Содержание

Майкл Фарадей. - Закон электромагнитной индукции

Майкл Фарадей родился 22 сентября 1791 в Лондоне. Скончался ученый 25 августа 1867, там же. Он является основоположником современной концепции поля в электродинамике, автором ряда фундаментальных открытий, в том числе закона электромагнитной индукции, законов электролиза, явления вращения плоскости поляризации света в магнитном поле, один из первых исследователей воздействия магнитного поля на среды.

Детство и юность

Майкл Фарадей родился в семье кузнеца. Кузнецом был и его старший брат Роберт, всячески поощрявший тягу Майкла к знаниям и на первых порах поддерживавший его материально. Мать Фарадея, трудолюбивая, мудрая, хотя и необразованная женщина, дожила до времени, когда ее сын добился успехов и признания, и по праву гордилась им.

Скромные доходы семьи не позволили Майклу окончить даже среднюю школу, и тринадцати лет он поступил учеником к владельцу книжной лавки и переплетной мастерской, где ему предстояло пробыть 10 лет. Все это время Фарадей упорно занимался самообразованием — прочитал всю доступную ему литературу по физике и химии, повторял в устроенной им домашней лаборатории опыты, описанные в книгах, посещал по вечерам и воскресеньям частные лекции по физике и астрономии. Деньги (по шиллингу на оплату каждой лекции) он получал от брата. На лекциях у Фарадея появились новые знакомые, которым он писал много писем, чтобы выработать ясный и лаконичный стиль изложения; он также старался овладеть приемами ораторского искусства.

Начало работы в Королевском институте

Один из клиентов переплетной мастерской, член Лондонского королевского общества Дено, заметив интерес Фарадея к науке, помог ему попасть на лекции выдающегося физика и химика Гемфри Дэвив Королевском институте. Фарадей тщательно записал и переплел четыре лекции и вместе с письмом послал их лектору. Этот «смелый и наивный шаг», по словам самого Фарадея, оказал на его судьбу решающее влияние. В 1813 Дэви (не без некоторого колебания) пригласил Фарадея на освободившееся место ассистента в Королевский институт, а осенью того же года взял его в двухгодичную поездку по научным центрам Европы. Это путешествие имело для Фарадея большое значение: он вместе с Дэви посетил ряд лабораторий, познакомился с такими учеными, как А. Ампер, М. Шеврель, Ж. Л. Гей-Люссак, которые в свою очередь обратили внимание на блестящие способности молодого англичанина.

Первые самостоятельные исследования. Научные публикации

После возвращения в 1815 в Королевский институт Майкл Фарадей приступил к интенсивной работе, в которой все большее место занимали самостоятельные научные исследования. В 1816 он начал читать публичный курс лекций по физике и химии в Обществе для самообразования. В этом же году появляется и его первая печатная работа.

В 1821 в жизни Фарадея произошло несколько важных событий. Он получил место надзирателя за зданием и лабораториями Королевского института (т. е. технического смотрителя) и опубликовал две значительные научные работы (о вращениях тока вокруг магнита и магнита вокруг тока и о сжижении хлора). В том же году он женился на Саре Бернард, дочери лондонского ювелира, которую знал еще девочкой. Вместе супруги прожили 46 лет.

В период до 1821 Майкл Фарадей опубликовал около 40 научных работ, главным образом по химии. Постепенно его экспериментальные исследования все более переключались в область электромагнетизма. После открытия в 1820 Гансом Эрстедом магнитного действия электрического тока Фарадея увлекла проблема связи между электричеством и магнетизмом. В 1822 в его лабораторном дневнике появилась запись: «Превратить магнетизм в электричество». Однако Фарадей продолжал и другие исследования, в том числе в области химии. Так, в 1824 ему первому удалось получить хлор в жидком состоянии.

Избрание в Королевское общество. Профессура

В 1824 Майкл Фарадей был избран членом Королевского общества, несмотря на активное противодействие Дэви, отношения с которым стали у Фарадея к тому времени довольно сложными, хотя Дэви любил повторять, что из всех его открытий самым значительным было «открытие Фарадея». Последний также воздавал должное Дэви, называя его «великим человеком».

В 1825 г. Фарадей был назначен директором лаборатории института, а спустя два года получил здесь же профессорскую кафедру. На новом месте Майкл больше занимался физикой. Действуя чисто эмпирически, 17 октября 1831 г. он обнаружил явление электромагнитной индукции: возникновение в цепи электрического тока при изменении внешнего магнитного поля. Успех принес опыт, кажущийся сейчас тривиальным: вокруг металлического кольца обвивалось два отдельных витка провода. По одному из них, соединенному с батареей, пропускался электрический ток. Целью ученого было выяснить, не возникнет ли ток в «мертвом» проводе под воздействием «живого». С прикладной точки зрения, была получена модель первой динамо-машины, которая через столетие полностью изменит облик Земли. Но эта сторона вопроса абсолютно его не интересовала. В течение последующих 25 лет он целенаправленно изучал только две вещи: способ, каким электрические и магнитные силы передаются в пространстве, и связь между этими силами и материей.

Закон электромагнитной индукции. Электролиз

В 1830, несмотря на стесненное материальное положение, Фарадей решительно отказывается от всех побочных занятий, выполнения любых научно-технических исследований и других работ (кроме чтения лекций по химии), чтобы целиком посвятить себя научным изысканиям. Вскоре он добивается блестящего успеха: 29 августа 1831 открывает явление электромагнитной индукции — явление порождения электрического поля переменным магнитным полем. Десять дней напряженнейшей работы позволили Фарадею всесторонне и полностью исследовать это явление, которое без преувеличения можно назвать фундаментом, в частности, всей современной электротехники. Но сам Фарадей не интересовался прикладными возможностями своих открытий, он стремился к главному — исследованию законов Природы.

Открытие электромагнитной индукции принесло Фарадею известность. Но Майкл по-прежнему был очень стеснен в средствах, так что его друзья были вынуждены хлопотать о предоставлении ему пожизненной правительственной пенсии. Эти хлопоты увенчались успехом лишь в 1835. Когда же у Фарадея возникло впечатление, что министр казначейства относится к этой пенсии как к подачке ученому, он направил министру письмо, в котором с достоинством отказался от всякой пенсии. Министру пришлось просить извинения у Фарадея.

В 1833-34 Майкл Фарадей изучал прохождение электрических токов через растворы кислот, солей и щелочей, что привело его к открытию законов электролиза. Эти законы (Фарадея законы) впоследствии сыграли важную роль в становлении представлений о дискретных носителях электрического заряда. До конца 1830-х гг. Фарадей выполнил обширные исследования электрических явлений в диэлектриках.

Болезнь Фарадея. Последние экспериментальные работы

Постоянное огромное умственное напряжение подорвало здоровье Фарадея и вынудило его в 1840 прервать на пять лет научную работу. Вернувшись к ней вновь, Фарадей в 1848 открыл явление вращения плоскости поляризации света, распространяющегося в прозрачных веществах вдоль линий напряженности магнитного поля (Фарадея эффект). По-видимому, сам Фарадей (взволнованно написавший, что он «намагнитил свет и осветил магнитную силовую линию») придавал этому открытию большое значение. И действительно, оно явилось первым указанием на существование связи между оптикой и электромагнетизмом. Убежденность в глубокой взаимосвязи электрических, магнитных, оптических и других физических и химических явлений стала основой всего научного миропонимания Фарадея.

Другие экспериментальные работы Фарадея этого времени посвящены исследованиям магнитных свойств различных сред. В частности, в 1845 им были открыты явления диамагнетизма и парамагнетизма.

В 1855 болезнь вновь заставила Фарадея прервать работу. Он значительно ослабел, стал катастрофически терять память. Ему приходилось записывать в лабораторный журнал все, вплоть до того, куда и что он положил перед уходом из лаборатории, что он уже сделал и что собирался делать далее. Чтобы продолжать работать, он должен был отказаться от многого, в том числе и от посещения друзей; последнее, от чего он отказался, были лекции для детей.

Значение научных трудов

Даже далеко не полный перечень того, что внес в науку Фарадей, дает представление об исключительном значении его трудов. В этом перечне, однако, отсутствует то главное, что составляет громадную научную заслугу Фарадея: он первым создал полевую концепцию в учении об электричестве и магнетизме. Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Майкл Фарадей последовательно развивал идею о том, что активным материальным переносчиком этого взаимодействия является электромагнитное поле.

Об этом прекрасно написал Джеймс Клерк Максвелл, ставший его последователем, развивший далее его учение и облекший представления об электромагнитном поле в четкую математическую форму: «Фарадей своим мысленным оком видел силовые линии, пронизывающие все пространство. Там, где математики видели центры напряжения сил дальнодействия, Фарадей видел промежуточный агент. Где они не видели ничего, кроме расстояния, удовлетворяясь тем, что находили закон распределения сил, действующих на электрические флюиды, Фарадей искал сущность реальных явлений, протекающих в среде».

Точка зрения на электродинамику с позиций концепции поля, основоположником которой был Фарадей, стала неотъемлемой частью современной науки. Труды Фарадея ознаменовали наступление новой эры в физике.

Информация взята с http://www.megabook.ru/Article.asp?AID=681485

Майкл Фарадей – ученый, открывший электромагнитную индукцию

22.09.2020

Майкл Фарадей (Michael Faraday). Родился 22 сентября 1791 года в Лондоне. Английский физик-экспериментатор и химик. Член Лондонского королевского общества и множества других научных организаций, в том числе иностранный почётный член Петербургской академии наук.

Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя. Среди других его открытий - первый трансформатор, химическое действие тока, законы электролиза, действие магнитного поля на свет, диамагнетизм. Первым предсказал электромагнитные волны.
Фарадей ввёл в научный обиход термины ион, катод, анод, электролит, диэлектрик, диамагнетизм, парамагнетизм и др. Фарадей - основоположник учения об электромагнитном поле, которое затем математически оформил и развил Максвелл. Основной идейный вклад Фарадея в физику электромагнитных явлений заключался в отказе от ньютонова принципа дальнодействия и во введении понятия физического поля - непрерывной области пространства, сплошь заполненной силовыми линиями и взаимодействующей с веществом.

В первой половине XIX века он заслужил славу «короля экспериментаторов». Всю жизнь он вёл аккуратные лабораторные дневники своих опытов (изданы в 1931 году). Последний эксперимент по электромагнетизму помечен в соответствующем дневнике номером 16041, всего Фарадей провёл за свою жизнь около 30000 экспериментов. 
С 1820 года Фарадея чрезвычайно увлекла проблема исследования связей между электричеством и магнетизмом. К этому моменту уже существовала и стараниями К. Гаусса и Дж. Грина была в основном разработана наука электростатика. В 1800 году А. Вольта открыл мощный источник постоянного тока («вольтов столб»), и начала стремительно развиваться новая наука - электродинамика. Сразу же были сделаны два выдающихся открытия: электролиз (1800 год) и электрическая дуга (1802 год). Но главные события начались в 1820 году, когда Эрстед обнаружил на опыте отклоняющее действие тока на магнитную стрелку. Первые теории, связывающие электричество и магнетизм, построили в том же году Био, Савар и позже Лаплас. А. Ампер, начиная с 1822 года, опубликовал свою теорию электромагнетизма, по которой первичным явлением является дальнодействующее взаимодействие проводников с током. Формула Ампера для взаимодействия двух элементов тока вошла в учебники. Среди прочего, Ампер открыл электромагнит (соленоид). После серии опытов Фарадей опубликовал в 1821 году трактат «О некоторых новых электромагнитных движениях и о теории магнетизма», где показал, как заставить намагниченную стрелку непрерывно вращаться вокруг одного из магнитных полюсов. По существу эта конструкция представляла собой ещё несовершенный, но вполне практичный электродвигатель, впервые в мире осуществивший непрерывное превращение электрической энергии в механическую.
Признанием научных заслуг Фарадея стало избрание его членом-корреспондентом Парижской Академии наук (1823). Фарадей был рекомендован на должность директора физической и химической лабораторий. 
После первых успехов в фарадеевских исследованиях электромагнетизма наступила десятилетняя пауза и до 1831 года он почти не публиковал работы на эту тему: опыты не давали желаемого результата, новые обязанности отвлекали, возможно, повлиял также неприятный скандал 1821 года. В 1830 году Фарадей получил профессорскую кафедру сначала в Королевской военной академии (Вулидж), а с 1833 года - и в Королевском институте (по химии). Читал он лекции не только в Королевском институте, но и в нескольких других научных организациях и кружках. Современники чрезвычайно высоко оценивали преподавательские качества Фарадея, умевшего сочетать наглядность и доступность с глубиной рассмотрения предмета. Его научно-популярный шедевр для детей «История свечи» (популярные лекции, 1861 год) издаётся до сих пор. В 1822 году в лабораторном дневнике Фарадея появилась запись: «Превратить магнетизм в электричество». Рассуждения Фарадея были следующими: если в опыте Эрстеда электрический ток обладает магнитной силой, а, по убеждению Фарадея, все силы взаимопревращаемы, то и движение магнита должно возбуждать электрический ток. Путь к электрогенератору оказался нелёгким - первые опыты были неудачны. Главной причиной неудач было незнание того факта, что электрический ток порождается только переменным магнитным полем, причём достаточно сильным (иначе ток будет слишком слаб для регистрации). Для усиления эффекта следовало магнит (или проводник) быстро двигать, а проводник свернуть в катушку. Только десять лет спустя, в 1831 году, Фарадей нашёл, наконец, решение проблемы, обнаружив электромагнитную индукцию. С этого открытия начался самый плодотворный период исследований Фарадея (1831-1840), давший научному миру его знаменитую серию статей «Экспериментальные исследования по электричеству» (всего он опубликовал в «Philosophical Transactions» 30 выпусков, выходивших с 1831 по 1835 год). Уже в 1832 году Фарадей за открытие индукции был награждён медалью Копли. Сообщение об опытах Фарадея немедленно вызвало сенсацию в научном мире Европы, массовые газеты и журналы также уделяли им немало внимания. Множество научных организаций избрали Фарадея своим почётным членом (всего он получил 97 дипломов). 
Если открытие электродвигателя показало, как можно использовать электричество, то опыты по индукции указывали, как создать мощный его источник (электрогенератор). С этого момента трудности на пути широкого внедрения электроэнергии стали чисто техническими. Физики и инженеры активно занялись исследованием индукционных токов и конструированием всё более совершенных электротехнических устройств; первые промышленные модели появились ещё при жизни Фарадея (генератор переменного тока Ипполита Пикси, 1832), а в 1872 году Фридрих фон Хефнер-Альтенек представил высокоэффективный генератор, впоследствии улучшенный Эдисоном. В 1832 году Фарадей исследовал ещё одну важную в те годы проблему. На тот момент были известны несколько источников электричества: трение, вольтов столб, некоторые животные (например, электрический скат), фарадеевская индукция, термоэлемент (открыт в 1821 году, см. эффект Зеебека).
Майкл Фарадей умер 25 августа 1867 года за письменным столом, немного не дожив до 76-летия. 
При подготовке статьи были использованы материалы с сайтов: ru.wikipedia.org, biographe.ru и stuki-druki.com. 
Пресс-центр АО «ЮРЭСК»


Опыты Фарадея

В 1820 году было произведено открытие магнитного пола вокруг проводника Эрстедом. В то время производилось много опытов и экспериментов, связанных с электричеством. Фарадей эмпирически открыл явление электромагнитной индукции 29 августа 1831 года. Он обнаружил явление у стационарных проводников при замыкании и размыкании цепи.

Позже было доказано, что явление электромагнитной индукции появляется при движении катушек с токами друг с другом. Еще 17 октября из лабораторного журнала было видно обнаружение индукционного тока во время введения и удаления магнита из катушки. В течение месяца все особенности изучил Фарадей.

Именно он сумел объяснить явления диа- и парамагнетизма, объясняя это тем, что материалы, располагаемые в пределах магнитного поля ведут себя по-разному: ориентируются по полю, как пара- и ферромагнетики, или поперек, как диамагнетики.

Опыты Фарадея. Электромагнитная индукция

Опыты Фарадея известны из школьного курса, наглядно представленные на рисунке.

Рисунок 3.1. Возникновение электрического тока при поднесении или вытягивании катушки с левой стороны и возникновение электрического тока с двумя близко расположенными катушками справа.

Рисунок 3.2. Возникновение электрического тока при соединении катушек сердечником.

Определение 1

На данный момент опыты Фарадея называют классическими и применяют для обнаружения электромагнитной индукции:

  1. Замыкание гальванометра на соленоиде. В соленоид опускается постоянный магнит, перемещая который, фиксируются отклонения стрелки гальванометра. Это говорит о наличии индукционного тока. Если увеличить скорость перемещения магнита относительно катушки, тогда стрелка гальванометра отклонится еще сильнее. Это говорит о том, что произошла замена полей. Магнит может быть неподвижным или передвижение соленоида происходит относительно магнита.
  2. Две катушки. Производится установка одной в другую. Концы одной из них подключаются с гальванометром. Другая катушка подвергается прохождению тока. При его подаче и отключении стрелка гальванометра изменяет свое положение. В этом случае катушки должны находиться в движении относительно друг друга. Стрелка гальванометра уменьшает значение при его включении.
Определение 2

При изменении потока вектора индукции, пронизывающего проводящий контур, происходит возникновение электрического тока, что называется явлением электромагнитной индукции, а такой ток – индукционным.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Явление электромагнитной индукции и опыты

Обобщив все результаты, Фарадей выявил, что возникновение индукционного тока возможно при изменении потока магнитной индукции, сцепленного с контуром. Тогда величина индукционного тока не имеет связи с изменением потока, а только со скоростью его изменения. Фарадей доказал, что величина отклонения стрелки гальванометра связана со скоростью перемещения магнита относительно друг друга.

Определение 3

Исходя из 2 опытов Майкла Фарадея, Максвелл сумел описать и сформулировать основной закон электромагнитной индукции.

Основываясь на нем, электродвижущая сила индукции в замкнутом контуре равняется скорости изменения магнитного потока dΦdt через поверхность, которая ограничена контуром εi=-dΦdt.

Из формулы следует, что Φ=BS →cos α - магнитный поток, а α - угол, расположенный между вектором B→ и нормалью к плоскости контура. Знак минуса характеризует правило Ленца.

Суть опытов Фарадея в том, что с помощью явления электромагнитной индукции видна связь электрического и магнитного полей. Появление электрического поля возможно при изменении магнитного.

Определение 4

Его природа отличается от электростатического тем, что не имеет связи с электрическими зарядами, а линии напряженности не могут заканчиваться или начинаться. Их считают замкнутыми, а такое образовавшееся поле вихревым.

НАЧАЛА ФИЗИКИ


Майкл Фарадей (1791–1867) – великий английский физик. Автор ряда фундаментальных и прикладных открытий, в том числе закона электромагнитной индукции, законов электролиза (законы Фарадея), явления вращения плоскости поляризации света в магнитном поле (эффект Фарадея). В 1821 г. впервые осуществил вращение магнита вокруг проводника с током и проводника с током вокруг магнита, создав первую лабораторную модель электродвигателя. 29 августа 1831 г. Фарадей открыл явление электромагнитной индукции — возникновение электрического поля при изменении магнитного поля. В последующем Фарадей всесторонне исследовал это явление, которое без преувеличения можно назвать краеугольным камнем современной электродинамики и ее практического приложения – электротехники. В 1835 г. открыл так называемые экстратоки, которые возникают при замыкании и размыкании электрической цепи, и установил их направление.

Однако главной заслугой Фарадея является разработка концепции электромагнитного поля (сам этот термин впервые употребил Фарадей). Если до него господствовало представление о прямом и мгновенном взаимодействии зарядов и токов через пустое пространство, то Фарадей последовательно развивал идею о том, что существует материальный переносчик этого взаимодействия - электромагнитное поле. Концепция поля является фундаментом современной физики. При этом Фарадей категорически не любил формулы – физику он понимал «на пальцах», видя за проводимыми им экспериментами взаимосвязи причин и явлений. Именно этот взгляд и позволил ему сформулировать концепцию электромагнитного поля (да и сам термин – поле – впервые употребил Фарадей).

Фарадей прославился не только многочисленными открытиями. Он был блестящим популяризатором науки. С 1826 г. и почти до самой кончины он читал научно-популярные публичные лекции. Одна из них – «История свечи с точки зрения химии» - стала самой известной научно-популярной лекцией в истории науки. Позже она была издана отдельной книгой и переведена на многие языки (в том числе и русский).

ЭДС (29.2) называют ЭДС индукции. С законом электромагнитной индукции можно связать определенное правило знаков, т.е. и поток и ЭДС считать алгебраическими величинами (тогда в формуле (29.2) должен быть знак «минус»). В этом случае закон (29.2) автоматически даст направление ЭДС (направление индукционного тока). Можно, однако, считать все величины в законе (29.2) положительными, а направление индукционного тока определять независимо из правила Ленца.

446/597

Майкл Фарадей – изобретатель электрического мотора и первооткрыватель электромагнитной индукции (из цикла «Великие люди»)

Одним из самых выдающихся людей в истории человечества является Майкл Фарадей, великий физик-экспериментатор. Именно Фарадей изобрел ныне активно используемые во многих сферах человеческой жизни электрические моторы. Также одним из величайших открытий Фарадея является электромагнитная индукция, благодаря которой оказалось возможно получать электрический ток.

Самое удивительное, что ни о чем таком Майкл Фарадей и не мечтал. Родился он в Англии в 1791 году в бедной семье, нигде не учился. Но в четырнадцать лет ему «повезло» найти работу подмастерья у переплетчика и продавца книг. Будучи по природе любознательным Майкл Фарадей всерьез увлекся чтением.

Но важнейшим событием в жизни Фарадея стали лекции знаменитого английского ученого Гемфри Дэви, куда Фарадей пришел из любопытства, однако стал настоящим поклонником Дэви, так что даже написал ему письмо и попросился в ассистенты.

Несмотря на то, что Фарадею не хватало знаний, любопытство и смекалка приводили его к самым удивительным открытиям.

Например, датский ученый Эрстед обратил внимание на то, что стрелка магнитного компаса отклоняется, если рядом находится проволока, по которой идет электрический ток. Фарадей же пошел дальше – он зафиксировал магнит и предположил, что в этом случае проволока начнет крутиться вокруг магнита, что вскоре и доказал на опыте (1821 год).

Но несмотря на простоту открытия Фарадея, его находка оказала весьма значимое влияние на человеческую цивилизацию. Ведь в своей основе Фарадей изобрел электрический мотор. Пусть тогда еще он не знал, куда применить свое открытие, да и мощностей электричества в те времена еще явно не хватало, но все электрические моторы, имеющиеся на сегодняшний день – это потомки открытия Фарадея.

Продолжая экспериментировать и выискивая способ использования магнетизма для получения электричества, Майк Фарадей обнаружил, что пропущенный сквозь проволочную петлю магнит приводит к тому, что через проволоку начинает проходить ток (1831 год). Это открытие Фарадея позже назовут электромагнитной индукцией, а физический закон – законом Фарадея, и именно благодаря этому открытию человечество получило возможность производить электрический ток. Так что первая динамо-машина также была изобретена Фарадеем, хотя в отличие от первого своего открытия, он уже знал применение своей динамо-машины.

Помимо этих двух важнейших открытий, Майкл Фарадей изобрел прибор для разжижения газов, открыл новые химические вещества, в частности – бензол. Также Фарадей является автором двух важнейших законов электролиза (которые позже назовут его именем), а также ввел в обиход названия терминов - анод, катод, электрод и ион. Еще Фарадей открыл связь между светом и магнетизмом – пропустив через магнитное поле поляризованный свет, который на выходе поменял полярность. А его изучение свойств магнитного поля послужило отправной точкой для уравнений другого знаменитого ученого – Джеймса Максвелла, и сделал еще множество других открытий, важных для человечества.

Так любопытствующий физик-экспериментатор стал одним из самых великих людей и навсегда остался в истории человечества, известный прежде всего как первооткрыватель электромагнитной индукции и изобретатель электрического мотора.

Другие великие из цикла "Великие люди":

 • Симон Боливар – Освободитель (цикл "Великие люди")

 • Эрнан Кортес – испанский конкистадор, завоеватель Мексики (цикл "Великие люди")

 • Ашока – гуманный правитель (цикл "Великие люди")

 • Адам Смит – автор экономической теории (цикл "Великие люди") 

Поделиться самым интересным:

Явление электромагнитной индукции: опыт Фарадея, выводы

 

Изучением явления электромагнитной индукции занялся вплотную первым Майкл Фарадей. Точнее сказать, он установил и исследовал это явление в поисках способов превратить магнетизм в электричество.

У него на решение такой задачи ушло десять лет, мы же сейчас пользуемся плодами его труда повсеместно, и не представляем себе современную жизнь без применения электромагнитной индукции. В 8 классе, мы уже рассматривали эту тему, в 9 классе это явление рассматривается уже более детально, но вывод формул относится к курсу 10 класса. По этой ссылке вы можете перейти для ознакомления со всеми аспектами данного вопроса.

Явление электромагнитной индукции: рассмотрим опыт

Мы рассмотрим, что представляет собой явление электромагнитной индукции. Можно провести опыт, для которого понадобится гальванометр, постоянный магнит и катушка. Соединив гальванометр с катушкой, мы вдвигаем внутрь катушки постоянный магнит. При этом гальванометр покажет изменение тока в цепи.

Так как никакого источника тока у нас в цепи нет, то логично предположить, что ток возникает вследствие появления магнитного поля внутри катушки. Когда мы будем вытаскивать магнит обратно из катушки, мы увидим, что снова изменятся показания гальванометра, но его стрелка при этом отклонится в противоположную сторону. Мы опять получим ток, но уже направленный в другую сторону.

Теперь проделаем похожий опыт с теми же элементами, только при этом мы зафиксируем магнит неподвижно, а надевать на магнит и снимать с него мы теперь будем саму катушку, подсоединенную к гальванометру. Мы получим те же результаты стрелка гальванометра будет показывать нам появление тока в цепи. При этом, когда магнит неподвижен, тока в цепи нет стрелка стоит на ноле.

Можно провести измененный вариант такого же опыта, только постоянный магнит заменить электрическим, который можно включать и выключать. Мы получим схожие с первым опытом результаты при движении магнита внутри катушки. Но, кроме того, при выключении и выключении неподвижного электромагнита, он будет вызывать кратковременное появление тока в цепи катушки.

Катушку можно заменить проводящим контуром и проделать опыты по перемещению и вращению самого контура в постоянном магнитном поле, либо же магнита внутри неподвижного контура. Результаты будут те же появление тока в цепи при движении магнита или контура.

Изменение магнитного поля вызывает появление тока

Из всего этого следует вывод, что изменение магнитного поля вызывает появление электрического тока в проводнике. Ток этот ничем не отличается от тока, который мы можем получить от батареек, например. Но чтобы указать причину его возникновения, такой ток назвали индукционным.

Во всех случаях у нас менялось магнитное поле, а точнее, магнитный поток через проводник, вследствие чего и возникал ток. Таким образом, можно вывести следующее определение:

При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.

Вот это и есть явление электромагнитной индукции, на основе которой созданы самые различные генераторы электроэнергии.

Нужна помощь в учебе?



Предыдущая тема: Магнитный поток: определение, направление и количество + пример
Следующая тема:&nbsp&nbsp&nbspПолучение переменного электрического тока: что это и как получить

Майкл Фарадей

Майкл Фарадей был человеком добрым и скромным, обаятельным и крайне трудолюбивым. Во всех его действиях была необычайная последовательность. Настолько необычайная, что его невозможно отнести даже к гениям. Гении ассоциируются с кем-то, кто склонен к вычурному поведению, а в его случае всё происходило с точностью до наоборот. Он гений непрерывной исследовательской работы.

Французский химик-органик и политик Жан Батист Дюма говорил о Фарадее, постоянно подчёркивая, что в нём наблюдается какая-то крайняя благость. Нравственное совершенство, да ещё данное от рождения, кипучая деятельность и гуманность высшей степени – вот такие характеристики современника. И он полностью прав. В годы Крымской войны правительство Британии предложило Фарадею принять участие в разработке химического оружия, чтобы направить его против России. Тот с возмущением отказался, назвав такое предложение безнравственным.

Фарадей был физиком-практиком, но никогда не работал над одним проектом. У него была бесконечная, пока хватало сил, цепочка исследований. В ходе их осуществления что-то появлялось, что было очень важным и нужным, но он на этом не останавливался. Все его изобретения – это «побочный эффект» одного большого потока познания мира. Начато оно было в тот период, когда люди знали, что электричество существует, но что это такое с практической стороны – понятия не имели.

Концептуальные модели электродвигателя и генератора электрического тока

Первые шаги в науке были сделаны будущим изобретателем в качестве химика. Однако в 1821 году было опубликовано несколько статей, которые характеризовали его в качестве физика. К этому моменту электродинамика, электролиз и электрическая дуга уже были открыты другими исследователями, а в 1820 Эрстед обнаружил отклонение магнитной стрелки под действием магнитного тока. Были и другие исследования, в частности А. Ампер построил свою теорию электромагнитизма. На базе всех наработок своего времени Фарадей создаёт доказательную модель того, что намагниченная стрелка может непрерывно вращаться вокруг одного из магнитных полюсов. Электрическая энергия преобразуется в механическую, а значит, её можно использовать на практике.

После этого наступила пауза, которая длилась около 10 лет. Но точно известно, что уже в 1822 году Фарадей ставил перед собой задачу создания электрогенератора. Задача эта оказалась крайне сложной, а для её решения пришлось выработать концепцию электромагнитной индукции. С 1831 по 1840 год Фарадей только тем и занимался, что обосновывал её наличие. Интересно, что сам Фарадей индукцию только обосновал, а первый промышленный генератор был создан Ипполитом Пикси, ещё при жизни Фарадея, в 1832 году. Впоследствии генератор был улучшен другими инженерами и в относительно современном виде был представлен Эдисоном.

Электромагнитное поле и теория индукции

Основным его теоретическим достижением было вполне современное описание электромагнитного поля, позже усовершенствованное Максвеллом. Его идея была полностью оригинальной. Даже Ампер считал, что силы токов действуют на расстоянии сами по себе, а Фарадей пришёл к выводу, что силы токов передаются на расстоянии через каждую точку пространства поля.

Интересно, что все изобретения Фарадея были лишь первыми концептуальными прототипами. Прибор, представляющий собой соленоид с током, движущимся внутри катушки; трансформатор; диск Фарадея – один из прообразов электродвигателя. Он не доводил свои модели до коммерческого совершенства. Именно их на практике использовать было невозможно, но они легли в основу разработок других изобретателей и инженеров.

Это его умение абстрагироваться от материальной выгоды было очень полезно для человечества. Он не тратил время на доработки, патенты, а сразу переходил к созданию других концептов, которые вполне адекватно обосновывал с точки зрения физики и химии. Потом другим изобретателям и учёным оставалось только использовать готовые модели, а это уже дело техники.

Поздние открытия Фарадея

Бескорыстность Фарадея не принесла ему лично ничего хорошо. Получавший в расцвете сил приличное содержание и гонорары за публикацию статей, в более позднем возрасте он жил на достаточно ограниченные средства. В 1835 году Фарадей заболел непонятной болезнью. Упадок сил, частичная потеря памяти, депрессия. Всё это мешало работать и накатывало волнами.

В 1845 году он ненадолго вернулся к работе и совершил ещё несколько открытий – диамагнетизм и знаменитый «эффект Фарадея». Это ещё одна часть исследования магнитного поля. Если поместить в него вещество, то в нём произойдёт поворот плоскости поляризации света. Характерно, что это открытие пришлось на период, когда представителям общественности всё же удалось добиться назначения Фарадею небольшой пенсии.

Перечислить все достижения Фарадея достаточно трудно. В их число входит более ста работ по исследованию электромагнитной индукции, смелые предположения, что сила гравитации как-то связана с электричеством, описание силовых линий в магнитном поле, исследование действия магнитного поля на свет и многое другое. Он даже увлекался спиритизмом... И доказал, что стол на сеансах вращают участники сеанса, а не духи. Только не нарочно, чтобы всех обмануть, а незаметно для себя, поскольку их мышление неразрывно связано с электричеством, которое порождает импульсы. В результате пальцы совершают мельчайшие движения, и от этого уже приходят в движение предметы, на которые они наложены. За что бы ни брался, везде он доходил до истинной сути вещей. Именно такие обоснованные предположения и меняют взгляд на различные процессы. Сегодня никого не удивляет электрокардиограмма сердца или электроэнцефалограмма, которая является методом исследования мозга. Чтобы это стало возможным, должен был быть кто-то первый, кто доказал бы, что электрические процессы неразрывны с биологическими процессами в человеческом организме.

Выставка «Великие учителя человечества» в ЭТНОМИРе

Калужская область, Боровский район, деревня Петрово

Экcпозиция «Великие учителя человечества» расположена в выставочных залах апарт-отеля «Гималайский дом», а также на втором этаже Культурного центра Индии. Она включает в себя свыше 100 экспонатов, это величайшее собрание бюстов мудрецов всех времён и народов, которые оставили миру самое ценное наследие – знания, указали и на собственном примере продемонстрировали пути духовного развития. Изучая труды, научные открытия, философские трактаты этих учителей, мы приходим к пониманию, что в основе базовой системы ценностей лежит единый фундамент: единство религий, единство народов и единство человека и природы. Около каждого бюста на выставке посетитель найдёт информационную табличку с коротким рассказом об основных заслугах Учителя перед человечеством, с указанием знаковых дат и перечнем его трудов. Экспозиция всегда открыта для самостоятельного изучения.

Объяснение: Майкл Фарадей и электромагнитная индукция

Майкл Фарадей. (Источник: Wikimedia Commons)

29 августа 1831 года британский ученый Майкл Фарадей обнаружил электромагнитную индукцию - важный прорыв, заложивший основу для более поздних исследователей, таких как Джеймс Клерк Максвелл, и привел к таким важным изобретениям, как электродвигатели, трансформаторы, индукторы и генераторы.

Кем был Майкл Фарадей и как он открыл электромагнитную индукцию?

Майкл Фарадей считается одним из величайших ученых Англии XIX века, внесшим новаторский вклад как в химию, так и в электромагнетизм.

Фарадей родился в 1791 году в условиях значительной бедности и не получил формального образования. Он научился читать и писать в воскресной церкви. Фарадей начал работать в 14 лет с продавцом книг в Лондоне и обнаружил свою склонность к науке, читая книги, которые его работодатель переплетал.

В 1812 году Фарадей поступил в ученики у легендарного химика сэра Хэмфри Дэви, изобретателя лампы Дэви. В конце этого объединения Фарадей начал свою выдающуюся карьеру ученого.Первые годы были наделены успехами в химии; в 1825 году Фарадей открыл бензол.

Однако главными интересами Фарадея были электричество и магнетизм. Помимо электромагнитной индукции, Фарадей также открыл диамагнетизм, электролиз и влияние магнетизма на свет.

Эксперимент Фарадея с железным кольцом

Фарадей обмотал толстое железное кольцо двумя витками изолированного провода, по одной с каждой стороны кольца. Одна катушка была подключена к батарее, а другая - к гальванометру.Когда цепь батареи была замкнута, Фарадей увидел кратковременное отклонение гальванометра. Аналогичное кратковременное отклонение, но в противоположном направлении, наблюдалось при размыкании цепи батареи.

Это наблюдение привело к открытию, что изменение магнитного поля создает электродвижущую силу и ток в соседней цепи. Это явление, называемое электромагнитной индукцией, было позже математически смоделировано Джеймсом Клерком Максвеллом и стало известно как закон Фарадея.

Основание, заложенное Фарадеем, помогло Максвеллу в дальнейшем изучении теории электромагнитного поля, и его вклад в то время существенно повлиял на физику 20-го века.

1831: Фарадей описывает электромагнитную индукцию | Механизм хранения

Английский натурфилософ - современный термин для физика - Майкл Фарадей (1791–1867) известен своим открытием взаимодействия между электричеством и магнетизмом, лежащих в основе принципов электромагнитной индукции и электромагнитного вращения.Оба играют важную роль в технологиях магнитной записи и электродвигателя, лежащих в основе современных систем хранения данных. В его честь названа единица измерения электрической емкости фарад (Ф). Ранняя документация Фарадея о полупроводниковом эффекте (в кристаллах сульфида серебра) менее известна.

В серии лекций в Королевском обществе в Лондоне, Англия, в 1831 году, Фарадей описал результаты своих экспериментов, которые продемонстрировали производство «электрического тока» обычными магнитами.Он использовал жидкую батарею, чтобы пропустить электрический ток через небольшую катушку. Когда его перемещали в большую катушку или из нее, ее магнитное поле индуцировало мгновенное напряжение в маленькой катушке, которое регистрировалось гальванометром. Шотландский физик-математик Джеймс Клерк Максвелл (1831–1879) выразил изменяющийся во времени аспект электромагнитной индукции в виде дифференциального уравнения, которое стало известно как закон Фарадея.

Хотя Фарадей был первым, кто опубликовал свою работу, американский ученый Джозеф Генри (1797–1878) независимо сделал то же открытие в 1832 году.Генри служил первым секретарем Смитсоновского института. Единица индуктивности, генри (H), названа в его честь.

  • Фарадей М. Экспериментальные исследования электричества, Том 1 (Ричард и Джон Эдвард Тейлор, 1839) Книга составлена ​​из статей, опубликованных в «Философских трудах Королевского общества » с 1831 по 1838 годы.
  • Генри, Джозеф. Научные труды Джозефа Генри , Смитсоновский институт (1886)
  • «1833 - Зарегистрирован первый полупроводниковый эффект» Кремниевый двигатель Музей истории компьютеров, 2008 г.
  • Хиршфельд, Алан В. Электрическая жизнь Майкла Фарадея , Walker & Company (7 марта 2006 г.).
  • Friedel, Robert D. Линии и волны: Фарадей, Максвелл и 150 лет электромагнетизма , Центр истории электротехники, Институт инженеров по электротехнике и электронике (1981)
  • Ван, Шань X., Александр Михайлович Тарарторин. «Индуктивные магнитные головки» Технология магнитного хранения информации Academic Press (1990) стр. 81 - 117
  • «Майкл Фарадей» (получено 11.3.14 с: http://www.chemheritage.org/discover/online-resources/chemistry-in-history/themes/electrochemistry/faraday.aspx)
  • «Биография Джозефа Генри» (получено 11.3.14 с http://www.ieeeghn.org/wiki/index.php/Joseph_Henry)

Не идентифицированы

Имя файла: 1831_Faraday_v3
Ред .: 9.3,15

Молекулярные выражения: электричество и магнетизм



Эксперимент Фарадея по индукции магнитного поля

Когда Майкл Фарадей сделал свое открытие электромагнитной индукции в 1831 году, он предположил, что изменяющееся магнитное поле необходимо для индукции тока в соседней цепи.Чтобы проверить свою гипотезу, он сделал катушку, обмотав бумажный цилиндр проволокой. Он подключил катушку к гальванометру, а затем перемещал магнит вперед и назад внутри цилиндра.

Щелкните и перетащите магнит назад и вперед внутри катушки.

Когда вы перемещаете магнит вперед и назад, обратите внимание, что стрелка гальванометра движется, указывая на то, что в катушке индуцируется ток. Также обратите внимание, что стрелка немедленно возвращается в ноль, когда магнит не движется.Фарадей подтвердил, что для возникновения электромагнитной индукции необходимо движущееся магнитное поле.

НАЗАД К РУКОВОДСТВАМ ПО ЭЛЕКТРИЧЕСТВЕ И МАГНЕТИЗМУ

Вопросы или комментарии? Отправить нам письмо.
© 1995-2021, автор - Майкл В. Дэвидсон и Государственный университет Флориды. Все права защищены. Никакие изображения, графика, программное обеспечение, сценарии или апплеты не могут быть воспроизведены или использованы каким-либо образом без разрешения правообладателей.Использование этого веб-сайта означает, что вы соглашаетесь со всеми юридическими положениями и условиями, изложенными владельцами.
Этот веб-сайт поддерживается нашим

Команда разработчиков графики и веб-программирования
в сотрудничестве с оптической микроскопией в Национальной лаборатории сильного магнитного поля
.
Последнее изменение: пятница, 31 марта 2017 г., 10:10
Счетчик доступа с 6 сентября 1999 г .: 2169622

Фарадей и электромагнитная теория света

Майкл Фарадей (22 сентября 1791 - 25 августа 1867), вероятно, наиболее известен своим открытием электромагнитной индукции, его вкладом в электротехнику и электрохимию или тем, что он отвечал за введение концепции поля в физике. описать электромагнитное взаимодействие.Но, возможно, не так хорошо известно, что он также внес фундаментальный вклад в электромагнитную теорию света .

В 1845 году, всего 170 лет назад, Фарадей обнаружил, что магнитное поле влияет на поляризованный свет - явление, известное как магнитооптический эффект или эффект Фарадея. Чтобы быть точным, он обнаружил, что плоскость колебаний луча линейно поляризованного света, падающего на кусок стекла, вращалась, когда магнитное поле было приложено в направлении распространения луча.Это было одно из первых указаний на связь электромагнетизма и света. В следующем году, в мае 1846 года, Фарадей опубликовал статью Мысли о вибрациях лучей , пророческую публикацию , в которой он предположил , что свет может быть вибрацией электрических и магнитных силовых линий.

Майкл Фарадей (1791-1867) / Источники: Wikipedia

Случай Фарадея нечасто встречается в истории физики: хотя его обучение было очень простым, законы электричества и магнетизма в гораздо большей степени связаны с экспериментальными открытиями Фарадея, чем с любыми другими учеными.Он открыл электромагнитной индукции , что привело к изобретению динамо-машины, предшественницы электрического генератора. Он объяснил электролиз с точки зрения электрических сил, а также представил такие концепции, как поле , и силовых линий, , которые не только были фундаментальными для понимания электрических и магнитных взаимодействий, но и легли в основу дальнейших достижений в физике.

Майкл Фарадей родился в Южном Лондоне в скромной семье.Единственное базовое формальное образование, которое он получил в детстве, - это чтение, письмо и арифметика. Он бросил школу, когда ему было тринадцать, и начал работать в переплетном магазине. Его страсть к науке была пробуждена описанием электричества , которое он прочитал в копии Британской энциклопедии , которую он подписывал, после чего он начал экспериментировать в импровизированной лаборатории. 1 марта 1813 года Фарадей был нанят лаборантом Хэмфри Дэви в Королевском институте в Лондоне, членом которого он был избран в 1824 году и где он проработал до своей смерти в 1867 году сначала помощником Дэви, затем его сотрудником и, наконец, , после смерти Дэви, как его преемник.Фарадей произвел на Дэви такое впечатление, что когда последнего спросили о его величайшем открытии, Дэви ответил: «Моим величайшим открытием был Майкл Фарадей». В 1833 году он стал первым фуллеровским профессором химии в Королевском институте. Фарадей также признан великим популяризатором науки. В 1826 году Фарадей основал в Королевском институте «Пятничные вечерние лекции», которые являются каналом связи между учеными и непрофессионалами. В следующем году он запустил Рождественские лекции для молодежи, которые ежегодно транслируются по национальному телевидению, серию, цель которой - представить науку широкой публике.Многие из этих лекций читал сам Фарадей. Оба они продолжаются по сей день.

Майкл Фарадей читал рождественскую лекцию в Королевском институте в 1856 г. / Источники: Википедия

Фарадей сделал свое первое открытие электромагнетизма в 1821 г. Он повторил эксперимент Эрстеда , поместив небольшой магнит вокруг токоведущего провода и убедившись, что сила, прилагаемая ток на магните был круговым. Как он объяснил много лет спустя, провод был окружен бесконечной серией круговых концентрических силовых линий , которые он назвал магнитным полем тока. Он взял за отправную точку работы Эрстеда и Ампера по магнитным свойствам электрических токов и в 1831 году получил электрический ток из изменяющегося магнитного поля, явление, известное как электромагнитная индукция . Он обнаружил, что, когда через катушку пропускают электрический ток, в соседней катушке генерируется еще один очень короткий ток. Это открытие ознаменовало решающую веху в прогрессе не только науки, но и общества , и сегодня оно используется для производства электроэнергии в больших масштабах на электростанциях.Это явление открывает кое-что новое об электрических и магнитных полях. В отличие от электростатических полей, создаваемых электрическими зарядами в состоянии покоя, циркуляция которых по замкнутому пути равна нулю (консервативное поле), циркуляция электрических полей, создаваемых магнитными полями, происходит по замкнутому пути, отличному от нуля. Эта циркуляция, которая соответствует наведенной электродвижущей силе, равна скорости изменения магнитного потока, проходящего через поверхность, граница которой представляет собой проволочную петлю ( закон индукции Фарадея ).Фарадей изобрел первый электродвигатель, первый электрический трансформатор, первый электрогенератор и первую динамо-машину, поэтому Фарадея без всяких сомнений можно назвать отцом электротехники .

Фарадей отказался от теории жидкости для объяснения электричества и магнетизма и ввел концепции поля и силовых линий , отойдя от механистического объяснения природных явлений, таких как действия Ньютона на расстоянии. Введение Фарадеем концепции поля в физику, возможно, является его наиболее важным вкладом, и он был описан Эйнштейном как великое изменение в физике , потому что оно обеспечило электричество, магнетизм и оптику общей структурой физических теорий.Однако силовые линии Фарадея не были приняты до тех пор, пока несколько лет спустя не появился Джеймс Клерк Максвелл.

Как отмечалось в начале этой статьи, другим и, возможно, менее известным эффектом, обнаруженным Фарадеем, было влияние магнитного поля на поляризованный свет, явление, известное как эффект Фарадея или магнитооптический эффект . Пытливый ум Фарадея не удовлетворился простым открытием взаимосвязи между электричеством и магнетизмом. Он также хотел определить, влияют ли магнитные поля на оптические явления. Он верил в единство всех сил природы, в особенности света, электричества и магнетизма. 13 сентября 1845 года он обнаружил, что плоскость поляризации линейно поляризованного света поворачивается, когда этот свет проходит через материал, к которому приложено сильное магнитное поле в направлении распространения света. Фарадей написал в абзаце № 7504 своей книги « Dairy :

».

«Сегодня работал с магнитными силовыми линиями, проводя их через разные тела (прозрачные в разных направлениях) и в то же время пропуская через них поляризованный луч света (…) на поляризованном луче производился эффект, и, таким образом, магнитный доказано, что сила и свет связаны друг с другом ».

Это, безусловно, было первым четким указанием того, что магнитная сила и свет связаны друг с другом, а также показало, что свет связан с электричеством и магнетизмом. В связи с этим явлением Фарадей также писал в том же абзаце:

.

«Этот факт, скорее всего, окажется чрезвычайно плодотворным и очень ценным при исследовании обоих условий естественной силы».

Он не ошибся. Этот эффект является одним из краеугольных камней электромагнитной теории света.

Вращение поляризации из-за эффекта Фарадея / Источники: адаптировано из Википедии

В выступлении Королевского института в пятницу вечером, проведенном в апреле 1846 года года, Фарадей предположил, что свет может быть некоторой формой возмущения, распространяющегося вдоль силовых линий . На самом деле именно в эту пятницу Чарльз Уитстон должен был выступить с докладом о своем хроноскопе. Однако в последнюю минуту у Уитстона случился приступ страха перед сценой, и Фарадей выступил с речью Уитстона.Так как он закончил досрочно, он заполнил оставшиеся минуты, рассказав о своих мыслях о природе света . Выступление Фарадея было опубликовано в том же году в журнале Philosophical Magazine под заголовком Мысли о лучевых вибрациях . Фарадей даже осмелился поставить под сомнение существование светоносного эфира - научная ересь того времени - который должен был быть средой для распространения света, как так элегантно Френель описал в своей волновой теории света.Он предположил, что свет может быть не результатом вибраций эфира, а вибрацией физических силовых линий. Фарадей попытался исключить эфир, но он сохранил вибрации. Почти извиняющимся тоном Фарадей заканчивает свой доклад, в котором говорится:

.

«Я думаю, что вполне вероятно, что я сделал много ошибок на предыдущих страницах, потому что даже для меня мои идеи по этому поводу кажутся только тенью спекуляции ».

Однако эта идея Фарадея была воспринята со значительным скептицизмом и отвергалась всеми до тех пор, пока в 1865 году не была опубликована статья Максвелла под названием . Динамическая теория электромагнитного поля .В этой статье Максвелл не только описывает свою основополагающую электромагнитную теорию света - одну из вех, отмеченных в этом Международном году света 2015 - но также приписывает идеи, которые в конечном итоге легли в основу его теории, мыслям Фарадея о лучевых вибрациях . На странице 466 своей статьи со скромностью, всегда свойственной Максвеллу, он ссылается на статью Фарадея 1846 года следующим образом:

«Концепция распространения поперечных магнитных возмущений за исключением нормальных четко изложена профессором Фарадеем в его« Мыслях о лучевых колебаниях ».Электромагнитная теория света, предложенная им [Фарадеем], по сути та же, что и та, которую я начал развивать в этой статье, за исключением того, что в 1846 году не было данных для расчета скорости распространения ».

И на странице 461 своей статьи 1865 года Максвелл также упоминает о магнитооптическом эффекте, заявляя:

«Фарадей обнаружил, что когда плоско поляризованный луч пересекает прозрачную диамагнитную среду в направлении силовых линий магнитного поля, создаваемых соседними магнитами или токами, плоскость поляризации вращается».

Всего Майкл Фарадей цитируется шесть раз и трижды упоминается в статье Максвелла 1865 года. Однако это неудивительно, учитывая, что большая часть работ Максвелла основана на работах Фарадея, и Максвелл математически смоделировал большинство открытий Фарадея по электромагнетизму в теорию, которую мы знаем сегодня.

Электромагнитные волны, о существовании которых Фарадей размышлял в 1846 году в своих мыслях о лучевых колебаниях , и которые были математически предсказаны Максвеллом в 1865 году, наконец, были получены в лаборатории Герца в 1888 году.Остальное уже история. Ясно, что Максвелл открыл дверь в физику двадцатого века, но не менее ясно, что Фарадей дал Максвеллу некоторые из ключей, которые он использовал.

В 1676 году Ньютон послал своему сопернику Гуку письмо, в котором написал: «Если я и видел дальше, то это было то, что он стоял на плечах гигантов» (*). Двести пятьдесят лет спустя, во время одного из визитов Эйнштейна в Кембридж, Великобритания, кто-то заметил: «Вы сделали великие дела, но стоите на плечах Ньютона». Эйнштейн ответил: «Нет, я стою на плечах Максвелла».Если бы кто-то сказал то же самое Максвеллу, он, вероятно, сказал бы, что он стоит на плечах Фарадея .

(*) Хотя это предложение интерпретируется некоторыми авторами как саркастическое замечание, направленное на горбатую внешность Гука, в настоящее время эта фраза обычно используется в положительном ключе. Комментарий Ньютона - это заявление о том, что наука представляет собой серию постепенных достижений, которые строятся на уже достигнутых (см., Например, книгу Стивена Хокинга под названием На плечах гигантов ).

Аугусто Белендес

Профессор прикладной физики Университета Аликанте (Испания) и член Королевского физического общества Испании

Библиография

  • A. Díaz-Hellín, Faraday: El gran cambio en la Física (Nívola. Madrid, 2001).
  • Ордоньес, В. Наварро и Х. М. Санчес Рон, Historia de la ciencia (Espasa Calpe. Madrid, 2013).
  • Форбс и Б. Махон, Фарадей, Максвелл и электромагнитное поле: как два человека революционизировали физику (Prometheus Books.Нью-Йорк, 2014).
  • Зайонц, Улавливая свет: переплетенная история света и разума (Oxford University Press, Нью-Йорк, 1995).
  • Хокинг, На плечах гигантов: великие труды по физике и астрономии (Running Press. Philadelphia, 2002)
  • Мансурипур, Классическая оптика и ее приложения (Издательство Кембриджского университета. Кембридж, 2002)

BBC - История - Майкл Фарадей

Майкл Фарадей © Фарадей был британским химиком и физиком, внесшим значительный вклад в изучение электромагнетизма и электрохимии.

Майкл Фарадей родился 22 сентября 1791 года на юге Лондона. Его семья была небогатой, и Фарадей получил только базовое формальное образование. Когда ему было 14 лет, он поступил в ученики к местному переплетчику и в течение следующих семи лет учился, читая книги по широкому кругу научных предметов. В 1812 году Фарадей посетил четыре лекции, прочитанные химиком Хэмфри Дэви в Королевском институте. Впоследствии Фарадей написал Дэви, прося устроиться его помощником.Дэви отказал ему, но в 1813 году назначил его помощником химика в Королевском институте.

Год спустя Фарадея пригласили сопровождать Дэви и его жену в 18-месячное европейское турне, в котором они побывали во Франции, Швейцарии, Италии и Бельгии и встретились со многими влиятельными учеными. Вернувшись в 1815 году, Фарадей продолжал работать в Королевском институте, помогая Дэви и другим ученым проводить эксперименты. В 1821 году он опубликовал свою работу об электромагнитном вращении (принцип, лежащий в основе электродвигателя).В 1820-х годах, будучи занятым другими проектами, он не смог провести дальнейших исследований. В 1826 году он основал Пятничные вечерние лекции Королевского института и в том же году Рождественские лекции, которые продолжаются и по сей день. Сам он прочитал много лекций, заслужив репутацию выдающегося научного лектора своего времени.

В 1831 году Фарадей открыл электромагнитную индукцию, принцип, лежащий в основе электрического трансформатора и генератора. Это открытие сыграло решающую роль в превращении электричества из диковинки в новую мощную технологию.В течение оставшейся части десятилетия он работал над развитием своих идей об электричестве. Отчасти он был ответственен за создание многих знакомых слов, включая «электрод», «катод» и «ион». Научные знания Фарадея использовались для практического использования на различных официальных должностях, в том числе на постах научного советника Тринити-хауса (1836–1865) и профессора химии в Королевской военной академии в Вулидже (1830–1851).

Однако в начале 1840-х годов здоровье Фарадея начало ухудшаться, и он стал меньше заниматься исследованиями.Он умер 25 августа 1867 года в Хэмптон-Корте, где ему предоставили официальное жилье в знак признания его вклада в науку. Он дал свое имя «фараду», первоначально обозначавшему единицу электрического заряда, но позже единицу электрической емкости.

4 способа Майкл Фарадей революционизировал мир

Майкл Фарадей, рожденный в одной из самых жестких классовых систем в истории, не был предназначен для того, чтобы стать влиятельным человеком. На рубеже 19-го века он провел свое детство в убогой лондонской квартире с небольшими возможностями и без формального образования, кроме начальной школы.

Но отсутствие родословной не помешало Фарадею стать одним из самых влиятельных ученых в мире. В 14 лет он начал учиться в местном магазине, где научился переплетному делу. Днем он собирал книги вместе, а ночью читал их, желая понять загадку электричества. К 21 году Фарадей продолжил свое дело - и, как назло, клиент дал ему билет, чтобы увидеть, как ведущий ученый Хамфри Дэви продемонстрирует чудо электричества.Фарадей не знал, что это станет поворотным моментом в его жизни и жизни общества в целом.

Удивившись лекции Дэви, Фарадей написал книгу, в которой красноречиво изобразил теории ученого. Этот жест произвел впечатление на Дэви, и он нанял молодого Фарадея в ученики. Остальное, как говорится, уже история. Вот лишь несколько причин, по которым Фарадей сделал наш мир таким, каким он является сегодня.


Пройдите тест: какой курс программирования мне подходит?


1. Он открыл электромагнитную индукцию

До того, как Фарадей сделал это на месте, ученые знали об электричестве, хотя они мало что сделали, чтобы использовать его на практике.Возьмем, к примеру, Джованни Альдини, который отправился в тур по Европе в 1803 году, чтобы убить труп на глазах у публики. В то время электричество было такой загадочной силой, что большинство мирян считали его похожим на магию больше всего на свете.

Фарадей изменил все это, когда в 1831 году открыл электромагнитную индукцию. В ходе своих новаторских экспериментов он обнаружил, что, помещая проводник в изменяющееся магнитное поле, он создает напряжение на проводнике. Проще говоря? Он нашел способ вызвать электрический ток, и это открытие позже было применено ко многим устройствам, которые мы используем сегодня.

Спасибо, мистер Фарадей.

К 40 годам Фарадей изобрел электродвигатель, трансформатор и генератор. Без открытия электромагнитной индукции у нас не было бы беспроводной передачи энергии или звукоснимателей для электрогитары. Совершенно верно: вы можете поблагодарить сладкий, сладкий звук Джими Хендрикса в немалой степени открытиям Фарадея. В общем, Фарадей превратил электричество из исключительно развлечения в практическое и широкое применение.

2. Его изобретения преобразили дом, ферму и фабрику

Забудьте об этом модном холодильнике, который производит три разных типа кубиков льда по прихоти.До появления электричества, которое можно использовать, почти все аспекты человеческой жизни функционировали иначе, чем сейчас. Люди во времена Фарадея жили дома с масляными лампами, деревянными ящиками для льда и угольными печами у сухих раковин.

Открытия Фарадея также революционизировали работу мелких фермеров практически во всех возможных смыслах. Электричество устранило ручной труд, такой как откачка воды, так что сельские семьи больше не тратили часы своего дня на то, чтобы таскать воду для скота или в дом.Автоматизированные системы для таких задач, как доение коров, не позволяли фермерам повредить руки, а угроза пожара в коровнике из-за опрокидывания масляных ламп во время раннего утреннего доения уменьшилась.

И хотя промышленная революция уже началась, когда появился Faraway, хлопкоочистительные и электрические ткацкие станки стали старыми новостями, поскольку такие чудеса, как швейные машины и телеграф, изменили способы работы и общения людей. От сотовых телефонов до кондиционеров - современные удобства, которые мы сейчас принимаем как должное, когда-то были всего лишь фантазией, без непрекращающегося удивления и любопытства Фарадея, которые подпитывали их.

3. Он посвятил свою жизнь обучению других

Точно так же, как Фарадей удивлялся лекциям Дэви, у него также было желание передать это благоговение детям и будущим ученым. Как он однажды сказал: «Лектор должен дать аудитории все основания полагать, что все его силы были приложены для их удовольствия и обучения». Фарадей понимал не только важность преподавания, но и энтузиазм и любовь, стоящие за ним. Он происходил от человека, практически не имевшего формального образования, и его приверженность образованию была не чем иным, как экстраординарной.

Фарадей начал ежегодную лекцию и демонстрации для детей, которые продолжались с 1865 года до наших дней, и выдающиеся ученые, такие как Джулиан Хаксли, Дэвид Аттенборо, Карл Саган и Сьюзен Гринфилд, продолжали передавать факел. На протяжении всей своей жизни, даже когда Фарадея десятилетиями боролся с деменцией и депрессией, преданность Фарадея постоянно раздвигала границы науки - и с тех пор мир никогда не был прежним.

4. Он проводил кампанию против лженауки, которая в то время свирепствовала в Англии.

Подобно викторианскому предку Билла Ная, ученого, Фарадей обнаружил тревогу, что, несмотря на значительный научный прогресс, общественность все больше увлекалась спиритизмом.Домашние сеансы стали обычным явлением; люди утверждали, что могут разговаривать с умершими родственниками; появились привидения; столы вращались, а предметы летели. Ясновидящие и медиумы представляли на сценах огромной толпе. Некоторые выдающиеся ученые даже приветствовали спиритизм как новую физику. Фарадей видел во всем этом отказ от своих усилий по созданию более научно грамотного общества.

Несмотря на то, что Фарадей, как известно, избегал общественного внимания, он считал своим долгом раскрыть уловки спиритуалистов посредством лекций и демонстраций.Одним из таких приемов было «переворачивание стола». Получив письмо за письмом, в котором приписывались духи, электричество, магнетизм или любое другое количество сил, Фарадей намеревался продемонстрировать, что за этим явлением не стояли никакие сверхъестественные силы. Перед аудиторией, состоящей из «очень благородных» людей, Фарадей построил чувствительный рычаг индикатора на столе, чтобы показать, что поворот стола не был результатом сверхъестественных сил, а просто непреднамеренного механического давления человеческих рук - он повернулся, потому что люди ожидали он повернулся и бессознательно заставил его себя.


Хотите внести свой вклад в развитие технологий? Обучение программированию - это один из способов начать! Попробуйте наш бесплатный семинар по программированию или изучите Ruby и изучите JavaScript бесплатно сегодня. Тогда решите для себя: стоит ли того?

Если вы думаете о новой карьере, но не знаете, как профинансировать свой учебный курс, прочтите «Как оплатить учебный курс по программированию» или посетите страницу «Обучение и финансирование».

Закон электромагнитной индукции Фарадея | Электромагнетизм

10.3 Закон электромагнитной индукции Фарадея (ESBPY)

Ток, индуцированный изменяющимся магнитным полем (ESBPZ)

Хотя удивительное открытие электромагнетизма Эрстедом проложило путь для более практического применения электричества, именно Майкл Фарадей дал нам ключ к практическому производству электричества: электромагнитная индукция .

Фарадей обнаружил, что когда он перемещал магнит рядом с проводом, на нем генерировалось напряжение. Если магнит удерживался в неподвижном состоянии, напряжение не генерировалось, оно существовало только во время движения магнита.Мы называем это напряжение индуцированной ЭДС (\ (\ mathcal {E} \)).

Цепной контур, подключенный к чувствительному амперметру, будет регистрировать ток, если он настроен, как показано на этом рисунке, и магнит перемещается вверх и вниз:

Магнитный поток

Прежде чем мы перейдем к определению закона электромагнитной индукции Фарадея и примерам, нам сначала нужно потратить некоторое время на изучение магнитного потока. Для петли площадью \ (A \) в присутствии однородного магнитного поля \ (\ vec {B} \) магнитный поток (\ (φ \)) определяется как: \ [\ phi = BA \ cos \ theta \] Где: \ begin {align *} \ theta & = \ text {угол между магнитным полем B и нормалью к петле в области A} \\ A & = \ text {область петли} \\ B & = \ text {магнитное поле} \ end {align *}

Отель S.I. единица магнитного потока - Вебер (Вб).

Вы можете спросить себя, почему включен угол \ (\ theta \). Поток зависит от магнитного поля, проходящего через поверхность. Мы знаем, что поле, параллельное поверхности, не может вызвать ток, потому что оно не проходит через поверхность. Если магнитное поле не перпендикулярно поверхности, то есть компонент, который перпендикулярен, и компонент, который параллелен поверхности. Параллельная составляющая не может вносить вклад в поток, только вертикальная составляющая может.

На этой диаграмме мы показываем, что магнитное поле под углом, отличным от перпендикулярного, может быть разбито на составляющие. Компонент, перпендикулярный поверхности, имеет величину \ (B \ cos (\ theta) \), где \ (\ theta \) - угол между нормалью и магнитным полем.

Закон электромагнитной индукции Фарадея

ЭДС \ (\ mathcal {E} \), создаваемая вокруг контура проводника, пропорциональна скорости изменения магнитного потока φ через площадь A контура.Математически это можно выразить как:

\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]

где \ (\ phi = B · A \), а B - напряженность магнитного поля. \ (N \) - количество контуров схемы. Магнитное поле измеряется в теслах (Тл). Знак минус указывает направление и то, что наведенная ЭДС имеет тенденцию противодействовать изменению магнитного потока. Знак минус можно не учитывать при вычислении звездных величин.

Закон Фарадея связывает наведенную ЭДС со скоростью изменения магнитного потока, который является произведением магнитного поля и площади поперечного сечения, через которое проходят силовые линии.

Это не площадь самого провода, а площадь, которую он ограничивает. Это означает, что если вы согнете проволоку в круг, площадь, которую мы будем использовать при вычислении потока, будет площадью поверхности круга, а не проволоки.

На этой иллюстрации, где магнит находится в той же плоскости, что и контур цепи, не было бы тока, даже если бы магнит перемещался все ближе и дальше. Это связано с тем, что силовые линии магнитного поля не проходят через замкнутое пространство, а параллельны ему.Силовые линии магнитного поля должны проходить через область, ограниченную контуром цепи, чтобы возникла ЭДС.

Направление индуцированного тока (ESBQ2)

Самая важная вещь, которую следует помнить, это то, что индуцированный ток противодействует происходящему изменению.

На первом рисунке (слева) контурная петля имеет южный полюс приближающегося магнита. Величина поля от магнита становится больше. Реакция наведенной ЭДС будет состоять в том, чтобы попытаться противодействовать усилению поля по направлению к полюсу.Поле является вектором, поэтому ток будет течь в таком направлении, что поля, возникающие из-за тока, имеют тенденцию нейтрализовать поля от магнита, сохраняя результирующее поле неизменным.

Чтобы противостоять переходу от приближающегося южного полюса сверху, ток должен приводить к силовым линиям, которые удаляются от приближающегося полюса. Поэтому индуцированное магнитное поле должно иметь силовые линии, идущие вниз по внутренней стороне петли. Направление тока, указанное стрелками на контуре цепи, будет достигнуто.Проверьте это, используя Правило правой руки. Положите большой палец правой руки в направлении одной из стрелок и обратите внимание на то, что поле закручивается вниз в область, ограниченную петлей.

На второй диаграмме южный полюс удаляется. Это означает, что поле от магнита станет слабее. Отклик на индуцированный ток будет заключаться в создании магнитного поля, которое добавляется к существующему от магнитного поля, чтобы противостоять его уменьшению в силе.

Другой способ представить ту же функцию - просто использовать полюса.Чтобы противостоять приближающемуся южному полюсу, индуцируемый ток создает поле, которое выглядит как еще один южный полюс со стороны приближающегося южного полюса. Подобно отталкиванию полюсов, вы можете представить себе, как течение создает южный полюс, чтобы отразить приближающийся южный полюс. На второй панели ток устанавливает северный полюс, притягивая южный полюс и не давая ему уйти.

Мы также можем использовать вариант правила правой руки, помещая пальцы в направлении течения, чтобы большой палец указывал в направлении силовых линий (или северного полюса).

Мы можем проверить все это на случаях, когда северный полюс перемещается ближе или дальше от цепи. В первом случае приближения северного полюса ток будет сопротивляться изменению, создавая поле в направлении, противоположном полю, исходящему от магнита, который становится сильнее. Используйте Правило правой руки, чтобы убедиться, что стрелки создают поле с линиями поля, которые изгибаются вверх в замкнутой области, нейтрализуя те, которые изгибаются вниз от северного полюса магнита.

Подобно отталкиванию полюсов, в качестве альтернативы проверьте, что если поместить пальцы правой руки в направлении течения, большой палец будет указывать вверх, указывая на северный полюс.

Для второго рисунка, где северный полюс удаляется, ситуация обратная.

Направление индуцированного тока в соленоиде (ESBQ3)

Подход к изучению направления тока в соленоиде аналогичен подходу, описанному выше. Единственная разница в том, что в соленоиде есть несколько витков проволоки, поэтому величина наведенной ЭДС будет другой.Поток будет рассчитываться с использованием площади поверхности соленоида, умноженной на количество петель.

Помните: направления токов и связанных с ними магнитных полей можно найти, используя только Правило правой руки. Когда пальцы правой руки направлены в направлении магнитного поля, большой палец указывает в направлении тока. Когда большой палец направлен в направлении магнитного поля, пальцы указывают в направлении тока.

Направление тока будет таким, чтобы препятствовать изменению. Мы бы использовали установку, как в этом скетче, для проведения теста:

В случае, когда северный полюс направлен к соленоиду, ток будет течь так, чтобы северный полюс установился на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его (проверьте, используя Правило правой руки):

В случае, когда северный полюс перемещается от соленоида, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:

В случае, когда южный полюс движется от соленоида, ток будет течь так, что северный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:

В случае, когда южный полюс направлен к соленоиду, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его:

Простой способ создать магнитное поле изменяющейся интенсивности - переместить постоянный магнит рядом с проволокой или катушкой с проволокой.Магнитное поле должно увеличиваться или уменьшаться по напряженности перпендикулярно проводу (так, чтобы силовые линии магнитного поля «пересекали» проводник), иначе не будет индуцироваться напряжение.

Индуцированный ток создает магнитное поле. Индуцированное магнитное поле имеет направление, которое стремится нейтрализовать изменение магнитного поля в петле из проволоки. Итак, вы можете использовать Правило правой руки, чтобы найти направление индуцированного тока, помня, что индуцированное магнитное поле противоположно направлению изменения магнитного поля.

Индукция

Электромагнитная индукция находит практическое применение в конструкции электрических генераторов, которые используют механическую энергию для перемещения магнитного поля мимо катушек с проволокой для генерации напряжения. Однако это далеко не единственное практическое применение этого принципа.

Если мы вспомним, магнитное поле, создаваемое проводом с током, всегда перпендикулярно проводу, и что сила потока этого магнитного поля зависит от величины тока, который проходит через него.Таким образом, мы можем видеть, что провод способен создавать напряжение на своей собственной длине , если ток изменяется. Этот эффект называется самоиндукцией . Самоиндукция - это когда изменяющееся магнитное поле создается изменением тока через провод, вызывая напряжение по длине того же провода.

Если магнитный поток усиливается путем сгибания проволоки в форме катушки и / или наматывания этой катушки на материал с высокой проницаемостью, этот эффект самоиндуцированного напряжения будет более интенсивным.Устройство, созданное для использования этого эффекта, называется дросселем .

Помните, что индуцированный ток создает магнитное поле, которое противодействует изменению магнитного потока. Это известно как закон Ленца.

Рабочий пример 1: закон Фарадея

Рассмотрим плоскую квадратную катушку с 5 витками. Катушка находится \ (\ text {0,50} \) \ (\ text {m} \) с каждой стороны и имеет магнитное поле \ (\ text {0,5} \) \ (\ text {T} \) проходя через него. Плоскость катушки перпендикулярна магнитному полю: поле направлено за пределы страницы.Используйте закон Фарадея для вычисления наведенной ЭДС, если магнитное поле увеличивается равномерно от \ (\ text {0,5} \) \ (\ text {T} \) до \ (\ text {1} \) \ (\ текст {T} \) в \ (\ text {10} \) \ (\ text {s} \). Определите направление индуцированного тока.

Определите, что требуется

Мы обязаны использовать Закон Фарадея для расчета наведенной ЭДС.

Написать закон Фарадея

\ [\ mathcal {E} = - N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под прямым углом к ​​поверхности и поэтому выровнено с нормалью.Это означает, что нам не нужно беспокоиться об угле, который поле образует с нормалью и \ (\ phi = BA \). Начальное или начальное магнитное поле, \ (B_i \), задается как конечная величина поля, \ (B_f \). Мы хотим определить величину ЭДС, чтобы можно было игнорировать знак минус.

Площадь \ (A \) - это площадь квадратной катушки. 2 (\ text {1} - \ text {0,50})} {\ text {10}} \\ & = \ текст {0,0625} \ текст {V} \ end {выровнять *}

Наведенный ток направлен против часовой стрелки, если смотреть со стороны нарастающего магнитного поля.

Рабочий пример 2: закон Фарадея

Рассмотрим соленоид из 9 витков с неизвестным радиусом \ (r \). На соленоид действует магнитное поле \ (\ text {0,12} \) \ (\ text {T} \). Ось соленоида параллельна магнитному полю. Когда поле равномерно переключается на \ (\ text {12} \) \ (\ text {T} \) в течение 2 минут, ЭДС величиной \ (- \ text {0,3} \) \ (\ text {V} \) индуцируется. Определите радиус соленоида.

Определите, что требуется

Требуется определить радиус соленоида.Мы знаем, что связь между наведенной ЭДС и полем регулируется законом Фарадея, который включает геометрию соленоида. Мы можем использовать это соотношение, чтобы найти радиус.

Написать закон Фарадея

\ [\ mathcal {E} = - N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под прямым углом к ​​поверхности и поэтому выровнено с нормалью. Это означает, что нам не нужно беспокоиться об угле, который поле образует с нормалью и \ (\ phi = BA \).{- \ text {2}} \) \ (\ text {m} \). На соленоид действует переменное магнитное поле, которое равномерно изменяется от \ (\ text {0,4} \) \ (\ text {T} \) до \ (\ text {3,4} \) \ (\ text { T} \) в интервале \ (\ text {27} \) \ (\ text {s} \). Ось соленоида составляет угол \ (\ text {35} \) \ (\ text {°} \) к магнитному полю. Найдите наведенную ЭДС.

Определите, что требуется

Мы обязаны использовать Закон Фарадея для расчета наведенной ЭДС.

Написать закон Фарадея

\ [\ mathcal {E} = - N \ frac {\ Delta \ phi} {\ Delta t} \] Мы знаем, что магнитное поле расположено под углом к ​​нормали к поверхности.{- \ text {3}} \ text {V} \ end {выровнять *}

Наведенный ток направлен против часовой стрелки, если смотреть со стороны нарастающего магнитного поля.

Реальные приложения

Следующие устройства используют в своей работе закон Фарадея.

  • Плиты индукционные

  • магнитофонов

  • металлоискатели

  • трансформаторы

Реальные применения закона Фарадея

Выберите одно из следующих устройств и поищите в Интернете или библиотеке, как работает ваше устройство.В объяснении вам нужно будет сослаться на закон Фарадея.

  • Плиты индукционные

  • магнитофонов

  • металлоискатели

  • трансформаторы

Высокие оценки в науке - залог вашего успеха и будущих планов. Проверьте себя и узнайте больше о практике Сиявулы.

Зарегистрируйтесь и проверьте себя

Закон Фарадея

Упражнение 10.2

Изложите закон электромагнитной индукции Фарадея словами и запишите математическое соотношение.

ЭДС \ (\ mathcal {E} \), создаваемая вокруг контура проводника, пропорциональна скорости изменения магнитного потока φ через площадь A контура. Математически это можно выразить как:

\ [\ mathcal {E} = -N \ frac {\ Delta \ phi} {\ Delta t} \]

где \ (\ phi = B · A \), а B - напряженность магнитного поля.\ (N \) - количество контуров схемы. Магнитное поле измеряется в теслах (Тл). Знак минус указывает направление и то, что наведенная ЭДС имеет тенденцию противодействовать изменению магнитного потока. Знак минус можно не учитывать при вычислении звездных величин.

Опишите, что происходит, когда стержневой магнит вдавливается в соленоид, подключенный к амперметру, или вытягивается из него. Нарисуйте картинки, подтверждающие ваше описание.

В случае, когда северный полюс направлен к соленоиду, ток будет течь так, чтобы северный полюс установился на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его (проверьте, используя Правило правой руки):

В случае, когда северный полюс перемещается от соленоида, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:

В случае, когда южный полюс движется от соленоида, ток будет течь так, что северный полюс будет установлен на конце соленоида, ближайшем к удаляющемуся магниту, чтобы притягивать его:

В случае, когда южный полюс направлен к соленоиду, ток будет течь так, что южный полюс будет установлен на конце соленоида, ближайшем к приближающемуся магниту, чтобы оттолкнуть его:

Объясните, как магнитный поток может быть равен нулю, когда магнитное поле не равно нулю.

Поток связан с магнитным полем:

\ (\ phi = BA \ cos \ theta \)

Если \ (\ cos \ theta \) равно 0, то магнитный поток будет равен 0, даже если есть магнитное поле. В этом случае магнитное поле параллельно поверхности и не проходит через нее.

Используйте правило правой руки, чтобы определить направление индуцированного тока в соленоиде ниже.

Южный полюс магнита приближается к соленоиду.Закон Ленца говорит нам, что ток будет течь, чтобы противодействовать изменению. Южный полюс на конце соленоида будет противодействовать приближающемуся южному полюсу. Ток будет циркулировать по странице в верхней части катушки, так что большой палец правой руки будет указывать влево.

Рассмотрим круговую катушку из 5 витков с радиусом \ (\ text {1,73} \) \ (\ text {m} \). Катушка подвергается воздействию переменного магнитного поля, которое равномерно изменяется от \ (\ text {2,18} \) \ (\ text {T} \) до \ (\ text {12,7} \) \ (\ text { T} \) в интервале \ (\ text {3} \) \ (\ text {minutes} \). {2} & = \ текст {0,0479} \\ г & = \ текст {0,22} \ текст {м} \ end {выровнять *}

Найдите изменение потока, если ЭДС равна \ (\ text {12} \) \ (\ text {V} \) за период \ (\ text {12} \) \ (\ text {s} \) .

\ begin {align *} \ mathcal {E} & = N \ frac {\ Delta \ phi} {\ Delta t} \\ 12 & = 5 \ left (\ frac {\ Delta \ phi} {12} \ right) \\ \ Delta \ phi & = \ text {28,8} \ text {Wb} \ end {выровнять *}

Если угол изменить на \ (\ text {45} \) \ (\ text {°} \), на какой временной интервал нужно изменить, чтобы наведенная ЭДС оставалась прежней?

\ begin {align *} \ mathcal {E} & = N \ frac {\ Delta \ phi} {\ Delta t} \\ & = N \ frac {\ phi_ {f} - \ phi_ {i}} {\ Delta t} \\ & = N \ frac {B_ {f} A \ cos \ theta - B_ {i} A \ cos \ theta} {\ Delta t} \\ & = \ cos \ theta \ times N \ frac {B_ {f} A - B_ {i} A} {\ Delta t} \ end {выровнять *}

Все значения остаются неизменными между двумя описанными ситуациями, за исключением угла и времени.Мы можем приравнять уравнения для двух сценариев:

\ begin {align *} \ mathcal {E} _1 & = \ mathcal {E} _2 \\ \ cos \ theta_1 \ times N \ frac {B_ {f} A - B_ {i} A} {\ Delta t_1} & = \ cos \ theta_2 \ times N \ frac {B_ {f} A - B_ {i} A } {\ Delta t_2} \\ \ cos \ theta_1 \ frac {1} {\ Delta t_1} & = \ cos \ theta_2 \ frac {1} {\ Delta t_2} \\ \ Delta t_2 & = \ frac {\ Delta t_1 \ cos \ theta_2} {\ cos \ theta_1} \\ \ Delta t_2 & = \ frac {(\ text {12} \ cos (\ text {45}} {\ cos (\ text {23})} \\ \ Delta t_2 & = \ text {9,22} \ text {s} \ end {выровнять *} .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *