Это сделало поддержку проводки очень сложной. Чтобы не повредить ПЛК моих клиентов, я распечатывал электрические схемы, а затем отслеживал ток от источника напряжения до электрической нагрузки и до земли. Поддерживая удаленно, я также узнал, что очень важно точно знать, о какой стороне ввода-вывода имеет в виду заказчик.

Для того, чтобы выходной сигнал источника ПЛК запускал входящий сигнал на драйвере, мы должны убедиться, что все имеет необходимую мощность. Достаточное напряжение и ток должны поступать на положительный вывод со стороны ПЛК через выходную цепь во входную цепь (электрическая нагрузка), а затем выходить через другой вывод обратно на землю источника питания, чтобы замкнуть цепь. В ПЛК каждый отдельный сигнал ввода / вывода должен обеспечивать 2 клеммы для подключения: одну для входящего тока и одну для выхода.В целях экономии места иногда терминалов сгруппированы вместе и поэтому называются «общими». Этим «общим» может быть либо источник напряжения, либо земля. Подробнее позже.

СОВЕТ: Не забывайте требования к питанию для ввода / вывода
Также важно обращать внимание на требования к напряжению и току для входов и выходов. Если для выхода требуются токоограничивающие резисторы, используйте закон Ома для расчета внешнего сопротивления, но не забывайте о внутреннем сопротивлении.Помните, что вы должны соответствовать требованиям входа как по напряжению, так и по току.

Важно обратить внимание на тип логики или транзистора, чтобы определить правильный метод подключения. Кроме того, есть разница в отношении безопасности. Если случайно что-то случится с устройством пользователя и вызовет утечку на землю сигнальной линии ввода / вывода или короткое замыкание линии заземления (0 В), это может быть потенциально опасным.

Однако, если использовалась логика источника, входная цепь не была напрямую подключена к положительной стороне питания (Vcc), поэтому утечка на землю или короткое замыкание сигнальной линии не включили бы вход.Вот почему он считается одним из самых безопасных способов подключения.

Сводка

Приемник и Источник – это термины, используемые для определения потока постоянного тока в электрической цепи.

  • Понижающаяся входная или выходная цепь обеспечивает заземление для электрической нагрузки.
  • Входной или выходной сигнал источника обеспечивает источник напряжения для электрической нагрузки.

Логика определяется типом компонентов в схеме.

  • Для входной или выходной цепи источника требуется транзистор PNP.
  • Для входной или выходной цепи с понижением частоты требуется транзистор NPN.

Простая электронная схема состоит из одного цифрового входа, соединенного с цифровым выходом. Для питания схемы необходим источник напряжения, заземление и нагрузка.

  • Входная или выходная цепь источника обеспечивает необходимое напряжение для цепи.
  • Понижающая входная или выходная цепь обеспечивает необходимое заземление для цепи.
  • Цифровой ввод / вывод обеспечивает электрическую нагрузку, необходимую для работы схемы.

Для обеспечения гибкости используйте продукты, которые предлагают как приемную, так и исходную логику

Некоторые продукты на рынке предлагают логику как приемника, так и источника для гибкости в соединениях. Это возможно благодаря параллельному соединению двунаправленных диодов. Фотоэлементы также помогают минимизировать повреждение проводки.Используйте эти продукты, если требуется гибкость или если вы планируете использовать их позже.

Вот как выглядят настоящие электрические схемы для. Есть одна схема для подключения логических выходов приемника и другая схема для логических выходов источника. ПЛК, или «Программируемый контроллер», находится слева, а драйвер двигателя – справа. Обозначения INx – это входы, а обозначения OUTx – выходы.

Посмотрите на первый вход «IN-COM0» (общие входы).На верхней схеме подключения он подключен к 24 В постоянного тока, а вход имеет заземление. На нижней диаграмме «IN-COM0» подключен к 0 В, а вход имеет путь к источнику напряжения. Двунаправленные диоды во входных цепях позволяют это.

Надеюсь, это поможет. Большинство наших новых драйверов предлагают логику как приемника, так и источника. Если вам нужна помощь в их поиске, спросите нашего полезного.

Спасибо, что дочитали до этого места, и, пожалуйста, подпишитесь!

Распиновка блока питания – ATX, Dell, Power Mac

Различные версии спецификаций ATX требуют различных разъемов питания.Что еще хуже, некоторые производители компьютеров (например, HP, Dell, Apple) используют в своих материнских платах стандартные разъемы ATX с проприетарными нестандартными выводами. Думаю, они не хотят, чтобы вы использовали недорогой стандартный блок питания вместо оригинального. В некоторых случаях, конечно, не тот БП механически не поместится в корпус. Однако во многих случаях это произойдет, и вы можете сжечь свою материнскую плату, если подключите общий блок питания ATX к фирменной плате и наоборот. Здесь вы найдете информацию о главном разъеме питания P1 как ATX, так и некоторых брендовых ПК, которая поможет вам выбрать подходящий источник питания для замены.Также см. Распиновку разъемов, указанную в новом стандарте одинарной шины ATX12VO.

РАЗЪЕМЫ ATX и ATX12V

При разработке форм-фактора ATX сначала использовался 20-контактный двухрядный разъем P1 с номиналом 6 А / контакт. По сравнению со старым AT-типом, у него было три новых шины: + 3.3V, + 5VSB и линия PS_ON # для удаленного включения / выключения. Позже Intel® представила так называемый ATX12V, который отличался дополнительным разъемом 2×2 + 12V (информацию о дополнительных кабелях можно найти здесь).

В ревизии 2.0 спецификации блока питания ATX, P1 заменен на 24-контактную часть для большей мощности. Обозначения исходных 20 сигналов оставлены без изменений для обратной совместимости (см. Распиновку разъема питания ATX справа, а также см. Наше руководство по взаимозаменяемости между версиями ATX). В спецификации rev.2.0 также содержится призыв к отдельному ограничению тока на разъеме 2×2, который назывался + 12V2. На самом деле, насколько мне известно, большинство производителей проигнорировали это требование и подключили линии + 12V1 и + 12V2 к одному и тому же физическому выходу с комбинированной защитой от перегрузки по току.В явном признании этого факта в руководстве Intel по проектированию источников питания версии 1.2 это требование было рекомендовано, а не обязательным. Учтите, что номера ревизий руководств и блоков питания не совпадают. Например, в последней версии руководства по комбинированному блоку питания версии 1.31 указан ATX 2.4. Также обратите внимание, что здесь и везде на этой странице мы предоставляем вид спереди, то есть вид со стороны штыря, а не со стороны провода. Цвета показаны только для справки. Некоторые производители отклоняются от рекомендованных проводов, поэтому не слишком доверяйте цветам.

DELL

В течение многих лет Dell использовала те же разъемы, что и в стандартном ATX, но разводка проводов по-другому (см. Схему справа для распиновки их ПК Pentium® II и III, Precision 410 и Dimension 8100). Насколько мне известно, за исключением Dimension 8100, начиная с Pentium® IV, в их системах используются стандартные обозначения контактов.



POWER MAC



Источники питания Apple Power Mac G3 и некоторые G4 (APG и PCI) также использовали стандартный 20-контактный разъем с индивидуальными обозначениями контактов.Хотя в большинстве вышек G4 (таких как QuickSilver и Gigabit) использовалось 22 контакта, которые механически несовместимы с любым ATX, у Mirrored Drive Doors было 24 контакта. Обратите внимание, что TRKL относится к так называемому тонкому выходу, который активен всякий раз, когда компьютер подключен. По сути, это просто другое название резервного источника питания, который питает цепь включения. Кстати, недавно Apple «удобно» удалила со своего веб-сайта информацию о назначении контактов на большинстве старых моделей.

GES

Некоторые старые серверы были основаны на спецификации GES, разработанной AMD для их процессоров.С технической точки зрения, вывод GES имеет больше смысла, чем любой другой, потому что они сгруппировали вместе сигналы с одинаковыми именами. Они также переместили PWR_OK на 8-контактный P2, который используется для питания процессора.

Это руководство, конечно, не является исчерпывающим и не охватывает все пользовательские конфигурации. В частности, Compaq и HP также использовали несовместимые системы. Как правило, если у вас есть фирменный ПК, вы должны подозревать, что он несовместим с отраслевым стандартом.

В чем разница между источниками питания класса 2 и класса II?

Понятно, что часто возникает путаница относительно разницы между источниками питания переменного и постоянного тока с номинальными характеристиками Класса 2 и Класса II.Различия существенны и важны для понимания. Идентификация класса 2 NEC (Национальный электротехнический кодекс) относится к выходному напряжению и мощности источников переменного / постоянного тока, в то время как обозначение защиты IEC (Международной электротехнической комиссии), класс II, относится к внутренней конструкции источника питания и электрической изоляции. .

Выходное напряжение и мощность NEC, класс 2

Обозначение NEC класса 2 важно при установке электрической системы в здании.Нормы электропитания класса 2 касаются требований к проводке (сечение и изоляция проводов, коэффициенты снижения характеристик проводов, пределы защиты от перегрузки по току и методы монтажа проводки) между выходом источника питания и входом нагрузки. Ограниченное выходное напряжение и возможности подачи питания источников питания класса 2 признаны менее опасными для возникновения пожара и поражения электрическим током, что позволяет использовать более дешевые методы подключения.

Электропроводка зависит от источника питания NEC класса 2

Защита изоляции IEC класса II

Классы защиты IEC определяют конструкцию и изоляцию источников питания для защиты пользователя от поражения электрическим током.В источнике питания класса II имеется два слоя изоляции (или один слой усиленной изоляции) между пользователем и внутренними токонесущими проводниками. В источниках питания с двухслойной изоляцией первый слой изоляции обычно называют «базовой изоляцией». Типичным примером базовой изоляции является изоляция проводов. Второй слой изоляции часто представляет собой изолирующий кожух, закрывающий продукт, такой как пластиковый кожух, присутствующий на настенных и настольных блоках питания.

Этикетка с обозначением класса защиты IEC

Источники питания класса II защиты IEC будут иметь двухжильный шнур питания, а не трехжильный шнур питания с защитным заземлением. Продукты, разработанные с изоляцией класса II, часто обозначаются как «класс II» или «двойная изоляция», или на этикетке безопасности будет отображаться символ концентрического квадрата.

Понимание разницы между источниками питания NEC Class 2 и IEC Class II – простой, но важный фактор для обеспечения того, чтобы в пользовательских приложениях были указаны правильные продукты.В конечном итоге, выбрав сертифицированный силовой модуль класса 2 или класса II, вы лучше защитите свою конструкцию от поражения электрическим током и других опасностей и сбоев, которые могут произойти.

Категории: Безопасность и соответствие

Вам также может понравиться


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Как различать конфигурации распределения

Распределение энергии в вашем здании: как различать конфигурации распределения

Брайан МакДивитт, ЧП

Распределение электроэнергии в зданиях основывается на том, какие электрические услуги предоставляет местная коммунальная компания. В США системы распределения электроэнергии в зданиях подразделяются на три основные конфигурации.Первое различие заключается между однофазным и трехфазным, при этом трехфазное соединение дополнительно различается как звезда (Y) или дельта (Δ).


Примечание редактора: Это вторая из трех частей, посвященных системам распределения электроэнергии. Прочтите часть первая и часть третья .


Счетчик электроэнергии отображает информацию о рабочем напряжении.

Как описано в разделе Часть 1 , напряжение измеряется как линейное (V LL ) или линейное напряжение (V LN ).Эти обозначения и будут использоваться здесь.

Однофазный

В большинстве одноквартирных домов и в некоторых небольших коммерческих зданиях есть однофазное питание на 120/240 В. Эта услуга предоставляет две горячие линии (L1, L2), разнесенные на 180 градусов, одну нейтраль (N) и одну землю, и называется трехпроводной системой. В этой конфигурации доступны два напряжения: V LN = 120 В, требующий только 1-полюсный прерыватель, и V LL = 240 В, для которого требуется 2-полюсный прерыватель.Большинство розеток в доме запитаны от цепей 120 В. Некоторым приборам, таким как духовка или сушилка для одежды, требуется цепь 240 В. Схема ниже иллюстрирует эту однофазную конфигурацию.

Обычным сушилкам для бытовой одежды требуется 240 В.

Трехфазный, звезда (Y)

Существует два типа трехфазных конфигураций: звезда (Y) и треугольник (Δ). Y-конфигурация обеспечивает три горячие линии и одну нейтраль, которая обычно связана с землей и называется 4-проводной системой.Три линии (L1, L2, L3) равномерно разнесены под углом 120 градусов. На следующей диаграмме показаны V LL и V LN для Y-конфигурации.

Типичные трехфазные Y-конфигурации, которые мы видим, – 480Y / 277V и 208Y / 120. В каждом из названий конфигураций большее напряжение обозначает V LL , а меньшее напряжение – V LN . Например, конфигурация 480Y / 277V имеет V LL = 480V и V LN = 277V.

Трехфазный, треугольник (Δ)

Для общего подхода к пониманию этого типа конфигурации, трехпроводной системы, рассмотрим типичную Δ-конфигурацию 208 В, как показано ниже. Во-первых, обратите внимание, что нейтраль отсутствует. В этой конфигурации V LL = 208 В, но V LN не существует. Еще один важный аспект, на который следует обратить внимание, – это то, что дельта-конфигурация не заземлена. Часто одна ножка дельты привязана к земле. Заземленная ножка обеспечивает защиту системы от земли, и V LL остается 208 В.

Многие фабрики и магазины имеют оборудование, такое как этот воздушный компрессор, для которого требуется трехфазное соединение по схеме “треугольник”.

Некоторые коммерческие здания и фабрики используют конфигурацию треугольника, где V LL = 240 В. Хотя эта конфигурация обеспечивает трехфазное и однофазное напряжение 240 В для оборудования, в этих зданиях по-прежнему требуются стандартные розетки на 120 В. Чтобы получить V LN = 120 В, одна фаза треугольника соединена по центру с заземленной нейтралью.

Какая конфигурация лучше?

Общие конфигурации напряжения были объяснены здесь, но является ли одна конфигурация более выгодной, чем другие? В части 3 я объясню важные аспекты этих конфигураций, чтобы помочь вам понять плюсы и минусы.

Какую конфигурацию следует использовать? В третьей части этой серии статей будут изложены плюсы и минусы, которые помогут вам решить, что лучше всего подходит для вашего проекта.

Брайан МакДивитт, ЧП, – профессиональный инженер с опытом проектирования электрических систем распределения электроэнергии в зданиях, схем освещения и управления, систем пожарной сигнализации и телекоммуникационной инфраструктуры. Его проектный опыт включает в себя самые разные типы зданий, такие как офис, образование, библиотека, терминал аэропорта, кондоминиум, склад и историческая реставрация.Он работает в офисе Morrison-Maierle в Миссуле.

Схема подключения материнской платы

Duet 3 6HC

нажмите на изображение для увеличения

нажмите на изображение для увеличения

нажмите на изображение для увеличения

Внимание! На платах v0.5 обозначения GND и V_FUSED на нижней стороне платы неверны! На приведенной выше схеме подключения правильные.То же самое для блока перемычек OUT7 – OUT9, который обеспечивает питание этих разъемов соответственно (см. Ниже).

Внимание! На платах v0.5 не подключайте ничего к выводу OUT разъема IO_5, потому что на платах прототипов этот вывод используется для передачи сигналов на Raspberry Pi. Вывод IO_5_OUT будет доступен на платах более поздних версий.

ВНИМАНИЕ! Распиновка 5-контактных разъемов отличается от 5-контактного разъема Z-зонда на Duet Maestro! Он был изменен, чтобы снизить риск короткого замыкания с + 5В до +3.3В.
ВНИМАНИЕ! На платах v0.5 обозначения GND и V_FUSED на нижней стороне платы неверны! На приведенной выше схеме подключения правильные. То же самое для блока перемычек OUT7 – OUT9, который обеспечивает питание этих разъемов соответственно (см. Ниже).
ВНИМАНИЕ! На прототипных платах v0.5 не подключайте ничего к выводу OUT разъема IO_5, потому что на этих платах этот вывод используется для передачи сигналов на Raspberry Pi.Вывод IO_5_OUT доступен на платах v0.6 и новее.
  • 4-проводной двигатель и OUT1, OUT2 и OUT3 являются разъемами серии JST VH. Для них требуется как минимум провод 22AWG (рекомендуется 20AWG или 0,5 мм 2 . Большая часть проводов шагового двигателя размера NEMA17 не будет достаточно толстой для использования в обычном режиме; но вы можете удвоить зачищенную часть провода обратно на себя, чтобы набейте его и положите на изоляцию небольшой отрезок термоусадочной трубки, чтобы набрать изоляцию.Вам понадобится подходящий инструмент для обжима обжимных штифтов, например Engineer PA21 (используйте отверстие губки 2,2 мм, чтобы обжать оголенный провод, и 2,5 мм, чтобы обжать изоляцию). В качестве альтернативы вы можете припаять провод к обжимному штырю
  • . Конфигурация питания 5 В по умолчанию – внутреннее-5V-EN с перемычкой, 5V-> SBC с перемычкой (Duet питает SBC), SBC-> 5V без перемычки. Если вы хотите, чтобы SBC подал 5V на Duet, снимите перемычку с Internal-5V-EN и установите перемычку на SBC-5V (оставив перемычку 5V-> SBC на месте). ПРИМЕЧАНИЕ. это обходит защиту 5 В, и отказ SBC может повредить Duet. См. Обзор аппаратной части материнской платы Duet 3 6HC
  • Два банка слаботочных выходов (OUT4-6, OUT7-9) могут быть отдельно выбраны для питания от VIN или внутреннего 12V. Общий ток, потребляемый вентилятором 12 В, не должен превышать 800 мА.
  • Отдельный вход питания OUT0 позволяет подавать другое напряжение для сильноточного выхода OUT0 (например, для большого нагревателя слоя). Если это не требуется, питание VIN должно быть подано как на POWER IN, так и на OUT0 POWER IN, чтобы OUT 0 был запитан.
  • SBC_3.3V предназначен исключительно для обеспечения одинаковых логических уровней между Duet и SBC. Не пытайтесь использовать этот вывод для подачи или вывода 3,3 В.

Duet 3 Mainboard 6HC имеет следующие разъемы:

Заголовок Этикетка на печатной плате Функция
1 х 6-сторонняя барьерная полоса: POWER IN, GND, VIN Два контакта для основного VIN и GND
OUT 0 POWER IN, GND , V_OUT0 Два контакта для питания VIN и GND для клемм OUT_0
OUT 0, V_OUT0, OUT0- Положительная и отрицательная клеммы OUT_0.OUT_0 предназначен для привода нагревателя станины. Сторона заземления OUT_0 подключается МОП-транзистором, а положительная сторона защищена предохранителем на 15 А. Если вы используете клемму OUT0 для управления SSR, обратите внимание, что их полярность противоположна полярности клемм VIN.
1 x 3-контактный разъем KK EXT 5V Выход mosfet с открытым стоком для управления источником питания в стиле ATX или SSR. Вывод + 5V также можно использовать для подачи внешнего питания 5V. Небольшое количество энергии 5 В может быть получено с этого контакта (через внутренний резистор 220 Ом), так что управляющие клеммы SSR могут быть подключены непосредственно между контактами + 5V и PS_ON.
Примечание: на плате v0.5 этот разъем повернут на 180 градусов по сравнению с предполагаемой ориентацией на платах более поздних версий.
6 x 4-контактный разъем JST VH DRIVER_0, DRIVER_1, DRIVER_2, DRIVER_3, DRIVER_4, DRIVER_5 Разъемы шагового двигателя. (см. примечание о разъемах JST VH)
3 x 2-контактных разъема JST VH OUT 1, OUT 2, OUT 3 Предназначены для нагревателей экструдеров или вентиляторов. Максимальный рекомендуемый ток 6А каждый.Если вы подключаете к этим выходам сильноточные индуктивные нагрузки, необходимо использовать внешние обратные диоды.
3 x 4-контактных разъема KK со смещенным патрубком OUT 4, OUT 5, OUT 6 Эти среднетоковые выходы предназначены для вентиляторов с ШИМ-управлением. Разъем подходит для стандартного 4-контактного ШИМ-вентилятора ПК. В качестве альтернативы, 2-контактный вентилятор может быть подключен между контактом V_OUT_LC_1 (+ ve) и контактом OUT_n_NEG (-ve).
Примечание. Эти выходы защищены обратным диодом, подключенным к V_OUT_LC_1.Не смешивайте нагрузки, подключенные к V_OUT_LC_1, с перемычкой, установленной на 12 В, и нагрузки, подключенные к V_FUSED на одном и том же банке.
1 x 3-контактный разъем KK OUT4-OUT6_SelectV Положительное питание на разъемах OUT 4, OUT 5 и OUT 6 является центральным контактом блока 3-контактных перемычек с маркировкой OUT4-OUT6_SelectV. Перемычка в верхнем положении запитает их от источника VIN с предохранителем. В качестве альтернативы вы можете подключить 3-контактный понижающий стабилизатор к 3-контактной перемычке для подачи необходимого напряжения на центральный контакт.
3 x 2-контактных разъема KK OUT 7, OUT 8, OUT 9 Предназначены для вентиляторов. Максимальный рекомендуемый ток 2,5 А каждый при поставке по VIN.
Примечание. Эти выходы защищены обратным диодом, подключенным к V_OUT_LC_2. Не смешивайте нагрузки, подключенные к V_OUT_LC_2, с перемычкой, установленной на 12 В, и нагрузки, подключенные к V_FUSED на одном и том же банке.
1 x 3-контактный разъем KK OUT7-OUT9_SelectV Положительное питание на разъемах OUT 7, OUT 8 и OUT 9 является центральным контактом блока 3-контактных перемычек с маркировкой OUT7-OUT9_SelectV.Перемычка в верхнем положении запитает их от источника VIN с предохранителем. В качестве альтернативы вы можете подключить 3-контактный понижающий стабилизатор к 3-контактной перемычке для подачи необходимого напряжения на центральный контакт.
1 x 3-контактный разъем KK SERVO, OUT 10 только для плат v0.5. Это обеспечивает серво-совместимый управляющий сигнал 5 В и питание 5 В.
1 x 2-контактный разъем KK VFUSED Предназначен для питания постоянно включенного вентилятора или аналогичного устройства.
Внимание! На платах v0.5 надписи GND и V_FUSED на нижней стороне платы неправильны! Те, что наверху, правильные.
Примечание: на плате v0.5 этот разъем повернут на 180 градусов по сравнению с предполагаемой ориентацией на платах более поздних версий.
1 x 2-контактный разъем KK RESET_EXT Для внешнего нормально разомкнутого переключателя сброса.
1 x 2-контактный разъем KK 12 В Обеспечивает питание 12 В для преобразователя ШИМ-0 в 10 В.
1 x 3-контактный разъем KK LASER / VFD v1.0 только для плат. Он обеспечивает питание 5 В и сигнал уровня 5 В для ТТЛ-совместимого входа для контроллера лазера, преобразователя ШИМ в 0 на 10 В (для частотно-регулируемых приводов) или сервопривода. Управляющий сигнал для этого выхода используется совместно с OUT9, поэтому не используйте OUT9, если вы используете этот разъем.
4 x 2-контактных разъема KK TEMP_0, TEMP_1, TEMP_2, TEMP_3 Разъемы для термистора или датчиков PT1000.
1 сетевой разъем RJ45 Ethernet Порт 100BaseT. не MDIX подключается к коммутатору Ethernet, концентратору или порту портативного компьютера с поддержкой MDIX. При подключении к порту без поддержки MDIX используйте перекрестный кабель. Оранжевый индикатор на порте Ethernet указывает на то, что Ethernet включен, зеленый индикатор указывает на сетевую активность
9 5-контактных разъемов KK IO_0, IO_1, IO_2, IO_3, IO_4, IO_5, IO_6, IO_7, IO_8 Они предназначены для оконечной остановки переключатели, датчики Z, мониторы накала, сервоприводы и другие функции низковольтного ввода / вывода.Каждый разъем обеспечивает питание как 3,3 В, так и 5 В. Входы выдерживают напряжение до 30 В. Выходы представляют собой сигналы уровня 3,3 В с резисторами серии 470R.
1 4-контактный разъем KK DS_LED Предназначен для подключения и питания светодиодных лент DotStar.
Внимание! Общий ток, потребляемый Raspberry Pi (включая любые подключенные USB-устройства), светодиодами DotStar и другими устройствами, питаемыми от шин 5 В и 3,3 В на Duet, не должен превышать 3,0 А.
1 x 6-контактный разъем JST ZH (ZHR-6) SWD Он предназначен для отладки микропрограмм и также обеспечивает механизм резервного копирования для программирования плат расширения.
Заголовок 1 x 2×13 SBC Это для подключения одноплатного компьютера (SBC), такого как Raspberry Pi.
Заголовок 1 x 2×5 TEMPDB Предназначен для подключения интерфейсных плат PT100 и термопар.
1 разъем RJ11 CAN CAN_OUT Разъем RJ11 CAN и постоянный согласующий резистор, поэтому он должен быть на одном конце шины CAN
Этикетка Цвет Функция
V_FUSED Синий Указывает на наличие предохраненного питания VIN
12 В + Янтарный Указывает на наличие 12 В от бортового регулятора
5 В + Красный Указывает на наличие питания 5 В от бортового регулятора
3.3 В + Зеленый Указывает на наличие питания 3,3 В от встроенного регулятора
USB Красный Указывает на наличие питания 5 В от USB
OUT_0 Красный Рядом с разъемом OUT 0 , указывает, когда на
OUT_1 Красный Рядом с разъемом OUT 1 указывает, когда на
OUT_2 Красный Рядом с разъемом OUT 2 указывает, когда на
OUT_3 Красный Рядом с разъемом OUT 3 указывает, когда включен
DIAG Красный Диагностический светодиод.См. Описание ниже.

Диагностический светодиод Мигает постоянно, когда материнская плата Duet 3 6HC работает нормально, примерно полсекунды горит и полсекунды не горит. На любой плате расширения также есть диагностический светодиод. Когда плата расширения запускается, этот светодиод быстро гаснет. Если плата расширения подключена к материнской плате, на которой запущено совместимое микропрограммное обеспечение, светодиод на плате расширения переключится на мигание синхронно со светодиодом материнской платы, как только будет установлена ​​временная синхронизация по шине CAN.

Для получения дополнительной информации об именах контактов см. Обзор RepRapFirmware 3

RepRapFirmware 3 использует имена контактов для доступных пользователю контактов, а не номера контактов, для связи с отдельными контактами на печатной плате. В RRF 3 по умолчанию при запуске не определяются доступные пользователю контакты. Контакты могут быть определены для использования с помощью ряда команд gcode, например M574, M558, M950.

В серии Duet 3 для идентификации контактов на плате расширения используется формат имени вывода «адрес платы расширения.имя вывода», где * адрес платы расширения * – это числовой адрес CAN платы.Имя вывода, которое не начинается с последовательности десятичных цифр, за которыми следует точка, или которое начинается с «0». относится к контакту на материнской плате Duet 3 6HC.

2 io6.out
049 900_7
Расположение контакта RRF3 Имя контакта Примечания
Выходы
OUT 0 out0, bedheat Сильнотоковый выход, нагреватель кровати
OUT 1 out1 Средний ток выходы, горячие концы
OUT 2 out2
OUT 3 out3
Выходы (4-контактные)
OUT 4 out4 Вентиляторы, насосы.2,5 А на вывод на VIN, общий предел 800 мА на внутреннем 12 В
на выходе 4.tach
ВЫХ 5 на выходе5
на выходе out6.tach
Выходы (2-контактные)
OUT 7 out7
OUT 8 out8
OUT 9 out9, лазер, vfd Общий вывод с заголовком VFD / Laser / Servo
OUT 10 / SERVO servo, out10 v0.Всего 5 досок.
Температурные входы
TEMP 0 temp0
TEMP 1 temp1
TEMP 2 temp2
temp3 Входы / выходы
IO_0 io0.in Концевые упоры, Z-датчики, мониторы накала и т. Д.
io0.out
IO_1 io1.в
io1.out
IO_2 io2.in
io2.out
IO_3 io3.in
io3.out2
9100_4 .in
io4.out
IO_5 io5.in
io5.out
IO_6 io6.in
io7.в
io7.out
IO_8 io8.in
io8.out
SPI CS
TEMPDB spi.cs0 Разъем для подключения термопары Платы PT100, акселерометр и т. Д.
spi.cs1
spi.cs2
spi.cs3
Разное
EXT 5V pson Для управления внешним блоком питания или SSR
  • DNP перемычки для питания 5 В между Duet и SBC.Более современный SBC (например, RPi 4) требует слишком много питания 5 В, особенно с экраном, чтобы его можно было использовать с Duet. Точно так же запаса мощности 5 В на SBC может быть недостаточно для Duet. Кроме того, для некоторых SBC требуется> 5 В на шине 5 В, чтобы не выдавать предупреждение о пониженном напряжении.
  • Незначительные изменения компонентов, не влияющие на функциональность.
  • Улучшенная калибровка АЦП
  • Обеспечивает дополнительную защиту шины 5V_INT и защиту питания 5V.
  • Добавлены буферы между SBC и Duet. 3.3 В на SBC измеряется на контакте 17 заголовка GPIO.
  • Изменена маркировка выходов двигателя с DRIVER_N_ {A2 A1 B2 B1} на DRIVER_N_ {A + A- B + B-}
  • Незначительные изменения для улучшения EMI
  • Добавлен 3-контактный разъем Molex KK для лазера / частотно-регулируемого привода с буферизованным сигналом 5 В (out9), совместно используемым с выходом out9.
  • Из второй шины CAN удален согласующий резистор, поэтому плата не должна находиться в конце второй шины CAN.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *