Содержание

Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения

Калькулятор нарисует принципиальную и монтажную схему одного светодиода с ограничительным резистором или светодиодного массива, состоящего из нескольких параллельных ветвей светодиодов, с последовательно включенным ограничительным резистором. Если вы только начинаете изучать электронику или учитесь в техническом университете, вы можете использовать этот калькулятор для изучения светодиодов. Если же вы не в первый раз разрабатываете массив светодиодов, воспользуйтесь им для проверки своих расчетов. И конечно, этот и другие калькуляторы на TranslatorsCafe.com пригодятся всем, кто хочет изучить технический английский, так как все они есть и в английской версии.

Пример: Рассчитать последовательно-параллельный массив, состоящий из 30 красных светодиодов с прямым напряжением 2 В и прямым током 20 мА для напряжения источника 12 В.

Входные данные

Напряжение источника питания

VsВ

Напряжение источника питания должно быть выше прямого напряжения светодиода и менее 250 В.

Прямой ток светодиода

IfмА

Для питания мощных светодиодов необходимо использовать стабилизаторы тока, а не ограничительные резисторы.

Выберите тип светодиода

Выберите тип светодиодаинфракрасныйкрасныйзелёныйжёлтыйоранжевый/янтарныйсинийбелыйдругой

или Прямое напряжение светодиода

VfВ

Количество светодиодов в массиве

Nt

Количество светодиодов в цепи последовательно включенных светодиодов с ограничительным резистором. Если этот параметр не задан, он будет рассчитан автоматически.

Ns

Число светодиодов в цепи последовательно включенных светодиодов не должно быть больше {0} для заданных напряжения источника питания и прямого напряжения светодиода.

Выходные данные

Такая схема имеет слишком низкий КПД из-за большой мощности, рассеиваемой на одном или нескольких ограничительных резисторах.

Массив {0} x {1}, всего светодиодов {2}

Число светодиодов в одной цепи {0}

Принципиальная схема

Монтажная схема

Номинал и максимальная рассеиваемая мощность резистора для последовательной цепи с максимальным для данного напряжения питания количеством светодиодов:

Общая мощность, рассеиваимая на всех ограничительных резисторах:

Общая мощность, рассеиваемая всеми светодиодами:

Общая мощность, потребляемая массивом светодиодов:

Ток, потребляемый от источника питания:

Количество светодиодов в матрице:

Количество последовательных ветвей, соединенных параллельно:

Количество светодиодов в последовательной ветви с макс. количеством светодиодов:

Количество светодиодов в дополнительной ветви с количеством светодиодов, меньшим максимального:

Определения и формулы для расчета

Одиночный светодиод

Светодиод (светоизлучающий диод) — полупроводниковый источник излучения в оптическом диапазоне с двумя или более выводами. Монохромные светодиоды обычно имеют два вывода, двухцветные — два или три вывода, трехцветные снабжены четырьмя выводами. Светодиод излучает свет, если к его вывода приложено определенное прямое напряжение.

Обычный инфракрасный светодиод и его условное обозначение на принципиальных схемах (на российских принципиальных схемах светодиоды изображают без разрыва проводника). Квадратный кристалл светодиода установлен на отрицательном электроде (катоде). К положительному электроду (аноду) кристалл подключается с помощью тонкого проводника.

Для подключения светодиода к источнику питания можно использовать простую схему с последовательно включенным токоограничительным резистором. Резистор необходим в связи с тем, что падение напряжение на светодиоде является постоянным в относительно широком диапазоне рабочих токов.

Цвета светодиодов, материал полупроводника, длина волны и падение напряжения
ЦветМатериал полупроводникаДлина волныПадение напряжения
ИнфракрасныйАрсенид галлия (GaAs)850-940 нм
КрасныйАрсенид-фосфид галлия (GaAsP)620-700 нм1.6—2.0 В
ОранжевыйАрсенид-фосфид галлия (GaAsP)590-610 нм2.0—2.1 В
ЖелтыйАрсенид-фосфид галлия (GaAsP)580-590 нм2.1—2.2 В
ЗеленыйФосфид алюминия-галлия (AlGaP)500-570 нм1.9—3.5 В
СинийНитрид индия-галлия (InGaN)440-505 нм2.48—3.6 В
БелыйДиоды с люминофором или трехцветные RGBШирокий спектр2.8—4.0 В

Поведение светодиодов и резисторов в схемах отличается. В соответствии с законом Ома, резисторы имеют линейную зависимость падения напряжения от протекающего через них тока:

Вольтамперные характеристики типичных светодиодов различных цветов

Если напряжение на резисторе увеличивается, ток также пропорционально увеличивается (здесь мы предполагаем, что величина сопротивления резистора остается постоянной). Светодиоды ведут себя не так. Их поведение соответствует поведению обычных диодов. Вольтамперные характеристики светодиодов разного цвета приведены на рисунке. Они показывают, что ток через светодиод не прямо пропорционален падению напряжения на светодиоде. Видно, что имеется экспоненциальная зависимость тока от прямого напряжения. Это означает, что при небольшом изменении напряжения ток может измениться очень сильно.

Если прямое напряжение на светодиоде невелико, его сопротивление очень большое и светодиод не горит. При превышении указанного в технических характеристиках порогового уровня светодиод начинает светиться и его сопротивление быстро падает. Если приложенное напряжение превышает рекомендуемую величину прямого напряжения, которое может быть в пределах 1,5—4 В для светодиодов различных цветов, ток через светодиод резко растет, что может привести к выходу его из строя. Для ограничения этого тока, последовательно со светодиодом включают резистор, который ограничивает ток таким образом, что он не превышал рабочий ток, указанный в характеристиках светодиода.

Формулы для расчетов

Светодиод в прямоугольном корпусе с плоским верхом применяется, например, для индикаторов уровня

Ток через ограничительный резистор Rs можно рассчитать по формуле закона Ома, в которой из напряжения питания Vs вычитается прямое падение напряжения на светодиоде Vf:

Здесь Vs напряжение источника питания в вольтах (например, 5 В от шины USB), Vf прямое падение напряжения на светодиоде и I прямой ток через светодиод в амперах. Значения Vf и If приводятся в технических характеристиках светодиода. Типичные значения

Vf показаны выше в таблице. Типичный ток индикаторных светодиодов 20 мА.

После расчета сопротивления резистора, из ряда номиналов сопротивлений выбирается ближайшее большее стандартное значение. Например, если расчет показывает, что нужен резистор Rs = 145 ом, мы (и калькулятор) выберем резистор Rs = 150 ом.

Токоограничительный резистор рассеивает определенную мощность, которая рассчитывается по формуле

Оранжевые светодиоды обычно используются в маршрутизаторах для указания скорости обмена 10/100 Мбит/с. Зеленые светодиоды горят при скорости 1000 Мбит/с

Для надежной работы резистора его мощность выбирается вдвое выше расчетой. Например, если по формуле получилось 0,06 Вт, мы выберем резистор на 0,125 Вт.

А теперь рассчитаем эффективность работы нашей схемы (ее КПД), который покажет какой процент мощности, отдаваемой источником питания, потребляется светодиодом. На светодиоде рассеивается такая мощность:

Тогда общее потребление будет равно

КПД схемы включения светодиода с ограничительным резистором:

Для выбора источника питания необходимо рассчитать ток, который он должен отдавать в схему. Это делается по формуле:

Светодиодная лента со светодиодами типа 5050; цифры 50 и 50 означают длину и ширину микросхемы в миллиметрах; токоограничительные резисторы 150 ом уже установлены на ленте последовательно со светодиодами

Светодиодные массивы

Одиночный светодиод можно зажигать с помощью токоограничительного резистора. Однако для питания светодиодных массивов, которые все чаще используются для освещения, подсветки в телевизорах и компьютерных мониторах, в рекламе и для других целей, необходимы специализированные источники питания. Мы все привыкли к источникам, выдающим стабилизированное напряжение питания. Однако, для питания светодиодов нужны источники, в которых стабилизируется ток, а не напряжение. Однако и с такими источниками ограничительные резисторы все равно устанавливают.

Если нужно изготовить светодиодный массив, используют несколько последовательных светодиодных цепей, соединенных параллельно. Для цепи из последовательных светодиодов необходим источник питания с напряжением, которое превышает сумму падений напряжений на отдельных светодиодах. Если его напряжение выше этой суммы, необходимо включить в цепь один токоограничительный резистор. Через все светодиоды течет одинаковый ток, что (до определенной степени) позволяет получить одинаковую яркость.

Однако если один из светодиодов в цепи откажет так, что он будет в обрыве (именно такой отказ чаще всего и происходит), вся цепочка светодиодов погаснет. В некоторых схемах и конструкциях для предотвращения таких отказов вводят особый шунт, например, ставят стабилитрон параллельно каждому диоду. Когда диод сгорает, напряжение на стабилитроне становится достаточно высоким и он начинает проводить ток, обеспечивая работу исправных светодиодов. Этот подход хорош для маломощных светодиодов, однако в схемах, предназначенных для наружного освещения, нужны более сложные решения. Конечно, это приводит к увеличению стоимости и габаритов устройств. Сейчас (в 2018 году) можно наблюдать, что светодиодные фонари на улицах, при планируемом сроке службы в 10 лет служат не более года. То же относится и к бытовым светодиодным лампам, в том числе и производителей с известными именами.

Полоса светодиодов, используемая для подсветки телевизионного ЖК -дисплея. Такая полоска устанавливается с двух сторон панели дисплея. Данная конструкция позволяет делать очень тонкие дисплеи. Отметим, что телевизионные ЖК-дисплеи со светодиодной подсветкой, которые обычно продаются под названием LED TV, то есть «светодиодные телевизоры» таковыми на самом деле не являются. В настоящих светодиодных телевизорах (OLED TV) используются светодиодные графические экраны на органических светодиодах и стоят они значительно дороже телевизоров с ЖК-дисплеем.

При расчете требуемого сопротивления токоограничительного резистора Rs, все падения напряжения на каждом светодиоде складываются. Например, если падение напряжения на каждом из пяти соединенных последовательно горящих светодиодов составляет 2 В, то полное падение напряжение на всех пяти будет 2 × 5 = 10 В.

Несколько идентичных светодиодов можно соединять и параллельно. У параллельно соединенных светодиодов прямые напряжения Vf должны быть одинаковыми — иначе в них не будут протекать одинаковые токи и их яркость будет различной. Если светодиоды соединяются параллельно, очень желательно ставить токоограничительный резистор последовательно с каждым из них. При параллельном соединении отказ одного светодиода, при котором он будет в обрыве, не приведет к выходу из строя всего массива — он будет работать нормально. Другой проблемой параллельного соединения является выбор эффективного источника питания, обеспечивающего большой ток при низком напряжении. Такой источник питания будет стоить намного больше, чем источник той же мощности, но на высокое напряжение и меньший ток.

В этом обычном уличном фонаре 8 параллельных цепей из пяти последовательно соединенных мощных светодиодов питаются от источника питания со стабилизацией тока с высоким КПД. Отметим, что две цепи в этом фонаре (слева вверху и справа внизу), установленном всего несколько месяцев назад, уже сгорели, так как в каждой из них светодиоды соединены последовательно, а схемы для предотвращения отказов отсутствуют или не работают.

Расчет токоограничительных резисторов

Если количество светодиодов в последовательной цепи NLEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Если количество светодиодов в последовательной цепи N

LEDs in string (обозначенное Ns в поле ввода) введено, то максимальное количество светодиодов в цепи последовательно соединенных светодиодов NLEDs in string max определяется как

Светодиоды типа 3014 (3,0 × 1,4 мм) для поверхностного монтажа, используемые для боковой подсветки ЖК-панели телевизора.

Количество цепей с максимальным количество светодиодов в цепи Nstrings:

Количество светодиодов в дополнительной цепи с остатком светодиодов Nremainder LEDs :

Если Nremainder LEDs = 0, то дополнительной цепи не будет.

Определим сопротивление токоограничительного резистора в цепи с максимальным количеством светодиодов:

Определим сопротивление токоограничительного резистора в цепи с количеством светодиодов меньше максимального:

Общая мощность PLED, рассеиваемая всеми светодиодами:

Мощность, потребляемая всеми резисторами:

Гибкие светодиодные дисплеи на железнодорожной станции; в таких дисплеях используются группы светодиодов в качестве отдельных пикселей. В связи с высокой яркостью светодиодов и их хорошей видимостью при ярком солнечном свете, такие дисплеи часто можно увидеть на наружной рекламных щитах и дорожных указателях маршрута. Светодиодные дисплеи также можно использовать для освещения и в этой роли их часто используют в фонарях с регулируемой цветовой температурой для видео и фотосъемки.

Номинальная мощность резисторов определяется с учетом двойного запаса k = 2, который обеспечивает надежную работу резистора. Выбираем из ряда значений мощности : 0.125; 0.25; 0.5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 W резистор с мощностью вдвое выше, чем расчетная.

Рассчитаем общую мощность, потребляемую всеми резисторами:

Рассчитаем общую мощность, потребляемую светодиодным массивом:

Рассчитаем ток, который должен обеспечить источник питания:

И наконец, рассчитаем КПД нашего массива:

Возможно, вас заинтересуют конвертеры Яркости, Силы света and Освещенности.

Калькулятор светодиодов

Я уже прочитал статью, сразу перейти к калькулятору.

Для устойчивой работы светодиоду необходим источник постоянного напряжения и стабилизированный ток, который не будет превышать величины, допустимые спецификой конкретного светодиода. Если необходимо подключить светодиоды индикаторные, рабочий ток которых не превышает 50-100мА, можно ограничить ток посредством резисторов. Если речь идет о питании мощных светодиодов с рабочими токами от сотен миллиампер до единиц ампер, то не обойтись без специальных устройств – драйверов (подробнее об этих устройствах читайте в статье "Драйвера для светодиодов", готовые модели драйверов можно увидеть здесь.). Далее рассмотрим варианты, когда требуемый ток небольшой и обойтись резисторами все же можно.

Резисторы являются пассивными элементами – ток они просто ограничивают, но никак не стабилизируют. Сила тока будет меняться с изменением напряжения в соответствии с законом Ома. Ограничивается ток резистором банальным преобразованием «лишнего» электричества в тепло по формуле

P = I2R, где P - выделяемое тепло в ваттах, I - сила тока в цепи в амперах, R - сопротивление в омах.

Устройство при этом, естественно, греется. Способность резистора рассеивать тепло не безгранична и, при превышении допустимого тока, он сгорит. Допустимая рассеиваемая мощность определяется корпусом резистора. Это нужно учитывать при планировании подключения светодиодов и выбирать элементы с, как минимум, двойным запасом прочности.

Схема подключения одного светодиода

Если необходимо подключить один светодиод, то сопротивление резистора можно рассчитать, в соответствии с законом Ома, по простой формуле:

R = (U - UL) / I, где R - требуемое сопротивление в омах, U - напряжение источника питания, UL - падение напряжения на светодиоде в вольтах, I - нужный ток светодиода в амперах.

Очень часто нужно подключить не один, а несколько светодиодов. В этом случае возможно их последовательное или параллельное подключение.

Схема последовательного подключения светодиодов

Падение напряжения на последовательно соединенных светодиодах суммируется, через каждый из них протекает одинаковый ток. Напряжение источника питание должно быть больше, чем суммарное падение напряжения.

Рассчитывается сопротивление резистора по такому же принципу, как и в случае одного светодиода, только учитывается падение напряжения не на одном светляке, а суммарно для всей цепочки.

Последовательное подключение удобно тем, что требует минимум дополнительных деталей, кроме того, от источника питания не требуется большой ток. Но при большом количестве светодиодов может потребоваться существенное напряжение. Кроме того, если один из последовательной цепочки сгорит, то цепь оборвется и светить перестанут все светодиоды. Также при таком варианте подключения важно использовать совершенно одинаковые светодиоды, иначе их разные параметры будут служить источником дисбаланса. В итоге они могут либо светить неравномерно, либо значительно быстрее выходить из строя.

Схема параллельного подключения светодиодов

Параллельное подключение равносильно одновременному подключению отдельных светодиодов, которым совсем «не обязательно знать» о наличии других светодиодов. При этом напряжение источника питания должно превышать падение напряжения на одном светодиоде. Сила тока каждого светодиода может регулироваться индивидуально, выбором сопротивления подсоединенного к нему резистора. Важно, чтобы источник питания «знал», сколько светодиодов к нему подключено, поскольку общая сила тока, которую потребуется от него предоставить, равна сумме токов, протекающих через все светодиоды. Если один из светодиодов выйдет из строя, со свечением остальных ничего не произойдет, поскольку работают они индивидуально. Учтите, что это не относится к параллельным светодиодам, которые питаются от токоограничивающего драйвера! Драйвер стабилизирует ток, выход из строя одной из веток приведет к общему снижению тока. Это снижение драйвер немедленно компенсирует, что приведет к повышению тока на оставшихся ветках. А они могут это и не пережить. По аналогичной причине следует избегать подключения нескольких параллельных светодиодов через один токоограничивающий резистор.

Схема правильного и неправильного параллельного подключения светодиодов

Сопротивление каждого резистора при параллельном подключении светодиодов рассчитывается, повторюсь, так же, как и при подключении одного светодиода.

Параллельное подключение светодиодов не требует высокого напряжения питания, но при его использовании необходимо обеспечить достаточную силу тока. Требуется большее количество деталей, но можно одновременно подключить светодиоды с разными параметрами. Также большее количество токоограничивающих резисторов, которые будут выделять тепло, даст более низкий общий КПД схемы по сравнению с последовательным подключением.

Быстро рассчитать сопротивление резистора при подключении одного или нескольких одинаковых светодиодов поможет предложенная ниже форма онлайн-калькулятора светодиодов.

Расчет резистора для светодиода

Тип подключения:

Выбрано: Один светодиод

Общая потребляемая мощность:

Общий ток источника питания:

На резисторах рассеивается:

На светодиодах рассеивается:

КПД схемы:

Требуемая мощность резисторов - очень большая!!

Выбирайте резисторы с номиналом не меньше рассчитанного!

Онлайн калькулятор расчета резистора светодиода

 
 

 

Не смотря на то, что всевозможные светодиоды сегодня используются практически во всех сферах жизни человека, среднестатистический потребитель, как правило, не задумывается о том, как и по каким законам они работают. И если такой человек сталкивается, к примеру, с необходимостью организации светодиодного освещения,  у него возникает множество проблем и вопросов. И одним из наиболее распространенных вопросов является «что такое резисторы и зачем они нужны светодиоду?». Попробуем на этот вопрос ответить.

Резистор представляет собой элемент электрической сети, отличающийся пассивностью, который, в идеальном варианте, характеризуется исключительно своим сопротивлением электрическому току (то есть, в любой момент времени для него должен выполняться закон Ома). Основное назначение резистора – оказание активного сопротивления электрическому току, и сегодня такие элементы широко используются в организации искусственного освещения.

Теперь поговорим о том, зачем резистор необходим непосредственно светодиоду.

Многие из нас знают, что обыкновенная стандартная лампочка горит, если ее подключить напрямую к некоторому источнику питания. Она успешно функционирует и сгорает только в том случае, если из-за переизбытка напряжения происходит перегрев нити накала. Однако практически никто при этом не задумывается, что в данном случае лампочка сама выполняет роль резистора – ток через нее проходит с трудом, и тем легче ему преодолеть это препятствие, чем выше напряжение. И конечно, приравнивать такой сложный полупроводниковый прибор, как светодиод, к обыкновенной лампе накаливания никак невозможно.

Важно учитывать, что светодиод представляет собой токовый прибор, который, грубо говоря, в процессе работы выбирает для себя напряжение, а не силу тока. Таким образом, если светодиод, к примеру, выбирает напряжение 1,8V, а на него подается 1,9V, то он, скорее всего, сгорит (если, конечно, не сможет понизить напряжение источника до нужного ему значения). И для того чтобы этого не произошло, нужен резистор. Он стабилизирует используемый источник питания, чтобы его напряжение не испортило светодиод.

В связи с этим чрезвычайно важно разобраться, какой именно резистор необходим для того или иного светодиода, и нужно ли для каждого светодиода использовать отдельный резистор. Здесь немаловажно учитывать схему соединения, а также количество используемых светодиодов. Если речь идет, к примеру, о последовательной цепочке светодиодов, в которой они расположены друг за другом, то поскольку электрический ток в каждой точке данной цепи протекает один и тот же, для этих светодиодов будет достаточно только одного резистора с правильно рассчитанным сопротивлением.

Но если мы говорим о параллельном включении светодиодов, здесь каждый из них должен обладать собственным резистором, поскольку в противном случае все напряжение потянет так называемый «лимитирующий» светодиод (тот, которому напряжение нужно наименьшее). Он быстро перегорит, и теперь напряжение перейдет к следующему светодиоду, который также выйдет из строя. Это недопустимо, а значит, для параллельно подключенных светодиодов просто необходимо использовать достаточное количество правильно подобранных резисторов.

Теперь поговорим о том, как нужно осуществлять расчет сопротивления резистора, предназначенного для того или иного светодиода. Чаще всего осуществляется такой расчет с помощью специальных калькуляторов. И именно такой высокоэффективный онлайн калькулятор мы предлагаем нашим клиентам. Данный калькулятор позволяет рассчитать значение сопротивления и мощности резистора в цепи светодиодов. Для того чтобы рассчитать необходимое значение, вам следует ввести напряжение питания светодиода, номинальное напряжение светодиода, номинальный ток и выбрать схему соединения и количество светодиодов. Благодаря нашему калькулятору, вы сможете быстро получить достаточно точные сведения, способные оказать гарантированную помощь в организации искусственного освещения.

Кроме того, приступая к процессу расчета сопротивления резистора, необходимо учитывать несколько важных моментов. Во-первых, помните, что на светодиодах, как правило, пишут не напряжение питания, а напряжение падения (то есть то, которое они выбирают для себя), да и оно указывается приблизительно. Используется это число исключительно для определения минимального напряжения или для расчета резистора питания. То есть напряжение падения светодиода нужно отнимать от напряжения его питания, и мы получим напряжение на резисторе.

Ток же, протекающий через него, рассчитывается обычно делением оставшегося на резисторе напряжения на его сопротивление. Ну а для расчета сопротивления данного резистора, соответственно, оставшееся напряжение делится на ту величину тока, которая нам нужна. Человеку, далекому от электрики и физики, самостоятельно сделать расчеты практически невозможно. Поэтому вы еще раз можете оценить удобство и функциональность нашего онлайн калькулятора, который с легкостью выполнит подобную работу за вас.


Расчет ограничивающего ток резистора для светодиода, формулы и калькулятор

Часто при изготовлении разнообразных устройств возникает необходимость использовать светодиоды и светодиодные индикаторы. Будем полагать что вы знаете что такое светодиод и какие они бывают.

Подключение светодиода к источнику питания выполняется, как правило, через ограничивающий ток резистор (гасящий резистор). Ниже описаны принципы и формулы для расчета гасящего резистора, а также небольшой калькулятор для быстрого подсчета.

Расчет гасящего резистора для светодиода

Первым делом разберемся как выполнить расчет сопротивления гасящего резистора, от чего оно зависит и какой мощности должен быть резистор для питания светодиода от источника питания.

Рис. 1. Схема подключения светодиода к источнику питания через резистор.

Как видим из схемы, ток (I) через резистор и светодиод протекает один и от же. Напряжение на резисторе равно разнице напряжений питания и напряжения на светодиоде (VS-VL). Здесь нам нужно рассчитать сопротивление резистора (R), при котором через цепь будет протекать напряжение I, а на светодиоде будет напряжение VL.

Допустим что мы будем питать светодиод от батареи напряжением 5В, как правило такое питающее напряжение используется при питании микроконтроллерных схем и другой цифровой техники.

Вычислим значение напряжения на гасящем резисторе, для этого нам нужно знать падение напряжения на светодиоде, это можно выяснить по справочнику для конкретного светодиода.

Примерные значения падения напряжения для светодиодов (АЛ307 и другие маломощные в подобном корпусе):

  • красный - 1,8...2В;
  • зеленый и желтый - 2...2,4В;
  • белые и синие - 3...3,5В.

Допустим что мы будем использовать синий светодиод, падение напряжения на нем - 3В.

Производим расчет напряжения на гасящем резисторе:

Uгрез = Uпит - Uсвет = 5В - 3В = 2В.

Для расчета сопротивления гасящего резистора нам нужно знать ток через светодиод. Номинальный ток конкретного типа светодиода можно узнать по справочнику. У большинства маломощных светодиодов (наподобии АЛ307) номинальный ток находится в пределах 10-25мА.

Допустим что для нашего светодиода номинальный ток для его достаточно яркого свечения составляет 20мА (0,02А). Получается что на резисторе будет гаситься напряжение 2В и проходить ток 20мА. Выполним расчет по формуле закона Ома:

R = U / I = 2В / 0,02А = 100 Ом.

В большинстве случаев подойдет маломощный резистор с мощностью 0,125-0,25Вт (МЛТ-0,125 и МЛТ-0,25). Если же ток и напряжение падения на резисторе будет очень отличаться то не помешает произвести расчет мощности резистора:

P = U * I = 2В * 0,02А = 0,04 Вт.

Таким образом, 0,04 Вт явно меньше номинальной мощности даже для самого маломощного резистора МЛТ-0,125 (0,125 Вт).

Произведем расчет для красного светодиода (напряжение 2В, ток 15мА).

Uгрез = Uпит - Uсвет = 5В - 2В = 3В.

R = U / I = 3В / 0,015А = 200 Ом.

P = U * I = 3В * 0,015А = 0,045 Вт.

Простой калькулятор для расчета гасящего резистора

Теперь вы знаете как по формулам рассчитать гасящий резистор для питания светодиода. Для облегчения расчетов написан несложный онлайн-калькулятор:

Форму прислал Михаил Иванов.

Заключение

При подключении светодиодов не нужно забывать что они имеют полярность. Для определения полярности светодиода можно использовать мультиметр в режиме прозвонки или же омметр.

Использование гасящих резисторов оправдано для питания маломощных светодиодов, при питании мощных светодиодов нужно использовать специальные LED-драйверы и стабилизаторы.

Расчет резистора для светодиода калькулятор онлайн программа

Чтобы Вы хотели? * - Выберите -Установка ж/б опорПодключение объекта к электроснабжениюЭлектромонтажные работыИспытание электроустановокПроектные работыПрочее

Тип подключения - Выбирите -Частный жилой домАдминистративное зданиеПроизводственное предприятиеМногоквартирный жилой домПрочее

Тип работ Внутренние сети 0,4 кВВнешние кабельные линии 0,4 кВВнешние кабельные линии 6/10 кВВоздушные линии 0,4 кВВоздушные линии 6/10 кВМонтаж трансформаторной подстанцииПодключение оборудованияВосстановление поврежденных КЛ или ВЛЗамена существующей электропроводкиИскусственное освещениеКомплексные работыСлаботочные сети и СКС

Тип испытаний Комплексные испытания 0,4 кВСопротивление изоляцииМеталлосвязьПетля фаза нольИспытание УЗОИспытание кабельных линийИспытание КТП и РПИспытание силовых трансформаторовПрочее

Тип работ Внешние электросистемыВнутренние электросистемыСлаботочные сетиИскусственное освещениеКомплексные работыПрочее

Населенный пункт

Км от Рязани В городе или до 10 кмдо 20 кмдо 30 кмСвыше 30 км

Количество опор 12345678

Обвязка под провод СИП (анкерное или промежуточное крепление) НетДа

Подъезд только на внедорожной технике НетДа

Тип опоры CB95-2CB110

Тип подключения 15 кВт5 кВт

Наличие технических условий НетДа

Наличие проектной документации НетДа

Проводились ли аналогичные испытания до этого НетДа

Желаемая дата начала работ

Сроки производства работ

Добавить документы Комментарий
                      ____    _____  ____     ___  
_ __ ___ __ _ | ___| |__ / | _ \ / _ \
| '_ ` _ \ / _` | |___ \ / / | |_) | | (_) |
| | | | | | | (_| | ___) | / /_ | _ < \__, |
|_| |_| |_| \__,_| |____/ /____| |_| \_\ /_/

Введите код с изображенния *

Резистор для светодиода — РадиоСхема

Калькулятор расчета резистора для светодиода онлайн

Многие мучаются вопросом, как рассчитать резистор для светодиода? Калькулятор сопротивления идеально подойдет, когда у вас есть один светодиод (LED) и нужно знать, какой именно резистор нужно использовать. А также для расчета сопротивления и мощности резистора в цепи для группы светодиодов соединенных последовательно.

<<< Калькуляторы онлайн

Обзор

Каждый светоизлучающий диод (LED) пропускает через себя определенный ток, который они могут выдержать. Идем дальше, максимальный ток, даже на короткое время, приводит к повреждению светодиода. Таким образом, ограничение тока через светодиод с помощью резистора самая распространенная и простая практика. Обратите внимание, что этот метод не рекомендуется для мощных светодиодов, которые нуждаются в более надежной коммутации регулятора тока. Купить светодиоды.

Этот калькулятор поможет вам определить номинал резистора, чтобы добавить последовательно со светодиодом, ограничивая ток. Просто введите указанные значения и нажмите кнопку «Рассчитать». В качестве бонуса, он также будет рассчитать мощность, потребляемую светодиодом.

Уравнение

Vs =  Напряжение питания

Iled = Ток светодиода. Рабочий диапазон обычного 3 мм и 5 мм светодиодов составляет 10-30 миллиампер. Если доступ к datasheet светодиода невозможно, то без ущерба к светодиоду можно  предположить ток в 20 мА.

Vled = Падение напряжения на светодиоде. Падение напряжения на LED зависит от цвета, который он испускает. Ниже таблица каждого цвета и их соответствующее падение напряжения:

X = Количество светодиодов в цепи

ЦветПадение напряжения (V)
Красный2
 Зелёный2.1
Голубой3.6
Белый3.6
Жёлтый2.1
 Оранжевый2.2
Янтарный2.1
 Инфракрасный1.7
Другие2

Определение полярности светодиода

Светодиод имеет положительный контакт (анод) и отрицательный  контакт (катод). Схематическое обозначение светодиода похоже на обычный диод (как показано выше), за исключением двух стрелок, направленных наружу. Анодом (+) обозначен треугольник и катодом (-) помечается линией.

Длинная ножка светодиода это почти всегда положительный контакт (анод), тогда покороче является отрицательным (катод). Кроме того, если вы посмотрите внутрь светодиод, мелкие куски металла подключен к аноду, а побольше подключен к катоду (см. рис. выше).

Купить светодиоды.

Как рассчитать сопротивление для светодиода

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Светодиод (светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой резистор часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

  • V — напряжение источника питания
  • VLED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:

Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы (драйверы для светодиодов) которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из номинального ряда резисторов подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:

примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

  • U – источник питания;
  • UF – прямое напряжение светодиода;
  • IF – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем последовательного или параллельного соединения нескольких резисторов.

При подключении светодиодов небольшой мощности чаще всего используется гасящий резистор. Это наиболее простая схема подключения, которая позволяет получить требуемую яркость без использования дорогостоящих драйверов. Однако, при всей ее простоте, для обеспечения оптимального режима работы необходимо провести расчет резистора для светодиода.

Светодиод как нелинейный элемент

Рассмотрим семейство вольт-амперных характеристик (ВАХ) для светодиодов различных цветов:

Эта характеристика показывает зависимость тока, проходящего через светоизлучающий диод, от напряжения, приложенного к нему.

Как видно на рисунке, характеристики имеют нелинейный характер. Это означает, что даже при небольшом изменении напряжения на несколько десятых долей вольта, ток может измениться в несколько раз.

Однако при работе со светодиодами обычно используют наиболее линейный участок (т.н. рабочую область) ВАХ, где ток изменяется не так резко. Чаще всего производители указывают в характеристиках светодиода положение рабочей точки, то есть значения напряжения и тока, при которых достигается заявленная яркость свечения.

На рисунке показаны типовые значения рабочих точек для красных, зеленых, белых и голубых светодиодов при токе 20 мА. Здесь можно заметить, что led разных цветов при одинаковом токе имеют разное падение напряжения в рабочей области. Эту особенность следует учитывать при проектировании схем.

Представленные выше характеристики были получены для светоизлучающих диодов, включенных в прямом направлении. То есть отрицательный полюс питания подключен к катоду, а положительный – к аноду, как показано на картинке справа:

Полная же ВАХ выглядит следующим образом:

Здесь видно, что обратное включение бессмысленно, поскольку светодиод не будет излучать, а при превышении некоторого порога обратного напряжения выйдет из строя в результате пробоя. Излучение же происходит только при включении в прямом направлении, причем интенсивность свечения зависит от тока, проходящего через led. Если этот ток ничем не ограничивать, то led перейдет в область пробоя и перегорит. Если нужно установить рабочий светодиод или нет, то Вам будет полезна статья подробно раскрывающая все способы проверки led.

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Расчет резистора при подключении нескольких светодиодов

Подключить несколько led можно двумя способами: последовательно и параллельно. Схемы включения показаны ниже. Не забудьте почитать более подробно про способы подключения светодиодов.

При последовательном соединении используется один резистор, задающий одинаковый ток всей цепочке led. При этом следует учитывать, что источник питания должен обеспечивать напряжение, превышающее общее падение напряжения на диодах. То есть при соединении 4 светодиодов с падением 2.5 В потребуется источник напряжением более 10 В. Ток при этом для всех будет одинаковым. Сопротивление резистора в этом случае можно рассчитать по формуле:

где — напряжение питания,

— сумма падений напряжения на светодиодах,

Так, 4 зеленых светодиода Kingbright L-132XGD напряжением 2.5 В и током 10 мА при питании 12 В потребуют резистора сопротивлением

При этом он должен рассеивать мощность

При параллельном подключении каждому светоизлучающему диоду ток ограничивает свой резистор. В таком случае можно использовать низковольтный источник питания, но ток потребления всей цепи будет складываться из токов, потребляемых каждым светодиодом. Например, 4 желтых светодиода BL-L513UYD фирмы Betlux Electronics с потреблением 20 мА каждый, потребуют от источника ток не менее 80 мА при параллельном включении. Здесь сопротивление и мощность резисторов для каждой пары «резистор – led» рассчитываются так же, как при подключении одиночного светодиода.

Обратите внимание, что и при последовательном, и при параллельном соединении используются источники питания одинаковой мощности. Только в первом случае потребуется источник с большим напряжением, а во втором – с большим током.

Нельзя подключать параллельно несколько светодиодов к одному резистору, т.к. либо они все будут гореть очень тускло, либо один из них может открыться чуть раньше других, и через него пойдет очень большой ток, который выведет его из строя.

Программы для расчета сопротивления

При большом количестве подключаемых led, особенно если они включены и последовательно, и параллельно, рассчитывать сопротивление каждого резистора вручную может быть проблематичным.

Проще всего в таком случае воспользоваться одной из многочисленных программ расчета сопротивления. Очень удобным в этом плане является онлайн калькулятор на сайте cxem.net:

Он включает в себя небольшую базу данных самых распространенных светодиодов, поэтому необязательно вручную набирать значения падения напряжения и тока, достаточно указать напряжение питания и выбрать из списка нужный светоизлучающий диод. Программа рассчитает сопротивление и мощность резисторов, а также нарисует схему подключения или принципиальную схему.

Например, с помощью этого калькулятора был рассчитан резистор для трех светодиодов CREE XLamp MX3 при напряжении питания 12 В:

Также программа обладает очень полезной функцией: она подскажет цветовую маркировку требуемого резистора.

Еще одна простая программа для расчета сопротивления распространенная на просторах интернета разработана Сергеем Войтевичем с портала ledz.org.

Здесь уже вручную выбирается способ подключения светодиодов, напряжение и ток. Программа не требует установки, достаточно распаковать ее в любую директорию.

Заключение

Гасящий резистор – самый простой ограничитель тока для светодиодной цепи. От его подбора зависит ток, а значит, интенсивность свечения и долговечность led. Однако следует помнить, что при больших токах на резисторе будет выделяться значительная мощность, поэтому для питания мощных светодиодов лучше применять драйверы.

Извините, эта страница не существует. Сообщите нам, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Тарифы на доставку UPS / DHL / TNT
      • Зоны страны доставки
    • Образцы политики
  • Прейскуранты на нашу продукцию
      Прейскурант на светодиодные диоды
    • Прейскурант на светодиодную продукцию
    • Прейскурант на ЖК-модули
    • Прейскурант на радиаторы
    • Прейскурант болельщиков
    • Прейскурант на модули Пельтье
  • Онлайн-каталог нашей продукции
    1. ЖК-модули
      1. ЖК-модули Буквенно-цифровые Жёлтый ЗЕЛЕНЫЙ
      2. ЖК-модули буквенно-цифровые СИНИЙ
      3. ЖК-модули Графические
      4. Панельные счетчики
      5. Мультиметры
      6. Прейскурант LCM и счетчиков
      7. Упаковка LCM и счетчиков
    2. Охлаждение
      1. Термоэлектрические модули охлаждения Petlier
      2. Радиаторы
      3. Вентиляторы
      4. Подробная информация об упаковке
    3. Сверхяркие светодиоды
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиодов InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. 8мм светодиоды
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-type: дешевое светодиодное издание
        • Комплекты для светодиодных меток
      15. 7-сегментный светодиодный дисплей
      16. светодиодов RGB
      17. Светодиоды SMD
      18. COB СВЕТОДИОДЫ
      19. Светодиоды мощности 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      20. Светодиодные лампы Piranha 0.2 Вт
      21. Подробная информация об упаковке светодиодов
      22. Таблица преобразования старых / новых светодиодных номеров
      23. Калькулятор светодиодного резистора
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты - Акционная распродажа
      3. Светодиодные ленты X-типа
      4. Светодиодные модули
      5. Светодиодные лампы
      6. - Распродажа
      7. Светодиодные трубки
      8. Аксессуары для светодиодов
      9. Держатели для светодиодов со сквозным отверстием 3 ~ 10 мм
      10. Подробная информация об упаковке светодиодной продукции
      11. Прейскурант на светодиодную продукцию
  • Найдите наш сервер в Интернете
  • Акции и акции
  • Производство только для китайского рынка
  • Наши старые страницы * 2001? 003

Калькулятор светодиодного резистора

Используйте этот калькулятор светодиодного резистора, чтобы определить подходящее сопротивление для вашей светодиодной цепи, состоящей из одного или нескольких светодиодов.


Калькулятор работы светодиодного резистора

Каждый светодиод имеет определенный диапазон рабочего тока, превышающий номинальный уровень тока, который он может повредить. Для защиты или ограничения тока мы просто используем последовательно включенный резистор.

Этот калькулятор светодиодных резисторов поможет вам подобрать правильное значение резистора для светодиода в вашей светодиодной цепи, вам просто нужно ввести значения Напряжение источника с ), Прямой ток светодиода (I f ) и Светодиод прямого напряжения (V f ).

Прямое напряжение или падение напряжения на светодиоде заранее определено (показано в таблице ниже), поскольку оно зависит от цвета, излучаемого светодиодом, типичное значение падения напряжения составляет 2 В.

Цвет

Падение напряжения (Vf)

Красный

2

зеленый

2.1

Синий

3,6

Белый

3,6

Желтый

2,1

оранжевый

2,2

Янтарь

2.1

Инфракрасный

1,7

Уравнение

Для математического определения значения вы можете использовать приведенное ниже уравнение:

Где,

В с = Напряжение источника измеряется в вольтах.

В f = прямое напряжение светодиода или падение напряжения. Если вы не знаете падение напряжения светодиода, вы можете использовать 2 В, поскольку это типичное значение для падения напряжения светодиода.

I f = прямой ток светодиода, если вы не знаете прямой ток светодиода вашего светодиода, вы можете использовать 20 мА, поскольку это типичное значение для прямого тока светодиода.

N = количество светодиодов, подключаемых последовательно.

Калькулятор резисторов серии

LED

Калькулятор резисторов серии

LED

Для всех светодиодов требуется некоторая форма ограничения тока . Подключение светодиода непосредственно к источнику питания сожжет его в мгновение ока.Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.

К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей - добавление небольшого резистора в серию - самый простой и дешевый способ ограничить ток. Однако имейте в виду, что светодиоды с большим током (выше нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели . регулятор тока .

Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при подключении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».

Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и эффективность конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).

Поля ввода

Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.

Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток более 200 мА.Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.

Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Падение напряжения Поле автоматически заполнится типичным значением для выбранного цвета (например, 2 В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого для освещения, стробоскопа и т. Д .; 1,7 В для инфракрасного светодиода, используемого в пульты дистанционного управления и т. д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно изменяется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.

Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второй раскрывающийся список, в котором вы можете выбрать либо соединение серии , либо параллельное соединение .

Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться.Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.

Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96). Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% ...) прецизионных резисторов.

Как интерпретировать результаты

Простая схема генерируется при каждой загрузке страницы.На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от количества светодиодов в цепи (но я уверен, что вы легко можете заполнить недостающие биты).

Справа показаны два резистора . Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме - лучше выбрать тот, который ближе (тот, который отмечен * после значения).

Рекомендуемая мощность резистора в мощности рассчитана с небольшим запасом прочности, так что рассеиваемая мощность остается в пределах 60% от номинального значения.

Эффективность [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодами.

Как определить выводы светодиода

Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод, с двумя стрелками, направленными наружу.Анод (+) отмечен треугольником, а катод (-) - линией. Иногда встречаются дополнительные метки: A или + для анода и K или - для катода.

Есть несколько способов определить выводы светодиода:

  1. Катод (отрицательный) обычно маркируется плоской кромкой в нижней части корпуса светодиода.
  2. Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
  3. Загляните внутрь самого светодиода - меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая - к отрицательному.

Извините, эта страница не существует. Сообщите нам, где была неправильная ссылка. Спасибо.
Вот наша карта сайта:
  • Контакты
  • Как сделать заказ и другая полезная информация
    • Время выполнения
    • Гарантии на продукцию
    • Как заказать
    • Варианты оплаты
    • Варианты доставки
      • Стоимость доставки курьером
      • Зоны страны доставки
    • Образцы политики
  • Прейскуранты на нашу продукцию
    • Прейскурант на светодиоды для сквозных отверстий
    • Прейскурант на другие светодиоды
    • Прейскурант на светодиодную продукцию
  • Онлайн-каталог наших светодиодов и светодиодной продукции
    1. Светодиоды для сквозных отверстий
      1. 1.Светодиоды 8мм
      2. 3мм светодиоды
      3. Светодиоды 4,8 мм, угол XL
      4. 5 мм светодиодов InGan (белый, синий, чистый зеленый)
      5. 5 мм GaAlInP (красный, желтый) светодиоды
      6. 8мм светодиоды
      7. 10мм светодиоды
      8. Светодиоды 5 мм и 8 мм 100 мА 0,5 Вт
      9. Двухцветные светодиоды 3 мм и 5 мм
      10. Мигающие светодиоды
      11. Плоские светодиоды
      12. Овальные светодиоды
      13. ИК-светодиоды и модуль ИК-приемника
      14. X-type: дешевое светодиодное издание
        • Комплекты для светодиодных меток
      15. Детали светодиодной упаковки
      16. Таблица преобразования старых / новых светодиодных номеров
      17. Калькулятор светодиодного резистора
    2. 7-сегментный светодиодный дисплей
    3. Другие светодиоды
      1. светодиодов RGB
      2. Светодиоды SMD
      3. COB СВЕТОДИОДЫ
      4. Светодиоды мощности 1Вт, 3Вт, 5Вт, 10Вт, 20Вт
      5. Светодиодные лампы Piranha 0.2 Вт
      6. Подробная информация об упаковке
    4. Светодиодная продукция
      1. Светодиодные ленты
      2. Светодиодные ленты - Акционная распродажа
      3. Светодиодные модули
      4. Светодиодные лампы
      5. - Распродажа
      6. Светодиодные трубки
      7. Аксессуары для светодиодов
      8. Держатели для светодиодов со сквозным отверстием 3 ~ 10 мм
      9. Подробная информация об упаковке светодиодной продукции
      10. Прейскурант на светодиодную продукцию
  • Акции и акции

Калькулятор светодиодного резистора

Светодиодный калькулятор резистора
Таблица цветов и значений резистора

У нас есть удобная таблица, показывающая цвета и значения
резисторов.У нас есть большая версия
шириной 1200 пикселей и огромная версия PDF. Надеемся, это пригодится.

Версия немного больше
1200 PX jpeg версия нажмите, чтобы загрузить
Щелкните правой кнопкой мыши и «Сохранить как»
Огромная версия PDF нажмите, чтобы загрузить
Щелкните правой кнопкой мыши и «Сохранить как»

О нас

Электронная лаборатория Volthaus - это дом для людей, которые любят электронику.

Ознакомьтесь с нашими новыми электронными наборами «сделай сам».

Комплект сигнализации, активируемой движением
$ 9,99 + 0,99 s & h (Доставка в США только из Остина, Техас)

Если вы только начинаете свой путь к электронике для хобби, вы не ошибетесь с этим набором. Это просто и весело. Действительно весело. Обучающие, удобные и отличные для розыгрышей

В этот комплект входят:

  • Пассивный инфракрасный датчик движения PIR (1)
  • 9В Активный зуммер (1)
  • Макетная мини-доска (1)
  • Качественная защелка аккумулятора 9 В (1)
  • Перемычки (5) штекер / гнездо
  • Подробная инструкция и схема
  • Цвета могут различаться

Среднее падение напряжения светодиода обычно составляет 1.9 ~ 2,2 В
Обычный ток 20 мА
Добавьте напряжение питания и нажмите кнопку «Рассчитать».


Один светодиод:


Светодиоды в серии:


Светодиоды параллельно:

Светодиодный калькулятор.Расчет токоограничивающих резисторов для одного светодиода и светодиодной матрицы • Электрические, радиочастотные и электронные калькуляторы • Онлайн-преобразователи единиц

Определения и формулы, используемые для расчета

Один светодиод

Светоизлучающий диод (LED) - это полупроводниковый свет источник с двумя или более отведениями. Монохромные светодиоды обычно имеют два вывода, двухцветные светодиоды могут иметь два или три вывода, а трехцветные светодиоды и RGB-светодиоды обычно имеют четыре вывода. Светодиод излучает свет, когда на его выводы подается подходящее напряжение.

Обычный инфракрасный светодиод и его электронный символ. Квадратный полупроводниковый кристалл устанавливается на отрицательный (катодный) вывод. Тонкий провод соединяет квадратный полупроводниковый кристалл с положительным (анодным) выводом.

Для питания одного светодиода используется простая схема светодиода с последовательным резистором, ограничивающим ток. Резистор необходим, потому что падение напряжения на светодиоде примерно постоянно в широком диапазоне рабочих токов.

Цвета светодиода, материалы, длина волны и падение напряжения
Цвет Материал полупроводника Длина волны Падение напряжения
Инфракрасный Арсенид галлия (

73)

Красный Фосфид арсенида галлия (GaAsP) 620–700 нм 1.От 6 до 2,0 В
Янтарь Фосфид арсенида галлия (GaAsP) 590–610 нм От 2,0 до 2,1 В
Желтый Фосфид арсенида галлия (GaAsP) От 2,1 до 2,2 В
Зеленый Фосфид алюминия-галлия (AlGaP) 500–570 нм от 1,9 до 3,5 В
Синий Нитрид индия-галлия (InGaN) 4 .48–3,6 В
Белый Светодиоды RGB или люминофор Широкий спектр 2,8–4,0 В

Светодиоды и резисторы в схемах ведут себя по-разному. Поведение резистора линейно, в соответствии с законом Ома

Вольт-амперные характеристики типичного светодиода разных цветов

Если напряжение на резисторе увеличивается, пропорционально увеличивается и ток (мы предполагаем, что номинал резистора остается неизменным). одно и тоже).С другой стороны, светодиоды ведут себя иначе. Они ведут себя как обычные диоды в соответствии с показанной на рисунке кривой вольт-амперной характеристики светодиодов разного цвета. Кривые показывают, что ток через светодиод не прямо пропорционален напряжению на нем. Ток через светодиод экспоненциально зависит от прямого напряжения. Это означает, что только небольшое изменение напряжения вызовет большое изменение тока.

Когда прямое напряжение светодиода небольшое, его сопротивление очень велико.Если напряжение достигает характерного значения прямого напряжения, указанного в технических характеристиках, светодиод «включается», и его сопротивление быстро падает. Если приложенное напряжение немного больше, чем прямое напряжение светодиода, прямое напряжение превышает рекомендуемое значение, которое может составлять от 1,5 до 4 вольт для светодиодов разных цветов. В этом случае сила тока быстро возрастает и диод может выйти из строя. Чтобы ограничить этот ток, последовательно со светодиодом подключается резистор, чтобы поддерживать ток на определенном уровне, указанном в технических характеристиках светодиода.

Расчеты

Прямоугольный светодиод с плоской вершиной, используемый в таких приложениях, как отображение гистограмм

Значение последовательного токоограничивающего резистора R с можно рассчитать по формуле закона Ома, в которой напряжение питания В с смещено прямым падением напряжения на диоде В f :

где В с - напряжение источника питания (например, 5 В USB-питание) в вольтах, В. f - прямое падение напряжения светодиода в вольтах, а I - ток светодиода в амперах.И V f и I f можно найти в спецификациях производителя светодиодов. Типичные значения В, , , , показаны в таблице выше. Типичный ток светодиодов, используемых для индикации, составляет 20 мА.

После расчета номинала резистора из предпочтительных номеров резисторов выбирается ближайшее более высокое стандартное значение. Например, если наш расчет показывает, что нам нужен резистор R s = 145 Ом, мы возьмем резистор R sp = 150 Ом.

Токоограничивающий резистор рассеивает некоторую мощность, которая рассчитывается как

Оранжевые светодиоды, обычно используемые в маршрутизаторах для отображения скорости 10/100 Мбит / с; зеленые светодиоды показывают скорость 1000 Мбит / с

Обычно мощность резистора выбирается близкой к удвоенной величине, рассчитанной здесь. Например, если значение мощности составляет 0,06 Вт, мы выберем резистор с номинальной мощностью 0,125 или 1/8 Вт.

Теперь мы рассчитаем КПД, который покажет, какая часть общей мощности потребляется в схеме используется светодиод.Мощность, рассеиваемая светодиодом:

Общая потребляемая мощность

КПД цепи светодиода

Для выбора источника питания рассчитаем ток, потребляемый от источника питания:

Светодиодная лента с 5050 диоды; цифры 50 и 50 указывают длину и ширину чипа в миллиметрах; резисторы на 150 Ом предварительно установлены на полосе.

Матрицы светодиодов

Один светодиод можно управлять с помощью токоограничивающего резистора.Светодиодные матрицы, которые все чаще используются для освещения помещений, подсветки компьютерных мониторов и телевизоров, а также для других целей, требуют специализированных источников питания. Все мы привыкли к источникам питания, стабилизированным по напряжению. Однако источники питания для управления светодиодами должны стабилизировать их ток, а не напряжение. В любом случае в светодиодных массивах всегда используются токоограничивающие резисторы.

Если для приложения необходимо более одного светодиода, можно использовать цепочки из нескольких светодиодов, соединенных последовательно. Для цепочки светодиодов, соединенных последовательно, напряжение источника должно быть больше или равно сумме напряжений на отдельных светодиодах.Если оно больше, можно использовать один токоограничивающий резистор на цепочку. Ток через каждый диод идентичен, что обеспечивает равномерную яркость. Как правило, лучше, если все последовательно соединенные светодиоды будут одного типа.

Однако в случае отказа одного светодиода в разомкнутом состоянии, который является наиболее распространенным режимом отказа, вся цепочка светодиодов гаснет. В некоторых конструкциях для предотвращения этого используется специальное устройство защиты от шунта. Для этого можно использовать стабилитроны, включенные параллельно каждому светодиоду.Этот подход хорош для маломощных светодиодов, но для мощных светодиодов, используемых, например, в уличном освещении, этот подход нерентабелен, и необходимо использовать более сложные шунтирующие устройства защиты. Конечно, это увеличивает затраты и требования к пространству. В настоящее время (2018 г.) можно наблюдать, что светодиодные уличные фонари с плановым сроком службы 10 лет служат не более года. То же касается и бытовых светодиодных ламп, в том числе известных производителей.

Светодиодная лента для подсветки ЖК-панели телевизора; он устанавливается с обеих сторон панели экрана.Такая конструкция позволяет использовать самые тонкие дисплеи. Обратите внимание, что телевизоры с ЖК-панелями со светодиодной подсветкой обычно продаются как светодиодные телевизоры. Настоящие светодиодные телевизоры используют OLED-дисплеи.

При вычислении необходимого сопротивления токоограничивающего резистора R с необходимо учитывать все падения напряжения на каждом светодиодах. Например, если падение напряжения на каждом светящемся светодиоде составляет 2 В и мы подключили пять светодиодов последовательно, то общее падение напряжения на всех пяти будет 5 × 2 = 10 В.

Несколько одинаковых светодиодов также могут быть подключены параллельно. Параллельные светодиоды должны иметь согласованное прямое напряжение В, f , в противном случае через них не будет одинакового тока, и поэтому их яркость будет разной. Для параллельного подключения светодиодов рекомендуется последовательно с каждым диодом подключить токоограничивающий резистор. При параллельном подключении отказ одного диода из-за обрыва цепи не приведет к потере света всего набора диодов - он будет работать в обычном режиме.Другой проблемой полностью параллельного подключения является выбор эффективного низковольтного и сильноточного источника питания, который при той же номинальной мощности может быть более дорогим, чем обычные источники питания для более высоких напряжений и более низких токов.

В этом обычном светодиодном светильнике для уличного освещения 8 цепочек по 5 мощных светодиодов, всего 40 светодиодов, приводятся в действие эффективным источником постоянного тока; обратите внимание, что две гирлянды (верхняя левая и нижняя правая) темные в этом приспособлении, установленном всего пару месяцев назад, потому что в каждой из них вышел из строя один диод и устройства защиты не используются или не работают

Расчет токоограничивающих резисторов

Если количество светодиодов в последовательной строке N светодиодов в строке (обозначено как N s в поле ввода) не введено, то оно будет определено здесь.Максимальное количество светодиодов в последовательности N светодиодов в строке max для заданного напряжения источника питания В с и прямого напряжения светодиода В f :

Если количество Светодиоды в последовательной строке N Светодиоды в строке (обозначается как N s в поле ввода), затем максимальное количество светодиодов в последовательной строке N светодиодов в строке max определяется как

3014 (3.0 × 1,4 мм) Светодиод SMD, используемый в ЖК-телевизорах со светодиодной подсветкой

Количество строк с максимальным количеством светодиодов в строке N строк :

Количество светодиодов в оставшейся более короткой строке N светодиоды остатка :

Если N светодиодов остатка = 0, то дополнительной строки не будет.

Сопротивление токоограничивающего резистора для цепочек с макс. количество светодиодов:

Сопротивление токоограничивающего резистора для цепочек с меньшим количеством светодиодов, чем макс.количество светодиодов :

Общая мощность P Светодиод , рассеиваемый всеми светодиодами :

Мощность , рассеиваемая резисторами :

Гибкие светодиоды общественное место; светодиодный дисплей использует матрицу светодиодов в качестве пикселей; из-за очень высокой яркости светодиодов они обычно используются на открытом воздухе в качестве рекламных щитов или достопримечательностей на шоссе, видимых при ярком солнечном свете.Светодиодные экраны также могут обеспечивать общее освещение и часто используются в качестве фото- и видеосвета с переменной цветовой температурой

Номинальная мощность определяется с коэффициентом безопасности k = 2, что обеспечивает надежную работу резистора. Выберите номинальную мощность резистора, которая в два раза превышает расчетную мощность из следующих значений: 0,125; 0,25; 0,5; 1, 2, 3, 4, 5, 8, 10, 16, 25, 50 Вт

Расчет общей мощности P R , рассеиваемой всеми резисторами :

Расчет общей мощности P всего , рассеиваемое массивом :

Расчет тока , потребляемого массивом от источника питания :

Расчет эффективности массива :

Вам также может быть интересно преобразователи яркости, силы света и освещенности.

Калькулятор светодиодных резисторов

Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.

Если вам интересно, «Какой резистор мне использовать со светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.

На схеме выше вы можете увидеть распиновку светодиода.Катод - отрицательная клемма. Он находится на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг. Вы только посмотрите на это, надеюсь, он утонет ...


Калькулятор токоограничивающего резистора - Серия

прямое напряжение

Прямое падение напряжения обычно обозначается просто как прямое напряжение - это конкретное значение для каждого светодиода.Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого общедоступного светодиода по цвету.

Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.

Как измерить прямое напряжение Vf

Если у вас есть цифровой мультиметр, вы также можете измерить прямое падение напряжения.У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!

Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом. Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.

Диаграмма по цвету

Цвет светодиода Прямое напряжение Vf Прямой ток Если
Белый 3.2–3,8 В 20–30 мА
Теплый белый 3,2–3,8 В 20–30 мА
Синий 3,2–3,8 В 20–30 мА мА
Красный 1,8–2,2 В 20–30 мА
Зеленый 3,2–3,8 В 20–30 мА
Желтый 1,8–2,2 В от 20 мА до 30 мА
Оранжевый 1.От 8 В до 2,2 В от 20 мА до 30 мА
Розовый от 3,2 до 3,8 В от 20 мА до 30 мА
UV от 3,2 В до 3,8 В от 20 мА до 30 мА

Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay. Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а анод - 19 мм.

Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.

Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2,2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.

Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.

Выбор резистора для использования со светодиодами

Напряжение питания Вс Vf = 1,8 В Vf = 3,2 В
3,3 В 753 Ом 160 Ом 90 Ом
9 В 360 Ом 290 Ом
12 В 510 Ом 440 Ом

Как видно из диаграммы выше обычно используются два прямых напряжения.Красные, желтые и оранжевые светодиоды относятся к категории 1,8 В, а белые, синие, зеленые, розовые, УФ-светодиоды - к категории 3,2 В.

Следовательно, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями в своих проектах. Просто воспользуйтесь таблицей значений стандартных резисторов, чтобы найти ближайшее из возможных значений.

Пример 1: Синий светодиод имеет типичное прямое падение напряжения 3,2 В, поэтому при использовании напряжения питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.

Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания равно 3. .3 В, 5 В, 9 В и 12 В соответственно.

Формула для расчета номиналов резисторов

Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.

Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.

Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.

Цепь с несколькими светодиодами

- Серия

Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которые вы можете установить. Как видите, полное прямое напряжение - это сумма всех прямых напряжений, представленных каждым светодиодом. Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.


Цепь с несколькими светодиодами - параллельная

Вот такой правильный способ подключения нескольких светодиодов параллельно.У каждого светодиода есть собственный резистор, ограничивающий ток.

В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток - это сумма всех индивидуальных прямых токов каждого светодиода.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *