Содержание

Анод, катод, положительный и отрицательный: основы химии батарей

04 мая 2020г.

В последнее время были совершены важные открытия в области аккумуляторных батарей (иногда называемых вторичными элементами), и большую часть этой работы можно отнести к разработке электромобилей. Эта работа помогла получить Нобелевскую химическую премию 2019 года за разработку литий-ионных аккумуляторов. Следовательно, термины «анод», «катод», «положительный» и «отрицательный» приобрели все большую важность.

В статьях о новых батарейных электродах и станциях циклирования батарей часто используются названия анод и катод без указания того, разряжается ли батарея или заряжается. Термины анод, катод, положительный и отрицательный не являются синонимами, их иногда можно спутать, что может привести к ошибкам.

Цель этой статьи - прояснить и четко определить эти разные термины.

Реакции окисления и восстановления

Реакция окисления является электрохимической реакцией, которая производит электроны. Электрохимическая реакция, которая происходит на отрицательном элементе цинкового электрода никель-цинковой батареи во время разряда:

 

Zn + 4OH- → Zn (OH) 2-4 + 2e-
 

реакция окисления. Окисление - это потеря электронов.

Реакция восстановления - это электрохимическая реакция, которая потребляет электроны. Электрохимическая реакция, происходящая на положительной стороне литий-ионного аккумулятора во время разряда:
 

LixCoO2 + XLI++ Xe- → LiCoO2
 

является реакцией восстановления. Сокращение - это выигрыш электронов.

Анод, катод

  • Анод - это электрод, в котором происходит реакция окисления. Потенциал анода, через который протекает ток, выше его равновесного потенциала: Ea (I)> EI = 0 (рис. 1).
  • Катод - это электрод, в котором происходит реакция восстановления. Потенциал катода, через который протекает ток, ниже его равновесного потенциала: Ec (I) < EI = 0 (рис. 1).

Рис.1: (E
I≠0−EI=0) I > 0

Положительные и отрицательные электроды

Два электрода батареи или аккумулятора имеют разные потенциалы. Электрод с более высоким потенциалом упоминается как положительный, электрод с более низким потенциалом упоминается как отрицательный. Электродвижущая сила, эдс в V батареи - это разность потенциалов положительного и отрицательного электродов, когда батарея не работает.

Исследуя батарею

Разряд батареи

Во время разряда напряжение элемента U, разность между положительным и отрицательным, уменьшается (рис. 2, 3).

  • Потенциал положительного электрода E+I≠0 становится меньше его значения в состоянии покоя E+I = 0 : E+I≠0  → положительный электрод является катодом.
  • Потенциал отрицательного электрода E-I≠0 становится больше его значения в состоянии покоя E-I=0 : E-I>0 > E-I=0 → отрицательный электрод является анодом.

Рис. 2: Разряд и заряд батареи: слева - потенциальное изменение положительного и отрицательного электродов; справа - изменение напряжения батареи

Зарядка аккумулятора

Во время зарядки напряжение элемента U, разность между положительным и отрицательным, увеличивается (рис. 2, 3).

  • Потенциал положительного электрода E+I≠0 становится больше его значения в состоянии покоя E+I=0 : E+I>0 > E+I=0 → положительный электрод является анодом.
  • Потенциал отрицательного электрода E-I≠0 становится меньше его значения в состоянии покоя E-I=0 : E-I<0  < E-I=0 → отрицательный электрод является катодом.

Рис. 3: Разрядка / зарядка вторичной батареи, представленной в виде электрохимической ячейки, с электронами и направлением тока.

Вывод

При обычном использовании перезаряжаемой батареи потенциал положительного электрода как при разряде, так и при перезарядке остается больше, чем потенциал отрицательного электрода. С другой стороны, роль каждого электрода переключается во время цикла разрядки / зарядки.

  • Во время разряда положительным является катод, отрицательным является анод.
  • Во время заряда положительным является анод, отрицательным является катод. 

Тексты, описывающие аккумуляторные аноды или катоды, безусловно, косвенно рассматривают случай разряда, что является неполным предсталением о процессах, происходящих внутри вторичного элемента.

Поделиться в соцсетях:

Как определить катод и анод + описание

Как определить катод и анод + описание

Среди терминологии в сфере электрики встречаются такие понятие, как катод и анод. Это может касательно источников питания, химии, физики и гальваники. Термин может встречаться еще и в вакуумной и полупроводниковой электронике. Им можно обозначать выводы или даже контакты устройства, а еще, каким электрическим знаком они будут обладать.

В данной статье вы узнаете о том, что это такое, а еще как определить катод и анод в диоде, электролизере, у батарейки, где в них плюс, а где минус.

Гальваника и электрохимия

В сфере электрохимии есть пару основных разделов:

  • Элементы гальваники – производство электрической энергии благодаря счету химической реакции. К подобным элементам можно отнести аккумуляторы и батарейки. Их также часто называют химическим токовым источником.
  • Электролиз – воздействие на реакцию химического типа электрической энергией, иными словами – посредством источника питания запускается определенная реакция.

Предлагаем рассмотреть окислительно-восстановительные реакции в элементах гальванического типа, и тогда такие процессы происходят на его электродах?

  • Анод – электрод, и на нем есть окислительная реакция, а именно он будет отдавать электроны. А вот электрод, на котором будет происходить окислительная реакция называется восстановлением.
  • Катод – электрод, на котором будет протекать реакция восстановления, а именно он будет принимать электроны. Электрод, на котором будет реакция восстановления – называется окислителем.

Отсюда возникнет вопрос – где минус, а где плюс у батарейки? Исходя из определения, у гальванических элементов анод будет отдавать электроды.

Обратите внимание, что в ГОСТе 15596-82 дано официальная формулировка наименований вывод источников тока химического типа, если кратко, то плюс будет только на катоде, а минус на аноде.

В таком случае будет рассматриваться протекание электричества по проводнику внешних цепей от окислителя (то есть катода) к аноду, а именно к восстановителю. Так как электроны в цепи будут течь от минуса до плюса, а электричество наоборот, и в таком случае катод будет являться плюсом, а анод минусом. Кстати, ток всегда будет втекать в анод.

Подробности

Процесс электролиза или заряда аккумулятора

Такие процессы походи и обратные гальваническим элементам, так как тут не энергия попадает за счет реакции химического характера, а даже наоборот – химическая реакция будет происходить благодаря внешнему источнику электричества. В таком случае плюсом источника питания все еще будут называть катодом, а минус анодом. А вот контакты заряжаемого элемента гальваники или электроды электролизера уже способны носить противоположные наименования, и следует разобраться, почему.

Важно! При разряде элемента гальваники элемента анод является минусом, а катод плюсом, при зарядке все будет наоборот.

Так как ток от положительного вывода источника питания будет поступать на положительный вывод аккумулятора – последний кстати уже не сможет быть катодом. Ссылаясь на сказанное выше, можно сделать выводы, что в таком случае аккумуляторные электроды при зарядке символически меняют местами. В таком случае через электрод заряжаемого элемента гальваники, в который втекает ток электричества, называют анодом. Итак, при зарядке плюс аккумулятора станет анодом, а минус будет катодом.

Гальванотехника

Процессы металлического осаждения в результате реакции химического типа под действием электрического тока (при процессе электролиза) называют гальванотехникой. Получается, что мир начал получать золоченные, посеребренные, хромированные или даже покрытые иными металлами украшения, а еще детали. Такой процесс применяют в роли декоративных, а еще в прикладных целях – для того, чтобы улучшать устойчивость к коррозии разных узлов и механизмов агрегатов. Метод работы действия установок для нанесения покрытия гальванического типа будет лежать в применении растворов солей элементов, которыми станут покрывать деталь, в роли электролита.

Определить, где анод, а где катод в гальванике тоже важно. Именно в этом случае анод будет являться электродом, к которому подключаются положительный вывод источника питания, а получается, катод в таком случае станет минусом. При этом металл будет осаждаться (восстанавливаться) на минусовом электроде (речь идет про реакцию восстановления). Получается, что есть вы желаете изготовить позолоченное кольцо собственноручно – подключите к нему отрицательный вывод блочка питания и поместите в емкость с требуемым растворителем.

В электронике

Ножки или электроды полупроводниковых, а еще вакуумных электронных устройств крайне часто называют катодом и анодом. Предлагаем рассмотреть условное обозначение графического типа полупроводникового диода по схеме. Как видите, анод у диода подключают до плюса батареи. Он так называется по той причине – в такой вывод у диода в любом случае будет втекать ток. На настоящем элементе на катоде будет маркировка в воде точки или полоски. Со светодиодом все аналогично, и на 0.5 см светодиодах внутренности видны через колбу. Та половина, что больше является катодом. Аналогичным образом будет обстоять ситуация даже с тиристором, назначение вывод и однополярное использование таких трехногих компонентов делает его управляемым диодом.

У диода вакуумного типа анод тоже обычно подключается до плюса, а катод к минусу, как изображена на схеме. Хотя при приложении напряжения обратного типа – названия элементов не поменяются, несмотря на протекание электрического тока в обратном направлении, пускай даже и незначительного. С пассивными элементами, а именно конденсаторы и резисторы, дела будут обстоять иначе. У резистора не будет выделять отдельно аноды и катоды, ток в нем может начать протекать в любом направлении. Вы сможете давать любые название для его выводов, и все зависит от ситуации, а также рассмотренной схемы. У простых неполярных конденсаторов все точно также. Реже подобное разделение по наименованиям контактов будет наблюдаться в электролитических конденсаторах.

Заключение

Итак, важно подвести итоги, отвечая на вопрос – как запомнить, где плюс, а где же минус у анода и катода? Есть удобное мнемоническое правило для электролиза, аккумуляторного заряда, гальваники и приборов полупроводникового типа. У таких слов с аналогичными наименованиями одинаковое количество букв, что показано ниже. Во всех случаях, которые перечислены выше, ток будет вытекать из катода, а втекать будет в анод. Пусть вас не сбивает с толку постоянная путаница «Почему, когда у аккумулятора при заряде катод становится отрицательным, а при обычных обстоятельствах он положительный?». Следует помнить о том, что у всех элементов электроники, а еще гальванике и электрозиров – в общем у вас энергетических потребителей анодом можно называть вывод, который подключают к плюсу. На этом отличия закончатся, и теперь вам будет проще разбираться что минус, что плюс между выводами устройств и элементов. Напоследок следует посмотреть полезные видеоролике по теме статьи. Теперь вы точно знаете, что такое катод и анод, а еще запомнить их весьма быстро. Надеемся, эта информация была для вас интересной, а еще полезной.

Катод и анод — это плюс или минус: как определить

Анод и катод — два физических термина прикладной электроники, гальванотехнике и химии. Уяснив эти термины, можно понять, почему, например, греется аудиоплеер. Путаница в терминологии спровоцирует аварийные ситуации.

Что это такое

Катоды и аноды — электрические проводники, которые имеют электронную проводимость. Посредством анода электрический заряд втекает в аппаратуру, а катода — наоборот, истекает. На первом возникает окислительная реакция (называют восстановитель) и отсылает заряженные частицы, на втором — восстановительная реакция (называют окислитель) и принимает заряженные частицы.

Анод и катод в диоде

Если перемещение электрических проводников проходит от восстановления к окислению по цепи извне, возникает источник электроэнергии. Прибор, с помощью которого преобразовывается химическая энергия в электроэнергию, получил название «гальванический элемент».

Чтобы не возникло путаницы, стоит четко усвоить и запомнить отличие плюса и минуса в разных процессах:

В гальванотехнике химические реакции происходят внутри элемента. В электричестве извне не нуждается, так как заряд сам потечет во внешнюю цепь из элемента. В этом случаев катод — положительный, анод — отрицательный.

Схема гальванического элемента

В электролизе необходим внешний источник тока, включенный в разрыв проводника внешней цепи. Внешний источник создаст разность потенциалов между электрическими проводниками, и вне устройства будет вкачивать ток в элемент. На аноде будет плюс, а на катоде — противоположно.

Важно! Чтобы определить, катод и анод — это плюс или минус, нужно запомнить: в гальванотехнике отрицательным становится анод, а катод — положительный. У электролитов — противоположно.

Как определить что минус, а что плюс (у диода)

Особенность диодов такова, что они проводят заряд только в одном направлении. Чтобы не ошибиться, обычно на корпусе обозначены маркировки. В случае отсутствия маркировок чтобы узнать, как все-таки определить полярности анода и катода у диодов, применяют следующие методы.

  1. Использование мультиметра. Прибор включается в тест-режим. Если на экране засветились цифровые значения — диод подсоединен по прямому маршруту. Красный провод идет к аноду «+», черный к катоду «-».
  2. Внешние признаки:
  • символы «+» и «-» на корпусе;
  • ближе к аноду нанесены обозначения в форме точек или кольцевых линий;
  • вытянутая форма устройства — плюс, приплюснутый — минус;
  1. Включение питания. Собирается простейшая схема, которая состоит из батарейки и лампы.

Обратите внимание! Если включить лампочку, и она начнет гореть — «+» батарейки соединен с положительной полярностью, это есть анод, и прибор будет пропускать через себя ток. Если свет не загорелся, то значит, соединили с отрицательной полярностью — это катод и, соответственно, тока не будет.

  1. Инструкция по эксплуатации. Производитель вместе с товаром прилагает подробную техническую документацию, где прописаны все необходимые параметры.
Определение полюсов с помощью лампочки

Заряд аккумулятора

Если взглянуть на аккумулятор или обычные батарейки, то можно заметить терминалы, отличающиеся обозначением «+» и «-», которые расположены на противоположных концах.

Аккумулятор имеет металлический или пластиковый каркас. Внутри катод сведен с положительной полярностью, а анод подключен к отрицательной полярности. Отделяет их друг от друга заслон, поэтому они не соприкасаются, а электрический заряд свободно протекает между ними. Помогает этому электролит — специальный раствор серной кислоты.

Схема заряда АКБ

Когда проходит химическая реакция заряда с электролитом на одном из электрических проводников, возникнет окислительная реакция. Если включить гальванический компонент в электросеть, электроны с анода перетекут на катод, производя функционирование пока в электролите возникают химические взаимодействия. Работать химический источник электрического тока прекратить только тогда, когда химические составляющие электролита израсходуются.

На заметку. Когда происходит разряд гальванического элемента, то анод является «-», когда заряд — катод имеет знак «+».

Применение в электронике

В электронике применяют особенности диодов впускать заряд по прямому маршруту, но не отпускать обратно.

Р-n переход тока

Работа светодиода заключается в свойстве кристаллов, которые светятся при пропускании через p-n переход тока по прямой.

В электрохимии электрические проводники необходимы при создании автономных источников питания (аккумуляторные батареи), а также при воспроизведении технологических процессов. Аноды, катоды участвуют в электролизе, электроэкстракции, гальваностегии и гальванопластике.

Гальваника — восстановления металла при химических процессах под воздействием электротока. Такая процедура приводит к устойчивости от коррозии узлов и агрегатов механизмов.

Как определить анод и катод в химии. Обозначение разных типов диодов на схеме. Диод на схеме где анод и где катод

Среди терминов в электрике встречаются такие понятия как анод и катод. Это касается источников питания, гальваники, химии и физики. Термин встречается также в вакуумной и полупроводниковой электронике. Им обозначают выводы или контакты устройств и каким электрическим знаком они обладают. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус.

Электрохимия и гальваника

В электрохимии есть два основных раздела:

  1. Гальванические элементы – производство электричества за счет химической реакции. К таким элементам относятся батарейки и аккумуляторы. Их часто называют химическими источниками тока.
  2. Электролиз – воздействие на химическую реакцию электроэнергией, простыми словами – с помощью источника питания запускается какая-то реакция.

Рассмотрим окислительно-восстановительную реакцию в гальваническом элементе, тогда какие процессы протекают на его электродах?

  • Анод – электрод на котором наблюдается окислительная реакция , то есть он отдаёт электроны . Электрод, на котором происходит окислительная реакция – называется восстановителем .
  • Катод – электрод на котором протекает восстановительная реакция , то есть он принимает электроны . Электрод, на котором происходит восстановительная реакция – называется окислителем .

Отсюда возникает вопрос – где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны .

Важно! В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде.

В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя (катода) к восстановителю (аноду) . Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод – это плюс, а анод – это минус.

Внимание: ток всегда втекает в анод!

Или то же самое на схеме:

Процесс электролиза или зарядки аккумулятора

Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот – химическая реакция происходит за счет внешнего источника электричества.

В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему!

Важно! При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.

Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора – последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами.

Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.

Процессы осаждения металлов в результате химической реакции под воздействием электрического тока (при электролизе) называют гальванотехникой. Таким образом мир получил посеребренные, золоченные, хромированные или покрытые другими металлами украшения и детали. Этот процесс используют как в декоративных, так и в прикладных целях – для улучшения стойкости к коррозии различных узлов и агрегатов механизмов.

Принцип действия установок для нанесения гальванического покрытия лежит в использовании растворов солей элементов, которыми будут покрывать деталь, в качестве электролита.

В гальванике анод также является электродом, к которому подключаются плюсовой вывод источника питания, соответственно катод в этом случае – это минус. При этом металл осаждается (восстанавливается) на минусовом электроде (реакция восстановления). То есть если вы хотите сделать позолоченное кольцо своими руками – подключите к нему минусовой вывод блока питания и поместите в ёмкость с соответствующим раствором.

В электронике

Электроды или ножки полупроводниковых и вакуумных электронных приборов тоже часто называют анодом и катодом. Рассмотрим условное графическое обозначение полупроводникового диода на схеме:

Как мы видим, анод у диода подключается к плюсу батареи. Он так называется по той же причине – в этот вывод у диода в любом случае втекает ток. На реальном элементе на катоде есть маркировка в виде полосы или точки.

У светодиода аналогично. На 5 мм светодиодах внутренности видны через колбу. Та половина, что больше — это катод.

Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом:

У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения – названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного.

С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах.

Заключение

Итак, подведем итоги, ответив на вопрос: как запомнить где плюс, где минус у катода с анодом? Есть удобное мнемоническое правило для электролиза, заряда аккумуляторов, гальваники и полупроводниковых приборов. У этих слов с аналогичными названиями одинаковое количество букв, что проиллюстрировано ниже:

Во всех перечисленных случаях ток вытекает из катода, а втекает в анод.

Пусть вас не собьёт с толку путаница: «почему у аккумулятора катод положительный, а когда его заряжают – он становится отрицательным?». Помните у всех элементов электроники, а также электролизеров и в гальванике – в общем у всех потребителей энергии анодом называют вывод, подключаемый к плюсу. На этом отличия заканчиваются, теперь вам проще разобраться что плюс, что минус между выводами элементов и устройств.

Теперь вы знаете, что такое анод и катод, а также как запомнить их достаточно быстро. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Анод - это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод - это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод - это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, - катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод - это электрод, на котором протекает процесс восстановления, а анод - это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны - наоборот.

m.katod-anod.ru

Назначение диода, анод диода, катод диода, как проверить диод мультиметром

Назначение диода - проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначениедиода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода - это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода - это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром

Как проверить диод мультиметром или тестером - такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах - диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному - катодом диода. Проверка диодов очень похожа на проверку транзисторов.

katod-anod.ru

Определяем полярность светодиода. Где плюс и минус у LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А - анод, К - катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.


Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

svetodiodinfo.ru

Обозначение светодиодов и других диодов на схеме

Название диод переводится как «двухэлектродный». Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т.д.

Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала.

Главное свойство диода – характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения. Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода.

УГО – условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов.

Диоды, какие они бывают?

Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус.

Обозначение диодного моста

Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.

Другим видом выпрямительного прибора является диод Шоттки – предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Их часто можно встретить в импульсных блоках питания, например БП для персонального компьютера AT или ATX.

Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения.


Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.


Обозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Варикап - обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.


В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:


Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:


Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания.

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

svetodiodinfo.ru

Как проверить диод мультиметром - Практическая электроника

В радиоэлектронике в основном применяются два типа диодов - это просто диоды, а также есть и светодиоды. Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу.

На фото ниже у нас простой диод и светодиод.

Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду - асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?.

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они по особенному - катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус - ток НЕ потечет.

Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп - это анод, а другой конец - катод. 436 миллиВольт - это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами.

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод вполне рабочий.

А как же проверить светодиод? Да точно также! Светодиод - это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод - минус.

Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп - это анод, а вывод на котором черный щуп - катод. Мультиметр показал падение напряжения 1130 миллиВольт. Это нормально. Оно также может изменяться, в зависимости от «модели» светодиода.

Меняем щупы местами. Светодиодик не загорелся.

Выносим вердикт - вполне работоспособный светодиод!

А как же проверить диодные сборки, диодные мосты и стабилитроны? Диодные сборки - это соединение нескольких диодов, в основном 4 или 6. Находим схемку диодной сборки, и тыкаем щупами мультика по выводам этой самой диодной сборки и смотрим на показания мультика. Стабилитроны проверяются точно также, как и диоды.

www.ruselectronic.com

Маркировка диодов: таблица обозначений

Содержание:
  1. Маркировка импортных диодов
  2. Маркировка диодов анод катод

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят светодиоды, фотодиоды и тиристоры. Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются SMD-диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами – анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

electric-220.ru

ДИОДЫ

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме . Буквами А и К соответственно обозначены анод диода и катод диода . Анод диода - это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода - это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Как проверить диод мультиметром


Как проверить диод мультиметром или тестером - такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Т.е. если мы изначально не знаем цоколёвку диода, то просто ставим мультиметр или тестер на прозвонку диодов (или на измерение сопротивления) и по очереди прозваниваем диод в обоих направлениях. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах - диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному - катодом диода. Проверка диодов очень похожа на

Анод - ОКСИ Про

Анод – это электрод прибора, который присоединяется к положительному полюсу необходимого источника питания. При этом электрический потенциал анода является положительным по отношению к потенциалу указанного катода. Во всех процессах электролиза анод – это электрически положительный полюс, на котором происходят окислительно-восстановительные реакции. Получается, что результатом этих операций может быть разрушение анода. Это используется, например, при электрорафинировании металлов.

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод – это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, – катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод – это электрод, на котором протекает процесс восстановления, а анод – это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде  избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны – наоборот.

Определение анода и катода - Справочник химика 21

    ОПРЕДЕЛЕНИЕ АНОДА И КАТОДА [c.22]

    Дайте определения понятиям катод , анод , катодный процесс , анодный процесс . [c.105]

    Другой метод определения рассеивающей способности на плоских, параллельно расположенных к аноду катодах был предложен Фильдом. В отличие от предыдущего в данном случае катоды устанавливаются по одну сторону от анода и отделяются друг от друга токонепроводящей перегородкой (рис, XI-10). [c.363]


    Необходимо рассматривать не только реакцию между окружающей средой и металлическим покрытием, но и реакцию, которая происходит, когда воздействию окружающей среды подвергается гальваническая пара. При этом из-за пористости, дефектов покрытия, механического повреждения или в результате коррозии покрытия не обеспечивается защита основного металла. Если при воздействии определенной среды покрытие служит катодом по отношению к основному металлу, то образуются малый анод и большой катод, что приводит к интенсивной коррозии, сосредоточенной на малой площади. При дальнейшей коррозии соотношение площадей анод —катод существенным образом не изменяется, поскольку покрытие не корродирует [c.50]

    В рассматриваемой нами системе источник постоянного тока—анод— катод изменение общего тока / обязательно приведет к соответствующим изменениям токов /с и /ф, а также и зарядов с и ф. Увеличение и уменьщение напряжения между электродами изменяют концентрацию частиц при электродном слое. Поскольку процесс изменения концентрации раствора является нестационарным, следовательно, и при каком-то определенном напряжении источника составляющие /с и /ф общий ток / могут изменяться. [c.64]

    Термоэмиссионные константы А и методом прямых Ричардсона в экспериментальном диоде с тройным анодом. Катод был прямонакальным на танталовом керне. Измерялась только эмиссия с центральной, равномерно нагретой части катода, чем исключалось влияние охлажденных концов. По полученным данным строились кривые Шоттки, а затем прямые Ричардсона для определения работы выхода. [c.110]

    IV. Дайте определения анода и катода (с. 8, рис. 6) [c.131]

    Интенсивность / возникающего рентгеновского излучения зависит от напряжения анод — катод Уа и прямо пропорциональна анодному току /а и обычно задается на определенном расстоянии от трубки. [c.289]

    Лампа с полым катодом (рис. 11.25) представляет собой стеклянный или кварцевый баллон, заполненный инертным газом под низким давлением, внутри которого находятся два электрода — катод и анод. Катод имеет форму чаши и изготавливается из чистого металла. При подаче напряжения на электроды возникает тлеющий разряд с образованием положительных ионов газа-наполнителя. Последние бомбардируют катод, выбивая атомы металла в газовую фазу. Там эти атомы возбуждаются и испускают излучение, характерное для свободных атомов соответствующего элемента. Таким образом, спектр излучения лампы с полым катодом — это атомный спектр материала катода (плюс линии, испускаемые возбужденными ионами газа-наполнителя). Из него с помощью обычного дифракционного монохроматора можно выделить одну (обычно наиболее интенсивную) линию и использовать ее для атомно-абсорбционного определения соответствующего элемента. [c.244]

    Суммарные реакции на аноде, катоде и для всего элемента в целом приведены на рис. 32.20. В каждом элементе протекает полуреакция окисления и полуреакция восстановления. Полуреакция окисления всегда происходит на электроде, называемом анодом, а полуреакция восстановления — на катоде. Фактически это основные определения анода и катода в электрохимии. [c.86]

    Определение бора в карбиде кремния. 80 мг смеси помещают в кратер графитового электрода. Электрод со смесью помещают в камеру (рис. 9) и подключают анодом. Катодом служит электрод, заточенный на конус. Межэлектродный промежуток — 3 лгм. Пробы отжигают при [c.226]

    Определение Mg, Си, Ре, А1, Т1 в карбиде кремни.ч. 80 мг смеси помещают в кратер графитового электрода. Смесь уплотняют палочкой из органического стекла. Электрод со смесью служит анодом. Катодом является электрод, заточенный на конус. Между электродами зажигают дугу силой тока 10 а. Межэлектродный промежуток — 3 мм. Спектры образцов фотографируют не менее 4 раз при ширине щели спектрографа 0,015 мм. Время экспозиции— 1 мин. [c.226]

    Катод лампы нагревается электрическим током от специальной батареи. При достижении определенной температуры катод испускает электроны, имеющие самые разнообразные скорости. Электроны создают у катода так называемое электронное облако , образующее пространственный заряд, который своим отрицательным полем уменьшает дальнейшую эмиссию электронов. Если присоединить батарею положительным полюсом к аноду, а отрицательным—к катоду, то электроны полетят на анод, в цепи возникнет электронный ток. С увеличением напряжения на аноде все большее количество электронов будет достигать анода—сила электронного тока будет расти. Увеличение силы тока будет про- [c.76]

    Фарадей предложил ряд определений важнейших понятий, которые используются и в наши дни. Он ввел понятия электролиз , электролит , электрод , анод , катод . Частицы, образующиеся при электролизе, Фарадей называл ионами, которые в зависимости от направления их движения в электролите разделял на анионы и катионы. Среди исследований по электричеству работы Фарадея явились вершиной научных достижений. В химии же они стали эффективными только в сочетании с работами С. Аррениуса и Я. Г. Вант-Гоффа. Помимо одной из самых его известных книг История свечи в 1827 г. он опубликовал тоже ставшую очень популярной книгу Способы работы в химической лаборатории . [c.85]

    II лучше соответствует применению формулы (40,10) к цилиндрическому триоду. Выражение (40,27) приводит к новому определению проницаемости триода, а именно проницаемость триода представляет собой отношение ёмкости анод-катод и ёмкости [c.151]

    Электролиз металлов ведут в режимах, обеспечивающих их максимальные выделение. Так, для получения алюминия из его окиси А12анод-катод в 1,7 В, поддерживают температуру электролиза в пределах 940— 950°С и его определенную концентрацию. [c.73]

    Выполнение определения. Образцы конденсатов (50 см ) упаривают на 30 мг угольного порошка во фторопластовых чашках на водяной бане. Полученные конденсаты переносят количественно в кратеры угольных электродов, применяемых в качестве анода. Катодом служат угольные электроды,, заточенные на конус. Спектры возбуждают в дуге постоянного тока (сила тока 12—14 А) и фотографируют на кварцевом спектрографе ИСП-28 с трехлинзовой конденсорной системой. Стандартные образцы, содержащие от 0,1 до 1 10 % анализируемых элементов, готовят, как указано в работе [1]. В качестве носителя применяют фторид натрия, который прибавляют к навескам стандартных образцов и конденсатам по 0,5 мг. Для анализа выбирают следующие линии определяемых элементов (нм) А1 — 308,22 5п — 284,08 5т — 336,58 Сг — 283,54 Си — 327,4. Градуировочные графики строят в координатах [Л5 lg ], где — разность почернений аналитической [c.16]

    Высокой селективностью, чувствительностью и точностью определения обладает полярографический метод. Он основан на измерении силы тока, возникающей при окислении или восстановлении анализируемых веществ на поверхности рабочего электрода. Различают катодную поляризацию, при которой применяют катод с небольшой, а анод с большой поверхностью. Плотность тока сравнительно велика на катоде и очень мала на аноде. Поляризация происходит на катоде при прохождении тока через раствор. При анодной поляризации, наоборот, используют анод с небольшой, а катод с большой поверхностью. Поляризация происходит на аноде, катод не поляризуется. [c.5]

    Явление электролитического выделения вещества щироко используется для получения химически чистых металлов меди, цинка, алюминия, магния, никеля, кобальта и т. п. Для выделения каждого вещества необходимо создать и поддерживать свой режим. Так, для выделения алюминия из его окиси АЬОз необходимо иметь разность потенциалов анод — катод 1,7 в, поддерживать определенную концентрацию ионов и температуру. [c.134]

    Нагляднее отображают явления, происходящие на электродах гальванического элемента, следующие определения анод — электрод, на котором происходят процессы окисления, сопровождающиеся освобождением электронов катод — электрод, на котором происходят процессы восстановления, сопровождающиеся связыванием электронов. (Прим. ред.) [c.21]

    С. В. Горбачев. На протяжении последних лет в работе нашей лаборатории возникло новое направление. Основная идея этого направления — использовать опыт химической кинетики для решения электрохимических задач. А. Н. Фрумкин сказал, что исследование влияния температуры на скорость электрохимических реакций оказалось методом плодотворным, но, но его мнению, в наших работах имеется недостаток, связанный с тем, что измерения относились к определенному потенциалу, тох да как желательно относить их к определенному перенапряжению, или, правильнее,— к определенному потенциалу поляризации. В своих работах мы всегда подчеркивали, что измерение целесообразно проводить, применяя в качестве электродов сравнения электроды в том же растворе, при той же температуре и даже в том же сосуде, а пе каломельные полуэлементы. Поэтому в наших работах применяется сосудик из трех отделений анод, катод и электрод сравнения. И только когда речь идет о необратимых [c.133]

    Задача определения поверхности катода решается, если задать граничные условия на стационарной поверхности анода для тока и потенциала. [c.138]

    Электроды для электрогравиметрических определений. Платиновые катоды и аноды наиболее предпочтительны в электрогравиметрии, так как они устойчивы к действию кислот и оснований, легко очищаются подходящими растворителями от остатков осажденного металла, и при необходимости их можно прокаливать в пламени для удаления примесей органических веществ, мешающих равномерному однородному отложению металла на электроде. Для некоторых электрогравиметриче- [c.418]

    Итак, имеются три определения анода и катода. Анод — это электрод, в котором протекает реакция окисления плотность тока направлена в электролит электродное напряжение отрицательно. Катод — это электрод, в котором протекает реакция восстановления плотность тока направлена из электролита электродное напряжение положительно. [c.60]

    Электроды для электрогравиметрических определений. Платиновые катоды и аноды наиболее нредночтительны в электрогравиметрии, так [c.118]

    Бадо-Ламблинг [86] построил кривые поляризации для окисления церия (III) на платиновых анодах 100%-ная эффективность тока достигается только в том случае, когда концентрация окисляемого вещества достаточно велика, так что сопутствующее окисление воды остается пренебрежимо малым. По данным Шульца [140], потенциостатическая кулонометрия может использоваться для определения европия в 0,1 н. растворе НС1. Восстановление европия (III) до европия (II) на ртутном катоде ни в одном из испытанных Шульцем электролитов не проходило при 100%-ной эффективности тока. Когда европий восстанавливается при —0,8 в относительно AgjAg l и затем снова окисляется при —0,1 в и при прочих равных условиях, электролиз является почти точным. Шульц определил, что малые количества галлия, иттрия, иттербия, лантана, церия, кальция, алюминия, кремния или железа не являются помехой при этом определении. Используя катод из амальгамы лития, Онстотт [141] отделял европий от самария и самарий от гадолиния [142] в среде цитрата. [c.63]

    Фильтрат с промывными водами, полученный после определения НзЗпОд, упаривают до объема 100—120 ял и добавляют к нему 25 мл разбавленной (1 1) азотной кислоты. В полученный раствор опускают предварительно взвешенные электроды и начинают электролиз. Выделение меди и свинца проводят при напряжении 2,2—2,4 б и силе тока 1,8—3,0 а. Через 30—35 жын добавляют 2—3 мл разбавленной (1 1) серной кислоты и, не прекращая электролиза, частично нейтрализуют раствор 25—30жл 10%-ного раствора ЫН ОН. Продолжают электролиз еще в течение 20— 30 мин. Приливают в раствор такое количество воды, чтобы уровень жидкости повысился на 1—1,5с и, и проверяют выделение меди на свежей поверхности. Если медь не выделяется из раствора, то, не прерывая тока, убирают стакан с раствором и промывают электроды, подставляя стакан с чистой водой,затем выключают ток и снимают электроды. Анод сушат в сушильном шкафу при 180 °С, положив его в фарфоровую чашку чтобы избежать случайной потери РЬОд, так как последняя непрочно удерживается на поверхности анода. Катод промывают спиртом, высушивают в сушильном шкафу в течение 3—5 мин и взвешивают. [c.338]

    На рис. 3 приведена принципиальная схема установки для определения толщины барьерной части пленок. Рабочие электроды и электролит те же самые, что и в описанном выше методе измерения импеданса. Электрод с исследуемой пленкой являлся анодом. Катодом служил неокисленный электрод аналогичных размеров из того же материала. Увеличивая ступенчато, через 200 мв, напряжение на [c.208]

    Авторы работы [16] вели электролиз в платиновой чашке, являвшейся одновременно анодом, катодом служил медный или угольный стержень (00,5—1,2 мм). При проведении электролиза в 0,1 мл 2 н. солянокислого раствора при напряжении 2 в выделяются Hg, Ag, Сс1, РЬ, В1, Си, Аз, 5Ь, 8п, Ке. 5е, Т1, Аи и Р1. Из аммиачного раствора выделяются Ag, Сс1, Т1, Оа, 1п, Ое, 2п, N1, Со, Мо, V, II, Ре, Сг и А1. Время электролиза 30—40 минут. Выделившиеся на электроде примеси непосредственно возбуждались в обрывной дуге. Чувствительность определения из объема 0,1 мл 10 —10 %. Показана возможность разделения обеих групп. [c.138]

    Шовен и соавторы [185, 186[ использовали расплав системы Na l — KaZrP , содержание фторцирконата калия в которой составляло 65 масс.%. Электролиз проводили при 850° С в атмосфере аргона в графитовом тигле, который служил анодом. Катодами служили стержни из молибдена, никеля или стали. При электролизе на катоде выделяется металлический цирконий, обедненный гафнием. Степень разделения или обеднения осадка гафнием ( ) в определенный отрезок времени ведения электролиза определяется уравнением [c.48]

    Постановка и решение задачи вывода электролизера на ремонт имеют некоторую особенность в зависимости от вида анодного материала, которая объясняется определенным различием в кинетике анодных процессов. Поэтому ниже подробно рассматриваются постановка и решение задачи для электролизеров с графитовыми анодами и указывается их трансформация для электролизеров с анодами ОРТА. Параметры процессов, протекающих в электролизере, меняются. Так со временем сечение графитовых анодов уменьшается, увеличивается зазор анод — катод, растет напряжение на ванне, возрастает расход электроэнергии на 1 т NaOH. Когда напряжение на электролизере достигает некоторого верхнего предела с учетом концентрации щелочи в католите, аноды заменяют. При высокой концентрации щелочи на выходе, когда увеличить расход анолита повышением гидростатического давления на диафрагме невозможно, а пробег анодов небольшой, диафрагму (катод) заменяют или промывают ее конденсатом. [c.104]

    Экранирование катода и однородность пленок. Обычно распылительная система монтируется таким образом, чтобы ионное распыление имело место лишь на одной стороне мишени. Это объясняется тем, что на обратной стороне часто располагаются охлаждающие змеевики, крепления и т. п,. распыление которых было бы весьма нежелательным. Кроме того, это обусловлено необходимостью экономии полного тока, подводимого к катоду. От нежелательного распыления чаще всего избавляются, применяя матал-лические экраны, и.меющие потенциал анода и располагаемые от катода на расстоянии, меньшем толщины катодного темного пространства [1]. Как уже отмечалось ранее, нельзя зажечь разряд между двумя поверхностями, разделенными промежутком, который был бы меньше катодного темного про-странства.Очевидно, что экран катода должен повторять все его контуры с тем, чтобы нигде не отстоять от катода дальше, чем на толщину катодного темного пространства. Если даже разряд, возникший где-либо внутри системы экран — катод, и не приведет к появлению распыленного материала в рабочем объеме, он может легко перерасти в дуговой разряд. Чтобы предотвратить распыление определенных участков катода, вместо экранирования их можно изолировать, покрыв диэлектрическим материалом. Однако при этом возникает опасность газовыделения придание же необходимой фор.мы диэлектрическому покрытию является несравнимо более сложной задачей, чем изготовление металлического экрана. Кроме того, часто возникают осложнения в связи с осаждением на диэлектрик распыляемого материала. [c.421]

    Спектральный анализ. Навеску пробы или эталона, равную 60 мг, помещают в кратер нижнего электрода и сжигают в дуге постоянного тока. Проба — анод, катод заточен на полусферу. Регистрацию спектров осуществляют на фотопластинках панхром для натрия и лития и И-780 —для калия. На одной фотопластинке снимают по три спектра проб и эталонов. Для определения лития сухую фотопластинку фотометрируют на микрофотометре МФ-2 по логарифмической щкале и замеряют суммарное почернение от излучения линии и фона и почернение фона. По данным, полученным для эталонов, строят калибровочный график в координатах разность почернений линий и фона — логарифм концентрации лития в эталоне, и по нему определяют содержание лития в пробе. Для определения содержания натрия и калия снимают профиль линии, полученной на спектрограмме, на фотопластинку микро , щель микрофотометра 30 мк, скорость записи 20 мм мин, масц таб 25 1. Пластинку проявляют в течение [c.30]

    Спектральный анализ. Пробы и эталоны в количестве 60 помещают в кратер графитового электрода диал етром 3,5 мм и глубиной 5 мм и сжигают в дуге постоянного тока. Проба-анод, катод заточен на полусферу. Спектры проб и эталонов по три раза каждый фотографируют на фотопластинки панхром для натрия и лития и на фотопластинки И-780 для калия. В связи с самопоглощением резонансных линий щелочных металлов расчет проводили по формуле, предложенной Спекировым [2]. Фотометрирование и расчет см. в статье Определение примесей в сплаве системы 51—Сг——Ре . Для анализа используют резонансные линии (А) натрий 5889,899, калий 7664,899 и литий 6707,844. [c.42]

    При определении кислорода в двуокиси свинца [889] образец помещают в платиновый контейнер и погружают в раствор гидроокиси натрия. В этот же раствор вводят платиновый анод (катодом служит контейнер), пропускают ток силой 1 а и измеряют катодный потенциал относительно электрода Hg/HgO/2,5 н. раствор NaOH. Разрядка деполяризатора согласно уравнения [c.114]

    Ионизационные кривые снимались в интервале разности потенциалов анод — катод от 7 до 35 е через 0,15 в. Потенциалы появления ионов определяли методом экстраполированных разностей [2] сравнение проводили между кривой эффективного выхода исследуемого иона и кривой эффективного выхода молекулярного иона бензола потенциал появления молекулярного иона бензола был принят равным 9,21 0,01 эв [3]. Бензол вводили в источник одновременно с исследуемым веществом. При определении потенциала появления иона СдН из тиофена в качестве репера применяли аргон (ионизационный потенциал 15,76 эв [4]), а бензол в прибор не вводили, так как при электронном ударе он также может дать ион С3Н3 .  [c.240]

    Определение по методу клиновидного] сдвоенного анода. Прибор состоит из трех металли- ческих пластин, которые закрепл5потся в виде клина. Клин является анодом. Катодом служат стенки ванны.  [c.22]

    Определение внутренних напряжений по методу изгиба производится следующим образом. Тонкая металлическая пластинка длиной в несколько сантиметров, испольуемая в качестве катода, неподвижно закрепляется с одного конца, в то время как другой конец ее может свободно перемещаться. В качестве анода применяется пластинка примерно такого же размера, которая закрепляется параллельно катоду на определенном расстоянии. Катод со стороны, противоположной аноду, покрывается тонким слоем изолирующего вещества (например, лака) для того, чтобы металл осаждался только на одной стороне его. По мере осаждения металла под действием внутренних напряжений, возникающих в осадке, происходит изгиб катодной пластинки. В зависимости от величины и знака внутренних напряжений осадка меняются величина и направление изгиба катода. [c.89]


Катод и анод в теории и практике – jelectro.ru

Катод – это электрод устройства, который подключен к отрицательному полюсу источнику тока. Анод – противоположность ему. Это электрод прибора, подключенный к положительному полюсу источника тока.

Окислительно-восстановительный процесс на электродах

Обратите внимание! Чтобы легче запомнить разницу между ними, используют шпаргалку. В словах «катод»-«минус», «анод»-«плюс» одинаковое число букв.

Применение в электрохимии

В этом разделе химии катод – это отрицательно заряженный электрический проводник (электрод), притягивающий к себе положительно заряженные ионы (катионы) во время процессов окисления и восстановления.

Электролитическое рафинирование – это электролиз сплавов и водных растворов. Большинство цветных металлов подвергаются такой очистке. При помощи электролитической очистки получается металл с высокой чистотой. Так, степень чистоты меди после рафинирования достигает 99,99%.

Электролиз меди

На положительном электрическом проводнике во время рафинирования или очистки проходит электролитический процесс. Во время него металл с примесями помещают в электролизер и делают анодом. Такие процессы проводятся при помощи внешнего источника электрической энергии и называются реакциями электролиза. Осуществляются в электролизерах. Он выполняет функцию электронасоса, нагнетающего отрицательно заряженные частицы (электроны) в отрицательный проводник и удаляющего его из анода. Откуда исходит ток, неважно.

На катоде очищается металл от посторонних примесей. Простой катод изготавливается из вольфрама, иногда – из тантала. Достоинством вольфрамового отрицательного электрода является стойкость его изготовления. Из недостатков – имеет низкую эффективность и неэкономичность. Сложные катоды имеют разное устройство. У многих таких типов проводников на чистый металл сверху наносится специальный слой, который активирует получение большей производительности при относительно низких температурах. Они очень экономичны. Их недостаток состоит в небольшой устойчивости производительности.

Готовый чистый металл тоже называется катодом. Например, цинковый или платиновый катод. На производстве отрицательный проводник отделяют от катодной основы при помощи катодосдирочных машин.

При удалении отрицательно заряженных частиц из электрического проводника на нем создается анод, а при нагнетании отрицательно заряженных частиц на электрический проводник – катод. При электролизе очищаемого металла его положительные ионы притягивают к себе отрицательно заряженные частицы на отрицательном проводнике, и происходит восстановительный процесс. Чаще всего используют такие аноды:

  • цинковые;
  • кадмиевые;
  • медные;
  • никелевые;
  • оловянные;
  • золотые;
  • серебряные;
  • платиновые.

Чаще всего на производстве используют цинковые аноды. Они бывают:

  • катанные;
  • литые;
  • сферические.

Больше всего применяют катанные цинковые аноды. Еще используют никелевые и медные. А вот кадмиевые почти не используются из-за их токсичности для экологии. Бронзовые и оловянные аноды применяют при изготовлении радиоэлектронных печатных плат.

Гальванизация (гальваностегия) – процесс нанесения тонкого слоя металла на другой предмет с целью предотвращения коррозии изделия, окисления контактов в электронике, износостойкости, декорации. Суть процесса такая же, как при рафинировании.

Цинк и олово используют для повышения стойкости изделия при коррозии. Цинкование бывает холодным, горячим, гальваническим, газотермическим и термодиффузионным. Золото используют в основном в защитно-декоративных целях. Серебро повышает стойкость контактов электроприборов к окислению. Хром – для увеличения износостойкости и защиты от коррозии. Хромирование придает изделиям красивый и дорогой вид. Используется для нанесения на ручки, краны, колесные диски и т.д. Процесс хромирования токсичен, поэтому строго регламентируется законодательством разных стран. Ниже на картинке представлен метод гальванизации при помощи никеля.

Никелирование чайника методом гальванизации

Применение в вакуумных электронных приборах

Здесь катод выступает источником свободных электродов. Они образуются в ходе их выбивания из металла при высоких температурах. Положительно заряженный электрод притягивает электроны, выпущенные отрицательным проводником. В разных аппаратах он в разной степени собирает их в себя. В электронных трубках он полностью притягивает отрицательно заряженные частицы, а в электронно-лучевых приборах – частично, формируя в завершении процесса электронный луч.

Маркировка

Стандартно катод маркируют как «-». Знак анода –  «+». А вот в гальванике, из-за того, что отрицательный заряд на проводнике снабжается не источником тока извне, а реакцией окисления металла, катод получит положительный заряд электрического проводника. Поэтому в аккумуляторах, когда ток меняет направление, происходит смена знаков «+» и «-».

Эти свойства катодов и анодов нашли широкое применение в промышленности при очистке металла и в гальваностегии.

Видео

Оцените статью:

физическая химия - положительный или отрицательный анод / катод в электролитической / гальванической ячейке

Анод - это электрод, в котором протекает реакция окисления

\ begin {align} \ ce {Красный -> Ox + e-} \ end {align}

происходит, в то время как катод является электродом, где протекает реакция восстановления

\ begin {align} \ ce {Ox + e- -> Красный} \ end {align}

имеет место. Вот как определяются катод и анод.

Гальванический элемент

Теперь в гальваническом элементе реакция протекает без помощи внешнего потенциала.Поскольку на аноде происходит реакция окисления, в результате которой образуются электроны, в ходе реакции накапливается отрицательный заряд, пока не будет достигнуто электрохимическое равновесие. Таким образом, анод отрицательный.

На катоде, с другой стороны, у вас есть реакция восстановления, которая потребляет электроны (оставляя положительные (металлические) ионы на электроде) и, таким образом, приводит к накоплению положительного заряда в ходе реакции до электрохимического равновесия. достигается.Таким образом, катод положительный.

Ячейка электролитическая

В электролитической ячейке вы прикладываете внешний потенциал, чтобы заставить реакцию идти в противоположном направлении. Теперь рассуждение обратное. На отрицательном электроде, где вы создали высокий электронный потенциал через внешний источник напряжения, электроны «выталкиваются» из электрода, тем самым уменьшая окисленные частицы $ \ ce {Ox} $, потому что уровень энергии электронов внутри электрода (Ферми Level) выше, чем уровень энергии НСМО $ \ ce {Ox} $, и электроны могут снизить свою энергию, занимая эту орбиталь - у вас, так сказать, очень реактивные электроны.Таким образом, отрицательный электрод будет тем, где будет происходить реакция восстановления, и, следовательно, это будет катод.

На положительном электроде, где вы создали низкий электронный потенциал через внешний источник напряжения, электроны «засасываются» в электрод, оставляя после себя восстановленные частицы $ \ ce {Red} $, потому что уровень энергии электронов внутри электрода (уровень Ферми ) ниже уровня энергии ВЗМО $ \ ce {Red} $. Таким образом, положительный электрод будет тем, где будет происходить реакция окисления, и, следовательно, это будет анод.

Сказка об электронах и водопадах

Поскольку существует некоторая путаница в отношении принципов, на которых работает электролиз, я попробую использовать метафору, чтобы объяснить это. Электроны текут из области с высоким потенциалом в область с низким потенциалом, подобно тому, как вода падает с водопада или стекает по наклонной плоскости. Причина та же: таким образом вода и электроны могут понижать свою энергию. Теперь внешний источник напряжения действует как две большие реки, соединенные с водопадами: одна на большой высоте, которая ведет к водопаду - это будет минусовой полюс - и одна на низкой высоте, которая ведет от водопада - это будет плюс. столб.Электроды будут похожи на точки реки незадолго до или после водопадов на этой картинке: катод похож на край водопада, на который падает вода, а анод похож на точку, в которую падает вода.

Хорошо, что происходит при реакции электролиза? На катоде у вас высотная ситуация. Так электроны устремляются к «краю своего водопада». Они хотят «упасть», потому что за ними река подталкивается к краю, оказывая какое-то «давление».Но куда они могут упасть? Другой электрод отделен от них раствором и обычно диафрагмой. Но есть молекулы $ \ ce {Ox} $, которые имеют пустые состояния, расположенные энергетически ниже состояния электрода. Эти пустые состояния похожи на небольшие пруды, лежащие на более низкой высоте, куда может упасть немного воды из реки. Таким образом, каждый раз, когда такая молекула $ \ ce {Ox} $ приближается к электроду, электрон использует возможность прыгнуть на нее и уменьшить ее до $ \ ce {Red} $. Но это не означает, что в электроде внезапно отсутствует электрон, потому что река немедленно заменяет «вытолкнутый» электрон.И источник напряжения (источник реки) не может исчерпать электроны, потому что он получает электроны из розетки.

Теперь анод: у анода у вас ситуация на малой высоте. Так что здесь река ниже всего. Теперь вы можете представить себе ВЗМО-состояния молекул $ \ ce {Red} $ в виде небольших барьерных озер, лежащих на большей высоте, чем наша река. Когда молекула $ \ ce {Red} $ приближается к электроду, это как будто кто-то открывает шлюзы плотины барьерного озера.Электроны перетекают из ВЗМО в электрод, образуя молекулу $ \ ce {Ox} $. Но электроны не остаются в электроде, так сказать, они уносятся рекой. А поскольку река такая огромная (много воды) и обычно впадает в океан, то небольшое количество «воды», которое добавляется к ней, не сильно меняет реку. Он остается неизменным, так что каждый раз, когда открывается наводнение, вода из барьерного озера будет падать на одно и то же расстояние.

электрохимия - катод + анод + аккумулятор

Меня смущает следующее с этой веб-страницы:

Катод - это оксид металла, а анод - из пористого углерода.Во время разряда ионы текут от анода к катоду через электролит и сепаратор; заряд меняет направление, и ионы текут от катода к аноду.

При разряде анод подвергается окислению или потере электронов, а катод - восстановлению или увеличению количества электронов. Заряд переворачивает движение.

Это говорит о том, что электрод из оксида металла всегда является катодом, а электрод из пористого углерода всегда является анодом. Насколько мне известно, это обозначение должно быть правильным при разряде, но наоборот при зарядке.Анодом всегда является электрод, выполняющий окисление, а катод - электрод, выполняющий восстановление.

Мое наивное понимание было бы таким:

  • Катод - электрод с полуреакцией восстановления. Анод - это электрод с полуреакцией окисления. Это актуально как для заряда / разряда.
  • Анод - это тот, который производит электроны, а катод принимает электроны. Это верно как для заряда / разряда.
  • При переключении между зарядом / разрядом окислительно-восстановительные реакции меняются местами, и обозначения катода / анода также меняются, чтобы сохранить катод == восстановление и анод == окисление.
  • Во время разряда аккумулятор функционирует как гальванический элемент, где окислительно-восстановительная реакция производит электрическую энергию, электроны опускаются по своему электрическому градиенту от отрицательного электрода к положительному. Анод - отрицательный электрод, катод - положительный электрод.
  • Во время зарядки аккумулятор функционирует как электролитическая ячейка, где электрическая энергия запускает неспонтанную окислительно-восстановительную реакцию, электроны поднимаются по своему электрическому градиенту от положительного электрода к отрицательному.Анод - это положительный электрод, катод - отрицательный электрод.
  • В литий-ионной батарее положительный электрод - это оксид металла, а отрицательный электрод - пористый углерод. Обозначения анода / катода меняются в зависимости от того, заряжается или разряжается батарея.

Помогите, пожалуйста, разобраться в этом.

физическая химия - Как правильно определить анод и катод?

Мы можем принять это определение - Катод - это электрод, который выбрасывает электроны в интересующий / исследуемый объект.Это справедливо как для электролитических, так и для гальванических элементов.

В электролитической ячейке раствор, в который погружены электроды, представляет собой интересующую область, а катод будет тем электродом, который выбрасывает электроны в раствор.

В гальваническом элементе интерес представляют полуэлементы (электроды, погруженные в их растворы солей металлов), в которых происходят химические реакции, ответственные за генерацию электрического тока, а не провод. В типичном гальваническом элементе, элементе Даниэля, мы можем видеть, что медный электрод будет катодом, поскольку он выбрасывает электроны в раствор CuSO4, восстанавливая ионы меди (II) до меди.

В эксперименте с электронно-лучевой трубкой интересующей областью будет ЭЛТ, и электроны выбрасываются из катода в трубку и падают на стекло за анодом.

Утверждение, что катод - это электрод, на котором происходит восстановление, немного вводит в заблуждение. Это потому, что окисление и восстановление происходят одновременно (должны). В ячейке Даниэля медный электрод является катодом, поскольку ионы Cu (II) восстанавливаются до Cu. При электролизе расплавленного KCl электрод, на котором ионы K (I) восстанавливаются до металла K, является катодом.Однако обратите внимание, что ионы K (I) во втором случае поступают из раствора, и электроды не обязательно должны быть сделаны из K, тогда как в ячейке Даниэля металлическая Cu является самим электродом. В одном случае мы говорим об уменьшении размера электрода, в то время как в другом мы говорим об уменьшении чего-либо, присутствующего вблизи электрода. Если помнить об этом, то мы могли бы вспомнить катод как электрод, на котором происходит восстановление.

Итак, суть в том, что важно знать интересующий объект / объект исследования, который отличается для гальванической и электролитической ячейки, поскольку катод и анод являются терминами, основанными на этом.

Редактировать: В гальваническом элементе катод положительный, потому что он выбрасывает электроны и становится положительным (электрод вначале нейтрален и достигает равновесия). В электролитической ячейке мы поддерживаем разность потенциалов на электродах и вызываем реакцию, при которой электроны перемещаются от отрицательного к положительному полюсу (будучи отрицательно заряженными, они чувствуют силу, противоположную направлению электрического поля), а катод имеет отрицательный полюс. полярность.

Помощь с анодами и катодами

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает или несколько ваших авторских прав, сообщите нам об этом, отправив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на ан Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как в виде ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \ достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем а ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание к какой конкретной части вопроса - изображению, ссылке, тексту и т. д. - относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Катод и анод - определение и разница между анодом и катодом

Что такое анод и катод?

Прежде чем мы познакомимся с терминами катод и анод, сначала нам необходимо понять, что такое электрод.Согласно общему определению электрод - это вещество, которое способствует проводимости электричества, при этом электрический ток либо выходит, либо входит в неметаллическую среду, такую ​​как электролитическая ячейка.

В чистом виде электрод можно определить как проводник, который помогает установить электрический контакт с неметаллической частью цепи. Электроды состоят из двух основных точек, называемых катодом и анодом, которые в основном описывают направление потока тока.

Объяснение анода и катода

Давайте обсудим, что именно означают катод и анод.Оба эти термина можно определить по течению тока. Таким образом, катод можно рассматривать как электрод, с которого ток выходит из поляризованного электрического устройства. Таким же образом анод можно описать как электрод, от которого ток входит в поляризованное электрическое устройство.

Термины «катод» и «анод» были окончательно определены в 1834 году Уильямом Уэвеллом. Он адаптировал слова из греческого слова (имя, катодос), «путь вниз» или «спуск». Уильям консультировался с Майклом Фарадеем при разработке терминов.

Графическое изображение катода и анода приведено ниже.

[Изображение скоро будет загружено]

Что такое катод?

Когда мы говорим о катоде в химии, можно сказать, что это электрод, на котором происходит восстановление. В электрохимической ячейке это обычное дело. Здесь катод дает отрицательные результаты из-за того, что электрическая энергия, подаваемая в элемент, приводит к разложению химических соединений. Однако можно также сказать, что он положительный, как и в случае гальванического элемента, где химическая реакция имеет тенденцию к выработке электрической энергии.

Кроме того, катодом называют либо холодный катод, либо горячий катод. Катод, который нагревается в присутствии нити накала для испускания электронов с помощью термоэлектронной эмиссии, называется горячим катодом, тогда как холодные катоды не нагреваются никакой нитью накала. В общем, катод помечается как «холодный», если он испускает больше электронов, чем те, которые генерируются только термоэлектронной эмиссией.

Что такое анод?

В самом общем виде анод в электрохимии определяется как точка, в которой происходит реакция окисления.Как правило, на аноде анионы или отрицательные ионы из-за своего электрического потенциала имеют тенденцию реагировать и испускать электроны. Затем эти электроны движутся вверх и попадают в цепь управления.

Если рассматривать гальванический элемент, анод имеет отрицательную природу, и в основном электроны движутся к внешней части цепи. Тогда как в электролитической ячейке он снова дается как положительный. Кроме того, анодом может быть проволока или пластина, имеющая избыточный положительный заряд.

Давайте обсудим некоторые ключевые различия между анодом и катодом:

Разница между анодом и катодом

анод, где электродом является электричество. вытекает или выдано.

Катод

Анод

Анод - это электрод, в который проникает электричество.

Катод - это электрод с отрицательной стороной.

Анод - это электрод с положительной стороной.

Катод действует как акцептор электронов.

Анод действует как донор электронов.

Реакция восстановления происходит на катоде в электролитической ячейке.

На аноде электролитической ячейки происходит реакция окисления.

Катод может стать анодом в гальванических элементах.

Анод может стать катодом в гальванических элементах.

Заряд на аноде и катоде

На аноде наблюдается реакция окисления. Окисленные частицы потеряют электроны, оставив на этом электроде скопление электронов. Таким образом, анод заряжен отрицательно.

Но, в отличие от катода, существует реакция восстановления, при которой разновидности уменьшенных частиц будут получать электроны.Следовательно, электрод, то есть катод, лишен электронов и, таким образом, заряжен положительно.

Причина, по которой катод отрицательный, а анод положительный

Это связано с тем, как они были определены изначально, что датируется временем до открытия электронов. Катод был образован от греческого слова «kathodos», что означает «путь вниз», как терминала, с которого обычный ток («течет» от положительного электрода к отрицательному, противоположно направлению движения электронов) покидает устройство (с анод является выводом, куда входит обычный ток).

Катод не всегда бывает положительным или отрицательным. Но в разряженной батарее катод действует как положительный вывод, в то время как в вакуумной лампе или диоде катод действует как отрицательный вывод, поскольку обычный ток входит в них через анод или положительный вывод.

Заряды катода и анода гальванического элемента

Окислительно-восстановительные реакции в обоих полуэлементах гальванического элемента являются спонтанными. На катоде происходит восстановление, создавая положительный заряд и расходуя электроны.В то время как на аноде происходит реакция окисления, и избыточные электроны создают отрицательный заряд.

Electrolytic Cells - Chemistry LibreTexts

Вольтаические элементы приводятся в действие спонтанной химической реакцией , которая производит электрический ток через внешнюю цепь. Эти элементы важны, потому что они являются основой для батарей, питающих современное общество. Но это не единственный вид электрохимической ячейки. В каждом случае обратная реакция не является спонтанной и требует для возникновения электрической энергии.

Введение

Общий вид реакции можно записать как:

\ [\ underset {\ longleftarrow \ text {Non spontaneous}} {\ overset {\ text {Spontaneous} \ longrightarrow} {\ text {Reactants} \ rightleftharpoons \ text {Products} + \ text {Электрическая энергия}}} \ ]

Можно построить ячейку, которая работает с химической системой, пропуская через систему электрический ток. Эти ячейки называются электролитическими ячейками . Электролитические элементы, как и гальванические элементы, состоят из двух полуэлементов: один - полуэлемент восстановления, другой - полуэлемент окисления.Однако направление потока электронов в электролитических ячейках может быть изменено на противоположное по сравнению с направлением спонтанного потока электронов в гальванических ячейках, но определение катода и анода остается прежним, где восстановление происходит на катоде, а окисление происходит на аноде. . Поскольку направления обеих полуреакций поменялись местами, изменился знак, но не величина потенциала клетки.

Электролитические ячейки очень похожи на гальванические (гальванические) ячейки в том смысле, что оба требуют солевого моста, оба имеют катодную и анодную стороны, и оба имеют постоянный поток электронов от анода к катоду.Однако между двумя ячейками есть и разительные различия. Основные отличия указаны ниже:

Рисунок \ (\ PageIndex {1} \): Электрохимические элементы. Гальванический элемент (слева) преобразует энергию, выделяемую в результате спонтанной окислительно-восстановительной реакции, в электрическую энергию, которую можно использовать для выполнения работы. Окислительные и восстановительные полуреакции обычно протекают в отдельных отсеках, которые соединены внешней электрической цепью; Кроме того, второе соединение, которое позволяет ионам перемещаться между отсеками (показано здесь вертикальной пунктирной линией, обозначающей пористый барьер), необходимо для поддержания электрической нейтральности.Разность потенциалов между электродами (напряжение) заставляет электроны течь от восстановителя к окислителю через внешнюю цепь, генерируя электрический ток. В электролитической ячейке (справа) внешний источник электроэнергии используется для создания разности потенциалов между электродами, которая заставляет электроны течь, вызывая неспонтанную окислительно-восстановительную реакцию; в большинстве приложений используется только один отсек. В обоих типах электрохимических ячеек анод является электродом, на котором происходит полуреакция окисления, а катод - электродом, на котором происходит полуреакция восстановления.

Таблица \ (\ PageIndex {1} \): Свойства гальванических и электрохимических элементов
Электрохимический элемент (гальванический элемент) Электролитическая ячейка
Гальванический элемент преобразует химическую энергию в электрическую. Электролитическая ячейка преобразует электрическую энергию в химическую.
Здесь окислительно-восстановительная реакция является спонтанной и отвечает за производство электроэнергии. Окислительно-восстановительная реакция не является спонтанной, и для ее инициирования необходимо подавать электрическую энергию.
Две полуячейки размещены в разных контейнерах, соединенных соляным мостиком или пористой перегородкой. Оба электрода помещены в одну емкость в растворе расплавленного электролита.
Здесь анод отрицательный, а катод положительный.Реакция на аноде является окислительной, а на катоде - восстановительной. Здесь анод положительный, а катод отрицательный. Реакция на аноде является окислительной, а на катоде - восстановительной.
Электроны поставляются окисляющимися частицами. Они перемещаются от анода к катоду во внешней цепи. Внешняя батарея питает электроны. Они входят через катод и выходят через анод.

Ячейки электролитические

Чтобы объяснить, что происходит в электролитической ячейке, давайте рассмотрим разложение расплавленного хлорида натрия на металлический натрий и газообразный хлор. Реакция написана ниже.

---------> Несамопроизвольное (электролитическая ячейка)

2 Na Cl (л)

2 Na (с)

+

Класс 2 (г)

<--------- Самопроизвольное (электрохимическая ячейка)

Если расплавленный \ (NaCl _ {(l)} \) помещается в контейнер и вставляются инертные электроды \ (C _ {(s)} \), прикрепленные к положительной и отрицательной клеммам батареи, произойдет электролитическая реакция.- \]

  • Обратите внимание, что местом окисления остается анод, а местом восстановления остается катод, но заряды на этих двух электродах меняются местами. Анод теперь заряжен на положительных, и катод на отрицательных, заряженных.
  • Условия, в которых работает электролитическая ячейка, очень важны. Вещество, которое является самым сильным восстановителем (вещество с наивысшим стандартным значением потенциала клетки в таблице), подвергнется окислению.Вещество, которое является сильнейшим окислителем, будет восстановлено. Если бы в вышеупомянутой системе использовался водный раствор хлорида натрия, вместо натрия восстанавливался бы водород, поскольку он является более сильным окислителем, чем натрий.
  • Прогнозирование реакции электролиза

    Существует четыре основных фактора, которые определяют, будет ли проводиться электролиз, даже если внешнее напряжение превышает расчетную величину:

    1. Перенапряжение или превышение напряжения иногда необходимо для преодоления взаимодействий на поверхности электрода.Чаще это случается с газами. Например. H 2 (g) требует перенапряжения 1,5 В, в то время как Pt (s) требует перенапряжения 0 В
    2. Может иметь место более одной электродной реакции, что означает, что может быть более одной полуреакции, оставляя две или более возможностей для реакции ячейки.
    3. Реагенты могут находиться в нестандартных условиях, что означает, что напряжение для полуэлементов может быть меньше или больше, чем количество в стандартных условиях.Например:
    • Концентрация хлорид-иона = 5,5M, а не единица активности 1M. Это означает, что уменьшение хлорида = 1,31 В, а не 1,36 В
    • Стандартное условие - иметь pH 4 в анодной полуячейке, но иногда в нестандартных состояниях pH может быть выше или ниже при изменении напряжения.
    1. Способность инертного электрода к электролизу зависит от реагентов в растворе электролита, в то время как активный электрод может работать сам по себе для проведения полуреакции окисления или восстановления.

      Если учесть все четыре из этих факторов, мы сможем успешно предсказать половинные реакции электрода и общие реакции при электролизе.

      Упражнение \ (\ PageIndex {1} \)

      Предскажите электродные реакции и общую реакцию, если анод изготовлен из (а) меди и (б) платины.

      Количественные аспекты электролиза

      Майкл Фарадей обнаружил в 1833 году, что всегда существует простая взаимосвязь между количеством вещества, производимого или потребляемого на электроде во время электролиза, и количеством электрического заряда Q , который проходит через элемент.- \ rightarrow Ag \]

      говорит нам, что когда 1 моль Ag + наносится на 1 моль Ag, с катода должен поступать 1 моль e -. Поскольку отрицательный заряд одного электрона, как известно, составляет 1,6022 × 10 –19 Кл, мы можем умножить его на постоянную Авогадро, чтобы получить заряд на моль электронов. Эта величина называется Константа Фарадея , символ F :

      .

      F = 1,6022 × 10 –19 C × 6,0221 × 10 23 моль –1 = 9.-} \) и \ (Q \).

      Часто в экспериментах по электролизу измеряется электрический ток, а не количество электрического заряда. Поскольку кулон определяется как количество заряда, которое проходит через фиксированную точку в электрической цепи, когда ток в один ампер течет в течение одной секунды, заряд в кулонах можно рассчитать, умножив измеренный ток (в амперах) на время (в секундах), в течение которого он течет:

      \ [Q = It \]

      В этом уравнении I представляет ток, а t представляет время.Если вы помните, что

      кулон = 1 ампер × 1 секунда 1 C = 1 А с

      можно настроить единицы времени для получения правильного результата. Теперь, когда мы можем предсказать полуреакции электрода и общие реакции при электролизе, также важно иметь возможность рассчитать количество потребляемых реагентов и произведенных продуктов. Для этих расчетов мы будем использовать постоянную Фарадея:

      1 моль электрона = 96,485 C

      заряд ( C ) = ток ( C / s ) x время (с)

      ( C / s ) = 1 кулон заряда в секунду = 1 ампер ( A )

      Простое преобразование для любого типа задач:

      1. Преобразование любого заданного времени в секунды
      2. Возьмите заданный ток ( A, ) в секундах, [1 c = (A) / (s)]
      3. Наконец, используйте преобразование стехиометрии 1 моль электрона = 96 485 C (постоянная Фарадея)

      Пример \ (\ PageIndex {1} \)

      Электролиз растворенного образца брома можно использовать для определения количества брома в образце.- \]. Какую массу брома можно отложить за 3 часа при токе 1,18 А?

      Решение :

      3,00 часа x 60 мин / час x 60 сек / 1 мин x 1,18 C (A) /1 сек x 1 моль - / 96,485 C

      = 0,132 моль -

      Проблемы

      1) Предскажите продукты электролиза, заполнив график:

      Cl - , Br - , I - , H + , OH - , Cu 2+ , Pb 2+ , Ag +, K + , Na + ,

      2) Рассчитайте количество электрического заряда, необходимого для пластины 1.386 моль Cr из кислого раствора K 2 Cr 2 O 7 согласно полууравнению

      H 2 Cr 2 O 7 ( водн. ) + 12H + ( водн. ) + 12 e - → 2Cr ( s ) + 7 H 2 O ( л )

      3) Пероксид водорода, H 2 O 2 , может быть получен электролизом холодной концентрированной серной кислоты. Реакция на аноде

      2H 2 SO 4 → H 2 S 2 O 8 + 2H + + 2 e -

      Когда полученная пероксидисерная кислота, H 2 S 2 O 8 , кипятится при пониженном давлении, она разлагается:

      2H 2 O + H 2 S 2 O 8 → 2H 2 SO 4 + H 2 O 2

      Рассчитайте массу перекиси водорода, образовавшейся при токе 0.893 потока за 1 час.

      4) Электролиз растворенного образца холрида можно использовать для определения количества хлорида в образце. На катоде полуреакция восстановления равна Cl 2 + (водн.) + 2 e - -> 2 Cl - . Какую массу хлорида можно отложить за 6,25 часа током 1,11 А?

      5) В электролитической ячейке электрод, на котором электроны входят в раствор, называется ______; химическое изменение, которое происходит на этом электроде, называется _______.

      1. анод, оксидирование
      2. анод редукционный
      3. катод, оксидирование
      4. катод, редукция
      5. не может сказать, если мы не знаем, какие виды окисляются и восстанавливаются.

      6) Как долго (в часах) должен поддерживаться ток 5,0 ампер на гальванической пластине 60 г кальция из расплавленного CaCl 2 ?

      1. 27 часов
      2. 8,3 часа
      3. 11 часов
      4. 16 часов
      5. 5.9 часов
      7) Сколько времени в часах потребуется для гальваники 78 г платины из раствора [PtCl 6 ] 2 - при среднем токе 10 ампер при КПД электрода 80%?
      1. 8,4
      2. 5,4
      3. 16,8
      4. 11,2
      5. 12,4

      8) Сколько фарадеев необходимо, чтобы восстановить 1,00 г алюминия (III) до металлического алюминия?

      1. 1.00
      2. 1,50
      3. 3,00
      4. 0,111
      5. 0,250

      9) Найдите стандартный потенциал ячейки для электрохимической ячейки с помощью следующей реакции ячейки.

      Zn (тв.) + Cu 2+ (водн.) → Zn 2+ (водн.) + Cu (т.)

      ответов

      1) . Cl - хлор H + водород

      Cl - хлор Cu 2+ медь

      I - йод H + водород

      2) 12 моль e - требуется для получения 2 моль Cr, что дает нам стехиометрическое соотношение S ( e - / Cr).Затем можно использовать постоянную Фарадея для определения количества заряда.

      n Cr n e - Q

      Q = 1,386 моль Cr × × = 8,024 × 10 5 C

      3) Произведение тока и времени дает нам количество электричества, Q . Зная это, мы легко вычисляем количество электронов, n e -. Затем из первого полууравнения мы можем найти количество пероксидисерной кислоты, а второе приводит к n h3O2 и, наконец, к m h3O2 .

      = 05666 × г H 2 O 2 = 0,5666 г H 2 O 2

      4) 0,259 моль -

      5) г

      6) г

      7) б

      8) г

      9) Напишите полуреакции для каждого процесса.

      Zn (s) → Zn 2+ (водн.) + 2 e -

      Cu 2+ (водн.) + 2 e - → Cu (s)

      Найдите стандартные потенциалы полуреакции восстановления.

      E o восстановление Cu2 + = + 0,339 В

      E o восстановление Zn2 + = - 0,762 В

      Определите общий потенциал стандартной ячейки.

      E o ячейка = + 1,101 V

      Список литературы

      1. Петруччи и др. Общая химия: принципы и современные приложения. 9 изд. Река Аппер Сэдл, Нью-Джерси: Pearson / Prentice Hall, 2007.
      2. Кольбе, Германн. Электролиз органических соединений.Эдинбург: Э. и С. Ливингстон, 1947.
      3. Стюарт, A.T. «Электролиз воды». Производство водорода 13 мая 2001 г.
      4. Также все упомянутые "внешние ссылки".

      Авторы и указание авторства

      • Жасмин Брионес, Калифорнийский университет в Дэвисе 2012

      Voltaic Cells - Chemistry LibreTexts

      В окислительно-восстановительных реакциях электроны передаются от одного вида к другому. Если реакция спонтанная, высвобождается энергия, которую затем можно использовать для полезной работы.Чтобы использовать эту энергию, реакция должна быть разделена на две отдельные половинные реакции: реакции окисления и восстановления. Реакции помещаются в два разных контейнера, и для перемещения электронов с одной стороны на другую используется проволока. При этом создается вольтово-гальванический элемент .

      Введение

      Когда происходит окислительно-восстановительная реакция, электроны передаются от одного вида к другому. Если реакция спонтанная, высвобождается энергия, которую можно использовать для работы.-_ {3 \; (aq)} \) ионы. Ионы NO 3 - (водн.) можно игнорировать, поскольку они являются ионами-наблюдателями и не участвуют в реакции. В этой реакции медный электрод помещают в раствор, содержащий ионы серебра. Ag + (водный) будет легко окислять Cu (s) , что приводит к Cu 2 + (водный), , восстанавливаясь до Ag (s) .

      Эта реакция высвобождает энергию. Однако когда твердый медный электрод помещают непосредственно в раствор нитрата серебра, энергия теряется в виде тепла и не может использоваться для выполнения работы.Чтобы обуздать эту энергию и использовать ее для полезной работы, мы должны разделить реакцию на две отдельные половинные реакции; Реакции окисления и восстановления. Проволока соединяет две реакции и позволяет электронам перемещаться с одной стороны на другую. При этом мы создали гальванический / гальванический элемент .

      Рисунок \ (\ PageIndex {1} \): Гальванический элемент

      Гальванический элемент (также известный как гальванический элемент) - это электрохимический элемент, в котором для выработки электричества используются спонтанные окислительно-восстановительные реакции.Он состоит из двух отдельных полуэлементов . Полуячейка состоит из электрода (полоски металла, M) в растворе, содержащем ионы M n + , в которых M представляет собой любой произвольный металл. Две полуэлементы связаны между собой проводом, идущим от одного электрода к другому. Соляной мостик также соединяется с полуячейками. Функции этих частей обсуждаются ниже.

      Полуэлементы

      Половина окислительно-восстановительной реакции происходит в каждой половине ячейки. Следовательно, можно сказать, что в каждой полуячейке происходит полуреакция.Когда две половинки соединяются вместе с помощью проволоки и соляного мостика, создается электрохимическая ячейка.

      Электроды

      Электрод - это металлическая полоска, на которой происходит реакция. В гальваническом элементе окисление и восстановление металлов происходит на электродах. В гальванической ячейке два электрода, по одному в каждой полуячейке. Катод - это место, где происходит восстановление, а окисление происходит на аноде .

      В электрохимии эти реакции протекают на металлических поверхностях или на электродах . Между металлом и веществами в растворе устанавливается окислительно-восстановительное равновесие. Когда электроды погружаются в раствор, содержащий ионы того же металла, он называется полуячейкой . Электролиты - это ионы в растворе, обычно в жидкости, который проводит электричество за счет ионной проводимости. Между атомами металла на электроде и ионными растворами могут происходить два возможных взаимодействия.

      1. Ион металла M n + из раствора может столкнуться с электродом, получив от него n электронов, и преобразоваться в атомы металла.Это означает, что ионы восстанавливаются.
      2. Атом металла на поверхности может потерять «n» электронов на электрод и войти в раствор в виде иона M n + , что означает, что атомы металла окисляются.

      Когда электрод окисляется в растворе, он называется анодом , а когда электрод восстанавливается в растворе. он называется катодом .

      • Анод : На аноде происходит реакция окисления.Другими словами, здесь металл теряет электроны. В приведенной выше реакции анодом является Cu (s), поскольку его степень окисления увеличивается от 0 до +2.
      • Катод : Катод - это место, где происходит реакция восстановления. Здесь металлический электрод получает электроны. Возвращаясь к приведенному выше уравнению, катодом является Ag, поскольку его степень окисления уменьшается с +1 до 0.

      Вспоминая окисление и восстановление

      Когда дело доходит до окислительно-восстановительных реакций, важно понимать, что означает «окисление» или «восстановление» металла.+ _ {(aq)} \) получает электрон, что означает его сокращение. \ (Cu _ {(s)} \) теряет два электрона и окисляется.

      Соляной мостик - жизненно важный компонент любого гальванического элемента. Это трубка, заполненная раствором электролита, например KNO 3 (s) или KCl (s) . Назначение солевого мостика - поддерживать электрическую нейтральность растворов и обеспечивать свободный поток ионов от одной ячейки к другой. Без солевого мостика вокруг электродов будут накапливаться положительные и отрицательные заряды, что приведет к остановке реакции.

      Назначение солевого мостика - поддерживать электрическую нейтральность растворов и обеспечивать свободный поток ионов от одной ячейки к другой.

      Поток электронов

      Электроны всегда текут от анода к катоду или от полуячейки окисления к полуэлементу восстановления. С точки зрения ячейки E o полуреакций, электроны будут течь от более отрицательной половины реакции к более положительной половине реакции. Схема ячейки - это изображение электрохимической ячейки.На рисунке ниже показана диаграмма ячеек для гальваники, показанная на рисунке \ (\ PageIndex {1} \) выше.

      Рисунок \ (\ PageIndex {2} \): Диаграмма ячеек . На рисунке ниже показана диаграмма ячеек для гальваники, показанная на рисунке \ (\ PageIndex {1} \).

      При рисовании диаграммы ячеек мы придерживаемся следующих соглашений. Анод всегда размещается на левой стороне , а катод размещается на правой стороне . Соляной мост изображен двойными вертикальными линиями (||).o_ {cell} \) для гальванической ячейки, образованной каждой реакцией.

    Решение

    1.a) Ba 2+ (водн.) → Ba (s) + 2e- с SRP (для противоположной реакции) E o = -2,92 В (анод; где происходит окисление)

    Cu 2+ (водн.) + 2e- → Cu (s) с SRP E o = +0,340 В (катод; там, где происходит восстановление)

    1.b) Al 3+ (водн.) → Al (s) + 3e - с SRP (для противоположной реакции) E o = -1.66 В (анод; там, где происходит окисление)

    Sn 2+ (вод.) + 2e - → Sn (s) с SRP E o = -0,137 В (катод; где происходит восстановление)

    2.a) Ba 2+ (водн.) | Ba (s) || Cu (s) | Cu 2+ (водн.)

    2.b) Al (s) | Al 3+ (водн.) || Sn 2+ (водн.) | Sn (с)

    3.а) E o ячейка = 0,34 - (-2,92) = 3,26 В

    3.b) E o ячейка = -0,137 - (-1,66) = 1,523 В

    Напряжение ячейки / потенциал ячейки

    Показания вольтметра дают реактивное напряжение ячейки или разность потенциалов между двумя двумя полуячейками. Напряжение ячейки также известно как потенциал ячейки или электродвижущая сила (ЭДС) и обозначается символом \ (E_ {cell} \).о_ {анод} \]

    Значения E o сведены в таблицу для всех растворенных веществ при 1 M и всех газов при 1 атм. Эти значения называются стандартными потенциалами восстановления . Каждая полуреакция имеет различный восстановительный потенциал, разность двух восстановительных потенциалов дает напряжение электрохимической ячейки. Если ячейка E o положительна, реакция является спонтанной, и это гальваническая ячейка. Если ячейка E o отрицательная, реакция не является спонтанной и называется электролитической ячейкой.

    Список литературы

    1. Брэди, Джеймс Э., Холум, Джон Р. «Химия: исследование материи и ее изменений», John Wiley & Sons Inc 1993
    2. Браун, Теодор Л., Лемей, Х. Юджин-младший. Третье издание «Химия: центральная наука», Прентис-Холл, Инк. Энглвуд Клиффс, Нью-Джерси 07632 1985
    3. Браун, Теодор Л., Лемей, Х. Юджин-младший, Бурстен, Брюс Э. «Химия: центральная наука», пятое издание, Prentice-Hall, Inc., Энглвуд Клиффс, Нью-Джерси 07632 1991
    4. Гессер, Хайман Д.«Описательные принципы химии», C.V. Компания Мосби 1974
    5. Харвуд, Уильям, Херринг, Джеффри, Мадура, Джеффри и Петруччи, Ральф, Общая химия: принципы и современные приложения, девятое издание, Аппер-Сэдл-Ривер, Нью-Джерси, Pearson Prentice Hall, 2007.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *