Содержание

Напряжение светодиодных ламп | Te4h

Мы привыкли, что лампы накаливания работают от сети с переменным напряжением 220 вольт. Есть, конечно, и другие лампы накаливания, работающие от меньшего напряжения, но и свечение там тоже намного меньше. Здесь можно наблюдать зависимость — чем меньше напряжение светодиодного освещения, тем меньше света получаем от лампы. Но светодиодные лампы работают совсем по-другому. Для светодиода неважно напряжение, сила свечения зависит только от тока, проходящего через диод. В этой статье мы рассмотрим на каком напряжении могут работать светодиодные лампы, а также затронем ток светодиодных ламп.

Содержание статьи:

Напряжение светодиодных ламп

Я думаю что большинство людей давно закончивших школу и не имеющих дела с электричеством еще тогда забыли чем принципиально отличается ток от напряжения. А это желательно понимать.

Во многих книгах для пояснения разницы между током и напряжением проводится аналогия с водопроводной трубой. Но мне не очень нравится это сравнение. Любой предмет, брошенный из определенной высоты будет падать и в определенный момент достигнет поверхности земли. Его притягивает гравитация. Так вот напряжение — это сила, которая заставляет двигаться ток, как и гравитация притягивает предметы. А вот сила тока, если продолжить аналогию, это размер предмета, чем больше, тем сильнее ударит. Гравитация, как и напряжение не убьет если не будет предмета (тока).

А теперь вернемся к светодиодным лампам. Один светодиод или светодиодный чип, это вид полупроводника, который может пропускать ток только в одном направлении. Светодиоды могут работать от напряжения 4-12 Вольт. И даже больше, светодиодам нужно постоянное напряжение для нормальной работы. Но в стандартной электрической сети совсем другие условия.

В светодиодных лампах несколько светодиодов объединяются последовательно в один массив, и все они получают ток светодиодной лампы от общего блока питания. У многих светодиодных ламп, работающих от напряжения сети внутри есть специальное устройство, драйвер, который включает выпрямитель для преобразования переменного тока в постоянный, трансформатор, чтобы снизить очень высокое входящее напряжение, а также, возможно, стабилизационный компонент, чтобы уменьшить колебания тока.

Большинство современных светодиодных ламп, которые предназначены для домашнего использования и промышленности предназначены для напряжения питания 110-220 Вольт. Это достигается путем объединения нескольких чипов, как сказано выше. За остальное понижение напряжения и получение постоянного тока отвечает драйвер, встроенный в каждую лампу.

Но если у такой лампочки нет встроенного драйвера, а вы хотите запустить ее от обычной сети, вам потребуется внешнее устройство, которое будет выполнять те же функции, обеспечит нужное напряжение светодиодных ламп и выпрямит ток светодиодной лампы.

Стандартные настенные адаптеры, рассчитанные для другого оборудования, не подойдут, они не спалят светодиоды, но использовать их не рекомендуется. Они могут вызвать мерцание из-за неправильной светодиодной нагрузки, а также сокращают срок службы лампы. Поэтому нужно использовать драйверы, разработанные только для вашего вида ламп.

В последнее время появились светодиоды, работающие от переменного напряжения.

Но так как светодиоды пропускают ток только в одну сторону, по своей природе они все равно остались устройствами, работающими на постоянном токе. В них одна честь диода светится при положительном токе, вторая при отрицательном цикле. Таким образом, мы получаем однородное свечение. Но для таких ламп тоже нужен драйвер, если они не приспособлены для работы от 220 вольт.

Ток светодиодных ламп

Яркость свечения светодиодных ламп зависит от тока, который будет проходить через сам диод. Это позволяет очень легко управлять яркостью таких ламп. Здесь подходит тот же принцип регулировки яркости что и для обычных ламп накаливания, изменяем силу тока — изменяется яркость. Но тут возникает одна проблема, в каждой лампе, которая будет работать от сети переменного напряжения встроен драйвер, который будет препятствовать изменению яркости. Поэтому если драйвер не поддерживает такую опцию регулировать яркость нельзя.

Потребление лампой электричества тоже зависит от тока и пропускаемого напряжения.

Сила тока, с которой может работать лампа обычно указана на упаковке. Это может быть от 10-100 мА. Если же не указано и вам нужно знать этот параметр, его очень просто рассчитать по формуле:

I=(Р/U)*1000

Здесь I — это сила тока, P — потребляемая мощность и напряжение. Например, лампа на 220 вольт с потребляемой мощностью 12 Ватт будет иметь силу тока 54 мА. Рассчитанная сила тока может быть ниже, чем указанная на упаковке, потому что некоторые производители указывают на упаковке потребляемую мощность не самой лампы, а светодиода. Кроме светодиода, там есть еще резистор и другие компоненты, которым тоже нужно питание.

Выводы

В этой статье мы рассмотрели что такое напряжение светодиодных ламп, а также как влияет сила тока на их работу.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Оцените статью:

Загрузка...
Об авторе

Администратор te4h. ru, интересуюсь новыми технологиями, криптовалютой, искусственным интеллектом, свободным программным обеспечением и Linux.

Устройство светодиодной лампы EKF на 220 (В)

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Сегодня я решил рассказать Вам об устройстве светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).

Эту лампу я сравнивал в своих экспериментах (часть 1, часть 2) с лампой накаливания и компактной люминесцентной лампой (КЛЛ), и по многим показателям она имела явные преимущества.

А теперь давайте разберем ее и посмотрим, что же находится внутри. Думаю, что Вам будет не менее интересно, чем мне.

Итак, устройство современных светодиодных ламп состоит из следующих компонентов:

  • рассеиватель
  • плата со светодиодами (кластер)
  • радиатор (в зависимости от модели и мощности лампы)
  • источник питания светодиодов (драйвер)
  • цоколь

А теперь рассмотрим каждый компонент в отдельности по мере разбора лампы EKF.

У рассматриваемой лампы используется стандартный цоколь Е27. Он крепится к корпусу лампы с помощью точечных углублений (кернений) по окружности. Чтобы снять цоколь, нужно высверлить места кернения или сделать пропил ножовкой.

Красный провод соединяется с центральным контактом цоколя, а черный — припаян к резьбе.

Питающие провода (черный и красный) очень короткие, и если Вы разбираете светодиодную лампу для ремонта, то это нужно учесть и запастись проводами для их дальнейшего наращивания.

Через открывшееся отверстие виден драйвер, который крепится с помощью силикона к корпусу лампы. Но извлечь его можно только со стороны рассеивателя.

Драйвер — это источник питания светодиодной платы (кластера). Он преобразовывает переменное напряжение сети 220 (В) в источник постоянного тока. Для драйверов свойственны параметры мощности и выходного тока.

Существует несколько разновидностей схем источников питания для светодиодов.

Самые простые схемы выполняются на резисторе, который ограничивает ток светодиода. В этом случае нужно лишь правильно выбрать сопротивление резистора. Такие схемы питания чаще всего встречаются в выключателях со светодиодной подсветкой. Это фото я взял из статьи, в которой рассказывал о причинах мигания энергосберегающих ламп.

Схемы чуть посложнее выполняются на диодном мосте (мостовая схема выпрямления), с выхода которого выпрямленное напряжение подается на последовательно-включенные светодиоды. На выходе диодного моста также установлен электролитический конденсатор для сглаживания пульсаций выпрямленного напряжения.

В перечисленных выше схемах нет гальванической развязки с первичным напряжением сети, они обладают низким КПД и большим коэффициентом пульсаций. Их главное преимущество заключается в простоте ремонта, низкой стоимости и малых габаритах.

В современных светодиодных лампах чаще всего применяются драйверы, выполненные на основе импульсного преобразователя. Их главные достоинства — это высокий КПД и минимум пульсаций. Зато они по стоимости в несколько раз дороже предыдущих.

Кстати, в скором времени я планирую провести замеры коэффициентов пульсаций светодиодных и люминесцентных ламп различных производителей. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку.

В рассматриваемой светодиодной лампе EKF установлен драйвер на микросхеме BP2832A.

Драйвер крепится к корпусу с помощью силиконовой пасты.

Чтобы добраться до драйвера, мне пришлось отпилить рассеиватель и вынуть плату со светодиодами.

Красный и черный провода — это питание 220 (В) с цоколя лампы, а бесцветные — это питание на плату светодиодов.

Вот типовая схема драйвера на микросхеме BP2832A, взятая из паспорта. Там же Вы можете ознакомиться с ее параметрами и техническими характеристиками.

Рабочий режим драйвера находится в пределах от 85 (В) до 265 (В) напряжения сети, в нем имеется защита от короткого замыкания, применяются электролитические конденсаторы, предназначенные для продолжительной работы при высоких температурах (до 105°С).

Корпус светодиодной лампы EKF выполнен из алюминия и теплорассеивающего пластика, который обеспечивает хороший отвод тепла, а значит увеличивает срок службы светодиодов и драйвера (по паспорту заявлено до 40000 часов).

Максимальная температура нагрева этой LED-лампы составляет 65°С. Об этом читайте в экспериментах (ссылки я указал в самом начале статьи).

У более мощных светодиодных ламп, для лучшего отвода тепла, имеется радиатор, который крепится к алюминиевой плате светодиодов через слой термопасты.

Рассеиватель выполнен из пластика (поликарбоната) и с помощью него достигается равномерное рассеивание светового потока.

А вот свечение без рассеивателя.

Ну вот мы добрались до платы светодиодов или другими словами, кластера.

На круглой алюминиевой пластине (для лучшего отвода тепла) через слой изоляции размещено 28 светодиодов типа SMD.

Светодиоды соединены в две параллельные ветви по 14 светодиодов в каждой ветви. Светодиоды в каждой ветви соединяются между собой последовательно. Если сгорит хоть один светодиод, то не будет гореть вся ветвь, но при этом вторая ветвь останется в работе.

А вот видео, снятое по материалам данной статьи:

P.S. В завершении статьи хочется отметить то, что конструкция LED-лампы EKF с точки зрения ремонта не очень удачная, лампу невозможно разобрать без отпиливания рассеивателя и высверливания цоколя.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Устройство светодиодной лампы 220 Вольт. Как разобрать светодиодную лампу

Появление светодиодных или LED-ламп способствовало началу нового этапа в индустрии освещения. Совсем недавно такие осветительные приборы представляли огромную редкость, а сейчас огромный ассортимент различных светодиодных светильников выставляют все крупные магазины. Светодиод, в отличие от обычной лампы накаливания, имеет свою схему запуска.

Она устанавливается в самой лампочке, между имитацией колбы и патроном. Поэтому это место делают непрозрачным. Добраться до платы с диодами не так и сложно, но некоторые усилия для разборки понадобятся. Хоть опыт и показывает, что большинство производителей используют для этого схожие модели пусковых устройств, небольшие различия все же остаются.

Друзья приветствую всех на сайте «Электрик в доме». Сегодня хочу предоставить вам обзор внутренностей светодиодных ламп, которые я заказывал на Алиэкспресс. Лампа состоит из 72 диодов. В ней используются SMD-cвeтoдиoды, известные также под названием Surface Mounting Device. Давайте приступим к разборке, думаю, вам также будет очень интересно.

Принцип работы светодиодной лампы

Выпускаемые светодиодные лампочки на 220В могут отличаться между собой внешним дизайном, но принцип внутреннего устройства сохраняется для всех моделей. Излучение света в лампах выполняется светодиодами, число и размеры кристаллов которых может варьироваться в зависимости от мощности и возможностей охлаждения. Их цветовой спектр задается веществом, входящим в структуру каждого кристаллика.

Чтобы добраться до пускового драйвера, необходимо аккуратно снять защитную «юбочку» лампы. Под ней откроется печатная плата либо монтажная сборка из соединенных между собой радиоэлементов. На входе драйвера расположен диодный мост, подключенный к электрическому цоколю лампы, контактирующему с патроном. Благодаря ему переменное питающее напряжение выпрямляется в постоянное, поступает на плату и через нее подается к светодиодам.

Чтобы лучше рассеять излучаемый поток и защитить кристаллы от прикосновений, а также избежать их контакта с посторонними предметами, снаружи устанавливается рассеивающее защитное стекло (прозрачная пластмассовая колба). Поэтому своим внешним видом они очень напоминают традиционные источники света.

Для вкручивания лампочки в патрон их цоколи выполняют стандартных размеров Е14, Е27, Е40 и т.д. Это позволяет использовать Led лампы в домашней сети не прибегая к каким либо изменениям в электропроводке.

Конструкция и назначение частей лампы

Каждая светодиодная лампа состоит из следующих частей:

#1. Рассеивателя – специальной полусферы, увеличивающей угол и равномерно разбрасывающей направленный пучок светодиодного излучения. В большинстве случаев элемент производится из прозрачных и полупрозрачных пластиков либо матированного поликарбоната. За счет этого изделия не разбиваются при падении. Элемент отсутствует лишь в аналогах люминесцентных ламп, там его заменяет специальный отражатель. В приборах со светодиодами нагрев полусферы незначителен и в несколько раз меньше, чем в обычных нитевидных электролампах.

#2. Светодиодных чипов – основных составляющих ламп нового поколения. Они устанавливаются как по одному, так и десятками. Их число зависит от конструктивных особенностей изделия, его размеров, мощности и наличия приспособлений для отвода тепла. У хороших производителей не практикуется экономить на качестве светодиодных матриц, так как именно они определяют все рабочие параметры излучателя и продолжительность его эксплуатации. Однако в мире такие компании можно пересчитать по пальцам. Диоды же в матрицах взаимосвязаны, и при отказе одного выходит из строя вся лампа.

#3. Печатной платы. При их изготовлении используются анодированные алюминиевые сплавы, способные эффективно отвести тепло на радиатор, что создаст оптимальную температуру для бесперебойной работы чипов.

#4. Радиатора, который отводит тепло от печатной платы с утопленными в ней светодиодами. Для отливки радиаторов тоже выбирается алюминий и его сплавы, а также специальные формы с большим количеством отдельных пластин, помогающих увеличить теплоотводящую площадь.

#5. Конденсатора, убирающего пульсацию по напряжению, подаваемому на кристаллы светодиодов с драйверной платы.

#6. Драйвера, сглаживающего, уменьшающего и стабилизирующего входное напряжение электрической сети. Без этой миниатюрной печатной платы не обходится ни одна светодиодная матрица. Различают выносной и встраиваемый драйвер. Большинство современных ламп оснащается встраиваемыми устройствами, которые монтируются непосредственно в их корпусе.

#7. Полимерного основания, вплотную упирающегося в цокольную часть, защищая корпус от электрических пробоев, а меняющих лампочки - от случайного поражения электрическим током.

#8. Цоколя, обеспечивающего подключение к патронам. Обычно при его изготовлении используют латунь, покрытую никелем. Это гарантирует хороший контакт и долговременную коррозионную защиту.

Также существенным отличием светодиодных приборов от их обычных прототипов стало расположение зоны максимального нагрева. У остальных типов излучателей распространение тепла происходит от внешней стороны поверхности. Светодиодные кристаллы нагревают свою печатную плату с внутренней стороны. Поэтому им требуется своевременное отведение тепла изнутри лампы, а это конструктивно решается путем установки охлаждающих радиаторов.

Устройство лампы типа «кукуруза»

Лампу, которую мы сегодня будем разбирать, почему то все называют «кукуруза». Хотя глядя на внешний вид сходство действительно есть. Заказывал я целый набор таких ламп освещения для софт бокса. Кто еще не видел - есть видео на Ютуб канале.

Внешнее устройство светодиодной лампы обеспечивает открытый доступ к диодам и в случае выхода из строя их можно легко прозвонить мультиметром и определить неисправный диод.

Лампа состоит из десяти боковых пластин с шестью светодиодами на каждой пластине. Плюс на верхней крышке напаяно еще 12 диодов. В сумме получается 72 диода.

Давайте преступим к разборке этого чуда, чтобы поскорей увидеть внутренности. Перед тем как разобрать светодиодную лампу необходимо внимательно осмотрев корпус, и понять какие части соединяются между собой.

На верхней крышке видно части видно стыкующиеся детали, крышка имеет пазы. Ее то мы и будем снимать. Для этого берем тонкую отвертку или ножик и аккуратно поддеваем крышку равномерно по всему периметру.

Как видно на фото внутри практически ничего нет. Драйвер крепится к стенке на двухсторонний скотч. Боковые пластины можно легко вытащит из пазов. Вокруг много соединительных проводов.

В глубине видны провода, по которым подается напряжение 220 Вольт от цоколя на вход драйвера. С драйвера выходит два провода (красный и белый). К ним подключаются светодиоды.

Решил я замерить напряжение на выходе драйвера. Мультиметр показывает напряжение 77 Вольт (постоянного тока). Схема подключения всех диодов выполнена параллельно-последовательная. Группа из трех параллельно подключенных диодов подключается последовательно с другой группой и т.д. Всего получается 24 «звена» по «три диода».

Вот такое простое устройство светодиодной лампы 220 Вольт типа «кукуруза».

Не понравилось мне то, что в этой лампе нет радиатора. А как вы знаете друзья основная проблема светодиодов это нагрев и отвод тепла. В ней вообще нет металлических предметов за исключением плат, на которых напаяны сами диоды, они выполнены из алюминия. Корпус выполнен из керамики, возле цоколя есть четыре вентиляционных отверстия.

Не знаю хорошо это или плохо. Может вы мне подскажите друзья, пишите в комментариях.

Разбираем LED лампу «Экономка»

Следующая LED лампа, которую я хочу разобрать и показать вам ее устройство это «Экономка», мощностью 7 Вт. Служит она мне уже два года верой и правдой. Технические характеристики представлены на фото.

Как и у предыдущей лампы здесь размер цоколя Е27. Крепится сам цоколь к корпусу специальными углубленными канавками. Снять его без высверливаний или других повреждений нереально.

Корпус лампы изготовлен из алюминия и имеет конструктивную форму напоминающую корзинку. С боковых сторон есть ребра для циркуляции воздуха и дополнительного отвода тепла.

У этой лампы есть полусферический рассеиватель из матового пластика. В отличии от предыдущего варианта где все трусится и скрепит здесь все собрано очень хорошо, по сути - одна монолитная конструкция.

Как разобрать светодиодную лампу такого типа? Здесь внутренности кроются за рассеивателем. Берем отвертку с тонким жалом и поддеваем колбу.

По центру на трех болтах закреплена алюминиевая пластина с диодами SMD 5730. Диодов 14 шт. На мой взгляд, все светодиоды подключены последовательно. Точно сказать не могу, так как невидно соединительных дорожек на плате. Если один из них выйдет из строя лампа перестанет работать.

В месте соприкасание платы и металлического корпуса нанесена термопаста (белого цвета, по структуре напоминает обычный силиконовый герметик).

Открутив три винта и откинув плату можно увидеть главное устройство светодиодной лампы – драйвер.

Драйвер компактно размещен в центральной трубке.

Замерим, какое напряжение выдает драйвер. Мульриметр показывает напряжение в пределах 44 Вольт.

Сделаю два фото с рассеивателем и без него. Думаю видно как с помощью этой полусферы изменяется световой поток.

Хотелось бы отметить качество сборки данной модели Led ламп. Хорошо собрана и очень компактная.

Напоследок хочу отметить то, что какой бы мощности не была лампа, и какой бы не был производитель, устройство LED ламп практически у всех одинаковое. На этом все друзья, пишите комментарии, задавайте вопросы. Отдельная благодарность всем кто поделился статьей в соц.сетях.

Понравилась статья - поделись с друзьями!

 

Напряжение на светодиоде


В сети «гуляют» таблицы со следующими величинами рабочего напряжения светодиодов:
белые 3-3,7 v
синие 2,5-3,7 v
зеленые 2,2-3,5 v
желтые 2,1-2,2 v
красные 1,6-2,03 v

В то же время производители конкретных SMD светодиодов дают следующие напряжение питания светодиодов:

Напряжение красного светодиода самое низкое, а белого – самое высокое.

На цвет свечения светодиода влияют добавки в полупроводнике. Корректировать цвет удается нанесением люминофора, так, например, получают из голубого свечения белый свет.

Падение напряжения на светодиоде зависит не только от цвета свечения, но и от конкретного типа, протекающего тока, температуры и старения. Отвод тепла в лампах, светильниках и прожекторах является очень важной задачей, т.к. сильно влияет на степень деградации светодиодов. .

На практике самым важным параметром светодиода, от которого зависит срок его службы, является номинальный ток. Для светодиодов увеличение тока на 20% выше номинального сокращает срок их службы в несколько раз. Поэтому для светодиодов стабилизатор напряжения не обязателен, важнее поддерживать заданный ток с помощью специальных драйверов, которые автоматически поддерживают ток в широком диапазоне колебаний напряжения питания. «Правильные» драйверы обеспечивают нормальную работу светодиодной лампы в диапазоне питающего напряжения 60-260 вольт.

В случае использования токограничивающих резисторов, напряжение желательно стабилизировать. КПД при таком включении складывается из КПД стабилизатора напряжения и потерь на резисторе и не превышает 80%, в то время как КПД современных драйверов-стабилизаторов тока не ниже 95%.

Наличие технологического разброса прямого падения напряжения даже у диодов произведённых в одном технологическом цикле, делает нежелательным их параллельное включение. Проблема решается уменьшением тока через светодиоды с соответствующей потерей яркости свечения, либо установкой ограничительного резистора на каждый led.

При последовательном включении все светодиоды в гирлянде, должны быть одного типа или иметь одинаковый рабочий ток.

Следует помнить, что светодиод пропускает ток только при подаче на катод отрицательного напряжения, а на анод положительного. При обратном включении ток протекает при повышенном напряжении и следствием может стать пробой и выход из строя. Допустимое обратное напряжение, как правило, находится в пределах 5 вольт. При питании переменным током надо использовать встречно-параллельное включение диодов.

Зависимость интенсивности излучения светодиода от прямого тока нелинейная, при увеличении тока интенсивность излучения растет не пропорционально.

  • Схема светодиодной лампы на 220в
  • Как паять светодиодную ленту
  • Светодиодная лента на 220 в
  • Простое зарядное устройство
  • Разрядное устройство для автомобильного аккумулятора
  • Схема драйвера светодиодов на 220
  • Подсветка для кухни из ленты
  • Подсветка рабочей зоны кухни
  • LED лампа Selecta g9 220v 5w
  • Светодиодная лампа ASD LED-A60
  • Схема светодиодной ленты
  • Схема диодной лампы 5 Вт 220в
  • Простой цифровой термометр своими руками с датчиком на LM35
  • Общедомовой учет тепла
  • Напряжение питания светодиодов в лампе. Ремонт светодиодных led ламп, устройство, электрические схемы

    Ремонт светодиодных ламп на 220 вольт, при желании, можно сделать в домашних условиях, но для этого непременно нужно иметь в наличии паяльник и мультиметр.

    Светодиодные лампы такого типа на английском называются “LL-CORN”, что в переводе означает (лампа-кукуруза), по внешнему виду действительно похоже на початок кукурузы. Такие “початки” выпускаются в множестве видов. Выбрать действительно качественную продукцию сложно. Большинство подобных лампочек производится в Китае и являются подделками, но данная статья будет не о борьбе с поддельной продукцией, а поговорим на тему: ремонт светодиодных ламп кукуруза.

    Лампы такого типа как на фотографии выпускают на 24, 30, 36, 48, 56, 69, 72 светодиода. В настоящее время эти лампы оснащают светодиодами SMD5730 или SMD5733. Их данные:

    SMD5730 – размеры указаны в названии 5.7 мм. на 3.0 мм. Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 30 – 45 люмен.

    SMD5733 – размеры указаны в названии 5.7 мм. на 3.3 Мощность – 0.5 ватта. Напряжение 3.4 вольта. Ток 150 мА. Световой поток 35 – 50 люмен. Но нужно сказать, что светодиоды, выпущенные в Китае, часто не соответствуют заявленным характеристикам.

    Если светодиодная лампа перестала светить, то её не нужно сразу выбрасывать, ремонт такой лампы не сложен и может быть сделан практически любым человеком, кто умеет держать в руках паяльник. Но до ремонта лампы нужно убедиться, что лампа получала питание в месте, где она стояла. Это значит, что на место выкрученной лампы нужно вкрутить другую и убедиться, что не работает именно лампа, а не сам светильник.

    Для ремонта, нужно добраться до внутренностей, и тут возникает вопрос как вскрыть светодиодную лампу? Ответ прост – при помощи обыкновенного кухонного ножа. Нужно нож вставить в место где соединяется корпус лампы с защитным прозрачным кожухом и повернуть до выхода паза кожуха из выступа корпуса.

    Кожух выскочит с лёгким щелчком.

    Перед нами открывается вся “начинка” лампы. Первым делом осматриваем всё внутри и убеждаемся, что пайка деталей качественная (если нет, то пропаиваем сомнительные места). Если есть почерневшие детали, то меняем их на аналогичные.

    Для определения номиналов деталей, в статье ниже приведена общая схема для подобных ламп и дано перечисление номиналов деталей, в зависимости от мощности лампы. Если есть почерневшие светодиоды, то они однозначно подлежат замене на точно такие же. При замене светодиодов, обязательно обращайте внимание на полярность. Если перепутаете плюс с минусом, то он работать не будет.

    Если у Вас мощный паяльник, то для пайки маленьких светодиодов, нужно намотать на жало паяльника кусок медной проволоки подходящего диаметра и паять при её помощи.

    Вздутый конденсатор – меняем. Есть трещина на детали – меняем. Трещина на печатной плате – припаиваем перемычку на дорожки схемы или зачищаем лак по обеим сторонам трещины и наносим паяльником каплю олова. Если нет подходящих деталей, то эту сгоревшую лампочку оставляем как донора для будущих ремонтов.

    Бывает, что внешний вид детали нормальный, но у неё есть внутренние повреждения. В этом случае без мультиметра не обойтись. Конденсаторы проверяем на пробой, а резисторы на обрыв. В схеме светодиодных ламп деталей мало и проверить их все не составляет большого труда.

    Исключение составляют лампы, где питание реализовано на драйверах из микросхем. Ремонт драйвера светодиодной лампы, состоящего из микро компонентов в домашних условиях можно сделать, но ограниченно и это под силу только профессионалам. В нашей лампе схема простая.

    У всех лампочек серии, которую мы рассматриваем, схема одинакова. Отличается только количество светодиодов и номиналы некоторых элементов. Для ремонта важно знать принцип работы схемы и какую роль выполняют детали. Начнём сначала.

    Конденсатор C1, является гасящим и заменяться может точно таким же, как в лампе, рассчитанным на 400 вольт.

    Для лампы с 24 светодиодами он 0.56 микрофарад. Для лампы 30 светодиодов – 0.68 мкф. 36 – 48 светодиодов – 0.82 мкф. 56 – 69 светодиодов – 1.2 мкф. Обозначается 564J400v, 684J400v, 824J400v, L105J400v, соответственно.

    Конденсатор C2 служит для сглаживания пульсаций выпрямленного диодной сборкой тока и может быть заменён любым полярным конденсатором от 2. 2 до 10 микро фарад напряжением от 100 до 400 вольт. Но эти номиналы лучше взять по максимуму. Чем больше номинал, тем меньше будет мерцание светодиодов. Проведите эксперимент с фотокамерой телефона, наставив объектив на включенную светодиодную лампочку.

    Резисторы R1 и R2 служат для разряда конденсаторов, параллельно которым они подключены, и могут быть заменены любыми от 500 кило ом до 1.5 мега ом.

    Диодная сборка используется MB6S и может быть заменёна любой подобной или можно использовать четыре диода, например 1N4007 или любые подобные, включенные по схеме моста.

    Резистор R3 ограничивает ток светодиодов и его номинал зависит от количества их в лампе. 24 – 30 светодиодов – 33 ома. 36 светодиодов – 36 ом. 48 светодиодов – два параллельно подключенных по 100 ом, получается 50 ом. 56 светодиодов – 100 ом. 69 светодиодов – два параллельных по 390. Заменять можно такими же по мощности или больше. От сопротивления этого резистора зависит ток, который проходит через светодиоды и, значит яркость их свечения. Если номинал резистора взять меньше, то свечение повысится, но срок службы светодиода существенно понизится и наоборот.

    Теперь Вы сами сможете сделать ремонт светодиодных ламп на 220 своими руками.

    Удачи Вам в Ваших делах.

    На фото можно увидеть множество светодиодных ламп. Они достались мне в подарок. Появилась возможность изучить устройство этих ламп, электрические схемы, а так же ремонтировать эти светильники. Самое главное — узнать причины выхода из строя, так как срок службы, указанный на коробке не всегда совпадает со сроком службы.

    Лампы типа MR-16 разбираются без всяких усилий.


    Судя по этикетке, лампа имеет модель MR-16-2835-F27. В ее корпусе расположено 27 SMD светодиодов. Они излучают 350 люмен. Эта лампа подходит для подключения в сеть переменного тока 220-240 В. Потребляемая мощность равна 3,5 Вт. Такая лампа светится белым цветом, температура которого 4100 градусов по Кельвину и создает узконаправленный поток за счет угла потока равного 120 градусам. Применяемый тип цоколя «GU5,3», имеющий 2 штырька, расстояние между которыми 5,3 мм. Корпус сделан из алюминия, лампа имеет съемный цоколь, который крепится при помощи двух винтов. Стекло, защищающее лампу от повреждений, посажено на клей в трех точках.

    Как разобрать LED лампу MR-16

    Чтоб выявить причину поломки, необходимо разобрать корпус лампы. Это делается без особых усилий.


    Как видно на фото, на корпусе видна ребристая поверхность. Она выполнена для лучшего теплоотвода. Вставляем отвертку в одно из ребер и пытаемся приподнять стекло.


    Получилось. Можно увидеть печатную плату, она приклеена к корпусу. Поддев ее отверткой, она отделяется.

    Ремонт LED лампочки MR-16

    В числе первых была разобрана лампа, внутри которой выгорел светодиод. Печатная плата, которая изготавливается из стеклотекстолита, прогорела насквозь.


    Эта лампа подойдет в качестве «донора», из нее будут браться нужные запчасти для ремонта других ламп. На остальных 9 лампах так же погорели светодиоды. Так как драйвер цел, причиной поломки являются именно светодиоды.

    Электрическая схема светодиодной лампы MR-16

    Чтоб уменьшить время ремонта ламп, необходимо создать ее электрическую схему. Она довольно проста.

    Внимание! Схема связана с фазой сети гальваническим способом. Применять ее для питания каких либо устройств запрещено.


    Как же работает схема? На диодный мост VD1-VD4 через конденсатор C1 подается напряжение 220 В. Далее оно поступает на светодиоды HL1-HL27, которые включены в цепь последовательно. Число светодиодом может быть порядка 80 штук. Конденсатор С2 (чем больше емкость, тем лучше) — сглаживатель пульсаций выпрямленного напряжения. Он исключает мерцание света, имеющего частоту 100 Гц. Для разрядки C1 был установлен R1. Это нужно для того, чтоб исключить удар током при замене лампы. C2 защищен от пробоя R2 в случае, если появился обрыв цепи. R1, R2 как таковой работы в схеме не принимают.


    C1- красный, C2- черный, диодный мост- корпус с четырьмя лапками.

    Классическая схема драйвера светодиодных ламп мощностью до 5 Вт

    Электросхема ламп не имеет элементов защиты. Понадобится резистор на 100-200 Ом, а лучше два. Один будет установлен в цепи подключения, второй будет служить защитой от перепадов тока.


    Выше приведена схема с защитными резисторами. R3 защищает светодиоды и С2 конденсатор, R2 в свою очередь — диодный мост. Этот драйвер отлично подойдет для ламп, мощность которых меньше 5 Вт. Он легко запитает лампу, имеющую 80 светодиодов типа SMD3528. Если нужно уменьшить или увеличить ток, проводите манипуляции с конденсатором C1. Чтоб исключить мерцание, увеличьте емкость С2.


    КПД такого драйвера менее 50 %. К примеру, для лампы MR-16-2835-F27 нужен резистор на 6,1 кОм и мощностью 4 Вт. Тогда драйвер будет расходовать мощность, превышающую мощность потребления светодиодов. Из-за большого выделения тепловой энергии поместить его в маленький корпус лампы не получится. В таком случае, можно отдельно сделать корпус под этот драйвер.

    Следует помнить, что от количества светодиодов напрямую зависит КПД лампы.

    Поиск неисправных светодиодов

    После того, как защитное стекло было снято, можно осмотреть светодиоды. Если обнаружено малейшее черное пятнышко на поверхности светодиода, он вышел из строя. Проводите осмотр мест пайки, осмотрите качество выводов. В одной из ламп было обнаружено 4 плохо впаянных светодиода


    Светодиоды, имеющие черные точки, были помечены крестиком. При внешнем осмотре светодиоды могут быть целые. Поэтому, нужно прозвонить их тестером. Для проверки понадобится напряжение чуть больше 3 В. Подойдет аккумулятор, батарейка, блок питания. За источником питания последовательно включается токоограничивающий резистор, имеющий номинал 1 кОм.


    Щупами прикасаемся до светодиода. В одну сторону сопротивление должно быть малым (светодиод может светиться), в другую – быть равным десяткам мегаом.


    Во время проверки необходимо зафиксировать лампу. На помощь может прийти банка.

    Можно проверить светодиод без специальных приборов, если драйвер устройства цел. На цоколь лампы подается напряжение, выводы светодиодов закорачиваются пинцетом или отрезком провода.


    Если видно свечение всех светодиодов, закороченный неисправен. Но такой метод подойдет, если в цепи вышел из строя 1 светодиод.

    Если в цепи обнаружена поломка нескольких светодиодов, лампа будет гореть. Только ее световой поток уменьшиться. Просто закоротите места площадок, к которым были припаяны светодиоды.

    Другие неисправности светодиодных ламп

    Если при проверке оказалось, что светодиоды исправны, значит дело в драйвере или месте пайки.


    В данной лампе обнаружилась холодная пайка проводника. Копоть, появившаяся из-за плохой пайки, оседала на дорожках платы. Для удаления копоти понадобилась тряпочка, смоченная спиртом. Провод выпаяли, залудили и припаяли. Эта лампа заработала.

    Из всех ламп у одной была поломка драйвера. Диодный мост был заменен 4 диодами «IN4007», которые рассчитаны на ток 1 А и на обратное напряжение 1000 В.

    Пайка SMD светодиодов

    Чтоб произвести замену неисправного LED, необходимо выпаять его, не повредив печатные проводники. Обычным паяльником это можно сделать с трудом, лучше надеть на паяльник жало, изготовленное из медной проволоки.


    При запайке светодиода необходимо следить за полярностью. Установите светодиод на место пайки, возьмите паяльник на 10-15 Вт и прогрейте его торцы.

    Если светодиод обгорел, и при этом произошло обугливание платы, это место следует очистить. Так как оно является проводником. Если площадка расслоилась, светодиод моно припаять к «соседям». Это делается в том случае, если дорожки ведут именно к ним. Просто возьмите кусочек провода, сверните в два-три раза и подпаяйте.


    Анализ причин отказа LED ламп MR-16-2835-F27

    По данным таблицы можно сделать вывод, что поломки ламп зачастую происходят из-за выхода из строя светодиодов. Причиной тому является отсутствие защиты в схеме. Хотя место под варистор имеется на плате.

    Ремонт светодиодной лампы серии «LL-CORN» (лампа-кукуруза) E27 4,6 Вт 36x5050SMD

    Технология ремонта лампы-«кукурузы» отличается от ремонта выше показанной лампы.

    Ремонт такой лампы прост, так как светодиоды располагаются на корпусе. И для прозвонки не требуется ни каких лишних действий. Эта лампа была разобрана исключительно из-за интереса.


    Техника проверки «кукурузы» не отличается от вышеописанной. Только в корпусе этих ламп установлено 3 светодиода. При прозвонке все 3 должны засветиться.


    Если обнаружена поломка одного из светодиодов, закоротите его или впаяйте новый. На сроке службы лампы это не отразиться. Драйвер лампы не имеет развязывающегося трансформатора. Поэтому, любое прикосновение к дорожкам светодиодов неприемлемо.

    Если светодиоды целы, дело в драйвере. Для того, чтоб осмотреть его, необходимо разобрать корпус.


    Чтоб добраться до драйвера, нужно снять ободок. Подденьте его отверткой в самом слабом месте, он должен отклеиться.


    Драйвер имеет такую же схему, что и наша первая лампа с тем отличием, что С1-1µF, С2- 4,7 µF. Провода длинные, поэтому драйвер вытягивается без усилий. После работ по замене светодиода, ободок был посажен на клей «Момент».

    Ремонт светодиодной лампы «LL-CORN» (лампа-кукуруза) E27 12 Вт 80x5050SMD

    Ремонт лампы на 12 Вт делается по той же схеме. На корпусе не было обнаружено сгоревших светодиодов, поэтому пришлось вскрыть корпус, чтоб осмотреть драйвер.


    С этой лампой возникли проблемы. Провода драйвера были слишком короткими, пришлось снять цоколь.


    Цоколь выполнен из алюминия. Он крепился к корпусу с помощью закернения. Поэтому, нужно было высверлить места креплений сверлом, диаметр которого 1,5 мм. Далее цоколь был поддет ножом и снят. Провода, находящиеся внутри пришлось перекусить.


    Внутри находились 2 одинаковых драйвера, каждый из которых запитывал 43 диода.

    Драйвер окутан термоусаживающей трубочкой, ее пришлось разрезать.


    После устранения неполадок, на драйвер насаживается эта же трубка и обжимается пластиковой стяжкой.


    Схема драйвера подразумевает в себе защиту. С1 защищает от импульсных перепадов, R2, R3 от бросков тока. Во время проверочных работ были замечены обрывы R2. Скорее всего, на лампу было подано напряжение, превышающее норму. Резистора на 10 Ом не было, поэтому был впаян резистор на 5,1 Ом. Лампа засветилась. Далее нужно было подключить драйвер к цоколю.

    Первым делом короткие провода были заменены более длинными. Драйверы были соединены по питающему напряжению. Чтоб прикрепить провода к резьбовой части цоколя, необходимо зажать их между пластиковым корпусом и цоколем.

    А как подключиться к центральному контакту? Алюминий не паяется, поэтому провод был припаян к латуневой пластинке, в которой было высверлено отверстие под М 2,5. Подобное отверстие было высверлено в контакте. Все это было скручено винтом. Далее был одет цоколь и накерниванием закреплен к корпусу лампы. Лампа была пригодна к работе.

    Ремонт LED лампы серии «LLB» E27 6 Вт 128-1


    Конструкция лампы идеально подходит для ремонта. Корпус легко разбирается.


    Следует одной рукой держать цоколь, а второй повернуть защитный плафон против часовой стрелки.


    Под корпусом расположено пять прямоугольных плат, на которые впаяны светодиоды. Прямоугольник припаян к круглой плате, на которой расположена схема драйвера.


    Чтоб получить доступ к LED выводам, нужно снять одну из крышек. Для облегчения работы лучше снять плату, находящуюся в точках подачи напряжения драйвера. На фото видно, что эта стенка параллельна корпусу конденсатора и отдалена от него на максимальное расстояние.


    Чтоб снять плату, необходимо прогреть места пайки паяльником. Затем, для ее снятия прогреваем пайку на круглой плате и она отсоединяется.

    Доступ для проверки поломок открыт. Драйвер выполнен по простой схеме. Проверка его выпрямительных диодов, а так же всех светодиодов (в этой лампе их 128) не показала проблему.


    Когда я осматривал места пайки, обнаружил, что они отсутствуют в некоторых точках. Эти места были пропаяны, кроме этого я соединил печатные дорожки плат по углам.

    Когда вы смотрите на свет, то эти дорожки хорошо видны и можно легко определить, где какая дорожка.

    Прежде чем собрать лампу, нужно было ее проверить. Для этого на плате была установлена перемычка, двумя временными проводами выпаянная часть лампы была подключена к источнику питания.


    Лампа засветилась. Осталось впаять плату на прежнее место и собрать лампу.

    Ремонт светодиодной лампы серии «LLB» LR-EW5N-5

    На внешний вид лампа сделана качественно. Корпус алюминиевый, дизайн выполнен красиво.

    Лампа собрана надежно. Поэтому, чтоб ее разобрать, нужно снять защитное стекло. Для этого конец отвертки всовываем между радиатором. Стекло здесь фиксируется без клея, буртиком. Нужно опереться отверткой на торец радиатора и приподнять стекло вверх, используя отвертку как рычаг.



    Тестер не показал поломку светодиодов. Значит, все дело в драйвере. Чтоб добраться до него, нужно открутить 4 винта.


    Но меня настигла неудача. За платой была расположена плоскость радиатора. Она смазана пастой, которая проводит тепло. Пришлось собрать все, что я раскрутил. Я решил разобрать лампу со стороны цоколя.


    Для того, чтоб снять цоколь, пришлось высверливать места кернения. Но он не снимался. Как оказалось, он был скреплен с пластмассой резьбовым соединением.

    Радиатор нужно было отделить от пластикового переходника. Для этого, я произвел запил ножовкой по металлу в том месте, где пластмасса крепилась к радиатору. Далее поворотом отвертки детали отделились одна от другой.


    Была произведена отпайка выводов от платы светодиодов, что позволило работать с драйвером. Его схема была более сложной по сравнению с другими драйверами. При осмотре был найден вздутый конденсатор 400 V 4,7 µF. Он был заменен.

    Диод Шоттки «D4» типа SS110 оказался поврежденным. Он находится внизу слева на фото. Он был заменен аналогом «10 BQ100», имеющим 1 А и 100В. Лампочка засветилась.

    Ремонт светодиодной лампы серии «LLB» LR-EW5N-3

    Лампа похожа на «LLB» LR-EW5N-5, но ее конструкция изменена.


    Защитное стекло крепится с помощью кольца. Если подцепить место стыка кольца и стекла, оно легко снимется.

    Печатная плата выполнена из алюминия. На ней расположены девяти кристальные LED светодиоды количеством 3 штуки. Плата крепится 3 винтами к радиатору. Проверка не выявила проблем с светодиодами. Значит дело в драйвере. Опыт ремонта похожей лампы показал, что лучше сразу отпаять провода, которые идут от драйвера. Разборка лампы производилась со стороны цоколя.


    Кольцо, соединяющее цоколь и радиатор, снялось с большим усилием. При этом кусочек откололся. А все из-за того, что оно было прикручено 3 саморезами. Драйвер был извлечен.


    Саморезы располагаются под драйвером, добраться до них можно крестообразной отверткой.

    Этот драйвер выполнен на основе трансформаторной схеме. Проверка показала исправность всех частей, кроме микросхемы. Данных о ней я не нашел. Лампа было отложена в качестве донора.

    Ремонт светодиодной лампы серии «LLC» E14 3W1 M1

    Эта лампа похожа на лампу накаливания. Первое, что можно заметить- широкое металлическое кольцо.

    Я приступил к разборке лампы. Первым делом нужно было снять плафон. Как оказалось, он был посажен на основание эластичным компаундом. После того, как я снял его, понял, что это было напрасно.


    В лампе находился 1 светодиод, мощность которого была равна 3,3 Вт. Его можно было проверить со стороны цоколя.


    Светодиодные лампы находят все более широкое применение в повседневной жизни. Они используются для освещения и подсветки, подчеркивают детали интерьера. Особое значение имеет схема светодиодной лампы на 220 В, технические характеристики которой значительно превосходят другие виды источников света.

    Элементы светодиодной лампы

    В состав стандартной светодиодной лампы входят следующие элементы:

    • Основные внешние детали - рассеиватель и цоколь.
    • Светодиоды, установленные на плате. Вся конструкция называется. кластером.
    • Радиатор.
    • Светодиодный источник питания - драйвер.

    В большинстве ламп используются стандартные цоколи типа Е27. Его крепление к корпусу происходит точечными углублениями, наносимыми по окружности. Для снятия цоколя места углублений высверливаются или пропиливаются ножовкой.

    К центральному контакту цоколя подключается провод красного цвета. Черный провод припаивается к резьбе. Оба проводника имеют очень короткую длину и в случае возможного ремонта лампы нужно иметь запас для наращивания. После снятия цоколя, в рассеивателе открывается отверстие, через которое хорошо заметно драйвер. Его крепление к корпусу выполняется силиконом, а его извлечение возможно только через рассеиватель.


    Питание кластера, представляющего собой светодиодную плату, осуществляется с помощью драйвера. Под его действием происходит преобразование переменного напряжения 220 вольт в постоянный ток. У драйверов существуют такие параметры, как выходной ток и мощность.

    Таким образом, взаимодействие всех элементов обеспечивает устойчивую и бесперебойную работу всей лампы. Выход из строя хотя бы одного из них вызовет отказ в работе всей системы.

    Схемы светодиодных источников питания

    Наиболее простая схема выполняется с использованием резистора, выполняющего функцию ограничителя светодиодного тока. Нормальная работа схемы в данном случае зависит лишь от правильного выбора сопротивления этого резистора. Такое питание в основном используется, когда нужно сделать светодиодную подсветку в выключателе.


    Более сложные схемы выполняются с применением диодного моста. С его выхода происходит подача выпрямленного напряжения к светодиодам, включенным последовательно. Сглаживание пульсаций выпрямленного напряжения осуществляется с помощью электролитического , установленного на выходе диодного моста.

    Главными преимуществами обеих схем является их низкая стоимость, небольшие размеры и довольно простой ремонт. Тем не менее, у них очень низкий коэффициент полезного действия и высокий коэффициент пульсаций.

    Совершенные источники питания - драйверы

    Самые новые светодиодные лампы комплектуются драйверами, основой которых является импульсный преобразователь. Они обладают высоким КПД и минимальным уровнем пульсаций. Однако их стоимость значительно выше, чем уже рассмотренные простые варианты.

    Для крепления драйвера к корпусу используется силиконовая паста. Чтобы получить доступ к этому элементу, вначале отпиливается рассеиватель, а затем вынимается светодиодная плата. Подача питания на 220 вольт происходит с помощью проводов красного и черного цвета с цоколя лампы. На плату светодиодов питание подается бесцветными проводниками.

    Драйвер может устойчиво работать при перепадах напряжения сети от 85 до 265 вольт. Кроме того, схема светодиодной лампы на 220 В предусматривает защиту от коротких замыканий, а также наличие электролитических конденсаторов, обеспечивающих работу при высокой температуре, вплоть до 105 градусов.

    Для изготовления корпусов ламп используется алюминий и специальный пластик, хорошо рассеивающий тепло. Благодаря качественному теплоотведению, срок службы основных элементов лампы увеличивается до 40 тыс. часов. Более мощные лампы оборудуются радиаторами, прикрепляемыми к светодиодной плате слоем термопасты.

    Сегодня в статье рассмотрим схему как передать энергосберегающую лампочку под светодиодную лампу работающую от сети 220 Вольт.

    Итак, после разборки и извлечения из неё вполне работоспособного преобразователя детали которого ещё послужат нам для дальнейших конструкций - взять хотя-бы отличные высоковольтные транзисторы MJE13003,13001; симметричный динистор DB3 для регулятора мощности, или диоды IN4007 (700В 1А), мы имеем хороший корпус с цоколем и шестью отверстиями под. .. конечно же большие светодиоды Ф10мм. Именно их, а не стандартные 5мм я рекомендую для использования в светодиоднах лампах, фонариках и т.д. При цене несколько более высокой (0.5уе), чем у обычных светодиодов, они дают значительно большую яркость при том-же токе питания - около 20мА.

    Все элементы светодиодной лампы монтируются на круге из двустороннего фольгированного стеклотекстолита. С одной стороны вырезаем резаком участки для припаивания цепочки светодиодов, а с другой для элементов бестрансформаторного источника питания 18В 25мА. Именно столько требуется этой светодиодной лампе.



    Проще и быстрее не травить печатную плату, а прорезать дорожки резаком, сделанным из ножовочного полотна.Я так и сделал.Так как нужно тратить время еще и на ее вытравливание.Поступим как быстрее.


    Для получения нужного напряжения питания светодиодов, можно использовать два варианта схем выпрямителя:


    На этой, что попроще, сэкономив три диода мы теряем в токе почти в два раза. И для компенсации придётся увеличить ёмкость 0.47 до 1мкФ. Поэтому мной был сделан выбор в пользу вот такого бестрансформаторного выпрямителя:


    Здесь резистор на 300 Ом защищает от бросков тока и одновременно выполняет роль плавкого предохранителя. Мощность его берём 0.25 ватт. Два стабилитрона Д814В включены последовательно и образуют один стабилитрон на напряжение около 20В. Если у вас есть готовый на 19-25В - вперёд, можете поставить его одного. Конденсатор 47мкф сглаживает мерцание и создаёт дополнительную защиту светодиодам от импульсных бросков тока при включении лампы. Резистором на 100 Ом окончательно выставляем общий ток через линейку светодиодов самодельной LED лампы для дома.


    Закрепляем термоклеем круглую платку, закрываем крышку, чтоб светодиоды высовывались из неё наполовину, и всё - самодельная светодиодная лампа готова.Конечно она не может тягаться по яркости с КЛЛ. Но по своей экономичности она уделает экономичную энергосберегалку - как Белка Стрелку. При потреблении мощности 18В х 0.025А = 0.4 ватта в час, даже если её вообще никогда не выключать, она съест за год всего 0.4 х 24 х 365 = 4 кВт энергии. Стоит это на уровне одного проезда в городском транспорте. Поэтому если требуется постоянная подсветка коридора, рабочего места, дежурной подсобки и т.д., это будет идеальный вариант.

    Несколько лет назад были приобретены 4 светодиодные лампочки модели GL5.5-E27 изготовленные под брендом Estares. Две из них неплохо эксплуатировались в прихожей, где освещение горит по нескольку часов в день с периодическими переключениями, одна в ванной комнате и еще 1 в туалете, где режим эксплуатации отличается более частыми коммутациями, чем продолжительностью работы.

    Но, невзирая на отличие в условиях эксплуатации, по истечении трех лет, все лампочки практически одновременно стали мигать через несколько минут после включения.

    Причина этого явления известна - светодиоды постепенно выходят из строя из-за повышенного тока, протекающего через них. Производитель, чтобы лампа светила ярче использует драйвер с максимально допустимым для данного типа светодиодов выходным током. Как следствие светодиоды при работе нагреваются выше допустимой для данного типа светодиодов температуры, и соответственно быстрее деградируют. При этом яркость свечения лампы со временем начинает уменьшаться, это видно не вооруженным глазом. Сопротивление светодиодов также снижается и достигает того предела, при котором начинает срабатывать защита драйвера от перегрузки и короткого замыкания, это и вызывает мигание лампочки.

    Ради интереса и экономии ради было принято решение попытаться осуществить ремонт этих светодиодных ламп, а именно заменить деградировавшие светодиоды на новые и посмотреть, что из этого получится.

    Разборка светодиодной лампы

    Обычным канцелярским ножом с узким лезвием очень аккуратно подрезаем клей, крепящий стеклянный плафон лампы к пластиковому корпусу. Плафон не придавливаем, он очень хрупкий и легко ломается. После подрезания клея плафон легко снимается.

    Весь клей, а его там не мало, с обеих частей разобранной светодиодной лампы лучше удалить. Он нам не понадобится.



    Что мы видим. На тонкой плате установлено шесть светодиодов, хотя возможна установка еще трех. Очевидно, что мы имеем дело с уже классическим подключением светодиодов к драйверу, такое же применяется в светодиодных лентах, по три последовательных светодиода. То есть, в данную лампу возможно установить всего 9 светодиодов, три группы по три светодиода в каждой. Это снизит нагрузку на светодиоды и продлит срок службы светодиодной лампы.

    Плата прижата саморезами к пластиковому корпусу, в котором имеются вентиляционные отверстия, через алюминиевый радиатор.

    Отпаиваем провода от платы и разбираем этот слоеный пирог. Термопаста между платой и радиатором отсутствует. Вопрос нужна ли она там риторический.



    Под радиатором обнаруживаем плату драйвера. Обратите внимание на обесцвечивание красного плюсового провода. Это явно вызвано повышенной температурой.

    Соблюдайте правила электробезопасности!

    Лирически-теоретическое отступление

    Но если есть большое желание посмотреть, а что там и как, то аккуратно поддеваем отверткой цоколь лампы по периметру и скручиваем цоколь по резьбе. Поддеваем торцовый контакт и вытаскиваем его. После этого плата драйвера свободно извлекается.



    На фото провод идущий к торцовому контакту отсутствует.

    Как видим, производитель не был оригинален и использовал типовой драйвер светодиодной лампы на микросхеме BP3122. .

    Типовая схема применения BP3122 следующая:


    Данная микросхема была специально разработана для применения в драйверах светодиодных ламп и представляет собой микросхему управления импульсным источником питания. Ее применение позволяет значительно сократить размер драйвера, а как следствие и его стоимость, за счет сокращения применяемых дополнительных компонентов.

    Рекомендуемая производителем микросхемы выходная мощность не более 6 Вт при входном напряжении 230 В ±15% и 5 Вт в диапазоне входных напряжений переменного тока от 85 до 265 В. В микросхеме реализована защита от перегрузки и короткого замыкания, защита от перегрева, а также защита от перенапряжений. С механизмом самовозврата при устранении неисправности.

    Уровень стабилизированного выходного тока определяется типом применяемого трансформатора, а именно соотношением витков первичной Np и вторичной Ns обмоток, и пиковым током в MOSFET, который в свою очередь, зависит от сопротивления задающего резистора, подключенного к входу CS микросхемы.

    Стабилизация тока, на выходе исследованного драйвера, осуществляется на уровне 350 мА.

    Ремонт светодиодной лампы

    Для замены деградировавших, на AliExpress были заказаны новые светодиоды у этого продавца .

    Отпаять старые светодиоды с платы проще всего посредством фена паяльной станции (температура около 300 °С). Можно и паяльником, но придется повозиться, изготовив специальную «вилочку для пайки светодиодов». Плата весьма теплоемкая и отбирает часть тепла на себя, поэтому паяльник менее 100 Вт можно даже не рассматривать.

    Убрав старые светодиоды, не прекращая подогрева снизу платы, наносим на места пайки флюс, при необходимости припой, и размещаем новые светодиоды, соблюдая полярность.



    Предварительно, выводы новых светодиодов также не помешает залудить. А для удобства их последующего позиционирования на плате, отметить, например анод, маркером.

    Номинальные данные приобретенных светодиодов: ток 150 мА, напряжение 3,0 – 3,2 В, теплого, белого свечения 2800 – 3500 К.

    Сборка осуществляется в обратном порядке. При наличии термопасты наносим ее на обратную сторону платы.



    После этого работоспособность светодиодной лампы можно проверить, включив ее на несколько часов.

    Не смотрите на горящие светодиоды не защищенным глазом, это опасно для зрения. Накройте их листом бумаги!

    Если все нормально, все группы светодиодов светятся равномерно и не мигают, можно приклеить на место стеклянный плафон. Лучше использовать для этого клей типа «Момент». Термоклей не годится, при нагреве лампы во время работы, он может расплавиться и плафон отклеиться и упадет.

    После высыхания клея светодиодная лампа снова будет служить вам верой и правдой. Ну а если вдруг, что, вы уже знаете, как ее починить.

    Список файлов

    Ремонт светодиодных LED ламп, электрические схемы

    Светодиодные лампы, благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

    В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

    Устройство светодиодной лампы

    Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов, все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.

    Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя. К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

    Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

    Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

    О филаментных лампах

    По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.

    Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

    Филаментным лампам и их ремонту посвящена отдельная статья «Устройство и ремонт филаментных ламп».

    Примеры ремонта светодиодных ламп

    Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

    Ремонт светодиодной лампы


    ASD LED-A60, 11 Вт на микросхеме SM2082

    В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.

    Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.

    После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.

    Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

    Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.

    С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

    С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.

    Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

    Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

    Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности не было, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.

    После сборки светодиодная лампа стабильно излучала свет, несмотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

    Электрическая схема драйвера

    светодиодной лампы ASD LED-A60 на микросхеме SM2082

    Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.

    Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

    С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

    Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

    Ремонт светодиодной лампы


    ASD LED-A60, 11 Вт, 220 В, E27

    В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

    При включении лампа на мгновение зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

    Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.

    Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

    Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.

    Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

    Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.

    В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

    Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.

    Напряжение 220 В с цоколя лампы через резистор - предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.

    На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.

    На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.

    Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.

    В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

    Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

    Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

    Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

    В наличии не было светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

    После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстросохнущим суперклеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

    Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

    Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность - 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

    Ремонт светодиодной лампы


    LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

    Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.

    Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

    Светорассеивающее стекло снялось легко, приклеено не было. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.

    Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в одной из вышеописанных ламп.

    Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

    Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

    Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

    Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

    Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

    Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

    Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

    Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.

    Такое поведение драйвера объясняет закон Ома, в соответствии с которым U=I×R. Если I (ток) остается неизменным, а R (сопротивление) уменьшается, то U (напряжение) тоже пропорционально уменьшится.

    Ремонт светодиодной лампы MR-16 с простым драйвером

    Из обозначения на этикетке следовало, что данная светодиодная лампа модели MR-16-2835-F27, источником света лампы являются светодиоды LED-W-SMD2835 в количестве 27 штук, излучающие световой поток 350 люмен. Лампа предназначена для питания от сети напряжением 220-240 В переменного тока, излучает натуральный белый свет цветовой температуры 4100 градусов Кельвина, потребляемая мощность 3,5 Вт, тип цоколя GU5,3 (два штырька на расстоянии 5,3 мм), угол светового потока составляет 120° (узконаправленного света).

    Внешний осмотр показал, что светодиодная лампа сделана добротно, корпус выполнен из алюминия, цоколь съемный и привинчен к корпусу двумя винтами, защитное стекло натуральное и приклеено к корпусу в трех точках клеем.

    Как разобрать LED лампу MR-16

    Для определения причины выхода из строя лампы ее необходимо разобрать. Вопреки ожиданиям, лампочки разбирались без особых трудностей.

    Корпус лампочки для лучшего отвода тепла был весь ребристый, и между ребрами была возможность надавить отверткой с узким лезвием на защищающее светодиоды стекло изнутри.

    Прилагая значительное усилие в разных точках между ребрами корпуса по кругу, было найдено податливое место, и таким образом стекло удалось сорвать с места. Печатная плата со светодиодами тоже оказалась приклеенной и легко отделилась с помощью поддетой, как рычагом, за ее край отвертки.

    Ремонт LED лампочки MR-16

    Первой я вскрыл LED лампочку, в которой выгорел всего один светодиод, но до такой степени, что даже прогорела насквозь печатная плата, сделанная из стеклотекстолита.

    Эту LED лампочку сразу решил использовать в качестве донора запчастей для ремонта остальных девяти, так как у многих из них были видны сгоревшие светодиоды. Это свидетельствовало о том, что драйверы у лампочек в порядке и причина выхода их из строя, скорее всего, кроется в неисправности светодиодов.

    Электрическая схема светодиодной лампы MR-16

    Для облегчения ремонта полезно под рукой иметь электрическую схему LED лампочки. Поэтому первое, что я сделал после полного разбора лампочки, нарисовал ее схему.

    Работает схема следующим образом. Переменное напряжение питающей сети 220 В подается через токоограничивающий конденсатор С1 на диодный мост VD1-VD4. С диодного моста выпрямленное постоянное напряжение подается на последовательно включенные светодиоды HL1-HL27. Количество последовательно включенных светодиодов в эту схему может достигать 80 штук. Электролитический конденсатор С2 служит для сглаживания пульсаций выпрямленного напряжения, тем самым исключается мерцание света с частотой 100 Гц. Чем его емкость больше, тем лучше.

    R1 служит для разрядки конденсатора С1 для исключения удара током человека, в случае прикосновения к штырям цоколя при замене светодиодной лампы. R2 защищает конденсатор С2 от пробоя в случае обрыва в цепи светодиодов. R1 и R2 непосредственного участия в работе схемы не принимают.

    На фотографии внешний вид драйвера с двух сторон. Красный это С1, цилиндр черного цвета это С2. Диодный мост применен в виде микросборки, черный прямоугольный корпус с четырьмя выводами.

    Классическая схема драйвера светодиодных ламп мощностью до 5 Вт

    В схеме светодиодной лампы MR-16 нет элементов защиты, нужен хотя бы один резистор в цепи подключения к сети номиналом 100-200 Ом. Не будет лишним и еще один такой же резистор, включенный последовательно со светодиодами, для их защиты от бросков тока.

    На фотографии выше изображена классическая схема драйвера для LED лампы с двумя защитными резисторами от бросков тока. R2 защищает диодный мост, а R3 – конденсатор С2 и светодиоды. Такой драйвер хорошо подходит для светодиодных ламп мощностью до 5 Вт. Драйвер способен запитать лампочку, в которой установлено до 80 LED SMD2835. Если понадобится использовать драйвер для светодиодов, рассчитанных на меньший или больший ток, то конденсатор С1 нужно будет уменьшить или увеличить соответственно. Для исключения мерцания света С2 тоже нужно будет увеличить. Чем емкость С2 будет больше, тем лучше.

    Эту схему можно еще сделать проще, удалив все резисторы, а конденсатор С1 заменить сопротивлением, номинал и мощность которого можно рассчитать с помощью онлайн калькулятора.

    Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

    Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

    Поиск неисправных светодиодов

    После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

    При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

    На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

    Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером, включенным в режим измерения сопротивления.

    Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

    Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

    При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

    Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

    Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

    Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

    Другие неисправности светодиодных ламп

    Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

    Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

    Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодный мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

    Пайка SMD светодиодов

    Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

    Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку, сделанную из медной проволоки, то задача легко решается.

    Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

    Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

    В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

    Ремонт светодиодной лампы серии "LL-CORN" (лампа-кукуруза)


    E27 4,6 Вт 36x5050SMD

    Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от вышеописанной лампы, поэтому и технология ремонта другая.

    Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

    Проверка светодиодов LED лампы-кукурузы не отличается от вышеописанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.

    Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

    Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

    Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

    Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.

    Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 - 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

    Ремонт светодиодной лампы "LL-CORN" (лампа-кукуруза)


    E27 12 Вт 80x5050SMD

    При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

    Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.

    Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

    Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

    Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.

    Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.

    После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.

    В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросов и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

    Ремонт светодиодной лампы серии "LLB" LR-EW5N-5

    Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

    Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

    Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

    Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

    Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.

    В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.

    Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.

    После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.

    Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу слева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

    Ремонт светодиодной лампы серии "LLB" LR-EW5N-3

    Эта светодиодная лампа по внешнему виду очень похожа на "LLB" LR-EW5N-5, но конструкция ее несколько отличается.

    Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

    На алюминиевой печатной плате установлено три девяти кристальных сверхярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы "LLB" LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.

    Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.

    Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.

    Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти.

    Прошли годы и появились новые источники света в виде малогабаритных светодиодных матриц с интегрированным драйвером мощностью от трех ватт, собранные на алюминиевой печатной плате. Установил вместо светодиодов такую матрицу, в результате лампа получила вторую жизнь.

    Ремонт светодиодной лампы серии "LL" GU10-3W

    Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

    Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

    Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

    Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

    Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.

    После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.

    Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.

    Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

    Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становится жидким.

    После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

    При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

    Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

    При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

    Светодиодная лампа начала мигать как стробоскоп

    Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

    Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.

    После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

    После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

    Онлайн калькуляторы для определения номинала резисторов


    по цветовой маркировке

    При ремонте светодиодных ламп возникает необходимость в определении номинала резистора. По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса цветных колец. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5.


    Дмитрий 05.02.2017

    Здравствуйте, Александр Николаевич.
    Может подскажите решение проблемы. Суть в следующем.
    Имеется светодиодная лампа типа «кукуруза». Состоит из 11 полосок по 13 светодиодов каждая + «пятак» с торца тоже на 13.
    Примерно через полгода работы появилась следующая проблема. Через 4-5 минут после включения гаснут несколько полосок (5-6). Некоторые сразу, некоторые начинаю мигать, после этого гаснут. Могут через некоторое время опять включиться. Такое впечатление, что от перегрева теряется контакт, так как минут через 10 после выключения все полоски снова светятся.

    Александр

    Здравствуйте, Дмитрий!
    Подобная картина может наблюдаться из-за плохой пайки выводов светодиодов в печатной плате или приварки проволочек, идущих от кристалла светодиода к его выводу. Устраняется только поиском плохой пайки или заменой неисправного светодиода.
    Приходилось сталкиваться с подобной неисправностью. Если отказ из-за качества пайки выводов светодиодов, то достаточно пропаять их повторно. Но если отказал светодиод и через время лампа опять стала мигать, значит вышел из строя следующий. В таком случае диоды будут отказывать регулярно, пока не заменишь все.
    При ремонте, чтобы быстрее проявлялся отказ, светодиоды можно закутать тканью.
    Причина поломки лампочки – некачественные светодиоды и проще ее заменить новой, чем многократно возиться с ремонтом.

    Сергей 08.02.2018

    Здравствуйте.
    На диодной лампочке был пробит светодиод, впаял новый, вставил лампочку. Короткая вспышка и она погасла, пробило еще один светодиод. Впаял новый, ситуация повторилась. Токоограничивающий конденсатор неисправен?

    Александр

    Здравствуйте, Сергей.
    Если в схеме драйвера в качестве стабилизатора тока служит конденсатор, то судя по выгоранию светодиодов, конденсатор пробит и ток идет максимально возможный. Светодиод работает как предохранитель и выгорает тот, у которого минимальное падение напряжения.

    Yodgorbek 17.02.2019

    Добрый день Александр!
    Вы предлагаете закорачивать контакты сгоревших диодов и пишите, что это ни на что не влияет.
    Но почему вы не учитываете, что диоды соединены последовательно, то есть напряжение подается исходя из количества диодов. Сокращая количество диодов, на каждый диод увеличивается напряжение, соответственно и нагрузка. Тем самым вы сокращаете жизнь оставшихся диодов. Как раз вы это описали с лампой, которую вы ремонтировали каждую неделю...

    Александр

    Здравствуйте.
    Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки, в заданных пределах, на выходе драйвера ток будет всегда постоянным, а напряжение изменятся. Поэтому падение напряжения на каждом из светодиодов будет оставаться прежним.
    Поэтому при уменьшении количества последовательно соединённых светодиодов ток через них и приложенное напряжение к каждому светодиоду не изменятся.
    Например, если в цепочке последовательно соединённых 50 светодиодов, на каждом из которых падение напряжения составляло 3 В, и общее напряжение составлял 150 В, закоротить 5 штук, то выходное напряжение драйвера снизится до 135 В.
    Это подтверждает и закон Ома, в соответствии с которым U=IR. Если I остается неизменным, а R цепи уменьшается, то напряжение тоже пропорционально уменьшиться.

    Алексей 27.11.2020

    Добрый день!
    В статье Вы пишите, что драйвер стабилизирует ток. И поэтому можно замыкать выводы сгоревших светодиодов. Но у драйверов как правило указывают и другую характеристику - выходное напряжение, его минимум и максимум.
    Если прямое падение напряжения опустится ниже минимума драйвера, как изменится его поведение?

    Александр

    Здравствуйте, Алексей!
    Обычно электронный драйвер в светодиодные светильники устанавливается исходя из того, чтобы он работал в середине диапазона выходного напряжения, который обычно имеет не менее 10% запас. Поэтому если будут замкнуты выводы менее 10% светодиодов от общего количества, например, 5 из 50 установленных, то драйвер будет обеспечивать штатный режим работы оставшихся светодиодов. Если будет закорочено больше светодиодов и нагрузка на драйвер не будет соответствовать расчетной, то он уйдет в режим защиты и светодиоды светить не будут.

    Это не касается драйверов, в которых ток ограничивается с помощью конденсаторов, на схеме это С1. Такой драйвер будет работать даже если останется всего один светодиод из сотни. Правда и яркость свечения светильника станет в сто раз меньше.

    Евгений 13.12.2020

    Огромное спасибо за статью, очень профессионально и полезно.
    Если возможно подскажите, в чём неисправность. Лампы Jazzway 11W - 2шт (стабилизатор PT4515C) и EAC A60 15W (стабилизатор MT7606D, напаян на стороне светодиодов), одинаковый дефект, светят в пол накала все светодиоды.
    К сожалению, на пенсии и под руками только тестер. Как проверить?

    Александр

    Здравствуйте, Евгений!
    Микросхемы PT4515C, MT7606D и SM2082 являются стабилизаторами тока и включаются по одинаковой схеме. Достаточно надежные и из строя практически не выходят. Поэтому надо искать неисправный светодиод. Зачастую достаточно просто внимательно осмотреть кристалл на наличие изменения светоизлучающей поверхности (часто становится вместо матовой прозрачной с желтым оттенком) или темной точки. Если обнаружили, то этот светодиод точно неисправен.
    Проверить можно, если закоротить его выводы подгоревшего светодиода, лампа должна засветить в полную силу. Если не засветила, то возможно есть еще подгоревшие светодиоды.
    Но как я писал выше, в лампочках большой мощности с малой площадью охлаждения светодиоды работают в тяжелых температурных условиях и быстро выходят из строя. Поэтому после ремонта лампочка долго не проработает.

    Единственное что может помочь это увеличение на 10% номинала резистора R2, ток через светодиоды тогда уменьшится. Рабочая температура светодиодов тоже и тогда они возможно некоторое время еще послужат. Правда после модернизации яркость лампочки незначительно уменьшится.
    А вот если номинал резистора увеличить до начала эксплуатации лампы, то служить она будет дольше точно.

    Евгений

    Александр Николаевич!
    Большое спасибо. Последовательно замыкая светодиоды обнаружил в каждой лампе неисправный. Смущало то, что при работе в "пол-накала" во всех диодах светилось по 2-е полоски и друг от друга они не отличались.

    Александр 05.04.2021

    Добрый вечер!
    Думаю, по вопросу об эффективности замыкания неисправных светодиодов нужно одно уточнение.
    В простейших драйверах, где нет специализированной микросхемы и ток ограничивается с помощью конденсатора, нельзя сильно уменьшать количество светодиодов, замыкая неисправные. Конденсатор здесь является плохим стабилизатором тока, он просто гасит на себе избыточное напряжение, которое приблизительно равно разности между входным напряжением и суммой напряжений, падающих на светодиодах. Если замыкать светодиоды, то падение напряжения на конденсаторе возрастает, тогда возрастает ток через конденсатор и через всю цепь с оставшимися светодиодами. Если светодиодов в цепи много и замкнут только один-два из них, то ток возрастет незначительно, и лампа будет работать долго. Если же замкнуть много светодиодов, то ток через оставшиеся светодиоды сильно возрастает, и они быстро выйдут из строя.

    Александр

    Здравствуйте, Александр!
    Все вы изложили правильно. Но в настоящее время схемы драйверов, в которых ток ограничивается с помощью конденсаторов практически не встречаются, так как стоимость специально разработанных для этих целей микросхем, таких как PT4515C, MT7606D, CYT1000, 90035, SM2082 и им подобных, ниже.
    Пробовал удалять до 30% последовательно включенных светодиодов в лампах со схемами драйверов на этих микросхемах. Увеличения тока не наблюдалось. Единственное что наблюдалось это незначительное увеличение количества выделяемого тепла микросхемами.

    Анатолий 03.08.2021

    Здравствуйте, Александр!
    Сегодня взорвался конденсатор С2 на 2,2мкф-250в в драйвере светодиодной лампы. Фирма - Старт, Е27, 10W 40, 70 мА, 800 лм. Разобрал её: один светодиод с чёрной точкой, у электролитического конденсатора вылетел корпус. С этой ёмкости напряжение пошло сразу на пластину где расположены 14 светодиодов.

    Не могу понять: почему напряжение превысило 25 вольт? Каждый диод на 8,2В×14=115В должно быть на всех светодиодах, которые включены последовательно. Драйвер на микросхеме U2: KP1050DP AJ1CR7.1
    Почему на конденсаторе стало больше 250 В?
    Что-то не совпадает мощность: 220×0,07=15,4 ватт, а заявлено 10 Вт...
    Почему дебет с кредитом не совпадает?

    Александр

    Здравствуйте, Анатолий!
    Напряжение в сети бытовой электропроводки указывают эффективное, то есть эквивалентное напряжению постоянного тока. Поэтому 220 В, это не максимальное напряжение (размах синусоиды), которое больше эффективного в 1,41 (корень из 2). То есть Uмах=1,41Uэф=220×1,41=310 В. В дополнение в сети напряжение может по ГОСТу достигать величины 242 В. Если умножить на 1,41, получим 341 В.
    Таким образом для надежной работы нужно устанавливать конденсатор на напряжение не менее 350 В. Но некоторые производители из экономических и габаритных соображений устанавливают конденсаторы на 250 В. Конденсаторы всегда имею запас по напряжению, поэтому и работают, но временной ресурс их резко сокращается. Поэтому вздутие электролитических конденсаторов, это 50% отказов всех электротехнических изделий.
    А светодиод вышел из строя из-за перегрева, они работают в очень тяжелых температурных условиях и поэтому часто перегорают. Возможно большой нагрев и конденсатору помог взорваться.
    С мощностью происходит путаница. Некоторые производители указывают мощность, рассеиваемую светодиодами, а некоторые, потребляемую всей лампой. На драйвере тоже теряется часть потребляемой лампой мощности. В дополнение зачастую производители указывают в рекламных целях мощность, превышающую реальную. Поэтому данные и противоречивы.

    Сергей 17.08.2021

    Здравствуйте!
    Подскажите в чем может быть причина. Светодиодная лампа зажигается через 10-20 сек после подачи напряжения, особенно этот дефект проявляется пока лампа холодная. При кратковременном прогреве платы (феном), все включается без задержек. Менял электролитические конденсаторы, пропаял все (!) соединения, но так и не победил эту проблему. Возможно дефект в самой микросхеме драйвера, учитывая при какой температуре она работает.

    И еще вопрос подскажите назначения элементов C3,R3.
    Спасибо.

    Александр

    Здравствуйте, Сергей.
    Исходя из описанного Вами поведения светодиодной лампы, вероятнее всего неисправен один из светодиодов. Проверить светодиоды можно путем последовательного замыкания выводов каждого из них при холодном состоянии лампы. Если при замыкании выводов очередного светодиода все остальные засветятся, значит этот светодиод неисправен. Если все светодиоды исправны, значит дело в микросхеме.
    C3,R3 служит для погашения высокочастотных импульсов – сглаживания пульсаций, чтобы коэффициент пульсаций был меньше

    Очень важный параметр светодиодных ламп, о котором мало кто знает

    На упаковках светодиодных ламп можно найти множество параметров: мощность, световой поток, эквивалент мощности, индекс цветопередачи. Но один очень важный параметр производители указывают крайне редко. Это тип драйвера.

    По

    ГОСТ 29322-92

    в сети должно быть напряжение 230 вольт, однако тот же ГОСТ допускает отклонение сетевого напряжения ±10%, то есть допустимо напряжение от 207 до 253 вольт. Впрочем, во многих районах (особенно, сельских) напряжение иногда падает до 180 вольт и ниже.

    При пониженном напряжении обычные «лампочки Ильича» светят гораздо тусклее. На нижнем пороге допустимого напряжения 207 вольт, 60-ваттная лампа накаливания, рассчитанная на 230 В, светит, как 40-ваттная на номинальном напряжении (habr.com/ru/company/lamptest/blog/386513/).

    Работа светодиодных ламп на пониженном напряжении зависит от типа используемой электронной схемы (драйвера).

    Если в лампе используется простейший RC-драйвер или линейный драйвер на микросхеме, лампа ведёт себя почти так же, как лампа накаливания (светит тусклее при понижении напряжения, а при скачках напряжения в сети её свет «дёргается»).

    Если же используется IC-драйвер, яркость лампы не меняется при изменении напряжения питания в очень широких пределах. Фактически, у таких ламп есть встроенный стабилизатор.

    Если посмотреть на все светодиодные лампы, которые я протестировал в проекте Lamptest.ru, определяя тип драйвера, окажется, что у 3/4 всех ламп IC-драйвер и только у четверти линейный или RC-драйвер. Если же посмотреть только на филаментные лампы, картина резко меняется: из 321 протестированных ламп только у 131 (40%) IC-драйверы.

    У большинства ламп с линейным драйвером яркость падает на 5% от номинальной при снижении напряжения до 210-220 В и на 10% при напряжении 200-210В.

    Некоторые лампы с IC-драйвером не снижают яркость при падении напряжения даже до 50 вольт, но большинство стабильно работает при напряжении от 150 вольт.

    Вот так ведут себя две филаментные лампы (левая с IC-драйвером, правая — с линейным) при изменении напряжения от 230 до 160 вольт.

    Я измеряю минимальное напряжение, при котором световой поток лампы падает не более, чем на 5% от номинального. В таблице результатов Lamptest это напряжение указано в столбце «Вмин». Если при снижении напряжения световой поток начинает падать сразу, я указываю линейный (LIN) тип драйвера (столбец «drv»), если световой поток при снижении напряжения стабилен, а потом начинает снижаться, — тип драйвера IC1, если при снижении напряжения лампа выключается, — IC2, если начинает вспыхивать — IC3.

    К сожалению, тип драйвера по упаковке лампы и параметрам, приводимым производителями на сайтах, узнать почти невозможно. Отдельные производители пишут на упаковке «IC драйвер». Чаще пишут широкий диапазон напряжения, например «170-260В», но не всегда это соответствует действительности. На Lamptest много ламп, у которых указаны широкие диапазоны напряжений, а фактически в них установлен линейный драйвер и на нижней границе указанного диапазона они горят «вполнакала». Указание узкого диапазона «220-240 В» или просто «230 В» тоже ни о чём не говорит: множество таких ламп построены на IC-драйвере и фактически работают при значительно более низких напряжениях без снижения яркости.

    Всё, что я могу посоветовать для определения типа драйвера — смотреть результаты на Lamptest по лампе или её аналогам (тот же производитель, тот же тип, тот же цоколь), если конкретная модель лампы ещё не протестирована.

    Конечно, лампы с IC-драйвером лучше. Они не меняют яркость при уменьшении напряжения в сети и их свет не «дёргается» при перепадах напряжения. Кроме того, такой драйвер заведомо лучше защищён от любых перепадов напряжения и в целом более надёжен.

    Рекомендую учитывать при выборе светодиодных ламп тип драйвера и по возможности покупать лампы с IC-драйвером.

    © 2019, Алексей Надёжин

    светодиодов (светоизлучающих диодов) | Electronics Club

    Светодиоды (светодиоды) | Клуб электроники

    Тестирование | Цвет | Размеры и формы | Резистор | Светодиоды последовательно | Светодиодные данные | Мигает | Подставки

    Смотрите также: Лампы | Диоды

    LED = светоизлучающий диод

    светодиода излучают свет, когда через них проходит электрический ток.

    Электрические характеристики светодиода сильно отличаются от поведения лампы, и он должен быть защищен от пропускание чрезмерного тока, обычно это достигается подключением резистора последовательно со светодиодом. Никогда не подключайте светодиод напрямую к батарее или источнику питания.

    светодиода должны быть подключены правильно, на схеме может быть указано a или + для анода и k или - для катода (да, это действительно k, а не c, для катода). Катод - это короткий вывод, и на корпусе может быть небольшое сглаживание. круглых светодиодов. Если вы видите внутри светодиода, катод - это электрод большего размера, но это не официальный метод идентификации.

    Пайка светодиодов

    Светодиоды

    могут быть повреждены нагреванием при пайке, но риск невелик, если вы не будете очень медленными. При пайке большинства светодиодов особых мер предосторожности не требуется.

    Rapid Electronics: светодиоды


    Тестирование светодиода

    Никогда не подключайте светодиод напрямую к батарее или источнику питания , потому что светодиод скорее всего быть разрушенным чрезмерным током, проходящим через него.

    Светодиоды

    должны иметь последовательно включенный резистор для ограничения тока до безопасного значения, для в целях тестирования 1к резистор подходит для большинства светодиодов, если напряжение питания составляет 12 В или меньше. Не забудьте правильно подключить светодиод.

    Пожалуйста, смотрите ниже объяснение того, как разработать подходящий резистор. значение для светодиода.


    Цвета светодиодов

    Цвет светодиода определяется его полупроводниковым материалом, а не цветом. «упаковки» (пластиковый корпус). Светодиоды всех цветов доступны в неокрашенном виде. упаковки, которые могут быть рассеянными (молочными) или прозрачными (часто называемыми «прозрачными от воды»). Цветные упаковки также доступны в диффузных (стандартный тип) или прозрачных.

    Синие и белые светодиоды могут быть дороже других цветов.

    Двухцветные светодиоды

    Двухцветный светодиод имеет два светодиода, подключенных «обратно параллельно» (один вперед, один назад). объединены в один корпус с двумя выводами. Одновременно может гореть только один из светодиодов и они менее полезны, чем трехцветные светодиоды и светодиоды RGB, описанные ниже.

    Трехцветные светодиоды

    Самый популярный тип трехцветного светодиода, в котором красный и зеленый светодиоды объединены в один. пакет с тремя выводами.Их называют трехцветными, потому что смешанные красный и зеленый свет кажется желтым, и он появляется, когда горят и красный, и зеленый светодиоды.

    На схеме показана конструкция трехцветного светодиода. Обратите внимание на разные длины трех выводов. Центральный вывод (k) является общим катодом для оба светодиода, внешние выводы (a1 и a2) являются анодами для светодиодов, что позволяет каждый должен быть освещен отдельно, или оба вместе, чтобы дать третий цвет.

    Rapid Electronics: красный / зеленый светодиод

    RGB светодиодов

    светодиодов RGB содержат красный, зеленый и синий светодиоды в одном корпусе.Каждый внутренний светодиод можно переключить включается и выключается по отдельности, позволяя производить диапазон цветов:

    • Красный + зеленый дает желтый
    • Красный + синий дает пурпурный
    • Зеленый + синий дает голубой
    • Красный + зеленый + синий дает белый

    Можно получить более широкий диапазон цветов, изменяя яркость каждого внутреннего светодиода.

    Rapid Electronics: RGB LED



    Размеры, формы и углы обзора светодиодов

    Светодиоды

    доступны в самых разных размерах и формах.«Стандартный» светодиод имеет круглое поперечное сечение диаметром 5 мм, и это, вероятно, лучший тип для общего использования, но также популярны круглые светодиоды диаметром 3 мм.

    Светодиоды круглого сечения используются часто и их очень легко установить на коробки, просверлив отверстие под диаметр светодиода, добавив пятно клея, поможет удержать светодиод, если необходимо. Также доступны зажимы для светодиодов (изображенные на рисунке) для фиксации светодиодов в отверстиях. Другие формы поперечного сечения включают квадрат, прямоугольник и треугольник.

    Фотография © Rapid Electronics

    Светодиоды различаются не только цветами, размерами и формами, но и углом обзора.Это говорит вам, насколько распространяется луч света. Стандартные светодиоды имеют обзор угол 60 °, но другие имеют узкий луч 30 ° или меньше.

    Склад Rapid Electronics особенно широкий выбор светодиодов и их веб-сайт является хорошим руководством к широкому ассортименту доступных включая новейшие светодиоды высокой мощности.


    Расчет номинала резистора светодиода

    Светодиод должен иметь последовательно подключенный резистор для ограничения тока через светодиод. иначе он перегорит практически мгновенно.

    Номинал резистора R определяется по формуле:

    R = значение резистора в омах ().
    В S = напряжение питания.
    В L = напряжение светодиода (2 В или 4 В для синих и белых светодиодов).
    I = ток светодиода в амперах (A)

    Ток светодиода должен быть меньше максимально допустимого для вашего светодиода. Для светодиодов стандартного диаметра 5 мм максимальный ток обычно составляет 20 мА, поэтому значения 10 мА или 15 мА подходят для многих цепей. Для расчета ток должен быть в амперах (А), чтобы преобразовать его из мА в А, разделите ток в мА на 1000.

    Если расчетное значение недоступно, выберите ближайшее стандартное значение резистора. что на больше , так что ток будет немного меньше, чем вы выбрали. На самом деле вы можете выбрать резистор большего номинала, чтобы уменьшить ток. (например, для увеличения срока службы батареи), но это сделает светодиод менее ярким.

    Например

    Если напряжение питания V S = 9V, и у вас красный светодиод (V L = 2V), требующий тока I = 20 мА = 0.020А,
    R = (9В - 2В) / 0,02А = 350, так что выберите 390 (ближайшее стандартное значение, которое больше).

    Напряжение светодиода

    Напряжение V L светодиода определяется цветом светодиода. Красные светодиоды имеют самое низкое напряжение, желтые и зеленые немного выше. Наибольшее напряжение имеют синий и белый светодиоды.

    Для большинства целей точное значение не критично, и вы можете использовать 2 В для красных, желтых и зеленых светодиодов или 4 В для синих и белых светодиодов.

    Расчет формулы светодиодного резистора по закону Ома

    Закон Ома гласит, что сопротивление резистора R = V / I, где:
    В = напряжение на резисторе (в данном случае = В S - В L )
    I = ток через резистор

    Итак, R = (V S - V L ) / I

    Для получения дополнительной информации о расчетах см. Страницу закона Ома.



    Подключение светодиодов последовательно

    Если вы хотите, чтобы несколько светодиодов горели одновременно, их можно соединить последовательно. Это продлевает срок службы батареи за счет освещения нескольких светодиодов таким же током, как и только один светодиод.

    Все светодиоды, соединенные последовательно, пропускают одинаковый ток , поэтому лучше всего, если они все того же типа. Источник питания должен иметь достаточное напряжение, чтобы обеспечить около 2 В для каждого светодиода. (4 В для синего и белого) плюс еще минимум 2 В для резистора.Чтобы выработать ценность для резистора вы должны сложить все напряжения светодиодов и использовать это для V L .

    Пример расчетов:

    Для последовательного красного, желтого и зеленого светодиода требуется напряжение питания не менее 3 × 2 В + 2 В = 8 В, поэтому батарея 9 В и будет идеальной.
    В L = 2 В + 2 В + 2 В = 6 В (три напряжения светодиодов суммируются).
    Если напряжение питания V S составляет 9 В, а ток I должен быть 15 мА = 0,015 А,
    Резистор R = (V S - V L ) / I = (9-6) / 0.015 = 3 / 0,015 = 200,
    , поэтому выберите R = 220 (ближайшее стандартное значение, которое больше).

    Избегайте параллельного подключения светодиодов!

    Соединение нескольких светодиодов параллельно с одним общим резистором, как правило, является плохой идеей.

    Если для светодиодов требуется немного другое напряжение, загорится только светодиод с самым низким напряжением, и он может быть разрушен более сильным током, протекающим через него. Хотя идентичные светодиоды могут быть успешно подключены параллельно с одним резистором, что редко дает какую-либо полезную пользу потому что резисторы очень дешевые, а ток такой же, как при подключении светодиодов по отдельности.

    Если светодиоды включены параллельно, у каждого из них должен быть свой резистор.


    Чтение таблицы технических данных для светодиодов

    Веб-сайты и каталоги поставщиков обычно содержат таблицы технических данных для таких компонентов, как светодиоды. Эти таблицы содержат много полезной информации в компактной форме, но они могут быть трудным для понимания, если вы не знакомы с используемыми сокращениями. Вот важные свойства светодиодов:

    • Максимальный прямой ток, I F макс.
      «Вперед» означает, что светодиод правильно подключен.
    • Типичное прямое напряжение, В F тип.
      Это V L в расчете светодиодного резистора, около 2В или 4В для синих и белых светодиодов.
    • Сила света
      Яркость при заданном токе, например 32 мкд при 10 мА (мкд = милликандела).
    • Угол обзора
      60 ° для стандартных светодиодов, другие излучают более узкий луч около 30 °.
    • Длина волны
      Пиковая длина волны излучаемого света, она определяет цвет светодиода, е.грамм. красный 660 нм, синий 430 нм (нм = нанометр).

    Следующие два свойства можно игнорировать для большинства цепей:

    • Максимальное прямое напряжение, В F max.
      Это можно игнорировать, если у вас есть подходящий резистор, включенный последовательно.
    • Максимальное обратное напряжение, В R max.
      Этим можно пренебречь, если светодиоды подключены правильно.

    Мигающие светодиоды

    Мигающие светодиоды выглядят как обычные светодиоды, но содержат ИС (интегральную схему) а также сам светодиод.ИС мигает светодиодом с низкой частотой, например 3 Гц (3 вспышки в секунду). Мигающие светодиоды предназначены для прямого подключения к определенному напряжению питания, например, 5 В или 12 В. без последовательного резистора. Обратитесь к поставщику, чтобы узнать безопасный диапазон напряжения питания для конкретный мигающий светодиод. Частота вспышек фиксированная, поэтому их использование ограничено, и вы можете предпочесть построить свою собственную схему для мигания обычного светодиода, например Проект мигающего светодиода, в котором используется 555 нестабильная схема.

    Rapid Electronics: мигающие светодиоды


    Светодиодные экраны

    Светодиодные экраны

    представляют собой пакеты из множества светодиодов, расположенных по схеме, наиболее знакомой схеме. является 7-сегментным дисплеем для отображения чисел (цифры 0–9).Картинки ниже проиллюстрировать некоторые из популярных дизайнов.

    Гистограмма, 7-сегментные, звездообразные и матричные светодиодные дисплеи
    Фотографии © Rapid Electronics

    Rapid Electronics: светодиодные дисплеи

    Подключение выводов светодиодных дисплеев

    Существует много типов светодиодных дисплеев, поэтому для получения дополнительной информации обратитесь к каталогу или на веб-сайте поставщика. штыревые соединения. На диаграмме справа показан пример из Быстрая электроника. Как и многие 7-сегментные дисплеи, этот пример доступен в двух версиях: Общий анод (SA) со всеми анодами светодиодов, соединенными вместе, и общий катод (SC) со всеми катодами, соединенными вместе.Буквы a-g относятся к 7 сегментам, A / C является общим анодом или катодом, в зависимости от ситуации (на 2 штыря). Обратите внимание, что некоторые контакты нет (NP), но их позиция все еще пронумерована.

    См. Также: Драйверы дисплея.


    Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент светодиодов, других компонентов и инструментов для электроники, и я рад рекомендую их как поставщика.


    Книги по комплектующим:


    Политика конфиденциальности и файлы cookie

    Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

    electronicsclub.info © Джон Хьюс 2021 г.

    Светодиодная лента Внутренняя схема и информация о напряжении


    В этой статье рассматривается внутренняя схема и принцип работы светодиодной ленты. Эта информация предназначена для обсуждения технических вопросов и не является необходимой для обычных пользователей, заинтересованных в регулярном использовании светодиодных лент.


    Назад к основам - Напряжение светодиодного чипа


    Указанное напряжение светодиодной ленты - например, 12В или 24В - в первую очередь определяется:

    1) указанным напряжением используемых светодиодов и компонентов, а

    2) конфигурацией светодиодов на светодиодной ленте.

    Светодиоды обычно представляют собой устройства с напряжением 3 В. Это означает, что если между положительным и отрицательным концами светодиода будет приложена разница в 3 В, он загорится.


    Что произойдет, если у вас будет несколько светодиодов в цепочке, один за другим (серией)? В этом случае напряжения отдельных светодиодов суммируются.

    Следовательно, для трех последовательно соединенных светодиодов потребуется прямое напряжение 9 В (3 В x 3 светодиода), а для 6 последовательно соединенных светодиодов потребуется прямое напряжение 18 В (3 В x 6 светодиодов).



    Помимо светодиодов, также необходим один или несколько токоограничивающих резисторов, чтобы гарантировать, что светодиодная лента не перейдет в режим перегрузки по току. Резистор также включен последовательно со светодиодами, и его значение сопротивления рассчитывается таким образом, чтобы он также потреблял примерно 3 вольта.

    Итак, 3 последовательно соединенных светодиода требуют 9 вольт для светодиодов и 3 вольт для резистора, что доводит нас до 12 вольт.

    Для шести последовательно соединенных светодиодов требуется 18 вольт для светодиодов и 3 вольта на резистор (x2), что доводит нас до 24 вольт.



    Это «строительные блоки» для каждой группы светодиодов на светодиодной ленте. То, как он размещен на светодиодной ленте, можно визуализировать на нашем рисунке ниже:


    Что происходит с параллельными светодиодами? Напряжение остается прежним, но ток распределяется поровну между каждой из параллельных цепей. Следовательно, если у вас есть 3 параллельные группы, каждая из которых потребляет 50 мА при 24 В, общая потребляемая мощность составляет 150 мА, также при 24 В.


    Эти два примера с 3 светодиодами и 6 светодиодами показывают, как сконфигурирована типичная светодиодная лента на 12 и 24 вольт. Потому что в светодиодных лентах используются светодиодные устройства на 3 вольта и они сконфигурированы так, чтобы иметь несколько параллельных цепочек из 3 или 6 светодиодов.


    Вы должны подавать точно указанное напряжение?


    Вам может быть интересно, означает ли 12 вольт ровно 12,0 вольт или 11,9 вольт все еще будут работать? Хорошая новость заключается в том, что мощность, подаваемая на светодиодную ленту, оставляет желать лучшего.

    Ниже приведена диаграмма из таблицы данных светодиодов, показывающая, сколько тока будет проходить через светодиод в зависимости от напряжения.

    Вы увидите, что, например, при 3,0 В этот конкретный светодиод потребляет около 120 мА. Если мы уменьшим напряжение до 2,9 В, светодиод будет потреблять немного меньше, всего около 80 мА. Если мы увеличим напряжение до 3,1 В, светодиод будет потреблять больше, примерно 160 мА.


    Поскольку в светодиодной полосе 12 В имеется 3 последовательно соединенных светодиода и резистор, подача 11 В вместо 12 В немного похожа на уменьшение напряжения для каждого светодиода на 0.25В.

    Будут ли светодиоды работать при 2,75 В? Если мы обратимся к таблице выше, окажется, что потребляемый ток упадет со 120 мА на светодиод до примерно 40 мА.

    Хотя это довольно значительное падение, светодиоды будут работать нормально, хотя и с гораздо более низким уровнем яркости.

    Что, если бы мы подавали только 10 В на светодиодную ленту на 12 В? В этом случае мы уменьшаем напряжение на каждый светодиод на 0,5 В. Если обратиться к таблице, то при 2,5 В светодиоды почти не потребляют ток.

    Скорее всего, на этом уровне напряжения вы увидите очень тусклую светодиодную ленту.

    Все напряжения ниже номинального значения светодиодной ленты являются безопасными, так как вы всегда будете потреблять меньший ток и, следовательно, исключить любую возможность повреждения или перегрева. Но как насчет уровней напряжения более 12 В?

    Давайте посмотрим на питание 12,8 В светодиодной ленты 12 В. Это увеличивает напряжение на светодиод на 0,20 В.

    На наш светодиод теперь подается напряжение 3,2 В, при котором диаграмма показывает потребляемый ток 200 мА.


    Так уж получилось, что максимальный ток производителя составляет 200 мА.Если установить более высокое значение, вы рискуете повредить светодиод.

    И имейте в виду, что каждый светодиод будет иметь разные характеристики, и присущие производственные различия могут повлиять на фактические диапазоны напряжения, которые приемлемы для конкретной светодиодной ленты.

    Мы показали, что для светодиодной ленты на 12 В она может переходить от темноты к перегрузке в узком диапазоне от 10 В до 12,8 В.

    Хотя можно подавать напряжение, немного отличающееся от номинального, вы должны быть осторожны и точны, чтобы не повредить светодиоды.


    Как насчет уменьшения яркости светодиодной ленты?


    Один из способов уменьшить яркость светодиодной ленты - установить входное напряжение ниже номинального уровня, как мы видели выше. В действительности, однако, силовая электроника не очень хорошо снижает выходное напряжение таким образом.

    Предпочтительным методом является использование так называемой ШИМ (широтно-импульсной модуляции), когда светодиоды включаются и выключаются с большой скоростью. Регулируя соотношение времени включения и выключения (рабочий цикл), можно отрегулировать видимую яркость светового потока светодиодной ленты.

    Для светодиодной ленты 12 В это означает, что она всегда получает либо полное напряжение 12 В, либо 0 В, в зависимости от того, в какой части цикла ШИМ мы находимся.

    Аналогичным образом, мы также знаем, что светодиод потребляет одинаковое количество тока, когда он находится в состоянии «включено», независимо от его рабочего цикла. Это дополнительное преимущество для светодиодных лент, цветовая температура которых должна оставаться постоянной даже при изменении яркости.


    Итог


    Одно из значительных преимуществ светодиодных лент - это простота, но универсальность: они сочетаются с простыми устройствами питания постоянного напряжения.

    Иногда может быть полезно понять внутреннюю работу таких устройств, поскольку это может помочь нам понять некоторые из более тонких аспектов их работы, такие как изменение яркости и входного напряжения.

    Правильный диапазон напряжения для светодиодных приложений

    Новое в апреле 2019 г.

    Выбор драйвера светодиода с правильным рабочим диапазоном напряжения (область постоянного тока) может показаться довольно простым, но в этой статье будет объяснено, что это не так просто.Во-первых, нужно понимать, что прямые напряжения светодиодов не идентичны от кристалла к кристаллу. Во-вторых, напряжение светодиода меняется при повышении или понижении температуры перехода. Поскольку правильная работа драйвера имеет решающее значение для функциональности и надежности лампы, стоит подробнее изучить эти факторы, влияющие на напряжение светодиода. В этой статье объясняются типичные проблемы, связанные с прямым напряжением светодиодов, и как правильно определить необходимый запас для напряжения драйвера светодиода.Он также предлагает поискать новую функцию, которая есть в некоторых новых драйверах светодиодов, которые могут работать с временным повышенным выходным напряжением, чтобы обойти проблему высокого напряжения светодиодов при чрезвычайно низкой температуре.

    Конструкция светодиодной лампы - это многомерная инженерная работа, которая включает оптические, тепловые и электрические аспекты проектирования. Для достижения оптических требований в первую очередь решаются тип и количество светодиода, а также ток его возбуждения. В зависимости от определенных соображений безопасности и / или модульного подхода к проектированию определенное количество светодиодов помещается в одну цепочку, а другие - параллельно.Когда эти коэффициенты определены, первая оценка рабочего напряжения светодиода может быть сделана путем умножения количества светодиодов в одной цепочке на типичное прямое напряжение ( В вперед ) этого светодиода.

    V forward_total = V forward x Num / String

    Вышеприведенный расчет дает приблизительное представление о диапазоне рабочего напряжения, и вместе с определенным током возбуждения можно узнать потребляемую мощность. Однако это число не является абсолютным значением и не подходит для обеспечения правильной электрической конструкции.Чтобы конструктивно учитывать напряжение драйвера, напряжение светодиода следует учитывать с помощью 1) характеристики VI, 2) производственных вариаций и 3) температурного коэффициента. В нижеследующем абзаце эти 3 аспекта объясняются отдельно, а в конце В статье приведен пример оценки напряжения и этапов выбора драйвера светодиода.

    Вольт-амперные характеристики светодиода

    Для идеального светодиода прямое напряжение не изменяется при увеличении тока (рис. 1.). На самом деле прямое напряжение ДЕЙСТВИТЕЛЬНО изменяется с током, и важно проверять напряжение светодиода на основе фактического расчетного тока, а не ссылаться на стандартные условия тестирования, указанные в спецификации.
    В приведенном ниже примере характеристики показывают, что типичное напряжение светодиода составляет 3,2 В. Если светодиод не используется при токе 350 мА, а 1 А, то вместо 3,2 В / светодиод фактическое типичное напряжение светодиода составляет 3,8 В / светодиод. Эта разница в 0,6 В может привести к совсем другому результату, когда большое количество светодиодов включены последовательно. Более того, ситуация может усугубиться, если драйвер светодиода имеет высокий пульсирующий ток, который приведет к пиковому току выше 1 А и, таким образом, пиковое напряжение превысит 3,8 В.

    904 904 3.2
    Характеристики Агрегат Минимум Типичный Максимум
    Прямое напряжение (при 350 мА, 85 ° 14 В) 3,48
    Рис. 1. Рис. 2.

    Производственный допуск светодиода

    Прямое напряжение светодиода на каждой матрице изменяется из-за дрейфа процесса. Зрелая продукция должна обеспечивать более жесткий допуск, приводящий к нормальному распределению (например, рис. 3). Типичный допуск по напряжению из-за производственного отклонения составляет менее 10%, что может быть косвенно выведено из отношения максимального к типичному типичному прямому напряжению в таблице данных светодиодов (см. Столбцы 4 и 5 таблицы 1).С другой стороны, производственные данные, такие как фактическое распределение прямого напряжения, может потребоваться напрямую у производителя светодиодов.
    Хотя абсолютный максимум / минимум составляет +/- 10%, по статистике, чем больше светодиодов соединено последовательно, тем более вероятно, что суммарное прямое напряжение установится около типичного значения напряжения. Рекомендуется создать некоторый запас по напряжению, запас в 10% от типичного напряжения считается безопасным. Также можно рассмотреть более высокий запас, который улучшит рабочее состояние драйвера и продлит срок его службы.Рис. 3 Прямое распределение напряжения на светодиодах производства

    LED Vf. Против. Temp

    Прямое напряжение светодиода имеет отрицательный температурный коэффициент, это означает, что чем выше температура, тем ниже прямое напряжение. Поскольку светодиод является самонагревающимся элементом, при правильной тепловой конструкции лампы постоянная рабочая температура и рабочее напряжение светодиода обычно довольно стабильны. Худший случай наступает, когда лампа запускается при низкой температуре. Чтобы оценить дополнительное напряжение при низкой температуре, в спецификации светодиода представлена ​​типичная кривая V-T в соответствии со стандартными условиями испытаний (например,грамм. 350 мА). Многие производители также предоставляют программный инструмент для проверки напряжения в соответствии с переменными параметрами, такими как температура перехода (Tj), ток возбуждения и т.д. допуск или текущая разница. В первом случае потребность в напряжении носит временный характер, и поэтому запас по напряжению не нужно резервировать постоянно. На рынке есть несколько продвинутых светодиодных драйверов, оснащенных функцией адаптации к напряжению, чтобы справиться с кратковременными требованиями к напряжению.

    Mean Well HLG-480H-C, например, имеет функцию «адаптации к окружающей среде», которая может автоматически уменьшать выходной ток для замены на более высокое выходное напряжение, сохраняя при этом общую выходную мощность в пределах номинальных значений. Когда лампа включается и постепенно нагревается, напряжение возвращается к нормальному уровню, а затем ток также возвращается к исходному расчетному значению. Функция адаптации к окружающей среде обеспечивает на 20% больше запаса по напряжению, чем обычный драйвер светодиодов. HLG-480H-C1400, который работает при 171 ~ 343 В, может временно повыситься до 412 В, чтобы обеспечить успешный запуск ламп при чрезвычайно низкой температуре (например,грамм. -40 ° С).

    Серия HVGC с постоянной мощностью, аналогично, допускает более высокое выходное напряжение при уменьшении тока. Есть также другие возможности для других моделей. Если есть какие-либо вопросы по поводу запуска светодиодов, свяжитесь с MEAN WELL, чтобы получить лучшие предложения.

    Рис. 4 Зависимость температуры от прямого напряжения

    Пример и сводка

    В конструкции лампы используется 100 светодиодов, как на рис. 2, ток возбуждения составляет 1,05 А. Всего есть 2 струны, что означает, что каждая струна имеет 50 светодиодов. Самая низкая рабочая температура согласно спецификации лампы составляет 0 ° C.Для определения требований к напряжению:

    Решение 1. Введите эти параметры в программное обеспечение ПК и получите рабочую точку светодиода с запасом. Подробности уточняйте у производителя.

    Решение 2: Проверьте таблицу светодиодов и выполните следующие действия:

    • Шаг 1: Проверьте кривую V-I светодиода, найдите напряжение на кривой в соответствии с заданным током.

      Согласно рис. 2 типичное прямое напряжение светодиода при 1,05 А составляет 3,8 В

    • Шаг 2: Умножьте это напряжение на количество светодиодов в одной цепочке.

      3,8 (В) x 50 (шт) = 190 В

    • Шаг 3: Учет производственных допусков с использованием отношения максимального напряжения к типу.

      3,48 (В) / 3,2 (В) = 108,75%
      190 (В) x 108,75% = 206,6 (В)

      Краткое описание:
      Типичное общее прямое напряжение светодиода составляет 190 В
      Общее прямое напряжение светодиода в худшем случае составляет 207 В *
      (* пульсации тока от драйвера здесь не рассматриваются.)

    • Шаг 4: Рассмотрение температурного коэффициента для оценки напряжения запуска наихудшего случая.

      Из рис. 4, тип. напряжение при 0 ° C составляет 3,6 В, при 85 ° C - 3,2 В.
      Предположим, светодиодная лампа обычно работает при Tj 85 ° C
      3,6 (В, Tj = 0) / 3,2 (В, Tj = 85) = 1,125 менее 1,2
      При холодном запуске
      Общее прямое напряжение светодиода типичное составляет 190 В x 1,2 = 228 V
      В худшем случае общее прямое напряжение светодиода составляет 207 В x 1,2 = 248,4 В

    Предлагаемая модель: HLG-480H-C2100, причина указана ниже

    Светодиодной лампе требуется типичное напряжение 190 В и 2,1 А (399 Вт) в худшем случае 207 В (435 Вт). Это в пределах рейтинга HLG-480C.Кроме того, HLG-480H имеет очень низкую пульсацию тока, поэтому влияние пульсации на изменение напряжения светодиода можно игнорировать. При низкой температуре требование к напряжению может временно превышать 249 В, что выходит за рамки нормального диапазона постоянного тока, однако такая ситуация возникает редко, и ее можно покрыть функцией адаптации к окружающей среде HLG-480H-C2100, которая максимально поддерживает 275 В с приведенный ток.

    Эта статья написана компанией Mean Well с сайта www.meanwell.com

    светодиодов (LED) - узнать.sparkfun.com

    Добавлено в избранное Любимый 63

    Введение

    Светодиоды нас окружают: В наших телефонах, автомобилях и даже в наших домах. Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за ним находится светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта: они - бекон электроники.Они широко используются для улучшения любого проекта и часто добавляются к невероятным вещам (ко всеобщему удовольствию).

    Однако, в отличие от бекона, после приготовления они бесполезны. Это руководство поможет вам избежать случайных светодиодных барбекю! Но обо всем по порядку. Что именно - это , эта светодиодная штука, о которой все говорят?

    светодиода (это «эл-и-ди») - это особый тип диодов, преобразующих электрическую энергию в свет. Фактически, LED расшифровывается как «Light Emitting Diode».«(Он делает то, что написано на жестяной банке!) И это отражается в сходстве схемных обозначений диода и светодиода:

    Короче говоря, светодиоды похожи на крошечные лампочки. Однако светодиоды требуют гораздо меньше энергии для включения по сравнению. Они также более энергоэффективны, поэтому не нагреваются, как обычные лампочки (если вы действительно не накачиваете их энергией). Это делает их идеальными для мобильных устройств и других приложений с низким энергопотреблением. Однако не стоит их исключать из игры с большим потенциалом.Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!

    У вас уже есть тяга? Желание поставить светодиоды на все? Хорошо, оставайтесь с нами, и мы покажем вам, как это сделать!

    Рекомендуемая литература

    Вот еще несколько тем, которые будут обсуждаться в этом руководстве. Если вы не знакомы с каким-либо из них, пожалуйста, ознакомьтесь с соответствующим руководством, прежде чем продолжить.

    Что такое схема?

    Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

    Что такое электричество?

    Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

    Диоды

    Праймер диодный! Свойства диодов, типы диодов и их применение.

    Электроэнергетика

    Обзор электроэнергии, скорости передачи энергии. Мы поговорим об определении мощности, ваттах, уравнениях и номинальной мощности. 1,21 гигаватта учебного удовольствия!

    Полярность

    Введение в полярность электронных компонентов. Узнайте, что такое полярность, в каких частях она есть и как ее идентифицировать.

    Рекомендуемый просмотр

    Как ими пользоваться

    Итак, вы пришли к разумному выводу, что светодиоды нужно ставить на все.Мы думали, ты придешь.

    Давайте пройдемся по книге правил:

    1) Полярность имеет значение

    В электронике полярность указывает, является ли компонент схемы симметричным или нет. Светодиоды, будучи диодами, пропускают ток только в одном направлении. А когда нет тока, нет света. К счастью, это также означает, что вы не можете сломать светодиод, подключив его обратной стороной. Скорее, это просто не сработает.

    Положительная сторона светодиода называется «анодом» и отмечена более длинным «выводом» или ножкой.Другая, отрицательная сторона светодиода называется «катодом» . Ток течет от анода к катоду и никогда не течет в обратном направлении. Перевернутый светодиод может препятствовать правильной работе всей схемы, блокируя прохождение тока. Так что не волнуйтесь, если добавление светодиода нарушит вашу цепь. Попробуйте перевернуть.

    2) Морское течение равно Моаровому свету

    Яркость светодиода напрямую зависит от того, сколько тока он потребляет. Это означает две вещи. Во-первых, сверхяркие светодиоды разряжают батареи быстрее, потому что дополнительная яркость возникает из-за потребляемой дополнительной мощности.Во-вторых, вы можете управлять яркостью светодиода, контролируя количество проходящего через него тока. Но создание настроения - не единственная причина сократить свое течение.

    3) Есть такая вещь, как слишком много мощности

    Если вы подключите светодиод непосредственно к источнику тока, он попытается рассеять столько энергии, сколько ему позволено потреблять, и, как трагические герои прошлого, он уничтожит себя. Вот почему важно ограничить силу тока, протекающего через светодиод.

    Для этого используем резисторы. Резисторы ограничивают поток электронов в цепи и защищают светодиод от попыток потреблять слишком большой ток. Не волнуйтесь, требуется лишь немного математики, чтобы определить наилучшее значение резистора для использования. Вы можете узнать все об этом в примерах применения нашего руководства по резисторам!

    Резисторы

    1 апреля 2013 г.

    Учебник по резисторам. Что такое резистор, как они ведут себя параллельно / последовательно, расшифровка цветовых кодов резисторов и применения резисторов.

    Не позволяйте всей этой математике пугать вас, на самом деле очень сложно что-то испортить. В следующем разделе мы рассмотрим, как сделать схему на светодиодах без калькулятора.

    Светодиоды без математики

    Прежде чем мы поговорим о том, как читать таблицу, давайте подключим несколько светодиодов. В конце концов, это руководство по светодиодам, а не руководство по и .

    Это также не учебник по математике, поэтому мы дадим вам несколько практических правил по настройке и работе светодиодов.Как вы, наверное, уже поняли из информации в последнем разделе, вам понадобится аккумулятор, резистор и светодиод. Мы используем батарею в качестве источника питания, потому что их легко найти и они не могут обеспечить опасное количество тока.

    Базовый шаблон для схемы светодиода довольно прост: просто подключите батарею, резистор и светодиод последовательно. Нравится:


    Резистор 330 Ом

    Хорошее сопротивление резистора для большинства светодиодов составляет 330 Ом (оранжевый - оранжевый - коричневый).Вы можете использовать информацию из последнего раздела, чтобы помочь вам определить точное значение, которое вам нужно, но это светодиоды без математики ... Итак, начните с подключения резистора 330 Ом в приведенную выше схему и посмотрите, что произойдет.

    Пробная версия и ошибка

    Что интересно в резисторах, так это то, что они рассеивают дополнительную мощность в виде тепла, поэтому, если у вас есть резистор, который нагревается, вам, вероятно, нужно использовать меньшее сопротивление. Однако, если ваш резистор слишком мал, вы рискуете пережечь светодиод! Учитывая, что у вас есть несколько светодиодов и резисторов, с которыми можно поиграть, вот блок-схема, которая поможет вам разработать схему светодиодов методом проб и ошибок:


    Броски с таблеткой

    Еще один способ зажечь светодиод - просто подключить его к батарейке типа «таблетка»! Так как батарейка не может подавать ток, достаточный для повреждения светодиода, вы можете соединить их напрямую! Просто вставьте батарейку CR2032 между выводами светодиода.Длинная ножка светодиода должна касаться стороны батареи, отмеченной знаком «+». Теперь вы можете обернуть все это скотчем, добавить магнит и приклеить его к вещам! Ура пуховикам!

    Конечно, если вы не получаете хороших результатов с помощью метода проб и ошибок, вы всегда можете достать свой калькулятор и вычислить его. Не волнуйтесь, рассчитать лучшее значение резистора для вашей схемы несложно. Но прежде чем вы сможете определить оптимальное значение резистора, вам необходимо найти оптимальный ток для вашего светодиода.Для этого нам нужно сообщить в таблицу ...

    Узнать подробности

    Не подключайте какие-либо странные светодиоды к своим цепям, это просто не здорово. Сначала узнайте их. А как лучше даташит читать.

    В качестве примера мы рассмотрим техническое описание нашего базового красного 5-миллиметрового светодиода.

    Светодиодный ток

    Начиная сверху и спускаясь вниз, первое, что мы встречаем, - это очаровательный столик:

    Ах да, но что все это значит?

    Первая строка в таблице показывает, какой ток ваш светодиод может выдерживать непрерывно.В этом случае вы можете дать ему 20 мА или меньше, и он будет светить наиболее ярко при 20 мА. Вторая строка сообщает нам, каким должен быть максимальный пиковый ток для коротких импульсов. Этот светодиод может обрабатывать короткие удары до 30 мА, но вы не хотите поддерживать этот ток слишком долго. Эта таблица данных достаточно полезна, чтобы предложить стабильный диапазон тока (в третьей строке сверху) 16-18 мА. Это хорошее целевое число, которое поможет вам произвести расчеты резисторов, о которых мы говорили.

    Следующие несколько строк менее важны для целей данного руководства.Обратное напряжение - это свойство диода, о котором в большинстве случаев не стоит беспокоиться. Рассеиваемая мощность - это количество энергии в милливаттах, которое светодиод может использовать до того, как получит повреждение. Это должно работать само по себе, пока вы держите светодиод в пределах предполагаемых номинальных значений напряжения и тока.

    Напряжение светодиода

    Давайте посмотрим, какие еще таблицы они здесь поставили ... Ах!

    Это полезный столик! Первая строка сообщает нам, каким будет прямое падение напряжения на светодиоде.Прямое напряжение - это термин, который часто используется при работе со светодиодами. Это число поможет вам решить, какое напряжение вашей цепи потребуется для подачи на светодиод. Если у вас есть более одного светодиода, подключенного к одному источнику питания, эти числа действительно важны, потому что прямое напряжение всех светодиодов, сложенных вместе, не может превышать напряжение питания. Мы поговорим об этом более подробно позже, в более глубоком разделе этого руководства.

    Длина волны светодиода

    Во второй строке этой таблицы указывается длина волны света.Длина волны - это, по сути, очень точный способ объяснить, какого цвета свет. Это число может немного отличаться, поэтому таблица дает нам минимум и максимум. В данном случае это от 620 до 625 нм, что находится как раз на нижнем красном конце спектра (от 620 до 750 нм). Опять же, мы рассмотрим длину волны более подробно в более глубоком разделе.

    Яркость светодиода

    Последняя строка (обозначенная как «Luminous Intensity») - это показатель яркости светодиода. Единица мкд, или милликандела, - это стандартная единица измерения интенсивности источника света.Этот светодиод имеет максимальную интенсивность 200 мкд, что означает, что он достаточно яркий, чтобы привлечь ваше внимание, но не совсем яркий фонарик. На 200 мкд этот светодиод будет хорошим индикатором.

    Угол обзора

    Далее у нас есть веерообразный график, который представляет угол обзора светодиода. В светодиодах разных стилей используются линзы и отражатели, чтобы либо сконцентрировать большую часть света в одном месте, либо максимально широко его распределить. Некоторые светодиоды похожи на прожекторы, испускающие фотоны во всех направлениях; Другие настолько направлены, что вы не можете сказать, что они идут, если не смотрите прямо на них.Чтобы прочитать график, представьте, что светодиод вертикально стоит под ним. «Спицы» на графике обозначают угол обзора. Круглые линии представляют интенсивность в процентах от максимальной интенсивности. У этого светодиода довольно узкий угол обзора. Вы можете видеть, что если смотреть прямо на светодиод, то он самый яркий, потому что при 0 градусах синие линии пересекаются с самым дальним кругом. Чтобы получить угол обзора 50%, то есть угол, при котором свет становится вдвое слабее, проследите по кругу 50% по графику, пока он не пересечет синюю линию, а затем проследите за ближайшей спицей, чтобы определить угол.Для этого светодиода угол обзора 50% составляет около 20 градусов.

    Размеры

    Наконец, механический чертеж. Это изображение содержит все размеры, которые вам потребуются для установки светодиода в корпусе! Обратите внимание, что, как и у большинства светодиодов, у этого есть небольшой фланец внизу. Это очень удобно, если вы хотите установить его на панели. Просто просверлите отверстие идеального размера для корпуса светодиода, и фланец не даст ему провалиться!

    Теперь, когда вы знаете, как расшифровать таблицу, давайте посмотрим, какие необычные светодиоды вы можете встретить в дикой природе...

    Типы светодиодов

    Поздравляю, вы знаете основы! Может быть, вы даже заполучили несколько светодиодов и начали зажигать, это круто! Хотели бы вы активизировать свою игру в миг? Давайте поговорим о том, как сделать это за пределами вашего стандартного светодиода.

    Крупный план сверхяркого 5-мм светодиода крупным планом

    Типы светодиодов

    А вот и другие персонажи.

    RGB светодиодов

    Светодиоды

    RGB (красный-зеленый-синий) на самом деле представляют собой три светодиода в одном! Но это не значит, что он может делать только три цвета.Поскольку красный, зеленый и синий являются дополнительными основными цветами, вы можете управлять интенсивностью каждого из них, чтобы создать каждый цвет радуги. Большинство светодиодов RGB имеют четыре контакта: по одному для каждого цвета и общий контакт. У некоторых общий штифт - это анод, а у других - катод.

    Светодиод с общим прозрачным катодом RGB

    светодиодов с интегральными схемами

    Велоспорт

    Некоторые светодиоды умнее других. Возьмем, к примеру, светодиодный индикатор велосипедного режима. Внутри этих светодиодов на самом деле есть интегральная схема, которая позволяет светодиоду мигать без какого-либо внешнего контроллера.Вот крупный план ИС (большой черный квадратный чип на кончике наковальни), контролирующий цвета.

    5-миллиметровый светодиод с медленным циклом крупным планом

    Просто включите его и смотрите! Они отлично подходят для проектов, где вам нужно немного больше действий, но нет места для схем управления. Есть даже мигающие светодиоды RGB, которые сменяют тысячи цветов!

    Адресные светодиоды

    Светодиоды других типов можно регулировать индивидуально.Существуют различные наборы микросхем (WS2812, APA102, UCS1903, и многие другие), используемые для управления отдельным светодиодом, соединенным в цепочку. Ниже представлен крупный план WS2812. Большая квадратная микросхема справа регулирует цвета по отдельности.

    Адресный WS2812 PTH крупным планом

    Встроенный резистор

    Что это за магия? Светодиод со встроенным резистором? Верно. Есть также светодиоды с небольшим токоограничивающим резистором. Если вы внимательно посмотрите на изображение ниже, на стойке есть небольшая черная квадратная микросхема, которая ограничивает ток на этих типах светодиодов.

    Светодиод со встроенным резистором крупным планом

    Итак, подключите светодиод со встроенным резистором к источнику питания и зажгите его! Мы протестировали эти типы светодиодов при напряжении 3,3, 5 и 9 В.

    Суперяркий зеленый светодиод с питанием от встроенного резистора

    Примечание: В техническом описании светодиодов со встроенным резистором указано, что рекомендуемое прямое напряжение составляет около 5 В. При тестировании на 5 В он потребляет около 18 мА.Стресс-тест с батареей 9В, тянет около 30мА. Вероятно, это верхний предел входного напряжения. Использование более высокого напряжения может сократить срок службы светодиода. При напряжении около 16 В светодиод перегорел.

    Пакеты для поверхностного монтажа (SMD)

    Светодиоды

    SMD - это не столько конкретный вид светодиода, сколько тип корпуса. Поскольку электроника становится все меньше и меньше, производители придумали, как втиснуть больше компонентов в меньшее пространство. Детали SMD (устройство для поверхностного монтажа) представляют собой крошечные версии своих стандартных аналогов.Вот крупный план адресного светодиода WS2812B, упакованного в небольшой корпус 5050.

    Адресный WS2812B Крупный план

    Светодиоды

    SMD бывают разных размеров, от довольно больших до меньших, чем рисовое зернышко! Поскольку они такие маленькие и у них есть прокладки вместо ножек, с ними не так просто работать, но если у вас мало места, они могут быть именно тем, что прописал врач.

    WS2812B-5050 Упаковка APA102-2020 Пакет

    Светодиоды SMD также упрощают и ускоряют сборку и установку машин для установки большого количества светодиодов на печатные платы и полосы.Вероятно, вы не стали бы вручную паять все эти компоненты вручную.

    Крупный план адресной светодиодной матрицы 8x32 (WS2812-5050) Адресная светодиодная лента 5 м (APA102-5050) с питанием от ленты

    Высокая мощность

    мощных светодиода от таких производителей, как Luxeon и CREE, невероятно яркие. Они ярче суперярких! Как правило, светодиод считается высокомощным, если он может рассеивать мощность 1 Вт или более.Это необычные светодиоды, которые вы найдете в действительно хороших фонариках. Массивы из них могут быть построены даже для прожекторов и автомобильных фар. Поскольку через светодиоды пропускается очень много энергии, часто требуются радиаторы. Радиатор - это, по сути, кусок теплопроводящего металла с большой площадью поверхности, задача которого - отводить как можно больше отработанного тепла в окружающий воздух. Некоторое тепловыделение может быть встроено в конструкцию некоторой коммутационной платы, такой как показанная ниже.

    Светодиод высокой мощности RGB Алюминиевая задняя панель для рассеивания тепла

    Светодиоды высокой мощности могут выделять так много тепла, что без надлежащего охлаждения они сами себя повредят. Не позволяйте термину «отработанное тепло» вводить вас в заблуждение, эти устройства по-прежнему невероятно эффективны по сравнению с обычными лампами. Для управления можно использовать драйвер светодиода постоянного тока.

    Специальные светодиоды

    Есть даже светодиоды, которые излучают свет за пределами обычного видимого спектра. Например, вы, вероятно, используете инфракрасные светодиоды каждый день. Они используются в таких вещах, как пульты от телевизора, для отправки небольших фрагментов информации в виде невидимого света! Они могут выглядеть как стандартные светодиоды, поэтому их будет сложно отличить от обычных светодиодов.

    ИК-светодиод

    На противоположном конце спектра также можно встретить ультрафиолетовые светодиоды. Ультрафиолетовые светодиоды заставят определенные материалы светиться, как черный свет! Они также используются для дезинфекции поверхностей, потому что многие бактерии чувствительны к УФ-излучению.Они также могут быть использованы для обнаружения подделок (счетов, кредитных карт, документов и т. Д.), Солнечных ожогов, список можно продолжить. При использовании этих светодиодов надевайте защитные очки.

    УФ-светодиод для проверки банкноты США

    Другие светодиоды

    Имея в вашем распоряжении такие модные светодиоды, нет оправдания тому, что ничего не светится. Однако, если ваша жажда знаний о светодиодах не утолена, читайте дальше, и мы подробно рассмотрим светодиоды, цвет и интенсивность света!

    Углубляясь в глубины

    Итак, вы закончили серию LEDs 101 и хотите большего? О, не волнуйтесь, у нас есть еще.Начнем с науки, которая заставляет светодиоды светиться ... эээ ... мигать. Мы уже упоминали, что светодиоды - это особый вид диодов, но давайте углубимся в то, что именно это означает:

    То, что мы называем светодиодом, на самом деле представляет собой светодиод и упаковку вместе, но сам светодиод на самом деле крошечный! Это микросхема из полупроводникового материала, легированного примесями, которая создает границу для носителей заряда. Когда ток течет в полупроводник, он перескакивает с одной стороны этой границы на другую, высвобождая при этом энергию.В большинстве диодов эта энергия уходит в виде тепла, но в светодиодах эта энергия рассеивается в виде света!

    Длина волны света и, следовательно, цвет зависят от типа полупроводникового материала, из которого изготовлен диод. Это потому, что структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами. Вот таблица распространенных светодиодных полупроводников по частоте:

    Усеченная таблица полупроводниковых материалов по цвету. Полная таблица доступна в статье Википедии для "LED" .

    В то время как длина волны света зависит от ширины запрещенной зоны полупроводника, интенсивность зависит от количества энергии, проталкиваемой через диод.Мы немного говорили об интенсивности света в предыдущем разделе, но это нечто большее, чем просто цифра, показывающая, насколько ярко что-то выглядит.

    Единица измерения силы света называется кандела, хотя, когда вы говорите об интенсивности отдельного светодиода, вы обычно находитесь в диапазоне милликандел. В этом устройстве интересно то, что на самом деле это не показатель количества световой энергии, а реальный показатель «яркости». Это достигается за счет того, что мощность, излучаемая в определенном направлении, взвешивается по функции яркости света.Человеческий глаз более чувствителен к некоторым длинам волн света, чем к другим, и функция яркости является стандартизированной моделью, которая учитывает эту чувствительность.

    Яркость светодиодов может составлять от десятков до десятков тысяч милликандел. Световой поток на вашем телевизоре, вероятно, составляет около 100 мкд, в то время как у хорошего фонарика может быть 20 000 мкд. Глядя прямо во все, что ярче нескольких тысяч милликандел, может быть болезненно; не пытайся.

    Падение прямого напряжения

    О, я также обещал, что мы поговорим о концепции прямого падения напряжения.Помните, когда мы смотрели техническое описание и упоминали, что прямое напряжение всех ваших светодиодов, сложенных вместе, не может превышать напряжение вашей системы? Это связано с тем, что каждый компонент в вашей схеме должен на делить напряжения, а количество напряжения, которое каждая часть использует вместе, всегда будет равняться доступному количеству. Это называется законом напряжения Кирхгофа. Таким образом, если у вас есть источник питания 5 В, и каждый из ваших светодиодов имеет прямое падение напряжения 2,4 В, вы не можете питать более двух одновременно.

    Законы Кирхгофа также пригодятся, когда вы хотите приблизительно определить напряжение на данной детали на основе прямого напряжения других деталей. Например, в примере, который я только что привел, есть источник питания 5 В и 2 светодиода с падением прямого напряжения 2,4 В каждый. Конечно, мы бы хотели добавить резистор, ограничивающий ток, не так ли? Как узнать напряжение на резисторе? Это просто:

    5 (напряжение системы) = 2,4 (светодиод 1) + 2,4 (светодиод 2) + резистор

    5 = 4.8 + резистор

    Резистор = 5 - 4,8

    Резистор = 0,2

    Значит, на резисторе 0,2 В! Это упрощенный пример, и это не всегда так просто, но, надеюсь, он дает вам представление о том, почему так важно прямое падение напряжения. Используя число напряжения, которое вы получаете из законов Кирхгофа, вы также можете делать такие вещи, как определение тока через компонент, используя закон Ома. Короче говоря, вы хотите, чтобы напряжение вашей системы было равным ожидаемому прямому напряжению компонентов вашей комбинированной схемы.

    Расчет резисторов ограничения тока

    Если вам нужно рассчитать точное значение резистора, ограничивающего ток, последовательно со светодиодом, ознакомьтесь с одним из примеров приложений в руководстве по резисторам для получения дополнительной информации.

    Ресурсы и дальнейшее развитие

    Вы сделали это! Вы знаете, почти все ... о светодиодах. А теперь иди и включи светодиоды на все, что тебе заблагорассудится! А теперь ... драматическая реконструкция светодиода без перенапряжения токоограничивающего резистора и его выгорания:

    Ага... это не впечатляюще.

    Если вы хотите узнать больше о некоторых темах, связанных со светодиодами, посетите эти другие руководства:

    Свет

    Свет - полезный инструмент для инженера-электрика. Понимание того, как свет соотносится с электроникой, является фундаментальным навыком для многих проектов.

    ИК-связь

    В этом руководстве объясняется, как работает обычная инфракрасная (ИК) связь, а также показано, как настроить простой ИК-передатчик и приемник с Arduino.

    Как делают светодиоды

    Мы совершим экскурсию по производителю светодиодов и узнаем, как изготавливаются 5-миллиметровые светодиоды PTH для SparkFun.

    Руководство по подключению панели RGB

    Создавайте яркие, красочные дисплеи с помощью светодиодных матричных панелей RGB 32x16, 32x32 и 32x64. Это руководство по подключению показывает, как подключить эти панели и управлять ими с помощью Arduino.

    Сумка для вечеринок Marquee

    В этом руководстве вы найдете все, что вам нужно знать, чтобы сделать свою собственную сумку для вечеринки Marquee!

    Хотите узнать больше о светодиодах?

    На нашей странице LED вы найдете все, что вам нужно знать, чтобы начать использовать эти компоненты в своем проекте.

    Отведи меня туда!

    Или ознакомьтесь с некоторыми из этих сообщений блога по теме:

    Что произойдет, если подать слишком большое напряжение на светодиод

    Как правило, повышенное напряжение опасно.Скачки напряжения могут иметь разрушительное воздействие на электронное оборудование, включая светодиодные лампы. Светодиоды часто требуют определенного количества вольт, в зависимости от типа и цвета светодиода. Большинство специалистов рекомендуют для светодиодов 2–3 вольта. Однако вы можете проверить это, чтобы убедиться.

    В этой статье объясняется, что произойдет, если вы пропустите слишком большое напряжение через светодиод, и как предотвратить такую ​​ситуацию.

    Светодиоды светятся постоянным (DC) или переменным (AC) током? Светодиоды

    - это устройства постоянного тока, которые пропускают ток только одной полярности.Светодиоды обычно приводятся в действие источниками постоянного напряжения с использованием резисторов, регуляторов напряжения и регуляторов тока для ограничения тока и напряжения, подаваемого на светодиод.

    Какое максимальное напряжение для светодиодных фонарей?

    VL = напряжение светодиода (4 В или 2 В для белых и синих светодиодов). Ток светодиода должен быть меньше оптимально допустимого для светодиода. Максимальный ток для светодиодов стандартного диаметра 5 мм обычно составляет 20 мА. Следовательно, 15 мА и 10 мА - идеальные значения для большинства цепей.

    Для светодиодных фонарей

    требуется определенное напряжение, например 24 или 12 В. Когда они работают при более высоком напряжении, они сильно нагреваются. Сильный нагрев повреждает светодиодные фонари или пайку вокруг них. Из-за теплового повреждения светодиодные фонари начинают тускнеть, мерцать или могут полностью погаснуть.

    Что произойдет, если подать на светодиод слишком большое напряжение?

    Проще говоря, слишком большое напряжение убивает светодиод. Как упоминалось ранее, светодиод работает от тока, а не от напряжения.Следовательно, если напряжение отклоняется более чем на 10%, светодиодная лампа перегорает. Впоследствии электронные компоненты внутри светодиодной лампы повреждаются из-за скачка напряжения. Избыточное напряжение приводит к преждевременному износу драйверов светодиодов и распределительных панелей. Это также увеличивает количество перерывов в обслуживании светодиодного освещения.

    светодиода тоже мощные. Чем больше вы увеличиваете напряжение, тем больше выделяется тепло, что не очень хорошо. Избыточное тепло приводит к тому, что светодиод излучает меньше света и сокращает срок его службы.Ограниченный свет тесно связан с нефункциональной светодиодной системой.

    Какое напряжение необходимо для питания светодиода?

    Если у вас несколько последовательно соединенных светодиодов, вам необходимо учитывать все прямые напряжения вместе. Однако, если у вас есть параллельная схема, вам необходимо учитывать прямое напряжение суммы светодиодов, которые у вас есть на одно звено.

    Как избежать перенапряжения на светодиодах

    Любой светодиод, подверженный электрическому перенапряжению (EOS), следует рассматривать как устройство с риском полной неисправности.Высокая энергия вызывает самопроизвольный отказ в разомкнутой цепи. Каждый раз, когда выбирается новый источник питания постоянного тока, обязательно оценивать пульсации тока и допуски на выходе. Также рекомендуется проверять переходные всплески во время фазы выключения и включения, а также ток горячего подключения. Это могут быть бесшумные убийцы светодиодов, которые ставят под угрозу целостность компонента без каких-либо легко заметных признаков.

    Очень важно использовать источники питания с ограниченным переходным пиком во время выключения и включения, чтобы предотвратить отказ от электрического перенапряжения.Блоки питания не должны превышать максимальный номинальный ток светодиода.

    Самое главное, что типичный ток, смешанный с пульсациями и положительным допуском, не должен превышать максимальный номинальный ток светодиода. Выполнение этих условий гарантирует, что напряжение источника питания не приведет к электрическому перенапряжению.

    Другой способ предотвратить повреждение светодиода напряжением - использовать источник питания с защитой от короткого замыкания. Затем установите светодиодную плату, используя диод, параллельный цепочке светодиодов, с обратной полярностью.Поляризованный разъем - идеальный выбор, если вы подключаете источник питания к плате светодиодов с помощью разъема.

    Как определить напряжение моих светодиодных ламп

    Для определения напряжения и тока вашей светодиодной лампы;

    • Посмотрите это в таблице данных
    • Узнайте напряжение светодиода с помощью мультиметра с функцией диода
    • Подключите батарею к светодиоду и устройству, называемому потенциометром. Начните с высокого сопротивления на потенциометре, затем постепенно уменьшайте его, пока не заметите достаточную яркость.

    Итог

    Промышленные светодиодные фонари предназначены для предотвращения таких несчастных случаев, которые могут быть вызваны повышенным напряжением. Убедитесь, что вы проверили номинальную мощность ваших светодиодных лампочек до и после покупки, чтобы узнать, можете ли вы соответствовать указанным требованиям.

    Безлимитные светодиодные фонари

    LED Lights Unlimited - ведущий поставщик высококачественных светодиодных струнных светильников. Ознакомьтесь с нашим широким выбором светодиодных лампочек, чтобы найти то, что вам нужно.

    Заявление об ограничении ответственности: Наши продукты соответствуют требованиям ROHS. Это означает, что нам известно, что они могут содержать свинец, но не превышают допустимые количества.

    Влияет ли падение напряжения на светодиоды? - Mvorganizing.org

    Влияет ли падение напряжения на светодиоды?

    Как падение напряжения может повлиять на систему светодиодного освещения? Важность падения напряжения для светодиодного освещения заключается в том, что для правильного освещения светодиоду требуется минимальный ток. Сила тока меньше минимального может привести к мерцанию светодиода, уменьшению его яркости или изменению цвета.

    Что означает падение напряжения?

    Падение напряжения - это уменьшение электрического потенциала на пути тока, протекающего в электрической цепи. Падения напряжения на внутреннем сопротивлении источника, на проводниках, на контактах и ​​на разъемах нежелательны, поскольку часть подаваемой энергии рассеивается.

    Какое падение напряжения на белом светодиоде?

    Блок питания должен обеспечивать постоянный ток с типичным прямым напряжением 3.5В для белого светодиода.

    Какое напряжение используют светодиодные фонари?

    3,3 В

    Есть ли в светодиодных лампах напряжение?

    Светодиоды

    предназначены для работы от низкого напряжения (12-24В) постоянного тока. Тем не менее, большинство мест поставляют более высокое напряжение (120-277 В), электричество переменного тока. Световой поток светодиода пропорционален потребляемому току, а светодиоды рассчитаны на работу в определенном диапазоне тока (измеряется в амперах).

    Светодиоды на 12 В горит переменным или постоянным током?

    Светодиоды

    обычно считаются устройствами постоянного тока, работающими от нескольких вольт постоянного тока.

    Переменный ток лучше постоянного тока?

    Переменный ток дешевле генерировать и имеет меньше потерь энергии, чем постоянный ток при передаче электроэнергии на большие расстояния. Хотя для очень больших расстояний (более 1000 км) постоянный ток часто может быть лучше.

    Что опасно: переменный или постоянный ток?

    Переменный ток (A.C) в пять раз опаснее постоянного (D.C). Частота переменного тока - основная причина такого тяжелого воздействия на человеческий организм.Частота 60 циклов находится в крайне опасном диапазоне. На этой частоте даже небольшое напряжение в 25 вольт может убить человека.

    Что быстрее переменного или постоянного тока?

    Питание постоянного тока значительно более энергоэффективно, чем питание переменного тока. Двигатели и устройства постоянного тока имеют более высокий КПД и габаритные характеристики. Освещение на основе постоянного тока (LED) на 75% эффективнее, чем освещение лампами накаливания.

    Что означает постоянный ток?

    Символ Юникода «⎓» (U + 2393)

    Имя: Символ постоянного тока, форма два
    Категория: Другой символ (So)
    Двунаправленный класс: Другое, нейтральное (ON)
    Комбинированный класс: Не переупорядочен (0)
    Зеркальное отображение персонажа:

    Какие устройства используют питание постоянного тока?

    Примеры электроники постоянного тока:

    • Сотовые телефоны.
    • D&D Dice Gauntlet на основе LilyPad.
    • Телевизоры с плоским экраном (переменный ток переходит в телевизор, который конвертируется в постоянный ток)
    • Фонари.
    • Гибридные и электромобили.

    Какова основная функция источника постоянного тока?

    Блоки питания постоянного тока

    - это блоки питания, которые вырабатывают выходное напряжение постоянного тока. Источники питания - это устройства, которые подают электроэнергию на одну или несколько нагрузок. Они генерируют выходную мощность путем преобразования входного сигнала в выходной сигнал (в данном случае выход постоянного тока).

    Какие примеры хороших DC?

    Постоянный ток, DC используется во многих областях:

    • Батареи: Батареи, как неперезаряжаемые, так и перезаряжаемые, могут питать только постоянный ток.
    • Электронное оборудование: все оборудование, такое как компьютеры, радиоприемники, мобильные телефоны и фактически все электронное оборудование, использует постоянный ток для питания электронных схем.

    Зачем нужен блок питания постоянного тока?

    DC обеспечивает постоянный ток к устройству.Поскольку изначально подается переменный ток, сначала необходимо преобразовать мощность из переменного тока в постоянный. Большинству небольших электронных устройств (например, компьютеров) требуется постоянный ток для работы с преобразователем переменного тока в постоянный от электросети.

    Что такое падение напряжения? - Элементный светодиод

    Падение напряжения определяется как величина потери напряжения во всей или части цепи из-за сопротивления. Провода, электрические компоненты и практически все, что пропускает ток, всегда будет иметь внутреннее сопротивление или импеданс по отношению к протеканию тока.

    Как падение напряжения может повлиять на светодиодную систему освещения?
    Важность падения напряжения для светодиодного освещения заключается в том, что светодиод требует минимального количества тока для правильного освещения. Сила тока меньше минимального может привести к мерцанию светодиода, уменьшению его яркости или изменению цвета. Это часто наблюдается при более длительных пробегах светодиодной ленты. Результатом является заметный сдвиг в цвете или разнице яркости светодиодов на одном конце по сравнению с другим.

    Как клиенты могут избежать эффекта падения напряжения с помощью диодных светодиодных решений?
    Лучше всего это продемонстрировать на примере использования диодной светодиодной ленты.Технические характеристики показывают, что он может работать на высоте до 40 футов. Давайте сделаем это с помощью простых шагов, описанных ниже.

    1. Рассчитайте требуемую мощность.
    В спецификациях указано, что диодный светодиодный ленточный светильник потребляет 2,09 Вт на фут. Диодный светодиод проверяет падение напряжения в продуктах и ​​указывает максимальные пробеги. Если вы остаетесь в пределах протестированной максимальной длины пробега, просто рассчитайте мощность на фут или на приспособление, чтобы определить надлежащую мощность драйвера. Для максимального пробега в 40 футов потребуется не менее 83.6 Вт для правильного питания светодиодной ленты. (2,09 Вт на фут x 40 футов = 83,6 Вт)

    2. Определите подходящий калибр проводов для прокладки между драйвером и светодиодным светильником. Продукты
    с диодными светодиодами будут работать только в соответствии с указаниями при условии падения напряжения между драйвером и светодиодными лампами не более 3%. Степень падения напряжения определяется четырьмя основными факторами: входным напряжением (12 В или 24 В), длиной кабеля, калибром проводов и общей нагрузкой на осветительные приборы (ватты и амперы).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *