Содержание

Smd резисторы маркировка 010 - Яхт клуб Ост-Вест

SMD резисторы для поверхностного монтажа имеют три основные характеристики: размер элемента (типоразмер), сопротивление в Омах, допуск сопротивления в процентах. Типоразмер обозначается четырехзначной цифрой. Ниже приведена таблица распространенных типоразмеров и их геометрических размеров.

Обозначение типоразмера EIAРазмеры, мм
LWHa
04021.000.500.200.25
06031.600.850.300.30
08052.101.300.400.40
12063.101. 600.500.50
12103.102.600.500.40
20105.002.500.600.40
25126.353.200.600.40

Трехзначная нумерация резисторов с допуском 2%, 5% и 10%

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами. Первые две цифры обозначают мантиссу, третья – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 512 означает, что резистор имеет номинал 51×100 Ом = 5.1 КОм, маркировка 104 означает номинал 10×10000 = 100кОм.

Существуют также SMD резисторы с нулевым сопротивлением или так называемые перемычки. Они маркируются символом 0 или 000.

Ниже приведена таблица, используя которую вы сможете быстро определить номинал SMD резистора.

Четырехзначная нумерация резисторов с допуском 1%

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами. Первые три из них обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 3401 означает, что резистор имеет номинал 340×10 Ом = 3.4 КОм.

= 3.4 КОм

Трехзначная нумерация резисторов с допуском 1%

Резисторы с допуском 1% типоразмера 0603 маркируются с использованием трехзначной нумерации. Первые два символа – цифры, указывающие значение сопротивления в Омах, взятые из нижеприведенной таблицы. Последний символ – буква, указывающая значение множителя: S=0.1; R=1; B=10; C=100; D=1000; E=10000; F=100000. Например, маркировка 28C означает, что резистор имеет номинал 191×100 Ом = 19.1 КОм.

В этой статье расскажем, как можно прочитать маркировку SMD резисторов (для поверхностного монтажа) во всех вариантах, то есть, с числовым кодом из 3 цифр и 4 цифр, а также буквенно-цифрового типа (EIA-96). Приведем стандартные размеры SMD резисторов и их номинальную мощность.

Трехзначный код

Наиболее простыми для чтения являются SMD резисторы, которые содержат 3-значный цифровой код. У них первые две цифры — это числовое значение, а третья цифра — множитель, то есть количество нулей, которое мы должны добавить к значению.

Давайте рассмотрим это на примере:

Резистор с кодом 472 имеет сопротивление 4700 Ом или 4,7 кОм, так как к числу «47» (первые две цифры) мы должны добавить 2 нуля (третья цифра).

На следующем рисунке приведем еще несколько примеров:

Трехзначный код резисторов со сопротивлением менее 10 Ом

В описанной выше системе минимальное значение сопротивления, которое мы можем кодировать, составляет 10 Ом, что эквивалентно коду «100» (10 + нет нуля).

При значениях сопротивления менее 10 Ом необходимо найти другое решение, потому что вместо добавления нулей мы должны разделить значение первых двух цифр. Чтобы решить проблему, производители используют букву «R», которая эквивалентна запятой.

Например, сопротивление с кодом 4R7 эквивалентно 4,7 Ом, потому что мы заменяем «R» запятой. Если значение сопротивления меньше 1 Ом, мы используем ту же систему, помещая R в качестве первого номера. Например, R22 равно 0,22 Ом. Как вы можете видеть, это довольно легко.

Четырехзначный код (прецизионные резисторы)

В случае прецизионных резисторов производители создали еще одну систему кодирования, состоящую из 4-значных чисел. В нем первые три цифры — это числовое значение, а четвертая цифра — множитель, то есть количество нулей, которые мы должны добавить к значению.

Факт наличия трех цифр для кодирования значения позволяет нам иметь большее разнообразие и точность значений.

Четырехзначный код резисторов с сопротивлением менее 100 Ом

С 4-значной системой наименьшее значение сопротивления, которое мы можем кодировать, составляет 100 Ом, что эквивалентно коду «1000» (100 + нет нуля).

При значениях сопротивлений менее 100 Ом производители выбрали такое же решение, как и в случае с 3-значной кодировкой — добавление буквы «R» вместо запятой.

Код EIA-96 (прецизионные резисторы)

В последнее время производители используют для прецизионных резисторов новую систему кодировки — EIA-96, которая довольно сложна для расшифровки, если нет под рукой справочной таблицы или онлайн калькулятора.

В EIA-96 первые две цифры кода — это номер индекса таблицы, в котором мы найдем эквивалентное значение, в то время как буква является множителем. Таким образом, наличие буквы на конце кода свидетельствует о том, что резистор имеет кодировку EIA-96.

На рисунке ниже приведена полная таблица маркировки сопротивлений EIA-96.

Практические примеры EIA-96

На следующем рисунке мы можем видеть некоторые примеры EIA-96 маркировки

Допуски сопротивлений

Как вы уже могли заметить, во всех трех системах кодирования, которые мы изучили, производители не предусмотрели никакого способа указания допуска (отклонения) сопротивлений резисторов (четвертой цветной полоски как на выводных резисторах).

Но как правило, резисторы, имеющие маркировку из 3-х цифр имеют точность 5%, а резисторы с кодом из 4-х цифр, а также резисторы с кодировкой EIA-96 имеют точность 1%.

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

40 комментариев

Спасибо, очень удобный справочник.

Спасибо Вам за прекрасную и необходимую работу!

Полезная информация.Просто,удобно и понятно.Спасибо!

Все бы ничего, почему калькулятор не считаетв EIA?

Вроде все считает..

Буковку «С» нужно ввести после номинала

Доброго всем дня. На резисторе (СМД) написанно Е22 измерить не получается ,так как корозия уничтожила выводы. Стоит в десеке (переключатель спутниковых конвертеров) Прочитал только под микроскопом очень маленький размер. На глаз длинна не более 1,5мм. Подскажите кто силён.

На обычных резисторах этот номинал означает 22 Ома

Привет, а не могли бы сжато написать если не трудно: что такое смд резистор, его предназначение, сколько минимально ом и сколько максимально? Просто я только начал пытаться учить смд компоненты и сейчас тяжело усваиваю инфу, мне нужно сжато суть выучить смд резисторы, диоы и кандеры, что это, предназначение их, мощность мин и макс и как прозваниваются!

смд — маленький, без проводков, на плату сразу припаивать к дорожкам
предназначение — Сопротивляться прохождению тока (от ангельского Резист — Сопротивление)
минимально — Ноль (0) Ом (без приставки Омы — маленькое значение)
Максимально — Сколько повезёт (ххх) МегаОм (приставка Кило — среднее значение)

Прозванивается мультиметром на режиме Ʊ после предварительного замыкания измерительных контактов (эту цифру вычесть из измеренного сопротивления резистора). Измеренное значение Ноль при цифрах на маркировке говорит о коротком замыкании резистора внутри (сгорел). Сменой режима мультиметра можно найти нужный диапазон измерения, чтобы увидеть точное значение. Небольшое отличие от написанного номинала допустимо. Если на всех пределах показывает превышение предела — значит резистор в обрыве (сгорел). Как проводить измерения — написано в инструкции к измерительному прибору. Как работает сопротивление — описано в учебнике по физики, раздел про Закон Ома. Остальные компоненты также имеются в физике. Книга небольшая, прочитать можно один раз и потом на столе держать как справочник.

Кодовая и цветовая маркировка резисторов

Кодовая и цветовая маркировка резисторов

Кодированное обозначение номинальных сопротивлений резисторов состоит из трех или четырех знаков, включающих две цифры и букву или три цифры и букву. Буква кода является множителем, обозначающим сопротивление в Омах, и определяет положение запятой десятичного знака. Кодированное обозначение допускаемого отклонения состоит из буквы латинского алфавита (см. таблицы).

Кодированное обозначение номинального сопротивления, допуска и примеры обозначения.
Примеры обозначения
Полное обозначениеКод
3,9 Ом ± 5%3R9J
215 Ом ± 2%215RG
1 кОм ± 5%1K0J
12,4 кОм  ± 1%12K4F
10 кОм ± 5%10KJ
100 кОм ± 5%M10J
2,2 МОм ± 10%2M2K
6,8 ГОм ± 20%6G8M
1 Том ± 20%1T0M
Сопротивление
МножительКод
1R (E)
10^3K (K)
10^6M(М)
10^9G (Г)
10^12T (Т)
Допуск, %Код
± 0,001E
± 0,002L
± 0,005R
± 0,01P
± 0,02U
± 0,05 A
± 0,1B (Ж)
± 0,25C (У)
± 0,5D (Д)
± 1F (Р)
± 2G (Л)
± 5J (И)
± 10K (С)
± 20M (В)
± 30N (Ф)

Примечание. В скобках указано старое обозначение.

Цветовая маркировка наносится в виде четырех или пяти цветных колец. Каждому цвету соответствует определенное цифровое значение.

У резисторов с четырьмя цветными кольцами первое и второе кольца обозначают величину сопротивления в Омах, третье кольцо - множитель, на который необходимо умножить номинальную величину сопротивления, а четвертое кольцо определяет величину допуска в процентах.

Цвет знакаНоминальное сопротивление, ОмДопуск, %ТКС [ppm/°C]
Первая цифраВторая цифраТретья цифраМножитель
Серебристый 10-2±10 
Золотистый10-1±5
Черный 001 
Коричневый11110±1100
Красный222102±250
Оранжевый333103 15
Желтый44410425
Зеленый5551050,5 
Голубой666106±0,2510
Фиолетовый777107±0,15
Серый888108±0,05 
Белый999109 1

Примечание. Ppm – parts per million – миллионная доля, количество частей в миллионе, 1/106

Резисторы с малой величиной допуска (0,1%...2%) маркируются пятью цветовыми кольцами. Первые три - численная величина сопротивления, четвертое - множитель, пятое - допуск. В маркировке резисторов, принятой на фирме "PHILIPS", (см. ниже) последним кольцом может быть и ТКС.

Маркировочные знаки на резисторах сдвинуты к одному из выводов и располагаются слева направо. Если размеры резистора не позволяют разместить маркировку ближе к одному из выводов, ширина полосы первого знака делается примерно в два раза больше других. Впрочем, и это требование не всегда соблюдается, в таком случае пытаемся определить номинал, значение которого попадает в стандартный ряд:

Номинальное сопротивление резисторов выбирается из шести стандартных рядов (Е3, Е6, Е12, Е24, Е48, Е96 и Е192) в соответствии с ГОСТ2825-67. Каждый ряд соответствует определённому допуску в номиналах деталей. Так, детали из ряда E6 имеют допустимое отклонение от номинала ±20 %, из ряда E12 — ±10 %, из ряда E24 — ±5 %. Собственно, ряды устроены таким образом, что следующее значение отличается от предыдущего чуть меньше, чем на двойной допуск.

 

Номинальные ряды E6, E12, E24
E6E12E24 E6E12E24 E6E12E24
1,01,01,02,22,22,24,74,74,7
  1,1  2,4  5,1
 1,21,2 2,72,7 5,65,6
  1,3  3,0  6,2
1,51,51,53,33,33,36,86,86,8
  1,6  3,6  7,5
 1,81,8 3,93,9 8,28,2
  2,0  4,3  9,1

Ряд E48 соответствует относительной точности ±2 %, E96 — ±1 %, E192 — ±0,5 %. Элементы рядов образуют строгую геометрическую прогрессию со знаменателями 101/48 ≈ 1,04914, 101/96 ≈ 1,024275, 101/192 ≈ 1,01206483 и легко могут быть вычислены на калькуляторе.

Номинальные ряды E48, E96, E192
E48E96E192 E48E96E192 E48E96E192 E48E96E192 E48E96E192 E48E96E192
1,001,001,001,471,471,472,152,152,153,163,163,164,644,644,646,816,816,81
  1,01  1,49  2,18  3,20  4,70  6,90
 1,021,02 1,501,50 2,212,21 3,243,24 4,754,75 6,986,98
  1,04  1,52  2,23  3,28  4,81  7,06
1,051,051,051,541,541,542,262,262,263,323,323,324,874,874,877,157,157,15
  1,06  1,56  2,29  3,36  4,93  7,23
 1,071,07 1,581,58 2,322,32 3,403,40 4,994,99 7,327,32
  1,09  1,60  2,34  3,44  5,05  7,41
1,101,101,101,621,621,622,372,372,373,483,483,485,115,115,117,507,507,50
  1,11  1,64  2,40  3,52  5,17  7,59
 1,131,13 1,651,65 2,432,43 3,573,57 5,235,23 7,687,68
  1,14  1,67  2,46  3,61  5,30  7,77
1,151,151,151,691,691,692,492,492,493,653,653,655,365,365,367,877,877,87
  1,17  1,72  2,52  3,70  5,42  7,96
 1,181,18 1,741,74 2,552,55 3,743,74 5,495,49 8,068,06
  1,20  1,76  2,58  3,79  5,56  8,16
1,211,211,211,781,781,782,612,612,613,833,833,835,625,625,628,258,258,25
  1,23  1,80  2,64  3,88  5,69  8,35
 1,241,24 1,821,82 2,672,67 3,923,92 5,765,76 8,458,45
  1,26  1,84  2,71  3,97  5,83  8,56
1,271,271,271,871,871,872,742,742,744,024,024,025,905,905,908,668,668,66
  1,29  1,89  2,77  4,07  5,97  8,76
 1,301,30 1,911,91 2,802,80 4,124,12 6,046,04 8,878,87
  1,32  1,93  2,84  4,17  6,12  8,98
1,331,331,331,961,961,962,872,872,874,224,224,226,196,196,199,099,099,09
  1,35  1,98  2,91  4,27  6,26  9,19
 1,371,37 2,002,00 2,942,94 4,324,32 6,346,34 9,319,31
  1,38  2,03  2,98  4,37  6,42  9,42
1,401,401,402,052,052,053,013,013,014,424,424,426,496,496,499,539,539,53
  1,42  2,08  3,05  4,48  6,57  9,65
 1,431,43 2,102,10 3,093,09 4,534,53 6,656,65 9,769,76
  1,45  2,13  3,12  4,59  6,73  9,88

Сопротивление резистора получают умножением числа из стандартного ряда на 10^n, где n - целое положительное или отрицательное число.

Цветовая маркировка фирмы "PHILIPS"

Маркировка осуществляется 4, 5 или 6 цветными полосами, несущими информацию о номинале, допуске и температурном коэффициенте сопротивления (ТКС) соответственно (см. таблицу выше). Дополнительную информацию несет цвет корпуса резистора и взаимное расположение полос.

Цветовая маркировка фирмы "PHILIPS"

Кодовая маркировка фирмы "PHILIPS"

Фирма "PHILIPS" кодирует номинал резисторов в соответствии с общепринятыми стандартами, т.е.  первые две или три цифры указывают номинал в Ом, а последняя - количество нулей (множитель). В зависимости от точности резистора номинал кодируется в виде 3 или 4 символов. Отличия от стандартной кодировки могут заключаться в трактовке цифр 7, 8 и 9 в последнем символе.

Буква R выполняет роль десятичной запятой или, она стоит в конце, указывает на диапазон. Единичный символ "0" указывает на резистор с нулевым сопротивлением (Zero-Ohm).

Кодовая маркировка фирмы "PHILIPS"

Последний символНоминал резистора
1100...976 Ом
21...9,76 кОм
310...97,6 кОм
4100...976 кОм
51...9,76 МОм
610...68 МОм
70,1...0,976 Ом
81...9,76 Ом
910...97,6 Ом
00 Ом
R1...91 Ом

 

Таким образом, если на резисторе вы увидите код 107 — это не 10 с семью нулями (100 МОм), а всего лишь 0,1 Ом.

 

Перемычки и резисторы с "нулевым" сопротивлением

Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0,6 мм, 0,8 мм) и резисторы с "нулевым" сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0,005...0,05 Ом). В цилиндрических корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206...) маркировка обычно отсутствует либо наносится код "000" (возможно "0").

Перемычки и резисторы с нулевым сопротивлением.

Нестандартная цветовая маркировка

Помимо стандартной цветовой маркировки многие фирмы применяют нестандартную (внутрифирменную) маркировку. Нестандартная маркировка применяется для отличия, например, резисторов, изготовленных по стандартам MIL, от стандартов промышленного и бытового назначения, указывает на огнестойкость и т.д.

Нестандартная цветовая маркировка.

Кодовая маркировка прецизионных высокостабильных резисторов фирмы "PANASONIC"

Кодовая маркировка фирмы "PANASONIC"

Кодовая маркировка фирмы «BOURNS»

А. Маркировка 3 цифрами

Первые две цифры указывают значения в Ом, последняя — количество нулей. Распространяется на резисторы из ряда Е-24, допусками 1 и 5%, типоразмерами 0603, 0805 и 1206.

В. Маркировка 4 цифрами

Первые три цифры указывают значения в Ом, последняя — количество нулей. Распространяется на резисторы из ряда Е-96, допуском 1%, типоразмерами 0805 и 1206. Буква R играет роль десятичной запятой.

С. Маркировка 3 символами

Первые два символа — цифры, указывающие значение сопротивления в Ом, взятые из нижеприведенной таблицы 5, последний символ — буква, указывающая значение множителя: S=10-2; R=10-1; А=1; В= 10; С=102; D=103; Е=104; F=105. Распространяется на резисторы из ряда Е-96, допуском 1%. типоразмером 0603.

КодЗначениеКодЗначениеКодЗначениеКодЗначение
01100251784931673562
02102261825032474576
03105271875133275590
04107281915234076604
05110291965334877619
06113302005435778634
07115312055536579649
08118322105637480665
09121332155738381681
10124342215839282698
11127352265940283715
12130362326041284732
13133372376142285750
14137382436243286768
15140392496344287787
16143402556445388806
17147412616546489825
18150422676647590845
19154432746748791866
20158442806849992887
21162452876951193909
22165462947052394931
23169473017153695953
24174483097254996976

Примечание. Маркировки А и В - стандартные, маркировка С - внутрифирменная.

 

Маркировка переменных резисторов

Импортных

Полная маркировка переменных и подстроечных резисторов представляет собой буквенно-цифровой код:

 

1. Серия.

2. Функциональная характеристика (рис. 1.6) — график зависимости сопротивления от поворота движка.

3. Значение сопротивления в омах (2К2 = 2,2 кОм).

4. Тип движка (рис. 1.7, табл. 1.16).

5. Длина движка в мм.


Рис. 1.6. График зависимости сопротивления от угла поворота движка переменного резистора

Таблица 1.16

Тип

 

Обозначение

 

Размеры, мм

 

КС

 

L

 

15

 

20

 

25

 

30

 

35

 

В

 

7

 

12

 

14

 

14

 

14

 

F

 

L

 

15

 

20

 

25

 

30

 

35

 

F

 

8

 

12

 

12

 

12

 

12

 

RE

 

L

 

15

 

20

 

25

 

30

 

35

 

R

 

L

 

15

 

20

 

25

 

30

 

35

 

KQ

 

L

 

15

 

20

 

25

 

30

 

35

 

А

 

6

 

7

 

7

 

7

 

7

 


Рис. 1.7. Типы движков переменных резисторов

Отдельно рекомендуется выделить подстроечные резисторы фирмы Murata, используемые в микроэлектронике. Они обозначаются по внутрифирменной системе. Маркировка состоит из кода модели — трех букв и цифры, типа — 1–2 букв и номинала, обозначенного цифровым кодом. к примеру, RVG3 А8–103. На рис. 1.8 приведены изображения подстроечных резисторов фирмы Murata.

Рис. 1.8. подстроечные резисторы фирмы Murata

Источник

Отечественных

Сокращенные обозначения резисторов состоят из букв и цифр. Буквы обозначают группу изделий: С — резисторы постоянные (буква «С» осталась от старого названия резисторов — «сопротив­ления»), СП — резисторы переменные. Число, стоящее после букв, обозначает специфическую разновидность резистора в зависимости от материала токопроводящего элемента: 1 — непроволочные тон­кослойные углеродистые н бороуглеродистые; 2 — непроволочные тонкослойные металлодиэлектрнческие и металлоокисные; 3 — не­проволочные композиционные пленочные; 4 — непроволочные ком­позиционные объемные; 5 — проволочные; 6 — непроволочные тон­кослойные металлизированные.

После первой цифры через дефнс ставится вторая цифра, обо­значающая регистрационный номер конкретного типа резистора.

Например, СП5-24 обозначает резисторы переменные проволочные, регистрационный номер 24

В нашей стране и странах СЭВ для вновь разрабатываемых резисторов принята новая система сокращенных условиых обозна­чений, по которой первый элемент — буква, обозначает подкласс резистора (Р — резисторы постоянные, РП — резисторы переменные), второй элемент — цифра, обозначает группу резистора по ма­териалу резистивного элемента (1—непроволочные, 2 — проволоч­ные), третий элемент — цифра, обозначает регистрационный номер резистора Между вторым и третьим элементами ставится дефис. Например, РП1-46 обозначает резисторы переменные непроволочные, регистрационный номер 46.

При заказе резисторов и их поставке в документах указы­вается полное обозначение Оно состоит из сокращенного обозна­чения, варианта конструктивного исполнения (при необходимости), обозначении и самих величин основных параметров и характеристик резисторов, климатического исполнения и обозначения доку­мента на поставку.

Параметры и характеристики для переменных резисторов на­зываются в следующей последовательности: номинальная мощность рассеяния и единицы измерения мощности (Вт), номинальное сопротивление и единицы измерения сопротивления (Ом, кОм, МОм), допускаемое отклонение сопротивления в % (допуск), функцио­нальная характеристика (для непроволочных резисторов), обозна­чение конца вала и длины выступающей части вала (ВС-1 —сплош­ной гладкий, ВС-2 — сплошной со шлицем, ВС-3 — сплошной с лыской, ВС-4 — сплошной с двумя лысками, ВП-1 — полый гладкий, ВП 2 — полый с лыской).

Маркировка наносится непосредственно на резистор и содер­жит: вид, номинальную мощность, номинальное сопротивление, до­пуск и дату изготовления. Для непроволочиых переменных рези­сторов указывается еще вид функциональной зависимости А, Б, В и др. При маркировке номинальных сопротивлений и их допуска­емых отклонений могут применяться как полные, так и сокращен­ные (кодированные) обозначения. Полное обозначение номинальных сопротивлений состоит из значения номинального сопротивления (цифра) и единицы измерения (Ом, кОм, МОм).

Кодированное обозначение состоит из двух или трех цифр и букв. Буква кода из русского алфавита обозначает множитель, составляющий значение сопротивления, и определяет положение запятой десятичного знака. Буквы Е, К, М обозначают соответст венно множители 1, 10, 100 для значений сопротивления, выраженных в омах. Значения допускаемых отклонений кодируются также буквами ±5% — И, ±10% — С, ±20% — В, ±30% - Ф.

Примеры кодированных обозначений 6Е8И, 1К5В, 2М2Ф — означает 6,8 Ом±5%, 1,5 к0м±20%, 2,2 М0м±30%.

Источник

Ещё регулировочные резисторы могут различаться зависимостью самого сопротивления от угла поворота оси их движка.

Смотрим на картинку.

    

       По большому счёту регулировочные резисторы можно разделить на три типа:

    А - с линейной зависимостью, Б - с логарифмической и В - с показательной. (Рис. слева). В регуляторах громкости, как правило, применяются резисторы с показательной зависимостью «В», это связано с особенностью слуха человека.

Обратите внимание!!!

   Обозначение зависимостей - А, Б, В применимо к отечественным резисторам. У импортных переменных резисторов совсем другие буквенные индексы.

Тут главное не ошибиться!

   То, что у отечественных А-характеристика – у импортных будет обозначение В.

   А то, что у отечественных В-характеристика – у импортных будет обозначение А.

Тип зависимости указывается на корпусе резистора. Например, вот так!

Это отечественные резисторы.

 

А это импортные резисторы.

Источник

Смотрите также:

Кодовая и цветовая маркировка конденсаторов

Маркировка SMD конденсаторов

Почему резисторы обозначают цветом? / Хабр

Среди первых знаний, которые вы получаете, начиная разбираться с электроникой – это как определять номинал резистора. Монтируемые в отверстия (выводные) резисторы имеют цветовую кодировку, а новички обычно начинают именно с таких. Но почему они маркируются именно так? Кажется, что эти полоски существовали всегда, как красные знаки, запрещающие проезд, или жёлтые полоски посередине дороги [такая разметка принята в США / прим. перев.] – но на самом деле, это не так.

До 1920-х годов производители размечали компоненты, как придётся. Потом в 1924 году 50 производителей радиодеталей Чикаго объединились в торговую группу. Они решили дать всем членам группы общий доступ ко всем патентам. Почти сразу название ассоциации сменили с «объединения производителей радио» на «ассоциацию радиопроизводителей» [Radio Manufacturer’s Association] или RMA. Это название ещё сменится несколько раз до тех пор, пока не остановится на варианте EIA, или альянс электронной индустрии. Причём EIA уже не существует – его раскидало на несколько различных подразделений, но об этом в другой раз.

А сейчас мы поведаем, как цветовые полоски проникли на каждый монтируемый в отверстие резистор от каждого производителя в мире.

Сначала точки, потом полоски


К концу 1920-х RMA занималась установкой стандартов, одним из которых был стандарт цветового кодирования. Проблема была в том, что маркировка мелких компонентов – задача трудная, особенно для 1920-х.

Решением стали цветовые полоски, но не совсем такие, как знакомые нам сегодня. Стандарт кодировки был таким же, однако весь корпус резистора служил первой полоской. А потом было ещё две-три полоски, обозначавшие остальные данные по номиналу. Иногда вместо третьей полоски была точка. Поэтому большая часть резистора имела цвет первой полоски. Кончик резистора был второй полоской, а точка обозначала множитель. Радио, использующие эту схему, начали появляться в 1930-х. Вот таблица цветовой кодировки из ежегодника Radio Today 1941 года:

В рекламе резисторов в этом журнале аккуратно отмечали, что их кодировка соответствует стандартам RMA. Вскоре кодировка распространилась и на конденсаторы.

Точка же, будучи расположенной на цилиндре, могла оказаться спрятанной от наблюдателя, в зависимости от положения резистора. Поэтому постепенно все перешли на полоски.

Цвета должны были идти по порядку видимого спектра (red, orange, yellow, green, blue, indigo, violet), однако в RMA отказались от цвета индиго, поскольку многие не могли различить синий, голубой и фиолетовый; индиго вообще цвет третьесортный, и Ньютон включил его в список, судя по всему, благодаря своему интересу к оккультизму.


Цветовой круг по Ньютону

В итоге остаётся четыре варианта, поэтому тёмные цвета обозначают нижний край (чёрный и коричневый), а яркие – верхний (серый и белый).

И, естественно, это совершенно не помогало людям, не различающим цвета. Можно было легко измерить отдельный резистор при помощи измерительного прибора, но если он уже был в составе схемы, это было сложнее сделать.

Откуда взялись ряды номиналов


В 1952 году Международная электротехническая комиссия (IEC), ещё одна группа, определявшая стандарты, определила номинальные ряды для электронных компонентов, определяющие, каких номиналов бывают резисторы, так, чтобы получить равномерное их распределение на логарифмической шкале. Если это вам не очень понятно, рассмотрите такой пример.

Ряд E12 используется для резисторов с допуском в 10%, а значений в промежутке от 1 до 10 у него 12 штук (потому и «E12»). Базовые значения:

1, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2

Поэтому можно найти резистор на 4,7 кОм или 47 кОм, но не на 40 кОм.

Обратите внимание на допуск. Номинал резистора на 39 кОм может отличаться на 3,9 кОм в ту или другую сторону. Например, он может иметь сопротивление 42,9 К, поэтому резистор на 40 кОм не имеет смысла. Поскольку резистор на 39 кОм в любом случае может оказаться резистором на 40 кОм. И наоборот, резистор на 47 кОм может иметь реальное сопротивление в 42,3 кОм, что меньше, чем максимальное сопротивление для резистора на 39 кОм.

Как и следовало ожидать, чем меньше допуск, тем больше количество значений в ряду номиналов. При допуске в 2%, к примеру, используется ряд E48, где от 1 до 10 умещается 48 значений (и если вы подумаете, что ряд E96 используется для допусков в 1%, то будете правы). При использовании E48 значениями, близкими к 40 кОм, будут 38,3 кОм и 40,2 кОм. Это максимум 39,06 для нижней величины и минимум в 39,2 для верхней.

В следующий раз


В следующий раз, когда вы возьмёте резистор и прочтёте его цветовую кодировку, вы можете вспомнить эту историю. Наследие цветовых полос распространяется и на компоненты поверхностного монтажа, но не как цвет, а как три цифры, обозначающие первые два числа и множитель. Сегодня многие электронные компоненты типа беспроводных модулей или литиевых аккумуляторов используют DataMatrix – двумерный матричный штрихкод типа QR. Удивительно, что у всех компонентов нет какого-либо микроштрихкода, на который можно было бы навести телефон и получить по ним полную справочную информацию. Возможно, когда-то будет и такое.

Маркировка smd резисторов калькулятор. Маркировка SMD резисторов

Маркировка резисторов

Простой калькулятор расчёта номинала резистора по цветам.

Кликая мышкой по цветам в таблице, раcкрашиваем резистор полосками.

В итоге получаем номинал и допуск нужного нам резистора.

Первая полоса, от которой ведётся отсчёт, обычно более широкая или находится ближе к выводу резистора.

Маркировка резисторов SMD

Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов - двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы.

Трёхсимвольная маркировка EIA96

Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.
Первые две цифры - код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.
Третий символ - буква - код множителя. Каждая из букв X , Y , Z , A , B , C , D , E , F , H , R , S соответствует множителю согласно таблице.
Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96 , E24 , E48 .

Трёхсимвольная маркировка E24. Допуск 5%

Маркировка из трёх цифр. Первые две цифры - число номинала.
Третья цифра - десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100, множитель 100.
3=lg1000, множитель 1000.

В данной статье используйте окно калькулятора выше, что и для EIA-96.

Четырёхсимвольная маркировка E48. Допуск 2%

Маркировка состоит из четырёх цифр. Первые три цифры - число номинала.
Четвёртая цифра - десятичный логарифм множителя.
0=lg1, множитель 1.
1=lg10, множитель 10.
2=lg100; Множитель 100.
3=lg1000, множитель 1000.
И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48 ), либо вводить 4 цифры в общее верхнее окно.

Введите код SMD резистора E48 .

Впишите код стандарта EIA-96 , либо 3 цифры E24 , либо 4 цифры E48

Сопротивление:


Таблица EIA-96

КодЧислоКодЧислоКодЧислоЧислоЧисло
01100251784931673562
02102261825032474576
03105271875133275590
04107281915234076604
05110291965334877619
06113302005435778634
07115312055536579649
08118322105637480665
09121332155738381681
10124342215839282698
11127352265940283715
12130362326041284732
13133372376142285750
14137382436243286768
15140392496344287787
16143402556445388806
17147412616546489825
18150422676647590845
19154432746748791866
20158442806849992887
21162452876951193909
22165462947052394931
23169473017153695953
24174483097254996976

Цветовая маркировка резисторов ,калькулятор резистора ,калькулятор smd резисторов,калькулятор резистора по цыетовым полоскам.

Опубліковано 17.05.2011

SMD-резисторы

SMD-резисторы типоразмера 0402 не маркируются, резисторы остальных типоразмеров маркируются различными способами, зависящими от типоразмера и допуска.

Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для определения номинала резистора в Омах. При необходимости к значащим цифрам добавляется буква R для обозначения десятичной точки. Например, маркировка 513 означает, что резистор имеет номинал 51×10 3 Ом = 51 КОм.

Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырмя цифрами, первые три из которых обозначают мантиссу, а последняя – показатель степени по основанию 10 для задания номинала резистора в Омах. Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750×10 1 Ом = 7.5 КОм.

Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 двумя цифрами и одной буквой. Цифры задают код, по которому из таблицы определяют мантиссу, а буква – показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10C означает, что резистор имеет номинал 124×10 2 Ом = 12.4 КОм.

КодЗначениеКодЗначениеКодЗначениеКодЗначение
01100131332517837237
02102141372618238243
03105151402718739249
04107161432819140255
05110171472919641261
06113181503020042267
07115191543120543274
08118201583221044280
09121211623321545287
10124221653422146294
11127231693522647301
12130241743623248309
S10 -2R10 -1A10 0B10 +1
КодЗначениеКодЗначениеКодЗначениеКодЗначение
49316614227356285750
50324624327457686768
51332634427559087787
52340644537660488806
53348654647761989825
54357664757863490845
55365674877964991866
56374684998066592887
57383695118168193909
58392705238269894931
59402715368371595953
60412725498473296976
C10 +2D10 +3E10 +4F10 +5

Перемычки и резисторы с нулевым сопротивлением

Многие фирмы выпускают в качестве плавких вставок или перемычек специальные провода Jumper Wire с нормированными сопротивлением и диаметром (0.6 мм, 0.8 мм) и
резисторы с “нулевым” сопротивлением. Резисторы выполняются в стандартном цилиндрическом корпусе с гибкими выводами (Zero-Ohm) или в стандартном корпусе для
поверхностного монтажа (Jumper Chip). Реальные значения сопротивления таких резисторов лежат в диапазоне единиц или десятков миллиом (~ 0.005…0.05 Ом). В цилиндрических
корпусах маркировка осуществляется черным кольцом посередине, в корпусах для поверхностного монтажа (0603, 0805, 1206…) маркировка обычно отсутствует либо наносится код “000” (возможно “0”).

Для начала, нужно отметить, маркировка на чип резисторах 0402-ого корпуса просто отсутствует, маркировка smd резисторов, имеющих другие типоразмеры, отличные от 0402-ого производиться так, как описывается далее.

Если SMD резисторы обладают допуском сопротивления 2%, 5% либо 10%, то они маркируются тремя цифрами: первая и вторая цифры – это обозначение мантиссу, цифра номер три является степенью под десятичное основание, следовательно — получим сопротивление резистора.

Например, резистор обладает кодом 452. Сочетание первых двух цифр «45» является мантиссой, а 2 — степенью, в результате получим 45 * 10² = 4,5 кОм

Бывает, что кроме цифровой маркировки на резисторах наносят латинскую букву R – которая, как бы, дополнительный множитель и служит, чтобы обозначать десятичную точку.

Маркировка SMD резисторов, типоразмеры которых более 0805, и обладающих точностью 1% производиться при помощи четырехзначного кода: комбинация первых трех цифр является обозначением мантиссу, а четвертый символ является степенью под десятичное основание. В результате, как и в описанном ранее варианте, получаем сопротивление резистора. Данный код тоже может содержать букву R, чтобы обозначить десятичную точку.

К примеру, резистор имеет код 4501. Сочетание первых трех цифр «450» — это обозначение мантиссу, а «1» является степенью, в результате получим 450 * 10 = 4,5 кОм.

Маркировка SMD резисторов, имеющих допуск в 1% и типоразмер 0603 производиться с использованием таблицы, которая располагается далее, при помощи двух цифр и буквы. Комбинация цифр является кодом, который помогает выбрать в таблице мантиссу, а буквой обозначают значение множителя, имеющего десятичное основание. В результате получим сопротивление.


К примеру, резистор обладает кодом 14R – комбинация первых двух цифр 14 – является кодом для таблицы, из которой видно, что требуемое число — это 137, а R – это десятка в первой степени, в результате получим 137 * 10 = 13,7 Ом

Цветовая маркировка резисторов

Резисторы и конденсаторы в SMD исполнении маркируются трех буквенным кодом, редко - четырех буквенным.
В коде первая и вторая цифры указывают на первое и второе число, а третья цифра - множитель. Цифра в множителе соответствует степени множителя.

SMD резисторы маркируются в Ом-ах, а конденсаторы в пикоФарадах.

К примеру.

резистор с обозначением 101 - первая цифра - 1, вторая - 0, множитель - х10 1 . Получаем 100 Ом.

Резистор с обозначением 473 - первая цифра - 4, вторая - 7, множитель - х10 3 . Получаем 47000 Ом или 47 кОм.

Резистор с обозначением 225 - первая цифра - 2, вторая - 2, множитель - х10 5 . Получаем 2200000 Ом или 2.2 мОм.

Некоторые производители используют буквы K и M для обозначения множителя.

При такой маркировке резисторы могут маркироваться более привычным способом, к примеру.

Маркировка резистора - 47K, указывает на сопротивление в 47 кОм

Маркировка 3K3 - указывает на сопротивление 3,3 кОм

Маркировка М27 - Указывает на сопротивление 0,27 мОм или 270 кОм.

Сопротивления резисторов менее 100 Ом маркируются при помощи буквы R или E. К примеру.

Резистор сопротивлением 27 Ом будет маркироваться как 27R или R27, редко E27.

Так же есть резисторы с нулевым сопротивлением или перемычки, они маркируются цифрой - 0

Типоразмер SMD резисторов и конденсаторов обозначается 4-мя цифрами (см. таблицу). Первая пара цифр обозначает длинну элемента, а вторая пара - ширину. В маркировке принято обозначать элементы в дюймах.

Расшифровка маркировки конденсаторов не отличается от резисторов, за исключением того, что результат мы получаем в пФ.

На практике SMD конденсаторы часто встречаются вообще без маркировки, за исключением электролитических SMD конденсаторов.

Devices) в переводе с английского означает "прибор, монтируемый на поверхность". SMD-компоненты в десятки раз меньше по размерам и массе, чем традиционные детали, благодаря этому достигается более высокая плотность их монтажа на устройств. В наше время электроника развивается огромными темпами, одно из направлений - это уменьшение габаритных размеров и веса приборов. SMD-компоненты - благодаря своим размерам, дешевизне, высокому качеству - получили огромное распространение и все больше вытесняют классические элементы с проволочными выводами.

На фото ниже представлены SMD-резисторы, размещенные на печатной плате. Можно увидеть, что, благодаря малым размерам элементов достигнута высокая плотность монтажа. Обычные детали вставляются в специальные отверстия в плате, а SMD-резисторы припаиваются к расположенным на поверхности печатной платы контактным дорожкам (пятачкам), что тоже упрощает разработку и сборку радиоэлектронных приборов. Благодаря возможности навесного монтажа радиокомпонентов стало возможным изготавливать печатные платы не только двухсторонними, но и многослойными, внешне напоминающими слоеный пирог.

В промышленном производстве пайка SMD-компонентов производится следующим методом: на контактные дорожки платы наносится специальная паяльная термопаста (флюс, перемешанный с порошком припоя), после чего робот располагает в нужные места элементы, в том числе и SMD-резисторы. Детали прилипают к затем плата помещается в специальную печь, где ее нагревают до необходимой температуры, при которой плавится припой в пасте, испаряется флюс. Таким образом детали встают на место. После этого печатную плату вынимают из печи и охлаждают.


Для пайки компонентов типа SMD в домашних условиях понадобятся следующие инструменты: пинцет, шило, кусачки, увеличительное стекло, шприц с толстой иглой, паяльник с тонким жалом, термовоздушная паяльная станция. Из расходных материалов нужны припой, жидкий флюс. Желательно, конечно же, использовать но если у вас ее нет, можно обойтись и паяльником. При пайке главное - не допустить перегрева элементов и печатной платы. Для того чтобы элементы не сдвигались и не липли к жалу паяльника, их следует придавливать к плате иглой.

SMD-резисторы представлены довольно в широком диапазоне номинальных значений: от одного Ома до тридцати мегаОм. Температурный режим работы таких резисторов колеблется от -550°C до +1250°C. Мощность SMD-резисторов достигает 1 Вт. При увеличении мощности увеличиваются Например, резисторы SMD мощностью 0,05 Вт имеет габаритные размеры 0,6*0,3*0,23 мм, а мощностью 1 Вт - 6,35*3,2*0,55 мм.


Маркировка таких резисторов бывает трех типов: с тремя цифрами, с четырьмя цифрами и с тремя символами:

Первые две цифры указывают значение в Ом, а последняя - количество нулей. Например, маркировка на резисторе 102 означает 1000 Ом или 1кОм.

Первые три цифры на резисторе указывают на значение номинала в Ом, а последняя - количество нулей. Например, маркировка на резисторе 5302 означает 53 кОм.

Первые два символа на резисторе указывают на значение номинала в Ом, взятые из таблицы, приведенной выше, а последний символ указывает на значение множителя: S=10-2; R=10-1; B=10; C=102; D=103; E=104; F=105. Например, маркировка на резисторе 11С означает 12,7 кОм.

Как проверить резистор мультиметром не выпаивая

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

Электрическая цепь невозможна без наличия в ней сопротивления, что подтверждается законом Ома. Именно поэтому резистор по праву считается самой распространенной радиодеталью. Такое положение вещей говорит о том, что знание тестирования таких элементов всегда может пригодиться при ремонте электротехники. Рассмотрим ключевые вопросы, связанные с тем, как проверить обычный резистор на исправность, пользуясь тестером или мультиметром.

Основные этапы тестирования

Несмотря на разнообразие резисторов, у обычных элементов этого класса линейная ВАХ, что существенно упрощает проверку, сводя ее к трем этапам:

  1. внешний осмотр;
  2. радиодеталь тестируется на обрыв;
  3. осуществляется проверка соответствия номиналу.

Если с первым и вторым пунктом все понятно, то с последним есть нюансы, а именно, необходимо узнать номинальное сопротивление. Имея принципиальную схему, сделать это не составит труда, но вся беда в том, что современная бытовая техника довольно редко комплектуется технической документацией. Выйти из создавшего положения можно, определив номинал по маркировке. Кратко расскажем как это сделать.

Виды маркировок

На компонентах, выпущенных во времена Советского Союза, было принято указывать номинал на корпусе детали (см. рис.1). Этот вариант не требовал расшифровки, но при повреждении целостности конструкции или выгорании краски могли возникнуть проблемы с распознаванием текста. В таких случаях всегда можно было обратиться к принципиальной схеме, которой комплектовалась вся бытовая техника.

Рисунок 1. Резистор «УЛИ», на корпусе виден номинал детали и допуск

Цветовое обозначение

Сейчас принята цветовая маркировка, представляющая собой от трех до шести колец разной окраски (см. рис. 2). Не надо видеть в этом происки врагов, поскольку данный способ позволяет установить номинал даже на сильно поврежденной детали. А это весомый фактор, учитывая, что современные бытовые электроприборы не комплектуются принципиальными схемами.

Рис. 2. Пример цветовой маркировки

Информацию по расшифровке данного обозначения на компонентах несложно найти в интернете, поэтому приводить ее в рамках этой статьи не имеет смысла. Есть также множество программ-калькуляторов (в том числе и онлайн), позволяющих получить необходимую информацию.

Маркировка SMD элементов

Компоненты навесного монтажа (например, smd резистор, диод, конденсатор и т.д.) стали маркировать цифрами, но ввиду малого размера деталей эту информацию требовалось зашифровать. Для сопротивлений, в большинстве случаев, принято обозначение из трех цифр, где первые две — это значение, а последняя — множитель (см. рис. 3).

Рис. 3. Пример расшифровки номинала SMD резистора

Внешний осмотр

Нарушение штатного режима работы вызывает перегрев детали, поэтому, в большинстве случаев, определить проблемный элемент можно по внешнему виду. Это может быть как изменение цвета корпуса, так и его полное или частичное разрушение. В таких случаях необходимо заменить сгоревший элемент.

Рисунок 4. Яркий пример того, как может сгореть резистор

Обратите внимание на фото сверху, компонент, отмеченный как «1», явно нуждается в замене, в то время как соседние детали «2» и «3» могут оказаться рабочими, но их требуется проверить.

Проверка на обрыв

Действия производятся в следующем порядке:

  1. Включаем прибор в режим «прозвонки». На рисунке 5 отмечена эта позиция как «1». Рис. 5. Установка режима (1) и подключение щупов (2 и 3)
  2. Подключаем щупы к гнездам «2» и «3» (см. рис.5). Несмотря на то, что в нашем тестировании полярность не имеет значения, лучше сразу приучить себя подключать щупы правильно. Поэтому к гнезду «2» подключаем красный провод (+), а к «3» — черный (-).

Если модель прибора, которым вы пользуетесь, отличается от того, что приведен на рисунке, ознакомьтесь с прилагающейся к мультиметру инструкцией.

  1. Касаемся щупами выводов проблемного элемента на плате. Если деталь «не звонится» (мультиметр покажет цифру 1, то есть бесконечно большое сопротивление), можно констатировать, что проверка показала обрыв в резисторе.

Обратим внимание, что данное тестирование можно проводить, не выпаивая элемент с платы, но это не гарантирует 100% результат, поскольку тестер может показать связь через другие компоненты схемы.

Проверка на номинал

Если деталь выпаяна, то этот этап позволит гарантированно показать ее работоспособность. Для тестирования нам необходимо знать номинал. Как определить его по маркировке, было написано выше.

Алгоритм наших действий следующий:

  1. Подключаем щупы, так как на предыдущем тестировании.
  2. Включаем измерение сопротивления (диапазон приведен на рисунке 6) в режиме большем, чем номинал, но максимально близким к нему. Например, нам необходимо проверить резистор 47 кОм, следовательно, нужно выбрать диапазон «200К». Рисунок 6. Диапазоны измерения сопротивления (отмечены красным)
  3. Касаемся щупами выводов, снимаем показания и сравниваем их с номиналом. Если они не совпадают, а это можно гарантировать с вероятностью близкой к 100%, не стоит отчаиваться. Следует учитывать как погрешность прибора, так и допуск самого элемента. Здесь необходимо сделать небольшое пояснение.

Что такое допуск, и насколько он важен?

Эта величина показывает возможное отклонение у данной серии от указанного номинала. В правильно рассчитанной схеме должен учитываться этот показатель, либо после сборки производится соответствующая наладка. Как вы понимаете, наши друзья из «Поднебесной» не утруждают себя этим, что положительно отражается на стоимости их товара.

Результат такой политики был показан на рисунке 4, деталь работает какое-то время, пока не наступает предел запаса ее прочности.

  1. Принимаем решение, сравнив показания мультметра с номиналом, если расхождение выходит за пределы погрешности, деталь однозначно нуждается в замене.

Как тестировать переменный резистор?

Принцип действий в данном случае не сильно отличается, распишем их на примере детали, изображенной на рисунке 7.

Рис. 7. Подстроечный резистор (внутренняя схема отмечена красным кругом)

Алгоритм следующий:

  1. Проводим измерение между ножками «1» и «3» (см. рис. 7) и сравниваем полученное значение с номиналом.
  2. Подключаем щупы к выводам «2» и любому из оставшихся («1» или «3», значения не имеет).
  3. Вращаем подстроечную ручку и наблюдаем за показаниями прибора, они должны меняться в диапазоне от 0 до величины, полученной в пункте 1.

Как проверить резистор мультиметром, не выпаивая на плате?

Такой вариант тестирования допустим только с низкоомными элементами. При номинале более 80-100 Ом, с большой вероятностью, на измерение будут влиять другие компоненты. Окончательно можно дать ответ, только внимательно изучив принципиальную схему.

При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.

Содержание статьи

Особенности измерения сопротивления резистора мультиметром

Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.

Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.

Цифровой тестер для проверки резисторов

Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.

Как проверить резистор не выпаивая: визуальная проверка

Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.

О неисправностях свидетельствуют:

  • Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
  • Появление характерного запаха.
  • Стирание маркировки.
  • Наличие на плате сгоревших дорожек

Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.

Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.

Подготовка мультиметра к проведению измерений: какие установить настройки

Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.

Подготовка прибора к проверке

При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».

Как прозвонить резистор

Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.

Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.

Как определить номинал резистора по маркировке

Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.

Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.

В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.

Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.

Таблица кодов для прецизионных резисторов

КодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначениеКодЗначение
011001714733215493166546481681
021021815034221503246647582698
031051915435226513326748783715
041072015836232523406849984732
051102116237237533486951185750
061132216538243543577052386768
071152316939249553657153687787
081182417440255563747254988806
091212517841261573837356289825
101242618242267583927457690845
111272718743274594027559091866
121302819144280604127660492887
131332919645287614227761993909
141373020046294624327863494931
151403120547301634437964995953
161433221048309644538066596976

Проверка сопротивления постоянного резистора

После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.

Как проверяют сопротивление резистора

При обрыве цепи на экране горит «1».

Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.

Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.

СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.

Проверка переменного резистора

Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.

Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.

Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:

  • Мультиметр включают в режим измерения.
  • Щупальца подсоединяют к крайним ножкам. Это позволяет определить общее сопротивление. Значение на дисплее не должно отличаться от номинала более чем на положенный допуск. Величина допуска характеризуется последним кольцом в цветовой маркировке. Она выражается в процентах от номинального значения.
  • Если общее сопротивление соответствует номинальному, то измеряют сопротивление между средней и крайней ножками. После подсоединения «крокодилов» вращают ручку переменного резистора в одном из направлений. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения. При самой частой неисправности (пропадании контакта токосъемника) прибор показывает бесконечность.

Видео: как проверить резистор мультиметром

0805 Smd резистор мощность

Определяем мощность SMD-резисторов по их размерам

Также, как и выводные резисторы, SMD-резисторы для монтажа на поверхность рассчитаны на определённую мощность рассеивания. Но, как её узнать?

На самом деле, определить мощность SMD резистора не так уж и сложно. Мощность рядовых чип-резисторов, которых в современной электронике огромное множество, можно определить исходя из их размеров.

Далее представлена таблица №1, в которой указано соответствие типоразмера SMD-резистора и его мощности рассеивания. Отмечу, что в таблице указан типоразмер в дюймовой системе кодировки, а реальные размеры указаны в миллиметрах (длина и ширина). Сделано это исходя из удобства.

Дело в том, что до сих пор наибольшее распространение получила система кодирования типоразмера чип-резисторов в дюймах. Её используют все: производители, поставщики и магазины. А для того, чтобы определить типоразмер, а, следовательно, и мощность, мы должны замерить длину и ширину резистора обычной линейкой или другим более точным инструментом, шкала которого проградуирована в миллиметрах.

Если у вас на руках имеется SMD-резистор, мощность которого требуется узнать, то, сделав замеры обычной линейкой, можно быстро определить его типоразмер и соответствующую ему мощность рассеивания.

Таблица №1. Соответствие мощности SMD-резистора и его типоразмера.

Типоразмер (дюймовый, inch)Мощность (Power Rating at 70°C)Мощность, Вт.Длина (L) /Ширина (W), мм.
00751/50W0,02 Вт0,3/0,15
010051/32W0,03 Вт0,4/0,2
02011/20W0,05 Вт0,6/0,3
04021/16W, 1/8W0,063 Вт; 0,125 Вт1,0/0,5
06031/10W, 1/5W0,1 Вт; 0,2 Вт1,6/0,8
08051/8W, 1/4W0,125 Вт; 0,25 Вт2,0/1,25
12061/4W, 1/2W0,25 Вт; 0,5 Вт3,2/1,6
12101/2W0,5 Вт3,2/2,5
12181W; 1,5W1 Вт; 1,5 Вт3,2/4,8
18121/2W, 3/4W0,5 Вт; 0,75 Вт4,5/3,2
20103/4W0,75 Вт5,0/2,5
25121W; 1,5W; 2W1 Вт; 1,5 Вт; 2 Вт6,4/3,2
Мощность SMD-резисторов с широкими электродами (Long side termination chip resistors)
04060,25. 0,3W0,25. 0,3 Вт1,0/1,6
06120,75. 1W0,75. 1 Вт1,6/3,2
10201W1 Вт2,5/5,0
12181W1 Вт3,2/4,6
12252W2 Вт3,2/6,4

В таблице №1 также указаны типовые мощности и для SMD-резисторов с широкими боковыми электродами (выводами). В документации такие резисторы называются Long Side Termination Chip Resistors или Wide Terminal Chip Resistors.

Хочу обратить внимание на то, что в колонке (Мощность, Power Rating at 70°C) для некоторых типоразмеров указано несколько значений мощности. Дело в том, что производители выпускают разные серии SMD-резисторов. В одной серии мощность резисторов для типоразмера 1206 нормирована на уровне 0,5 Вт, а в другой 0,25 Вт.

Например, чип-резисторы серии CRM фирмы Bourns ® рассчитаны на повышенную мощность: CRM0805 (0,25W), CRM1206 (0,5W), CRM2010 (1W). Используются такие в импульсных источниках питания в качестве токовых датчиков, токоограничительных резисторов, снабберов (демпфирующих резисторов).

Такое положение дел нужно учитывать, если вы собираетесь использовать резистор, мощность которого была определена исходя из размеров. При этом, нужно остановиться на наименьшем значении мощности, взятом из таблицы №1.

Если этим пренебречь, то может случится так, что вам попадётся резистор с меньшей мощностью, например, 0,25W вместо 0,5W, а это уже чревато его перегревом и выходом из строя при работе в реальной схеме.

Хотелось бы отметить, что сведения в таблице №1 в основном относятся к стандартным SMD-резисторам, то есть таким, которые широко и в большом количестве используются при производстве электроники.

Как правило, это чип резисторы на основе толстой плёнки (thick film chip resistors), так как они являются самыми дешёвыми, и, как следствие, самыми распространёнными. Примером могут служить серии стандартных толстоплёночных SMD резисторов D/CRCW e3 (Vishay ® ), ERJ (Panasonic) или RC (Yageo).

Не секрет, что существует огромное количество узкоспециализированных SMD-резисторов, которые имеют свои особенности. К таким можно отнести резисторы, которые работают при повышенных температурах (до 230°C), в условии агрессивной среды (Antisulfur), миллиомные чип резисторы, SMD резисторы-перемычки. Если такие резисторы и встречаются на печатных платах от потребительской электроники, то, как правило, их количество невелико, они применяются в определённых цепях электронных схем.

Их характеристики, в том числе и мощность рассеивания, может существенно отличатся от усреднённых значений, которые приведены в таблице №1 и являются типовыми для стандартных SMD-резисторов, количество которых в электронной схеме может быть просто огромным.

Типовые мощности тонкоплёночных резисторов (Thin film chip resistors) также соответствуют значениям из таблицы №1. Резисторы для некоторых областей применения, например, для автомобильной электроники (avtomotive grade), могут иметь мощность чуть выше той, что указана в таблице №1.

Как узнать мощность резисторных SMD-сборок?

Для резисторных SMD-сборок мощность в технической документации указывается на элемент (per element), а иногда ещё и на сборку вцелом (per package). Обычно, чип-сборка состоит из набора 2, 4, или 8 резисторов стандартного типоразмера. Например, набор типоразмера 0408 соответствует четырём SMD резисторам типоразмера 0402.

Так вот, типовая мощность одного резистора в такой сборке мало чем отличается от стандартной мощности отдельного SMD-резистора такого же типоразмера.

Так, для резисторных SMD-сборок 0202 (0201 × 2) мощность на элемент обычно составляет 0,03W (1/32W). Для тех, кто ещё не знает, сборка типоразмера 0202, – это два резистора 0201 в наборе.

Для сборок 0404 (0402 × 2), 0408 (0402 × 4) мощность на элемент обычно не превышает значения в 0,063W (1/16W).

Для сборок 0606 (0603 × 2), 0612 (0603 × 4), 0616 (0602 × 8) мощность на элемент составляет 0,063. 0,125W.

Чип-сборка типоразмера 0612 на 4 резистора с выводами типа convex (т.е. выпуклыми). Мощность на элемент 0,1W.

На следующем фото резисторная чип-сборка 8×1206 с материнской платы старого, но очень крутого промышленного компьютера. На современных платах наборы такого типоразмера встречаются очень редко.

Ориентировочная мощность такой сборки 0,25W на элемент. Это если исходить из соображения, что типовая мощность для типоразмера 1206 составляет минимум 0,25W.

Хотя, стоит иметь ввиду, что в документации на стандартные современные сборки типоразмера 4×1206 минимальная мощность обычно 0,125W (1/8W) на элемент, что в 2 раза меньше. Так что, тут можно и поспорить, но я всё же остановлюсь на значении в 0,25W.

Кривая снижения мощности SMD-резистора и диапазон рабочей температуры.

В англоязычной тех. документации мощность рассеивания называется Power Dissipation (иногда Rated dissipation), а обозначается как P70. Нижнему индексу (70) соответствует температура окружающей среды, при которой резистор способен долговременно выдерживать указанную мощность.

Каждая серия резисторов рассчитана на работу в определённом интервале температур. В большинстве своём, рабочая температура обычных чип-резисторов на основе толстой плёнки (thick film) лежит в интервале от -55°C до +155°C. Но, для микроминиатюрных типоразмеров от 0075 до 0201 максимальная температура, как правило, ограничена на уровне +125°C.

Как уже говорилось, в технической документации мощность SMD-резисторов указывается для температуры окружающей среды +70°C. Если резистор, эксплуатируется при температуре выше +70°C, то мощность, которая выделяется на нём в процессе работы должна быть снижена. Проще говоря, при повышенной температуре резистор просто не успевает охлаждаться.

На графике снижения мощности (Power Derating Curve) по шкале Rated Load (%) указан процент от номинальной мощности, которую способен выдержать SMD-резистор при соответствующей температуре окружающей среды (Ambient Temperature, °C).

Так, при температуре в +120°C мощность должна быть снижена до уровня 40% для изделий, рассчитанных на работу в температурном диапазоне -55°C. +155°C. Если у нас резистор на 1 ватт, то при данной температуре он способен долговременно выдерживать мощность в 0,4 ватта. Нетрудно заметить, что температура в 155°C соответствует нулевой мощности.

Приведённый график является типовым для стандартных толстоплёночных резисторов. Для специализированных SMD-резисторов график снижения мощности может существенно отличаться. Например, так он выглядит для резисторов серии PHT (Vishay).

Это высокостабильные тонкоплёночные чип резисторы для работы при повышенной температуре окружающей среды (от -55°C до +215°C). Даже к установке таких резисторов на печатную плату предъявляются определённые требования, чтобы эффективно отводить тепло от резистивного слоя.

Мощные SMD-резисторы.

Существует мнение, что максимальная мощность рассеивания SMD резисторов ограничена их физическими размерами и параметрами резистивного слоя, например, сечением. И это так. Несмотря на это, среди резисторов для поверхностного монтажа есть и модели повышенной мощности.

К таким можно отнести чип резисторы серии PCAN (Vishay). Особенностью данных резисторов является подложка из нитрида алюминия (aluminum nitride, AlN), которая обладает повышенной теплопроводностью. 90% тепла от резистивного слоя SMD-резистора проходит через тело компонента, то есть через его подложку (substrate). Керамика на основе алюмонитрида (нитрида алюминия) обладает высокой теплопроводностью, что позволяет быстрее отводить тепло от резистивного слоя. К тому же, керамика на основе алюмонитрида нетоксична.

Кроме этого нижняя часть контактных электродов данных чип-резисторов имеет увеличенную площадь, за счёт которой удаётся уменьшить тепловое сопротивление между проводящим слоем резистора и контактными площадками на печатной плате.

Такое сочетание технических решений позволяет преодолеть мощностные ограничения для стандартных типоразмеров смд-резисторов. Для сравнения, приведу значения мощности рассеивания для четырёх типоразмеров, доступных в данной серии.

Тонкоплёночные прецизионные чип резисторы повышенной мощности серии PCAN (Vishay)
Типоразмер, inchМощность, W
06030,5
08051
12062
25126

Как видим, для типоразмера 2512 мощность составляет 6 Вт. Стандартный SMD-резистор такого же типоразмера, как правило, имеет мощность не более 1 или 2 Вт.

Так же есть чип-резисторы с более скромными характеристиками, например, серии PHP (Vishay). В ней уже используется подложка из рядового, хотя, и высокочистого оксида алюминия (alumina, Al2O3), который широко используется в качестве материала для подложки в стандартных SMD-резисторах.

Из особенностей: увеличенная площадь нижних электродов Wraparound-типа. Допустимая мощность для типоразмера 2512 данной серии составляет 2,5 Вт. Это на 0,5. 1,5 ватта больше, чем у стандартных резисторов аналогичного размера.

Работа чип-резисторов на таких мощностях возможна с одной оговоркой, – это соблюдение правил монтажа на печатную плату. Об этом прямо сообщается в технической документации на серию.

Какие бы технические ухищрения не использовались для увеличения мощностных характеристик SMD-резисторов, но тепло всё равно отводить куда-то надо. Именно поэтому, к таким резисторам предъявляются особые требования монтажа их на плату.

Основными способами отвода избытка тепла от резистивного слоя SMD-резистора являются соединительные контакты медных проводников, поверхность печатной платы и внешнее охлаждение.

В печатных платах под поверхностный монтаж элементов, избытки тепла от элементов отводятся в толщу платы и медные полигоны, которые служат своеобразным радиатором. В некоторых случаях может применятся принудительное внешнее охлаждение (например, вентиляторы).

В общем, термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для монтажа на поверхность платы по технологии SMT (технология поверхностного монтажа).

SMT технология (от англ. Surface Mount Technology ) была разработана с целью удешевления производства, повышению эффективности изготовления печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. д. Сегодня рассмотрим один из таких видов резисторов – SMD резистор.

SMD резисторы

SMD резисторы – это миниатюрные резисторы, предназначенные для поверхностного монтажа. SMD резисторы значительно меньше, чем их традиционный аналог. Они часто бывают квадратной, прямоугольной или овальной формы, с очень низким профилем.

Вместо проволочных выводов обычных резисторов, которые вставляются в отверстия печатной платы, у SMD резисторов имеются небольшие контакты, которые припаяны к поверхности корпуса резистора. Это избавляет от необходимости делать отверстия в печатной плате, и тем самым позволяет более эффективно использовать всю ее поверхность.

Типоразмеры SMD резисторов

В основном термин типоразмер включает в себя размер, форму и конфигурацию выводов (тип корпуса) какого-либо электронного компонента. Например, конфигурация обычной микросхемы, которая имеет плоский корпус с двусторонним расположением выводов (перпендикулярно плоскости основания), называется DIP.

Типоразмер SMD резисторов стандартизированы, и большинство производителей используют стандарт JEDEC. Размер SMD резисторов обозначается числовым кодом, например, 0603. Код содержит в себе информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса составляет 0,060 дюйма, шириной 0,030 дюйма.

Такой же типоразмер резистора в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина равна 1,6 мм, ширина 0,8мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах перемножить на 2,54.

Размеры SMD резисторов и их мощность

Размер резистора SMD зависит главным образом от необходимой мощности рассеивания. В следующей таблице перечислены размеры и технические характеристики наиболее часто используемых SMD резисторов.

Маркировка SMD резисторов

Из-за малого размера SMD резисторов, на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан особый способ маркировки. Наиболее часто встречающаяся маркировка содержит три или четыре цифры, либо две цифры и букву, имеющая название EIA-96.

Маркировка с 3 и 4 цифрами

В этой системе первые две или три цифры обозначают численное значение сопротивления резистора, а последняя цифра показатель множителя. Эта последняя цифра указывает степень, в которую необходимо возвести 10, чтобы получить окончательный множитель.

Еще несколько примеров определения сопротивлений в рамках данной системы:

  • 450 = 45 х 10 0 равно 45 Ом
  • 273 = 27 х 10 3 равно 27000 Ом (27 кОм)
  • 7992 = 799 х 10 2 равно 79900 Ом (79,9 кОм)
  • 1733 = 173 х 10 3 равно 173000 Ом (173 кОм)

Буква “R” используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом. Таким образом, 0R5 = 0,5 Ом и 0R01 = 0,01 Ом.

Маркировка EIA-96

SMD резисторы повышенной точности (прецизионные) в сочетании с малыми размерами, создали необходимость в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Данный стандарт предназначен для резисторов с допуском по сопротивлению в 1%.

Эта система маркировки состоит из трех элементов: две цифры указывают код номинала резистора, а следующая за ними буква определяет множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает конечное значение резистора, например:

  • 01А = 100 Ом ±1%
  • 38С = 24300 Ом ±1%
  • 92Z = 0.887 Ом ±1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти величину сопротивления SMD резисторов. Просто введите код, написанный на резисторе и его сопротивление отразится внизу.

Калькулятор может быть использован для определения сопротивления SMD резисторов, которые маркированы 3 или 4 цифрами, а так же по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить функцию данного калькулятора, мы не можем гарантировать, что он вычисляет правильные значения для всех резисторов, поскольку иногда производители могут использовать свои пользовательские коды.

Поэтому чтобы быть абсолютно уверенным в значении сопротивления, лучше всего дополнительно измерить сопротивление с помощью мультиметра.

Похожие записи:

46 комментариев

Спасибо, очень удобный справочник.

Спасибо Вам за прекрасную и необходимую работу!

Полезная информация.Просто,удобно и понятно.Спасибо!

Все бы ничего, почему калькулятор не считаетв EIA?

Вроде все считает..

Буковку «С» нужно ввести после номинала

Доброго всем дня. На резисторе (СМД) написанно Е22 измерить не получается ,так как корозия уничтожила выводы. Стоит в десеке (переключатель спутниковых конвертеров) Прочитал только под микроскопом очень маленький размер. На глаз длинна не более 1,5мм. Подскажите кто силён.

На обычных резисторах этот номинал означает 22 Ома

Привет, а не могли бы сжато написать если не трудно: что такое смд резистор, его предназначение, сколько минимально ом и сколько максимально? Просто я только начал пытаться учить смд компоненты и сейчас тяжело усваиваю инфу, мне нужно сжато суть выучить смд резисторы, диоы и кандеры, что это, предназначение их, мощность мин и макс и как прозваниваются!

смд — маленький, без проводков, на плату сразу припаивать к дорожкам
предназначение — Сопротивляться прохождению тока (от ангельского Резист — Сопротивление)
минимально — Ноль (0) Ом (без приставки Омы — маленькое значение)
Максимально — Сколько повезёт (ххх) МегаОм (приставка Кило — среднее значение)

Прозванивается мультиметром на режиме Ʊ после предварительного замыкания измерительных контактов (эту цифру вычесть из измеренного сопротивления резистора). Измеренное значение Ноль при цифрах на маркировке говорит о коротком замыкании резистора внутри (сгорел). Сменой режима мультиметра можно найти нужный диапазон измерения, чтобы увидеть точное значение. Небольшое отличие от написанного номинала допустимо. Если на всех пределах показывает превышение предела — значит резистор в обрыве (сгорел). Как проводить измерения — написано в инструкции к измерительному прибору. Как работает сопротивление — описано в учебнике по физики, раздел про Закон Ома. Остальные компоненты также имеются в физике. Книга небольшая, прочитать можно один раз и потом на столе держать как справочник.

НоминалСкладЗаказ
0,1 Ом
0,22 Ом
0,47 Ом
1 Ом
1,5 Ом
2 Ом
3 Ом
3,3 Ом
4,7 Ом
5,6 Ом
10 Ом
11 Ом
12 Ом
13 Ом
15 Ом
16 Ом
18 Ом
20 Ом
22 Ом
24 Ом
27 Ом
30 Ом
33 Ом
36 Ом
39 Ом
43 Ом
47 Ом
49,9 Ом
51 Ом
56 Ом
62 Ом
68 Ом
75 Ом
82 Ом
91 Ом
100 Ом
110 Ом
120 Ом
130 Ом
150 Ом
160 Ом
НоминалСкладЗаказ
180 Ом200 Ом220 Ом240 Ом270 Ом300 Ом330 Ом360 Ом390 Ом430 Ом470 Ом499 Ом510 Ом560 Ом620 Ом680 Ом750 Ом820 Ом910 Ом1 кОм1,1 кОм1,2 кОм1,3 кОм1,5 кОм1,6 кОм1,8 кОм2,0 кОм2,2 кОм2,4 кОм2,7 кОм3,0 кОм3,01 кОм3,3 кОм3,4 кОм3,6 кОм3,9 кОм3,92 кОм4,3 кОм4,7 кОм4,99 кОм5,1 кОм
НоминалСкладЗаказ
5,23 кОм5,6 кОм6,2 кОм6,8 кОм7,15 кОм7,5 кОм8,2 кОм9,09 кОм9,1 кОм9,76 кОм10 кОм11 кОм12 кОм13 кОм15 кОм16 кОм18 кОм20 кОм22 кОм24 кОм27 кОм28 кОм30 кОм33 кОм36 кОм39 кОм40,2 кОм43 кОм44,2 кОм47 кОм49,9 кОм51 кОм51,1 кОм56 кОм56,2 кОм62 кОм68 кОм75 кОм82 кОм90,9 кОм
НоминалСкладЗаказ
91 кОм100 кОм110 кОм120 кОм130 кОм150 кОм160 кОм174 кОм180 кОм200 кОм220 кОм237 кОм240 кОм270 кОм300 кОм316 кОм330 кОм348 кОм360 кОм390 кОм430 кОм470 кОм499 кОм510 кОм560 кОм604 кОм620 кОм680 кОм750 кОм820 кОм910 кОм1 МОм1,1 МОм1,2 МОм1,5 МОм2 МОм2,2 МОм3 МОм4,99 МОм5,1 МОм10 MOmКупить

Маркировка smd резисторов по ряду E96

Маркировка smd резисторов ряда E96 производится тремя знаками. Первые две обозначают номинал в соответствие с таблицей, третья буква обозначает степень множителя. Маркировка номиналов 1% чип резисторов совпадающих по значению сопротивлений с рядом E24 может обозначаться без использования таблиц перекодировок, с использованием трех цифр первые две цифры номинал, третья количество нулей при обозначение в Омах.

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 5000 штук резисторов типоразмера 0805.

Размеры резистора 0805

Технические характеристики чип резисторов 0805 1%

  • Номинальная мощность smd резистора при 70°С. 0,125 Вт
  • Рабочее напряжение smd резистора . 150 В
  • Максимальное напряжение smd резистора . 300 В
  • Диапазон рабочих температур smd резистора . -55° +125°С
  • Температурный коэффициент сопротивления. 100 ppm/°С

Типоразмер smd резисторов 0805 5% удобен для ручного монтажа, однако занимает достаточно много места на плате и имеет боле высокую цену чем меньшие 0402 5% и 0402 1% или 0603 5% и 0603 1%. Для электрических схем где необходимо большая рассеиваемая мощность или рабочее напряжения, со склада компании поставляются чип резисторы 1206 5%, 1206 1% и резисторы с рассеиваемой мощностью 1 Вт типоразмера 2512 5%; 2512 1%, низкоомные со значением номинала менее 1 Ом, или высоковольтные с номинальным сопротивлением свыше 10 Мом высокоомные резисторы 0805 в этом же типоразмере представлены термисторы.

Технические характеристики и маркировка чип резисторов 1% 0805 производитель Liket

Технические характеристики и маркировка чип резисторов 1% 0805 производитель Walsin

Отзывы о маркировке резисторов smd

- интернет-магазины и отзывы маркировки резисторов smd на AliExpress

Отличные новости !!! Вы попали в нужное место для маркировки smd резисторов. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально есть тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как эта маркировка резисторов smd должна стать одним из самых востребованных бестселлеров в кратчайшие сроки. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что ваши резисторы smd отмечены на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в маркировке резисторов smd и думаете о выборе аналогичного товара, AliExpress - отличное место для сравнения цен и продавцов.Мы поможем вам решить, стоит ли доплачивать за высококлассную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. И, если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово - просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны - и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести smd resistors marking по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Маркировка резистора 470 Ом.Резисторы SMD. Маркировка резисторов SMD, размеры, онлайн калькулятор. Числовой и буквенный

А так же они указаны на электрических схемах. В этой статье речь пойдет о резисторе или по старинке он также называется сопротивлением .

Резисторы являются наиболее распространенными элементами электронного оборудования и используются практически в каждом электронном устройстве. Резисторы имеют электрическое сопротивление и служат для ограничения тока в электрической цепи.Они используются в схемах делителей напряжения, как дополнительные сопротивления и шунты в измерительных приборах, как регуляторы напряжения и тока, регуляторы громкости, тембра звука и т. Д. В сложных устройствах количество резисторов может доходить до нескольких тысяч штук.

1. Основные параметры резисторов.

Основными параметрами резистора являются: номинальное сопротивление, допустимое отклонение фактического значения сопротивления от номинального (допуск), номинальная рассеиваемая мощность, электрическая прочность, зависимость сопротивления: от частоты, нагрузки, температуры, влажности; уровень шума, размер, вес и стоимость.Однако на практике резисторы подбирают по сопротивлением , номинальной мощностью и допуском . Рассмотрим эти три основных параметра более подробно.

1.1. Сопротивление.

Сопротивление - это величина, определяющая способность резистора предотвращать прохождение тока в электрической цепи: чем больше сопротивление резистора, тем больше сопротивление, которое он оказывает току, и наоборот, тем меньше сопротивление. сопротивление резистора, тем меньшее сопротивление он оказывает току.Используя эти качества резисторов, они используются для управления током в определенном участке электрической цепи.

Сопротивление измеряется в омах ( Ом, ), килоомах ( кОм, ) и мегаомах ( МОм, ):

1кОм = 1000 Ом ;
1МОм = 1000 кОм = 1000000 Ом .

Промышленность выпускает резисторы различных номиналов в диапазоне сопротивлений от 0,01 Ом до 1 ГОм. Числовые значения сопротивлений задаются стандартом, поэтому при изготовлении резисторов величина сопротивления выбирается из специальной таблицы предпочтительных чисел:

1,0 ; 1,1 ; 1,2 ; 1,5 ; 2,0 ; 2,2 ; 2,7 ; 3,0 ; 3,3 ; 3,9 ; 4,3 ; 4,7 ; 5,6 ; 6,2 ; 6,8 ; 7,5 ; 8,2 ; 9,1

Требуемое числовое значение сопротивления получается путем деления или умножения этих чисел на 10 .

Номинальное значение сопротивления указано на корпусе резистора в виде кода с использованием буквенно-цифровой маркировки , цифровой или цветовой маркировки .

Буквенно-цифровая маркировка .

При использовании буквенно-цифровой маркировки единица измерения ом обозначается буквами « E » и « R », единица килобуквы « TO », а единица измерения мегаом - буквой « M »

а) Резисторы сопротивлением от 1 до 99 Ом маркируются буквами « E » и « R ».В некоторых случаях на корпусе может быть указано только значение полного сопротивления без буквы. На посторонних резисторах после числового значения поставить значок Ом « Ом. »:

3R - 3 Ом
10E - 10 Ом
47R - 47 Ом
47 Ом - 47 Ом
56 - 56 Ом

б) Резисторы сопротивлением от 100 до 999 Ом выражаются в долях килоом и обозначаются буквой « TO ».Причем букву, обозначающую единицу измерения, ставят вместо нуля или запятой. В некоторых случаях общее значение сопротивления с буквой « R » в конце или только одно числовое значение величины без буквы:

K12 = 0,12 кОм = 120 Ом
K33 = 0,33 кОм = 330 Ом
K68 = 0,68 кОм = 680 36017 36017

c) Сопротивления от 1 до 99 кОм выражаются в килоомах и обозначаются буквой « TO »:

2K0 - 2 кОм
10K - 10 кОм
47K - 47 кОм
82K - 82 кОм

d) Сопротивления от 100 до 999 кОм выражены в мегамолях и обозначаются буквой « M ».Буква ставится вместо нуля или запятой:

M18 = 0,18 МОм = 180 кОм
M47 = 0,47 МОм = 470 кОм
M91 = 0,91 МОм = 910

кОм

e) Сопротивления от 1 до 99 МОм выражены в МОм и обозначаются буквой « M »:

1 МОм - 1 МОм
10 МОм - 10 МОм
33 МОм - 33 МОм

f) Если номинальное сопротивление выражается целым числом с дробью, то буквы E , R , TO и M , обозначающие единицу измерения, ставятся вместо запятой, разделяя их. целая и дробная части:

R22 - 0.22 Ом
1E5 - 1,5 Ом
3R3 - 3,3 Ом
1K2 - 1,2 кОм
6K8 - 6,8 кОм
3 м3 - 3,3 МОм

Цветовая маркировка .

Цветовая кодировка обозначается четырьмя или пятью цветными кольцами и начинается слева направо. Каждый цвет имеет свое числовое значение. Кольца смещены к одному из выводов резистора и первый - кольцо, расположенное на самом краю.Если размеры резистора не позволяют разместить маркировку ближе к одной из клемм, то ширина первого кольца примерно в два раза больше остальных.

Укажите сопротивление резистора слева направо. Резисторы с допуском ± 20% (о допуске будет сказано ниже) маркируются четырьмя кольцами: первые два обозначены в Омах, третье кольцо - это умножитель и четвертое указывает допуск или резистор класса точности .Четвертое кольцо нанесено с видимым от остальных зазором и расположено на противоположном выводе резистора.

Резисторы с допуском 0,1 ... 10% маркируются пятью цветными кольцами: первые три - числовое значение сопротивления в Ом, четвертое - коэффициент, пятое кольцо - допуск. Для определения значения сопротивления воспользуйтесь специальной таблицей.

Например. Резистор обозначен четырьмя кольцами:

красный - ( 2 )
фиолетовый - ( 7 )
красный - (100 )
серебро - ( 10% )
Итак: 27 Ом х 100 = 2700 Ом = 2.7 кОм с допуском ± 10% .

Резистор отмечен пятью кольцами:

красный - ( 2 )
фиолетовый ( 7 )
красный ( 2 )
красный (100 )
золотой ( 5% )
Итак: 272 Ом х 100 = 27200 Ом = 27,2 кОм с допуском ± 5%

Иногда бывает сложно определить первый звонок. Здесь следует помнить одно правило: начало маркировки не начинается с черных, золотых и серебряных .

И еще один момент. Если вы не хотите заморачиваться с таблицей, то в Интернете есть онлайн-калькуляторы, предназначенные для расчета сопротивления цветных колец. Программы можно скачать и установить на компьютер или смартфон. О цветовой и буквенно-цифровой маркировке вы также можете прочитать в статье.

Цифровая маркировка .

Цифровая маркировка нанесена на корпус SMD-компонентов и обозначена цифрами три или четыре .

В трехзначное обозначение , первые две цифры указывают числовое значение сопротивления в Омахе, третья цифра указывает коэффициент . Множитель - это число 10, возведенное в степень третьей цифры:

.

221 - 22 х 10 в мощность 1 = 22 Ом х 10 = 220 Ом ;
472 - 47 х 10 в мощность 2 = 47 Ом х 100 = 4700 Ом = 4,7 кОм ;
564 - 56 х 10 в мощность 4 = 56 Ом х 10000 = 560000 Ом = 560 кОм ;
125 - 12 х 10 в мощность 5 = ​​12 Ом х 100000 = 12000000 Ом = 1.2 МОм .

Если последняя цифра нулевая , то множитель будет равен , единица , так как десять в нулевой степени равно единице:

100 - 10 х 10 в мощности 0 = 10 Ом х 1 = 10 Ом ;
150 - 15 х 10 в мощность 0 = 15 Ом х 1 = 15 Ом ;
330 - 33 х 10 в мощности 0 = 33 Ом х 1 = 33 Ом .

У четырехзначное обозначение : первые три цифры также указывают числовое значение сопротивления в омах, третья цифра указывает множитель.Множитель - это число 10, возведенное в степень третьей цифры:

.

1501 - 150 х 10 на мощность 1 = 150 Ом х 10 = 1500 Ом = 1,5 кОм ;
1602 - 160 х 10 на мощность 2 = 160 Ом х 100 = 16000 Ом = 16 кОм ;
3243 - 324 х 10 в мощности 3 = 324 Ом х 1000 = 324000 Ом = 324 кОм .

1,2. Допуск (класс точности) резистора.

Вторым важным параметром резистора является отклонение фактического сопротивления от номинала и определяется допуском (класс точности).

Допуск выражается в процентах и указывается на корпусе резистора в виде буквенного кода , состоящего из одной буквы. Каждой букве присваивается конкретное числовое значение допуска, пределы которого определены ГОСТ 9964-71 и указаны в таблице ниже:

Наиболее распространенные резисторы доступны с допуском 5%, 10% и 20%.Прецизионные резисторы, используемые в измерительном оборудовании, имеют допуски 0,1%, 0,2%, 0,5%, 1%, 2%. Например, для резистора с номинальным сопротивлением 10 кОм и допуском 10% фактическое сопротивление может находиться в диапазоне от 9 до 11 кОм ± 10%.

На корпусе резистора допуск указан после номинального сопротивления и может состоять из буквенного кода или числового значения в процентах.

Для резисторов с цветовой кодировкой указан допуск. последний цвет кольца : серебро - 10%, золотое - 5%, красное - 2%, коричневое - 1%, зеленое - 0,5%, синее - 0,25%, пурпурное - 0,1%. Если нет кольца допуска, резистор имеет допуск 20%.

1,3. Номинальная рассеиваемая мощность.

Третий важный параметр резистора - рассеиваемая мощность

Когда через резистор проходит ток, на нем выделяется электрическая энергия (мощность) в виде тепла, которое сначала увеличивает температуру тела резистора, а затем переходит в воздух за счет теплопередачи.поэтому рассеиваемая мощность они называют максимальной мощностью тока, которую резистор может выдержать и рассеивать в виде тепла в течение длительного времени без ущерба для потери его номинальных параметров.

Поскольку слишком высокая температура корпуса резистора может привести к выходу из строя, то при составлении схем устанавливается значение, указывающее на способность резистора рассеивать ту или иную мощность без перегрева.

На единицу мощности Вт (Вт).

Например. Предположим, что через резистор 100 Ом протекает ток 0,1 А, что означает, что резистор рассеивает мощность в 1 Вт. Если резистор имеет меньшую мощность, он быстро перегреется и выйдет из строя.

В зависимости от геометрических размеров резисторы могут рассеивать определенную мощность, поэтому резисторы разной мощности различаются по размеру: чем больше резистор, тем больше его номинальная мощность, тем больший ток и напряжение он может выдерживать.

Доступны резисторы

с мощностью рассеяния 0.125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 5 Вт, 10 Вт, 25 Вт и другие.

На резисторах от 1 Вт и выше значение мощности указывается на корпусе в виде цифрового значения, а у малогабаритных резисторов приходится определять «на глаз».

С приобретением опыта определение мощности малогабаритных резисторов не вызывает никаких затруднений. Впервые можно использовать обычный на матч . Подробнее про мощность и дополнительно посмотреть видео вы можете в статье.

Однако есть небольшой нюанс с габаритами, который необходимо учитывать при выполнении монтажа: габариты отечественных и зарубежных резисторов одинаковой мощности немного отличаются друг от друга - отечественные резисторы немного крупнее зарубежных аналогов. .

Резисторы

можно разделить на две группы: резисторы постоянного сопротивления (постоянные резисторы) и резисторы переменного сопротивления (переменные резисторы).

2. Резисторы постоянного сопротивления (постоянные резисторы).

Константа - это резистор, сопротивление которого во время работы остается неизменным . Конструктивно такой резистор представляет собой керамическую трубку, на поверхность которой нанесен токопроводящий слой, обладающий определенным омическим сопротивлением. По краям трубки прижимаются металлические заглушки, к которым привариваются выводы резисторов из луженой медной проволоки. Корпус резистора сверху покрыт влагостойкой цветной эмалью.

Керамическая трубка называется резистивным элементом , и в зависимости от типа проводящего слоя, нанесенного на поверхность, резисторы делятся на непроволочные и проволочные .

Непроволочные резисторы используются для работы в электрических цепях постоянного и переменного тока, в которых протекают относительно небольшие токи нагрузки. Резисторный элемент резистора выполнен в виде тонкой полупроводниковой пленки , нанесенной на керамическую основу.

Полупроводниковая пленка называется резистивным слоем и изготавливается из пленки из однородного вещества толщиной 0,1 - 10 мкм (микрометра) или из микрокомпозиции . Микрокомпозиции могут быть изготовлены из углерода, металлов и их сплавов, из оксидов и соединений металлов, а также в виде более толстой пленки (50 мкм), состоящей из измельченной смеси проводящего вещества.

В зависимости от состава резистивного слоя резисторы делятся на углеродные, металлопленочные (металлизированные), металлодиэлектрические, металлооксидные и полупроводниковые.Наибольшее распространение получили постоянные резисторы из металлопленочных и композитных углеродных материалов. Среди резисторов отечественного производства можно выделить МЛТ, ОМЛТ (металлизированные, эмалированные, термостойкие), ВС (угольные) и КИМ, ТВО (композитные).

Непроволочные резисторы

отличаются небольшими размерами и массой, невысокой стоимостью и возможностью применения на высоких частотах до 10 ГГц. Однако они недостаточно стабильны, так как их сопротивление зависит от температуры, влажности, приложенной нагрузки, продолжительности работы и т. Д.Тем не менее положительные свойства непроволочных резисторов настолько значительны, что они используются чаще всего.

2.2. Проволочные резисторы.

Резисторы с проволочной обмоткой используются в электрических цепях постоянного тока. При изготовлении резистора тонкая проволока из никеля, нихрома, константана или других сплавов с высоким удельным электрическим сопротивлением наматывается на его корпус в один или два слоя. Высокое удельное сопротивление провода позволяет выполнить резистор с минимальным расходом материалов и небольшими размерами.Диаметр используемых проводов определяется плотностью тока, проходящего через резистор, технологическими параметрами, надежностью и стоимостью и начинается от 0,03 - 0,05 мм.

Для защиты от механических или климатических воздействий, а также для фиксации витков резистор покрывается лаком, эмалью или пломбируется. Тип изоляции влияет на термостойкость, электрическую прочность и внешний диаметр провода: чем больше диаметр провода, тем толще изоляционный слой и выше электрическая прочность.

Наиболее широко применяемыми проводами в эмалевой изоляции являются ПЭ (эмаль), ПЭВ (высокопрочная эмаль), ПЭТВ (жаростойкая эмаль), ПЭТК (жаропрочная эмаль), преимуществом которых является малая толщина при достаточно высокой диэлектрическая прочность. Обычные резисторы большой мощности - это проволочные эмалированные резисторы типа ПЭВ, ПЭВТ, С5-35 и др.

По сравнению с непроволочными резисторами, резисторы с проволочной обмоткой более стабильны. Могут работать при более высоких температурах, выдерживают значительные перегрузки.Однако их труднее производить, они более дороги и непригодны для использования на частотах выше 1–2 МГц, поскольку они имеют высокую внутреннюю емкость и индуктивность, которые проявляются уже на частотах в несколько килогерц.

Поэтому они в основном используются в цепях постоянного или низкочастотного тока, где требуются высокая точность и стабильность, а также способность выдерживать значительные токи перегрузки, вызывающие значительный перегрев резистора.

С появлением микроконтроллеров современная техника стала более функциональной и в то же время намного компактнее.Использование микроконтроллеров позволило упростить электронные схемы и тем самым снизить ток потребления устройств, что позволило миниатюризировать элементную базу. На рисунке ниже показаны резисторы SMD, припаянные к плате со стороны печатной платы.

На принципиальных схемах постоянные резисторы, независимо от их типа, изображены как прямоугольник , а выводы резистора изображены линиями, проведенными со сторон прямоугольника.Такое обозначение принято повсеместно, однако в некоторых зарубежных схемах используется обозначение резистора в виде зубчатой ​​линии (пилы).

Рядом с символом поставить латинскую букву « R » и порядковый номер резистора в цепи, а также указать его номинальное сопротивление в единицах Ом, кОм, МОм.

Значение сопротивления от 0 до 999 Ом указано в Ом , но единица измерения не установлена:

15 -15 Ом
680 - 680 Ом
920 - 920 Ом

На некоторых зарубежных схемах для обозначения Ом ставят букву R :

1Р3 - 1.3 Ом
33R - 33 Ом
470R - 470 Ом

Значение сопротивления от 1 до 999 кОм указано в кОм с добавлением буквы «от до »:

1,2 кОм - 1,2 кОм
10 кОм - 10 кОм
560 кОм - 560 кОм

Значения сопротивления от 1000 кОм и более указаны в единицах МОм с добавлением буквы « M »:

1 МОм - 1 МОм
3.3M - 3,3 МОм
56M - 56 МОм

Резистор используется в соответствии с мощностью, на которую он рассчитан, и который может выдерживать без риска повреждения при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописаны условные обозначения мощности резистора: двойная косая черта указывает мощность 0,125 Вт; прямая линия вдоль значка резистора указывает мощность 0,5 Вт; Римскими цифрами обозначена мощность от 1 Вт и выше.

4. Последовательное и параллельное соединение резисторов.

Очень часто возникает ситуация, когда при проектировании прибора под рукой нет резистора с нужным сопротивлением, а есть резисторы с другими сопротивлениями. Здесь все очень просто. Зная расчет последовательного и параллельного подключения, можно собрать резистор любого номинала.

При последовательно подключаемых резисторах их общее сопротивление Rtotal равно сумме всех сопротивлений резисторов, подключенных к этой цепи:

Rtotal = R1 + R2 + R3 +... + Rn

Например. Если R1 = 12 кОм, а R2 = 24 кОм, то их суммарное сопротивление Rtotal = 12 + 24 = 36 кОм.

При параллельно При подключении резисторов их общее сопротивление уменьшается и всегда меньше, чем сопротивление каждого отдельного резистора:

Предположим, что R1 = 11 кОм, а R2 = 24 кОм, тогда их суммарное сопротивление будет равно:

И еще один момент: при параллельном соединении двух резисторов с одинаковым сопротивлением их общее сопротивление будет равно половине сопротивления каждого из них.

Из приведенных примеров видно, что если вы хотите получить резистор с более высоким сопротивлением, то используйте последовательное соединение, а если с меньшим, то используйте параллельное соединение. А если возникнут вопросы, прочтите статью, в которой более подробно описаны способы подключения.

Ну, в дополнение к прочитанному, посмотрите видео про резисторы постоянного сопротивления.

Ну в принципе все, что я хотел сказать про резистор в целом и отдельно про резисторы dC .Во второй части статьи мы познакомимся.
Удачи

Литература:
В. И. Галкин - «Начинающему любителю», 1989 г.
В. А. Волгов - «Детали и узлы электронного оборудования», 1977 г.
В. Г. Борисов - «Юный радиолюбитель», 1992 г.

Проводники обеспечивают сопротивление электрическому току, чем больше это сопротивление, тем меньше электрический ток через проводник. Сопротивление проводника зависит от материала, из которого он состоит, длины, сечения, температуры.Чем длиннее проводник, тем больше сопротивление, чем короче проводник, тем меньше сопротивление. Чем тоньше проводник, тем больше сопротивление, чем толще проводник, тем меньше сопротивление.

Сопротивление обозначается буквой R , а единица сопротивления - буквами Ом . На практике единицы электрического сопротивления также используются в килоомах ( кОм, ) и мегаомах ( кОм, ).

1 кОм = 1000 Ом

1 МОм = 1000000 Ом

Чтобы найти сопротивление проводника в Ом, необходимо напряжение на его концах в вольтах разделить на силу тока в амперах:

Постоянные резисторы

Резистор - это пассивный элемент в электрической цепи.Служит для уменьшения силы тока; во время работы резисторы нагреваются, потому что избыточная электрическая энергия преобразуется резисторами в тепло. На принципиальных электрических схемах резисторы отображаются в виде прямоугольника с двумя выводами или в виде ломаной линии (американский стандарт), обозначаются буквой R с порядковым номером (R1, R2 и т. Д.). Рядом указан номинал резистора.

Основной параметр резистора - сопротивление.Сопротивление резистора измеряется в омах, килоомах, мегаомах. Номинальная рассеиваемая мощность резистора (от 0,05 до 5 Вт) указывается специальными знаками, помещенными внутри символа.

Маркировка резисторов. Согласно ГОСТ 2.702-75 сопротивления от 0 до 999 Ом указываются на схемах числом без единицы измерения (3,3; 47; 220; 750 и др.), От 1 до 999 кОм - числом с буква к (47 к; 330 к; 910 к и т. д.), над 1 мегомой - с цифрой с буквой M (1 M; 4.7 М и др.).

По ГОСТ 11076 - 69 единиц сопротивления в кодированной системе обозначают буквами Е или R (Ом), К (килоом) и М (мегаом). Таким образом, 33 Ом обозначены 33E, 1 Ом - 1R0, 47 Ом - 47E, 10 кОм - 10K, 47 кОм - 47K и т. Д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражаются в долях кило и мегаом соответственно, а вместо нуля и запятой ставится соответствующая единица измерения: 150 Ом = 0,15 кОм = K150 ; 910 Ом = 0.91 кОм = К91; 180 кОм = 0,18 МОм = М18; 680 кОм = 0,68 МОм = М68 и т. Д.

Если номинальное сопротивление выражается целым числом с дробью, то вместо запятой ставится единица измерения: 3,3 Ом - 3E3 или 3R3; 4,7 кОм - 4К7; 3,3 МОм - 3М3 и т. Д.

SMD и настроечные резисторы можно маркировать тремя цифрами, первые две указывают сопротивление в омах (мантиссе), а третья - количество последующих нулей (показатель степени по основанию 10), к маркировке также можно добавить букву R. для обозначения десятичной точки.Примеры:

Маркировка 513 означает 51 х 10 3 = 51000 Ом или 51 кОм

Маркировка R470 означает 0,47 Ом

Еще много маркировок с цветными полосами, но производители резисторов в настоящее время не придерживаются общего стандарта, поэтому надежнее измерять сопротивление резисторов мультиметром.

Переменные резисторы

Переменные резисторы - это резисторы, сопротивление которых можно изменять. Они используются в качестве регуляторов усиления, громкости, тембра и т. Д.

Существует две схемы включения переменных резисторов в электрическую цепь. В одном случае они используются для управления силой тока в цепи, и тогда регулируемый резистор называется реостатом. В другом случае они используются для регулирования напряжения, тогда резистор называется потенциометром.

Подстроечные резисторы

Настраиваются различные переменные резисторы. Блок регулирования таких резисторов приспособлен для управления отверткой.

Подключение резистора

При последовательном соединении резисторов их сопротивление складывается:

При параллельном подключении полное сопротивление рассчитывается по формуле:

При параллельном соединении двух одинаковых резисторов общее сопротивление будет равно половине сопротивления одного из них.

Таким образом, можно получить нужные номиналы резисторов из имеющихся.

Цементно-керамические проволочные резисторы - резисторы постоянные, номинальное сопротивление в зависимости от номинала от 0,01 Ом до 100 кОм Рассеиваемая мощность - 5Вт, 10Вт, 15Вт, 25Вт . Предназначен для работы в цепях постоянного или переменного тока, обеспечивая ограничение тока и распределение напряжения.

Конструктивно проволочные резисторы выполнены в виде трубчатой ​​керамической основы (чистый оксид алюминия Al 2 O 3), в качестве резистивного элемента используется проволока , проводник (медно-никелевый или хромоникелевый сплав) с высоким удельным сопротивлением.Основание с обмоткой помещено в формованный прямоугольный корпус из стеатитовой керамики и с инкапсулированным кремнеземом (диоксид кремния SiO 2).

Монолитная керамическая конструкция резисторов обладает высокими характеристиками огнестойкости, влагостойкости и способности к самозатуханию.

Резисторы выходные керамические - гибкий аксиальный провод осевого типа. В качестве свинцового материала используется луженая медь. Монтаж осуществляется пайкой по THT-технологии - вывод монтируется непосредственно в сквозные отверстия печатной платы.

Монтажное положение - любое, но следует помнить о резистивных особенностях, сопровождающихся нагревом корпуса резистора. Поэтому не рекомендуется размещать резисторы рядом с печатной платой или термочувствительными элементами.

Допустимое отклонение сопротивления цементных осевых резисторов ± 5% . Ряд промежуточных значений номинального сопротивления - Е24 Е24 - один из серии постоянных резисторов, являющийся результатом стандартизации номинальных сопротивлений резисторов.. При переменном токе максимальное рабочее напряжение составляет 1500В , при постоянном - 1000В . Рабочая повышенная температура не превышает + 275 ° C пониженная - до -55 ° C . Сопротивление изоляции не менее 1000 МОм .

При выборе платы необходимого номинала платы рекомендуется использовать гибкую, с помощью которой можно определить общее параллельное или последовательное сопротивление , а также сопротивление резисторов в цепи.

Приведены конструктивные особенности и характеристики мощных резисторов C5-35V, C5-36V, PEV, PEVR, RX24 и SQP.

Применяются мощные керамические резисторы в различной промышленной электронике, радио- и телевизионных приемниках, блоках питания и управления, усилителях, автомобильной электронике, а также в качестве тестовых нагрузок или нагревательных элементов (например, в камерах видеонаблюдения).

Более подробные характеристики мощных цементно-керамических резисторов , а также расшифровка маркировки, габаритные и установочные размеры приведены ниже.

Гарантийный срок , срок службы мощных резисторов, поставляемых нашей компанией, составляет 2 года , что подтверждено соответствующими документами по качеству.

Окончательная цена на мощные керамические цементные резисторы с проволочной обмоткой зависит от количества, срока поставки и формы оплаты.

Прежде всего, мы определим понятие и обозначение сопротивления как электрической величины. Согласно теории, сопротивление - это физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока.В международной системе единиц (СИ) единицей сопротивления является Ом (Ом). Для электротехники это относительно небольшое значение, поэтому мы часто будем иметь дело с килоомами (кОм) и мегаомами (МОм). Для этого вам необходимо выучить следующую табличку:

1 кОм = 1000 Ом;
1 МОм = 1000 кОм;

И наоборот:

1 Ом = 0,001 кОм;
1 кОм = 0,001 МОм;

Ничего сложного, но знать это нужно твердо.

Теперь о номиналах. Конечно, промышленность не производит резисторы всех номиналов для радиолюбителей. Изготовление высокоточных резисторов требует много времени, и такие резисторы используются только в специальном высокоточном оборудовании. Вы, например, в обычном магазине не найдете резистор на 1,9 кОм и такая точность чаще всего не нужна - она ​​нужна редко, а при необходимости для этого есть подстроечные резисторы.

Я не буду приводить всю стандартную серию, с которой мы здесь встретимся - она ​​достаточно длинная и специально обучать ее не стоит.Лучше научитесь отличать один резистор от другого. Маркировка устройств может производиться по-разному. Самым удобным, на мой взгляд, была цифровая маркировка. Его изготавливали, например, на самых популярных в свое время резисторах МЛТ.

Достаточно одного взгляда на резистор, чтобы узнать, какое у него сопротивление

Например, на втором резисторе сверху мы читаем 2,2 и ниже K5%. Номинал этого резистора составляет 2,2 килограмма с точностью до 5%. Для мегаомных резисторов используется "M" вместо "K", а омы обозначаются буквами "R", "E" или вообще без буквы:

470 - 470 Ом
18E - 18 Ом

Очень часто любую из букв можно заменить запятой:

2к2 - 2.2 килограмма
M15 - 0,15 МОм или 150 кОм

Вот и вся уловка. Еще один параметр - мощность резистора. Чем выше мощность, тем больший ток может выдержать резистор без разрушения (возгорания). Вернемся к верхней картинке снова. Здесь резисторы имеют следующую мощность (сверху вниз) 2 Вт, 1 Вт, 0,5 Вт, 0,25 Вт, 0,125 Вт. Первые три такие большие, что даже нашли место для маркировки мощности: МЛТ-2, МЛТ- 1, МЛТ-0,5. Остальное на глаз. Конечно, выпускаются и другие типы (и емкости) с маркировкой «человек» (но большинство, увы, выпускалось), перечислять не буду, но принцип обозначения у них такой же.

ПЭВР-30, например, выглядит как цилиндр приличных размеров, но тоже имеет маркировку

Но эта мода практически отступила, вместо цифр появились цветные полосы и специальные коды и с этим придется мириться.

Что это за резистор и каково его значение? Для этого вам придется обратиться к специальным таблицам, которые я здесь представляю.

Типы SMD компонентов. Резисторы SMD. Маркировка резисторов SMD, размеры, онлайн калькулятор.SMD диоды и светодиоды SMD

В целом термин SMD (от англ. Surface Mounted Device) можно отнести к любому малогабаритному электронному компоненту, предназначенному для установки на поверхность технологической платы SMT (технология поверхностного монтажа).

Технология

SMT (от англ. Surface Mount Technology) была разработана для сокращения производства печатных плат с использованием более мелких электронных компонентов: резисторов, конденсаторов, транзисторов и т. Д. Сегодня мы рассмотрим один из них - резистор SMD.

Резисторы SMD

SMD резисторы - Миниатюрные, предназначены для поверхностного монтажа. Резисторы SMD значительно меньше своего традиционного аналога. Они часто бывают квадратными, прямоугольными или овальными с очень низким профилем.

Вместо проводных выводов обычных резисторов, которые вставляются в отверстия резисторов pCBSMD, имеются небольшие контакты, припаянные к поверхности корпуса резистора. Это избавляет от необходимости проделывать отверстия в печатной плате и тем самым позволяет более эффективно использовать всю поверхность.

Размеры SMD резисторы SMD

В основном термин «размеры» включает в себя размер, форму и конфигурацию выходов (тип корпуса) любого электронного компонента. Например, конфигурация обычной микросхемы, имеющая плоский корпус с двусторонним выводом выводов (перпендикулярно плоскости основания), называется DIP.

Размеры резисторов SMD Стандартизированы, и большинство производителей используют стандарт JEDEC. Размер резисторов SMD обозначается числовым кодом, например, 0603.Код содержит информацию о длине и ширине резистора. Таким образом, в нашем примере код 0603 (в дюймах) длина корпуса 0,060 дюйма, ширина 0,030 дюйма.

Резистор того же типа в метрической системе будет иметь код 1608 (в миллиметрах), соответственно длина 1,6 мм, ширина 0,8 мм. Чтобы перевести размеры в миллиметры, достаточно размер в дюймах умножить на 2,54.

SMD размеры резисторов и их мощность

Размер резистора SMD в основном зависит от требуемой мощности рассеивания.В следующей таблице перечислены размеры и характеристики Наиболее часто используемые резисторы SMD.

Маркировка резисторов SMD

Из-за малых размеров резисторов SMD на них практически невозможно нанести традиционную цветовую маркировку резисторов.

В связи с этим был разработан специальный метод маркировки. Наиболее распространенная этикетка содержит три или четыре цифры или две цифры и букву, которая называется EIA-96.

Маркировка трех- и четырехзначная

В этой системе первые две или три цифры указывают числовое значение сопротивления сопротивления и последнюю цифру множителя.Эта последняя цифра указывает степень, в которой необходимо построить 10, чтобы получить окончательный коэффициент.

Еще несколько примеров определения сопротивления в этой системе:

  • 450 = 45 x 10 0 равно 45 Ом
  • 273 = 27 x 10 3 равно 27000 Ом (27 ком)
  • 7992 = 799 x 10 2 равно 79900 Ом (79,9 ком)
  • 1733 = 173 х 10 3 Равно 173000 Ом (173 ком)

Буква «R» используется для указания положения десятичной точки для значений сопротивления ниже 10 Ом.Таким образом, 0r5 = 0,5 Ом и 0r01 = 0,01 Ом.

SMD Высокоточные резисторы (прецизионные) в сочетании с небольшими размерами создали потребность в новой, более компактной маркировке. В связи с этим был создан стандарт EIA-96. Этот стандарт предназначен для резисторов с сопротивлением до 1%.

Эта система маркировки состоит из трех элементов: две цифры обозначают код, а буква - множитель. Две цифры представляют собой код, который дает трехзначное число сопротивления (см. Табл.)

Например, код 04 означает 107 Ом, а 60 соответствует 412 Ом. Множитель дает окончательное значение резистора, например:

.
  • 01А = 100 Ом ± 1%
  • 38С = 24300 Ом ± 1%
  • 92Z = 0,887 Ом ± 1%

Онлайн калькулятор SMD резисторов

Этот калькулятор поможет вам найти значение сопротивления резисторов SMD. Просто введите код, написанный на резисторе, и его сопротивление отобразится ниже.

С помощью калькулятора можно определить сопротивление резисторов SMD, которые маркируются 3 или 4 цифрами, а также по стандарту EIA-96 (2 цифры + буква).

Хотя мы сделали все возможное, чтобы проверить работу этого калькулятора, мы не можем гарантировать, что он рассчитывает правильные значения для всех резисторов, потому что иногда производители могут использовать свои собственные коды.

Поэтому, чтобы быть абсолютно уверенным в величине сопротивления, лучше всего дополнительно измерить сопротивление мультиметром.

В нашей горе-электронике основными преимуществами электронного продукта являются небольшие габариты, надежность, простота монтажа и демонтажа (разборки оборудования), низкое энергопотребление, а также удобство использования ( от англ. - Простота использования). Все эти преимущества невозможны без технологии поверхностного монтажа - технологии SMT ( S. urface. M. ont. T. echnology. ) и, конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD ( S. urface. M. oUNED. D. evice. ), что в переводе с английского означает «устройство, установленное на поверхности. В нашем случае поверхность представляет собой печатную плату, без сквозные отверстия для радиоэлементов:

В этом случае SMD-компоненты не вставляются в отверстия плат, а герметизируются на контактных дорожках, которые расположены прямо на поверхности печатной платы.На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на которых раньше были SMD компоненты.


Плюсы SMD-компонентов

Самый большой плюс SMD-компонентов - это их небольшие размеры. На фото ниже простые резисторы и:



Благодаря малым габаритам SMD-компонентов разработчики имеют возможность разместить большее количество компонентов на единицу площади, чем простые выходные радиоэлементы.Следовательно, увеличивается плотность установки и, как следствие, уменьшаются размеры. электронные устройства. Поскольку вес SMD-компонента во много раз легче, чем вес того же простого выходного радиоэлемента, то вес радиооборудования также будет легче.

Компоненты SMD крепятся намного проще. Для этого нам понадобится фен. О том, как выпадать и вскрывать SMD компоненты, вы можете прочитать в статье, как паять SMD. Играйте в них намного сложнее. На заводах у них есть специальные роботы на печатной плате.Вручную на производстве их никто не пломбирует, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в оборудовании с SMD компонентами очень плотная установка, то дорожек в плате должно быть больше. Не все проходы проходят по одной поверхности, поэтому печатные платы делают Multilayer. Если оборудование сложное и содержит много SMD-компонентов, то на плате будет больше слоев. Это как многослойный торт из коры головного мозга.Печатные дорожки, соединяющие компоненты SMD, находятся прямо внутри платы и не видны. Примером многослойных плат являются платы мобильных телефонов, компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и т. Д.).

На фото под синей платой изображен iPhone 3G, на зеленой плате - материнская плата компьютера.



Все мастера по ремонту радиоаппаратуры знают, что если у вас многослойная плата, она сметает мыльный пузырь. При этом претерпевают межслойные связи и плата приходит в негодность.Поэтому главный козырь при замене SMD компонентов - это правильно подобранная температура.

На некоторых платах используются обе стороны печатной платы, при этом плотность установки, как вы понимаете, уменьшается вдвое. Это еще один плюс технологии SMT. Ах да, еще стоит учесть, что факторов, которые материала для производства SMD компонентов оставляет в разы меньше, а стоимость их при серийном производстве в миллионы штук стоит, в прямом смысле, в копейки.

Основные типы SMD-компонентов

Давайте посмотрим на основные SMD-элементы, используемые в наших современных устройствах. Резисторы, конденсаторы, катушки индуктивности с малым номиналом и прочие компоненты имеют вид обычных маленьких прямоугольников, а точнее параллелепипеда))

На платах без схемы невозможно узнать, резистор ли это, есть ли конденсатор или вообще змеевик. Китайцы ждут сколько хотят. На больших SMD-элементах все же ставьте код или цифры, чтобы определить их принадлежность и номинал.На фото ниже в красном прямоугольнике отмечены эти элементы. Без схемы невозможно сказать, к какому типу радиоэлементов они относятся, а также к их номиналу.


Размеры компонентов SMD могут быть разными. Вот описание размеров резисторов и конденсаторов. Например, прямоугольный конденсаторный SMD желтого цвета. Их еще называют танталом или просто танталом:


А вот это выглядит как SMD:



Есть еще такие виды SMD.Транзисторы:


Обладающие большим номиналом, в SMD исполнении выглядят так:



И конечно, как же без микросхемы в нашу эпоху микроэлектроники! SMD-типов вытяжек микросхем очень много, но я делю их в основном на две группы:

1 ) Микросхемы, выводы которых параллельны печатной плате и расположены с двух сторон или по периметру.


2) Микросхемы, в которых выводы находятся под микросхемой. Это особый класс микросхем, получивший название BGA (от англ. Ball Grid Array. - Массив шариков). Выводы таких фишек представляют собой простые шарики-арматуры такой же величины.

На фото ниже микросхема BGA и ее обратная сторона, состоящая из шаровидных выводов.


Микросхемы BGA удобны производителям тем, что значительно экономят место на печатной плате, ведь таких шариков под какой-нибудь микрокамер BGA может быть тысячи.Это значительно облегчает жизнь производителям, но не облегчает жизнь ремонтникам.

Резюме

Что еще используют в своих конструкциях? Если у вас дрожат руки, и вы хотите сделать небольшой радиоприемник, то выбор очевиден. Но все же в любительских конструкциях размеры не играют большой роли, а массивные радиоэлементы гораздо проще паять и удобнее. Некоторые радиолюбители используют и то, и другое. Каждый день разрабатываются все новые и новые микросхемы и SMD-компоненты.Меньше, тоньше, надежнее. За микроэлектроникой определенно будущее.

  1. Введение
  2. Компоненты SMD
  3. Размеры компонентов SMD
    • Резисторы SMD
    • Конденсаторы SMD
    • Катушки и дроссели SMD
  4. SMD транзисторы
  5. Маркировка SMD компонентов
  6. Пайка SMD компонентов

Введение

Современному радиолюбителю теперь доступны не только обычные комплектующие с выводами, но и настолько маленькие, темные, на которых не понимается, что написаны подробности.Их называют «SMD». В переводе с русского это означает «компоненты для поверхностного монтажа». Их главное преимущество состоит в том, что они позволяют промышленности собирать плату с помощью роботов, которые с огромной скоростью размещают SMD-компоненты на своих местах на печатных платах, а затем массово «запекают» а результат получается за счет смонтированных печатных плат. Доля человека остается теми операциями, которые робот выполнить не может. Пока не может.

Использование микросхем-компонентов в любительской практике тоже возможно, даже необходимо, так как позволяет снизить вес, габариты и стоимость готового изделия.Да сверлить тоже практически не нужно.

Для тех, кто впервые столкнулся с SMD-компонентами, естественная путаница. Как разобраться в их разнообразии: где резистор, а где конденсатор или транзистор, какие они размеры, какие SMD-детали существуют? На все эти вопросы вы найдете ответы ниже. Прочтите, пригодится!

Корпуса для компонентов микросхемы

Достаточно условно все компоненты поверхностной установки можно разделить на группы по количеству выводов и размеру корпуса:

выводы / Размер Очень мало Очень маленький Литтл Средний
2 выхода SOD962 (DSN0603-2), WLCSP2 *, SOD882 (DFN1106-2), SOD882D (DFN1106D-2), SOD523, SOD1608 (DFN1608D-2) SOD323, SOD328. SOD123F, SOD123W SOD128.
3 выхода Сот883б (DFN1006B-3), сот883, сот663, сот416 SOT323, SOT1061 (DFN2020-3) SOT23. СОТ89, ДПАК (ТО-252), Д2ПАК (ТО-263), Д3ПАК (ТО-268)
4-5 выводов Wlcsp4 *, sot1194, wlcsp5 *, sot665 СОТ353. СОТ143Б, СОТ753. СОТ223, МОЩНОСТЬ-SO8
6-8 выводов сот1202, сот891, сот886, сот666, wlcsp6 * SOT363, SOT1220 (DFN2020MD-6), SOT1118 (DFN2020-6) Сот457, сот505 Сот873-1 (DFN3333-8), сот96
> 8 выводов WLCSP9 *, SOT1157 (DFN17-12-8), SOT983 (DFN1714U-8) WLCSP16 *, SOT1178 (DFN2110-9), WLCSP24 * Сот1176 (DFN2510A-10), Сот1158 (DFN2512-12), Сот1156 (DFN2521-12) Сот552, сот617 (DFN5050-32), сот510

Конечно, корпуса в таблице указаны не все, так как реальная промышленность выпускает комплектующие в новостройках быстрее, чем за ними удерживаются органы стандартизации.

Корпуса SMD-компонентов могут быть как с выводами, так и без них. Если нет выводов, то есть контактные площадки на корпусе или маленькие шарики припоя (BGA). Также в зависимости от компании производителя детали могут отличаться маркировкой и габаритами. Например, конденсаторы могут отличаться.

Большинство корпусов для SMD-компонентов рассчитаны на установку со специальным оборудованием, которого у радиолюбителей нет и вряд ли когда-либо будет. Это связано с технологией пайки таких компонентов.Конечно, при определенном упорстве и фанатизме паять в домашних условиях можно.

Типы корпусов для поверхностного монтажа по названию

Имя Расшифровка звонок
Сот. малый контурный транзистор 3
Дерн. малый контурный диод. 2
SOIC small Outline интегральная схема> 4, в две строки по бокам
Цоп., тонкий корпус (Slim SOIC)> 4, в две строки по бокам
SSOP. канализация SOIC> 4, в две строки по бокам
ЦСОП. тонкое седло SOIC> 4, в две строки по бокам
QSOP. SOIC четвертый размер> 4, в две строки по бокам
Всоп. QSOP даже меньше> 4, в две строки по бокам
PLCC IP в пластиковом корпусе с выводами гончая под корпус с формой буквы J.> 4, четыре линии по бокам
CLCC IP в керамическом корпусе с выводами гончая под корпус с формой буквы J. > 4, четыре линии по бокам
QFP. квадратный плоский корпус> 4, четыре линии по бокам
LQFP. низкопрофильный QFP> 4, четыре линии по бокам
Pqfp. пластик QFP.> 4, четыре линии по бокам
CQFP. керамический QFP.> 4, четыре линии по бокам
TQFP. QFP разбавленный.> 4, четыре линии по бокам
Pqfn. тишина QFP без выводов с площадкой для радиатора> 4, четыре линии по бокам
BGA. Шаровая сетка.Массив шариков вместо выводов массив выводов
LFBGA низкопрофильный FBGA массив выводов
CGA. корпус с входами и выходами из тугоплавкого припоя массив выводов
CCGA. CGA в керамическом здании массив выводов
мкBGA. Micro BGA. массив выводов
FCBGA. Шаровая сетка Flip-Chip Ball Grid Array. М. Помощь шариков на подложке, к которой припаян кристалл с теплоотводом массив выводов
ТОО. корпус программного обеспечения

Из всего этого зоопарка микросхем можно объединить компоненты для любительского использования: резисторы микросхемы, конденсаторы микросхемы, индуктивность микросхемы, микросхемы диодов и транзисторов, светодиоды, стабилизаторы, некоторые микросхемы в корпусах SOIC. Конденсаторы обычно выглядят как простые параллелепипеды или небольшие бочки.Бочки - электролитические, и параллелепипеды, скорее всего, будут танталовыми или керамическими конденсаторами.


Размеры SMD-компонентов

Компоненты микросхемы одного номинала могут иметь разные размеры. Размеры SMD-компонента определяются его «спутником». Например, чип-резисторы имеют размер от «0201» до «2512». Этими четырьмя цифрами кодируются ширина и длина чип-резистора в дюймах. Ниже в таблицах вы можете увидеть размеры в миллиметрах.

Резисторы sMD

Прямоугольные чип-резисторы и керамические конденсаторы
Размер L, мм (дюйм) W, мм (дюймы) H, мм (дюйм) А, мм. т.
0201 0,6 (0,02) 0,3 (0,01) 0,23 (0,01) 0,13 1/20
0402 1,0 (0,04) 0.5 (0,01) 0,35 (0,014) 0,25 1/16
0603 1,6 (0,06) 0,8 (0,03) 0,45 (0,018) 0,3 1/10
0805 2,0 (0,08) 1,2 (0,05) 0,4 (0,018) 0,4 1/8
1206 3,2 (0,12) 1,6 (0,06) 0,5 (0,022) 0.5 1/4
1210 5,0 (0,12) 2,5 (0,10) 0,55 (0,022) 0,5 1/2
1218 5,0 (0,12) 2,5 (0,18) 0,55 (0,022) 0,5 1
2010 г. 5,0 (0,20) 2,5 (0,10) 0,55 (0,024) 0,5 3/4
2512 6.35 (0,25) 3,2 (0,12) 0,55 (0,024) 0,5 1
Цилиндрические чип-резисторы и диоды
Размер Ø, мм (дюймы) L, мм (дюйм) т.
0102 1,1 (0,01) 2,2 (0,02) 1/4
0204 1,4 (0,02) 3,6 (0,04) 1/2
0207 2.2 (0,02) 5,8 (0,07) 1

Конденсаторы SD

Керамические конденсаторы микросхемы совпадают по размерам с микросхемными резисторами, но танталовые конденсаторы микросхемы имеют свою собственную систему размеров:

Танталовые конденсаторы
Размер L, мм (дюйм) W, мм (дюймы) T, мм (дюйм) В, мм. А, мм.
А. 3,2 (0,126) 1,6 (0,063) 1,6 (0,063) 1,2 0,8
Б. 3,5 (0,138) 2,8 (0,110) 1,9 (0,075) 2,2 0,8
С. 6,0 (0,236) 3,2 (0,126) 2,5 (0,098) 2,2 1,3
Д. 7,3 (0,287) 4,3 (0,170) 2.8 (0,110) 2,4 1,3
E. 7,3 (0,287) 4,3 (0,170) 4,0 (0,158) 2,4 1,2

SMD катушки индуктивности и дроссели

Индуктивность встречается во множестве типов зданий, но жилье подчиняется тому же закону размеров. Подходит для автоматической установки. А нам, радиолюбителям, легче ориентироваться.

Любые катушки, дроссели и трансформаторы называются «Моторными изделиями».Обычно мы стираем их сами, но иногда можно купить уже готовые изделия. Особенно, если требуются SMD-варианты, которые изготавливаются с набором плюсов: магнитное экранирование корпуса, компактность, закрытый или открытый корпус, высокое качество, электромагнитное экранирование, широкий диапазон рабочих температур.

Выбранная требовательная катушка лучше в справочниках и необходимом стандарте. Сэмплеры, как и для чип-резисторов, задаются набором кода из четырех чисел (0805). В этом случае «08» обозначает длину, а «05» - ширину в дюймах.Фактический размер такого SMD-компонента будет 0,08x0,05 дюйма.

sMD диоды и стабилизаторы

Диоды могут быть как в цилиндрических корпусах, так и в корпусах в виде небольших параллелепроводов. Корпуса цилиндрических диодов чаще всего используются Minimelf (SOD80 / DO213AA / LL34) или MELF (DO213AB / LL41). Суиторы задаются как катушки, резисторы, конденсаторы.

Диоды, стабилизаторы, конденсаторы, резисторы
Тип оболочки L * (мм) D * (мм) F * (мм) S * (мм) Примечание
DO-213AA (SOD80) 3.5 1,65 048 0,03 Jedec.
DO-213AB (MELF) 5,0 2,52 0,48 0,03 Jedec.
DO-213AC. 3,45 1,4 0,42 - Jedec.
ERD03LL 1,6 1,0 0,2 0,05 Панасоник
ER021L 2.0 1,25 0,3 0,07 Панасоник
ERSM 5,9 2,2 0,6 0,15 Панасоник, ГОСТ Р1-11
Мелф. 5,0 2,5 0,5 0,1 центов
SOD80 (Minimelf) 3,5 1,6 0,3 0,075 Philips.
SOD80C. 3,6 1,52 0,3 0,075 Philips.
SOD87. 3,5 2,05 0,3 0,075 Philips.

sMD транзисторы

Транзисторы для поверхностной установки также могут быть малой, средней и большой мощности. У них тоже есть соответствующие корпуса. Корпуса транзисторов можно разделить на две группы: СОТ, ДПАК.

Хочу обратить внимание на то, что в таких корпусах тоже могут быть сборки из нескольких компонентов, а не только транзисторы. Например, диодные сборки.

Маркировка SMD компонентов

Мне иногда кажется, что маркировка современных электронных компонентов стала целой наукой, например историей или археологией, так как для того, чтобы понять, какой компонент установлен на плате, иногда приходится иметь целый анализ окружающих элементов. В связи с этим советские выходные комплектующие, на которых был написан текст номинала и макет, были просто мечтой любителя, так как не нужно было штурмовать груды справочников, чтобы разобраться, что это за детали.

Причина кроется в автоматизации процесса сборки. Компоненты SMD устанавливаются роботами, в которых устанавливаются выбранные олухи (аналогично нелиабинам с магнитными лентами), в которых размещаются компоненты микросхемы. Робот еще какой есть в Бабине и маркируются ли детали. Маркировка нужна человеку.

Чип-компонент

В домашних условиях компонент микросхемы можно припаять только к определенным размерам, более-менее удобным для ручной установки считается размер 0805.Миниатюрные детали спаяны у плиты. При этом для качественного размножения в домашних условиях следует соблюдать целый комплекс мер.

Мы уже встречали основные радиодетали: резисторы, конденсаторы, диоды, транзисторы, микросхемы и т.д., а также изучили, как они крепятся на печатной плате. Напомним еще раз основные этапы этого процесса: выводы всех компонентов продеваются в отверстия, имеющиеся в печатной плате. После этого выводы подрезаются, а затем припаиваются с обратной стороны платы (см. Рис.1).
Этот уже известный нам процесс называется DIP-установкой. Такая установка очень удобна для начинающих радиолюбителей: крупные компоненты, их даже можно паять без большого «советского» паяльника, без мужского паяльника и микроскопа. Именно поэтому все комплекты кит-мастера для самостоятельной пайки подразумевают DIP-установку.

Рис. 1. DIP-установка

Но DIP-установка имеет очень существенные недостатки:

Крупные радиодетали не подходят для создания современных миниатюрных электронных устройств;
- выходные радиодетали дороже в производстве;
- Печатная плата для DIP-установки также дороже из-за необходимости просверливать множество отверстий;
- DIP-установку сложно автоматизировать: в большинстве случаев даже на крупных заводах по производству электроники установку и упаковку DIP-деталей приходится выполнять вручную.Это очень дорого и долго.

Поэтому установка DIP в производстве современной электроники практически не используется, и на смену ей пришел так называемый SMD процесс, который является стандартом сегодня. Поэтому любой радиолюбитель должен иметь хотя бы общее представление.

Монтаж SMD

Компоненты SMD (компоненты микросхемы) представляют собой компоненты электронной схемы Ценообразование с применением технологии монтажа на поверхность - технология SMT (англ. surface. крепление Технология) .T.E. Все электронные элементы, которые «закреплены» на плате таким образом, называются SMD. комплектующие (англ. поверхность. смонтировано. Устройство). Процесс установки и пайки компонентов микросхемы правильно называют процессом SMT. Говорить «SMD-установка» не совсем корректно, но в России это был именно такой вариант названия техпроцесса, поэтому будем говорить так же.

На рис.2. Показана монтажная плата SMD. Одна и та же плата, выполненная на DIP-элементах, будет в несколько раз иметь большие габариты.

Рис.2. SMD-монтаж

SMD-монтаж имеет неоспоримые преимущества:

Radioetal дешев в производстве и может быть сколь угодно миниатюрным;
- печатные платы также дешевле из-за отсутствия множественного сверления;
- Монтаж легко автоматизировать: монтаж и пайку компонентов производят специальные роботы.Нет и такой технологической операции, как обрезка выводов.

SMD резисторы

Знакомство с чип-компонентами логичнее всего начинать с резисторов, как с самых простых и массовых радиодеталей.
Резистор SMD по своим физическим свойствам был похож на наш «обычный», с наружным вариантом. Все его физические параметры (сопротивление, точность, мощность) точно такие же, только корпус другой. То же правило применяется ко всем остальным SMD-компонентам.

Рис. 3. Чип-резисторы

Размеры SMD Резисторы SMD

Мы уже знаем, что выходные резисторы имеют определенную сетку стандартных размеров, в зависимости от их мощности: 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт , и тому подобное.
Сетка типоразмеров также доступна в чип-резисторах, только в этом случае размер указывается четырехзначным кодом: 0402, 0603, 0805, 1206 и т.д.
Основные размеры резисторов и их технические характеристики приведены в Инжир.4.

Рис. 4 Основные размеры и параметры микросхем резисторов

Маркировка SMD резисторов

Резисторы имеют маркировку на корпусе.
Если в коде три или четыре цифры, то последняя цифра означает количество нулей, на рис. 5. Резистор с кодом «223» имеет такое сопротивление: 22 (и три нуля справа) Ом = 22000 Ом = 22 ком. Резистор с кодом «8202» имеет сопротивление: 820 (и два нуля справа) Ом = 82000 Ом = 82 кОм.
В некоторых случаях маркировка цифровая. Например, резистор с кодом 4R7 имеет сопротивление 4,7 Ом, а резистор с кодом 0R22 - 0,22 Ом (здесь буква R - знак разделителя).
Есть еще резисторы нулевого сопротивления, или резисторы-перемычки. Часто они используются как предохранители.
Конечно, можно не вспомнить систему обозначения кода, а просто измерить сопротивление резистора мультиметром.

Рис.5 Маркировка микросхем резисторов

Керамические конденсаторы SMD

Внешне конденсаторы SMD очень похожи на резисторы (см. Рис.6). Есть только одна проблема: на них не наносится код емкости, поэтому единственный способ определить - это измерение с помощью мультиметра, имеющего контейнерный режим измерения. Конденсаторы SMD
также выпускаются стандартных размеров, как правило, аналогичных размерам резисторов (см. Выше).

Рис. 6. Керамические конденсаторы SMD

Электролитические конденсаторы SMS

Рис.7. Электролитические конденсаторы SMS

Эти конденсаторы аналогичны своим выходным собратьям, и на них обычно явно указано: емкость и рабочее напряжение.Полоска на «цоколе» конденсатора помечена его минусовым выводом.

SMD транзисторы


Рис.8. SMD транзистор

Транзисторы маленькие, поэтому на них невозможно написать их полное название. Ограничено кодовой маркировкой, а некоторые обозначения международных стандартов - нет. Например, код 1e может обозначать тип транзистора BC847A, а может и какой-то другой. Но это обстоятельство абсолютно не беспокоит ни производителей, ни рядовых потребителей электроники.Трудности могут возникнуть только при ремонте. Определить тип транзистора, установленного на печатной плате, без документации производителя иногда бывает очень сложно за такую ​​плату.

SMD-диоды и SMD-светодиоды

Фотографии некоторых диодов показаны на рисунке ниже:

Рис.9. SMD диоды и SMD светодиоды

На корпусе диода полярность в виде полоски ближе к одному из краев. Обычно полоса маркируется катодным выходом.

SMD-CVDDD тоже имеет полярность, которая обозначается либо точкой возле одного из выводов, либо как-то еще (подробно это можно найти в документации производителя компонентов).

Определить тип SMD диода или светодиода, как и в случае с транзистором, сложно: на корпусе диода добавлен малоинформативный код, а на корпусе светодиода вообще нет надписей, кроме полярности метка. Разработчики и производители современной электроники мало заботятся о ее ремонтопригодности.Подразумевается, что печатную плату будет выполнять сервисный инженер, имеющий полную документацию на конкретный продукт. В такой документации четко описано, в какую печатную плату устанавливается тот или иной компонент.

Установка и пайка компонентов SMD

Установка SMD оптимизирована в первую очередь для автоматической сборки с помощью специальных промышленных роботов. Но радиолюбительские конструкции могут быть выполнены и на микросхемах-компонентах: при достаточной аккуратности и осторожности, чтобы припаять детали рисовыми крупинками, можно знать лишь некоторые тонкости.

Но это тема для отдельного большого урока, поэтому подробнее будет рассказано об автоматической и ручной установке SMD.

pcb - Как определить компоненты SMD? (или как определить какой-либо компонент)

Шаг 1) Определите упаковку, отметьте, сколько контактов, сначала сопоставьте контакты. Обратите внимание, что иногда штифты корпуса находятся под деталью или выступают от детали. Также получите размеры детали с помощью линейки или (желательно) штангенциркуля и сопоставьте их с таблицей, запишите их для более позднего шага.Убедитесь, что при измерении шага штифтов (расстояния между штифтами), когда это делается точно, может быть трудно определить (например) разницу между шагом 1 мм и шагом 1,25 мм. Убедитесь, что измерение является точным, или измерьте несколько выводов и разделите на количество выводов, чтобы получить шаг выводов.

Размеры упаковки стандартизированы IPC-7351, или их также можно найти, выполнив поиск типа упаковки в Google и сравнив размеры. Размеры упаковки также можно найти на веб-сайтах производителей в таблицах данных (или иногда в файлах, отдельных от таблиц данных, может потребоваться некоторое время, чтобы найти их)

Вот несколько ресурсов, которые помогут вам найти различные пакеты или использовать это ниже:

Источник: NXP

Шаг 2) Найдите все маркировки на верхней части компонента.Эти обозначения включают: логотип производителя и \ или код SMT.

Если вы не уверены в различиях символов, убедитесь, что они отмечены. Например: 8 можно ошибочно принять за B. Это означает, что если у вас A32B, его можно принять за A328. Если вы не уверены, вам нужно будет искать и то, и другое. Вот несколько источников, где их можно найти:

Вы можете найти многие логотипы производителей ИС, используя эту ссылку или картинку ниже:

Источник: Electronicspoint

Шаг по-прежнему не может найти его 3) Итак, что вы будете делать в этот момент, если не можете найти свою деталь? Есть еще много вариантов.Используйте то, что вы знаете о детали.

Логотип производителя или знак на упаковке могут быть действительно полезными для идентификации упаковки. Используйте параметрический поиск на веб-сайте производителя и информацию об упаковке, чтобы сократить количество деталей. Например: если бы я думал, что это операционный усилитель с 5 контактами, и я знал, что производитель TI, я бы пошел на веб-сайт TI и запустил параметрический поиск, который ищет все операционные усилители с 5-контактными корпусами.

Затем начните проверять таблицы данных, поскольку большинство ведущих производителей предоставляют коды SMT в таблицах данных с информацией о пакете.Если это старая деталь, поиск по старым таблицам данных или, возможно, электронное письмо производителю может быть способом уточнить деталь. Многие производители также имеют списки кодов SMD.

Чем больше у вас уверенности в типе пакета (или сужаете его до нескольких пакетов) и вы думаете, что знаете, что делает эта часть, вы можете использовать поиск дистрибьютора (например, Digikey, Mouser или Octopart), чтобы сузить круг вопросов. часть есть. Это позволяет вам открыть таблицу и проверить.

Я также нашел очень расплывчатые детали в Google только по упаковке и номеру SMD.Я пробовал разные комбинации пакетов (у меня было два варианта), и после некоторого поиска в Google я сузил его до трех частей. После некоторого тестирования я нашел свою часть.

Если все это не работает, а ваша деталь все еще функционирует, вам, возможно, придется провести дополнительный реверс-инжиниринг схемы и определить функциональность детали.

Например, если вы знаете, что это транзистор, вы можете проверить тип транзистора с помощью мультиметра, или диоды можно легко определить с помощью диодного режима измерителя.

Из-за утечки тока в цепи, когда она выключена, такие части, как конденсаторы или немаркированные резисторы, возможно, потребуется отсоединить от платы, чтобы найти истинное значение (остальная часть схемы параллельна компоненту, когда клеммы метр).

0603 РЕЗИСТОР, 0,1 Вт, 1%, 1K2 - RS Components Vietnam

Компоненты RS

Сертификат соответствия RoHS

Директивы ЕС 2011/65 / EU и 2015/863 ограничивают использование 10 перечисленных ниже веществ при производстве определенных типов электрического оборудования.

Хотя это ограничение юридически не применяется к компонентам, признается, что «соответствие» компонента актуально для многих клиентов.

RS определение соответствия RoHS:

  • Продукт не содержит веществ с ограниченным доступом в концентрациях и областях применения, запрещенных Директивой
  • , а что касается компонентов, продукт может работать при более высоких температурах, необходимых для бессвинцовой пайки.

Ограниченные вещества и максимально допустимые концентрации в однородном материале, по массе:

Вещество Концентрация
Свинец 0.1%
Меркурий 0,1%
ПБД (полибромированные дифенилы) 0,1%
ПБДЭ (полибромированные дифениловые эфиры) 0,1%
Шестивалентный хром 0,1%
Кадмий 0,01%
DEHP (Бис (2-этилгексл) фталат) 0,1%
BBP (Бензилбутилфталат) 0.1%
DBP (дибутилфталат) 0,1%
ДИБП (диизобутилфталат) 0,1%

Поставщик элемента, указанного ниже, проинформировал RS Components о том, что продукт «соответствует требованиям RoHS».

RS Components предприняла все разумные шаги для подтверждения этого утверждения. Информация относится только к продуктам, проданным на дату настоящего сертификата или после нее.

-совместимая информация о продукте

Инвентарный номер RS 8048851
Описание продукта 0603 РЕЗИСТОР, 0.1Вт, 1%, 1К2
Производитель / Марка RS PRO

RS Components Ltd, Birchington Road, Corby, Northants, NN17 9RS, UK

Распечатать этот сертификат

TL431 - Ссылки с программируемой точностью

% PDF-1.4 % 1 0 объект > эндобдж 6 0 obj / Заголовок (TL431 - Ссылки с программируемой точностью) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > поток application / pdf

  • ON Semiconductor
  • TL431 - Справочная информация с программируемой точностью
  • Интегральные схемы TL431A, B трехконтактные. программируемые диоды шунтирующего регулятора.Эти монолитные микросхемы напряжения эталоны работают как стабилитрон с низким температурным коэффициентом, который программируется от Vref до 36 В с двумя внешними резисторами. Эти устройства имеют широкий диапазон рабочего тока от 1,0 мА до 100 мА с типичным динамическим сопротивлением 0,22. Характеристики эти ссылки делают их отличной заменой стабилитронов в многие приложения, такие как цифровые вольтметры, источники питания и операционные схема усилителя.
  • 2021-04-06T11: 43: 49-07: 00BroadVision, Inc.2021-04-06T12: 21: 27-07: 002021-04-06T12: 21: 27-07: 00 Acrobat Distiller 21.0 (Windows) uuid: 259e4d67-46e3-4756-aa77-6c0e1311259buuid: 3325d955-84cc-4828-ad83- cb025cef2485 конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > поток HW [o ܸ8, ZDEI "{> dAe, ixn3nb @ $ (D > go /) l \ c`v "GAD $% $) IU> DQ"].L۸w {[kNpc $ ŀrJ0e, & 2V_ 6H (̇'hnwevTk` EUVio -lCXMSMT [mYpvUoB7feV7] b = [0xz $ / y} SW \ = PNVq \ $ y ݴ + O-ipIS3] WY 蠭 X @ (| Икс , f1 & OqN ++ ZC \ AϷ ڴ] NM ծ m $ ('J 46IE𸑢 # x, c! * 3 = Svlc: ̕[email protected]*.l$Uftb) t ݌ࣉ ҮFNJ A (_5v.0 + .Wzg +] 9v @ pO > /g.yEV> BCfEƴO) 0qPn4z; 8raNbG

    Выбор правильных варисторов для защиты цепей от перенапряжения

    Варисторы, также называемые металлооксидными варисторами (MOV), используются для защиты чувствительных цепей от различных условий перенапряжения. По сути, эти нелинейные устройства, зависящие от напряжения, имеют электрические характеристики, аналогичные соединенным друг с другом стабилитронам.

    Загрузить статью в формате .PDF

    Переходные процессы напряжения Варисторы обладают высокой долговечностью, которая необходима для выдерживания повторяющихся импульсных токов с высокой пиковой нагрузкой и переходных процессов с высокими импульсами. Они также предлагают широкий диапазон напряжений, высокое энергопотребление и быструю реакцию на скачки напряжения. Пиковый ток составляет от 20 до 70000 А, а пиковая мощность - от 0,01 до 10000 Дж.

    В этом контексте «переходные процессы напряжения» определяются как кратковременные скачки электрической энергии.В электрических или электронных схемах, которые варисторы призваны защищать, эта энергия может выделяться либо предсказуемым образом посредством контролируемых переключающих действий, либо случайным образом индуцироваться в цепи от внешних источников. Общие источники включают:

    Молния: Фактически, переходные процессы, вызванные молнией, не являются результатом прямого удара. Удар молнии создает магнитное поле, которое может вызвать переходные процессы большой величины в близлежащих электрических кабелях. Удар из облака в облако может повлиять как на воздушные, так и на проложенные кабели.Результат также непредсказуем - удар, который происходит на расстоянии мили, может генерировать 70 В в электрических кабелях, а другой может генерировать 10 кВ на расстоянии 160 ярдов.
    Коммутация индуктивной нагрузки: Генераторы, двигатели, реле и трансформаторы представляют собой типичные источники индуктивных переходных процессов. Включение и выключение индуктивных нагрузок может привести к возникновению высокоэнергетических переходных процессов, которые усиливаются по мере увеличения нагрузки. Когда индуктивная нагрузка отключена, коллапсирующее магнитное поле преобразуется в электрическую энергию, которая принимает форму двойного экспоненциального переходного процесса.В зависимости от источника эти переходные процессы могут достигать сотен вольт и сотен ампер с длительностью 400 мс. Из-за различных размеров нагрузки будет различаться форма волны, продолжительность, пиковый ток и пиковое напряжение переходных процессов. После того, как эти переменные будут приближены, разработчики схем смогут выбрать подходящий тип подавителя.
    Электростатический разряд (ESD): Эта энергия является результатом дисбаланса положительных и отрицательных зарядов между объектами.Он отличается очень коротким временем нарастания и очень высокими пиковыми напряжениями и токами.

    Основы варистора

    Варисторы в основном состоят из массивов шариков из оксида цинка (ZnO), в которых ZnO был изменен небольшими количествами других оксидов металлов, таких как висмут, кобальт или марганец. В процессе производства MOV эти шарики спекаются (плавятся) в керамический полупроводник. Это создает кристаллическую микроструктуру, которая позволяет этим устройствам рассеивать очень высокие уровни переходной энергии по всей своей массе.После спекания поверхность металлизируется, а выводы крепятся пайкой.

    Благодаря высокому рассеянию энергии MOV, они могут использоваться для подавления молний и других высокоэнергетических переходных процессов, встречающихся в сетях переменного тока. Они способны выдерживать большие количества энергии и отводить эту потенциально разрушительную энергию от чувствительной электроники, расположенной ниже по потоку. MOV, которые также используются в цепях постоянного тока, имеют различные форм-факторы (рис. 1) .

    % {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f227" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузки файлов 2015 01 0215 Ee Fig1 "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_fau_0215e = max & w = 1440 "data-embed-caption =" "]}%
    1. Металлооксидные варисторы (MOV) доступны в различных форм-факторах и размерах для широкого диапазона приложений.Тип диска с радиальными выводами - наиболее распространенная версия.

    Многослойные варисторы

    Многослойные варисторы (MLV) обращаются к определенной части спектра переходных напряжений: среде печатной платы. Несмотря на меньшую энергию, переходные процессы от электростатического разряда, индуктивного переключения нагрузки и даже остатки грозовых перенапряжений в противном случае могут достичь чувствительных интегральных схем на плате. MLV также изготавливаются из материалов ZnO, но они изготавливаются с переплетенными слоями металлических электродов и производятся в керамических корпусах без свинца.Они предназначены для перехода из состояния с высоким импедансом в состояние проводимости при воздействии напряжений, превышающих их номинальное напряжение.

    MLV

    выпускаются с кристаллами разного размера и способны рассеивать значительную энергию скачков напряжения для своего размера. Таким образом, они подходят как для систем подавления переходных процессов, так и для линий передачи данных и источников питания.

    Руководство по применению

    При выборе подходящего MOV для конкретного применения защиты от перенапряжения разработчик схемы должен сначала определить рабочие параметры защищаемой цепи, в том числе:

    • Условия цепи, такие как пиковое напряжение и ток во время выброса
    • Постоянное рабочее напряжение MOV (должно быть на 20% выше максимального напряжения системы при нормальных условиях)
    • Количество скачков, которое должен выдержать MOV
    • Допустимое допустимое значение - сквозное напряжение для защищаемой цепи
    • Любые стандарты безопасности, которым цепь должна соответствовать

    Для простоты в этом примере предположим, что целью является выбор низковольтного дискового MOV постоянного тока для следующих условий и требований схемы:

    • Цепь постоянного тока 24 В
    • Форма кривой тока для скачка напряжения 8 × 20 мкс; форма волны напряжения равна 1.2 × 50 мкс (это типичные стандартные формы сигналов)
    • Пиковый ток во время скачка = 1000 A
    • MOV должен выдерживать 40 скачков
    • Другие компоненты схемы (управляющая ИС и т. Д.) Должны быть рассчитаны на выдерживает 300 В максимум

    Шаг 1: Чтобы найти номинальное напряжение MOV, учтите запас в 20% для учета выбросов напряжения и допусков источника питания: 24 В постоянного тока × 1,2 = 28,8 В постоянного тока. Учитывая, что ни один варистор не имеет номинального напряжения ровно 28,8 В, проверьте спецификации для 31-В постоянного тока MOV.

    % {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f229" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = »Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Таблица "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Table = max & w = 1440 "data-embed-caption =" "]}%

    Шаг 2: Чтобы определить, какой размер диска MOV использовать, сначала определите серию MOV, которая минимально соответствует требованиям к перенапряжению 1000-A.Изучив приведенную выше таблицу, можно сделать вывод, что 20-мм MOV с максимальным номинальным постоянным напряжением 31 В постоянного тока (номер детали V20E25P) является возможным решением, отвечающим требованиям.

    Шаг 3: Используйте кривые номинальных значений импульсов (рис. 2) в той же таблице данных, чтобы определить импульсные характеристики относительно 40 импульсов при требовании 1000-А.

    % {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22b" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig2 "data-embed-src =" https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig2.png?auto=format&fit=max&w=1440 %OV "data-embed]-caption =" 900 руб. В таблице данных приведена кривая мощности импульсов; этот пример для 20-мм MOV.

    Шаг 4: Используйте кривую V-I (рис. 3) в таблице данных MOV, чтобы убедиться, что напряжение утечки будет меньше предельного значения 300 В.

    % {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22d" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузка файлов 2015 01 0215 Ee Fig3 "data-embed-src =" https: // img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE_Fig3.png?auto=format&fit=max&w=1440 %OV %OVA дата-встраивание] -подпись = "будет 9003. также имеют кривую зависимости напряжения от тока, такую ​​как эта максимальная кривая напряжения фиксации для 20-мм устройства на рис. 2.

    Защита MOV от теплового разгона

    Поглощение варистором переходной энергии во время скачка напряжения вызывает локальный нагрев внутри компонента, что в конечном итоге приводит к его ухудшению.Если оставить без защиты, деградация варистора может увеличить нагрев и тепловой пробой. Таким образом, все большее количество устройств защиты от перенапряжения на основе варисторов предлагает встроенную функцию теплового отключения. Он обеспечивает дополнительную защиту от катастрофических отказов и опасностей пожара, даже в экстремальных условиях, когда варистор выходит из строя или при длительном перенапряжении.

    MOV

    рассчитаны на определенные рабочие напряжения сети переменного тока. Превышение этих пределов путем применения устойчивого состояния аномального перенапряжения может привести к перегреву и повреждению MOV.

    MOV имеют тенденцию к постепенному ухудшению после большого всплеска или нескольких небольших всплесков. Это ухудшение приводит к увеличению тока утечки MOV; в свою очередь, это повышает температуру MOV даже при нормальных условиях, таких как рабочее напряжение 120 В переменного тока или 240 В переменного тока. Тепловой разъединитель, расположенный рядом с MOV (рис. 4) , можно использовать для определения повышения температуры MOV, пока он продолжает ухудшаться до состояния конца срока службы. В этот момент тепловой разъединитель размыкает цепь, удаляя из нее неисправный MOV и тем самым предотвращая потенциальный катастрофический отказ.

    % {[data-embed-type = "image" data-embed-id = "5df275ecf6d5f267ee20f22f" data-embed-element = "aside" data-embed-align = "left" data-embed-alt = "Сайты электронного дизайна Electronicdesign com Загрузки файлов 2015 01 0215 Ee Fig4 "data-embed-src =" https://img.electronicdesign.com/files/base/ebm/electronicdesign/image/2015/01/electronicdesign_com_sites_electronicdesign.com_files_uploads_2015_01_0215EE = max & w = 1440 "data-embed-caption =" "]}%
    4. Тепловое отключение может размыкать цепь, предотвращая катастрофический отказ неисправного MOV.

    Драйверы светодиодов и освещения

    Как правило, большинство источников питания светодиодов являются источниками постоянного тока и часто называются драйверами светодиодов. Их можно приобрести в виде готовых сборок, содержащих MOV, для удовлетворения требований к помпажам более низкого уровня.

    Обычно драйверы рассчитаны на перенапряжение в диапазоне от 1 до 4 кВ. Варистор диаметром от 7 до 14 мм обычно располагается после предохранителя в сети переменного тока. Однако, чтобы обеспечить более высокий уровень защиты от перенапряжения для освещения, установленного на открытом воздухе в условиях воздействия перенапряжения, OEM-производители наружного освещения могут захотеть добавить устройства защиты от перенапряжения (SPD) на входных линиях переменного тока своих светильников перед драйвером светодиода.

    Пример конструкции MOV: Промышленные двигатели

    Одним из аспектов защиты двигателя переменного тока является способность самого двигателя выдерживать импульсные перенапряжения. В параграфе 20.36.4 стандарта NEMA для двигателей-генераторов MG-1 единичное значение перенапряжения определяется следующим образом:

    u × V LL (или 0,816 × V LL )

    , где VL-L - линия-к- линейное напряжение системы переменного тока.

    Для переходного времени нарастания от 0,1 до 0,2 мкс на обмотках статора требуется удвоенное единичное значение импульсной способности.Когда время нарастания достигает 1,2 мкс или больше, указывается в 4,5 раза больше единицы. В случае внешних переходных процессов, таких как молния, это будет соответствовать допустимому импульсному напряжению 918 В PEAK для двигателя 230 В (ток полной нагрузки = 12 А) в условиях высокого напряжения 250 В. (Удары молнии могут превышать эти значения, поэтому для защиты обмоток статора также потребуется элемент подавления.)

    Загрузить статью в формате .PDF

    Рабочие температуры - еще одно соображение.Предположим, что рабочая температура окружающей среды для этого приложения находится в диапазоне от 0 до + 70 ° C. Это будет в пределах номинала MOV от -40 до + 85 ° C, и не будет требований к снижению импульсного тока или энергии в этом диапазоне температур. Принимая во внимание допуск на высокое напряжение, MOV с номиналом 275 В переменного тока может быть выбранным для этого примера.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *