Содержание

Физика условные обозначения и формулы. Обозначение: высота, ширина, длина

Ни для кого не секрет, что существуют специальные обозначения для величин в любой науке. Буквенные обозначения в физике доказывают, что данная наука не является исключением в плане идентификации величин при помощи особых символов. Основных величин, а также их производных, достаточно много, каждая из которых имеет свой символ. Итак, буквенные обозначения в физике подробно рассматриваются в данной статье.

Физика и основные физические величины

Благодаря Аристотелю начало употребляться слово физика, так как именно он впервые употребил этот термин, который в ту пору считался синонимом термина философия. Это связано с общностью объекта изучения – законы Вселенной, конкретнее – то, как она функционирует. Как известно, в XVI-XVII веках произошла первая научная революция, именно благодаря ей физика была выделена в самостоятельную науку.

Михаил Васильевич Ломоносов ввел в русский язык слово физика посредством издания учебника в переводе с немецкого – первого в России учебника по физике.

Итак, физика представляет собой раздел естествознания, посвященный изучению общих законов природы, а также материи, ее движение и структуре. Основных физических величин не так много, как может показаться на первый взгляд – их всего 7:

  • длина,
  • масса,
  • время,
  • сила тока,
  • температура,
  • количество вещества,
  • сила света.

Конечно, у них есть свои буквенные обозначения в физике. Например, для массы выбран символ m, а для температуры – Т. Также у всех величин есть своя единица измерения: у силы света – кандела (кд), а у количества вещества единицей измерения является моль.

Производные физические величины

Производных физических величин значительно больше, чем основных. Их насчитывается 26, причем часто некоторые из них приписывают к основным.

Итак, площадь является производной от длины, объем – также от длины, скорость – от времени, длины, а ускорение, в свою очередь, характеризует быстроту изменения скорости. Импульс выражается через массу и скорость, сила – произведение массы и ускорения, механическая работа зависит от силы и длины, энергия пропорциональна массе. Мощность, давление, плотность, поверхностная плотность, линейная плотность, количество теплоты, напряжение, электрическое сопротивление, магнитный поток, момент инерции, момент импульса, момент силы – все они зависят от массы. Частота, угловая скорость, угловое ускорение обратно пропорциональны времени, а электрический заряд имеет прямую зависимость от времени. Угол и телесный угол являются производными величинами из длины.

Какой буквой обозначается напряжение в физике? Напряжение, которое является скалярной величиной, обозначается буквой U. Для скорости обозначение имеет вид буквы v, для механической работы – А, а для энергии – Е. Электрический заряд принято обозначать буквой q, а магнитный поток – Ф.

СИ: общие сведения

Международная система единиц (СИ) представляет собой систему физических единиц, которая основана на Международной системе величин, включая наименования и обозначения физических величин. Она принята Генеральной конференцией по мерам и весам. Именно эта система регламентирует буквенные обозначения в физике, а также их размерность и единицы измерения. Для обозначения используются буквы латинского алфавита, в отдельных случаях – греческого. Также возможно в качестве обозначения использование специальных символов.

Заключение

Итак, в любой научной дисциплине есть особые обозначения для различного рода величин. Естественно, физика не является исключением. Буквенных обозначений достаточно много: сила, площадь, масса, ускорение, напряжение и т. д. Они имеют свои обозначения. Существует специальная система, которая называется Международная система единиц. Считается, что основные единицы не могут быть математически выведены из других. Производные же величины получают при помощи умножения и деления из основных.

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения – это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой греческого или английского названия величины. При этом ширина на английском будет выглядеть как “width”.

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина – это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина – в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова – «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным – трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как “height”. Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина – все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как “radius”. Отсюда и строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: “diameter”. Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр – толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как “thickness”, а в латинском варианте – “crassities”. Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от “περιμετρέο” («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык (“perimeter”) и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь – это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так – нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова “square”. Однако в нем математическая площадь – это “area”, а “square” – это площадь в архитектурном понимании. Кстати, стоит вспомнить, что “square” – название геометрической фигуры “квадрат”. Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода “area” в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» (“fortis”).

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера – это шаг (винтовых пружин, и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые – «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.

Переходя к физическим приложениям производной, мы будем использовать несколько иные обозначения те, которые приняты в физике.

Во-первых, меняется обозначение функций. В самом деле, какие функции мы собираемся дифференцировать? Этими функциями служат физические величины, зависящие от времени. Например, координата тела x(t) и его скорость v(t) могут быть заданы формулами:

(читается ¾икс с точкой¿).

Имеется ещё одно обозначение производной, очень распространённое как в математике, так и в физике:

производная функции x(t) обозначается

(читается ¾дэ икс по дэ тэ¿).

Остановимся подробнее на смысле обозначения (1. 16 ). Математик понимает его двояко либо как предел:

либо как дробь, в знаменателе которой стоит приращение времени dt, а в числителе так называемый дифференциал dx функции x(t). Понятие дифференциала не сложно, но мы не будем его сейчас обсуждать; оно ждёт вас на первом курсе.

Физик, не скованный требованиями математической строгости, понимает обозначение (1.16 ) более неформально. Пусть dx есть изменение координаты за время dt. Возьмём интервал dt настолько маленьким, что отношение dx=dt близко к своему пределу (1.17 ) с устраивающей нас точностью.

И тогда, скажет физик, производная координаты по времени есть попросту дробь, в числителе которой стоит достаточно малое изменение координаты dx, а в знаменателе достаточно малый промежуток времени dt, в течение которого это изменение координаты произошло.

Такое нестрогое понимание производной характерно для рассуждений в физике. Далее мы будем придерживаться именно этого физического уровня строгости.

Производная x(t) физической величины x(t) снова является функцией времени, и эту функцию снова можно продифференцировать найти производную производной, или вторую производную функции x(t). Вот одно обозначение второй производной:

вторая производная функции x(t) обозначаетсяx (t)

(читается ¾икс с двумя точками¿), а вот другое:

вторая производная функции x(t) обозначаетсяdt 2

(читается ¾дэ два икс по дэ тэ квадрат¿ или ¾дэ два икс по дэ тэ дважды¿).

Давайте вернёмся к исходному примеру (1.13 ) и посчитаем производную координаты, а заодно посмотрим на совместное использование обозначений (1.15 ) и (1.16 ):

x(t) = 1 + 12t 3t2 )

x(t) = dt d (1 + 12t 3t2 ) = 12 6t:

(Символ дифференцирования dt d перед скобкой это всё равно что штрих сверху за скобкой в прежних обозначениях.)

Обратите внимание, что производная координаты оказалась равна скорости (1.14 ). Это не случайное совпадение. Связь производной координаты со скоростью тела будет выяснена в следующем разделе ¾Механическое движение¿.

1.1.7 Предел векторной величины

Физические величины бывают не только скалярными, но и векторными. Соответственно, часто нас интересует скорость изменения векторной величины то есть, производная вектора. Однако прежде чем говорить о производной, нужно разобраться с понятием предела векторной величины.

Рассмотрим последовательность векторов ~u1 ; ~u2 ; ~u3 ; : : : Сделав, если необходимо, параллельный перенос, сведём их начала в одну точку O (рис.1.5 ):

Рис.

1.5. lim ~un = ~v

Концы векторов обозначим A1 ; A2 ; A3 ; : : : Таким образом, имеем:

Предположим, что последовательность точек A1 ; A2 ; A3 ; : : : ¾втекает¿2 в точку B:

lim An = B:

Обозначим ~v = OB. Мы скажем тогда, что последовательность синих векторов ~un стремится к красному вектору ~v, или что вектор ~v является пределом последовательности векторов ~un :

~v = lim ~un :

2 Вполне достаточно интуитивного понимания этого ¾втекания¿, но вас, быть может, интересует более строгое объяснение? Тогда вот оно.

Пусть дело происходит на плоскости. ¾Втекание¿ последовательности A1 ; A2 ; A3 ; : : : в точку B означает следующее: сколь бы малый круг с центром в точке B мы ни взяли, все точки последовательности, начиная с некоторой, попадут внутрь этого круга. Иными словами, вне любого круга с центром B имеется лишь конечное число точек нашей последовательности.

А если дело происходит в пространстве? Определение ¾втекания¿ модифицируется незначительно: нужно лишь заменить слово ¾круг¿ на слово ¾шар¿.

Предположим теперь, что концы синих векторов на рис. 1.5 пробегают не дискретный набор значений, а непрерывную кривую (например, указанную пунктирной линией). Таким образом, мы имеем дело не с последовательностью векторов ~un , а с вектором ~u(t), который меняется со временем. Это как раз то, что нам и нужно в физике!

Дальнейшее объяснение почти такое же. Пусть t стремится к некоторому значению t0 . Если

при этом концы векторов ~u(t) ¾втекают¿ в некоторую точку B, то мы говорим, что вектор

~v = OB является пределом векторной величины ~u(t):

t!t0

1.

1.8 Дифференцирование векторов

Выяснив, что такое предел векторной величины, мы готовы сделать следующий шаг ввести понятие производной вектора.

Предположим, что имеется некоторый вектор ~u(t), зависящий от времени. Это означает, что длина данного вектора и его направление могут меняться с течением времени.

По аналогии с обычной (скалярной) функцией вводится понятие изменения (или приращения) вектора. Изменение вектора ~u за время t есть векторная величина:

~u = ~u(t + t) ~u(t):

Обратите внимание, что в правой части данного соотношения стоит разность векторов. Изменение вектора ~u показано на рис. 1.6 (напомним, что при вычитании векторов мы сводим их начала в одну точку, соединяем концы и ¾укалываем¿ стрелкой тот вектор, из которого производится вычитание).

~u(t) ~u

Рис. 1.6. Изменение вектора

Если промежуток времени t достаточно мал, то и вектор ~u за это время меняется мало (в физике, по крайней мере, так считается всегда). Соответственно, если при t ! 0 отношение~u= t стремится к некоторому пределу, то этот предел называется производной вектора ~u:

При обозначении производной вектора мы не будем использовать точку сверху (так как символ ~u_ не слишком хорошо смотрится) и ограничиваемся обозначением (1. 18 ). Но для производной скаляра мы, разумеется, свободно используем оба обозначения.

Напомним, что d~u=dt это символ производной. Его можно понимать и как дробь, в числителе которой стоит дифференциал вектора ~u, соответствующий промежутку времени dt. Выше мы не стали обсуждать понятие дифференциала, так как в школе его не проходят; не будем обсуждать дифференциал и здесь.

Однако на физическом уровне строгости производную d~u=dt можно считать дробью, в знаменателе которой стоит очень малый интервал времени dt, а в числителе соответствующее малое изменение d~u вектора ~u. При достаточно малом dt величина данной дроби отличается от

предела в правой части (1.18 ) столь мало, что с учётом имеющейся точности измерений этим отличием можно пренебречь.

Этого (не вполне строгого) физического понимания производной нам окажется вполне достаточно.

Правила дифференцирования векторных выражений во многом аналогичны правилам дифференцирования скаляров. Нам понадобятся лишь самые простые правила.

1. Постоянный скалярный множитель выносится за знак производной: если c = const, то

d(c~u) = c d~u: dt dt

Мы используем это правило в разделе ¾Импульс¿, когда второй закон Ньютона

будет переписан в виде:

2. Постоянный векторный множитель выносится за знак производной: если ~c = const, то dt d (x(t)~c) = x(t)~c:

3. Производная суммы векторов равна сумме их производных:

dt d (~u + ~v) =d~u dt +d~v dt :

Последними двумя правилами мы будем пользоваться неоднократно. Посмотрим, как они работают в важнейшей ситуации дифференцирования вектора при наличии в пространстве прямоугольной системы координат OXY Z (рис. 1.7 ).

Рис. 1.7. Разложение вектора по базису

Как известно, любой вектор ~u единственным образом раскладывается по базису единичных

векторов ~ ,~ ,~ : i j k

~u = ux i + uy j + uz k:

Здесь ux , uy , uz проекции вектора ~u на координатные оси. Они же являются координатами вектора ~u в данном базисе.

Вектор ~u в нашем случае зависит от времени, а это значит, что его координаты ux , uy , uz являются функциями времени:

~u(t) = ux (t) i

Uy (t) j

Uz (t)k:

Дифференцируем это равенство. Сначала пользуемся правилом дифференцирования суммы:

ux (t)~ i +

uy (t)~ j

uz (t)~ k:

Затем выносим постоянные векторы за знак производной:

Ux (t)i + uy (t)j + uz (t)k:

Таким образом, если вектор ~u имеет координаты (ux ; uy ; uz ), то координаты производной d~u=dt являются производными координат вектора ~u, а именно (ux ; uy ; uz ).

Ввиду особой важности формулы (1.20 ) дадим более непосредственный её вывод. В момент времени t + t согласно (1.19 ) имеем:

~u(t + t) = ux (t + t) i + uy (t + t) j + uz (t + t)k:

Напишем изменение вектора ~u:

~u = ~u(t + t) ~u(t) =

Ux (t + t) i + uy (t + t) j + uz (t + t)k ux (t) i + uy (t) j + uz (t)k =

= (ux (t + t) ux (t)) i + (uy (t + t) uy (t)) j + (uz (t + t) uz (t)) k =

Ux i + uy j + uz k:

Делим обе части полученного равенства на t:

T i +

t j +

В пределе при t ! 0 дроби ux = t, uy = t, uz = t переходят соответственно в производные ux , uy , uz , и мы снова получаем соотношение (1. 20 ):

Ux i + uy j + uz k.

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

    постоянная Авогадро;

    увеличение оптического прибора;

    концентрация вещества;

    число Дебая;

    полная мощность излучения.

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

    показатель преломления, причем он может быть абсолютным или относительным;

    нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

    частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро :

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

Еще одна формула с N в физике частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

Появляется буква «эн» в формуле для периода обращения:

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n 21 = v 1: v 2 = n 2: n 1 ,

где n 1 и n 2 — абсолютные показатели преломления первой и второй среды, v 1 и v 2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n 21 = sin α: sin γ.

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А: t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000: 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с: v.

Решение. Из указанной формулы видно, что v = с: n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n 21 = sin α: sin γ. А также: n = с: v.

Решение. В первой формуле n 21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n 2 и n 1 . Если записать вторую указанную формулу для предложенных сред, то получатся такие: n 1 = с: v 1 и n 2 =с: v 2 . Если составить отношение двух последних выражений, получится, что n 21 = v 1: v 2 . Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v 2: v 1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул . Период вращения и число оборотов связаны формулой Т = t: N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600: 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула : частота ν = N: t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

Обозначение: высота, ширина, длина. Ширина

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, длина, ширина, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения – это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой букве латинского, греческого или английского названия величины. При этом ширина на английском будет выглядеть как “width”.

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина – это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина – в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова – «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным – трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как “height”. Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина – все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как “radius”. Отсюда и общепринятое сокращение: строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: “diameter”. Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр – толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как “thickness”, а в латинском варианте – “crassities”. Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от “περιμετρέο” («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык (“perimeter”) и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь – это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так – нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова “square”. Однако в нем математическая площадь – это “area”, а “square” – это площадь в архитектурном понимании. Кстати, стоит вспомнить, что “square” – название геометрической фигуры “квадрат”. Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода “area” в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» (“fortis”).

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера – это шаг (винтовых пружин, заклепочных соединений и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые – «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.

Для Российской Федерации таким нормативным документом является ГОСТ 2.321-84. Он был внедрен еще в марте 1984 г. (во времена СССР), взамен устаревшего ГОСТа 3452—59.

Обозначения физических величин

Величины

Наименование

Обозначение

Механические величины

Вес

G, P, W

Время

t

Высота

h

Давление

p

Диаметр

d

Длина

l

Длина пути

s

Импульс (количество движения)

p

Количество вещества

ν, n

Коэффицент жесткости (жесткость)

Ʀ

Коэффицент запаса прочности

Ʀ, n

Коэффицент полезного действия

η

Коэффицент трения качения

Ʀ

Коэффицент трения скольжения

μ, f

Масса

m

Масса атома

ma

Масса электрона

me

Механическое напряжение

σ

Модуль упругости (модуль Юнга)

E

Момент силы

M

Мощность

P, N

Объем, вместимость

V, ϑ

Период колебания

T

Плотность

ϱ

Площадь

A, S

Поверхностное натяжение

σ, γ

Постоянная гравитационная

G

Предел прочности

σпч

Работа

W, A, L

Радиус

r, R

Сила, сила тяжести

F, Q, R

Скорость линейная

ϑ

Скорость угловая

ώ

Толщина

d, δ

Ускорение линейное

a

Ускорение свободного падения

g

Частота

ν, f

Частота вращения

n

Ширина

b

Энергия

E, W

Энергия кинетитеская

EƦ

Энергия потенциальная

Ep

Акустические величины

Длина волны

λ

Звуковая мощность

P

Звуковая энергия

W

Интенсивность звука

I

Скорость звука

c

Частота

ν, f

Тепловые величины и величины молекулярной физики
Абсолютная влажность

a

Газовая постоянная (молярная)

R

Количество теплоты

Q

Коэффицент полезного действия

η

Относительная влажность

ϕ

Относительная молекулярная масса

Mr

Постоянная (число) Авогадро

NA

Постоянная Больцмана

Ʀ

Постоянная (число) Лошмидта

NL

Температура Кюри

TC

Температура па шкале Цельсия

t, ϴ

Температура термодинамическая (абсолютная температура)

T

Температурный коэффицент линейного расширения

a, ai

Температурный коффицент объемного расширения

β, av

Удельная теплоемкость

c

Удельная теплота парообразования

r

Удельная теплота плавления

λ

Удельная теплота сгорания топлива (сокращенно: теплота сгорания топлива)

q

Число молекул

N

Энергия внутренняя

U

Электрические и магнитные величины

Диэлектрическая проницаемость вакуума (электрическая постоянная)

Ԑo

Индуктивность

L

Коэффицент самоиндукции

L

Коэффицент трансформации

K

Магнитная индукция

B

Магнитная проницаемость вакуума (магнитная постоянная)

μo

Магнитный поток

Ф

Мощность электрической цепи

P

Напряженность магнитного поля

H

Напряженность электрического поля

E

Объемная плотность электрического заряда

ϱ

Относительная диэлектрическая проницаемость

Ԑr

Относительная магнитная проницаемость

μr

Плотность эенгии магнитного поля удельная

ωm

Плотность энергии электрического поля удельная

ωэ

Плотность заряда поверхностная

σ

Плотность электрического тока

J

Постоянная (число) Фарадея

F

Проницаемость диэлектрическая

ԑ

Работа выхода электрона

ϕ

Разность потенциалов

U

Сила тока

I

Температурный коэффицент электрического сопротивления

a

Удельная электрическая проводимость

γ

Удельное электрическое сопротивление

ϱ

Частота электрического тока

f, ν

Число виток обмотки

N, ω

Электрическая емкость

C

Электрическая индукция

D

Электрическая проводимость

G

Электрический момент диполя молекулы

p

Электрический заряд (количество электричества)

Q, q

Электрический потенциал

V, ω

Электрическое напряжение

U

Электрическое сопротивление

R, r

Электродвижущая сила

E, Ԑ

Электрохимический эквивалент

Ʀ

Энергия магнитного поля

Wm

Энергия электрического поля

Wэ

Энергия Электромагнитная

W

Оптические величины

Длина волны

λ

Освещенность

E

Период колебания

T

Плотность потока излучения

Ф

Показатель (коэффицент) преломления

n

Световой поток

Ф

Светасила объектива

f

Сила света

I

Скорость света

c

Увеличение линейное

β

Увеличение окуляра, микроскопа, лупы

Ѓ

Угол отражения луча

έ

Угол падения луча

ԑ

Фокусное расстояние

F

Частота колебаний

ν, f

Энергия излучения

Q, W

Энергия световая

Q

Величины атомной физики

Атомная масса относительная

Ar

Время полураспада

T1/2

Дефект массы

Δ

Заряд электрона

e

Масса атома

ma

Масса нейтрона

mn

Масса протона

mp

Масса электрона

me

Постоянная Планка

h, ħ

Радиус электрона

re

Величины ионизирующих излучений
Поглощеная доза излучения (доза излучения)

D

Мощность поглощенной дозы излучения

Ď

Активность нуклида в радиоактивном источнике

A

что такое n в физике

Ни для кого не секрет, что существуют специальные обозначения для величин в любой науке. Буквенные обозначения в физике доказывают, что данная наука не является исключением в плане идентификации величин при помощи особых символов. Основных величин, а также их производных, достаточно много, каждая из которых имеет свой символ. Итак, буквенные обозначения в физике подробно рассматриваются в данной статье.

Физика и основные физические величины

Благодаря Аристотелю начало употребляться слово физика, так как именно он впервые употребил этот термин, который в ту пору считался синонимом термина философия. Это связано с общностью объекта изучения – законы Вселенной, конкретнее – то, как она функционирует. Как известно, в XVI-XVII веках произошла первая научная революция, именно благодаря ей физика была выделена в самостоятельную науку.

Михаил Васильевич Ломоносов ввел в русский язык слово физика посредством издания учебника в переводе с немецкого – первого в России учебника по физике.

Итак, физика представляет собой раздел естествознания, посвященный изучению общих законов природы, а также материи, ее движение и структуре. Основных физических величин не так много, как может показаться на первый взгляд – их всего 7:

  • длина,
  • масса,
  • время,
  • сила тока,
  • температура,
  • количество вещества,
  • сила света.

Конечно, у них есть свои буквенные обозначения в физике. Например, для массы выбран символ m, а для температуры – Т. Также у всех величин есть своя единица измерения: у силы света – кандела (кд), а у количества вещества единицей измерения является моль.

Производные физические величины

Производных физических величин значительно больше, чем основных. Их насчитывается 26, причем часто некоторые из них приписывают к основным.

Итак, площадь является производной от длины, объем – также от длины, скорость – от времени, длины, а ускорение, в свою очередь, характеризует быстроту изменения скорости. Импульс выражается через массу и скорость, сила – произведение массы и ускорения, механическая работа зависит от силы и длины, энергия пропорциональна массе. Мощность, давление, плотность, поверхностная плотность, линейная плотность, количество теплоты, напряжение, электрическое сопротивление, магнитный поток, момент инерции, момент импульса, момент силы – все они зависят от массы. Частота, угловая скорость, угловое ускорение обратно пропорциональны времени, а электрический заряд имеет прямую зависимость от времени. Угол и телесный угол являются производными величинами из длины.

Какой буквой обозначается напряжение в физике? Напряжение, которое является скалярной величиной, обозначается буквой U. Для скорости обозначение имеет вид буквы v, для механической работы – А, а для энергии – Е. Электрический заряд принято обозначать буквой q, а магнитный поток – Ф.

СИ: общие сведения

Международная система единиц (СИ) представляет собой систему физических единиц, которая основана на Международной системе величин, включая наименования и обозначения физических величин. Она принята Генеральной конференцией по мерам и весам. Именно эта система регламентирует буквенные обозначения в физике, а также их размерность и единицы измерения. Для обозначения используются буквы латинского алфавита, в отдельных случаях – греческого. Также возможно в качестве обозначения использование специальных символов.

Заключение

Итак, в любой научной дисциплине есть особые обозначения для различного рода величин. Естественно, физика не является исключением. Буквенных обозначений достаточно много: сила, площадь, масса, ускорение, напряжение и т. д. Они имеют свои обозначения. Существует специальная система, которая называется Международная система единиц. Считается, что основные единицы не могут быть математически выведены из других. Производные же величины получают при помощи умножения и деления из основных.

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения – это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой греческого или английского названия величины. При этом ширина на английском будет выглядеть как “width”.

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина – это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина – в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова – «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным – трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как “height”. Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина – все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как “radius”. Отсюда и строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: “diameter”. Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр – толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как “thickness”, а в латинском варианте – “crassities”. Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от “περιμετρέο” («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык (“perimeter”) и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь – это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так – нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова “square”. Однако в нем математическая площадь – это “area”, а “square” – это площадь в архитектурном понимании. Кстати, стоит вспомнить, что “square” – название геометрической фигуры “квадрат”. Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода “area” в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» (“fortis”).

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера – это шаг (винтовых пружин, и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые – «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

    постоянная Авогадро;

    увеличение оптического прибора;

    концентрация вещества;

    число Дебая;

    полная мощность излучения.

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

    показатель преломления, причем он может быть абсолютным или относительным;

    нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

    частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро :

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

Еще одна формула с N в физике частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

Появляется буква «эн» в формуле для периода обращения:

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n 21 = v 1: v 2 = n 2: n 1 ,

где n 1 и n 2 — абсолютные показатели преломления первой и второй среды, v 1 и v 2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n 21 = sin α: sin γ.

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А: t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000: 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с: v.

Решение. Из указанной формулы видно, что v = с: n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n 21 = sin α: sin γ. А также: n = с: v.

Решение. В первой формуле n 21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n 2 и n 1 . Если записать вторую указанную формулу для предложенных сред, то получатся такие: n 1 = с: v 1 и n 2 =с: v 2 . Если составить отношение двух последних выражений, получится, что n 21 = v 1: v 2 . Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v 2: v 1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул . Период вращения и число оборотов связаны формулой Т = t: N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600: 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула : частота ν = N: t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

Переходя к физическим приложениям производной, мы будем использовать несколько иные обозначения те, которые приняты в физике.

Во-первых, меняется обозначение функций. В самом деле, какие функции мы собираемся дифференцировать? Этими функциями служат физические величины, зависящие от времени. Например, координата тела x(t) и его скорость v(t) могут быть заданы формулами:

(читается ¾икс с точкой¿).

Имеется ещё одно обозначение производной, очень распространённое как в математике, так и в физике:

производная функции x(t) обозначается

(читается ¾дэ икс по дэ тэ¿).

Остановимся подробнее на смысле обозначения (1.16 ). Математик понимает его двояко либо как предел:

либо как дробь, в знаменателе которой стоит приращение времени dt, а в числителе так называемый дифференциал dx функции x(t). Понятие дифференциала не сложно, но мы не будем его сейчас обсуждать; оно ждёт вас на первом курсе.

Физик, не скованный требованиями математической строгости, понимает обозначение (1.16 ) более неформально. Пусть dx есть изменение координаты за время dt. Возьмём интервал dt настолько маленьким, что отношение dx=dt близко к своему пределу (1.17 ) с устраивающей нас точностью.

И тогда, скажет физик, производная координаты по времени есть попросту дробь, в числителе которой стоит достаточно малое изменение координаты dx, а в знаменателе достаточно малый промежуток времени dt, в течение которого это изменение координаты произошло.

Такое нестрогое понимание производной характерно для рассуждений в физике. Далее мы будем придерживаться именно этого физического уровня строгости.

Производная x(t) физической величины x(t) снова является функцией времени, и эту функцию снова можно продифференцировать найти производную производной, или вторую производную функции x(t). Вот одно обозначение второй производной:

вторая производная функции x(t) обозначаетсяx (t)

(читается ¾икс с двумя точками¿), а вот другое:

вторая производная функции x(t) обозначаетсяdt 2

(читается ¾дэ два икс по дэ тэ квадрат¿ или ¾дэ два икс по дэ тэ дважды¿).

Давайте вернёмся к исходному примеру (1.13 ) и посчитаем производную координаты, а заодно посмотрим на совместное использование обозначений (1.15 ) и (1.16 ):

x(t) = 1 + 12t 3t2 )

x(t) = dt d (1 + 12t 3t2 ) = 12 6t:

(Символ дифференцирования dt d перед скобкой это всё равно что штрих сверху за скобкой в прежних обозначениях.)

Обратите внимание, что производная координаты оказалась равна скорости (1.14 ). Это не случайное совпадение. Связь производной координаты со скоростью тела будет выяснена в следующем разделе ¾Механическое движение¿.

1.1.7 Предел векторной величины

Физические величины бывают не только скалярными, но и векторными. Соответственно, часто нас интересует скорость изменения векторной величины то есть, производная вектора. Однако прежде чем говорить о производной, нужно разобраться с понятием предела векторной величины.

Рассмотрим последовательность векторов ~u1 ; ~u2 ; ~u3 ; : : : Сделав, если необходимо, параллельный перенос, сведём их начала в одну точку O (рис.1.5 ):

Рис. 1.5. lim ~un = ~v

Концы векторов обозначим A1 ; A2 ; A3 ; : : : Таким образом, имеем:

Предположим, что последовательность точек A1 ; A2 ; A3 ; : : : ¾втекает¿2 в точку B:

lim An = B:

Обозначим ~v = OB. Мы скажем тогда, что последовательность синих векторов ~un стремится к красному вектору ~v, или что вектор ~v является пределом последовательности векторов ~un :

~v = lim ~un :

2 Вполне достаточно интуитивного понимания этого ¾втекания¿, но вас, быть может, интересует более строгое объяснение? Тогда вот оно.

Пусть дело происходит на плоскости. ¾Втекание¿ последовательности A1 ; A2 ; A3 ; : : : в точку B означает следующее: сколь бы малый круг с центром в точке B мы ни взяли, все точки последовательности, начиная с некоторой, попадут внутрь этого круга. Иными словами, вне любого круга с центром B имеется лишь конечное число точек нашей последовательности.

А если дело происходит в пространстве? Определение ¾втекания¿ модифицируется незначительно: нужно лишь заменить слово ¾круг¿ на слово ¾шар¿.

Предположим теперь, что концы синих векторов на рис. 1.5 пробегают не дискретный набор значений, а непрерывную кривую (например, указанную пунктирной линией). Таким образом, мы имеем дело не с последовательностью векторов ~un , а с вектором ~u(t), который меняется со временем. Это как раз то, что нам и нужно в физике!

Дальнейшее объяснение почти такое же. Пусть t стремится к некоторому значению t0 . Если

при этом концы векторов ~u(t) ¾втекают¿ в некоторую точку B, то мы говорим, что вектор

~v = OB является пределом векторной величины ~u(t):

t!t0

1.1.8 Дифференцирование векторов

Выяснив, что такое предел векторной величины, мы готовы сделать следующий шаг ввести понятие производной вектора.

Предположим, что имеется некоторый вектор ~u(t), зависящий от времени. Это означает, что длина данного вектора и его направление могут меняться с течением времени.

По аналогии с обычной (скалярной) функцией вводится понятие изменения (или приращения) вектора. Изменение вектора ~u за время t есть векторная величина:

~u = ~u(t + t) ~u(t):

Обратите внимание, что в правой части данного соотношения стоит разность векторов. Изменение вектора ~u показано на рис. 1.6 (напомним, что при вычитании векторов мы сводим их начала в одну точку, соединяем концы и ¾укалываем¿ стрелкой тот вектор, из которого производится вычитание).

~u(t) ~u

Рис. 1.6. Изменение вектора

Если промежуток времени t достаточно мал, то и вектор ~u за это время меняется мало (в физике, по крайней мере, так считается всегда). Соответственно, если при t ! 0 отношение~u= t стремится к некоторому пределу, то этот предел называется производной вектора ~u:

При обозначении производной вектора мы не будем использовать точку сверху (так как символ ~u_ не слишком хорошо смотрится) и ограничиваемся обозначением (1.18 ). Но для производной скаляра мы, разумеется, свободно используем оба обозначения.

Напомним, что d~u=dt это символ производной. Его можно понимать и как дробь, в числителе которой стоит дифференциал вектора ~u, соответствующий промежутку времени dt. Выше мы не стали обсуждать понятие дифференциала, так как в школе его не проходят; не будем обсуждать дифференциал и здесь.

Однако на физическом уровне строгости производную d~u=dt можно считать дробью, в знаменателе которой стоит очень малый интервал времени dt, а в числителе соответствующее малое изменение d~u вектора ~u. При достаточно малом dt величина данной дроби отличается от

предела в правой части (1.18 ) столь мало, что с учётом имеющейся точности измерений этим отличием можно пренебречь.

Этого (не вполне строгого) физического понимания производной нам окажется вполне достаточно.

Правила дифференцирования векторных выражений во многом аналогичны правилам дифференцирования скаляров. Нам понадобятся лишь самые простые правила.

1. Постоянный скалярный множитель выносится за знак производной: если c = const, то

d(c~u) = c d~u: dt dt

Мы используем это правило в разделе ¾Импульс¿, когда второй закон Ньютона

будет переписан в виде:

2. Постоянный векторный множитель выносится за знак производной: если ~c = const, то dt d (x(t)~c) = x(t)~c:

3. Производная суммы векторов равна сумме их производных:

dt d (~u + ~v) =d~u dt +d~v dt :

Последними двумя правилами мы будем пользоваться неоднократно. Посмотрим, как они работают в важнейшей ситуации дифференцирования вектора при наличии в пространстве прямоугольной системы координат OXY Z (рис. 1.7 ).

Рис. 1.7. Разложение вектора по базису

Как известно, любой вектор ~u единственным образом раскладывается по базису единичных

векторов ~ ,~ ,~ : i j k

~u = ux i + uy j + uz k:

Здесь ux , uy , uz проекции вектора ~u на координатные оси. Они же являются координатами вектора ~u в данном базисе.

Вектор ~u в нашем случае зависит от времени, а это значит, что его координаты ux , uy , uz являются функциями времени:

~u(t) = ux (t) i

Uy (t) j

Uz (t)k:

Дифференцируем это равенство. Сначала пользуемся правилом дифференцирования суммы:

ux (t)~ i +

uy (t)~ j

uz (t)~ k:

Затем выносим постоянные векторы за знак производной:

Ux (t)i + uy (t)j + uz (t)k:

Таким образом, если вектор ~u имеет координаты (ux ; uy ; uz ), то координаты производной d~u=dt являются производными координат вектора ~u, а именно (ux ; uy ; uz ).

Ввиду особой важности формулы (1.20 ) дадим более непосредственный её вывод. В момент времени t + t согласно (1.19 ) имеем:

~u(t + t) = ux (t + t) i + uy (t + t) j + uz (t + t)k:

Напишем изменение вектора ~u:

~u = ~u(t + t) ~u(t) =

Ux (t + t) i + uy (t + t) j + uz (t + t)k ux (t) i + uy (t) j + uz (t)k =

= (ux (t + t) ux (t)) i + (uy (t + t) uy (t)) j + (uz (t + t) uz (t)) k =

Ux i + uy j + uz k:

Делим обе части полученного равенства на t:

T i +

t j +

В пределе при t ! 0 дроби ux = t, uy = t, uz = t переходят соответственно в производные ux , uy , uz , и мы снова получаем соотношение (1.20 ):

Ux i + uy j + uz k.

Какой буквой обозначается импульс тела в физике. Обозначение: высота, ширина, длина

Ни для кого не секрет, что существуют специальные обозначения для величин в любой науке. Буквенные обозначения в физике доказывают, что данная наука не является исключением в плане идентификации величин при помощи особых символов. Основных величин, а также их производных, достаточно много, каждая из которых имеет свой символ. Итак, буквенные обозначения в физике подробно рассматриваются в данной статье.

Физика и основные физические величины

Благодаря Аристотелю начало употребляться слово физика, так как именно он впервые употребил этот термин, который в ту пору считался синонимом термина философия. Это связано с общностью объекта изучения – законы Вселенной, конкретнее – то, как она функционирует. Как известно, в XVI-XVII веках произошла первая научная революция, именно благодаря ей физика была выделена в самостоятельную науку.

Михаил Васильевич Ломоносов ввел в русский язык слово физика посредством издания учебника в переводе с немецкого – первого в России учебника по физике.

Итак, физика представляет собой раздел естествознания, посвященный изучению общих законов природы, а также материи, ее движение и структуре. Основных физических величин не так много, как может показаться на первый взгляд – их всего 7:

  • длина,
  • масса,
  • время,
  • сила тока,
  • температура,
  • количество вещества,
  • сила света.

Конечно, у них есть свои буквенные обозначения в физике. Например, для массы выбран символ m, а для температуры – Т. Также у всех величин есть своя единица измерения: у силы света – кандела (кд), а у количества вещества единицей измерения является моль.

Производные физические величины

Производных физических величин значительно больше, чем основных. Их насчитывается 26, причем часто некоторые из них приписывают к основным.

Итак, площадь является производной от длины, объем – также от длины, скорость – от времени, длины, а ускорение, в свою очередь, характеризует быстроту изменения скорости. Импульс выражается через массу и скорость, сила – произведение массы и ускорения, механическая работа зависит от силы и длины, энергия пропорциональна массе. Мощность, давление, плотность, поверхностная плотность, линейная плотность, количество теплоты, напряжение, электрическое сопротивление, магнитный поток, момент инерции, момент импульса, момент силы – все они зависят от массы. Частота, угловая скорость, угловое ускорение обратно пропорциональны времени, а электрический заряд имеет прямую зависимость от времени. Угол и телесный угол являются производными величинами из длины.

Какой буквой обозначается напряжение в физике? Напряжение, которое является скалярной величиной, обозначается буквой U. Для скорости обозначение имеет вид буквы v, для механической работы – А, а для энергии – Е. Электрический заряд принято обозначать буквой q, а магнитный поток – Ф.

СИ: общие сведения

Международная система единиц (СИ) представляет собой систему физических единиц, которая основана на Международной системе величин, включая наименования и обозначения физических величин. Она принята Генеральной конференцией по мерам и весам. Именно эта система регламентирует буквенные обозначения в физике, а также их размерность и единицы измерения. Для обозначения используются буквы латинского алфавита, в отдельных случаях – греческого. Также возможно в качестве обозначения использование специальных символов.

Заключение

Итак, в любой научной дисциплине есть особые обозначения для различного рода величин. Естественно, физика не является исключением. Буквенных обозначений достаточно много: сила, площадь, масса, ускорение, напряжение и т. д. Они имеют свои обозначения. Существует специальная система, которая называется Международная система единиц. Считается, что основные единицы не могут быть математически выведены из других. Производные же величины получают при помощи умножения и деления из основных.

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

    постоянная Авогадро;

    увеличение оптического прибора;

    концентрация вещества;

    число Дебая;

    полная мощность излучения.

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

    показатель преломления, причем он может быть абсолютным или относительным;

    нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

    частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро :

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

Еще одна формула с N в физике частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

Появляется буква «эн» в формуле для периода обращения:

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n 21 = v 1: v 2 = n 2: n 1 ,

где n 1 и n 2 — абсолютные показатели преломления первой и второй среды, v 1 и v 2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n 21 = sin α: sin γ.

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А: t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000: 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с: v.

Решение. Из указанной формулы видно, что v = с: n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n 21 = sin α: sin γ. А также: n = с: v.

Решение. В первой формуле n 21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n 2 и n 1 . Если записать вторую указанную формулу для предложенных сред, то получатся такие: n 1 = с: v 1 и n 2 =с: v 2 . Если составить отношение двух последних выражений, получится, что n 21 = v 1: v 2 . Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v 2: v 1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул . Период вращения и число оборотов связаны формулой Т = t: N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600: 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула : частота ν = N: t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения – это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой греческого или английского названия величины. При этом ширина на английском будет выглядеть как “width”.

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина – это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина – в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова – «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным – трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как “height”. Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина – все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как “radius”. Отсюда и строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: “diameter”. Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр – толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как “thickness”, а в латинском варианте – “crassities”. Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от “περιμετρέο” («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык (“perimeter”) и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь – это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так – нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова “square”. Однако в нем математическая площадь – это “area”, а “square” – это площадь в архитектурном понимании. Кстати, стоит вспомнить, что “square” – название геометрической фигуры “квадрат”. Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода “area” в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» (“fortis”).

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера – это шаг (винтовых пружин, и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые – «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.

Переходя к физическим приложениям производной, мы будем использовать несколько иные обозначения те, которые приняты в физике.

Во-первых, меняется обозначение функций. В самом деле, какие функции мы собираемся дифференцировать? Этими функциями служат физические величины, зависящие от времени. Например, координата тела x(t) и его скорость v(t) могут быть заданы формулами:

(читается ¾икс с точкой¿).

Имеется ещё одно обозначение производной, очень распространённое как в математике, так и в физике:

производная функции x(t) обозначается

(читается ¾дэ икс по дэ тэ¿).

Остановимся подробнее на смысле обозначения (1.16 ). Математик понимает его двояко либо как предел:

либо как дробь, в знаменателе которой стоит приращение времени dt, а в числителе так называемый дифференциал dx функции x(t). Понятие дифференциала не сложно, но мы не будем его сейчас обсуждать; оно ждёт вас на первом курсе.

Физик, не скованный требованиями математической строгости, понимает обозначение (1.16 ) более неформально. Пусть dx есть изменение координаты за время dt. Возьмём интервал dt настолько маленьким, что отношение dx=dt близко к своему пределу (1.17 ) с устраивающей нас точностью.

И тогда, скажет физик, производная координаты по времени есть попросту дробь, в числителе которой стоит достаточно малое изменение координаты dx, а в знаменателе достаточно малый промежуток времени dt, в течение которого это изменение координаты произошло.

Такое нестрогое понимание производной характерно для рассуждений в физике. Далее мы будем придерживаться именно этого физического уровня строгости.

Производная x(t) физической величины x(t) снова является функцией времени, и эту функцию снова можно продифференцировать найти производную производной, или вторую производную функции x(t). Вот одно обозначение второй производной:

вторая производная функции x(t) обозначаетсяx (t)

(читается ¾икс с двумя точками¿), а вот другое:

вторая производная функции x(t) обозначаетсяdt 2

(читается ¾дэ два икс по дэ тэ квадрат¿ или ¾дэ два икс по дэ тэ дважды¿).

Давайте вернёмся к исходному примеру (1.13 ) и посчитаем производную координаты, а заодно посмотрим на совместное использование обозначений (1.15 ) и (1.16 ):

x(t) = 1 + 12t 3t2 )

x(t) = dt d (1 + 12t 3t2 ) = 12 6t:

(Символ дифференцирования dt d перед скобкой это всё равно что штрих сверху за скобкой в прежних обозначениях.)

Обратите внимание, что производная координаты оказалась равна скорости (1.14 ). Это не случайное совпадение. Связь производной координаты со скоростью тела будет выяснена в следующем разделе ¾Механическое движение¿.

1.1.7 Предел векторной величины

Физические величины бывают не только скалярными, но и векторными. Соответственно, часто нас интересует скорость изменения векторной величины то есть, производная вектора. Однако прежде чем говорить о производной, нужно разобраться с понятием предела векторной величины.

Рассмотрим последовательность векторов ~u1 ; ~u2 ; ~u3 ; : : : Сделав, если необходимо, параллельный перенос, сведём их начала в одну точку O (рис.1.5 ):

Рис. 1.5. lim ~un = ~v

Концы векторов обозначим A1 ; A2 ; A3 ; : : : Таким образом, имеем:

Предположим, что последовательность точек A1 ; A2 ; A3 ; : : : ¾втекает¿2 в точку B:

lim An = B:

Обозначим ~v = OB. Мы скажем тогда, что последовательность синих векторов ~un стремится к красному вектору ~v, или что вектор ~v является пределом последовательности векторов ~un :

~v = lim ~un :

2 Вполне достаточно интуитивного понимания этого ¾втекания¿, но вас, быть может, интересует более строгое объяснение? Тогда вот оно.

Пусть дело происходит на плоскости. ¾Втекание¿ последовательности A1 ; A2 ; A3 ; : : : в точку B означает следующее: сколь бы малый круг с центром в точке B мы ни взяли, все точки последовательности, начиная с некоторой, попадут внутрь этого круга. Иными словами, вне любого круга с центром B имеется лишь конечное число точек нашей последовательности.

А если дело происходит в пространстве? Определение ¾втекания¿ модифицируется незначительно: нужно лишь заменить слово ¾круг¿ на слово ¾шар¿.

Предположим теперь, что концы синих векторов на рис. 1.5 пробегают не дискретный набор значений, а непрерывную кривую (например, указанную пунктирной линией). Таким образом, мы имеем дело не с последовательностью векторов ~un , а с вектором ~u(t), который меняется со временем. Это как раз то, что нам и нужно в физике!

Дальнейшее объяснение почти такое же. Пусть t стремится к некоторому значению t0 . Если

при этом концы векторов ~u(t) ¾втекают¿ в некоторую точку B, то мы говорим, что вектор

~v = OB является пределом векторной величины ~u(t):

t!t0

1.1.8 Дифференцирование векторов

Выяснив, что такое предел векторной величины, мы готовы сделать следующий шаг ввести понятие производной вектора.

Предположим, что имеется некоторый вектор ~u(t), зависящий от времени. Это означает, что длина данного вектора и его направление могут меняться с течением времени.

По аналогии с обычной (скалярной) функцией вводится понятие изменения (или приращения) вектора. Изменение вектора ~u за время t есть векторная величина:

~u = ~u(t + t) ~u(t):

Обратите внимание, что в правой части данного соотношения стоит разность векторов. Изменение вектора ~u показано на рис. 1.6 (напомним, что при вычитании векторов мы сводим их начала в одну точку, соединяем концы и ¾укалываем¿ стрелкой тот вектор, из которого производится вычитание).

~u(t) ~u

Рис. 1.6. Изменение вектора

Если промежуток времени t достаточно мал, то и вектор ~u за это время меняется мало (в физике, по крайней мере, так считается всегда). Соответственно, если при t ! 0 отношение~u= t стремится к некоторому пределу, то этот предел называется производной вектора ~u:

При обозначении производной вектора мы не будем использовать точку сверху (так как символ ~u_ не слишком хорошо смотрится) и ограничиваемся обозначением (1.18 ). Но для производной скаляра мы, разумеется, свободно используем оба обозначения.

Напомним, что d~u=dt это символ производной. Его можно понимать и как дробь, в числителе которой стоит дифференциал вектора ~u, соответствующий промежутку времени dt. Выше мы не стали обсуждать понятие дифференциала, так как в школе его не проходят; не будем обсуждать дифференциал и здесь.

Однако на физическом уровне строгости производную d~u=dt можно считать дробью, в знаменателе которой стоит очень малый интервал времени dt, а в числителе соответствующее малое изменение d~u вектора ~u. При достаточно малом dt величина данной дроби отличается от

предела в правой части (1.18 ) столь мало, что с учётом имеющейся точности измерений этим отличием можно пренебречь.

Этого (не вполне строгого) физического понимания производной нам окажется вполне достаточно.

Правила дифференцирования векторных выражений во многом аналогичны правилам дифференцирования скаляров. Нам понадобятся лишь самые простые правила.

1. Постоянный скалярный множитель выносится за знак производной: если c = const, то

d(c~u) = c d~u: dt dt

Мы используем это правило в разделе ¾Импульс¿, когда второй закон Ньютона

будет переписан в виде:

2. Постоянный векторный множитель выносится за знак производной: если ~c = const, то dt d (x(t)~c) = x(t)~c:

3. Производная суммы векторов равна сумме их производных:

dt d (~u + ~v) =d~u dt +d~v dt :

Последними двумя правилами мы будем пользоваться неоднократно. Посмотрим, как они работают в важнейшей ситуации дифференцирования вектора при наличии в пространстве прямоугольной системы координат OXY Z (рис. 1.7 ).

Рис. 1.7. Разложение вектора по базису

Как известно, любой вектор ~u единственным образом раскладывается по базису единичных

векторов ~ ,~ ,~ : i j k

~u = ux i + uy j + uz k:

Здесь ux , uy , uz проекции вектора ~u на координатные оси. Они же являются координатами вектора ~u в данном базисе.

Вектор ~u в нашем случае зависит от времени, а это значит, что его координаты ux , uy , uz являются функциями времени:

~u(t) = ux (t) i

Uy (t) j

Uz (t)k:

Дифференцируем это равенство. Сначала пользуемся правилом дифференцирования суммы:

ux (t)~ i +

uy (t)~ j

uz (t)~ k:

Затем выносим постоянные векторы за знак производной:

Ux (t)i + uy (t)j + uz (t)k:

Таким образом, если вектор ~u имеет координаты (ux ; uy ; uz ), то координаты производной d~u=dt являются производными координат вектора ~u, а именно (ux ; uy ; uz ).

Ввиду особой важности формулы (1.20 ) дадим более непосредственный её вывод. В момент времени t + t согласно (1.19 ) имеем:

~u(t + t) = ux (t + t) i + uy (t + t) j + uz (t + t)k:

Напишем изменение вектора ~u:

~u = ~u(t + t) ~u(t) =

Ux (t + t) i + uy (t + t) j + uz (t + t)k ux (t) i + uy (t) j + uz (t)k =

= (ux (t + t) ux (t)) i + (uy (t + t) uy (t)) j + (uz (t + t) uz (t)) k =

Ux i + uy j + uz k:

Делим обе части полученного равенства на t:

T i +

t j +

В пределе при t ! 0 дроби ux = t, uy = t, uz = t переходят соответственно в производные ux , uy , uz , и мы снова получаем соотношение (1.20 ):

Ux i + uy j + uz k.

Физические величины. Измерение физических величин. Точность и погрешность измерений

Цели урока:

1) Обучающая: обеспечить формирование у учащихся представлений о физической величине, обеспечит усвоение учащимися теоретических знаний об основных характеристиках физической величины, познакомить учащихся с простейшими измерительными приборами, научить определять цену деления и точность отсчета при использовании различных шкал.

2) Развивающая: способствовать расширению кругозора учащихся о физике; умение находить некоторые закономерности; развитие памяти, самостоятельного суждения.

3) Воспитывающая: интерес, любознательность, наблюдательность, аккуратность в записях.

Ход урока:

1. Организационный этап.

Здравствуйте. Прежде чем мы приступим к уроку, хотелось бы, чтобы каждый из вас настроился на рабочий лад.

2. Актуализация знаний

Прежде чем начинать наш с вами уже второй урок в курсе Физики, хотелось бы вспомнить то, о чем мы говорили на предыдущем занятии.

Мы ввели понятие «Физическое тело». Что же это? Это любой предмет, окружающего нас мира.

Физическое явление — все изменения, которые происходят с физическими полями и телами.

Для описания физических тел и физических явлений используют физические величины.

Например, для описания деревянного бруска нам необходимо использовать такие физические величины как масса, длина, ширина, высота, объем.

Откройте тетради и запишите число и тему нашего урока.

3. Этап получения новых знаний.

Скачать видеоурок Физические величины. Измерение физических величин.
Точность и погрешность измерений

Для описания физических тел и физических явлений используют физические величины.

Например, для описания деревянного бруска нам необходимо использовать такие физические величины как масса, длина, ширина, высота, объем.

То есть физическая величина это то, что мы можем измерить. Измеряемое свойство тела или явления.

Каждая физическая величина имеет название, например масса; Буквенное обозначение (массу обозначают латинской буквой эм), способ измерения (с помощью весов), числовое значение (например, масса человека равна 45), и единицы измерения (кг). Получаем, масса тела равна 45 кг.

Для каждой физической величины приняты свои единицы измерения. Для удобства все страны мира стремятся пользоваться одинаковыми единицами измерения физических величин. С 1963 года во многих странах мира используется Международная система единиц — СИ (система интернациональная). В этой системе основной единицей длины является метр, времени — секунда, массы — килограмм.

Существует единицы, которые в 10, 100, 1000 раз больше принятых. Такие единицы называет кратными, и именуются с соответствующими греческими приставками. Например, десяти соответствует приставка «дека», стам — «гекто», тысячи — «кило».

Если используют единицы, которые в 10, 100, 1000 раз меньше принятых единиц (это дольные единицы), то используют приставки, взятые из латинского языка. «Деци» — ноль целых одна десятая, «санти» — ноль целых одна сотая, «милли» — ноль целых одна тысячная.

Измерения очень важны в нашей жизни, для их проведения необходимы измерительные приборы. Самые простые приборы для измерения длины линейка, рулетка, мерная лента.

Для измерения объема жидкости мензурка, мерный цилиндр, мерная колба.

Для измерения температуры используют комнатный, водный, медицинский термометры. Медицинский, в свою очередь, бывает электронный и ртутный.

Существуют и другие измерительные приборы. Например, времени секундомер, часы. Силы — динамометр. Давления, атмосферного — барометр, газов в сосуде — манометр.

Приборы делят на шкальные и цифровые. Каждый шкальный прибор имеет шкалу и цену деления.

Шкала измерительного прибора называют совокупность отметок и цифр на отсчетном устройстве прибора, соответствующая ряду последовательных значений измеряемой величины

Цена деления — значение наименьшего деления шкалы прибора.

Для определения цены деления шкалы нужно от большего числа, соответствующего какому — либо делению шкалы, вычесть меньшее и полученную разность поделить на число делений между цифрами. Получаем 0,1 сантиметра на деление.

Какой же прибор точнее, цена деления которого меньше или больше?

Рассмотрим мерную ленту А) и линейку б). У обоих приборов единицы измерения совпадают!

Для нахождения цены деления мерной ленты возьмем два рядом стоящих значения на шкале, от большего вычтем меньшее и разделим на количество делений между данными цифрами. Получим, 1 сантиметр на деление.

Также определим цену деления для линейки. Количество делений в данном случае 10. Получим, ноль целых одна десятая сантиметра на деление.

Сравним результат!

Точнее тот прибор у которого цена деления меньше. Значит данная линейка точнее мерной ленты.

То есть, имея меньшую цену деления, мы меньше ошиблись.

Чему же равна погрешность измерительных приборов?

Погрешность равна половине цены деления.

Например, погрешность при измерении температуры равна половине цены деления данного термометра.

Найдем ее: для этого определим цену деления термометра.

Берем два любых значения, например 20 и 10, от большего вычтем меньшее значение и разделим на количество делений между ними, их пять. Получили, что она равна 2 градуса на деление.

Значит погрешность равна 1 градус.

Как же это записать?

T = 20±1 C, где 20 — показания термометра, 1 — погрешность, знак полюс минус использует потому, что ошибиться можно как в большую так и в меньшую сторону.

При записи величин с учетом погрешности следует пользоваться формулой, где

А — измеряемая величина,

а — результат измерений,

а — погрешность измерений, – греческая буква «дельта»

Так что же значит измерить физическую величину?

Измерить физическую величину — значит сравнить ее с однородной величиной, принятой за единицу.

Например, чтобы измерить длину отрезка прямой между точками, А и В, надо приложить линейку и по шкале определить сколько сантиметров укладывается между данными точками.

Если физическая величина измеряется непосредственно путем снятия данных со шкалы прибора, то такое измерение называют прямыми. Например, измерение длины бруска, ширины или высоты бруска.

А как же определить объем этого самого бруска. Конечно же, используя формулу. Объем есть произведение длины, ширины и высоты.

В этом случае, когда физическую величину (объем), определили по формуле, говорят, что измерения провели косвенно.

3. Этап обобщения и закрепления нового материала.

Итак, сделаем основные выводы:

– Физическая величина — измеряемое свойство тела или явления

– Каждый шкальный прибор имеет шкалу и цену деления

– Шкала измерительного прибора — это совокупность отметок и цифр на отсчетном устройстве прибора, соответствующая ряду последовательных значений измеряемой величины

– Цена деления (С) — значение наименьшего деления шкалы прибора

– Для определения цены деления шкалы нужно от большего числа, соответствующего какому- либо делению шкалы, вычесть меньшее и, разность поделить на число делений между цифрами

– Погрешность измерительных приборов равна половине цены деления

Для закрепления, изученного материала, ответим на ряд вопросов.

Что такое физическая величина? Какие основные физические величины входят в систему СИ? Какие шкальные измерительные приборы вам известны? Какие цифровые измерительные приборы вам известны? Перечислите приборы для измерения длины, времени, температуры. Что такое цена деления? Как определить цену деления прибора? От чего зависит точность измерения? Что необходимо учитывать при выборе измерительного прибора? Чем отличаются кратные и дольные единицы? Что значит измерить косвенно или прямым способом?

4. Рефлексия.

Хотелось бы услышать ваши отзывы о сегодняшнем уроке: что вам понравилось, что не понравилось, чем бы хотелось узнать еще.

5. Домашнее задание: § 4- 5.

Дополнительное задание

Упражнение 2

1. Из перечисленных приборов выбрать а) шкальные, б) цифровые.

Линейка, весы электронные, напольные (не электронные весы), секундомер, часы наручные механические, часы электронные настенные, динамометр, мензурка, мерный стаканчик, барометр, манометр.

2. Определить цену деления данного прибора.

3. Определить цену деления данного термометра.

4. Определить цену деления и погрешность данной линейки.

5. Какая из данных мерных лент более точная? Почему? Чем точнее можно измерить длину стола линейкой или мерной лентой? Почему?

Обозначение букв по физике. Обозначение: высота, ширина, длина

Ни для кого не секрет, что существуют специальные обозначения для величин в любой науке. Буквенные обозначения в физике доказывают, что данная наука не является исключением в плане идентификации величин при помощи особых символов. Основных величин, а также их производных, достаточно много, каждая из которых имеет свой символ. Итак, буквенные обозначения в физике подробно рассматриваются в данной статье.

Физика и основные физические величины

Благодаря Аристотелю начало употребляться слово физика, так как именно он впервые употребил этот термин, который в ту пору считался синонимом термина философия. Это связано с общностью объекта изучения – законы Вселенной, конкретнее – то, как она функционирует. Как известно, в XVI-XVII веках произошла первая научная революция, именно благодаря ей физика была выделена в самостоятельную науку.

Михаил Васильевич Ломоносов ввел в русский язык слово физика посредством издания учебника в переводе с немецкого – первого в России учебника по физике.

Итак, физика представляет собой раздел естествознания, посвященный изучению общих законов природы, а также материи, ее движение и структуре. Основных физических величин не так много, как может показаться на первый взгляд – их всего 7:

  • длина,
  • масса,
  • время,
  • сила тока,
  • температура,
  • количество вещества,
  • сила света.

Конечно, у них есть свои буквенные обозначения в физике. Например, для массы выбран символ m, а для температуры – Т. Также у всех величин есть своя единица измерения: у силы света – кандела (кд), а у количества вещества единицей измерения является моль.

Производные физические величины

Производных физических величин значительно больше, чем основных. Их насчитывается 26, причем часто некоторые из них приписывают к основным.

Итак, площадь является производной от длины, объем – также от длины, скорость – от времени, длины, а ускорение, в свою очередь, характеризует быстроту изменения скорости. Импульс выражается через массу и скорость, сила – произведение массы и ускорения, механическая работа зависит от силы и длины, энергия пропорциональна массе. Мощность, давление, плотность, поверхностная плотность, линейная плотность, количество теплоты, напряжение, электрическое сопротивление, магнитный поток, момент инерции, момент импульса, момент силы – все они зависят от массы. Частота, угловая скорость, угловое ускорение обратно пропорциональны времени, а электрический заряд имеет прямую зависимость от времени. Угол и телесный угол являются производными величинами из длины.

Какой буквой обозначается напряжение в физике? Напряжение, которое является скалярной величиной, обозначается буквой U. Для скорости обозначение имеет вид буквы v, для механической работы – А, а для энергии – Е. Электрический заряд принято обозначать буквой q, а магнитный поток – Ф.

СИ: общие сведения

Международная система единиц (СИ) представляет собой систему физических единиц, которая основана на Международной системе величин, включая наименования и обозначения физических величин. Она принята Генеральной конференцией по мерам и весам. Именно эта система регламентирует буквенные обозначения в физике, а также их размерность и единицы измерения. Для обозначения используются буквы латинского алфавита, в отдельных случаях – греческого. Также возможно в качестве обозначения использование специальных символов.

Заключение

Итак, в любой научной дисциплине есть особые обозначения для различного рода величин. Естественно, физика не является исключением. Буквенных обозначений достаточно много: сила, площадь, масса, ускорение, напряжение и т. д. Они имеют свои обозначения. Существует специальная система, которая называется Международная система единиц. Считается, что основные единицы не могут быть математически выведены из других. Производные же величины получают при помощи умножения и деления из основных.

Изучение физики в школе длится несколько лет. При этом ученики сталкиваются с проблемой, что одни и те же буквы обозначают совершенно разные величины. Чаще всего этот факт касается латинских букв. Как же тогда решать задачи?

Пугаться такого повтора не стоит. Ученые постарались ввести их в обозначение так, чтобы одинаковые буквы не встретились в одной формуле. Чаще всего ученики сталкиваются с латинской n. Она может быть строчной или прописной. Поэтому логично возникает вопрос о том, что такое n в физике, то есть в определенной встретившейся ученику формуле.

Что обозначает прописная буква N в физике?

Чаще всего в школьном курсе она встречается при изучении механики. Ведь там она может быть сразу в дух значениях – мощность и сила нормальной реакции опоры. Естественно, что эти понятия не пересекаются, ведь используются в разных разделах механики и измеряются в разных единицах. Поэтому всегда нужно точно определить, что такое n в физике.

Мощность — это скорость изменения энергии системы. Это скалярная величина, то есть просто число. Единицей ее измерения служит ватт (Вт).

Сила нормальной реакции опоры — сила, которая оказывает действие на тело со стороны опоры или подвеса. Кроме числового значения, она имеет направление, то есть это векторная величина. Причем она всегда перпендикулярна поверхности, на которую производится внешнее воздействие. Единицей измерения этой N является ньютон (Н).

Что такое N в физике, помимо уже указанных величин? Это может быть:

    постоянная Авогадро;

    увеличение оптического прибора;

    концентрация вещества;

    число Дебая;

    полная мощность излучения.

Что может обозначать строчная буква n в физике?

Список наименований, которые могут за ней скрываться, достаточно обширен. Обозначение n в физике используется для таких понятий:

    показатель преломления, причем он может быть абсолютным или относительным;

    нейтрон — нейтральная элементарная частица с массой незначительно большей, чем у протона;

    частота вращения (используется для замены греческой буквы «ню», так как она очень похожа на латинскую «вэ») — число повторения оборотов за единицу времени, измеряется в герцах (Гц).

Что означает n в физике, кроме уже указанных величин? Оказывается, за ней скрываются основное квантовое число (квантовая физика), концентрация и постоянная Лошмидта (молекулярная физика). Кстати, при вычислении концентрации вещества требуется знать величину, которая также записывается латинской «эн». О ней будет идти речь ниже.

Какая физическая величина может быть обозначена n и N?

Ее название происходит от латинского слова numerus, в переводе оно звучит как «число», «количество». Поэтому ответ на вопрос о том, что значит n в физике, достаточно прост. Это количество любых предметов, тел, частиц — всего, о чем идет речь в определенной задаче.

Причем «количество» — одна из немногих физических величин, которые не имеют единицы измерения. Это просто число, без наименования. Например, если в задаче идет речь о 10 частицах, то n будет равно просто 10. Но если получается так, что строчная «эн» уже занята, то использовать приходится прописную букву.

Формулы, в которых фигурирует прописная N

Первая из них определяет мощность, которая равна отношению работы ко времени:

В молекулярной физике имеется такое понятие, как химическое количество вещества. Обозначается греческой буквой «ню». Чтобы его сосчитать, следует разделить количество частиц на число Авогадро :

Кстати, последняя величина тоже обозначается столь популярной буквой N. Только у нее всегда присутствует нижний индекс — А.

Чтобы определить электрический заряд, потребуется формула:

Еще одна формула с N в физике частота колебаний. Чтобы ее сосчитать, нужно их число разделить на время:

Появляется буква «эн» в формуле для периода обращения:

Формулы, в которых встречается строчная n

В школьном курсе физики эта буква чаще всего ассоциируется с показателем преломления вещества. Поэтому важным оказывается знание формул с ее применением.

Так, для абсолютного показателя преломления формула записывается следующим образом:

Здесь с — скорость света в вакууме, v — его скорость в преломляющей среде.

Формула для относительного показателя преломления несколько сложнее:

n 21 = v 1: v 2 = n 2: n 1 ,

где n 1 и n 2 — абсолютные показатели преломления первой и второй среды, v 1 и v 2 — скорости световой волны в указанных веществах.

Как найти n в физике? В этом нам поможет формула, в которой требуется знать углы падения и преломления луча, то есть n 21 = sin α: sin γ.

Чему равно n в физике, если это показатель преломления?

Обычно в таблицах приводятся значения для абсолютных показателей преломления различных веществ. Не стоит забывать, что эта величина зависит не только от свойств среды, но и от длины волны. Табличные значения показателя преломления даются для оптического диапазона.

Итак, стало ясно, что такое n в физике. Чтобы не осталось каких-либо вопросов, стоит рассмотреть некоторые примеры.

Задача на мощность

№1. Во время пахоты трактор тянет плуг равномерно. При этом он прилагает силу 10 кН. При таком движении в течение 10 минут он преодолевает 1,2 км. Требуется определить развиваемую им мощность.

Перевод единиц в СИ. Начать можно с силы, 10 Н равны 10000 Н. Потом расстояние: 1,2 × 1000 = 1200 м. Осталось время — 10 × 60 = 600 с.

Выбор формул. Как уже было сказано выше, N = А: t. Но в задаче нет значения для работы. Для ее вычисления пригодится еще одна формула: А = F × S. Окончательный вид формулы для мощности выглядит так: N = (F × S) : t.

Решение. Вычислим сначала работу, а потом – мощность. Тогда в первом действии получится 10 000 × 1 200 = 12 000 000 Дж. Второе действие дает 12 000 000: 600 = 20 000 Вт.

Ответ. Мощность трактора равна 20 000 Вт.

Задачи на показатель преломления

№2. Абсолютный показатель преломления у стекла равен 1,5. Скорость распространения света в стекле меньше, чем в вакууме. Требуется определить, во сколько раз.

В СИ переводить данные не требуется.

При выборе формул остановиться нужно на этой: n = с: v.

Решение. Из указанной формулы видно, что v = с: n. Это значит, что скорость распространения света в стекле равна скорости света в вакууме, деленному на показатель преломления. То есть она уменьшается в полтора раза.

Ответ. Скорость распространения света в стекле меньше, чем в вакууме, в 1,5 раза.

№3. Имеются две прозрачные среды. Скорость света в первой из них равна 225 000 км/с, во второй — на 25 000 км/с меньше. Луч света идет из первой среды во вторую. Угол падения α равен 30º. Вычислить значение угла преломления.

Нужно ли переводить в СИ? Скорости даны во внесистемных единицах. Однако при подстановке в формулы они сократятся. Поэтому переводить скорости в м/с не нужно.

Выбор формул, необходимых для решения задачи. Потребуется использовать закон преломления света: n 21 = sin α: sin γ. А также: n = с: v.

Решение. В первой формуле n 21 — это отношение двух показателей преломления рассматриваемых веществ, то есть n 2 и n 1 . Если записать вторую указанную формулу для предложенных сред, то получатся такие: n 1 = с: v 1 и n 2 =с: v 2 . Если составить отношение двух последних выражений, получится, что n 21 = v 1: v 2 . Подставив его в формулу закона преломления, можно вывести такое выражение для синуса угла преломления: sin γ = sin α × (v 2: v 1).

Подставляем в формулу значения указанных скоростей и синуса 30º (равен 0,5), получается, что синус угла преломления равен 0,44. По таблице Брадиса получается, что угол γ равен 26º.

Ответ. Значение угла преломления — 26º.

Задачи на период обращения

№4. Лопасти ветряной мельницы вращаются с периодом, равным 5 секундам. Вычислите число оборотов этих лопастей за 1 час.

Переводить в единицы СИ нужно только время 1 час. Оно будет равно 3 600 секундам.

Подбор формул . Период вращения и число оборотов связаны формулой Т = t: N.

Решение. Из указанной формулы число оборотов определяется отношением времени к периоду. Таким образом, N = 3600: 5 = 720.

Ответ. Число оборотов лопастей мельницы равно 720.

№5. Винт самолета вращается с частотой 25 Гц. Какое время потребуется винту, чтобы совершить 3 000 оборотов?

Все данные приведены с СИ, поэтому переводить ничего не нужно.

Необходимая формула : частота ν = N: t. Из нее необходимо только вывести формулу для неизвестного времени. Оно является делителем, поэтому его полагается находить делением N на ν.

Решение. В результате деления 3 000 на 25 получается число 120. Оно будет измеряться в секундах.

Ответ. Винт самолета совершает 3000 оборотов за 120 с.

Подведем итоги

Когда ученику в задаче по физике встречается формула, содержащая n или N, ему нужно разобраться с двумя моментами. Первый — из какого раздела физики приведено равенство. Это может быть ясно из заголовка в учебнике, справочнике или слов учителя. Потом следует определиться с тем, что скрывается за многоликой «эн». Причем в этом помогает наименование единиц измерения, если, конечно, приведено ее значение. Также допускается еще один вариант: внимательно посмотрите на остальные буквы в формуле. Возможно, они окажутся знакомыми и дадут подсказку в решаемом вопросе.

    В математике повсеместно используются символы для упрощения и сокращения текста. Ниже приведён список наиболее часто встречающихся математических обозначений, соответствующие команды в TeXе, объяснения и примеры использования. Кроме указанных… … Википедия

    Список используемых в математике специфических символов можно увидеть в статье Таблица математических символов Математические обозначения («язык математики») сложная графическая система обозначений, служащая для изложения абстрактных… … Википедия

    Список знаковых систем (систем обозначений и т.п.), используемых человеческой цивилизацией, за исключением письменностей, для которых имеется отдельный список. Содержание 1 Критерии включения в список 2 Математика … Википедия

    Поль Адриен Морис Дирак Paul Adrien Maurice Dirac Дата рождения: 8& … Википедия

    Дирак, Поль Адриен Морис Поль Адриен Морис Дирак Paul Adrien Maurice Dirac Дата рождения: 8 августа 1902(… Википедия

    Готфрид Вильгельм Лейбниц Gottfried Wilhelm Leibniz … Википедия

    У этого термина существуют и другие значения, см. Мезон (значения). Мезон (от др. греч. μέσος средний) бозон сильного взаимодействия. В Стандартной модели, мезоны это составные (не элементарные) частицы, состоящие из чётного… … Википедия

    Ядерная физика … Википедия

    Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности (ОТО) или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации… … Википедия

    Альтернативными теориями гравитации принято называть теории гравитации, существующие как альтернативы общей теории относительности или существенно (количественно или принципиально) модифицирующие ее. К альтернативным теориям гравитации часто… … Википедия

Построение чертежей – дело непростое, но без него в современном мире никак. Ведь чтобы изготовить даже самый обычный предмет (крошечный болт или гайку, полку для книг, дизайн нового платья и подобное), изначально нужно провести соответствующие вычисления и нарисовать чертеж будущего изделия. Однако часто составляет его один человек, а занимается изготовлением чего-либо по этой схеме другой.

Чтобы не возникло путаницы в понимании изображенного предмета и его параметров, во всем мире приняты условные обозначения длины, ширины, высоты и других величин, применяемых при проектировании. Каковы они? Давайте узнаем.

Величины

Площадь, высота и другие обозначения подобного характера являются не только физическими, но и математическими величинами.

Единое их буквенное обозначение (используемое всеми странами) было уставлено в середине ХХ века Международной системой единиц (СИ) и применяется по сей день. Именно по этой причине все подобные параметры обозначаются латинскими, а не кириллическими буквами или арабской вязью. Чтобы не создавать отдельных трудностей, при разработке стандартов конструкторской документации в большинстве современных стран решено было использовать практически те же условные обозначения, что применяются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, двухмерная или трехмерная фигура (изделие) изображена на чертеже, она обладает набором основных параметров. Если присутствуют два измерения – это ширина и длина, если их три – добавляется еще и высота.

Итак, для начала давайте выясним, как правильно длину, ширину, высоту обозначать на чертежах.

Ширина

Как было сказано выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта, при условии что его замеры производятся в поперечном направлении. Так чем знаменита ширина? Обозначение буквой «В» она имеет. Об этом известно во всём мире. Причем, согласно ГОСТу, допустимо применение как заглавной, так и строчной латинских литер. Часто возникает вопрос о том, почему именно такая буква выбрана. Ведь обычно сокращение производится по первой греческого или английского названия величины. При этом ширина на английском будет выглядеть как “width”.

Вероятно, здесь дело в том, что данный параметр наиболее широкое применение изначально имел в геометрии. В этой науке, описывая фигуры, часто длину, ширину, высоту обозначают буквами «а», «b», «с». Согласно этой традиции, при выборе литера «В» (или «b») была заимствована системой СИ (хотя для других двух измерений стали применять отличные от геометрических символы).

Большинство полагает, что это было сделано, дабы не путать ширину (обозначение буквой «B»/«b») с весом. Дело в том, что последний иногда именуется как «W» (сокращение от английского названия weight), хотя допустимо использование и других литер («G» и «Р»). Согласно международным нормам системы СИ, измеряется ширина в метрах или кратных (дольных) их единицах. Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, однако в физике и остальных точных науках такое обозначение, как правило, не применяется.

Длина

Как уже было указано, в математике длина, высота, ширина – это три пространственных измерения. При этом, если ширина является линейным размером в поперечном направлении, то длина – в продольном. Рассматривая ее как величину физики можно понять, что под этим словом подразумевается численная характеристика протяжности линий.

В английском языке этот термин именуется length. Именно из-за этого данная величина обозначается заглавной или строчной начальной литерой этого слова – «L». Как и ширина, длина измеряется в метрах или их кратных (дольных) единицах.

Высота

Наличие этой величины указывает на то, что приходится иметь дело с более сложным – трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском она пишется как “height”. Поэтому, согласно международным нормам, ее обозначают латинской литерой «Н»/«h». Помимо высоты, в чертежах иногда эта буква выступает и как глубины обозначение. Высота, ширина и длина – все все эти параметры измеряются в метрах и их кратных и дольных единицах (километры, сантиметры, миллиметры и т. п.).

Радиус и диаметр

Помимо рассмотренных параметров, при составлении чертежей приходится иметь дело и с иными.

Например, при работе с окружностями возникает необходимость в определении их радиуса. Так именуется отрезок, который соединяет две точки. Первая из них является центром. Вторая находится непосредственно на самой окружности. На латыни это слово выглядит как “radius”. Отсюда и строчная или заглавная «R»/«r».

Чертя окружности, помимо радиуса часто приходится сталкиваться с близким к нему явлением – диаметром. Он также является отрезком, соединяющим две точки на окружности. При этом он обязательно проходит через центр.

Численно диаметр равен двум радиусам. По-английски это слово пишется так: “diameter”. Отсюда и сокращение – большая или маленькая латинская буква «D»/«d». Часто диаметр на чертежах обозначают при помощи перечеркнутого круга – «Ø».

Хотя это распространенное сокращение, стоит иметь в виду, что ГОСТ предусматривает использование только латинской «D»/«d».

Толщина

Большинство из нас помнят школьные уроки математики. Ещё тогда учителя рассказывали, что, латинской литерой «s» принято обозначать такую величину, как площадь. Однако, согласно общепринятым нормам, на чертежах таким способом записывается совсем другой параметр – толщина.

Почему так? Известно, что в случае с высотой, шириной, длиной, обозначение буквами можно было объяснить их написанием или традицией. Вот только толщина по-английски выглядит как “thickness”, а в латинском варианте – “crassities”. Также непонятно, почему, в отличие от других величин, толщину можно обозначать только строчной литерой. Обозначение «s» также применяется при описании толщины страниц, стенок, ребер и так далее.

Периметр и площадь

В отличие от всех перечисленных выше величин, слово «периметр» пришло не из латыни или английского, а из греческого языка. Оно образовано от “περιμετρέο” («измерять окружность»). И сегодня этот термин сохранил свое значение (общая длина границ фигуры). Впоследствии слово попало в английский язык (“perimeter”) и закрепилось в системе СИ в виде сокращения буквой «Р».

Площадь – это величина, показывающая количественную характеристику геометрической фигуры, обладающей двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, она измеряется в квадратных метрах (а также в дольных и кратных их единицах). Что касается буквенного обозначения площади, то в разных сферах оно отличается. Например, в математике это знакомая всем с детства латинская литера «S». Почему так – нет информации.

Некоторые по незнанию думают, что это связано с английским написанием слова “square”. Однако в нем математическая площадь – это “area”, а “square” – это площадь в архитектурном понимании. Кстати, стоит вспомнить, что “square” – название геометрической фигуры “квадрат”. Так что стоит быть внимательным при изучении чертежей на английском языке. Из-за перевода “area” в отдельных дисциплинах в качестве обозначения применяется литера «А». В редких случаях также используется «F», однако в физике данная буква означает величину под названием «сила» (“fortis”).

Другие распространенные сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра являются наиболее употребляемыми при составлении чертежей. Однако есть и другие величины, которые тоже часто присутствуют в них. Например, строчное «t». В физике это означает «температуру», однако согласно ГОСТу Единой системы конструкторской документации, данная литера – это шаг (винтовых пружин, и подобного). При этом она не используется, когда речь идет о зубчатых зацеплениях и резьбе.

Заглавная и строчная буква «A»/«a» (согласно все тем же нормам) в чертежах применяется, чтобы обозначать не площадь, а межцентровое и межосевое расстояние. Помимо различных величин, в чертежах часто приходится обозначать углы разного размера. Для этого принято использовать строчные литеры греческого алфавита. Наиболее применяемые – «α», «β», «γ» и «δ». Однако допустимо использовать и другие.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недопонимания при прочтении чертежа, представителями разных народов приняты общие стандарты буквенного обозначения. Иными словами, если вы сомневаетесь в интерпретации того или иного сокращения, загляните в ГОСТы. Таким образом вы узнаете, как правильно обозначается высота, ширины, длина, диаметр, радиус и так далее.

Специальные символы – Гипертекст по физике

Вязкость
v , v скорость, скорость м / с метр в секунду
а , а разгон м / с 2 метр в секунду в квадрате
a c , a c центростремительное ускорение, центробежное ускорение м / с 2 метр в секунду в квадрате
г , г гравитационное поле, ускорение свободного падения м / с 2 метр в секунду в квадрате
м масса кг килограмм
Факс , Факс сила N ньютон
F г , Вт , Вт сила тяжести, вес N ньютон
F n , N , N нормальная сила, нормальная N ньютон
F f , f s , f k сила трения (статическая, кинетическая) N ньютон
μ s , μ k коэффициент трения (статический, кинетический) безразмерный
p , p импульс кг м / с килограмм-метр в секунду
Дж , Дж импульс Н с ньютон секунда
Вт работа Дж джоуль
E энергия, общая энергия Дж джоуль
K , K т , K r кинетическая энергия (поступательная, вращательная) Дж джоуль
U , U g , U s потенциальная энергия (гравитационная, весенняя) Дж джоуль
V г гравитационный потенциал Дж / кг джоуль на килограмм
η КПД безразмерный
пол. мощность Вт ватт
ω , ω скорость вращения, частота вращения рад / с радиан в секунду
α , α ускорение вращения рад / с 2 радиан на секунду в квадрате
τ , τ крутящий момент Н м Ньютон-метр
I момент инерции кг м 2 килограмм метр в квадрате
л , л угловой момент кг · м 2 / с килограмм-метр в секунду
H , H угловой импульс Н м Ньютон-метр секунда
к жесткость пружины Н / м ньютон на метр
пол давление Па паскаль
σ нормальное напряжение Па паскаль
τ напряжение сдвига Па паскаль
ρ плотность, объемно-массовая плотность кг / м 3 килограмм на кубический метр
σ удельная масса поверхности, поверхностная плотность массы кг / м 2 килограмм на квадратный метр
λ линейная массовая плотность кг / м килограмм на метр
Ф B , B , B плавучесть, подъемная сила N ньютон
q м массовый расход кг / с килограмм в секунду
q V объемный расход м 3 / с кубических метров в секунду
F D , R , R сопротивление, аэродинамическое сопротивление, сопротивление воздуха N ньютон
C , C D коэффициент аэродинамического сопротивления, коэффициент аэродинамического сопротивления безразмерный
η, вязкость динамическая Па · с паскаль-секунда
ν кинематическая вязкость м 2 / с квадратных метра в секунду
млн ​​лет Машинный номер безразмерный
Re число Рейнольдса безразмерный
Fr номер безразмерный
E Модуль Юнга, модуль упругости Па паскаль
G Модуль сдвига, модуль жесткости Па паскаль
К Модуль объемной упругости, модуль сжатия Па паскаль
ε линейная деформация безразмерный
γ деформация сдвига безразмерный
θ объемная деформация безразмерный
γ поверхностное натяжение Н / м ньютон на метр

Наиболее распространенное использование всех греческих букв

Если есть один язык, с которым инженеры хоть немного знакомы (по крайней мере косвенно), то это греческий язык.Почему? Потому что греческие буквы – это повседневная часть жизни инженера, и инженеры привыкли каждый день вспоминать свои имена. Инженеры, а также математики и ученые в различных областях используют греческие буквы в качестве альтернативы числам или для описания характеристик объекта.

Итак, давайте рассмотрим все 24 греческих буквы и их значение в мире науки, математики и инженерии.

Источник: amzdeco

Просто предупреждение: если вы принадлежите к инженерной отрасли, которая не является гражданской или структурной, тогда у вас могут быть другие варианты использования этих букв.Не стесняйтесь сообщить нам, для чего вы используете эти буквы, в разделе комментариев. Более того, символы нижнего и верхнего регистра могут иметь различное значение при использовании в техническом контексте.

Вы можете рассматривать это как мини-справочник по использованию греческих букв. Без лишних задержек, вот греческие буквы на гиковском диалекте.

Альфа (α)

Прежде всего, альфа в нижнем регистре часто используется для представления альфа-частиц в физике. Он имеет много других применений в науке и технике, включая представление коэффициента поглощения, углов, углового ускорения, постоянной затухания, коэффициента срабатывания тока с общей базой, параметра отклонения состояния, температурного коэффициента сопротивления, коэффициента теплового расширения и температуропроводности.

Бета (β)

В физике строчная бета используется для обозначения бета-частицы или бета-лучей, которые являются высокоэнергетическим и высокоскоростным электроном. Он также используется для обозначения углов, коэффициента усиления тока с общим эмиттером, плотности потока, фазовой постоянной и длины волны.

Гамма (γ)

Как вы уже догадались, еще одна радиационная буква – гамма-излучение. Это одно из наиболее распространенных применений этой строчной буквы, в то время как прописная буква используется для аннотации границы при выполнении 2D анализа методом конечных элементов.Он также представляет собой электрическую проводимость и параметр Грюнайзена.

Дельта (Δ)

Прописные буквы Дельта, используемые во многих областях техники и физики, обычно обозначают разницу между любыми типами измерений. Например, если вы хотите узнать разницу между длиной 1 и длиной 2, вы должны записать ее как ΔL. Интересная особенность этой греческой буквы заключается в том, что строчная буква может обозначать две разные математические функции – функции Дирака и Кронекера.Он также используется для углов, коэффициента затухания (константа затухания), декремента, приращения и коэффициента вторичной эмиссии.

Epsilon (ε)

Возможно, я здесь предвзято, потому что я принадлежу к структурной ветви инженерии, но я часто использую строчные буквы Epsilon для обозначения деформации материала. Чтобы отследить дельту в верхнем регистре, базовая деформация материала рассчитывается по следующей формуле.

ε = ΔL / L

Он также может представлять емкость, диэлектрический ток, напряженность электрического поля, энергию электронов, коэффициент излучения, диэлектрическую проницаемость и постоянную 2.7128 или основание натурального логарифма.

Zeta (ζ)

В инженерной динамике Zeta представляет собой коэффициент демпфирования колебательной системы. Его также можно использовать в других математических и физических приложениях для обозначения коэффициентов, координат и импеданса.

Eta (η)

Эта строчная буква Eta имеет множество физических и астрономических приложений, таких как представление конформного времени в космологии, химического потенциала, диэлектрической восприимчивости, эффективности, гистерезиса, внутреннего импеданса среды и внутреннего отношения противостояния.

Тета (θ)

Я предполагаю, что каждый, кто это читает, знаком с этой греческой буквой, поскольку она обычно используется в тригонометрии. Он используется для обозначения угла поворота, углов, углового фазового смещения, сопротивления, теплового сопротивления и угла пролета.

Йота (Ι)

Если вам нравятся матрицы, вы должны знать, что йота в верхнем регистре используется как единичная матрица. Однако я обнаружил, что строчные буквы редко используются в технике или, может быть, я просто никогда раньше не использовал уравнение со строчными буквами йоты.Сообщите нам, если у вас есть.

Каппа (κ)

Гравитационная постоянная Эйнштейна обозначается строчной каппой, а в космологии кривизна Вселенной обозначается маленькой каппой. Он также обозначает коэффициент связи и восприимчивость.

Лямбда (λ)

Еще одно письмо, с которым вы, вероятно, знакомы. Лямбда часто используется как символ длины волны как в науке, так и в технике. Но мое любимое использование строчной лямбды – это обозначение собственного значения в линейной алгебре.Задача собственных значений – это такой простой, но эффективный расчет, который вы можете выполнить в задачах вибрации. Он также используется как линейная плотность заряда, постоянство и светочувствительность.

Mu (μ)

Теперь Mu может означать множество вещей в физике и технике. Обычно Mu используется как приставка «микро» в смысле измерения. Итак, если вы хотите сказать микрометр, вы должны написать его как мкм. Он также используется для обозначения коэффициента усиления, магнитной проницаемости, микрон, подвижности и проницаемости.

Nu (ν)

В мире строительства и машиностроения Nu определяет коэффициент Пуассона, который представляет собой отношение того, насколько материал уменьшается в ширину и увеличивается в длине при его растяжении.

Xi (ξ)

Еще одна греческая буква, которая является героем инженерной динамики – строчная Xi. Вместо того, чтобы записывать полный коэффициент демпфирования, его можно упростить, используя эту строчную букву. Это помогает, когда у вас действительно длинное уравнение.Он также используется для обозначения выходного коэффициента.

Омикрон (ο)

Эта греческая буква имеет более астрономическое значение, поскольку представляет пятнадцатую звезду в группе созвездия.

Пи (π)

Возможно, самая знаковая и известная греческая буква, это число Пи или 3,14159 … и так далее. Пи обычно используется в геометрии, поскольку это отношение длины окружности к диаметру. Независимо от размера круга отношение длины окружности к диаметру всегда равно Пи.

Rho (ρ)

Это меня очень смутило, когда я был старшеклассником. В основном это выглядит как строчная буква P, но записывается по-разному. Он используется для обозначения плотности, а также для коэффициента отражения, коэффициента отражения, удельного сопротивления и поверхностной плотности заряда.

Сигма (σ)

Если есть одна греческая буква, описывающая жизнь инженера, то это строчная сигма, обозначающая напряжение в большинстве инженерных отраслей.Напряжение подшипника, тепловое напряжение, упругое напряжение, напряжение фон Мизеса и любые другие типы напряжений, о которых могут подумать инженеры, обычно обозначают как Sigma. Прописная сигма, однако, наиболее популярна для обозначения «суммы» любых значений.

Тау (τ)

Больше стресса! Тау обычно используется для обозначения определенного типа напряжения, называемого напряжением сдвига, а также постоянной распространения, коэффициента Томсона, постоянной времени, фазового смещения времени и коэффициента передачи.

Ипсилон (Y)

Верхний регистр Ипсилон часто используется в астрофизике и представляет собой отношение массы к световому потоку.

Phi (φ)

При работе с круглыми объектами, такими как трубы, Phi обычно используется для обозначения их диаметра, а также для обозначения углов, коэффициента полезного действия, контактного потенциала, магнитного потока, фазового угла, фазового смещения, и лучистый поток.

Хи (χ)

Чи в нижнем регистре обычно используется в структурном анализе для представления коэффициента уменьшения нагрузок на продольный изгиб.

Psi (ψ)

Psi часто используется в физике для обозначения волновых функций в квантовой механике и даже используется для обозначения планеты Нептун!

Omega (ω)

Сохраните лучшее напоследок.Это, безусловно, моя любимая греческая буква, поскольку она обозначает частоту в мире структурной динамики. Эта базовая формула динамики поможет вам далеко продвинуться в области структурной динамики и сейсмической инженерии, если вы столкнетесь лицом к лицу с такими демонами.

ω 2 = k / m

Конечно, прописные буквы также используются для обозначения Ом в электротехнике – я бы не пропустил это.

Итак, краткое изложение всех 24 греческих букв с точки зрения науки, математики и инженерии.Сообщите нам, если мы пропустили значительное использование любого из этих алфавитов, через раздел комментариев.

Вы зашли так далеко. Итак, мы так полагаем, что вы любите математику?

Анатомия изогнутого зеркала

До сих пор в этом устройстве мы фокусировались на отражении света от плоских поверхностей и формировании изображений плоскими зеркалами. В уроках 3 и 4 мы обратим наше внимание на тему изогнутых зеркал и, в частности, изогнутых зеркал, которые имеют сферическую форму .Такие зеркала называются сферическими зеркалами . На схеме справа показаны два типа сферических зеркал. Сферические зеркала можно представить как часть сферы, которая была отрезана, а затем посеребрена с одной из сторон, чтобы сформировать отражающую поверхность. Вогнутые зеркала были посеребрены на внутренней стороне сферы, а выпуклые зеркала были посеребрены снаружи сферы. В Уроке 3 мы сосредоточимся на вогнутых зеркалах, а в Уроке 4 мы сосредоточимся на выпуклых зеркалах.

Для начала изучения сферических зеркал необходимо сначала познакомиться с некоторой терминологией, которая будет периодически использоваться. Во время уроков 3 и 4 необходимо усвоить следующие термины.

Главная ось Центр кривизны Вершина
Координатор Радиус кривизны Фокусное расстояние

Если представить себе вогнутое зеркало как часть сферы, то линия проходит через центр сферы и присоединяется к зеркалу точно в центре зеркала.Эта линия известна как главная ось . Точка в центре сферы, из которой было вырезано зеркало, известна как центр кривизны и обозначена буквой C на диаграмме ниже. Точка на поверхности зеркала, где главная ось пересекает зеркало, известна как вершина и обозначена буквой A на схеме ниже. Вершина – это геометрический центр зеркала. На полпути между вершиной и центром кривизны находится точка, известная как фокус ; точка фокусировки обозначена буквой F на схеме ниже.Расстояние от вершины до центра кривизны известно как радиус кривизны (представлен R ). Радиус кривизны – это радиус сферы, из которой вырезано зеркало. Наконец, расстояние от зеркала до фокальной точки известно как фокусное расстояние (представленное f ). Поскольку фокусная точка – это середина отрезка прямой, примыкающего к вершине и центру кривизны, фокусное расстояние будет составлять половину радиуса кривизны.


Точка фокусировки – это точка в пространстве, в которой свет, падающий на зеркало и идущий параллельно главной оси, встретится после отражения. Схема справа изображает этот принцип. Фактически, если бы часть солнечного света собиралась вогнутым зеркалом, то он сходился бы в фокусной точке. Поскольку Солнце находится на таком большом расстоянии от Земли, любые солнечные лучи, падающие на зеркало, будут по существу перемещаться параллельно главной оси.Таким образом, этот свет должен отражаться и проходить через точку фокусировки. Обычная демонстрация физики включает использование большого демонстрационного зеркала, чтобы за секунды зажечь карандаш. В демонстрации карандаш помещен в точку фокусировки, а вогнутое зеркало направлено на вверх на к солнцу. Какие бы солнечные лучи ни попадали в зеркало, они фокусируются в той точке, где находится карандаш. К удивлению многих, тепла достаточно, чтобы зажечь карандаш.Ух ты!

Смотри!

Большое вогнутое зеркало используется для фокусировки солнечного света на карандаше.

Продолжая Урок 3, мы будем наблюдать изображения, образованные вогнутыми зеркалами. В зависимости от местоположения объекта изображение может быть увеличено или уменьшено в размере или даже до того же размера, что и объект; изображение могло быть перевернутым или вертикальным; и изображение будет расположено в определенной области вдоль главной оси.Чтобы понять эти отношения между объектом и изображением, вам может потребоваться просмотреть словарные термины, описанные на этой странице.


Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие – это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием наших интерактивных приложений Optics Bench Interactive или Name That Image Interactive.Вы можете найти это в разделе Physics Interactives на нашем сайте. Optics Bench Interactive предоставляет учащимся интерактивную среду для изучения формирования изображений с помощью линз и зеркал. Интерактивное приложение Name That Image Interactive предлагает учащимся интенсивную умственную тренировку по распознаванию характеристик изображения для любого заданного местоположения объекта перед изогнутым зеркалом.


Проверьте свое понимание

1.Поверхность вогнутого зеркала направлена ​​на к солнцу. Свет от солнца попадает в зеркало и сходится в точку. Как далеко от поверхности зеркала находится точка схождения , если радиус кривизны (R) зеркала равен 150 см?

2. Это ранняя стадия лаборатории Concave Mirror Lab . Ваш учитель вручает вашей лабораторной группе вогнутое зеркало и просит вас найти точку фокусировки.Какую процедуру вы бы использовали для этого?

Physical Review Journal – Руководство по расчету длины

Процедура подсчета слов

Следующие рекомендации можно использовать для определения объема рукописи, представленной в журнал Physical Review . Общая формула для расчета объема рукописи:

Общее количество слов = Текст + Математические символы + Цифры + Таблицы

Рекомендации для писем и коротких статей, включая комментарии
Текст Включить
  • Любой текст в теле статьи
  • Любой текст в подписи к рисунку или таблице
  • Любой текст в сноске или концевой сноске
Исключить
  • Название
  • Список авторов и аффилированных лиц
  • Аннотация
  • Дата получения, дата публикации и другая история публикаций
  • Ключевые слова
  • PhySH и DOI
  • Список литературы
  • Автор авторских сносок
  • Благодарности
Отображаемая математика Словарный эквивалент отображаемой математики – 16 слов в строке для уравнений с одним столбцом.Уравнения с двумя столбцами считаются как 32 слова в строке.
Цифры Чтобы оценить эквивалент слова для цифр, используйте соотношение сторон фигуры (ширина / высота). Оценка составляет [(150 / соотношение сторон) + 20 слов] для фигур в один столбец и [300 / (0,5 * соотношение сторон)] + 40 слов для фигур в два столбца.
Таблицы Словарный эквивалент для таблиц – 13 слов плюс 6,5 слов в строке для одностолбцовых таблиц.Таблицы с двумя столбцами считаются как 26 слов плюс 13 слов в строке.
Рекомендации для PRX и обзорных статей в PRApplied, PRMaterials, PRResearch и RMP
Текст Включить
  • Любой текст в теле статьи
  • Любой текст в подписи к рисунку или таблице
  • Любой текст в сноске или концевой сноске
Исключить
  • Название
  • Список авторов и аффилированных лиц
  • Аннотация
  • Дата получения, дата публикации и другая история публикаций
  • Ключевые слова
  • PhySH и DOI
  • Список литературы
  • Автор авторских сносок
  • Благодарности
Отображаемая математика Словарный эквивалент отображаемой математики – 16 слов в строке для уравнений с одним столбцом.Уравнения с двумя столбцами считаются как 32 слова в строке.
Цифры Словарный эквивалент цифр – 170 слов на цифру для цифр в одну колонку. Цифры в двух столбцах считаются как 340 слов на рисунок.
Таблицы Словарный эквивалент для таблиц – 13 слов плюс 6,5 слов в строке для одностолбцовых таблиц. Таблицы с двумя столбцами считаются как 26 слов плюс 13 слов в строке.

Подсчет слов в файле TeX

Авторам рекомендуется использовать REVTeX 4.2 для подготовки рукописи, используя соответствующую опцию журнала (например, “prl” для физических проверок Physical Review Letters ). Рукописи, которые умещаются в следующих пределах страниц, вероятно, будут соответствовать руководящим принципам длины: Письма и PRPER Краткие статьи: 4 страницы, Письма: 4 страницы для PRB; 5 страниц для Physical Review A, C, D, E, Fluids, Materials, and Research. Кроме того, вы можете определить количество слов в файле REVTeX 4.2 с помощью:

  • Комментарий к команде \ maketitle
  • Использование опции ‘nofootinbib’
  • Вставка \ end {document} перед библиографией
  • Закомментировать любые отображаемые уравнения
  • Комментирование строк (но не заголовков) любых таблиц
  • Комментарий к благодарности

Бумага должна работать под LaTeX.Чтобы получить точное количество слов, вы можете затем использовать файл wordcount.tex, который находится по адресу https://ctan.org/tex-archive/macros/latex/contrib/wordcount.

Подсчет слов в файле Word

Чтобы подсчитать количество слов в документе Word, сделайте копию своей рукописи и удалите весь текст и другие элементы, которые не учитываются в соответствии с рекомендациями. Затем воспользуйтесь встроенной функцией подсчета слов Word.

Определение размера фигур

GhostScript можно использовать для определения ограничивающей рамки фигур Encapsulated PostScript (EPS) и PDF:

фигурка кота.eps гс -q -dSAFER -dBATCH -sDEVICE = bbox –

Затем вы можете использовать размер ограничивающей рамки, чтобы определить точную ширину и высоту фигуры. Различные программы обработки изображений будут отображать размеры файлов изображений JPEG, GIF, PNG и других типов. В качестве альтернативы вы можете использовать программу просмотра PDF-файлов с возможностью обрезки, чтобы нарисовать рамку обрезки вокруг фигуры и считать размеры. Наконец, вы можете просто распечатать фигуру и измерить ее размеры.Единицы измерения являются произвольными, потому что в рекомендациях используется соотношение сторон, то есть ширина / высота.

Предел количества слов

Ограничения по длине для разных типов статей в журналах Physical Review различаются. Пределы длины приведены в следующей таблице:

Пределы длины изделия
PRL Письмо
Комментарий / Ответ
3750 слов
750 слов
PRX Комментарий / ответ 3500 слов
PRX Energy Комментарий / ответ
Перспектива
Учебное пособие
3500 слов
3000 слов
37500 слов
Пределы длины для статей о перспективах и учебных пособиях являются рекомендациями.При необходимости авторам следует проконсультироваться с редакторами PRX Energy .
PRX Quantum Комментарий / ответ
Перспектива
Учебное пособие
3500 слов
7500 слов
37500 слов
Пределы длины для статей о перспективах и учебных пособиях являются лишь рекомендацией. При необходимости авторам следует проконсультироваться с редакторами PRX Quantum .
RMP Статья
Коллоквиум
50 000 слов
20 000 слов
PRA Письмо
Комментарий / Ответ
4500 слов
3500 слов
ПРБ Письмо
Комментарий / Ответ
4500 слов
3500 слов
КНР Письмо
Комментарий / Ответ
4500 слов
1500 слов
PRD Письмо
Комментарий / Ответ
4500 слов
3500 слов
PRE Письмо
Комментарий / Ответ
4500 слов
3500 слов
PR Исследования Обзор статьи
Письмо
Комментарий / ответ
30 000 слов
4500 слов
3500 слов
PRAB Без ограничений
PR Заявлено Обзор статьи
Комментарий / ответ
Письмо
30 000 слов
3500 слов
3500 слов
PRFluids Письмо
Комментарий / Ответ
4500 слов
3500 слов
PRМатериалы Обзор статьи
Обновление исследования
Письмо
Комментарий / ответ
30 000 слов
10 000 слов
4500 слов
3500 слов
PRPER Обзор статьи
Краткая статья
Комментарий / ответ
Без ограничений
3500 слов
3500 слов

Все буквы в физике и их обозначения.Обозначение: высота, ширина, длина

Переходя к физическим приложениям производной, мы будем использовать несколько иные обозначения, принятые в физике.

Во-первых, меняется обозначение функций. Действительно, какие функции мы будем различать? Эти функции являются физическими величинами, зависящими от времени. Например, координата тела x (t) и его скорость v (t) могут быть заданы формулами:

(читать ix с точкой).

Существует еще одно обозначение производной, очень распространенное как в математике, так и в физике:

производная функции x (t) обозначена

(читать ¾de iks on de te¿).

Остановимся подробнее на значении обозначений (1.16). Математик понимает это двояко: либо как предел:

,

, либо как дробь, знаменателем которой является приращение времени dt, а в числителе – так называемый дифференциал dx функции x (t).Дифференциал несложен, но мы не будем его сейчас обсуждать; он ждет вас в первый год.

Физик, не ограниченный требованиями математической строгости, понимает обозначение (1.16) более неформально. Пусть dx будет изменением координаты за время dt. Возьмем интервал dt настолько малым, чтобы отношение dx = dt было близко к своему пределу (1.17) с подходящей для нас точностью.

И тогда, скажет физик, производная координаты по времени – это просто дробь, в числителе которой есть довольно небольшое изменение координаты dx, а в знаменателе – довольно малое время интервал dt, в течение которого произошло это изменение координаты.

Такое расплывчатое понимание производной характерно для рассуждений в физике. В дальнейшем мы будем придерживаться этого физического уровня строгости.

Производная x (t) физической величины x (t) снова является функцией времени, и эту функцию снова можно дифференцировать, чтобы найти производную производной или вторую производную функции x (t). Вот одно обозначение второй производной:

вторая производная функции x (t) обозначается x (t)

(читается как ix с двумя точками), но вот другое:

вторая производная от Функция x (t) обозначается как dt 2

(она читается как de two x in de te square¿ или de two x in de te дважды).

Давайте вернемся к исходному примеру (1.13) и вычислим производную координаты, и заодно посмотрим на совместное использование обозначений (1.15) и (1.16):

x (t) \ u003d 1 + 12t 3t2)

x (t) = dt d (1 + 12t 3t2) = 12 6t:

(Символ дифференциации dt d перед скобкой такой же, как тире над скобкой в предыдущие обозначения.)

Отметим, что производная координаты оказалась равной скорости (1.14). Это не совпадение. Связь между производной координаты и скоростью тела будет разъяснена в следующем разделе «Механическое движение».

1.1.7 Предел вектора

Физические величины не только скалярные, но и векторные. Соответственно, нас часто интересует скорость изменения векторной величины, то есть производная вектора. Однако, прежде чем говорить о производной, вам необходимо понять концепцию предела векторной величины.

Рассмотрим последовательность векторов ~ u1; ~ u2; ~ u3; ::: Сделав при необходимости параллельный перенос, сведем их начала в одну точку О (рис. 1.5):

Рисунок: 1.5. lim ~ un = ~ v

Концы векторов обозначим A1; A2; A3; ::: Таким образом, имеем:

Предположим последовательность точек A1; A2; A3; ::: ¾потоки¿2 в точку B:

lim An = B:

Обозначим ~ v = OB.Мы говорим тогда, что последовательность синих векторов ~ un стремится к красному вектору ~ v, или что вектор ~ v является пределом последовательности векторов ~ un:

~ v = lim ~ un:

2 интуитивного понимания этого «перетекания» вполне достаточно, но, может быть, вас интересует более строгое объяснение? Тогда вот оно.

Пусть это произойдет в самолете. «Приток» последовательности А1; A2; A3; ::: в точку B означает следующее: независимо от того, насколько маленьким мы возьмем круг с центром в точке B, все точки последовательности, начиная с какой-то одной, попадут внутрь этого круга.Другими словами, вне любой окружности с центром B в нашей последовательности есть только конечное число точек.

А если в космосе случится? Немного изменено определение «плавный»: нужно просто заменить слово «круг» словом «шар».

Предположим теперь, что концы синих векторов на рис. 1.5 проходят не через дискретный набор значений, а через непрерывную кривую (например, обозначенную пунктирной линией). Таким образом, мы имеем дело не с последовательностью векторов ~ un, а с вектором ~ u (t), который изменяется со временем.Это как раз то, что нам нужно в физике!

Дальнейшее объяснение почти такое же. Пусть t стремится к некоторому значению t0. Если

, причем концы векторов ~ u (t) “ перетекают ” в некоторую точку B, то мы говорим, что вектор

~ v = OB является пределом значения вектора ~ u (t ):

т! t0

1.1.8 Дифференцирование векторов

Узнав, каков предел векторной величины, мы готовы сделать следующий шаг, чтобы ввести понятие векторной производной.

Предположим, что существует некоторый вектор ~ u (t), зависящий от времени. Это означает, что длина данного вектора и его направление могут изменяться со временем.

По аналогии с обычной (скалярной) функцией вводится понятие изменения (или приращения) вектора. Изменение вектора ~ u за время t – это векторная величина:

~ u = ~ u (t + t) ~ u (t):

Обратите внимание, что в правой части этого отношения находится разность векторов . Изменение вектора ~ u показано на рис.1.6 (напомним, что при вычитании векторов мы сводим их начала в одну точку, соединяем концы и «зажимаем» стрелкой вектор, из которого производится вычитание).

~ u (t) ~ u

Рисунок: 1.6. Изменение вектора

Если интервал времени t достаточно мал, то вектор ~ u также мало меняется за это время (по крайней мере, в физике так всегда считается). Соответственно, если при t! 0 отношение ~ u = t стремится к определенному пределу, тогда этот предел называется производной вектора ~ u:

При обозначении производной вектора мы не будем использовать точку выше (поскольку ~ u_ выглядит не очень хорошо) и ограничимся обозначениями (1.18). Но для производной скаляра мы, естественно, свободно используем оба обозначения.

Напомним, что d ~ u = dt – символ производной. Также ее можно понимать как дробь, в числителе которой стоит дифференциал вектора ~ u, соответствующий временному интервалу dt. Выше мы не обсуждали понятие дифференциала, так как оно не проходит в школе; мы не будем здесь обсуждать дифференциал.

Однако на физическом уровне строгости производную d ~ u = dt можно считать дробью, в знаменателе которой находится очень малый интервал времени dt, а в числителе – соответствующее небольшое изменение d ~ u вектора ~ u.При достаточно малом dt значение этой доли отличается от

предел в правой части (1.18) настолько мал, что с учетом имеющейся точности измерения этой разницей можно пренебречь.

Этого (не совсем строгого) физического понимания производной нам будет достаточно.

Правила дифференцирования векторных выражений во многом аналогичны правилам скалярного дифференцирования. Нам нужны только самые простые правила.

1. Постоянный скалярный множитель вынесен за знак производной: если c = const, то

d (c ~ u) = cd ~ u: dt dt

Воспользуемся этим правилом в разделе «Импульс» при втором законе Ньютона

2. Постоянный векторный множитель выносится за знак производной: если ~ c = const, то dt d (x (t) ~ c) = x (t) ~ c:

3. Производная суммы векторов равна сумме их производных:

dt d (~ u + ~ v) = d ~ u dt + d ~ v dt:

Будем использовать последние два правила более одного раза.Посмотрим, как они работают в важнейшей ситуации векторного дифференцирования при наличии прямоугольной системы координат OXY Z в пространстве (рис. 1.7).

Рисунок: 1.7. Разложение вектора по базису

Как известно, любой вектор ~ u можно однозначно разложить в базисе блока

векторов ~, ~, ~: ijk

~ u = ux i + uy j + uz k:

Здесь ux, uy, uz – проекции вектора ~ u на оси координат. Это координаты вектора ~ u в данном базисе.

Вектор ~ u в нашем случае зависит от времени, а это значит, что его координаты ux, uy, uz являются функциями времени:

~ u (t) = ux (t) i

Uy (t) j

Уз (т) к:

Продифференцируем это равенство. Сначала воспользуемся правилом дифференцирования суммы:

ux (t) ~ i +

uy (t) ~ j

uz (t) ~ k:

Затем выносим постоянные векторы за знак производной:

Ux (t) i + uy (t) j + uz (t) k:

Таким образом, если вектор ~ u имеет координаты (ux; uy; uz), то координаты производной d ~ u = dt являются производными от координат вектора ~ u, а именно (ux; uy; uz ).

Ввиду особой важности формулы (1.20) дадим ее более прямой вывод. В момент времени t + t согласно (1.19) имеем:

~ u (t + t) = ux (t + t) i + uy (t + t) j + uz (t + t) k :

Запишем изменение вектора ~ u:

~ u = ~ u (t + t) ~ u (t) =

Ux (t + t) i + uy (t + t) j + uz (t + t) k ux (t) i + uy (t) j + uz (t) k =

= (ux (t + t) ux (t)) i + (uy (t + t) uy (t)) j + (uz (t + t) uz (t)) k =

Ux i + uy j + uz k:

Разделим обе части полученного равенства на t:

T i +

т j +

В пределе при t! 0 дроби ux = t, uy = t, uz = t переходят соответственно в производные ux, uy, uz, и мы снова получаем соотношение (1.20):

Ux i + uy j + uz k.

Построение чертежей – задача не из легких, но в современном мире без нее нет ничего. Ведь для того, чтобы изготовить даже самый обыкновенный предмет (крохотный болт или гайку, полку для книг, новый дизайн платья и т. Д.), Сначала нужно провести соответствующие расчеты и нарисовать чертеж будущего изделия. Однако часто ее составляет один человек, а другой занимается изготовлением чего-либо по этой схеме.

Во избежание путаницы в понимании изображаемого объекта и его параметров во всем мире приняты символы длины, ширины, высоты и других величин, используемые в дизайне. Кто они такие? Давайте разберемся.

Величины

Площадь, высота и другие обозначения аналогичного характера являются не только физическими, но и математическими величинами.

Их однобуквенное обозначение (используется во всех странах) было введено в середине двадцатого века Международной системой единиц (СИ) и используется по сей день.Именно по этой причине все такие параметры указываются латиницей, а не кириллическими буквами или арабским шрифтом. Чтобы не создавать отдельных сложностей, при разработке стандартов конструкторской документации в большинстве современных стран было решено использовать практически те же условные обозначения, которые используются в физике или геометрии.

Любой выпускник школы помнит, что в зависимости от того, изображена ли на чертеже двухмерная или трехмерная фигура (изделие), она имеет набор основных параметров.Если есть два измерения – это ширина и длина, если их три – также добавляется высота.

Итак, сначала разберемся, как правильно обозначать на чертежах длину, ширину, высоту.

Ширина

Как упоминалось выше, в математике рассматриваемая величина является одним из трех пространственных измерений любого объекта при условии, что его измерения производятся в поперечном направлении. Так чем же известна ширина? Имеет обозначение буквой «Б».Об этом знают во всем мире. Причем по ГОСТу допускается использование как прописных, так и строчных латинских букв. Часто возникает вопрос, почему была выбрана именно такая буква. Ведь обычно сокращение производится по первому греческому или английскому названию количества. Ширина на английском языке будет иметь вид «width».

Наверное, дело в том, что изначально этот параметр наиболее широко использовался в геометрии. В этой науке при описании фигур часто длина, ширина, высота обозначаются буквами «а», «б», «с».Согласно этой традиции, при выборе буква «B» (или «b») была заимствована системой СИ (хотя для двух других измерений стали использовать символы, отличные от геометрических).

Большинство считает, что это было сделано для того, чтобы не путать ширину (обозначенную буквой «B» / «b») с весом. Дело в том, что последнее иногда называют «W» (сокращение от английского веса имени), хотя другие буквы («G» и «P») также допустимы. Согласно международным стандартам системы СИ ширина измеряется в метрах или кратных (долях) их единиц.Стоит отметить, что в геометрии иногда также допустимо использовать «w» для обозначения ширины, но в физике и других точных науках это обозначение обычно не используется.

Длина

Как уже упоминалось, в математике длина, высота и ширина – это три пространственных измерения. Более того, если ширина является линейным размером в поперечном направлении, то длина находится в продольном направлении. Рассматривая это как масштаб физики, можно понять, что это слово означает числовую характеристику длины линий.

В английском языке этот термин называется длиной. Именно поэтому это значение обозначается заглавной или строчной начальной буквой этого слова – «L». Как и ширина, длина измеряется в метрах или кратных (дольных) единицах.

Высота

Наличие этого значения указывает на то, что нужно иметь дело с более сложным трехмерным пространством. В отличие от длины и ширины, высота численно характеризует размер объекта в вертикальном направлении.

На английском это пишется как «высота».Поэтому по международным стандартам он обозначается латинской буквой «H» / «h». Помимо высоты, на чертежах иногда эта буква выступает еще и в качестве обозначения глубины. Высота, ширина и длина – все эти параметры измеряются в метрах и их кратных и кратных единицах (километрах, сантиметрах, миллиметрах и т. Д.).

Радиус и диаметр

Помимо рассматриваемых параметров, при составлении чертежей приходится иметь дело с другими.

Например, при работе с окружностями возникает необходимость определения их радиуса.Это название линии, соединяющей две точки. Первый – центр. Второй находится прямо на самом круге. На латыни это слово выглядит как «радиус». Отсюда строчные или прописные буквы «R» / «r».

При рисовании окружностей, помимо радиуса, часто приходится иметь дело с близким к нему явлением – диаметром. Это также отрезок прямой, соединяющий две точки на окружности. Причем обязательно проходит через центр.

Численно диаметр равен двум радиусам.В английском это слово пишется так: «диаметр». Отсюда и аббревиатура – большая или строчная латинская буква «D» / «d». Часто диаметр на чертежах обозначается перечеркнутым кружком – «Ø».

Хотя это общепринятая аббревиатура, следует иметь в виду, что ГОСТ предусматривает использование только латинского «D» / «d».

Толщина

Большинство из нас помнят школьные уроки математики. Уже тогда учителя говорили, что латинской буквой «s» принято обозначать такое значение, как площадь.Однако по общепринятым нормам на чертежах таким способом фиксируется совсем другой параметр – толщина.

Почему? Известно, что в случае высоты, ширины, длины обозначение буквами могло быть объяснено их написанием или традицией. Но толщина по-английски выглядит как «толщина», а в латинском – «шершавость». Также непонятно, почему, в отличие от других значений, толщину можно указывать только строчными буквами.Обозначение «s» также используется для описания толщины страниц, стен, краев и т. Д.

Периметр и площадь

В отличие от всех значений, перечисленных выше, слово «периметр» пришло не из латинского или английского, а из греческого языка. Оно происходит от «περιμετρέο» (для измерения окружности). И сегодня этот термин сохранил свое значение (общая длина границ рисунка). Впоследствии слово попало в английский язык («периметр») и закрепилось в системе СИ в виде сокращения с буквой «П».

Площадь – это величина, которая показывает количественные характеристики геометрической фигуры с двумя измерениями (длиной и шириной). В отличие от всего перечисленного ранее, он измеряется в квадратных метрах (а также в дробных и кратных их единицах). Что касается буквенного обозначения местности, то в разных областях она различается. Например, в математике это знакомая каждому с детства латинская буква «S». Почему так – информации нет.

Некоторые люди неосознанно думают, что это происходит из-за английского написания слова «квадрат».Однако в нем математическая область – это «площадь», а «квадрат» – это площадь в архитектурном смысле. Кстати, стоит помнить, что «квадрат» – это название геометрической формы «квадрат». Так что будьте внимательны при изучении чертежей на английском языке. Из-за того, что в некоторых дисциплинах переводится как «площадь», в качестве обозначения используется буква «А». В редких случаях также используется буква «F», но в физике эта буква означает величину, называемую «силой» («фортис»).

Другие общепринятые сокращения

Обозначения высоты, ширины, длины, толщины, радиуса, диаметра наиболее часто используются при составлении чертежей.Однако есть и другие количества, которые также часто в них присутствуют. Например, строчная буква «т». В физике это означает «температура», однако по ГОСТу Единой системы конструкторской документации эта буква представляет собой ступеньку (пружины винтовые и тому подобное). Однако, когда речь идет о зацеплении и резьбе, он не используется.

Заглавная и строчная буквы «А» / «а» (согласно всем тем же стандартам) на чертежах используются для обозначения не площади, а межцентрового расстояния и межцентрового расстояния.Помимо разных значений, на чертежах часто указываются углы разных размеров. Для этого принято использовать строчные буквы греческого алфавита. Чаще всего используются «α», «β», «γ» и «δ». Однако допустимо использование других.

Какой стандарт определяет буквенное обозначение длины, ширины, высоты, площади и других величин?

Как уже было сказано выше, чтобы не было недоразумений при чтении чертежа, представители разных народов приняли единые стандарты буквенного обозначения.Другими словами, если вы сомневаетесь в толковании той или иной аббревиатуры, взгляните на ГОСТы. Таким образом вы узнаете, как правильно указаны высота, ширина, длина, диаметр, радиус и так далее.

Ни для кого не секрет, что в любой науке существуют специальные обозначения величин. Буквенные обозначения в физике доказывают, что эта наука не является исключением в плане определения величин с помощью специальных символов. Существует множество основных величин, а также их производных, каждая из которых имеет свой символ.Итак, буквенные обозначения в физике подробно рассматриваются в этой статье.

Физика и основные физические величины

Благодаря Аристотелю слово физика стало использоваться, поскольку именно он первым использовал этот термин, который в то время считался синонимом термина философия. Это связано с общностью объекта исследования – законов Вселенной, а точнее – того, как она функционирует. Как известно, в XVI-XVII веках произошла первая научная революция, благодаря которой физика была выделена как самостоятельная наука.

Михаил Васильевич Ломоносов ввел слово «физика» в русский язык, издав учебник в переводе с немецкого – первый русский учебник по физике.

Итак, физика – это раздел естествознания, посвященный изучению общих законов природы, а также материи, ее движения и структуры. Базовых физических величин не так много, как может показаться на первый взгляд – их всего 7: длина

  • , масса
  • , время
  • , сила тока
  • , температура
  • , количество вещества
  • сила света.

Конечно, в физике у них есть свои буквенные обозначения. Например, символ m выбран для массы, а T выбран для температуры. Также у всех величин есть своя единица измерения: интенсивность света – кандела (кд), а единицей измерения количества вещества – моль.

Производные физические величины

Производных физических величин гораздо больше, чем базовых. Их 26, и часто некоторые из них относят к основным.

Итак, площадь является производной длины, объем – также длины, скорость – времени, длины, а ускорение, в свою очередь, характеризует скорость изменения скорости. Импульс выражается через массу и скорость, сила – произведение массы и ускорения, механическая работа зависит от силы и длины, энергия пропорциональна массе. Мощность, давление, плотность, поверхностная плотность, линейная плотность, количество тепла, напряжение, электрическое сопротивление, магнитный поток, момент инерции, момент количества движения, момент силы – все это зависит от массы.Частота, угловая скорость, угловое ускорение обратно пропорциональны времени, а электрический заряд напрямую зависит от времени. Угол и телесный угол определяются длиной.

Какая буква обозначает напряжение в физике? Напряжение, являющееся скалярной величиной, обозначается буквой U. Для скорости обозначение имеет вид буквы v, для механической работы – A, а для энергии – E. Электрический заряд обычно обозначают буквой q, а магнитный поток – F.

SI: общая информация

Международная система единиц (СИ) – это система физических единиц, основанная на Международной системе единиц, включая названия и обозначения физических величин.Он был принят Генеральной конференцией по мерам и весам. Именно эта система регулирует буквенные обозначения в физике, а также их размеры и единицы измерения. Для обозначения используются буквы латинского алфавита, в некоторых случаях – греческого. Также возможно использование специальных символов в качестве обозначения.

Заключение

Итак, в любой научной дисциплине есть специальные обозначения для разного рода величин. Естественно, физика не исключение.Буквенных обозначений очень много: сила, площадь, масса, ускорение, натяжение и т. Д. У них есть свои обозначения. Существует особая система, называемая Международной системой единиц. Считается, что базовые единицы не могут быть математически выведены из других. Производные величины получаются путем умножения и деления основных.

1.3 Язык физики: физические величины и единицы

Точность, прецизионность и значащие числа

Наука основана на экспериментах, требующих точных измерений.Достоверность измерения можно описать с точки зрения его точности и прецизионности (см. Рисунок 1.19 и рисунок 1.20). Точность – это насколько измерение близко к правильному значению для этого измерения. Например, предположим, что вы измеряете длину стандартного листа бумаги для принтера. На упаковке, в которой вы приобрели бумагу, указано, что она имеет длину 11 дюймов, и предположим, что указанное значение верное. Вы трижды измеряете длину бумаги и получаете следующие размеры: 11.1 дюйм, 11,2 дюйма и 10,9 дюйма. Эти измерения довольно точны, потому что они очень близки к правильному значению 11,0 дюймов. Напротив, если бы вы получили размер в 12 дюймов, ваше измерение не было бы очень точным. Вот почему измерительные приборы калибруются на основе известного измерения. Если прибор постоянно возвращает правильное значение известного измерения, его можно безопасно использовать для поиска неизвестных значений.

Рис. 1.19. Механические весы с двумя чашами используются для сравнения различных масс.Обычно объект неизвестной массы помещается в одну чашу, а объекты известной массы – в другую. Когда стержень, соединяющий две посуды, расположен горизонтально, массы в обеих посуде равны. Известные массы обычно представляют собой металлические цилиндры стандартной массы, например 1 грамм, 10 грамм и 100 грамм. (Серж Мелки)

Рис. 1.20. В то время как механические весы могут считывать массу объекта только с точностью до десятых долей грамма, некоторые цифровые весы могут измерять массу объекта с точностью до ближайшей тысячной доли грамма.Как и в других измерительных приборах, точность шкалы ограничивается последними измеренными цифрами. Это сотые доли в изображенной здесь шкале. (Splarka, Wikimedia Commons)

«Точность» указывает, насколько хорошо повторные измерения чего-либо дают одинаковые или похожие результаты. Следовательно, точность измерений означает, насколько близки друг к другу измерения, когда вы измеряете одно и то же несколько раз. Один из способов анализа точности измерений – определение диапазона или разницы между самым низким и самым высоким измеренными значениями.В случае размеров бумаги для принтера наименьшее значение составляло 10,9 дюйма, а максимальное значение – 11,2 дюйма. Таким образом, измеренные значения отклонялись друг от друга не более чем на 0,3 дюйма. Эти измерения были достаточно точными, потому что они варьировались всего на долю дюйма. Однако, если бы измеренные значения были 10,9 дюймов, 11,1 дюймов и 11,9 дюймов, тогда измерения не были бы очень точными, потому что есть много отклонений от одного измерения к другому.

Измерения в бумажном примере точны и точны, но в некоторых случаях измерения точны, но неточны, или они точны, но неточны.Давайте рассмотрим систему GPS, которая пытается определить местоположение ресторана в городе. Думайте о расположении ресторана как о самом центре мишени в яблочко. Затем представьте каждую попытку GPS определить местонахождение ресторана как черную точку в яблочко.

На рис. 1.21 вы можете видеть, что измерения GPS разнесены далеко друг от друга, но все они относительно близки к фактическому местоположению ресторана в центре цели. Это указывает на низкую точность измерительной системы с высокой точностью.Однако на рис. 1.22 измерения GPS сосредоточены довольно близко друг к другу, но они находятся далеко от целевого местоположения. Это указывает на высокую точность измерительной системы с низкой точностью. Наконец, на рис. 1.23 GPS является точным и точным, что позволяет определить местонахождение ресторана.

Рис. 1.21. Система GPS пытается определить местонахождение ресторана в центре мишени. Черные точки представляют каждую попытку определить местоположение ресторана. Точки расположены довольно далеко друг от друга, что указывает на низкую точность, но каждая из них находится довольно близко к фактическому местоположению ресторана, что указывает на высокую точность.(Темное зло)

Рис. 1.22 На этом рисунке точки сосредоточены близко друг к другу, что указывает на высокую точность, но они довольно далеко от фактического местоположения ресторана, что указывает на низкую точность. (Темное зло)

Рис. 1.23 На этом рисунке точки сосредоточены близко друг к другу, что указывает на высокую точность, и они находятся недалеко от фактического местоположения ресторана, что указывает на высокую точность. (Темное зло)

Неопределенность

Точность и прецизионность измерительной системы определяют неопределенность ее измерений.Неопределенность – это способ описать, насколько ваше измеренное значение отклоняется от фактического значения, которое имеет объект. Если ваши измерения не очень точны или точны, то неопределенность ваших значений будет очень высокой. В более общем плане неопределенность можно рассматривать как отказ от ответственности за ваши измеренные значения. Например, если кто-то попросил вас указать пробег вашего автомобиля, вы можете сказать, что это 45 000 миль, плюс-минус 500 миль. Сумма плюс или минус – это неопределенность в вашей стоимости.То есть вы указываете, что фактический пробег вашего автомобиля может составлять от 44 500 миль до 45 500 миль или где-то посередине. Все измерения содержат некоторую неопределенность. В нашем примере измерения длины бумаги мы можем сказать, что длина бумаги составляет 11 дюймов плюс-минус 0,2 дюйма или 11,0 ± 0,2 дюйма. Неопределенность измерения, A , часто обозначается как δA («дельта A »),

Факторы, способствующие неопределенности измерения, включают следующее:

  1. Ограничения измерительного прибора
  2. Мастерство человека, производящего измерение
  3. Неровности в измеряемом объекте
  4. Любые другие факторы, влияющие на результат (в значительной степени зависящие от ситуации)

В примере с бумагой для принтера неточность может быть вызвана: тем фактом, что наименьшее деление на линейке равно 0.1 дюйм, человек, использующий линейку, имеет плохое зрение или неуверенность, вызванную бумагорезательной машиной (например, одна сторона бумаги немного длиннее другой). Хорошей практикой является тщательное рассмотрение всех возможных источников неопределенности в измерение и уменьшение или устранение их,

Процент неопределенности

Один из методов выражения неопределенности – это процент от измеренного значения. Если результат измерения A выражается с погрешностью δ A , погрешность в процентах составляет

1.2% неопределенность = δAA × 100%.% Неопределенность = δAA × 100%.

Рабочий пример

Расчет процентной погрешности: мешок яблок

Продуктовый магазин продает 5-фунтовые пакеты с яблоками. Вы покупаете четыре пакета в течение месяца и каждый раз взвешиваете яблоки. Вы получите следующие размеры:

  • Неделя 1 Вес: 4,8 фунта 4,8 фунта
  • Вес 2 недели: 5,3 фунта 5,3 фунта
  • Вес 3 недели: 4,9 фунта 4,9 фунта
  • Вес 4 недели: 5.4 фунта 5,4 фунта

Вы определили, что вес 5-фунтового мешка имеет погрешность ± 0,4 фунта. Какова погрешность в процентах от веса мешка?

Стратегия

Во-первых, обратите внимание, что ожидаемое значение веса мешка, AA, составляет 5 фунтов. Неопределенность этого значения, δAδA, составляет 0,4 фунта. Мы можем использовать следующее уравнение для определения процентной неопределенности веса

% Неопределенности = δAA × 100%.% Неопределенности = δAA × 100%.

Решение

Подставьте известные значения в уравнение

% Неопределенности = 0.4 фунта5 фунтов × 100% = 8%.% Погрешности = 0,4 фунта5 фунтов × 100% = 8%.

Обсуждение

Мы можем сделать вывод, что вес мешка с яблоками составляет 5 фунтов ± 8 процентов. Подумайте, как изменился бы этот процент неопределенности, если бы мешок с яблоками был вдвое тяжелее, но неопределенность в весе осталась бы прежней. Совет для будущих расчетов: при вычислении процентной погрешности всегда помните, что вы должны умножить дробь на 100 процентов. Если вы этого не сделаете, у вас будет десятичное количество, а не процентное значение.

Неопределенность в расчетах

Есть неопределенность во всех вычислениях на основе измеренных величин. Например, площадь пола, рассчитанная на основе измерений его длины и ширины, имеет неопределенность, потому что и длина, и ширина имеют неопределенности. Насколько велика неопределенность в том, что вы вычисляете умножением или делением? Если измерения в расчетах имеют небольшие погрешности (несколько процентов или меньше), то можно использовать метод сложения процентов.В этом методе говорится, что процент неопределенности в величине, вычисленной путем умножения или деления, представляет собой сумму процентных погрешностей в элементах, использованных для выполнения расчета. Например, если пол имеет длину 4,00 м и ширину 3,00 м с погрешностями 2 процента и 1 процент соответственно, то площадь пола составляет 12,0 м 2 и имеет погрешность 3 процента ( выраженная как площадь, это 0,36 м ( 2 ), которую мы округляем до 0,4 м ( 2 , поскольку площадь пола дается с точностью до одной десятой квадратного метра).

Для быстрой демонстрации точности, прецизионности и неопределенности измерений, основанных на единицах измерения, попробуйте это моделирование. У вас будет возможность измерить длину и вес стола, используя единицы измерения в миллиметрах и сантиметрах. Как вы думаете, что обеспечит большую точность, точность и неопределенность при измерении стола и блокнота в моделировании? Подумайте, как природа гипотезы или вопроса исследования может повлиять на точность измерительного инструмента, необходимого для сбора данных.

Прецизионность измерительных инструментов и значащих цифр

Важным фактором точности измерений является точность измерительного инструмента. В общем, точный измерительный инструмент – это инструмент, который может измерять значения с очень маленькими приращениями. Например, рассмотрите возможность измерения толщины монеты. Стандартная линейка может измерять толщину с точностью до миллиметра, а микрометр может измерять толщину с точностью до 0,005 миллиметра. Микрометр – более точный измерительный инструмент, потому что он может измерять очень небольшие различия в толщине.Чем точнее измерительный инструмент, тем точнее и точнее могут быть измерения.

Когда мы выражаем измеренные значения, мы можем перечислить только столько цифр, сколько мы первоначально измерили с помощью нашего измерительного инструмента (например, линейки, показанные на рисунке 1.24). Например, если вы используете стандартную линейку для измерения длины палки, вы можете измерить ее дециметровой линейкой как 3,6 см. Вы не можете выразить это значение как 3,65 см, потому что ваш измерительный инструмент не был достаточно точным, чтобы измерить сотую долю сантиметра.Следует отметить, что последняя цифра в измеренном значении была определена каким-то образом лицом, выполняющим измерение. Например, человек, измеряющий длину палки линейкой, замечает, что длина палки находится где-то между 36 и 37 мм. Он или она должны оценить значение последней цифры. Правило состоит в том, что последняя цифра, записанная в измерении, является первой цифрой с некоторой погрешностью. Например, последнее измеренное значение 36,5 мм состоит из трех цифр или трех значащих цифр.Количество значащих цифр в измерении указывает на точность измерительного инструмента. Чем точнее инструмент измерения, тем большее количество значащих цифр он может сообщить.

Рисунок 1.24 Показаны три метрические линейки. Первая линейка измеряется в дециметрах и может измерять до трех дециметров. Вторая линейка имеет длину в сантиметрах и может измерять три целых шесть десятых сантиметра. Последняя линейка в миллиметрах и может измерять тридцать шесть целых пять десятых миллиметра.

Нули

Особое внимание уделяется нулям при подсчете значащих цифр.Например, нули в 0,053 не имеют значения, потому что они всего лишь заполнители, которые определяют местонахождение десятичной точки. В 0,053 есть две значащие цифры – 5 и 3. Однако, если ноль встречается между другими значащими цифрами, нули имеют значение. Например, оба нуля в 10.053 значимы, поскольку эти нули были фактически измерены. Таким образом, заполнитель 10.053 содержит пять значащих цифр. Нули в 1300 могут иметь значение, а могут и не иметь значения, в зависимости от стиля написания чисел.Они могут означать, что число известно до последнего нуля, или нули могут быть заполнителями. Итак, 1300 может иметь две, три или четыре значащих цифры. Чтобы избежать этой двусмысленности, запишите 1300 в экспоненциальном формате как 1,3 × 10 3 . Только значащие цифры приведены в множителе x для числа в экспоненциальном представлении (в форме x × 10yx × 10y). Таким образом, мы знаем, что 1 и 3 – единственные значащие цифры в этом числе. Таким образом, нули имеют значение, кроме случаев, когда они служат только в качестве заполнителей.В таблице 1.4 приведены примеры количества значащих цифр в различных числах.

Таблица 1.4
Номер значащие цифры Обоснование
1,657 4 Нет нулей, и все ненулевые числа всегда значимы.
0,4578 4 Первый ноль – это только местозаполнитель для десятичной точки.
0,000458 3 Первые четыре нуля – это заполнители, необходимые для представления данных с точностью до десятитысячных.
2000,56 6 Три нуля здесь значимы, потому что они встречаются между другими значащими цифрами.
45 600 3 Без подчеркивания или научного обозначения мы предполагаем, что последние два нуля являются заполнителями и не имеют значения.
15895 00 0 7 Два подчеркнутых нуля значимы, а последний ноль – нет, поскольку он не подчеркнут.
5,457 × 10 13 4 В экспоненциальном представлении все числа перед знаком умножения являются значащими
6.520 × 10 –23 4 В экспоненциальном представлении все числа перед знаком умножения значимы, включая нули.
Значимые цифры в расчетах

При объединении измерений с разной степенью точности и точности количество значащих цифр в окончательном ответе не может быть больше количества значащих цифр в наименее точном измеренном значении. Существует два разных правила: одно для умножения и деления, а другое – для сложения и вычитания, как описано ниже.

  1. Для умножения и деления: Ответ должен иметь такое же количество значащих цифр, что и начальное значение с наименьшим количеством значащих цифр.Например, площадь круга можно вычислить по его радиусу, используя A = πr2A = πr2. Посмотрим, сколько значащих цифр будет у площади, если в радиусе всего две значащие цифры, например, r = 2,0 м. Тогда, используя калькулятор, который хранит восемь значащих цифр, вы получите

    A = πr2 = (3,1415927 …) × (2,0 м) 2 = 4,5238934 м2. A = πr2 = (3,1415927 …) × (2,0 м) 2 = 4,5238934 м2.

    Но поскольку радиус состоит только из двух значащих цифр, вычисленная площадь имеет значение только для двух значащих цифр или

    , даже если значение ππ имеет значение не менее восьми цифр.

  2. Для сложения и вычитания : ответ должен иметь те же числовые разряды (например, разряды десятков, разряды единиц, разряды десятков и т. Д.), Что и наименее точное начальное значение. Предположим, вы купили в продуктовом магазине 7,56 кг картофеля, измеренного по шкале с точностью 0,01 кг. Затем вы кладете в лабораторию 6,052 кг картофеля, измеренного по шкале с точностью до 0,001 кг. Наконец, вы идете домой и добавляете 13,7 кг картофеля, измеренное на весах с точностью до 0.1 кг. Сколько у вас сейчас килограммов картошки и сколько значащих цифр уместно в ответе? Масса находится простым сложением и вычитанием:

    7,56 кг − 6,052 кг + 13,7 кг_ 15,208 кг 7,56 кг − 6,052 кг + 13,7 кг_ 15,208 кг

    Наименее точное измерение – 13,7 кг. Это измерение выражается с точностью до 0,1 десятичного знака, поэтому наш окончательный ответ также должен быть выражен с точностью до 0,1. Таким образом, ответ следует округлить до десятых, получая 15,2 кг. То же верно и для недесятичных чисел.Например,

    6527,23 + 2 = 6528,23 = 6528,6527,23 + 2 = 6528,23 = 6528.

    Мы не можем указать десятичные разряды в ответе, потому что 2 не имеет значимых десятичных знаков. Следовательно, мы можем отчитаться только до одного места.

    Рекомендуется оставлять лишние значащие цифры при вычислении и округлять до правильного числа значащих цифр только в окончательных ответах. Причина в том, что небольшие ошибки из-за округления при вычислении иногда могут привести к значительным ошибкам в окончательном ответе.В качестве примера попробуйте вычислить 5,098– (5.000) × (1010) 5,098– (5.000) × (1010), чтобы получить окончательный ответ только на две значащие цифры. Учет всего значимого во время расчета дает 48. Округление до двух значащих цифр в середине расчета изменяет его до 5 100 – (5.000) × (1000) = 100, 5 100 – (5.000) × (1000) = 100, что является способом выключенный. Точно так же вы бы избегали округления в середине вычислений при подсчете и ведении бухгалтерского учета, когда нужно аккуратно сложить и вычесть много маленьких чисел, чтобы получить, возможно, гораздо большие окончательные числа.

Значимые цифры в этом тексте

В этом учебнике предполагается, что большинство чисел состоит из трех значащих цифр. Кроме того, во всех проработанных примерах используется постоянное количество значащих цифр. Вы заметите, что ответ, данный для трех цифр, основан на вводе как минимум трех цифр. Если на входе меньше значащих цифр, в ответе также будет меньше значащих цифр. Также уделяется внимание тому, чтобы количество значащих цифр соответствовало создаваемой ситуации.В некоторых темах, таких как оптика, будет использоваться более трех значащих цифр. Наконец, если число является точным, например 2 в формуле, c = 2πrc = 2πr, это не влияет на количество значащих цифр в вычислении.

Рабочий пример

Приближение огромных чисел: триллион долларов

Федеральный дефицит США в 2008 финансовом году был немногим больше 10 триллионов долларов. Большинство из нас не имеют представления о том, сколько на самом деле стоит даже один триллион.Предположим, вам дали триллион долларов банкнотами по 100 долларов. Если вы составили стопки по 100 купюр, как показано на рис. 1.25, и использовали их для равномерного покрытия футбольного поля (между концевыми зонами), сделайте приблизительное представление о том, насколько высокой станет стопка денег. (Здесь мы будем использовать футы / дюймы, а не метры, потому что футбольные поля измеряются в ярдах.) Один из ваших друзей говорит, что 3 дюйма, а другой говорит, что 10 футов. Как вы думаете?

Рис. 1.25. Банковская пачка содержит сто банкнот по 100 долларов и стоит 10 000 долларов.Сколько банковских стеков составляет триллион долларов? (Эндрю Мэджилл)

Стратегия

Когда вы представляете себе ситуацию, вы, вероятно, представляете себе тысячи маленьких стопок по 100 завернутых банкнот по 100 долларов, которые вы могли бы увидеть в фильмах или в банке. Поскольку это величина, которую легко оценить, давайте начнем с нее. Мы можем найти объем стопки из 100 купюр, узнать, сколько стопок составляют один триллион долларов, а затем установить этот объем равным площади футбольного поля, умноженной на неизвестную высоту.

Решение

  1. Рассчитайте объем стопки из 100 купюр. Размеры одной банкноты составляют примерно 3 на 6 дюймов. Пачка из 100 таких банкнот имеет толщину примерно 0,5 дюйма. Таким образом, общий объем стопки из 100 купюр равен объем стопки = длина × ширина × высота, объем стопки = 6 дюймов × 3 дюйма × 0,5 дюйма, объем стопки = 9 дюймов. 3. объем стопки = длина × ширина × высота, объем стопки = 6 дюйма × 3 дюйма × 0,5 дюйма, объем стопки = 9 дюймов 3.
  2. Подсчитайте количество стопок.Обратите внимание, что триллион долларов равен 1 × 1012 $ 1 × 1012, а стопка из ста 100-долларовых банкнот равна 10000, 10000 долларов или 1 × 104 доллара 1 × 104. Количество стопок у вас будет

    . 1,3 $ 1 × 1012 (триллион долларов) / 1 × 104 доллара на стек = 1 × 108 стеков. 1 доллар × 1012 (триллион долларов) / 1 × 104 доллара на стек = 1 × 108 стеков.
  3. Вычислите площадь футбольного поля в квадратных дюймах. Площадь футбольного поля составляет 100 ярдов × 50 ярдов 100 ярдов × 50 ярдов, что дает 5 000 ярдов 25 000 ярдов2.Поскольку мы работаем в дюймах, нам нужно преобразовать квадратные ярды в квадратные дюймы

    Площадь = 5000 ярдов2 × 3 фут1 ярд × 3 фут1 ярд × 12 дюймов 1 фут × 12 дюймов 1 фут = 6 480 000 дюймов 2, Площадь ≈6 × 106 дюймов 2 Площадь = 5000 ярдов2 × 3 фут1 ярд × 3 фут1 ярд × 12 дюймов 0,1 фут × 12 дюймов 1 фут = 6 480000 дюймов 2, Площадь ≈6 × 106 дюймов 2.

    Это преобразование дает нам 6 × 106 дюймов 26 × 106 дюймов 2 для площади поля. (Обратите внимание, что в этих расчетах мы используем только одну значащую цифру.)

  4. Рассчитайте общий объем купюр.Объем всех стопок по 100 долларов составляет 9 дюймов 3 / стопка × 108 стопок = 9 × 108 дюймов 39 дюймов / стопка × 108 стопок = 9 × 108 дюймов 3
  5. Рассчитайте высоту. Чтобы определить высоту купюр, используйте следующее уравнение объем купюр = площадь поля × высота денег Высота денег = объем купюр площадь поля Высота денег = 9 × 108 дюймов 36 × 106 дюймов 2 = 1,33 × 102 дюймов Высота денег = 1 × 102 дюйма = 100 дюймы объем купюр = площадь поля × высота денег Высота денег = объем купюр площадь поля Высота денег = 9 × 108 дюймов36 × 106 дюймов 2 = 1,33 × 102 дюйма Высота монеты = 1 × 102 дюйма = 100 дюймов

    Высота денег будет около 100 дюймов. Преобразование этого значения в футы дает

    . 100 дюймов × 1 фут 12 дюймов = 8,33 футов ≈ 8 футов 100 дюймов × 1 фут 12 дюймов = 8,33 футов ≈ 8 футов

Обсуждение

Окончательное приблизительное значение намного выше, чем ранняя оценка в 3 дюйма, но другая ранняя оценка в 10 футов (120 дюймов) была примерно правильной. Как это приближение соответствует вашему первому предположению? Что это упражнение может сказать вам с точки зрения приблизительных оценок , и тщательно рассчитанных приближений?

В приведенном выше примере окончательное приблизительное значение намного выше, чем ранняя оценка первого друга в 3 дюйма.Однако ранняя оценка другого друга в 10 футов (120 дюймов) была примерно верной. Как это приближение соответствует вашему первому предположению? Что это упражнение может предложить о значении приблизительных оценок по сравнению с тщательно рассчитанными приближениями?

17.1 Понимание дифракции и интерференции – физика

Задачи обучения раздела

К концу этого раздела вы сможете делать следующее:

  • Объяснение волнового поведения света, включая дифракцию и интерференцию, включая роль конструктивной и деструктивной интерференции в экспериментах Юнга с одной и двумя щелями.
  • Выполнение расчетов с учетом дифракции и интерференции, в частности длины волны света, с использованием данных из двухщелевой интерференционной картины.

Поддержка учителей

Поддержка учителей

Цели обучения в этом разделе помогут вашим ученикам овладеть следующими стандартами:

  • (7) Научные концепции.Студент знает характеристики и поведение волн. Ожидается, что студент:
    • (D) исследовать поведение волн, включая отражение, преломление, дифракцию, интерференцию, резонанс и эффект Доплера

Раздел Основные термины

дифракция Принцип Гюйгенса монохромный волновой фронт

Дифракция и интерференция

Поддержка учителя

Поддержка учителя

[BL] Графически объясните на доске конструктивные и деструктивные помехи.

[ПР] Попросите студентов внимательно посмотреть на тень. Спросите, почему края не являются резкими линиями. Объясните, что это вызвано дифракцией, одним из волновых свойств электромагнитного излучения. Определите нанометр по отношению к другим метрическим измерениям длины.

[AL] Спросите студентов, какие из скорости, частоты и длины волны остаются неизменными, а какие меняются, когда луч света перемещается из одной среды в другую. Обсудите эти количества с точки зрения цветов (длин волн) видимого света.

Мы знаем, что видимый свет – это тип электромагнитной волны, на которую реагируют наши глаза. Как мы видели ранее, свет подчиняется уравнению

, где c = 3,00 × 108c = 3,00 × 108 м / с – скорость света в вакууме, f – частота электромагнитной волны в Гц (или с –1 ), а λλ – ее длина волны в м. . Диапазон видимых длин волн составляет приблизительно от 380 до 750 нм. Как и все волны, свет распространяется по прямым линиям и действует как луч, когда взаимодействует с объектами, которые в несколько раз превышают длину его волны.Однако, когда он взаимодействует с более мелкими объектами, он заметно проявляет свои волновые характеристики. Интерференция – это идентифицирующее поведение волны.

На рис. 17.2 можно увидеть лучевые и волновые характеристики света. Лазерный луч, излучаемый обсерваторией, представляет поведение луча, когда он движется по прямой линии. Пропуск чистого одноволнового луча через вертикальные щели с шириной, близкой к длине волны луча, выявляет волновой характер света. Здесь мы видим, как луч распространяется по горизонтали в узор из ярких и темных областей, что вызвано систематической конструктивной и деструктивной интерференцией.Поскольку это характерно для поведения волн, интерференция наблюдается для волн на воде, звуковых волн и световых волн.

Рис. 17.2 (a) Луч света, излучаемый лазером в обсерватории Паранал (часть Европейской южной обсерватории в Чили), действует как луч, движущийся по прямой линии. (Фото: Юрий Белецкий, Европейская южная обсерватория) (б) Лазерный луч, проходящий через решетку вертикальных щелей, создает интерференционную картину, характерную для волны. (Источник: Шимон и Слава Рыбка, Wikimedia Commons)

То, что интерференция является характеристикой распространения энергии волнами, более убедительно демонстрируется волнами на воде.На рис. 17.3 показаны волны на воде, проходящие через промежутки между камнями. Вы можете легко увидеть, что ширина зазоров аналогична длине волны, и это вызывает интерференционную картину, когда волны проходят через зазоры. Поперечное сечение волн на переднем плане покажет гребни и впадины, характерные для интерференционной картины.

Рис. 17.3 Входящие волны (вверху рисунка) проходят через щели в скалах и создают интерференционную картину (на переднем плане).

Свет имеет волновые характеристики в различных средах, а также в вакууме. Когда свет переходит из вакуума в какую-либо среду, такую ​​как вода, его скорость и длина волны изменяются, но его частота, f , остается той же. Скорость света в среде равна v = c / nv = c / n, где n – его показатель преломления. Если разделить обе части уравнения c = fλc = fλ на n , получится c / n = v = fλ / nc / n = v = fλ / n. Следовательно, v = fλnv = fλn, где λnλn – длина волны в среде, а

, где λλ – длина волны в вакууме, а n – показатель преломления среды.Отсюда следует, что длина волны света в любой среде меньше, чем в вакууме. Например, в воде, которая имеет n = 1,333, диапазон видимых длин волн составляет от (380 нм) / 1,333 до (760 нм) / 1,333, или λn = λn = 285–570 нм. Хотя длины волн меняются при переходе от одной среды к другой, цвета – нет, поскольку цвета связаны с частотой.

Голландский ученый Христиан Гюйгенс (1629–1695) разработал полезную технику для детального определения того, как и где распространяются волны.Он использовал волновые фронты, то есть точки на поверхности волны, имеющие одну и ту же постоянную фазу (например, все точки, составляющие гребень водной волны). Принцип Гюйгенса гласит: «Каждая точка волнового фронта является источником вейвлетов, которые распространяются в прямом направлении с той же скоростью, что и сама волна. Новый волновой фронт – это линия, касательная ко всем вейвлетам ».

На рис. 17.4 показано, как применяется принцип Гюйгенса. Волновой фронт – это длинная движущаяся кромка; например гребень или желоб.Каждая точка на волновом фронте излучает полукруглую волну, которая движется со скоростью v . Они нарисованы позже, t , так что они переместились на расстояние s = vts = vt. Новый волновой фронт – это касательная к вейвлетам линия, в которой волна находится в момент времени t . Принцип Гюйгенса работает для всех типов волн, включая волны на воде, звуковые волны и световые волны. Это будет полезно не только для описания того, как распространяются световые волны, но и для того, как они интерферируют.

Рис. 17.4. Принцип Гюйгенса, примененный к прямому волновому фронту. Каждая точка на волновом фронте излучает полукруглый вейвлет, который перемещается на расстояние s = vts = vt. Новый волновой фронт – это касательная линия к вейвлетам.

Что происходит, когда волна проходит через отверстие, например, свет проникает через открытую дверь в темную комнату? Что касается света, вы ожидаете увидеть резкую тень от дверного проема на полу и не ожидаете, что свет будет загибать углы в другие части комнаты.Когда звук проходит через дверь, вы слышите его повсюду в комнате и, таким образом, понимаете, что звук распространяется при прохождении через такое отверстие. В чем разница между поведением звуковых волн и световых волн в этом случае? Ответ заключается в том, что длины волн, из которых состоит свет, очень короткие, поэтому свет действует как луч. Звук имеет длину волны порядка размера двери, поэтому он огибает углы.

Поддержка учителя

Поддержка учителя

[OL] Обсудите тот факт, что для того, чтобы дифракционная картина была видимой, ширина щели должна примерно соответствовать длине волны света.Постарайтесь дать учащимся представление о размерах длин волн видимого света, отметив, что человеческий волос примерно в 100 раз шире.

Если свет проходит через отверстия меньшего размера, часто называемые щелями, вы можете использовать принцип Гюйгенса, чтобы показать, что свет изгибается, как звук (см. Рис. 17.5). Изгиб волны вокруг краев проема или препятствия называется дифракцией. Дифракция – это волновая характеристика, которая возникает для всех типов волн. Если дифракция наблюдается для явления, это свидетельствует о том, что явление вызвано волнами.Таким образом, горизонтальная дифракция лазерного луча после того, как он проходит через прорези на рисунке 17.2, свидетельствует о том, что свет обладает свойствами волны.

Рис. 17.5. Принцип Гюйгенса, примененный к прямому волновому фронту, поражающему отверстие. Края волнового фронта изгибаются после прохождения через отверстие, этот процесс называется дифракцией. Величина изгиба более велика для небольшого отверстия, что согласуется с тем фактом, что волновые характеристики наиболее заметны при взаимодействии с объектами примерно того же размера, что и длина волны.

Еще раз, волны на воде представляют собой знакомый пример волнового явления, которое легко наблюдать и понимать, как показано на рис. 17.6.

Рис. 17.6 Океанские волны проходят через отверстие в рифе, в результате чего возникает дифракционная картина. Дифракция возникает из-за того, что ширина отверстия аналогична длине волны.

Watch Physics

Однощелевая интерференция

В этом видео используются математические вычисления, необходимые для прогнозирования дифракционных картин, вызванных однострелочной интерференцией.

Какие значения м обозначают место деструктивной интерференции на дифракционной картине с одной щелью?

  1. целых чисел без нуля
  2. целые числа
  3. вещественных чисел без нуля
  4. вещественные числа

Тот факт, что принцип Гюйгенса работал, не считался достаточным доказательством того, что свет – это волна. Люди также не хотели принимать волновую природу света, потому что это противоречило идеям Исаака Ньютона, который все еще пользовался большим уважением.Признание волнового характера света произошло после 1801 года, когда английский физик и врач Томас Янг (1773–1829) провел свой ставший уже классическим эксперимент с двойной щелью (см. Рис. 17.7).

Рис. 17.7. Эксперимент Юнга с двумя щелями. Здесь свет одной длины волны проходит через пару вертикальных щелей и создает на экране дифракционную картину – многочисленные вертикальные светлые и темные линии, которые расходятся по горизонтали. Без дифракции и интерференции свет просто образовывал бы две линии на экране.

Когда свет проходит через узкие щели, он дифрагирует на полукруглые волны, как показано на рисунке 17.8 (a). Чистая конструктивная интерференция возникает там, где волны выстраиваются от гребня к гребню или от впадины к впадине. Чистая деструктивная интерференция возникает там, где они выстраиваются от гребня к впадине. Чтобы узор был виден, свет должен падать на экран и рассеиваться в наших глазах. Аналогичная картина для водных волн показана на Рисунке 17.8 (b). Обратите внимание, что области конструктивной и деструктивной интерференции выходят из щелей под четко определенными углами к исходному лучу.Эти углы зависят от длины волны и расстояния между щелями, как вы увидите ниже.

Рис. 17.8 Двойные щели создают два источника интерферирующих волн. (а) Свет распространяется (дифрагирует) из каждой щели, потому что щели узкие. Волны перекрываются и интерферируют конструктивно (яркие линии) и деструктивно (темные области). Эффект можно увидеть только в том случае, если свет падает на экран и падает вам в глаза. (б) Интерференционная картина с двумя щелями для водных волн почти идентична интерференционной картине для света.Волновое воздействие больше всего в областях конструктивной интерференции и меньше всего в областях деструктивной интерференции. (c) Когда свет, прошедший через двойные щели, падает на экран, мы видим такую ​​картину.

Виртуальная физика

Волновые помехи

Это моделирование демонстрирует большинство волновых явлений, обсуждаемых в этом разделе. Во-первых, наблюдайте интерференцию между двумя источниками электромагнитного излучения, не добавляя щелей. Посмотрите, как водные волны, звук и свет демонстрируют интерференционные картины.Оставайтесь со световыми волнами и используйте только один источник. Создавайте дифракционные картины с одной щелью, а затем с двумя. Возможно, вам придется отрегулировать ширину щели, чтобы увидеть узор.

Визуально сравните ширину щели с длиной волны. Когда вы получите наиболее четкую дифракционную картину?

  1. , когда ширина щели больше длины волны
  2. , когда ширина щели меньше длины волны
  3. , когда ширина щели сопоставима с длиной волны
  4. при бесконечной ширине щели

Расчеты с использованием дифракции и интерференции

Поддержка учителя

Поддержка учителя

[BL] Греческая буква θθ пишется как тета .Греческая буква λλ пишется как ламда . Оба произносятся так, как и следовало ожидать от написания. Множественное число максимум и минимум составляет максимумов и минимумов , соответственно.

[OL] Объясните, что одноцветный означает одноцветный. Монохроматический также означает одну частоту . Синус угла – это сторона, противоположная прямоугольному треугольнику, разделенному гипотенузой. Напротив означает противоположный данному острому углу.Обратите внимание, что знак угла всегда ≥ 1.

Тот факт, что длину волны одноцветного или монохроматического света можно вычислить по его дифракционной картине с двумя щелями в экспериментах Юнга, подтверждает вывод о том, что свет обладает волновыми свойствами. Чтобы понять основу таких расчетов, рассмотрим, как две волны проходят от щелей к экрану. Каждая щель находится на разном расстоянии от заданной точки на экране. Таким образом, на каждом пути умещается разное количество длин волн.Волны исходят из щелей синфазно (от пика к пику), но в конечном итоге они будут не в фазе (от пика до впадины) на экране, если пути различаются по длине на половину длины волны, создавая деструктивные помехи. Если пути различаются на целую длину волны, то волны приходят синфазно (от гребня к гребню) на экран, конструктивно мешая друг другу. В более общем смысле, если пути, по которым проходят две волны, отличаются на любое половинное целое число длин волн (12λ, 32λ, 52λ и т. Д.) (12λ, 32λ, 52λ и т. Д.), Возникает деструктивная интерференция.Точно так же, если пути, по которым проходят две волны, отличаются на любое целое число длин волн (λ, 2λ, 3λ и т. Д.) (Λ, 2λ, 3λ и т. Д.), Возникает конструктивная интерференция.

На рис. 17.9 показано, как определить разницу в длине пути волн, идущих от двух щелей к общей точке на экране. Если экран находится на большом расстоянии по сравнению с расстоянием между прорезями, то угол θθ между траекторией и линией от прорезей, перпендикулярной экрану (см. Рисунок), почти одинаков для каждого пути.Это приближение и простая тригонометрия показывают, что разность длин ΔLΔL равна dsinθdsinθ, где d – расстояние между прорезями,

Чтобы получить конструктивную интерференцию для двойной щели, разница в длине пути должна быть целым числом, кратным длине волны, или

dsinθ = mλ, для m = 0,1, −1,2, −2,… (конструктивно) .dsinθ = mλ, для m = 0,1, −1,2, −2,… (конструктивно).

Аналогично, чтобы получить деструктивную интерференцию для двойной щели, разница в длине пути должна быть полуцелым кратным длины волны, или

dsinθ = (m + ½) λ, для m = 0,1, −1,2, −2,… (деструктивно).dsinθ = (m + ½) λ, для m = 0,1, −1,2, −2,… (деструктивно).

Число м – это порядок помех. Например, м = 4 – интерференция четвертого порядка.

Рис. 17.9 Пути от каждой щели к общей точке на экране отличаются на величину d sin θd sin θ, предполагая, что расстояние до экрана намного больше, чем расстояние между щелями (не в масштабе здесь).

На рис. 17.10 показано, как интенсивность полос конструктивной интерференции уменьшается с увеличением угла.

Рис. 17.10 Интерференционная картина для двойной щели имеет интенсивность, которая спадает с углом. На фотографии видно несколько ярких и темных линий или полос, образованных светом, проходящим через двойную щель.

Свет, проходящий через одиночную щель, образует дифракционную картину, несколько отличную от картины, образованной двойными щелями. На рисунке 17.11 показана дифракционная картина с одной щелью. Обратите внимание, что центральный максимум больше, чем с обеих сторон, и что интенсивность быстро уменьшается с обеих сторон.

Рисунок 17.11 (a) Дифракционная картина с одной щелью. Монохроматический свет, проходящий через единственную щель, дает центральный максимум и множество меньших и более тусклых максимумов с обеих сторон. Центральный максимум в шесть раз выше, чем показано. (b) На рисунке показан яркий центральный максимум и более тусклые и более тонкие максимумы с обеих сторон. (c) Расположение минимумов показано в единицах λλ и D .

Анализ дифракции на одной щели показан на рисунке 17.12. Если предположить, что экран находится очень далеко по сравнению с размером щели, лучи, направляющиеся к общему месту назначения, почти параллельны.Это приближение позволяет выполнять серию тригонометрических операций, которые приводят к уравнениям для минимумов, созданных деструктивной интерференцией.

или

Когда лучи летят прямо, они остаются в фазе и достигается центральный максимум. Однако, когда лучи движутся под углом θθ относительно исходного направления луча, каждый луч проходит разное расстояние до экрана, и они могут приходить в фазе или противофазе. Таким образом, луч из центра проходит на расстояние λ / 2λ / 2 дальше, чем луч от верхнего края щели, они прибывают в противофазе и создают деструктивные помехи.Точно так же для каждого луча между верхом и центром щели есть луч между центром и низом щели, который проходит расстояние λ / 2λ / 2 дальше до общей точки на экране и, таким образом, разрушающе мешает. . Симметрично под прямым лучом будет еще один минимум под тем же углом.

Рисунок 17.12 Уравнения для дифракционной картины с одной щелью, где λ – длина волны света, D – ширина щели, θθ – угол между линией от щели до минимума и линией, перпендикулярной экрану, L – это расстояние от щели до экрана, y – это расстояние от центра рисунка до минимума, а м – ненулевое целое число, указывающее порядок минимума.

Ниже мы суммируем уравнения, необходимые для последующих расчетов.

Скорость света в вакууме c , длина волны света λλ и его частота f связаны следующим образом.

Длина волны света в среде λnλn по сравнению с его длиной волны в вакууме λλ равна

.

Чтобы рассчитать положение конструктивной интерференции для двойной щели, разница в длине пути должна быть целым кратным, м , длины волны.λλ

dsinθ = mλ, для m = 0,1, −1,2, −2,… (конструктивно), dsinθ = mλ, для m = 0,1, −1,2, −2,… (конструктивно),

где d – расстояние между прорезями, а θθ – угол между линией от прорезей до максимума и линией, перпендикулярной к преграде, в которой расположены прорези. Чтобы рассчитать положение деструктивной интерференции для двойной щели, разница в длине пути должна быть полуцелым числом, кратным длине волны:

dsinθ = (m + ½) λ, для m = 0,1, −1,2, −2,… (деструктивно).dsinθ = (m + ½) λ, для m = 0,1, −1,2, −2,… (деструктивно).

Для дифракционной картины с одной щелью ширина щели D , расстояние первого ( м = 1) минимум деструктивной интерференции y , расстояние от щели до экрана L , а длина волны λλ равна

Также для дифракции на одной щели,

, где θθ – угол между линией от прорези до минимума и линией, перпендикулярной экрану, а м. – это порядок минимума.

Рабочий пример

Две щели интерференции

Предположим, вы пропускаете свет гелий-неонового лазера через две щели, разделенные расстоянием 0,0100 мм, и обнаруживаете, что третья яркая линия на экране формируется под углом 10,95º относительно падающего луча. Какая длина волны света?

Стратегия

Третья яркая линия обусловлена ​​конструктивной интерференцией третьего порядка, что означает, что м = 3. Вам дано d = 0,0100 мм и θθ = 10.95º. Таким образом, длину волны можно найти с помощью уравнения dsinθ = mλdsinθ = mλ для конструктивной интерференции.

Решение

Уравнение dsinθ = mλdsinθ = mλ. Решение для длины волны λλ дает

λ = dsinθm. λ = dsinθm.

17,2

Подстановка известных значений дает

λ = (0,0100 мм) (sin 10,95 °) 3 = 6,33 × 10-4 мм = 633 нм. λ = (0,0100 мм) (sin 10,95 °) 3 = 6,33 × 10-4 мм = 633 нм.

17,3

Обсуждение

В трехзначном формате 633 нм – это длина волны света, излучаемого обычным гелий-неоновым лазером.Не случайно этот красный цвет похож на тот, который излучают неоновые огни. Однако более важным является тот факт, что для измерения длины волны можно использовать интерференционные картины. Янг сделал это для видимых длин волн. Его аналитическая техника до сих пор широко используется для измерения электромагнитных спектров. Для заданного порядка угол конструктивной интерференции увеличивается с увеличением λλ, поэтому можно получить спектры (измерения интенсивности в зависимости от длины волны).

Рабочий пример

Дифракция на одной щели

Видимый свет с длиной волны 550 нм падает на одну щель и дает второй минимум дифракции под углом 45 °.0 ° относительно направления падения света. Какая ширина щели?

Стратегия

Исходя из данной информации и предполагая, что экран находится далеко от щели, вы можете использовать уравнение Dsinθ = mλDsinθ = mλ, чтобы найти D .

Решение

Приведены величины λλ = 550 нм, м, = 2 и θ2θ2 = 45,0 °. Решение уравнения Dsinθ = mλDsinθ = mλ для D и замена известных значений дает

D = mλsinθ = 2 (550 нм) sin45.0 ° = 1,56 × 10−6 м. D = mλsinθ = 2 (550 нм) sin45,0 ° = 1,56 × 10−6 м.

17,4

Обсуждение

Вы видите, что щель узкая (она всего в несколько раз больше длины волны света). Это согласуется с тем фактом, что свет должен взаимодействовать с объектом, сравнимым по размеру с его длиной волны, чтобы проявлять значительные волновые эффекты, такие как эта дифракционная картина с одной щелью.

Практические задачи

1.

Монохроматический свет от лазера проходит через две щели, разделенные на 0.{\ circ} относительно падающего луча. Какая длина волны света?

  1. 51,5 \, \ text {nm}

  2. 77,3 \, \ text {nm}

  3. 515 \, \ text {nm}

  4. 773 \, \ text {nm}

2.

Какова ширина единственной щели, через которую проходит оранжевый свет с длиной волны 610 нм, образуя первый минимум дифракции под углом 30?0 °?

  1. 0,863 мкм
  2. 0,704 мкм
  3. 0,610 мкм
  4. 1,22 мкм

Проверьте свое понимание

Поддержка учителей

Поддержка учителей

Используйте эти задачи для оценки достижений учащихся учебных целей раздела. Если учащиеся борются с какой-то конкретной целью, эти проблемы помогут определить, какие из них, и направить их к соответствующим темам.

3.

Какой аспект луча монохроматического света изменяется, когда он переходит из вакуума в воду, и как он изменяется?

  1. Длина волны сначала уменьшается, а затем увеличивается.
  2. Длина волны сначала увеличивается, а затем уменьшается.
  3. Длина волны увеличивается.
  4. Длина волны уменьшается.
4.

Выйдите на улицу на солнечный свет и понаблюдайте за своей тенью. У него нечеткие края, даже если у вас их нет. Это дифракционный эффект? Объяснять.

  1. Это дифракционный эффект. Все ваше тело действует как источник нового волнового фронта.
  2. Это дифракционный эффект.Каждая точка на краю вашей тени действует как начало нового волнового фронта.
  3. Это эффект преломления. Все ваше тело действует как источник нового волнового фронта.
  4. Это эффект преломления. Каждая точка на краю вашей тени действует как начало нового волнового фронта.
5.

Какой аспект монохроматического зеленого света изменяется, когда он переходит из вакуума в алмаз, и как он изменяется?

  1. Длина волны сначала уменьшается, а затем увеличивается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *