Содержание

Как рассчитать необходимую тепловую мощность

Таблица тепловой мощности, необходимой для различных помещений
Тепловая мощность, кВтОбъем помещения в новом здании, м3Объем помещения в старом здании, м3Площадь теплицы от теплоизолированного стекла и с двойной фольгой, м2Площадь теплицы из обычного стекла с фольгой, м2
РАЗНИЦА ТЕМПЕРАТУР, С
570 – 15060 – 1103518
10150 – 300130 – 2207037
20320 – 600240 – 44014074
30650 – 1000460 – 650210110
401050 – 1300650 – 890300150
501350 – 1600900 – 1100370180
601650 – 20001150 – 1350440220
752100 – 25001400 – 1650550280
1002600 – 33001700 – 2200740370
1253400 – 41002300 – 2700920460
1504200 – 50002800 – 33001100550
2005000 – 65003400 – 44001480740

 

РАСЧЕТ НЕОБХОДИМОЙ ТЕПЛОВОЙ МОЩНОСТИ

Формула для расчета необходимой тепловой мощности:

V x ΔT x K = ккал/ч

V – Объем обогреваемого помещения (ширина x длина x высота) в м³.

ΔT – Разница между температурой вне помещения и требуемой температурой внутри помещения (в°C).

K – Коэффициент дисперсии.

Ключ

V = ширина 4м, длина 12м, высота 3м, объем помещения = 144 м³

ΔT = темп. вне помещения -5ºC, требуемая темп. внутри помещения +18ºC, температура T = 23º

K = этот фактор зависит от вида конструкции и утепления

K=3,0-4,0
простой объект из древесины или листового материала – без утепления.

K=2,0-2,9
простая конструкция, одиночный слой кирпичей, простые окна и крыша — слабо утепленные.

K=1,0-1,9
cтандартная конструкция, двойной слой кирпичей, небольшое количество окон, стандартная закрытая крыша – умеренное утепление.

K=0,6-0,9
сложная конструкция, двойной утепленный слой кирпичей, несколько окон с двойными стеклами, высокий паркет, хорошо утепленная крыша – хорошо утепленный.

Пример: потребность в мощности тепла

144 x 23 x 4 = 13 248 ккал/ч

(V x ΔT x K = ккал/ч)

1 кВт/ч = 860 ккал/ч

1 ккал/ч = 3,97 Btu/ч

1 кВт/ч = 3412 Btu/ч

1 Btu/ч = 0,252 ккал/ч

Расчет экономии электроэнергии

Задача 1.

1

Определить экономию электроэнергии в рублях в линии электропередач, от замены электродвигателя напряжением на 380 В на 6кВ. Длина ВЛ от подстанции к двигателю, мощность ЭД и время часов работы в год приведены по варианту в таблице 1.

Таблица 1.

№ Варианта

Длина ВЛ

L ,м

Мощность ЭД

Рном эд ,кВт

Время работы

Тг ,ч

3

300

315

5600

I. Расчитаем годовые потери до замены ЭД ,

1.
для этого расчитаем потери в линии

sРл =3*I²*Rл

где I – ном. ток нагрузки

Rл – активное сопротивление линии

2. Расчитаем ток нагрузки.

Р = U*I; I1 = P/U1; I = 315/0.38 =828.95 А

3. Расчитаем сопротивление линии.

R л = g*L/S

g – удельное сопротивление проводника

L – длина линии

S – сечение проводника

Rл = 300g/S

4. Расчитаем потери в линии.

s Р1=3*828.95²*300g/S =618442292g/S кВт

5. Расчитаем годовые потери электроэнергии.

s W1 =sP1*Тг

sW1 = (618442292g/S)*5600 =3. 4632768*1012g/S кВт*ч

II. Расчитаем потери после замены ЭД .

6. Номинальный ток нагрузки.

I2 = P/U2 I = 315/6=52.5 А

7. Потери в линии.

s Р2=3*52.52*300g/S=2480625g/S кВт

8. Годовые потери.

s W2=(2480625g/S)*5600 = 1.38915*10

10 g/S кВт*ч

9. Расчитаем экономию эл. Энергии при переводе с 380 В на 6кВ

sW = sW1 – sW2

s W = 346.32768*1010g/S –1.38915*1010 g/S = 344.93853*1010 g/S

10. Экономия электроэнергии в рублях.

s Э =sW* Суэ ,где Суэ = 0,34 руб/кВт*ч

sЭ = 344.93853*1010 g/S*0.34 = 117.2791002*1010 g/S руб/кВт*ч

Наиболее точный результат получится ,если будет известно сечение провода.

Задача 1.2

На подстанции установлено n трансформаторов. Построить кривые зависимости потерь от натрузки тр-ов

sWтр∑=ƒ(Sнагр) и выбрать оптимальный режим работы этих тр-ов при различных нагрузках. Число и технические данные приведены в табл. 2.6

Таблица 2.

№ Варианта

n ,

шт

S ном. т1

кВА

S ном.т2

кВА

S ном.т3

кВА

Тв ,

ч

Т раб ,

ч

3

2

100

160

8700

6000

Таблица 6.

Тип

Ном. мощность тр-ра , кВА

Вторичное напряжение ,кВ

sРх ,

кВт

sРкз ,

кВт

ТМ – 100/10

100

0.4

0.33

1.97

ТМ – 160/10

160

0. 4

0.51

3.1

Суммарные потери активной энергии в двухобмоточных трансформаторах, при работе n тр-ов можно определить по выражению,кВт*ч

n n

s Wтр∑ =∑(sPxi*Tв) + k²з.т.* ∑(sPк.з.i* Траб) ,

i=1 i=1

n

где kз.т. = Sнагр∑/∑Sном.т.i

i=1

n – число работающих тр-ов

sРхi – потери х.х. i – го тр-ра при ном. напряжении

Тв – полное число часов работы тр-ра

sРк.з.i –потери к.з. i – го тр-ра при ном. напряжении

Траб – число часов работы тр-ра с ном. нагрузкой

S нагр∑ – суммарная нагрузка подстанции

S ном. т∑ – ном. мощность тр-ра

Суммарные потери при работе 1-го трансформатора

S нагр

0

50

100

150

200

250

300

К з. т.

0

0.5

1

1.5

2

2.5

3

sW

2871

8781

14691

29466

50151

76746

109251

Суммарные потери при работе 2-го трансформатора

 

S нагр

0

80

160

240

320

400

480

К з. т.

0

0.5

1

1.5

2

2.5

3

sW

4437

9087

23037

46287

78837

120687

171837

Суммарные потери при работе 2-х трансформаторов

Номинальная суммарная мощность 2-х тр-ов

S ном = (Sт1*Sт2)/(Sт1+Sт2) = 100*160/260 = 61. 54 кВА

S нагр

0

30.77

61.54

92.31

123.08

153.85

186.42

К з.т.

0

0,5

1

1,5

2

2,5

3

sW

7308

14913

37728

75753

128988

197433

281088

Найдём нагрузку при которой потери будут одинаковые у обеих трансформаторов и узнаем при какой нагрузке Т2 будет использовать рентабельнее ,чем Т1.

s W1 = 2871+S/100*11820

s W2 = 4437+S/160*18600

примем sW1= sW2

отсюда 2871+S/100*11820 = 4437+S/160*18600

S = 803.0769 кВт


Задача №1.3

Определить годовую экономию электроэнергии на станке за счет ограничения холостого хода. Мощность электродвигателя станка Pном.эд., годовое число часов работы Тг и время работы на холостом ходу Тхх принять по варианту из таблицы 3.

 

№ варианта

Рном.эд , кВт

Тг ,ч

Тхх, в % от Тг

3

7. 5

2300

25

Применение ограничителей холостого хода на станках, имеющих межоперационное время 10 секунд и более, всегда приводит к экономии электроэнергии. Годовая экономия электроэнергии определяется, кВт ч.

s W =Px*Тхх ,

где Рх = 0,2*Рном эд

Где Рх – мощность холостого хода, которое определяется, как сумма механической мощности холостого хода системы электропривода и потери мощности в стали электродвигателя, кВт.

Расчет :

Рх = 0,2*7,5=1,5 кВт Тхх = 2300*0,25 =575

Годовая экономия электроэнергии

sW = 1,5*575 =862,5 кВт

 

Задача №1.4

Определить удельную экономию электроэнергии, полученную на дуговой печи, при сокращении времени ее простоя. Номинальная мощность печи Рном., мощность холостого хода Рх, номинальный удельный расход электроэнергии Wуд.т и число часов простоя печи в течении суток принять по варианту из таблицы 4.

 

№ варианта

Емкость печи, т

Рном, кВт

Рх, в % от Рном

Wуд, кВт ч/т

Время простоя, ч

Было

Стало

3

3

1500

20

800

5

1

Период простоя печи в нормальных условиях определяется временем, необходимым на слив металла, очистку печи, подварку пода и стен и загрузку шихты. Электроэнергия в период завалки шихты в печь не поступает, но аккумулированное в кладке печи тепло рассеивается кожухом и сводом, вследствие чего при включении печи в сеть часть энергии идет на нагрев футеровки. Потери на подогрев футеровки доходят до 15 – 20 % всей подведенной электроэнергии для очередной плавки. Наилучшим методом является механизированная загрузка сверху, обеспечивающая экономию удельного расхода электроэнергии 7 – 8 %.

Влияние простоев и задержек на удельный расход электроэнергии можно установить в зависимости от длительности простоев с отключением печи, учитывая потери холостого хода печи, кВт ч.

Wудtпр = (Рх*tпр + Рном(24-tпр))*Wуд/Рном(24- tпр)

Рх=Рном*20% = 1500*0,2= 300кВт

Где Рх – мощность холостого хода.

tпр – число часов простоев печи в течение суток.

Рном – номинальная мощность печи.

Wуд – номинальный удельный расход электроэнергии.

W уд1 = (300*5 + 1500(24-5))*800/1500(24-5) = 842,105 кВт*ч/т при простое 5 ч

Wуд2 = (300*1+ 1500(24-1))*800/1500(24-1) = 806,957 кВт*ч/т при простое 1ч

Удельная экономия электроэнергии, отнесенная к одной тонне выплавляемого металла определяется , кВт ч/т,

s Wуд.э = Wудt1 – Wудt2

Где Wуд t1 и Wудt2 – удельный расход электроэнергии печи для большего и меньшего числа часов простоя печи в течении суток, кВт ч/т.

s Wуд.э =842,105-806,957 = 35,148 кВт*ч/т при загрузке печи 1 т

sWуд.э.п. = 105,444 кВт*ч при полной загрузке

 

Задача №1.5

На водонапорной станции используется дроссельное регулирование напора и подачи воды (при помощи задвижек). Определить годовую экономию электроэнергии после внедрения частотного регулирования скорости вращения электродвигателей насосов для изменения напора и подачи воды. Характеристики насосных агрегатов и необходимый напор в сети принять по варианту из таблицы 5.

 

№ варианта

Напор на выходе насоса, Ннас,м.в.ст.

Подача воды насосом, Qнас, м³/ч

КПД насоса ,

ηнас

Напор поддерживаемый в системе Нсист,м.в.ст.

Тг,ч

3

50

3200

0,84

30

4400

Годовая экономия электроэнергии после внедрения частотного регулирования скорости вращения электродвигателей насосов определяется по выражению, кВт ч

W г = (Нвых – Нсети)*Qф*Тг/367ηф

Где Нвых – напор на выходе насоса, можно принять равный номинальному напору насосного агрегата.

Нсети – напор поддерживаемый в системе.

Qф – фактическая подача воды, можно принять равный номинальной подаче насосного агрегата.

Тг – годовое время работы агрегата.

ηф – фактический КПД насосного агрегата.

W г = (50 – 30)*3200*4400/367*0,84 = 913455,3 кВт*ч

 

Расчет мощности газового котла для дома | Статьи

При организации системы отопления перед собственником жилья возникает резонный вопрос, как рассчитать мощность газового котла. Производительность оборудования имеет немаловажное значение для домовладельца, поскольку именно от нее зависит комфортность проживания в помещении. Если выбрать слишком маленькую мощность, агрегат не сможет хорошо обогреть необходимую площадь. При больших показателях устройство будет качественно отапливать комнаты, но потребует дополнительных затрат на обогрев. Поэтому хозяину следует ответственно подойти к выбору отопительного прибора и правильно сделать расчеты его параметров.


Почему важно правильно определить мощность котла?

Грамотный подбор мощности позволяет не просто сэкономить на газе, но и увеличить КПД агрегата. Если тепловая отдача превышает реальные потребности в тепле, котел будет работать неэффективно, а его детали станут поддаваться износу. При покупке маломощного устройства хозяину придется столкнуться с часто выключающейся горелкой, которая станет быстро подогревать малые объемы воды. Как результат, в отопительной системе начнет скапливаться конденсат. Он приведет к образованию кислот, которые «проедят» внутреннюю поверхность дымохода, а затем возьмутся и за элементы отопительного прибора.

Часто домовладельцы, которые не знают, как рассчитать газовый котел, покупают оборудование с автоматическими системами, выполняющими самостоятельную регулировку расхода топлива. На первый взгляд, это удобно, но если агрегат работает на пределе производительности, можно столкнуться со следующими проблемами:

●        сбой в работе автоматики;

●        снижение эффективности горелки;

●        уменьшение срока эксплуатации отопительного прибора;

●        выход из строя отдельных узлов и деталей.

Чтобы избежать неприятностей, нужно покупать аппарат должной производительности, которая подходит для конкретного помещения. При необходимости вы можете обратиться к сотрудникам «Мособлгаз», которые вычислят требуемые параметры оборудования и помогут подобрать модель с учетом площади дома. В нашем интернет-магазине представлен обширный ассортимент надежных и качественных котлов, поэтому вы легко найдете подходящие варианты.

Учет тепловых потерь

Рассматривая, какая нужна мощность для газового котла, многие потребители ошибочно полагают, что она зависит только от размеров дома. Иными словами, достаточно вычислить этот параметр путем умножения 1 киловатта на 10 кв. метров площади. В действительности эти расчеты не совсем верны, поскольку не учитывают теплопотери. Тепло может уходить из дверей, через щели в оконных проемах, стены и потолочные поверхности, поэтому основная задача отопительного оборудования – компенсировать недостаток утраченного тепла и создать комфортную температуру.


На тепловые потери влияют такие факторы:

●        местоположение здания с учетом климата местности;

●        общая площадь обогреваемого помещения;

●        местоположение в отношении сторон света;

●        тип, размер стеклопакетов, дверных проемов;

●        тепловое сопротивление отделочных материалов;

●        вентиляция.

Полный расчет теплопотерь требует использования нескольких десятков формул, что затруднительно для обычного потребителя. Поэтому выясняя, какая нужна мощность для газового котла, достаточно ограничиться максимальными потерями тепла с коэффициентом 1,5. Такой параметр обычно имеют простые деревянные окна без стеклопакетов, двери из дерева без тамбура и стены в один кирпич или выполненные из бетона. Если же помещение хорошо утеплено, оборудовано стеклопакетами и двойными дверьми, для неучтенных потерь целесообразно использовать коэффициент 1,15.

Как рассчитать мощность газового котла: основные формулы

Чтобы произвести правильные расчеты, предварительно следует определить начальную мощность прибора. Предположим, отапливаемое помещение имеет площадь 150 кв. метров. В этой ситуации формула для подсчета производительности будет выглядеть так:

1 кВт х 150 кв. м / 10 кв. м = 15 кВт

Данный подсчет предполагает, что потолки в здании имеют высоту около 2,5 метров. Однако многие современные дома строятся по индивидуальному проекту, поэтому предлагаемая формула для них не совсем подходит. Чтобы точнее подсчитать производительность, необходимо вычислить правочный коэффициент, поделив конкретную высоту на принятые 2,5 метра. Например, как рассчитать газовый котел в этом случае:

  1. Предположим, что потолок имеет высоту 3,1 м.
  2. Делим этот показатель на 2,5 м и получаем правочный коэффициент 1,24.
  3. Вычисляем производительность для постройки на 150 кв. метров с высотой 3,1 м: 15 кВт х 1,24 = 18,6 кВт.

Последним этапом вычислений будет определение мощности с учетом теплопотерь. Если мы берем за основу коэффициент 1,15 (для хорошо утепленного дома), то производительность отопительного прибора составит:

18,6 кВт х 1,15 = 21,39 кВт

Чтобы наверняка не замерзнуть, лучше выбирать агрегат с параметром в большую сторону – на 22 кВт. Однако нужно учитывать, что данные расчеты подходят только для одноконтурной модели, которая работает на обогрев помещения. Если планируется покупка оборудования с двумя контурами, к полученным цифрам необходимо добавить еще около 25 %:

21,39 кВт + 25 % = 26,72 кВт (или 27 киловатт с округлением)

Многие производители понимают, что далеко не каждый потребитель знает, как правильно рассчитать мощность газового котла. Поэтому для расчетов параметров оборудования предлагаются специальные калькуляторы, которые можно использовать в онлайн режиме. Независимо от способа вычисления, грамотно подобранные характеристики отопительного прибора позволят пользователю купить оптимальное для его дома устройство и существенно сэкономить на обогреве жилья.

Расчет чиллера и его подбор. Здесь вы найдете решение этого вопроса

Подробности

   Как правильно сделать расчет чиллера, на что в первую очередь надо полагаться чтобы, среди множества предложений, произвести качественный подбор чиллера?

   На этой странице мы дадим несколько рекомендаций, прислушавшись к которым вы приблизитесь к тому, чтобы сделать правильный выбор чиллера.

Расчет холодопроизводительности чиллера. Расчет мощности чиллера – его мощности охлаждения.

   В первую очередь по формуле расчет холодопроизводительности чиллера, в которой участвует объем охлаждаемой жидкости; изменение температуры жидкости, которое надо обеспечить охладителем; теплоемкость жидкости; ну и конечно время за которое этот объем жидкости надо охладить – определяется мощность охлаждения:

Формула охлаждения, т. е. формула вычисления необходимой холодопроизводительности:

Q = G*(Т1- Т2)*Cрж*pж / 3600

Q – холодопроизводительность, кВт/час

G – объёмный расход охлаждаемой жидкости, м3/час

Т2 – конечная температура охлаждаемой жидкости, оС

Т1 – начальная температура охлаждаемой жидкости, оС

Cрж -удельная теплоёмкость охлаждаемой жидкости, кДж/(кг* оС)

– плотность охлаждаемой жидкости,  кг/м3

* Для воды Cрж*pж = 4,2

По данной формуле определяется необходимая мощность охлаждения и она является основной при выборе чиллера.

  • Формулы пересчета размерностей чтобы рассчитать холодопроизводительность водоохладителя:

1 кВт = 860 кКал/час

1 кКал/час = 4,19 кДж

1 кВт = 3,4121 кБТУ/час

Подбор чиллера

   Для того, чтобы произвести подбор чиллера – очень важно выполнить правильное составление технического задания на расчет чиллера, в котором участвуют не только параметры самого водоохладителя, но и данные о его размещении и условии его совместной работы с потребителем. На основании выполненных вычислений можно – выбрать чиллер.

Не нужно забывать про то, в каком регионе Вы находитесь. Например, расчет для города Москва будет отличаться от расчета для города Мурманск так как максимальные температуры двух данных городов отличается.

   По таблицам параметров водоохлаждающих машин делаем первый выбор чиллера и знакомимся с его характеристиками. Далее, имея на руках основные характеристики выбранной машины, такие как: – холодопроизводительность чиллера, потребляемая им электрическая мощность, есть ли в его составе гидромодуль и его – подача и напор жидкости, объём проходящего через охладитель воздуха (который нагревается) в куб.метрах в секунду – Вы сможете проверить возможность установки охладителя воды на выделенной площадке. После того, как предполагаемый охладитель воды удовлетворит требованиям технического задания и вероятнее всего сможет работать на подготовленной для него площадке рекомендуем обратиться к специалистам, которые проверят Ваш выбор.

Выбор чиллера – особенности, которые надо предусмотреть при подборе чиллера.

   Основные требования к месту будущей установки охладителя воды и схемы его работы с потребителем:

  • Если запланированное место в помещении, то – возможно ли в нем обеспечить большой обмен воздуха, возможно ли в это помещение внести охладитель воды, возможно ли в нем будет его обслуживать ?
  • Если будущее размещение охладителя воды на улице – будет ли необходимость его работы в зимний период, возможно ли использование незамерзающих жидкостей, возможно ли обеспечить защиту охладителя воды от внешних воздействий (анти-вандальная, от листьев и веток деревьев, и т.д.) ?
  • Если температура жидкости, до которой её надо охлаждать ниже +6 оС или она выше + 15 оС – чаще всего такой диапазон температур не входит в таблицы быстрого выбора. В этом случае рекомендуем обратиться к нашим специалистам.
  • Следует определиться с расходом охлаждаемой воды и необходимым давлением, которое должен обеспечить гидромодуль охладителя воды – необходимое значение может отличаться от параметра выбранной машины.
  • Если температуру жидкости необходимо понизить более чем на 5 градусов, то схема прямого охлаждения жидкости водоохладителем не применяется и необходим расчет и комплектация дополнительным оборудованием.
  • Если охладитель будет использоваться круглосуточно и круглогодично, а конечная температура жидкости достаточно высока – на сколько целесообразно будет применение установки с фрикулингом?
  • В случае применения незамерзающих жидкостей высоких концентраций требуется дополнительный расчет производительности испарителя водоохладителя.

Программа подбора чиллера

   К сведению: программа подбора чиллера даёт только приближённое понимание о необходимой модели охладителя и соответствия его техническому заданию. Далее необходима проверка расчетов специалистом. При этом Вы можете ориентироваться на полученную в результате расчетов стоимость +/- 30% (в случаях с низкотемпературными моделями охладителей жидкости – указанная цифра ещё больше). Оптимальная модель и стоимость будут определены только после проверки расчетов и сопоставления характеристик разных моделей и производителей нашим специалистом.

Подбор чиллера ОнЛайн

   Вы можете сделать обратившись к нашему онлайн консультанту, который быстро и технически обоснованно даст ответ на Ваш вопрос. Также консультант может выполнить исходя из кратко написанных параметров технического задания расчет чиллера онлайн и дать приблизительно подходящую по параметрам модель.

   Расчеты, произведённые не специалистом часто приводят к тому, что выбранный водоохладитель не соответствует в полной мере ожидаемым результатам.

   Компания Питер Холод специализируется на комплексных решениях по обеспечению промышленных предприятий оборудованием, которое полностью удовлетворяет требования технического задания на поставку системы водоохлаждения. Мы производим сбор информации для наполнения технического задания, расчет холодопроизводительности чиллера, определение оптимально подходящего охладителя воды, проверку с выдачей рекомендаций по его установке на выделенной площадке, расчет и комплектацию всех дополнительных элементов для работы машины в системе с потребителем (расчет бака аккумулятора, гидромодуля, дополнительных, при необходимости теплообменников, трубопроводов и запирающей и регулирующей арматуры).

   Накопив многолетний опыт расчетов и последующих внедрений систем охлаждения воды на различные предприятия мы обладаем знаниями, по решению любых стандартных и далеко не стандартных задач связанных с многочисленными особенностями установки на предприятие охладителей жидкости, объединения их с технологическими линиями, настройке специфических параметров работы оборудования.

   Самым оптимальный и точный расчет мощности чиллера и соответственно определение модели водоохладителя можно сделать очень быстро, позвонив или послав заявку инженеру нашей компании. 

Дополнительные формулы для расчета чиллера и определения схемы его подключения к потребителю холодной воды (расчет мощности чиллера) 

  • Формула расчёта температуры, при смешении 2-х жидкостей (формула смешения жидкостей):

Тсмеш = (М1*С1*Т1+М2*С2*Т2) / (С1*M1+С2*М2)

Тсмеш – температура смешанной жидкости, оС

М1 – масса 1-ой жидкости, кг

C1 – удельная теплоёмкость 1-ой жидкости, кДж/(кг* оС)

Т1 – температура 1-ой жидкости, оС

М2 – масса 2-ой жидкости, кг

C2 – удельная теплоёмкость 2-ой жидкости, кДж/(кг* оС)

Т2 – температура 2-ой жидкости, оС

Данная формула используется, если применяется аккумулирующая емкость в системе охлаждения, нагрузка непостоянна по времени и температуре (чаще всего при расчете необходимой мощности охлаждения автоклав и реакторов)

Мощность охлаждения чиллера.

Москва ….. Воронеж ….. Белгород ….. Нижневартовск ….. Новороссийск …..
Екатеринбург ….. в Ростове-на-Дону ….. Смоленск ….. Киров ….. Ханты-Мансийск …..
Ростов-на-Дону ….. Пенза ….. Владимир ….. Астрахань ….. Брянск …..
Казань ….. Самара ….. Набережные Челны ….. Рязань ….. Нижний Тагил …..
Краснодар ….. Тольятти ….. Чебоксары ….. Волжский ….. Нижегородская область …..
Нижний Новгород ….. Ростов на Дону . …. Саратов ….. Сургут ….. Краснодарский край …..
в Ростове на Дону ….. Оренбург ….. Калуга ….. Ульяновск ….. Томск …..
Волгоград ….. Тверь ….. Марий Эл ….. Тюмень ….. Омск …..
Уфа ….. Сочи ….. Ярославль ….. Орел ….. Новгородская область …..

Как рассчитать потребление и оплату электроэнергии. Примеры. | ENARGYS.RU

Если вы решили поменять проводку или использовать альтернативные источники электроэнергии встает вопрос как рассчитать электроэнергию, потребляемую в вашем доме. Расчет этот необходим, чтобы выбрать сечение кабеля для проводки или мощность автономного генератора, например, на солнечных батареях.

Расчет потребляемой мощности

Задача: как рассчитать потребление электроэнергии кажется простой – сложить потребляемую мощность из паспортов всех бытовых приборов и умножить на количество часов работы. Но для расчета надо учитывать еще стартовую нагрузку, которая для потребителей индукционного типа такая же, как при работе, а для техники конденсаторного типа – гораздо больше.

К индукционным приборам относятся те, которые отдают тепло в процессе работы – это лампы накаливания, утюги, плиты. К конденсаторным – холодильник, телевизор, стиральная машина, у них стартовая мощность будет в 2,5 – 3 раза выше, указанной в паспорте. Например, возьмем 6 потребителей:

  • плита электрическая – 500 Вт;
  • лампы – 15 Вт, 10 штук;
  • утюг – 2300 Вт, нагрев в течение 10 минут в час;
  • холодильник – 170 Вт;
  • телевизор – 200 Вт;
  • стиральная машина – 1000 Вт.

Потребляемая мощность в этом случае ((500+15*10+2300/6)+2,5*(170+200+1000))/1000=4,46 кВт.

Это число необходимо увеличить на 10 %, чтобы создать резервный запас. Таким образом, необходимая мощность – 4,9 кВт.

Сколько придется заплатить или как рассчитать стоимость электроэнергии?

Для конкретного домовладения стоимость зависит от количества потребления в течение месяца и тарифа. Как рассчитать оплату за электроэнергию должны знать все собственники жилых помещений. Цена за 1 кВт/час или тариф на электроэнергию складывается из трех составляющих:

  • производство;
  • доставка;
  • сбытовая надбавка.

Конкретно цену на отпускаемую электроэнергию устанавливают региональные энергетические комиссии один раз в год. Сейчас по всем регионам установлена социальная норма на потребление электроэнергии. Возьмем для примера цену за 1 кВт/час в рублях, установленную в Москве на 2014 год – 4,01 для однотарифного счетчика и 4,60 днем, 1,56 ночью – для двухтарифного.

  1. Показания индивидуального счетчика, оплаченные – 5882 (на конец предыдущего месяца) вычесть из показаний текущих – 6099. Получится потребление за месяц 217 кВт. Умножив 217 на 4,01 получим размер оплаты – 870,17 рубль.
  2. Тот же расход по двухтарифному счетчику распределен следующим образом днем – 142 кВт, в ночное время – 75 кВт. Размер оплаты 142*4,60+75*1,56 =770,20 рубль.
  3. Если в регионе действует норма потребления и в данном случае по количеству членов семьи она равна 150 кВт. Оплата по норме 4,01, свыше нормы – 5,90. Расчет будет производиться следующим образом 150*4,01+67*5,90=996,80 рубль.

Поставленная задача: как рассчитать электроэнергию — не очень сложная, главное рассчитывать правильно и вовремя оплачивать.

Калькулятор мощности, необходимой заявителю

Выберите тип помещения

  • Выберите тип помещения
  • Жилые помещения
  • Нежилые помещния

Выберите тип помещения

  • Выберите тип помещения
  • Многоквартирные дома
  • Коттеджи
  • Домики на участках садоводческих товариществ

Выберите тип помещения

  • Выберите тип помещения
  • Квартиры с плитами на природном газе
  • Квартиры с плитами на сжиженном газе
  • Квартиры с плитами электрическими мощностью до 8,5 кВт
  • Квартиры повышенной комфортности с электрическими плитами мощностью до 10,5 кВт

Выберите тип помещения

  • Выберите тип помещения
  • Коттеджи с плитами на природном газе
  • Коттеджи с плитами на природном газе и электрической сауной мощностью до 12 кВт
  • Коттеджи с электрическими плитами мощностью до 10,5 кВт
  • Коттеджи с электрическими плитами мощностью до 10,5 кВт и электрической сауной мощностью до 12 кВт

Выберите тип помещения

  • Выберите тип помещения
  • Учреждения образования
  • Предприятия торговли
  • Предприятия общественного питания
  • Предприятия коммунально-бытового обслуживания
  • Учреждения культуры и искусства
  • Здания и помещения управлений, предприятий связи, проектных, конструкторских, кредитно-финансовых орг-ий
  • Учреждения оздоровительные и отдыха
  • Учреждения жилищно-коммунального хозяйства

Выберите тип помещения

  • Выберите тип помещения
  • Общеобразовательные школы с электрифицированными столовыми и спортзалами
  • Общеобразовательные школы без электрифицированных столовых и спортзалами
  • Общеобразовательные школы с буфетами без спортзалов
  • Общеобразовательные школы без буфетов и спортзалов
  • Профессионально-технические училища со столовыми
  • Детские дошкольные учреждения

Выберите тип помещения

  • Выберите тип помещения
  • Продовольственные магазины без кондиционирования воздуха
  • Продовольственные магазины с кондиционированием воздуха
  • Непродовольственные магазины без кондиционирования воздуха
  • Непродовольственные магазины с кондиционирования воздуха

Выберите тип помещения

  • Выберите тип помещения
  • Полностью электрифицированные с количеством посадочных мест до 400
  • Полностью электрифицированные с количеством посадочных мест свыше 500 до 1000
  • Полностью электрифицированные с количеством посадочных мест свыше 1100
  • Частично электрифицированные (с плитами на газообразном топливе) с количеством посадочных мест до 100
  • Частично электрифицированные (с плитами на газообразном топливе) с количеством посадочных мест свыше 100 до 400
  • Частично электрифицированные (с плитами на газообразном топливе) с количеством посадочных мест свыше 500 до 1000
  • Частично электрифицированные (с плитами на газообразном топливе) с количеством посадочных мест свыше 1100

Выберите тип помещения

  • Выберите тип помещения
  • Фабрики химчистки и прачечные самообслуживания
  • Парикмахерские

Выберите тип помещения

  • Выберите тип помещения
  • Кинотеатры и киноконцертные залы без кондиционирования воздуха
  • Кинотеатры и киноконцертные залы с кондиционирования воздуха
  • Клубы

Выберите тип помещения

  • Выберите тип помещения
  • Здания без кондиционирования воздуха
  • Здания с кондиционирования воздуха

Выберите тип помещения

  • Выберите тип помещения
  • Дома отдыха и пансионаты без кондиционирования воздуха
  • Детские лагеря

Выберите тип помещения

  • Выберите тип помещения
  • Гостиницы без кондиционирования воздуха (без ресторанов)
  • Гостиницы с кондиционирования воздуха

Сроки, стоимость, калькуляторы – Калькулятор стоимости

Выберите интересующий Вас вопрос,
чтобы увидеть полную схему системы голосового самообслуживания ПАО «Россети Московский регион»

кнопка 1

Вопросы по отключениям электроэнергии

Переключение на оператора КЦ
ПАО «Россети Московский регион»

кнопка 2

Вопросы по технологическому присоединению

Кнопка 0

Переключение на оператора КЦ
ПАО «Россети Московский регион»

Соединение с оператором
ПАО «Россети Московский регион»

Возможность оставить голосовое сообщение для операторов
ПАО «Россети Московский регион»

Кнопка 1

Получение статуса в автоматическом режиме
(ввод штрихкода)

Кнопка 2

Уведомление о выполнении Технических условий
(ввод штрихкода)

кнопка 3

Вопросы по подаче электронной заявки и работе в личном кабинете

Соединение с оператором
ПАО «Россети Московский регион»

Возможность оставить голосовое сообщение для операторов
ПАО «Россети Московский регион»

кнопка 4

Вопросы по дополнительным услугам

Соединение с оператором
ПАО «Россети Московский регион»

Возможность оставить голосовое сообщение для операторов
ПАО «Россети Московский регион»

кнопка 5

Сообщение о противоправных действиях в отношении объектов ПАО «Россети Московский регион»

Соединение с оператором
ПАО «Россети Московский регион»

Возможность оставить голосовое сообщение для операторов
ПАО «Россети Московский регион»

кнопка 6

Справочная информация

Соединение с оператором
ПАО «Россети Московский регион»

Возможность оставить голосовое сообщение для операторов
ПАО «Россети Московский регион»

Виртуальный помощник

Определение pH и Kw

Определение pH и Kw

Определение pH и Kw

  1. pH – это мера того, насколько кислым или щелочным является вещество.
  2. Это шкала от 0 (самая кислая) до 14 (самая щелочная).
  3. Функция “pX” чего-то означает “-log(X)”, так что pH на самом деле означает
    -log([H +1 ]). Вы должны были видеть эту взаимосвязь в лаборатории серийных разведений.
  4. Нейтральная вода имеет pH 7. Это означает, что должно быть некоторое количество H +1 ионов в чистой воде. Откуда могут взяться эти ионы?
  5. Вода фактически ионизируется в равновесной реакции следующим образом: H 2 O (l) H +1 (водный) + OH -1 (водный)
    1. Мы можем определить концентрацию ионов водорода в воде из измеряя его рН.
    2. Чистая вода имеет рН = 7.Это означает, что [H +1 ] = 1,0 х 10 -7 М
    3. Потому что вы получаете один OH -1 для каждого H +1 [ОН -1 ] = 1,0 х 10 -7 М
    4. Следовательно, Kw = [H +1 ][OH -1 ] = 1,0 х 10 -14 М
  6. Добавляя кислоты в воду, вы фактически нарушаете равновесие. В виде больше H +1 ионы растворяются, равновесие смещается влево и расходуются гидроксид-ионы.Если добавить основание, то равновесие снова сместится влево, потребляя H +1 . Вот как основание снижает значение pH. Если H +1 концентрация уменьшается, затем увеличивается рН (становится более щелочным).
    1. Практические расчеты:
      1. Какой будет pH раствора с [H +1 ] = 0,025 М?
      2. Какой будет pH раствора с [OH -1 ] = 0.025 М?
      3. Какой будет [H +1 ] и [ОН -1 ] раствора с рН = 4,55?
    Нажмите здесь для большей практики.

 

ионный продукт для воды:

кВт

Важное равновесие в воде

Молекулы воды могут действовать как кислоты и основания. Одна молекула воды (действующая как основание) может принять ион водорода от второй (действующей как кислота). Это будет происходить везде, где есть даже следы воды — она не обязательно должна быть чистой.

Образуются ион гидроксония и гидроксид-ион.

Однако ион гидроксония — очень сильная кислота, а ион гидроксида — очень сильное основание. Как только они образуются, они реагируют, чтобы снова произвести воду.

В результате устанавливается равновесие.

В любой момент времени присутствует невероятно небольшое количество ионов гидроксония и ионов гидроксида. Ниже на этой странице мы рассчитаем концентрацию ионов гидроксония, присутствующих в чистой воде. Получается 1,00 х 10 -7 моль дм -3 при комнатной температуре.

Вы можете найти это равновесие в упрощенной форме:

Это нормально, если вы помните, что H + (водн.) на самом деле относится к иону гидроксония.


 

Определение ионного произведения для воды, K w

K w — это просто константа равновесия для показанных реакций. Вы можете встретить его в двух формах:

Основано на полностью написанном равновесии. . .

. . . или на упрощенном равновесии:

Вы можете найти их написанными с государственными символами или без них. С какой бы версией вы ни столкнулись, все они означают одно и то же!

Вы можете задаться вопросом, почему вода не написана внизу этих выражений для констант равновесия.Так мало воды ионизируется в любой момент времени, что ее концентрация остается практически неизменной — постоянной. K w определено, чтобы избежать излишнего усложнения выражения путем включения в него еще одной константы.

Значение K w

Как и любая другая константа равновесия, значение K w зависит от температуры. Его значение обычно принимается равным 1,00 х 10 -14 моль 2 дм -6 при комнатной температуре.Фактически это его значение при температуре чуть менее 25°С.

Как рассчитать CFM воздушного компрессора в кВт

Люди спрашивали, как рассчитать CFM воздушного компрессора в кВт, и мы хотим помочь решить этот вопрос. Но прежде всего важно понимать, что CFM и KW не являются напрямую конвертируемыми показателями.

CFM относится к кубическим футам в минуту, который измеряет объем воздуха, выходящего из воздушного компрессора каждую минуту. кВт, с другой стороны, представляет собой киловатты или количество энергии, необходимое для питания воздушного компрессора.

Сравнивать CFM с кВт – все равно, что сравнивать яблоки и апельсины. Но мы можем пойти еще дальше в этой аналогии: если яблоки и апельсины по-прежнему связаны, потому что они оба фрукты, CFM и кВт связаны, потому что они оба влияют на возможности воздушного компрессора.

Как преобразовать кВт в CFM для воздушных компрессоров

Согласно Руководству по воздушным компрессорам, вы можете производить 5-7 кубических футов в минуту воздуха на каждый кВт, произведенный в системах промышленных воздушных компрессоров. В этом случае простая таблица преобразования будет выглядеть так:

.
Выходная мощность (кВт) Выход куб. футов в минуту
5 23 – 35
10 50 – 70
25 125 – 175
50 250 – 350
100 500 – 700
250 1 250 – 1 750

Однако это общее правило не выполняется, когда речь идет о мобильных винтовых воздушных компрессорах.Мобильные системы имеют тенденцию к инновациям благодаря компактным размерам и легкому оборудованию, что не является проблемой для промышленных систем. Поскольку мобильные воздушные компрессоры представляют собой сложные системы с высокопроизводительными компонентами, им может потребоваться больше энергии.

Давайте кратко рассмотрим два винтовых изделия VMAC:

Продукт Двигатель Выходная мощность Выход куб. футов в минуту
Газовый привод G30 Honda GX390 8.7 кВт при 3600 об/мин 30 куб. футов/мин
Дизельный привод D60 Дизельный двигатель Kubota D902 15,2 кВт при 3600 об/мин 60 куб. футов в минуту

Как видите, эти системы VMAC производят 3-4 кубических фута в минуту на произведенный кВт, а не 5-7 кубических футов в минуту в промышленных системах.

Результаты аналогичны, если смотреть на одного из прямых конкурентов VMAC. Их ротационный винтовой воздушный компрессор с газовым приводом использует двигатель Kohler мощностью 26,5 л. с. и требует 19.75 кВт мощности для производства 60-80 CFM. Это дает те же 3-4 кубических фута в минуту на кВт, что и системы VMAC.

Имейте в виду, что двигатели Honda, Kubota и Kohler в приведенных выше примерах, вероятно, способны производить более высокую производительность в кубических футах в минуту при правильных обстоятельствах, но в реальных конструкциях эти системы находятся в диапазоне 3-4 кубических футов в минуту на кВт. Следовательно, более точная оценка отношения кВт к CFM (и наоборот) для мобильных винтовых воздушных компрессоров составляет 3-4 CFM на 1 кВт.

Как рассчитать мощность кВт, необходимую для нагревания объема воды за определенное время.

Нажмите ЗДЕСЬ, чтобы перейти на нашу онлайн-страницу расчета времени нагрева воды.

В ImmersionHeaters.UK (звоните Джейми по телефону 07897 246779) у нас есть 2 типа клиентов. Есть те, кто говорит нам, чего они хотят, поскольку они знают свои точные требования.

Есть и другие, которым нужно руководство и совет относительно того, что им нужно. Один вопрос, который возникает снова и снова: «Сколько кВт мне нужно, чтобы нагреть мой бак?»

Если мы сможем рассчитать объем воды и необходимое повышение температуры , мы сможем ответить на этот вопрос.

Следующая формула используется для расчета мощности нагревательного элемента, необходимой для нагрева определенного объема воды при заданном повышении температуры за 1 час.

объем в литрах x 4 x повышение температуры в градусах Цельсия / 3412

(4 — множитель, 3412 — заданная константа)

например 100 литров воды, которые нужно нагреть с 20 ºC до 50 ºC , что даст повышение температуры на 30 ºC даст –

100 х 4 х 30 / 3412 = 3.52

означает, что вода будет нагреваться за 1 час на 3,5 кВт приложенного тепла.

Также мы можем использовать эту информацию для экстраполяции в обоих направлениях. Чтобы нагреть тот же объем воды за половину времени (30 минут), потребуется удвоенная мощность нагрева, т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *