Содержание

каким символом обозначается на электроустановках

Для успешной работы с электроустройствами требуется не только умение справляться с различными задачами по монтажу и ремонту, но и умение читать и понимать электрические схемы. Для унификации и облегчения понимания все элементы схем стандартизированы. Разные государства, а, порой, и разные предприятия могут иметь частично или полностью свою систему обозначений. Справедливости ради стоит отметить, что различия в обозначениях тока несущественны и большой путаницы практически никогда не возникает. Напряжение питания (или ток) имеет две основополагающие характеристики: величину и частоту. Если с первым параметром вопросов почти не возникает, то на втором следует остановиться подробнее.

Переменный ток в широком понимании

Что такое переменный ток

Напряжение может быть как постоянным, так и изменять свое мгновенное значение в каждый отрезок времени. При этом может изменяться не только величина параметра, но и его направление. В большинстве случаев переменный ток подразумевает изменение по синусоидальному закону и имеет знакопеременную величину. Это всем известное напряжение в бытовой и промышленных сетях электропитания. В более широком смысле напряжение может изменять свое значение без смены полярности.

Те, кто более глубоко знаком с электротехникой, могут сказать, что в данном случае речь идет о переменном напряжении с некоторой постоянной составляющей. Достаточно установить последовательно в цепь конденсатор, который не пропускает постоянную составляющую, и на выходе получится знакопеременный электрический ток.

Обозначения на электрических схемах

Для однозначного толкования электрических схем разработана система графических обозначений. Она несколько меняется в разных странах, но общие принципы обозначений сохраняются. Переменный или постоянный ток обозначается строго определенными символами, чтобы избежать путаницы, неопределенности и неверного понимания.

В странах постсоветского пространства принято обозначение переменного тока графическим символом, который представляет собой отрезок синусоиды, поскольку под переменным в большинстве случаев подразумевается именно тот, который изменяется по синусоидальному закону.

Условное графическое обозначение

Иногда можно встретить равнозначное изображение в виде двух отрезков синусоиды. Такие обозначения полностью взаимозаменяемы. В отличие от них, обозначение постоянного тока имеет вид двух параллельных линий.

Условные графические символы используются для обозначения клемм питания, а также совместно с некоторыми другими обозначениями, например, для характеристики генератора или потребителя.

Генератор переменного напряжения и потребители

Зарубежная литература использует иной принцип обозначения. В основном используется аббревиатура от английских слов «Alternating current» – переменный ток и «Direct current» – постоянный ток. Соответственно, сокращения имеют вид AC и DC.

В некоторых случаях, кроме типа тока или напряжения, требуется добавлять информацию о их частоте, величине и количестве фаз. На схемах такие обозначения интуитивно понятны. К примеру, надпись 3 ~ 50Гц 220В может говорить только об одном, что используется трехфазное переменное напряжение 220 В с частотой 50 Гц.

В современных обозначениях зачастую встречается комбинация отечественной и зарубежной символики.

Измерительные приборы и электрооборудование

На электроизмерительных приборах можно видеть те же условные знаки, что и на электросхемах. В данном случае они говорят, с каким родом напряжения или тока может работать измерительный прибор. Для тех приборов, которые предназначены для работы в узкой области, символы рода тока или напряжения могут располагаться непосредственно на указателе (стрелочном индикаторе). Универсальные измерительные устройства снабжены переключателем рода и пределов измерений, поэтому все обозначения находятся возле соответствующих позиций.

Комбинированный измерительный прибор

Распространенные цифровые тестеры имеют следующие обозначения: 

  • ACA или ≈A – режим измерения переменного тока;
  • DCA или =А – режим измерения постоянного тока;
  • ACV или ≈V – режим измерения переменного напряжения;
  • DCV или =V – режим измерения постоянного напряжения.

Для электрического оборудования род питания указывается на шильдике или бирке. Устройства, где комбинированное питание, имеют на бирке знак переменного тока в виде отрезка синусоиды и одну горизонтальную черту.

Обозначение смешанного тока

Англоязычные производители для обозначения смешанного или комбинированного питания используют аббревиатуру AC/DC.

Практически всегда возле символа напряжения или тока указывается его величина: отдельно для переменного и отдельно для постоянного тока.

Особую символику можно увидеть на шильдике двигателей переменного напряжения. Там, кроме его рода, указывается еще и схема включения (звезда или треугольник) и величина питающего напряжения для каждого из вариантов.

Кроме этого двигатели характеризуются мощностью (током потребления) и величиной COSϕ, которая характеризует реактивную мощность потребителя. Эти данные также присутствуют на бирке изделия.

Информация по значению и роду питания важна для безопасности и правильного функционирования устройств. Для устранения ошибочного и непреднамеренного включения устройств к несоответствующим источникам питания, кроме условных обозначений, добавляется механическая защита. Так, вилки шнуров питания аппаратуры, использующей переменный ток, имеют иную форму штырей, чем для постоянного, что не допускает возможность неправильного подключения.

Видео

Оцените статью:

Обозначение постоянного и переменного тока: значок напряжения

Когда произносят слово «электричество», один человек представит себе обычную бытовую розетку из дома, а другой – высоковольтную линию электропередач. Более продвинутые вспомнят молнию, батарейки и даже сварочный аппарат. Все эти явления и приборы так или иначе связаны с электричеством, основными характеристиками которого, в соответствии с законом Ома, являются сила тока, напряжение и сопротивление. Ток, в свою очередь, бывает постоянным и переменным. В обозначении двух этих видов на схемах возникает еще больше путаницы, чем при поиске ассоциаций со словом «электричество». В этой статье будет рассказано о том, как обозначается постоянный ток, маркируется переменное напряжения и силы постоянного характера, используемые для обозначения на схемах и чертежах.

Что такое электричество

Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения. За счет того, что совокупность зарядов может перемещаться по проводнику, обладать притягивающими и отталкивающими свойствами, было открыто явление магнетизма и электричества. Одним из первых это описал Фалес, а позже в 1600 году английский физик Уильям Гилберт. С течением времени знания об этом явлении только увеличивались и прогрессировали.

Виды тока и их графики относительно времени

С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.

Направленное движение частиц

Какое отличие между переменным и постоянным током

Ток – это движение заряженных электронов в определенном направлении. Это перемещение необходимо для того, чтобы бытовые и профессиональные электроприборы могли работать с установленной номинальной мощностью. В домашней розетке ток появляется из электростанции, где кинетическая энергия электронов преобразуется в электрическую.

Электроток постоянного характера – электричество, получаемое из аккумулятора телефона или батарейки. Он называется так, потому что направление движения электронов в нем не меняется. На таком принципе основана работа зарядных устройств: они конвертируют переменное электричество сети в постоянное и в таком виде оно накапливается в аккумуляторных батареях.

Переменный ток – электричество в любой домашней электросети. Он называется так из-за того, что направление движения электронов постоянно меняется. Количество изменений направления задается частотой, которая для домашних сетей в СНГ равно 50 Гц. Это значит, что за одну секунду электроток меняет направление движения целых 50 раз. Напряжение же в сети – это максимальный «напор», который заставляет двигаться электроны.

Обозначение постоянного и переменного тока

Как обозначается постоянное и переменное напряжение

Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).

Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (~).

Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная).

Альтернативное обозначение видов тока и напряжения на схемах

Какой значок напряжения

Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и  обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.

Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника.

Обозначение вида тока на мультиметре

Таким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.

Электрическое напряжение. Вольтметр — урок. Физика, 8 класс.

Пробовали ли вы когда-нибудь надувать воздушные шарики на время? Один надувает быстро, а другой за это же время надувает гораздо меньше. Без сомнения, первый совершает большую работу, чем второй.

 

 

С источниками напряжения происходит точно так же. Чтобы обеспечить движение частиц в проводнике, надо совершить работу. И эту работу совершает источник. Работу источника характеризует напряжение. Чем оно больше, тем большую работу совершает источник, тем ярче будет гореть лампочка в цепи (при других одинаковых условиях).

 

Напряжение равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

U=Aq, где \(U\) — напряжение, \(A\) — работа электрического поля, \(q\) — заряд.

 

Обрати внимание!

Единица измерения напряжения в системе СИ — [\(U\)] = \(1\) B (вольт).

\(1\) вольт равен электрическому напряжению на участке цепи, где при протекании заряда, равного \(1\) Кл, совершается работа, равная \(1\) Дж: \(1\) В \(= 1\) Дж/1 Кл.

Все видели надпись на домашних бытовых приборах «\(220\) В». Она означает, что на участке цепи совершается работа \(220\) Дж по перемещению заряда \(1\) Кл.

 

Кроме вольта, применяют дольные и кратные ему единицы — милливольт и киловольт.

\(1\) мВ \(= 0,001\) В, \(1\) кВ \(= 1000\) В или \(1\) В \(= 1000\) мВ, \(1\) В \(= 0,001\) кВ.

Для измерения напряжения используют прибор, который называется вольтметр.

Обозначаются все вольтметры латинской буквой \(V\), которая наносится на циферблат приборов и используется в схематическом изображении прибора.

 

 

В школьных условиях используются вольтметры, изображённые на рисунке:

 

 

 

Основными элементами вольтметра являются корпус, шкала, стрелка и клеммы. Клеммы обычно подписаны плюсом или минусом и для наглядности выделены разными цветами: красный — плюс, черный (синий) — минус. Сделано это с той целью, чтобы заведомо правильно подключать клеммы прибора к соответствующим проводам, подключённым к источнику.

 

Обрати внимание!

В отличие от амперметра, который включается в разрыв цепи последовательно, вольтметр включается в цепь параллельно.

 

Включая вольтметр в цепь постоянного тока, необходимо соблюдать полярность.

 

Сборку электрической цепи лучше начинать со всех элементов, кроме вольтметра, а его уже подключать в самом конце.

Вольтметры делятся на приборы постоянного тока и переменного тока.

Если прибор предназначен для цепей переменного тока, то на циферблате принято изображать волнистую линию. Если прибор предназначен для цепей постоянного тока, то линия будет прямой.

 

Вольтметр постоянного тока

Вольтметр переменного тока

 

Можно обратить внимание на клеммы прибора. Если указана полярность («\(+\)» и «\(-\)»), то это прибор для измерения постоянного напряжения.


Иногда используют буквы \(AC/DC\). В переводе с английского \(AC\) (alternating current) — переменный ток, а \(DC\) (direct current) — постоянный ток.
В цепь переменного тока включается вольтметр для измерения переменного тока. Он полярности не имеет.

 

 

Обрати внимание!

Для измерения напряжения можно использовать и мультиметр.

Перед измерением необходимо прочитать инструкцию, чтобы правильно подключить прибор.

 

 

Следует помнить, что высокое напряжение опасно.

Что будет с человеком, который окажется рядом с упавшим оголённым кабелем, находящимся под высоким напряжением?

Так как земля является проводником электрического тока, вокруг упавшего оголённого кабеля, находящегося под напряжением, может возникнуть опасное для человека шаговое напряжение.

 

При попадании под шаговое напряжение даже небольшого значения возникают непроизвольные судорожные сокращения мышц ног. Обычно человеку удаётся в такой ситуации своевременно выйти из опасной зоны.

 

Обрати внимание!

Однако нельзя выбегать оттуда огромными шагами, шаговое напряжение при этом только увеличится! Выходить надо обязательно быстро, но очень мелкими шагами или скачками на одной ноге!

Существует много знаков, предупреждающих о высоком напряжении. Вот некоторые из них.

 

   

 

Безопасным напряжением для человека считается напряжение \(42\) В в нормальных условиях и \(12\) В в условиях с повышенной опасностью (сырость, высокая температура, металлические полы и др.).

Источники:

Схема © Якласс
http://class-fizika.narod.ru/8_29.htm
http://interneturok.ru/ru/school/physics/8-klass/belektricheskie-yavleniyab/elektricheskoe-napryazhenie

http://kamenskih3.narod.ru/untitled74.htm

1.01. Напряжение и ток

ОСНОВЫ ЭЛЕКТРОНИКИ

Напряжение, ток и сопротивление



Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками - это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ = 103 В), милливольтах (1 мВ = 10-3 В) или микровольтах (1 мкВ = 10-6 В) (см. раздел «Приставки для образования кратных и дольных единиц измерения», мелким шрифтом). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6 - 1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ = 106 B) встречается редко; вы убедитесь в этом, прочитав всю книгу.

Ток (условное обозначение: I). Ток - это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создаётся перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Говорить «напряжение в резисторе» нельзя - это неграмотно. Однако часто говорят о напряжении в какой-либо точке схемы. При этом всегда подразумевают напряжение между этой точкой и «землёй», то есть такой точкой схемы, потенциал которой всем известен. Скоро вы привыкнете к такому способу измерения напряжения.

Напряжение создаётся путём воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

Здесь, пожалуй, может возникнуть вопрос: а что же такое напряжение и ток на самом деле, как они выглядят? Для того чтобы ответить на этот вопрос, лучше всего воспользоваться таким электронным прибором, как осциллограф. С его помощью можно наблюдать напряжение (а иногда и ток) как функцию, изменяющуюся во времени. Мы будем прибегать к показаниям осциллографов, а также вольтметров для характеристики сигналов. Для начала советуем посмотреть приложение А, в котором идёт речь об осциллографе, и раздел «Универсальные измерительные приборы», мелким шрифтом.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в своё время мы обсудим этот вопрос. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как её схематическое изображение, так как провода можно соединять по-разному.


Рис. 1.1 Закон Кирхгофа для напряжений

Запомните несколько простых правил, касающихся тока и напряжения:

1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из неё (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединённых этими концами один с другим) ток во всех точках одинаков.

2. При параллельном соединении элементов (рис. 1.1) напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.

3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом: P = U I. Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) - (заряд/ед. времени). Если напряжение U измерено в вольтах, а ток I - в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт - это работа в 1 джоуль, совершенная за 1 с (1 Вт = 1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения её тепловой нагрузки (возьмём, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений мы обобщим простое выражение P = UI. В таком виде оно справедливо для определения мгновенного значения мощности.

Кстати, запомните, что не нужно называть ток силой тока - это неграмотно. Нельзя также называть резистор сопротивлением. О резисторах речь пойдёт в следующем разделе.


Сигналы


Измерение напряжения.

Виды и принцип измерений. Особенности

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются химические элементы или генераторы тока.

Измерение напряжения

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «

~», для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

На аккумуляторах и гальванических элементах при указании напряжения знак «-» не используют, а ставят только цифры, например, «1,5 В». На корпусе гальванического элемента обязательно присутствует обозначение «+» возле положительного полюса. В практических электротехнических измерениях применяются кратные единицы: милливольты, киловольты и т.д.

Переменное напряжение имеет полярность, которая изменяется с течением времени. В бытовой сети напряжение изменяет полярность 50 раз за секунду, что означает частоту 50 герц. Постоянное напряжение имеет неизменную полярность. Поэтому для замеров напряжений переменного и постоянного тока применяют измерительные приборы, имеющие отличие в устройстве – вольтметры. Они могут быть цифровыми или аналоговыми (стрелочные). Однако существуют универсальные приборы, которые способны измерить постоянное и переменное напряжение, не переключая режимы.

Для начала измерений измерительный прибор соединяют параллельно с выводами источника питания или нагрузки специальными щупами.

Кроме вольтметров для измерения напряжения используют электронные осциллографы.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся измерительный прибор к работе:
  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, мультиметра. Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

На мультиметре выбрана граница измерений 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные блоки питания или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

Похожие темы:

Расшифровка обозначений на мультиметре. Как обозначаются переменный и постоянный ток и напряжение

Мультиметр – один из самых необходимых и многофункциональных приборов электрика. Наверняка все помнят, как на уроках физики в школе измеряли напряжение вольтметром, сопротивление – омметром, силу тока – амперметром. Так вот, мультиметр воплотил в себе все эти измерительные приборы, а также несколько других, о которых чуть ниже расскажем подробнее.

Сам по себе мультиметр работать не будет, все зависит от знания мастера и умения пользоваться этим прибором. То есть, чтобы измерить какой-либо параметр, сначала нужно правильно выставить переключатель, знать какой щуп в какое гнездо воткнуть, и так далее. Поэтому, прежде чем брать прибор в руки, нужно научиться им правильно пользоваться.

Внимание! В данной статье описывается стандартный мультиметр с наиболее распространенными функциями. В зависимости от модели мультиметра, его функционал может быть больше и включать в себя дополнительные возможности. Здесь описываются только те, которые имеются практически в каждом приборе, а также расшифровка обозначений на мультиметре.

Вкратце опишем основные компоненты прибора:

  1. 1. Электронное табло
  2. 2. Шкала обозначений
  3. 3. Переключатель
  4. 4. Кнопка “ВКЛ/ВЫКЛ” (вместо нее бывает специальное положение для регулятора)
  5. 5. Разъемы для щупов
  6. 6. Специальные разъемы для проверки транзисторов (присутствуют на некоторых тестерах)
  7. 7. Индикатор прозвонки (зуммер и светодиод красного цвета)
  8. 8. Батарейка

Из всего вышеперечисленного самым важным моментом является шкала обозначений, так как если вы неправильно выставите регулятор, то можете сжечь измеряемую радиодеталь или сам прибор. Поэтому расшифровка обозначений на мультиметре очень важный момент при работе с этим прибором.

Обозначения на мультиметре

Шкала обозначений включает в себя круговой переключатель положений, а также символы, обозначающие те или иные параметры, разбитые на сектора.

Каждый сектор отвечает за измерение одного конкретного параметра (например сопротивления). Внутри сектора имеется несколько положений регулятора, каждое положение обозначает измеряемый номинал. Каждый сектор обозначается специальным символом. Все сектора разделяются между собой линиями.

Куда подключать щупы мультиметра

Щупы для мультиметра идут в комплекте. Один щуп – красный, второй – черный. Корпус щупа выполнен из диэлектрика, на конце – заостренный металлический стержень

Внимание! Помните золотое правило: красный – всегда плюс, черный – всегда минус. Поэтому важно не перепутать гнезда подключения, иначе есть риск запутаться. Красный щуп всегда кидаем на плюс, черный – на минус.

Щупы подключаются к специальным гнездам, также имеющим обозначения. Самих гнезд может быть три или четыре, в зависимости от модели мультиметра.

Гнезда для подключения щупов:

  • 1. Гнездо “СОМ” – обозначает минус (масса, общий). В него подключается щуп черного цвета. Всем известно, что при замере переменного напряжения, допустим, в розетке, полярность не имеет значения. Тем не менее, следуйте следующему правилу: если есть определенный провод (щуп) и для него имеется специальное отверстие, то нужно подключать этот провод именно в это отверстие, так как черный цвет провода недвусмысленно нам намекает на то что он – минусовой.
  • 2. Гнездо «VΩCX+» - обозначает плюс, к нему подключается красный провод. Это гнездо используется при измерении сопротивления, напряжения, частоты, температуры, проверки диодов и транзисторов. Проще говоря, это гнездо используется во всех измерениях, за исключением измерения силы тока.
  • 3. Гнездо “20А” – специальное гнездо. К нему подключается красный щуп, а функция этого гнезда – измерение силы тока величиной до 20 ампер. 20 ампер это очень большая сила тока, поэтому будьте осторожны. Опять же, очень важное правило: при измерении силы тока, прибор (в нашем случае – мультиметр) нужно подключать к цепи последовательно и только так. Если рядом с этим гнездом увидите надпись “UNFUSED”, то имейте ввиду, что измерение производится без использования предохранителя, поэтому постарайтесь не сжечь прибор. Также нужно знать, как обозначается постоянный ток на мультиметре.
  • 4. Гнездо “MACX” – гнездо для измерения силы тока малых значений микро- и миллиампер. Если рядом окажется надпись «0.2А MAX FUSED» - значит измерение производится с защитой прибора предохранителем, максимальное значение измерения – 0.2 ампера.

На приборе может быть нарисован красный треугольник с надписью “МАХ 600V” (значения могут отличаться в зависимости от модели мультиметра). Это максимальное значение измерения напряжения. Нельзя замерять напряжение выше этого параметра.

Внимание! Если вам неизвестны пределы измеряемого значения – устанавливайте регулятор на максимальное значение, по мере измерения – двигайтесь в меньшую сторону. Например, мы знаем, что измеряемый прибор (например, аккумулятор) имеет постоянное напряжение, но не знаем примерный диапазон (то-ли 24 вольта, то-ли 12 вольт, а может быть и 1.6 вольт). В этом случае устанавливаем регулятор на максимальное значение сектора измерения постоянного напряжения и двигаемся в меньшую сторону.

Очень важно! Проводя любые измерения, ни в коем случае не держитесь пальцами за металлическую часть щупа, особенно при каких-либо измерениях опасного напряжения или силы тока.

Диапазоны переключателя мультиметра

Сначала затронем тему включения и выключения мультиметра. Обычно присутствует кнопка “ON/OFF”, но на некоторых моделях мультиметров имеется специальный сектор с таким же названием. Также есть тестеры, которые выключаются самостоятельно, спустя некоторое время.

Сам же регулятор, или переключатель – кому как больше нравится, модно крутить хоть по часовой, хоть против часовой стрелки. Что измерить какой-либо параметр – просто переведите регулятор в нужный сектор на нужное значение.

Важно! Сектора обозначаются буквами, номиналы – цифрами.

Расшифровка обозначений на мультиметре, которую нужно запомнить раз и навсегда:

  1. 1. DCV – сектор измерения постоянного напряжения
  2. 2. ACV – сектор измерения переменного напряжения
  3. 3. DCA – сектор измерения силы постоянного тока
  4. 4. ACA – сектор измерения переменного тока

Как обозначается сопротивление на мультиметре

Из школьного курса физики мы помним, что сопротивление измеряется в Омах, в честь немецкого физика Георга Симона Ома. Обозначение на мультиметре - «Ω», номиналы сопротивления на стандартном приборе следующие: 20 Ом, 200 Ом, 2 кОм, 20 кОм, 200 кОм, 2 МОМ, 20 МОМ, 200 МОМ. В зависимости от модели используемого мультиметра диапазон значений может быть иным.

Измерение этого параметра является очень популярным как в радиоэлектронике, так и в электрике. С помощью сопротивления можно очень быстро проверить работоспособность лампочки, спирали, провода и т.д.

Для измерения сопротивления переставьте регулятор в сектор «Ω» и выберите нужное значение.

Обозначение постоянного напряжения на мультиметрах

Напряжение измеряется в Вольтах, в честь итальянского физика Алессандро Вольта. Выше мы уже писали, что сектор измерения постоянного напряжения обозначается аббревиатурой “DCV”. Но, на многих моделях вместо этого сокращения используют символ “V-”. В этом сокращении буква “V” обозначает напряжение, а символ “-” – постоянное.

Также, чтобы не перепутать сектор постоянного напряжения с переменным, запомните следующее: диапазон значений сектора постоянного напряжения шире, чем диапазон переменного.

Для измерения постоянного напряжения необходимо выставить регулятор на нужное значение в секторе “V-”.

Внимание! Если в процессе измерения вы перепутали полюса, то на дисплее отобразится то же самое значение, но со знаком “-”. В этом нет ничего страшного.

Обозначение переменного напряжения

Переменное напряжение также измеряется в Вольтах. Аббревиатура “ACV”, либо, как в предыдущем случае, сокращение “V~” – обозначение на мультиметре, расшифровка – “v” – напряжение, знак “~” - переменное.

Для электрика этот параметр является основной задачей, поскольку в розетках, выключателях и т. д. всегда используется переменное напряжение. Наши сети работают на 220 Вольт, а на мультиметре присутствуют значения 700 В (750В) и 200 В.

Один знакомый как-то раз спросил меня, для чего на мультиметре имеется значение в 200 Вольт, если в сети используется переменное напряжение 220, а переменка в 200 Вольт и ниже вообще не используется. Так вот, примите к сведению: практически вся Америка использует стандарт 110 Вольт переменного напряжения.

При замере переменного напряжения полярность не важна. То есть при измерении напряжения в розетке без разницы, в какой разъем розетки вы воткнете красный и черный щуп.

Как обозначается постоянный ток на мультиметре

Сила тока измеряется в Амперах в честь французского физика Анри Ампера. На мультиметре сектор измерения постоянного тока обозначается как DCA, либо просто DC. Регулятор, как и в предыдущих случаях, выставляется на нужное для измерения значение в секторе DC.

Не забывайте о том, что для измерения силы тока прибор подключается последовательно. Что это значит? Для измерения силы тока мы разрываем цепь.

Например, нам нужно замерить силу тока в фазном проводе. Нельзя просто взять и прикоснуться в двух местах щупами к проводу. Должен быть разрыв провода (или цепи), именно в этот разрыв мы подключаем прибор.

Как обозначается переменный ток на мультиметре

Не каждый тестер способен измерить силу переменного тока, но на некоторых моделях такая функция присутствует. На вопрос “как обозначается переменный ток на мультиметре” ответим: аналогично обозначению переменного напряжения, сектор переменного тока обозначается как «A~».

Вообще, мультиметр плохо подходит для измерения переменного тока. Лучше для этой цели использовать токоизмерительные клещи.

Что такое сектор hFE?

Некоторые владельцы мультиметров могут увидеть у себя на приборе сектор hFE, а в придачу к нему – два гнезда по четыре разъема в каждом. Этот сектор отвечает за проверку транзисторов (измерение значения коэффициента передачи тока). Гнезда подписаны “NPN” и “PNP”, а разъемы – буквами “E”, “B”, “C”.

Существует два типа транзисторов: транзистор типа “PNP-переход”, транзистор типа “NPN-переход”. Буквы “E”, “B”, “C” обозначают “эмиттер”, “база”, “коллектор” соответственно.

Чтобы проверить транзистор, выставьте регулятор на сектор hFE, посмотрите распиновку его ножек, тип транзистора, потом вставьте сам транзистор в нужный разъем. Если ваш транзистор неисправен, то прибор покажет значение “0”. Конечно, многих начинающих электриков пугает аббревиатура hFE, но для этого и нужна расшифровка обозначений на мультиметре, чтобы все непонятное стало понятным.

Тест диодов

Выше упоминалось, что практически в каждом мультиметре есть специальный светодиод и зуммер. Кроме этого, на шкале измерений должен быть сектор с нарисованным диодом. Это все необходимо для проверки диодов на работоспособность, а также проверки целостности цепей и всего прочего, сопротивлением не больше 50 Ом.

Чтобы проверить диод, нужно вспомнить о его свойствах. Диод пропускает ток только в одну сторону. Выставляем регулятор на значок диода и начинаем проверять, меняя полюса. Исправный диод в одном положении на дисплее выдаст значение 1, при этом светодиод загорится, а зуммер запищит. При смене полюсов – мультиметр покажет значение диода, например, 436 милливольт. Неисправный диод – будет прозваниваться в обе стороны.

Это лишь поверхностные принципы работы диода, но для проверки исправности диода мультиметром этого достаточно.

Проверка емкости конденсаторов

Чтобы измерить емкость конденсатора необходимо установить переключатель в диапазон F (Фарад). Для проверки ёмкости конденсатора мультиметр должен иметь эту функцию. Чтобы произвести измерение, используют гнёзда -CX+. «-» и «+» означают полярность подключения.

Диапазон измерения емкости в данном мультиметре варьируется от 200 микрофарад до 20 наноФарад.

Что означает kHz?

Этот параметр присутствует не на всех приборах. “Hz” – единица измерения частоты (Герц). С помощью данного сектора можно измерить частоту сигнала.

Для чего нужна кнопка hold

Такая кнопка тоже присутствует не на всех приборах, полное ее название – “Data hold”. Она служит для того, чтобы зафиксировать полученные данные на дисплее. Нужное значение будет отображаться ровно до повторного нажатия этой кнопки. Кто-то считает ее бесполезной, кто-то периодически ее использует.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Реле напряжения на однолинейной схеме – RozetkaOnline.COM

Реле напряжения, это пример модульных аппаратов защиты, которые еще 5-7 лет назад устанавливалась лишь в электрощитах промышленных предприятий, а сейчас всё чаще встречаются в бытовых электроустановках квартир и частных домов.

О том, как правильно они обозначаются на однолинейных схемах говорится в ГОСТ 2.767-89 «Единая система конструкторской документации. Обозначения условные графические в электрических схемах. Реле защиты».

Это специализированный государственный стандарт по модульным аппаратам защиты, работа которых основана на действии реле, в котором для реле напряжения принято следующее схематическое обозначение:

Оно складывается из нескольких символов:

– Общий графический знак всех реле – прямоугольник

– Измеряемой величины – «U» Напряжения

– Знаков больше «>» и меньше «<», которые показывают диапазон работы

Для более полных, детальных электрических схем, стандартом допускается добавлять численные единицы диапазона регулировки при превышении/понижении которого устройство сработает.

В качестве примера, на изображении ниже, показан модульный аппарат, который срабатывает при превышении напряжения в сети выше 250 Вольт или понижении уровня меньше 180 Вольт.

Обозначение трехфазной модификации устройства , внешне немногим отличается от однофазного, а вот в принципе работы и подключения у них есть существенные различия.

В однофазной сети

Реле напряжения для однофазной сети само коммутирует фазный проводник. Пока параметры напряжения в сети находятся в допустимом диапазоне, контакты замкнуты и ток поступает к потребителям – электрическим розеткам, освещению и т.д. В случае, когда оно становится выше или ниже установленных величин, внутренним механизмом автоматически разрывается фазный проводник и потребители обесточиваются.

Однолинейная схема электрического щита с однофазным реле напряжения выглядит следующим образом:

В трехфазной сети

Трехфазное реле напряжения, чаще не разрывает фазы, которые контролирует, а лишь даёт сухой контакт – нормально замкнутый или разомкнутый и изменяет его состояние.

К этому сухому контакту подключаются управляющие проводники контактора (или пускателя), функция которого коммутировать или разъединять фазные провода, защищая систему от опасных перепадов напряжения.

Однолинейная схема электрощита с трехфазным реле контроля напряжения и управляемым ей контактором показана ниже:

Буквенное обозначение реле напряжения

 

Правильное буквенное обозначение, которыми маркируются реле напряжения – KV.

Об этом сказано в действующем ГОСТ 2.710-81 «Единая система конструкторской документации (ЕСКД). Обозначения буквенно-цифровые в электрических схемах» (ЧИТАТЬ В PDF) , где выделен персональный двухзначный код для них.

Разница между высоким, средним и низким напряжением


Классификация напряжений Высокое, среднее и низкое напряжение - это термины, которые мы чаще всего слышим, когда говорим о классификации напряжения. С международной точки зрения, эти классификации и диапазоны меняются в зависимости от того, где вы живете. В Соединенных Штатах Национальный электротехнический кодекс (NEC) и Национальная ассоциация производителей электрооборудования (NEMA) имеют руководящие принципы и стандарты, которые охватывают все классификации напряжения. Американский национальный институт стандартов (ANSI) курирует создание, распространение и использование тысяч руководств и стандартов, влияющих на бизнес. Каждая отрасль соответствует применимым нормам.

И ANSI, и код NEC являются приобретенными публикациями. Портал электротехники (EEP) предоставляет подробную информацию о стандартах ANSI C84.1-1989. В этом документе напряжения делятся на пять классификаций. Эти классификации можно объединить в следующие категории:

  • Высокое (HV), сверхвысокое (EHV) и сверхвысокое напряжение (UHV) - от 115000 до 1100000 В переменного тока
  • Среднее напряжение (MV) - от 2400 до 69000 В переменного тока
  • Низкое напряжение (LV) - от 240 до 600 В переменного тока
Компания Generac выпустила технический документ под названием «Обзор генерации среднего напряжения на месте».В официальном документе NEC сравнивается со стандартами ANSI. На нем размещены следующие стандарты напряжения NEC:
  • High Distribution - от 1000 до 4160 вольт
  • Среднее распределение - от 50 до 1000 вольт
  • Низкое распределение - от 0 до 49 В
Приведенные выше списки иллюстрируют классификацию изменений уровня напряжения в зависимости от регулирующего органа. Generac заявляет, что генераторы с напряжением ниже 600 вольт и равным ему относятся к среднему напряжению, а генераторы с напряжением более 600 вольт - к высокому напряжению.Генераторы, вырабатывающие 4160 В, распространены во многих отраслях промышленности для больших двигателей, требующих высокого напряжения. Резервный генератор подает напряжение в отдельную сеть.

Обычно напряжение на складе генератора составляет 4160 В переменного тока, 480 В переменного тока, 12 470 В переменного тока и 13 800 В переменного тока. При отключении электроэнергии на промышленном объекте резервный генератор подает питание на распределительные панели и панели управления для непрерывной работы. Более высокие напряжения от генератора понижаются трансформаторами. Приведенный ниже контент предоставляет информацию по каждой категории информации.

ПРИМЕЧАНИЕ:
Содержание этого документа предназначено только для информационного использования. Всегда консультируйтесь с сертифицированным специалистом при проектировании и работе с электрическим оборудованием. Никогда не работайте в цепях, находящихся под напряжением, и не выполняйте обязанности, для которых вы не обладаете квалификацией.

Высокое, сверхвысокое и сверхвысокое напряжение

Высокое и сверхвысокое напряжение связано с передачей питания от электростанции. Причина передачи мощности на высоких и сверхвысоких уровнях напряжения заключается в повышении эффективности.Более низкий ток, сопровождающий передачу высокого напряжения, позволяет использовать более тонкие и легкие кабели. Это снижает затраты на строительство башни и линии электропередач. Высокое напряжение составляет от 115 000 до 230 000 В переменного тока, а сверхвысокое напряжение - от 345 000 до 765 000 В переменного тока.

Соединенные Штаты пропускают до 500 000 вольт по высоковольтной сети. Для высоких напряжений требуются специальные коммутационные и распределительные щиты. В диспетчерских есть резервные возможности коммутации. Они могут управляться дистанционно или помещаться в руководство для обслуживания и тестирования отдельных систем питания. Подстанции обеспечивают пониженное напряжение, распределяемое по определенным территориям. Сверхвысокое напряжение - это напряжение от 765 000 до 1 100 000 В переменного тока. В Китае используется передача наивысшего напряжения - 800 000 В переменного тока. Сегодня они разрабатывают систему на 1 100 000 В переменного тока с использованием кабелей, рассчитанных на 1 200 000 В переменного тока.

Средние напряжения и промышленность

Крупные промышленные комплексы и заводы, которым требуется значительное количество электроэнергии, часто используют средние напряжения питания. Электрический вариационный анализ показывает, что напряжение обратно пропорционально силе тока.Это означает, что при повышении напряжения сила тока уменьшается для завершения операции.

Двигатели и электрическое оборудование, предназначенные для работы с более высоким напряжением, потребляют меньше электроэнергии и более экономичны в эксплуатации. Большинство первичных подстанций не получают от электросети более 35 000 В переменного тока. Первичная подстанция может подавать пониженную мощность на вторичные подстанции или в отдельное здание.

Вторичная подстанция распределяет мощность, полученную от первичной подстанции.Вторичные подстанции могут иметь понижающие трансформаторы для дальнейшего понижения мощности для распределения на панель управления для распределения по всему объекту. Подстанции обычно расположены в зонах, которые могут обслуживать одно или несколько зданий на территории.

Алюминиевая компания Америки (ALCOA) Warrick Operations является примером крупной отрасли, потребляющей огромное количество энергии. Они расположены в Южной Индиане и имеют автономную электростанцию. Они вырабатывают электроэнергию с помощью угольной электростанции, расположенной на реке Огайо.Они перерабатывают алюминиевые слитки в рулонные алюминиевые листы, которые используются на заводах, которым требуется склад алюминиевых банок. Слитки плавятся в больших электроплавильных печах, а затем обрабатываются с помощью ряда операций для получения правильной толщины заготовки.

Любому предприятию, которое использует источник среднего напряжения для подстанции, требуется аварийный или резервный источник питания. Нередко можно увидеть генераторы, вырабатывающие 13 800 В переменного тока. Источник напряжения идеально подходит для малых и средних подстанций и вторичных подстанций.При надлежащей поддержке генератора комплекс может продолжать работать во время перебоев в подаче электроэнергии. Предлагаются в различных стилях дизайна, включая установленные, звукопоглощающие корпуса и переносные устройства. Переносные агрегаты заключены в звукопоглощающие кожухи на прицепе, тянущемся полуприцепом.

Низковольтное питание и управление

Низкое напряжение имеет множество значений в электрическом / электронном мире. Общее практическое правило заключается в том, что все, что ниже 600 вольт, считается низким напряжением.Заводы, использующие автоматизацию, могут использовать несколько напряжений. Разделение использования электроэнергии на источники питания и средства управления помогает понять использование. Каждое подразделение выполняет миссию, критически важную для работы фабрики. Оба должны работать на продакшене.


Поставка
Заводы, которым требуется подача среднего или высокого напряжения от электросети, могут иметь выделенную подстанцию. Эти подстанции понижают уровни напряжения и распределяют его по зданиям по всей территории.

Однако не всем предприятиям требуется высокое или среднее напряжение. Некоторые требуют от электросети низкого напряжения 240, 480 или 600 В переменного тока. В этом случае мощность направляется непосредственно в распределительную систему завода.

Органы управления
Система или машина, использующая низкое напряжение для работы с оборудованием с более высоким напряжением, являются основой системы управления. Программируемый логический контроллер (ПЛК) - обычное дело в этих системах. ПЛК получает входные данные от датчиков через входную часть ввода / вывода.Выходы рассчитываются и отправляются через выходную секцию ввода / вывода. Оба входа и выхода - 12 или 12 В постоянного тока в зависимости от конструкции системы.

Выход может быть направлен на реле с катушкой постоянного тока и контактами переменного тока. Когда реле получает сигнал постоянного тока, его контакты замыкаются. Это активирует оборудование или компонент до тех пор, пока триггерный сигнал не будет удален входом / выходом.

Электроэнергия требуется всем предприятиям. Когда электроэнергия пропадает, промышленность останавливается без резервного генератора надлежащего размера.Мы предлагаем генераторы широкого диапазона стилей, которые могут удовлетворить большинство потребностей. Перед продажей наши бывшие в употреблении генераторы проходят проверку по 31 пункту. Перейдите в Инвентарь, чтобы просмотреть список имеющихся на складе генераторов. Часто мы можем отправить генератор в течение 24 часов с момента покупки.


>> Вернуться к статьям и информации <<

Электрические напряжения - электрические 101

Схемы подключения питания 240 В

Разность потенциалов (напряжение) между фазами A и B 120 вольт составляет 240 вольт. Разность потенциалов двух линий по 120 вольт на одной фазе равна 0 вольт. Напряжение фаз A и B необходимо для подачи 240 вольт на нагрузку.

Напряжение между фазами A и B составляет 240 вольт

Напряжение между фазами А и А равно 0 В

Схема электрических соединений прибора на 240 В

Это электрическая схема цепи 240 В для устройства. Двухполюсный выключатель подает 120 вольт A и B для получения 240 вольт.

Напряжение в жилых помещениях США и Канады составляет 120/240 вольт переменного тока. Электроэнергия поступает на главную электрическую панель дома от трансформатора энергокомпании в виде двух линий на 120 вольт с фазами, разнесенными на 180 градусов. Затем 120 и 240 вольт (вместе с нейтралью и землей) распределяются по розеткам (выключателю, розетке, осветительной арматуре и т. Д.) По всему дому.

Номинальное напряжение

110, 115, 120, 125, 130, 220, 230, 240, 250 вольт, что это за разные напряжения?

Номинальное напряжение - 120 В и 240 В - стандарты для обозначения класса напряжения для жилых домов. Все остальные напряжения относятся к категории высокого или низкого напряжения лампочек, приборов, электроники и т. Д.

Более высокие значения напряжения 125, 130, 230 и 250 вольт предназначены для выключателей, розеток, лампочек и некоторых нагрузок. Эти номинальные значения указывают на верхний предел напряжения, при котором устройство или нагрузка должны работать должным образом в нормальных условиях.

Нижние значения напряжения 110, 115 и 220 В предназначены для нагрузок (бытовых приборов, двигателей и т. Д.). Эти характеристики указывают нижний предел напряжения для правильной работы в нормальных условиях.

240 В переменного тока

Для работы бытовых электроплит, электрических сушилок и центральных кондиционеров обычно требуется 240 вольт. 240 вольт достигается при объединении двух источников по 120 вольт разных фаз (фазы A и B). Ток фазы B течет в обратном направлении, как фаза A. Когда напряжение фазы A достигает пика +170 вольт, фаза B находится на уровне - 170 вольт.

120 В, синусоидальная фаза

Синусоидальная фаза фазы B, 120 В

Обозначения электрического кабеля низкого напряжения (0.6/1 кВ)

Каждый кабель имеет обозначение по норме. Этот номинал состоит из набора букв и цифр, каждая из которых имеет определенное значение . Это обозначение относится к ряду характеристик продукта (материалы, номинальное напряжение и т. Д.), облегчает выбор наиболее подходящего кабеля для ваших нужд, а позволяет избежать возможных ошибок при подаче кабеля.

Если кабель не указывает эти данные четко, это может быть неисправный кабель , который не соответствует стандартам безопасности или не соответствует нормальному функционированию.

ПРОМЫШЛЕННЫЕ СИЛОВЫЕ КАБЕЛИ 0,6 / 1КВ

Промышленные силовые кабели 0,6 / 1 кВ предназначены для промышленных силовых приложений в различных областях (общая промышленность, общественные объекты, инфраструктуры и т. Д.) И соответствуют международным стандартам: UNE, IEC, BS, UL.

Вот некоторые примеры кабелей низкого напряжения 0,6 / 1 кВ:

  • ЗНАЧЕНИЕ АКРОНИМА НАИМЕНОВАНИЯ КОММЕРЧЕСКОГО КАБЕЛЯ

Что означает, например, RZ1-K на кабеле Top Cable Toxfree ZH RZ1-K?

После названия производителя (в данном случае Top Cable ) и товарного знака ( Toxfree ) буквы и цифры относятся к покрытию кабеля, классу проводника, номинальному напряжению и составу конца кабеля. кабель.

  • R - это тип изоляции, в обоих случаях - сетчатый полиэтилен (XLPE).
  • Z1 указывает, что этот кабель имеет полиолефиновую оболочку, негорючую, не содержащую галогенов и с низким выделением дыма и агрессивных газов в случае пожара. Его обозначение - Z1.
  • K буква K означает, что это гибкий медный провод (класс 5) для стационарных установок.

0,6 / 1 кВ означает, что это кабель на 1000 В

Другой пример значения аббревиатуры можно найти с помощью кабеля Powerhard RVMV 0.6 / 1кВ; что следующее:

НАИМЕНОВАНИЕ КАБЕЛЯ 0,6 / 1 кВ

Каждый кабель имеет стандартное обозначение. Это обозначение состоит из набора букв и цифр, каждая из которых имеет определенное значение. Это обозначение относится к ряду характеристик продукта (материалы, номинальное натяжение и т. Д.), Которые облегчают выбор наиболее подходящего кабеля для ваших нужд, избегая возможных ошибок при подаче одного кабеля другим.

Если на кабеле четко не указаны эти данные, это может быть дефектный кабель, который не соответствует правилам безопасности или не гарантирует срок службы и надлежащую работу кабеля.

Значение каждой буквы в каждом разделе следующее:

Обозначение по типу изоляции

номенклатура Тип кабеля
р Сшитый полиэтилен (XLPE)
X Сшитый полиэтилен (XLPE)
Z1 Безгалогенный термопластичный полиолефин
Z Термореактивный эластомер без галогенов
В Поливинилхлорид (ПВХ)
S Безгалогеновый термореактивный силиконовый компаунд
D Этилен-пропиленовый эластомер (EPR)

Обозначение экрана, внутренняя облицовка, якорь сиденья

номенклатура Тип кабеля
C3 Экран из медной проволоки, спирально расположенный
C4 Медный экран в виде оплетки на собранные изолированные жилы.
В Поливинилхлорид (ПВХ)
Z1 Безгалогенный термопластичный полиолефин

Если нет экрана, внутренней облицовки и седла якоря, буква не используется.

Обозначение различных видов брони

номенклатура Тип кабеля
Ф. Стальная обвязка по спирали.
FA Алюминиевая лента по спирали
FA3 Продольно гофрированная алюминиевая лента
м Заводная головка из стальной проволоки
MA Заводная головка из алюминиевой проволоки

Обозначение наружной оболочки

номенклатура Тип кабеля
В Поливинилхлорид (ПВХ)
Z1 Безгалогенный термопластичный полиолефин
Z Термореактивный эластомер без галогенов
N Вулканизированный хлорированный полимер

Обозначение проводника

номенклатура Тип кабеля
К Гибкая медь (класс 5) для стационарных установок
Ф. Гибкий медный кабель (класс 5) для мобильной связи
D Гибкий для кабелей сварочного аппарата.Когда на нем нет букв, провод из сплошной меди 1 или 2 класса.
AL AL Если проводник сделан из алюминия, отображается (AL).

Номинальная площадь

Номинальный напряжение
0,6 / 1 кВ Номинальное напряжение 1000 В

Расшифровка количества жил

номенклатура Тип кабеля
нГс Количество и сечение жил в мм2 с желто-зеленым проводом
nxS Количество и сечение жил, мм2, без жилы Желтый / Зеленый

Правила проектирования кабелей

Правила проектирования кабелей также указаны в маркировке каждого кабеля:

  • UNE 21123
  • МЭК 60502
  • UNE 21150

Дополнительные данные

номенклатура Тип кабеля
CE CE Маркировка CE является обязательной для маркетинга продукта в Европейском сообществе. Эта маркировка может быть на продукте или на упаковке.
Дата изготовления Дата изготовления (ГГММДД). Дата изготовления обычно указывается для отслеживания. Прослеживаемость позволяет узнать, кто, когда и где выполнял каждый этап процесса и с какими материалами.

Вы можете просмотреть концепции в этом видео, которое мы подготовили:

Электрические определения - Письмо - V

Вентилируемый

Оборудован средствами, позволяющими оборот воздуха, достаточного для удаления избытка тепла, дыма или паров.

Летучая легковоспламеняющаяся жидкость

Воспламеняющаяся жидкость с температурой вспышки ниже 38C (100F), или легковоспламеняющаяся жидкость, температура которой выше температура вспышки или горючая жидкость класса II, имеющая давление пара не более 276 кПа (40 psia) при 38 ° C (100F) и температура которого выше точки воспламенения.

Вольт

Единица измерения напряжения или разности потенциалов. Единица электродвижущей силы, электрического давления или разность потенциалов. Обозначается E или V.

Вольт-Ампер

произведение напряжения в цепи и тока в цепи схема.Выражено в VA.

Напряжение

Электрическое давление, сила, вызывающая ток течет через проводник.

Напряжение (цепи)

Наибольшее среднеквадратичное значение (эффективное) разность потенциалов между любыми двумя проводниками рассматриваемая цепь.

Падение напряжения

Потеря напряжения между входом в устройство и выход из устройства за счет внутреннего импеданс или сопротивление устройства. Во всех электрических системы, проводники должны быть подобраны таким образом, чтобы падение напряжения никогда не превышает 3% для силовых, тепловых и осветительных нагрузок или комбинации этих. Кроме того, максимальное общее напряжение падение для проводников для фидеров и ответвлений вместе взятых никогда не должен превышать 5%.

Напряжение относительно земли

Для заземленных цепей напряжение между данный проводник и точка или проводник цепи, заземлен; для незаземленных цепей наибольшее напряжение между данным проводником и любым другим проводником схема.

Напряжение, номинальное

Номинальное значение, присвоенное цепи или системе. для удобного обозначения класса напряжения (например, 120/240 вольт, 480Y / 277 вольт, 600 вольт). Настоящий напряжение, при котором работает схема, может отличаться от номинального. в диапазоне, обеспечивающем удовлетворительную работу оборудования.

Напряжение Передаточное число

Коэффициент напряжения трансформатора - это отношение среднеквадратичных значений. напряжение первичной обмотки до среднеквадратичного значения. вторичный ток, ниже заданные условия нагрузки.

Трансформаторы среднего напряжения: основы трансформаторов среднего напряжения

кВА: Трансформаторы указаны в киловольт-амперах (кВА). kVA используется для выражения номинальной мощности трансформатора, потому что не все нагрузки трансформатора являются чисто резистивными. Резистивный компонент потребляет мощность, измеряемую в ваттах, тогда как реактивный компонент потребляет мощность, измеренную в ВАХ. Векторная сумма этих двух нагрузок составляет общую нагрузку, ВА или кВА

.

Напряжение: Обозначение напряжения определяет как способ применения трансформатора в системе, так и конструкцию трансформатора. Стандарт IEEE C57.12.00 определяет номинальное напряжение одно- и трехфазных трансформаторов.

Примеры обозначения напряжения:

Трехфазный

  • 12470Y / 7200 В
  • 12470GY / 7200 В
  • 7200 В, треугольник

Однофазный

  • 7200 / 12470Y В
  • 12470GY / 7200 В
  • 7200 В, треугольник

Повышение температуры: Номинальное значение кВА основано на токе, который трансформатор может выдерживать, не превышая его номинальное значение повышения температуры. Чем более нагружен трансформатор, тем выше его внутренняя температура.Максимальное повышение температуры, которое трансформатор может выдержать без ненормальных потерь срока службы, регулируется спецификациями заказчика или стандартами IEEE

.

Fluid : Более века в трансформаторах в качестве диэлектрического хладагента используется обычное минеральное масло. Он предлагает разумную стоимость при проверенной, надежной и долгосрочной работе. Процедуры технического обслуживания хорошо отработаны, и использованное минеральное масло обычно можно восстановить для использования путем фильтрации и дегазации. Точка воспламенения минерального масла составляет ок.155 o C, в то время как точка воспламенения менее воспламеняющейся жидкости выше 300 o C. Это делает менее воспламеняющиеся жидкости, такие как Envirotemp FR3, лучшей альтернативой для установки внутри помещений, на крыше зданий или в помещениях с высокими температурами. пешеходные зоны. Использование менее воспламеняющихся жидкостей признано методом снижения пожарной опасности в помещении и на открытом воздухе Национальным Кодексом Электротехники (NFPA 70) и Национальным Кодексом Электробезопасности

.

Типы шнуров питания, номиналы, обозначения NEMA и IEC и многое другое

Этот месяц посвящен тонкостям питания / удлинителей.Этот информация может быть немного технической, так что будьте терпеливы. Эта статья будет состоит из краткого введения в концепции, за которым следует то, что будет по сути быть глоссарием терминов.

Здесь мы обсудим 2 основные группы обозначений разъемов: NEMA и IEC.

NEMA

Учреждена Национальной ассоциацией производителей электрооборудования (N.E.M.A.), NEMA описывает различные разъемы, используемые на шнурах питания по всему Северу. Америка и некоторые другие страны.Устройства NEMA имеют диапазон силы тока от 15 до 60, и в напряжениях от 125-600. Разные, невзаимозаменяемые типы штекеров: созданы на основе определенных значений силы тока / напряжения, и каждому из них присвоен сертификат NEMA. обозначение. Таким образом, то, что требует 125 вольт, не может быть по ошибке вставлен в розетку 220 В.

Существует две основных классификации устройств NEMA. Один называется прямой клинок, другой - запорный. Прямые лезвия - наиболее распространенный тип в обычной бытовой электронике, а запорные устройства предназначены для больше промышленных применений, где вилка случайно выпадает из розетки. большее беспокойство.У запорного типа будут изогнутые лезвия, которые позволяют заглушке быть скрученным и заблокированным в гнезде. Буква "L" перед Код NEMA указывает на фиксирующий разъем.

Итак, давайте обсудим эти коды NEMA. Наиболее распространенные разъемы NEMA: обозначения 5-15 и 5-20. Первая цифра указывает на штекер конфигурация. Сюда входит количество полюсов и проводов, а также напряжение. А устройство заземляющего типа будет называться двухполюсным, трехпроводным или четырехполюсным, пятипроводной и т. д.Незаземляющее устройство будет двухполюсным, двухпроводным или трехполюсный, трехпроводной и т. д. Вторая цифра в коде указывает на усилитель рейтинг устройства, за которым следует буква "R" для розетки, или буква "P" для пробки.

Например: 5-15R - это розетка 125 В, 2-полюсная, 3-проводная, рассчитанная на 15 А и это самая распространенная розетка в домах в США.

Обозначения NEMA

В NEMA есть несколько групп обозначений. Мы рассмотрим только самые общий.

NEMA 1

Устройства NEMA 1 представляют собой 2-проводные устройства без заземления, рассчитанные на 120 вольт. В стандартная двухконтактная вилка, которую можно найти в базовой лампе или незаземленный шнур питания ноутбука оба NEMA 1-15P.


NEMA 1-15P

NEMA 5

Устройства NEMA 5 представляют собой 3-проводные заземляющие устройства, рассчитанные на 125 вольт. Иногда вилка Эдисона, вилка 5-15P является наиболее распространенным типом вилки, используемой в U.S. NEMA 5-15P - это заземленная версия 1-15P. Эти стандартные вилки, которые есть в большинстве электронных устройств (компьютеры, сетевые фильтры, приемники и т. д.), а также на стандартные удлинители .


NEMA 5-15P

NEMA 5-15R

NEMA 14

Устройства NEMA 14 представляют собой 4-проводные заземляющие устройства. 14-30 и 14-50 - общие неблокирующие устройства, используемые в электрических сушилках для одежды или электрических плитах, соответственно.Учитывая оба напряжения 120/240 вольт, самая большая разница между 14-30 и 14-50 (помимо силы тока) - это то, что 14-30 имеет Верхнее лезвие L-образной формы, а у 14-50 прямая середина. лезвие. Это запрещает случайное использование 14-30 на розетке 14-50. Устройства NEMA 14-50 часто можно найти в автодомах для питания больших прогулочные автомобили.

NEMA TT-30

Еще чаще в стоянках для автофургонов используется NEMA TT-30. Рассчитанные на 125 вольт, почти все дома на колесах используют это заземляющее устройство на 30 ампер для питания.

IEC

IEC - это обозначение разъемов, используемых в некоторых устройствах и компьютерах / ноутбуках. В этих обозначениях, учрежденных Международной электротехнической комиссией (МЭК), в кодах используется буква «С», за которой следует число. Опять же, мы не будем останавливаться на одном типе разъема.

Разъемы C13 и C14

Разъемы C14 используются в большинстве шнуры питания настольного компьютера . Знакомая розетка на задней панели принтеров, компьютеров, ИБП или компьютерные мониторы - это разъем C14.Конец, который вставляется в эти розетки - разъем C13.


Разъем C13

Разъем C14

Разъемы C15 и C16

Трехконтактные розетки C16 можно найти на некоторых горячих приборах, например, на электрических чайники и соответствующая вилка для этих розеток - C15. Эти аналогичны разъемам C13 / C14, но рассчитаны на более высокую температуру, именно поэтому они используются на «горячих» приборах.

Разъемы C17 и C18

Эти разъемы похожи на C13 / C14, за исключением того, что у них нет третий контакт используется для заземления. Xbox 360 использует этот тип разъема для это силовой блок.

Разъемы C19 и C20

Они используются в некоторых серверных, где требуются более высокие токи. Эти разъемы представляют собой квадратные версии разъемов C13 / C14.

Разъем C7

Это разъем в форме восьмерки на незаземленном источнике питания ноутбука. расходные материалы, некоторые игровые приставки и т. д.


Разъем C7

Разъем C5

Это вилка, похожая на лист клевера, найденная на заземленном ноутбуке. запасы. C6 - соответствующая розетка.


Разъем C5

Типы кожухов и калибры проводов

В силовых кабелях используется множество различных кожухов. Чтобы отличить различных типов и характеристик куртки, для опишите куртку.Каждая буква имеет особое значение, как определено в UL. стандарт № 62 (UL62) и проштампован прямо на куртке. Буквы могут Опишите материал, используемый в куртке, номинальное напряжение, устойчивость куртки к погодным условиям или другим факторам. Ниже краткое глоссарий некоторых различных кодов, которые вы найдете:

  • S - Уровень обслуживания. Это означает, что шнур рассчитан на 600 вольт.
  • SJ - Младший сервис. Это означает номинальное напряжение 300 вольт.
  • T - Термопласт. Проволока покрыта ПВХ.
  • P - Параллельно. Это типы шнуров, в которых каждый проводник изолирован отдельно, как в обычном шнуре лампы.
  • O - Маслостойкий. Одна буква «О» означает, что куртка маслостойкая. Две буквы «О» означают, что куртка, а также изоляция внутри шнура являются маслостойкими.
  • W - Устойчивый к атмосферным воздействиям. По сути, эти шнуры предназначены для использования вне помещений.Они включают устойчивость к влажным условиям, а также защиту от ультрафиолета.
  • V - вакуумного типа. Изначально гибкая куртка использовалась для пылесосов, но теперь ее можно найти на самых разных товарах.

- -14 907 NISPT-2 18-16
Оболочка Разрешенный калибр проводов Допустимое количество проводников
SPT-1 20-18 2 или 3
2 или 3
SPT-3 18-10 2 или 3
NISPT-1 18-16 2 или 3
2 или 3
SVT 18-16 2 или 3
SJT 18-10 2-6
ST 18-2 2 или более

Например, на шнуре может быть SJTW на куртке.Это указывало бы на Шнур для младших классов обслуживания, рассчитанный на 300 В, с оболочкой из ПВХ, устойчив к атмосферным воздействиям. Значения -1, -2 и -3, указанные выше, указывают толщину. куртки. -1 - тонкий, -2 - средний и -3 - толстый.

Амперы и калибр проводов

Существует прямая зависимость между длиной кабеля, силой тока и калибром проводов. Следующий список представляет собой базовую разбивку соотношения силы тока и силы тока. калибр проволоки. Это только основные рекомендации, так как длина шнура увеличится либо ток уменьшится, либо калибр провода должен быть выросла.

Эти разные оболочки подходят для проводов разного калибра и количества провода (жилы) внутри шнура питания. Ниже представлена ​​диаграмма различных курток. типы, какие калибры проводов разрешены для использования внутри, и сколько проводов разрешается:

907 9011 902 902
Сила тока Рекомендуемый калибр проводов
7a 20 AWG
10a 18 AWG
18 AWG
20a 12 AWG

Цветовое кодирование провода

По соображениям безопасности и удобства стандарты цветовой кодировки проводов были разработан для оболочки отдельных проводов внутри шнуров питания.Ниже приведен список стандартов цветовой кодировки США и Европы. Пожалуйста, обрати внимание что они применимы к большинству шнуров питания в США и Европе. Цветовая кодировка может отличаться в зависимости от приложения.

96 Белый

96 Синий провод

96

Провод Цвет США Цвет провода ЕС
Провод под напряжением Черный Коричневый
Отрицательный провод Зеленый Желтый / Зеленый

Основы трансформаторов.(часть 5)

Очень важно точное обозначение выводов или выводов. Маркировка клемм и расположение катушек, а также то, как мы фактически заделываем выводы обмотки, влияют на определенные параметры.

Аддитивное и вычитающее напряжение

На рис. 1 мы видим графическое изображение однофазного трансформатора с первичной и вторичной обмотками. Обратите внимание, что первичные выводы обозначены «h2» и «h3», а вторичные обозначены «X1» и «X2». Эти обозначения широко распространены в отрасли и хорошо известны.Цифры «1» и «2» указывают поляризацию напряжения.

Присмотревшись, мы замечаем, что «h2» и «X1» обозначают начало (обозначено буквой «S») первичной и вторичной обмоток соответственно, а «h3» и «X2» обозначают их окончание (обозначено буквой «S»). буква «F») соответственно.

Аддитивное напряжение. Если клемма X1 подключена к клемме h3, напряжения первичной и вторичной обмоток складываются. Таким образом, общее напряжение между X1 и h3 составляет 600 В (480 В плюс 120 В).Как мы видим, это соединение дает такое же напряжение, как если бы была только одна обмотка, но с тем же числом витков, что и первичная обмотка плюс вторичная обмотка. Все, что мы сделали, это соединили начало одной обмотки с концом другой.

Обратите внимание, что на рис. 1 обе катушки намотаны в одном направлении. Такое расположение катушек и выводов называется аддитивным напряжением.

Напряжение вычитания. Предположим, что катушки нашего трансформатора намотаны в противоположных направлениях или один набор маркеров перевернут, и мы делаем такое же соединение (от X1 до h3).Что тогда будет? Глядя на рис. 2, мы видим именно такой сценарий: вторичная катушка намотана в обратном направлении, как показано на рис. 1. Теперь напряжение между h2 и X2 составляет 360 В (480 В минус 120 В). Трансформатор, показанный на рис. 2, имеет вычитающее напряжение.

Концевые заделки катушек

Концевая заделка катушки трансформатора обычно выполняется с концом катушки, закрепленным на поверхности самой катушки, чтобы сформировать клемму, подключенную к отрезку изолированного кабеля, называемому проводом, или прикрепленным к клеммам на клеммной колодке.

На проводах меньшего размера AWG используется цветовая кодировка. На выводах большего размера используются маркеры проводов. Если выводы подсоединены к клеммным колодкам, сами клеммы могут иметь штамп для идентификации или какой-либо вид идентификатора может быть размещен рядом с клеммой.

Многокатушечные трансформаторы

На рис. 3 мы видим однофазный трансформатор с несколькими первичными и вторичными обмотками. Фактически, как первичная, так и вторичная обмотки имеют по две катушки, что называется последовательной схемой.Если мы подключим h3 к h4, h5 к X1 и X2 к X3, мы получим одну обмотку, имеющую напряжение, равное сумме напряжения каждой отдельной обмотки.

Допустим, мы подключаем X1 к X4; что случилось бы? Что ж, напряжение между X2 и X3 будет равно нулю, поскольку катушки соединены друг против друга. Это называется раскряжевкой.

Давайте рассмотрим пример задачи, чтобы увидеть, как все вышеперечисленное применимо.

Пример задачи

Предположим, что наш трансформатор на рис. 3 имеет первичную обмотку 240/480 В и вторичную обмотку 120/240 В.Если мы соединим первичные обмотки последовательно, вторичные обмотки параллельно и h5 к X4, какое максимальное напряжение может быть приложено между h2 и X1: a) 240 В, b) 360 В, c) 480 В или d) 600 В. ?

Поскольку первичные обмотки соединены последовательно, первичное напряжение составляет 480 В (дважды по 240 В), а поскольку вторичные обмотки соединены параллельно, вторичное напряжение составляет 120 В. Принимая во внимание вышесказанное, наш ответ действительно зависит от того, помогает ли секция 120 В или противодействует 480 В.Помните, как мы соединили h5 и X4 вместе? Поскольку эти два вывода являются отделкой обмотки, результирующее напряжение такое же, как если бы количество витков на 120 В было вычтено из обмотки 480 В. Таким образом, правильный ответ - 360В.

На самом деле, конфигурация подключения, указанная в нашей задаче, является трудным способом получить входной трансформатор на 360 В, поскольку, по сути, вы тратите впустую вторичную обмотку на 120 В, а также на первичную обмотку на 120 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *