Содержание

Конденсатор для пуска электродвигателя, как рассчитать мощность

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий  конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение  частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

  • треугольник;
  • звезда.

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A  до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

C = (k×Iφ)/U

Где

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120°. Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить  пусковой момент вращения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Пусковой конденсатор для электродвигателя — подбор, расчет и подключение

Из статьи читатели узнают о том, как подобрать конденсаторы к электродвигателю, чтобы получился привод с оптимальными характеристиками.

Питание обычного синхронного и асинхронного двигателя осуществляется от сети переменного напряжения. Существуют также и «необычные» движки, например, питающиеся от бортовой сети транспортных средств или от специальных генераторов. Принцип их работы такой же, но частота питающего напряжения, как правило, заметно больше 50 Гц.

В электродвигателе переменного тока статор обеспечивает пространственное перемещение магнитного поля. Без этого ротор не сможет начать вращение самостоятельно.

Роль конденсаторов в электроприводе

Если напряжение питания однофазное, с помощью конденсатора можно получить в статоре перемещение магнитного поля. Для этого в нем нужна дополнительная обмотка. Она подключается через конденсатор. Величина его емкости прямо пропорционально влияет на пусковой крутящий момент. Если измерять его величину (ось ординат) соответственно увеличению емкости (ось абсцисс), получится кривая. С определенного значения величины емкости приращение момента станет все меньше и меньше.

Величина емкости, начиная с которой приращение крутящего момента заметно уменьшается, будет оптимальной для пуска данного мотора. Но для разогнанного движка и его продолжительной работы пусковой конденсатор всегда слишком велик своей емкостью. Для поддержания стабильной работы электродвигателя применяется рабочий конденсатор. Его емкость меньше, чем у пускового. Правильно подобрать рабочий конденсатор также можно экспериментально.

Как определить оптимальную величину емкости

Для этого потребуется несколько конденсаторов, соединяемых параллельно. По ходу соединений амперметром измеряется ток, потребляемый электромотором. Он будет уменьшаться по мере увеличения суммарной емкости. Но с определенной величины ее ток начнет увеличиваться. Минимальному значению величины силы тока соответствует оптимальное значение емкости рабочего конденсатора. Для нормальной работы движка применяются два конденсатора с возможностью параллельного соединения между собой. Схема подключения, содержащая пусковой и рабочий конденсатор, показана далее.

Схемы движков с пусковым и рабочим конденсаторами

При пуске они соединяются, образуя наилучшую по величине емкость для разгона движка. Зачем применять отдельный пусковой конденсатор такой же емкости, если установка получится неоправданно громоздкой. Поэтому выгодно использовать емкость, составленную из двух частей. Хотя в нее входит и рабочий конденсатор, он при пуске становится частью пускового виртуального конденсатора. А отключаемые так и называются — пусковые конденсаторы.

Расчет рабочей емкости

Экспериментальное определение емкости конденсаторов наиболее точное. Однако эксперименты эти занимают немалое время и довольно трудоемки. Поэтому на практике в основном используются оценочные методы. Для них потребуется значение мощности движка и коэффициенты. Они соответствуют схеме «звезда» (12,73) и «треугольник» (24). Величина мощности необходима для расчета силы тока. Для этого ее паспортное значение делится на 220 (величина действующего напряжения электросети). Мощность принимается в ваттах.

  • Полученное число умножается на соответствующий коэффициент и дает величину микрофарад.

Подбор пусковой емкости

Но упомянутым способом определяется емкость рабочего конденсатора. Если движок задействован в электроприводе, с ним он может не запуститься. Потребуется дополнительный пусковой конденсатор. Чтобы не утруждать себя, выполняя подбор, можно начать с такого же по величине емкости. Если двигатель так и не запускается из-за нагрузки со стороны привода, надо добавлять параллельно конденсаторы для запуска электродвигателя.

После каждого подсоединяемого экземпляра нужно подавать напряжение на движок для проверки запуска. После пуска движка последний из подсоединенных конденсаторов завершит формирование емкости, необходимой для двигателя в режиме запуска. Если по какой-либо причине после пребывания в подсоединенном состоянии к электросети конденсатор отсоединяется от нее, его надо обязательно разрядить.

Для этого следует использовать резистор номиналом в несколько килоом. Предварительно, перед тем как подключить, его выводы надо согнуть так, чтобы их концы получились на том же расстоянии, что и клеммы. Резистор берут за один из выводов пассатижами с изолированными рукоятками. Прижимая выводы резистора к клеммам на несколько секунд, разряжают конденсатор. После этого желательно удостовериться мультиметром-вольтметром, сколько вольт на нем. Желательно, чтобы напряжение либо обнулилось, либо осталось менее 36 В.

Металлобумажные и пленочные конденсаторы

Величина 220 В напряжения сети переменного тока, используемая для технических характеристик двигателей, соответствует действующему значению. Но при нем амплитудное значение напряжения составит 310 В. Именно до этого уровня будет заряжаться конденсатор электродвигателя. Поэтому номинальное напряжение пускового и рабочего конденсатора выбирается с запасом и составляет не менее 350 вольт. Наиболее надежными разновидностями их являются металлобумажные и металлопленочные конденсаторы.

Но их размеры велики, а емкости одного конденсатора недостаточно для большинства промышленных движков. Например, для движка мощностью 1 кВт только рабочая емкость получается равной 109,1 мкФ. Следовательно, пусковая емкость получится более чем в 2 раза больше. Чтобы выбрать конденсатор нужной емкости, например, для движка 3 кВт при наличии уже выбранного экземпляра для мощности 1 киловатт, его можно взять за основу. В этом случае один конденсатор заменяется тремя, подключенными параллельно.

Для работы движка нет разницы, какие конденсаторы — один или три — задействованы при включении. Но выбирать лучше три. Этот вариант отличается экономичностью, несмотря на большее число соединений. Перенапряжение повредит только один из трех. И его замена обойдется дешевле. Один большой конденсатор при замене будет отличаться существенно более высокой ценой.

Далее показаны изображения и размеры конденсаторов металлобумажной и металлопленочной структуры и размеры их для того, чтобы можно было оценить габариты конденсаторной батареи на их основе.

Металлобумажный конденсатор Габариты металлобумажного конденсатора

Если нужен оптимальный по размеру экземпляр, его подбирают в таблице по приведенным данным.

Металлопленочный конденсатор

Электролитические конденсаторы

Рассматриваемые металлопленочные конденсаторы стабильны, надежны и долговечны при соблюдении правильных условий эксплуатации, среди которых важнейшим параметром является напряжение. Но в электросети в результате коммутации потребителей, а также по другим причинам возможны перенапряжения. Если происходит пробой изоляции обкладок, они становятся непригодными для дальнейшей работы. Но подобное происходит не часто и основной проблемой применения этих моделей являются габариты.

Более компактной альтернативой могут быть электролитические конденсаторы (т.н. электролиты). Они имеют существенные отличия своими меньшими размерами и структурой. Поэтому могут заменить несколько единиц металлобумажных на 1 электролит. Но свойства их структуры ограничивают продолжительность срока службы. Хотя есть и положительная сторона — самовосстановление после пробоя.  Продолжительная работа электролитов на переменном токе невозможна. Он нагреется и, в конце концов, разрушится, по крайней мере, предохранительный клапан. А то и корпус.

Электролиты для движков

Чтобы предотвратить подобные происшествия, необходимо подсоединить диоды. Подключение пускового конденсатора с диодами делается, как показано далее на изображении. Но это не значит, что можно применить любую из моделей электролитов с напряжением 350 В или больше. Уровень пульсаций и частота их строго регламентированы. Если происходит превышение этих параметров, начинается нагрев. Конденсатор может выйти из строя. Для запуска и работы двигателей изготавливаются специальные электролиты с диодами внутри. Необходимо применять для движков только такие модели.

Как правильно подключить диод

Причем из-за пульсаций напряжения не все электролиты могут выполнять функцию рабочей емкости. Их чаще используют при пуске с последующим отключением. 

Реальный промышленный электропривод с конденсаторами

Для рабочих емкостей делаются специальные электролитические модели, устойчивые к пульсациям. Металлобумажные и пленочные пусковые конденсаторы для электродвигателей в этом отношении намного выносливее. Поэтому если необходима надежность, лучше применить их. Но это будет в ущерб габаритам электропривода.

Похожие статьи:

domelectrik.ru

Схема подключения, подбор и расчёт пускового конденсатора

 

Выход из строя конденсаторов в цепи компрессора кондиционеров случается не так уж и редко. А зачем вообще нужен конденсатор и для чего он там стоит?

Бытовые кондиционеры небольшой мощности в основном питаются от однофазной сети 220 В. Самые распространённые двигатели которые применяют в кондиционерах такой мощности- асинхронные со вспомогательной обмоткой, их называют двухфазные электродвигатели или конденсаторные.

В таких двигателях две обмотки намотаны так, что их магнитные полюсы расположены под углом 90 град. Эти обмотки отличаются друг от друга количеством витков и номинальными токами, ну соответственно и внутренним сопротивлением. Но при этом они рассчитаны так что при работе они имеют одинаковую мощность.

В цепь одной из этих обмоток, её производители обозначают как стартовую(пусковую), включают рабочий конденсатор, который постоянно находится в цепи. Этот конденсатор ещё называют фазосдвигающим, так как он сдвигает фазу и создаёт круговое вращающееся магнитное поле. Рабочая или основная обмотка подключена напрямую к сети.

 

Схема подключения пускового и рабочего конденсатора

 

Рабочий конденсатор постоянно включён в цепь обмотки  через  него протекает ток равный току в рабочей обмотке. Пусковой конденсатор подключается на время запуска компрессора - не более 3 секунд (в современных кондиционерах используется только рабочий конденсатор, пусковой не используется)

 

 

Расчёт ёмкости и напряжения рабочего конденсатора

 

Расчёт сводится к подбору такой емкости, чтобы при номинальной нагрузке было обеспечено круговое магнитное поле, так как при значении ниже или выше номинального магнитное поле изменяет форму на эллиптическое, а это ухудшает рабочие характеристки двигателя и снижает пусковой момент. В инженерных справочниках приведена формула для расчёта ёмкости конденсатора:

 

Ср= Isinφ/2πf U n2

 

I и sinφ –ток и сдвиг фаз между напряжением и током в цепи при вращающемся магнтном поле без конденсатора

f- частота переменного тока

U – напряжение питания

n- коэффициент трансформации обмоток , определяется как соотношение витков обмоток с конденсатором и без него.

Напряжение на конденсаторе рассчитывается по формуле

 

Uc= U√(1+n2)

 

Uc -рабочее напряжение конденсатора

U - напряжение питания двигателя

n - коэффициент трансформации обмоток

Из формулы видно, что рабочее напряжение фазосдвигающего конденсатора выше напряжения питания двигателя.

В пособиях по расчёту приводят приближённое вычисление – 70-80 мкФ ёмкости конденсатора на 1 кВт мощности электродвигателя, а номинал напряжения конденсатора для сети 220 В обычно ставят - 450 В.

Также параллельно к рабочему конденсатору подключают пусковой конденсатор на время пуска, примерно на три секунды, после чего срабатывает реле и отключает пусковой конденсатор. В настоящее время в кондиционерах схемы с дополнительным пусковым конденсатором не применяют.

В более мощных кондиционерах используют компрессоры с трёхфазными асинхронными двигателями, пусковые и рабочие конденсаторы для таких двигателей не требуются.

 

Проверка и замена пускового/рабочего конденсатора

masterxoloda.ru

Конденсаторы для асинхронных двигателей | Насосы и принадлежности

Добрый день, уважаемые читатели блога nasos-pump.ru

Конденсаторы

В рубрике «Принадлежности» рассмотрим конденсаторы для однофазных асинхронных двигателей переменного тока. У трехфазных двигателей при подключении к сети питания возникает вращающееся магнитное поле, за счет которого и происходит запуск двигателя. В отличие от трехфазных двигателей, у однофазных в статоре имеется две обмотки рабочая и пусковая. Рабочая обмотка подключена к однофазной сети питания напрямую, а пусковая последовательно с конденсатором. Конденсатор необходим для создания сдвига фаз между токами рабочей и пусковой обмоток. Самый большой вращающий момент в двигателе возникает тогда, когда сдвиг фаз токов обмоток достигает 90°, а их амплитуды создают круговое вращающееся поле. Конденсатор является элементом электрической цепи и предназначен для использования его ёмкости. Он состоит из двух электродов или правильней обкладок, которые разделёны диэлектриком. Конденсаторы имеют возможность накапливать электрическую энергию. В Международной системе единиц СИ за единицу ёмкости принимается ёмкость конденсатора, у которого на один вольт возрастает разность потенциалов при сообщении ему заряда в один кулон (Кл). Емкость конденсаторов измеряется в фарадах (Ф). Емкость в одну фараду очень большая. На практике используются более мелкие единицы измерения микрофарады (мкФ) одна мкФ равняется 10-6 Ф, пикофарады (пФ) одна пФ равняется 10-12 мкФ. В однофазных асинхронных двигателях в зависимости от мощности используются конденсаторы емкостью от нескольких до сотен мкФ.

Основные электрические параметры и характеристики

К основным электрическим параметрам конденсаторов для асинхронных двигателей относятся: номинальная емкость конденсатора и номинальное рабочее напряжение. Кроме этих параметров существует еще температурный коэффициент емкости (ТКЕ), тангенс угла потерь (tgd), электрическое сопротивление изоляции.

Емкость конденсатора. Свойство конденсатора накапливать и удерживать электрический заряд характеризуется его емкостью. Емкость (С) определяется как отношение накопленного в конденсаторе заряда (q), к разности потенциалов на его электродах или приложенному напряжению (U). Емкость конденсаторов зависит от размеров и формы электродов, их расположения друг относительно друга, а также материала диэлектрика который разделяет электроды. Чем емкость конденсатора больше, тем и накопленный им заряд больше Удельная ёмкость конденсатора – выражает отношение его ёмкости к объёму. Номинальная ёмкость конденсатора – это ёмкость, которую имеет конденсатор согласно нормативной документации. Фактическая же ёмкость каждого отдельного конденсатора отличается от номинальной, но она должна быть в пределах допускаемых отклонений. Значения номинальной ёмкости и ее допустимое отклонение в различных типах конденсаторов постоянной ёмкости установлена стандартом.

Номинальное напряжение – это то значение напряжения обозначенное на конденсаторе, при котором он работает в заданных условиях длительное время и при этом сохраняет свои параметры в допустимых пределах. Значение номинального напряжения зависит от свойств используемых материалов и конструкции конденсаторов. В процессе эксплуатации рабочее напряжение на конденсаторе не должно превышать номинальное. У многих типов конденсаторов при увеличении температуры допустимое номинальное напряжение снижается.

Температурный коэффициент емкости (ТКЕ) – это параметр выражающий линейную зависимостью емкости конденсатора от температуры внешней среды. На практике ТКЕ определятся как относительное изменение емкости при изменении температуры на 1°С. Если эта зависимость нелинейная, то ТКЕ конденсатора характеризуется относительным изменением емкости при переходе от нормальной температуры (20±5°С) к допустимому значению рабочей температуры. Для конденсаторов используемых в однофазных двигателях этот параметр важный и должен быть как можно меньше. Ведь в процессе эксплуатации двигателя его температура повышается, а конденсатор находится непосредственно на двигателе в конденсаторной коробке.

Тангенс угла потерь (tgd). Потеря накопленной энергии в конденсаторе обусловлена потерями в диэлектрике и его обкладках. Когда через конденсатор протекает переменный ток, то векторы тока и напряжения сдвинуты относительно друг друга на угол (d). Этот угол (d) и называют углом диэлектрических потерь. Если потери отсутствуют, то d=0. Тангенс угла потерь это отношение активной мощности (Pа) к реактивной (Pр) при напряжении синусоидальной формы определённой частоты.

Электрическое сопротивление изоляции – электрическое сопротивление постоянному току, определяется как отношение приложенного к конденсатору напряжения (U) , к току утечки (Iут), или проводимости. Качество применяемого диэлектрика и характеризует сопротивление изоляции. Для конденсатора с большой емкостью сопротивление изоляции обратно пропорционально его площади обкладок, или его ёмкости.

На конденсаторы оказывает очень сильное воздействие влага. Асинхронные электродвигатели используемые в насосном оборудовании перекачивают воду, и высока вероятность попадания влаги на двигатель и в конденсаторную коробку. Воздействие влаги приводит к снижению сопротивления изоляции (возрастает вероятность пробоя), увеличению тангенса угла потерь, коррозии металлических элементов конденсатора.

Кроме всего при эксплуатации двигателя на конденсаторы воздействует различного вида механические нагрузки: вибрация, удары, ускорение и т.д. Как следствие могут появится обрыв выводов, трещины и уменьшение электрической прочности.

Рабочий и пусковой конденсаторы

В качестве рабочих и пусковых используются конденсаторы с оксидным диэлектриком (ранее они назвались электролитическими) Рабочие и пусковые конденсаторы для асинхронных двигателей включаются в сеть переменного тока, и они должны быть неполярными. Они имеют сравнительно большое 450 вольт для оксидных конденсаторов рабочее напряжение, которое в два раза превышает напряжение промышленной сети. На практике применяются конденсаторы с емкостью порядка десятков и сотен микрофарад. Как мы говорили выше, рабочий конденсатор используется для получения вращающего магнитного поля. Пусковая же емкость используется для получения магнитного поля, необходимого для повышения пускового момента электродвигателя. Пусковой конденсатор подключается параллельно рабочему через центробежный выключатель. Когда есть пусковая емкость вращающееся магнитное поле асинхронного двигателя в момент пуска приближается к круговому, а магнитный поток увеличивается. Это повышает пусковой момент и улучшает характеристики двигателя. При достижении асинхронным двигателем оборотов достаточных для отключения центробежного выключателя, пусковая емкость отключается и двигатель остается в работе только с рабочим конденсатором. Схема включения рабочего и пускового конденсаторов приведены на (Рис. 1).

Схема с рабочим и пусковым конденсаторами

В таблице приведены обособленные характеристики рабочих и пусковых конденсаторов для асинхронных двигателей.

 

РАБОЧИЙ

ПУСКОВОЙ

НазначениеДля асинхронных электродвигателейДля асинхронных электродвигателей
Схема подключенияПоследовательно с пусковой обмоткой электродвигателяПараллельно рабочему конденсатору
В качествеФазосмещающего элементаФазосмещающего элемента
Для чегоДля получения кругового вращающееся магнитного поля, необходимого для работы электродвигателяДля получения магнитного поля, необходимого для повышения пускового момента электродвигателя
Время включенияВ процессе эксплуатации электродвигателяВ момент пуска электродвигателя

Эксплуатация, обслуживание и ремонт

В процессе эксплуатации насосного оборудования с однофазным асинхронным двигателем особое внимание следует обращать на питающее напряжение электрической сети. В случае пониженного напряжения сети, как известно, снижается пусковой момент и частота вращения ротора, из-за увеличения скольжения. При низком напряжении увеличивается также нагрузка на рабочий конденсатор и возрастает время запуска двигателя. В случае значительного провала напряжения питания более 15% высока вероятность того, что асинхронный двигатель не запустится. Очень часто при низком напряжении выходит из строя рабочий конденсатор из-за повышенных токов и перегрева. Он расплавляется и из него вытекает электролит. Для ремонта необходимо приобрести и установить новый конденсатор соответствующей емкости. Очень часто случается, что нужного конденсатора под рукой нет. В этом случае можно подобрать требуемую емкость из двух или даже трех и четырех конденсаторов, подключив их параллельно. Здесь следует обратить внимание на рабочее напряжение, оно должно быть не ниже, чем напряжение на заводском конденсаторе. Общая емкость конденсатора(ов) должна отличаться от номинала не более чем 5%. Если установить емкость большего номинала, то двигатель запустится в работу и будет работать, но при этом начнет греться. Если с помощью клещей измерить номинальный ток двигателя, то ток будет завышен.  Так как полное электрическое сопротивление цепи в обмотках двигателя состоит из активного сопротивления цепи и реактивного сопротивления обмоток двигателя и емкости, то с увеличением емкости общее сопротивление возрастает. Сдвиг фаз токов в обмотках из-за увеличения полного сопротивления электрической цепи обмоток после запуска двигателя сильно уменьшится, магнитное поле из синусоидального превратится в эллиптическое, и рабочие характеристики асинхронного двигателя очень сильно ухудшаются, снижается КПД и возрастают тепловые потери.

  Иногда бывает, что вместе с конденсатором выходит из строя и пусковая обмотка однофазного двигателя. В такой ситуации стоимость ремонта резко возрастает, ибо надо не только заменить конденсатор, но еще и перемотать статор. Как известно, перемотка статора одна из самых дорогих операций при ремонте двигателя. Очень редко, но бывает и такая ситуация когда при низком напряжении выходит из строя только пусковая обмотка, а конденсатор при этом остается рабочим. Для ремонта двигателя нужно перематывать статор. Все эти ситуации с двигателем случаются при низком напряжении однофазной питающей сети. Для решения этой проблемы в идеальном случае необходим стабилизатор напряжения.

Спасибо за оказанное внимание

 

P.S. Понравился пост? Порекомендуйте его своим друзьям и знакомым в социальных сетях.

Еще похожие посты по данной теме:

nasos-pump.ru

: Маленькие хитрости :: BlogStroiki Default Default :: BlogStroiki

     Вопрос №125: Какой нужен рабочий и пусковой конденсатор для двигателя 1.1 киловатт(Валерий      Ответ: В тех случаях, когда требуется подключить электродвигатель трехфазный к сети 220 вольт (однофазной) используют два типа схем для подключения –«треугольником» или «звездой». Конечно лучше использовать  «треугольник», в таком случае потеря мощности трехфазного двигателя меньше 50%.

Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле:
Срабоч.=k*Iфаз./Ucет., к-коэффициент схемы подключения(  для  « звезды»=2800, для «треугольника»=4800; Iфаз.-паспортный номинальный ток двигателя,А; U-сетевое питающее напряжение напряжение, В.
Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Например ,если у вас система передачи крутящего момента от вала двигателя к циркулярной пиле идет с помощью плоского ремня или клинообразного  и натяжение его осуществляется  весом двигателя(двигатель крепится на пластине с одной стороны закрепленной к станине циркулярной пилы и в момент старта вы просто приподнимаете пластину с двигателем сняв нагрузку с оси двигателя а по мере набора мощности опускаете ее и  подключаете саму пилу).
Что бы получить близкую к номинальной пусковую мощность устанавливают как обычно емкость пускового конденсатора  в два три раза больше чем рабочая емкость. Сп.=(2-3)*Срабоч.
Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.5-2 раза выше, чем напряжение используемой сети. Это связано с тем, что при запуске двигателя с помощью конденсатора в этой обмотке протекает повышенный ток по сравнению с обмотками прямого включения в сеть на 30-40% от номинала. Таким образом применять можно конденсаторы с рабочим напряжением не менее 350 вольт не ниже, лучше конечно на 450 вольт.
Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать 200 мкф на пусковой конденсатор и 100 мкф на рабочий.
В вашем случае Сраб.=1.1кВтх100 мкф=110 мкф,  и Спуск.=200 мкф.х1.1кВт=220мкф. Вам достаточно будет 100 мкф на работу и 200 мкф на запуск. Если нагрузка на двигатель будет незначительная, то в процессе работы можно уменьшить емкость рабочего конденсатора до 50 мкф.
Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические(схема ниже) , главное правильно их подключить, при неправильной сборке они могут закипеть и взорваться!!!!!

По материалам сайта :http://blogstroiki.ru/emkosti-rabochego-i-puskovogo-kondensatorov-dlya-dvigatelya-moshhnostyu-3-kvt/#more-14223

Добавлено: 08.07.2014 23:08

blogstroiki.ru

: Инженерные системы загородного дома. Газ. Электричество. :: BlogStroiki Default Default :: BlogStroiki

У меня мотор 3квт,1400оборотов.Какой емкости надо пусковой конденсатор и рабочий для нормальной работы двигателя. Двигатель хочу использовать на пиле- циркулярке для распилки дров разного диаметра. Спасибо, с уважением Олег Викторович.

Ответ: В тех случаях, когда требуется подключить электродвигатель трехфазный к сети 220 вольт (однофазной) используют два типа схем для подключения –«треугольником» или «звездой». Конечно лучше использовать «треугольник», в таком случае потеря мощности трехфазного двигателя меньше 50%.

Расчет емкости рабочего конденсатора в таком случае проводим по такой формуле:

Срабоч.=k*Iфаз./Ucет., к-коэффициент схемы подключения( для « звезды»=2800, для «треугольника»=4800; Iфаз.-паспортный номинальный ток двигателя,А; U-сетевое питающее напряжение напряжение, В.

Если запуск трехфазного двигателя проходит без нагрузки, то пусковую емкость можно не ставить. Например ,если у вас система передачи крутящего момента от вала двигателя к циркулярной пиле идет с помощью плоского ремня или клинообразного и натяжение его осуществляется весом двигателя(двигатель крепится на пластине с одной стороны закрепленной к станине циркулярной пилы и в момент старта вы просто приподнимаете пластину с двигателем сняв нагрузку с оси двигателя а по мере набора мощности опускаете ее и подключаете саму пилу).

Что бы получить близкую к номинальной пусковую мощность устанавливают как обычно емкость пускового конденсатора в два три раза больше чем рабочая емкость. Сп.=(2-3)*Срабоч.

Что касается номинального напряжения устанавливаемых конденсаторов, оно должно быть 1.5-2 раза выше, чем напряжение используемой сети. Это связано с тем, что при запуске двигателя с помощью конденсатора в этой обмотке протекает повышенный ток по сравнению с обмотками прямого включения в сеть на 30-40% от номинала. Таким образом применять можно конденсаторы с рабочим напряжением не менее 350 вольт не ниже, лучше конечно на 450 вольт.

Исходя из практики принимается следующее решение, при выборе пускового и рабочего конденсаторов исходить надо из следующего: на один киловатт мощности двигателя надо брать 200 мкф на пусковой конденсатор и 100 мкф на рабочий.

В вашем случае Срабочий=300 мкф и Спусковой=600 мкф.

Если не найдете подходящие бумажные конденсаторы такой емкости можно использовать и электролитические(схема ниже) , главное правильно их подключить, при неправильной сборке они могугт закипеть и взорваться!!!!!

Добавлено: 01.12.2015 17:08

blogstroiki.ru

Конденсаторы для запуска электродвигателя являются необходимыми элементами при любой схеме подключения

На сегодняшний день электродвигатели являются основной составляющей любого производственного процесса. Запуск электродвигателя необходим в любом хозяйстве или в быту. Как правило, он используется для питания кондиционеров, вентиляторов, отопительных насосов и так далее. Именно поэтому каждый человек, связанный с электроникой должен хорошо знать схему подключения этого оборудования к сети 220в.

Устройство и предназначение конденсаторов

Для любых электродвигателей важными деталями являются не только радиотехнические, электронные детали и транзисторы, но и конденсаторы. При этом каждая схема запуска предусматривает определенное количество этих элементов. В то же время, полностью исключить их нельзя ни в одной схеме подключения.

Функциональные возможности

Конденсаторы выполняют самые различные функции. В первую очередь, они являются емкостями в фильтрах стабилизаторов и выпрямителей. Кроме того, конденсаторы обеспечивают передачу сигнала между каскадами усилителя. На основе этих деталей создаются фильтры подключения на высоких и низких частотах, а также устанавливаются временные интервалы и выбирается колебательная частота для различных электродвигателей.

Конденсатор для асинхронных электродвигателей предназначается для запуска и долговременной работы в системах переменного тока. В то же время, пусковой вариант может использоваться для относительно недлительного срока работы. Такое преимущество элементов для асинхронных электродвигателей обеспечивается тем, что они изготавливаются их полипропиленовой пленки.

Характеристики

Основным параметром любого подобного устройства является его емкость. В данном случае пусковой конденсатор имеет емкость, которая зависит от площади поверхности активного подключения и вида диэлектрика между ними. При этом размер устройства будет находиться в четкой зависимости от оксидного слоя диэлектрика. Этот оксидный слой, как правило, является достаточно тонким, так как для его формирования используется несколько атомных слоев. Благодаря этому удается разместить больше активной поверхности для запуска на определенной площади. Для частичного восстановления оксидного слоя используется электролит. Все это обеспечивается только при условии правильного подключения конденсатора к сети 220в с четкой полярностью.

Разновидности конденсаторов

  1. Электролитические.
  2. Полярные.
  3. Неполярные.
Электролитические

Наиболее эффективными являются электролитические конденсаторы. Они обладают самой большой удельной емкостью, то есть наилучшим соотношением емкости к объему. Как правило, емкость таких электролитных устройств может достигать 100 000 мкФ. При этом рабочее напряжение в системе запуска и подключения колеблется от 220в до 600в. Подобные устройства являются идеальным вариантом для электродвигателей с низкой частотой, где они используются в фильтрах источников энергии. Именно поэтому такие устройства требуют подключения строго с учетом полярности. В качестве электродов здесь выступает тонкая оксидная металлическая пленка. Именно поэтому такие конденсаторы часто называют оксидными.

Полярные

Полярный пусковой конденсатор не может использоваться для подключения через сеть переменного тока 220в. Ведь если сделать так, то может произойти разрушение структуры оксидного диэлектрического слоя. Это связано с изменением полярности напряжения с частотой 50 Гц. В результате разрушится оксидный слой, что уменьшит сопротивление и увеличит ток. Это приведет к перегреву конденсатора с выделением газа и короткому замыканию с маленьким взрывом.

Неполярные

Что касается неполярных конденсаторов, то их стоимость может быть существенно выше, чем электролитических. Что касается их размеров, то они тоже отличаются. Это связано с тем, что электролитические элементы обладают большей емкостью при тех же размерах. Такой тип аккумуляторов обладает куда большей емкостью по сравнению с полярными конденсаторами, которые имеют масляную основу.

Как подобрать конденсатор к электродвигателю

Подбор конденсатора для трехфазного электродвигателя является непростой задачей. Особенно это касается его подключения через однофазную сеть 220в. Для такого подключения должен обязательно использоваться пусковой фазосдвигающий механизм. При этом схема предусматривает не только пусковой конденсатор для запуска электродвигателя, но и рабочий элемент. При его выборе, в первую очередь, следует определиться с емкостью рабочего конденсатора. Ее определяют по специальным формулам, которые отличаются для схемы подключения звезда и треугольник.

После того, как вы выбрали емкость рабочего элемента, выбирается пусковой элемент. Как правило, его емкость должна быть в несколько раз большей. При этом емкость должна быть большей в тех условиях, когда электродвигателю предстоит преодолевать серьезное сопротивление во время запуска. То есть этот показатель будет находиться в четкой зависимости от рабочего напряжения на двигатель. Для определения этого показателя следует использовать специальную таблицу, в которой учитывается тот минимальный показатель емкости, который должен иметь пусковой конденсатор. Специалисты рекомендуют поддерживать номинальное напряжение фазосдвигающих устройств, которое должно превышать напряжение сети почти в два раза. Например, если собирается схема для подключения через сеть 220в, то номинальное напряжение для запуска должно превышать 500в. Если планируется использовать целый блок подобных устройств, то подключать их необходимо параллельно.

Запуск электродвигателя при помощи конденсатора

При подсоединении конденсатора к электродвигателю следует использовать определенные схемы, из которых самыми эффективными являются подключения типа треугольник и звезда. В любом случае, на первом этапе необходимо подключить элемент так, чтобы в последующем не было риска взрыва. Далее следует подобрать конденсаторы парами, чтобы они имели одинаковую емкость. Например, емкость в данном случае может достигать 300 мкФ. Чтобы обеспечить максимальную безопасность запуска электродвигателя, необходимо поместить конденсаторную батарею в специальную коробочку. Это обезопасит систему от возможных последствий маленького взрыва, который может иметь место при перегреве.

Схема треугольник

Основная сложность для подключения трехфазного мотора через однофазную сеть состоит в том, что нужно правильно распределить провода, выходящие в распределительную коробку. Если же в конструкции отсутствует коробка, то тогда эти провода просто нужно вывести наружу по отношению к электромотору. Наиболее простая ситуация, когда в электродвигателе через систему 220в все обмотки уже имеют подключения по схеме треугольник. В таком случае вам достаточно просто подсоединить токоподводящий провод и пусковой конденсатор к клеммам мотора.

Схема звезда

Также простой является ситуация, когда в электродвигателе обмотки были соединены звездой, но ее можно переподключить в треугольник. Для замены типа подключения следует просто поменять перемычки. Более сложной считается ситуация, когда в распределительную коробку выводится 6 проводов без какой-то конкретики. Чтобы решить эту проблему, придется найти соответствующую документацию для запуска и подключения системы.

Для подключения по схеме звезда необходимо:

  • найти начало и конец обмоток;
  • определить пару проводов, которые относятся к одной обмотке.

Подключение по схеме треугольник

Наиболее удачной для бытовых электродвигателей является схема однофазного подключения трехфазных моторов треугольник. Этот способ позволяет добиться наибольшей мощности на выходе. Мощность системы в данном случае может достигать 70% от начальной. При этом два контакта в распределительной коробке присоединяются сразу к двум однофазным проводам сети 220в. Что касается третьего провода, то для его подключения используют пусковой и рабочий элемент Ср. Его подсоединяют к одному из двух контактов или сетевым проводам.

Таким образом, конденсаторы являются необходимыми элементами для запуска электродвигателей. Они обеспечивают нормальную работу электромоторов при подключении различными схемами. Наиболее оптимальными и эффективными являются электролитные конденсаторы.

ekowheel.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *