Самоиндукция

Как было установлено опытным путём, вокруг любого проводника с током создаётся магнитное поле. Мы знаем, магнитный поток Ф, проходящий через контур прямо пропорционален индукции В магнитного поля и площади S, охватываемой проводником Индукция В магнитного поля, созданного проводником с током,  в каждой точке пространства вокруг этого проводника пропорциональна силе тока I в проводнике.  Следовательно, магнитный поток Ф через данный проводящий контур (S = const) прямо пропорционален силе тока в контуре:

Ф =LI

Коэффициент пропорциональности L между силой тока I и магнитным потоком через контур называется индуктивностью контура или коэффициентом самоиндукции. Он зависит от площади, охватываемой контуром, от его формы, свойств среды, в которой находится контур.

В СИ единицей индуктивности является Генри (Гн).

L = Ф / I,

1 Гн = 1Вб / 1А.

Контур, в котором электрический ток с силой 1 Ампер создаёт магнитный поток 1 Вебер, обладает индуктивностью 1 Генри.

Постоянный ток I, протекающий через контур индуктивностью L, создаёт вокруг контура магнитный поток Ф, равный

Ф = LI

Что произойдёт с данным контуром при выключении тока?

Ток прекратится, магнитное поле исчезнет. Вспомним, исчезновение магнитного потока — это его изменение от начального значения Ф = LI до нуля. Согласно закону электромагнитной индукции, изменения магнитного потока через контур должно вызывать появление ЭДС индукции равной:

Εis = -∆Ф/∆t = -L (∆I/∆t)

Явление возникновения ЭДС индукции, вызванной изменением силы тока в самом контуре называется самоиндукцией.

С изменением тока в контуре пропорционально меняется и магнитный поток через поверхность, которая ограничена этим контуром. По закону электромагнитной индукции, изменение магнитного потока приводит к возбуждению в этом контуре индуктивной ЭДС.

Единицей индуктивности 1 Генри обладает такой контур, в котором при изменении силы тока на 1 Ампер за 1 секунду возникает ЭДС самоиндукции в 1 Вольт.

По правилу Ленца, ЭДС самоиндукции при уменьшении силы тока в контуре действует в направлении поддержания силы тока неизменной, при увеличении силы тока в контуре ЭДС самоиндукции препятствует увеличению тока.

Для обнаружения явления самоиндукции можно использовать электрическую цепь, представленную на схеме:

В данной цепи параллельно включены резистор и катушка с железным сердечником, последовательно с резистором и катушкой включены электрические лампы. Электрическое сопротивление резистора равно электрическому сопротивлению катушки на постоянном токе, поэтому при параллельном подключении их к источнику тока лампы должны гореть одинаково ярко.

Проведём несколько опытов. При замыкании цепи лампа в цепи катушки загорается заметно позднее, чем лампа в цепи резистора. Это можно объяснить тем, что катушка с железным сердечником обладает большой индуктивностью, ЭДС самоиндукции препятствует возрастанию тока при включении.

Обе лампы вспыхивают при отключении источника тока. Ток в цепи катушки и резистора создаёт ЭДС самоиндукции, возникающую при уменьшении силы тока в катушке. Это показывает, что магнитное поле не только способно действовать на движущие заряды, но и обладает определённым запасом энергии. Именно за счёт энергии магнитного поля возникает ток в цепи при отключении её от источника тока.

При изменении силы тока в проводнике в последнем возникает вихревое электрическое поле. Это поле тормозит электроны при возрастании силы тока и ускоряет их при убывании электрического тока в этом проводнике.

Явление самоиндукции играет очень важную роль в элекротехнике и радиотехнике. Индуктивность цепи оказывает существенное влияние на прохождение по цепи переменного электрического тока.

Остались вопросы? Не знаете, что такое самоиндукция?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

12.1. Явление самоиндукции.

Тема 12. САМОИНДУКЦИЯ И ВЗАИМНАЯ ИНДУКЦИЯ. ТОК СМЕЩЕНИЯ.

12.2. Влияние самоиндукции на ток при замыкании и размыкании цепи, содержащей индуктивность.

12.3. Взаимная индукция.

12.4. Индуктивность трансформатора.

12.5. Энергия магнитного поля.

12.1. Явление самоиндукции.

До сих пор мы рассматривали изменяющиеся магнитные поля не обращая внимание на то, что является их источником. На практике, чаще всего магнитные поля создаются с помощью различного рода соленоидов, т.е. многовитковых контуров с током.

Здесь возможны два случая: при изменение тока в контуре изменяется магнитный поток, пронизывающий: а) этот же контур, б) соседний контур.

ЭДС индукции, возникающая в самом же контуре называется ЭДС самоиндукции, а само явление – самоиндукция.

Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении

взаимной индукции. Ясно, что природа явления одна и та же, а разные названия – чтобы подчеркнуть место возникновения ЭДС индукции.

Явление самоиндукции открыл американский ученый Дж. Генри в 1831 г.

Джозеф. Генри (1797 – 1878 г.) президент Национальной АН США. Работы посвящены электромагнетизму. Кроме принципа магнитной индукции Генри изобрел электромагнитное реле, построил электродвигатель, телеграф на территории колледжа в Пристоне.

Ток I, текущий в любом контуре создает магнитный поток Ψ, пронизывающего этот же контур. При изменении I, будет изменятся Ψ , следовательно в контуре будет наводится ЭДС индукции.

Это явление и называется самоиндукцией.

Т.к. магнитная индукция В пропорциональна току I (В = µµ0nI), следовательно Ψ = LI, где L – коэффициент пропорциональности, названный индуктивностью контура.

L = const, если внутри контура нет ферромагнетиков, т.к. µ = f(I) = f(H) Индуктивность контура L зависит от геометрии контура: числа витков, площади

витка контура.

За единицу индуктивности в СИ принимается индуктивность такого контура, у которого при токе I = 1А возникает полный поток Ψ = 1Вб. Эта единица называется Генри (Гн).

Размерность индуктивности

[L]=

Ψ

=

Вб

=

В с

= Ом с =1Гн

[I ]

А

А

 

 

 

 

Вычислим индуктивность соленоида L. Если длина соленоида l гораздо больше его диаметра l >> d, то к такому соленоиду можно применить формулы для бесконечно длинного соленоида. Тогда

studfiles.net

САМОИНДУКЦИЯ - это... Что такое САМОИНДУКЦИЯ?

  • самоиндукция — самоиндукция …   Орфографический словарь-справочник

  • Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1]при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение… …   Википедия

  • САМОИНДУКЦИЯ — возникновение эдс индукции в проводящем контуре при изменении в нём силы тока; частный случаи электромагнитной индукции. При изменении тока в контуре меняется поток магн. индукции через поверхность, ограниченную этим контуром, в результате чего в …   Физическая энциклопедия

  • САМОИНДУКЦИЯ — возбуждение электродвижущей силы индукции (эдс) в электрической цепи при изменении электрического тока в этой цепи; частный случай электромагнитной индукции. Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока;… …   Большой Энциклопедический словарь

  • САМОИНДУКЦИЯ — САМОИНДУКЦИЯ, самоиндукции, жен. (физ.). 1. только ед. Явление, состоящее в том, что когда в проводнике изменяется ток, то в нем появляется электродвижущая сила, препятствующая этому изменению. Катушка самоиндукции. 2. Прибор, обладающий… …   Толковый словарь Ушакова

  • САМОИНДУКЦИЯ — наведение электродвижущей силы в проводах, а также в обмотках электр. машин, трансформаторов, аппаратов и приборов при изменении величины или направления протекающего по ним электр. тока. Протекающий по проводам и обмоткам ток создает вокруг них… …   Технический железнодорожный словарь

  • Самоиндукция — электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическим током в этом контуре... Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв.… …   Официальная терминология

  • самоиндукция — сущ., кол во синонимов: 1 • возбуждение электродвижущей силы (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • самоиндукция — Электромагнитная индукция, вызванная изменением сцепляющегося с контуром магнитного потока, обусловленного электрическим током в этом контуре. [ГОСТ Р 52002 2003] EN self induction electromagnetic induction in a tube of current due to variations… …   Справочник технического переводчика

  • САМОИНДУКЦИЯ — частный случай электромагнитной индукции (см. (2)), состоящий в возникновении наведённой (индуцированной) ЭДС в цепи и обусловленный изменениями во времени магнитного поля, создаваемого изменяющимся по величине током, протекающим в этой же цепи.… …   Большая политехническая энциклопедия

  • dic.academic.ru

    Когда и где возникает явление самоиндукции. Явление самоиндукции

    Изменяющийся по величине ток всегда создаёт изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции, она зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции.

    Величина ЭДС самоиндукции зависит также от числа витков катушки и её размеров. Чем больше диаметр катушки и число её витков, тем больше ЭДС самоиндукции. Эта зависимость имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяет Закон Ленца :

    ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего её тока.

    Иначе говоря, убывание тока в катушке влечёт за собой появление ЭДС самоиндукции, направленной по направлению тока, т. е. препятствующей его убыванию. И, наоборот, - при возрастании тока в катушке возникает ЭДС самоиндукции, направленная против тока, т. е. препятствующая его возрастанию. Если ток в катушке не изменяется, то никакой ЭДС самоиндукции не возникает. Явление самоиндукции особенно резко проявляется в цепи, содержащей в себе катушку со стальным сердечником, так как сталь значительно увеличивает магнитный поток катушки, а следовательно, и величину ЭДС самоиндукции.

    Продемонстрировать явление самоиндукции можно, проведя следующий эксперимент. Соберём электрическую цепь, состоящую из аккумулятора, разъединителя и двух параллельных цепей: в первой - лампочка и резистор, а во второй - лампочка и катушка, причём сопротивление обеих лампочек одинаковое, и сопротивление резистора и катушки также одинаково.

    1. При включении разъединителя лампа Л1 загорится с задержкой, так как ЭДС самоиндукции катушки препятствует быстрому нарастанию тока в цепи лампы Л1 (рис. 1а и 1б).

    2. При отключении разъединителя обе лампы кратковременно вспыхнут, так как ЭДС самоиндукции катушки выше ЭДС батареи. Когда ЭДС самоиндукции иссякает, то обе лампы одновременно гаснут (рис. 2а и 2б).

    Явление самоиндукции имеет как положительные, так и отрицательные свойства, причём и те и другие проявляются при работе аппаратов и электрических цепей подвижного состава метрополитена:

    • Индуктивный шунт , подключённый параллельно обмоткам возбуждения тяговых электродвигателей, сглаживает колебания высокого напряжения на контактном рельсе (либо при кратковременном отрыве токоприёмников). Индуктивность этого шунта сравнима с индуктивностью обмоток возбуждения, а его ЭДС направлена всегда против ЭДС ОВ ТЭД. Таким образом, при снижении или снятии высокого напряжения с контактного рельса ЭДС индуктивного шунта препятствует снижению тока, а при повышении напряжения – препятствует нарастанию тока, что препятствует возникновению аварийного режима в силовой цепи и образованию кругового огня по коллектору электродвигателей.
    • Если разомкнуть цепь, содержащую катушку с большой индуктивностью, то при размыкании контактов будет образовываться электрическая дуга, способная привести к разрушению коммутационного аппарата, поэтому в подобных случаях необходимо применять устройство дугогашения или (для низковольтных цепей) подключать параллельно контактам конденсатор.

    Магнитное поле контура, в котором сила тока изменяется, индуцирует ток не только в других контурах, но и в себе самом. Это явление получило название самоиндукции.

    Опытным путём установлено, что магнитный поток вектора магнитной индукции поля, создаваемого текущим в контуре током, пропорционален силе этого тока:

    где L– индуктивность контура. Постоянная характеристика контура, которая зависит от его формы и размеров, а так же от магнитной проницаемости среды, в которой находится контур. [L] = Гн (Генри,

    1Гн = Вб/А).

    Если за время dtток в контуре изменится наdI, то магнитный поток, связанный с этим током, изменится наdФ =LdIв результате чего в этом контуре появится ЭДС самоиндукции:

    Знак минус показывает, что ЭДС самоиндукции (а, следовательно, и ток самоиндукции) всегда препятствует изменению силы тока, который вызвал самоиндукцию.

    Наглядным примером явления самоиндукции служат экстратоки замыкания и размыкания, возникающие при включении и выключении электрических цепей, обладающей значительной индуктивностью.

    Энергия магнитного поля

    Магнитное поле обладает потенциальной энергией, которая в момент его образования (или изменения) пополняется за счёт энергии тока в цепи, совершающего при этом работу против ЭДС самоиндукции, возникающей вследствие изменения поля.

    Работа dAза бесконечно малый промежуток времениdt, в течении которого ЭДС самоиндукциии токIможно считать постоянными, равняется:


    . (5)

    Знак минус указывает, что элементарная работа совершается током против ЭДС самоиндукции. Чтобы определить работу при изменении тока от 0 до I, проинтегрируем правую часть, получим:


    . (6)

    Эта работа численно равна приросту потенциальной энергии ΔW п магнитного поля, связанного с этой цепью, т.е.A= -ΔW п.

    Выразим энергию магнитного поля через его характеристики на примере соленоида. Будем считать, что магнитное поле соленоида однородно и в основном расположено внутри его. Подставим в (5) значение индуктивности соленоида, выраженное через его параметры и значение силы тока I, выраженное из формулы индукции магнитного пол

    levevg.ru

    Самоиндукция — Википедия. Что такое Самоиндукция

    Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре [1] при изменении протекающего через контур тока.

    При изменении тока в контуре пропорционально меняется[2] и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.

    Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).

    Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока[4].

    При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.

    Величина ЭДС самоиндукции пропорциональна скорости изменения силы тока(переменного) i{\displaystyle i}:

    E=−Ldidt{\displaystyle {\mathcal {E}}=-L{\frac {di}{dt}}}.

    Коэффициент пропорциональности L{\displaystyle L} называется коэффициентом самоиндукции или индуктивностью контура (катушки).

    Самоиндукция и синусоидальный ток

    В случае синусоидальной зависимости тока, текущего через катушку, от времени, ЭДС самоиндукции в катушке отстает от тока по фазе на π/2{\displaystyle \pi /2} (то есть на 90°), а амплитуда этой ЭДС пропорциональна амплитуде тока, частоте и индуктивности (E0=LωI0{\displaystyle {\mathcal {E}}_{0}=L\omega I_{0}}). Ведь скорость изменения функции — это её первая производная, а dsin⁡ωtdt=ωcos⁡ωt=ωsin⁡(ωt+π/2){\displaystyle {\frac {d\sin \omega t}{dt}}=\omega \cos \omega t=\omega \sin(\omega t+\pi /2)}.

    Для расчета более или менее сложных схем, содержащих индуктивные элементы, то есть витки, катушки и т.п. устройства, в которых наблюдается самоиндукция, (особенно, полностью линейных, то есть не содержащих нелинейных элементов[5]) в случае синусоидальных токов и напряжений применяют метод комплексных импедансов или, в более простых случаях, менее мощный, но более наглядный его вариант — метод векторных диаграмм.

    Заметим, что всё описанное применимо не только непосредственно к синусоидальным токам и напряжениям, но и практически к произвольным, поскольку последние могут быть практически всегда разложены в ряд или интеграл Фурье и таким образом сведены к синусоидальным.

    В более или менее непосредственной связи с этим можно упомянуть о применении явления самоиндукции (и, соответственно, катушек индуктивности) в разнообразных колебательных контурах, фильтрах, линиях задержки и других разнообразных схемах электроники и электротехники.

    Самоиндукция и скачок тока

    За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.

    Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка которой как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика её работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).

    Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).

    Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.

    См. также

    Примечания

    1. ↑ Контур может быть и многовитковым - то есть, в частности, катушкой. В этом случае, так же как и в случае одиночного контура, строго говоря, контур должен быть замкнутым (например, через вольтметр, измеряющий ЭДС), но на практике при (очень) большом количестве витков различие ЭДС в полностью замкнутом контуре и в контуре с разрывом (геометрически даже большим по сравнению с размером катушки) может быть пренебрежимым.
    2. ↑ Поскольку магнитный поток через контур пропорционален току в контуре. Для тонкого жесткого контура (для какового случая это утверждение и является точным) точная пропорциональность очевидна исходя из закона Био-Савара, так как исходя из него вектор магнитной индукции просто пропорционален току, а поток этого вектора (что и называется магнитным потоком) через фиксированную (она не меняется при жестком контуре) поверхность тогда тоже пропорционален току. Формально это записывается в виде равенства: магнитный поток = коэффициент самоиндукции• ток в контуре.
    3. ↑ В случае сложной формы контура, например, если контур многовитковый (катушка), поверхность, ограниченная контуром (или, как говорят, «натянутая на контур») оказывается достаточно сложной, что ничуть не меняет сути описываемого явления. Для упрощения понимания случая многовитковых контуров (катушек) можно (приближенно) считать поверхность, натянутую на такой контур, состоящей из множества (стопки) поверхностей, каждая из которых натянута на свой отдельный единичный виток.
    4. ↑ Калашников С. Г., Электричество, М., ГИТТЛ, 1956, гл. IX «Электромагнитная индукция», п. 107 «Исчезновение и установление тока», с. 221 - 224;
    5. ↑ Сами индуктивные элементы являются линейными, то есть подчиняются линейному дифференциальному уравнению, приведенному в статье выше. Впрочем, это уравнение в реальности выполняется лишь приближенно, так что индуктивные элементы являются линейными также лишь приближенно (хотя иногда и с крайне хорошей точностью). Также в реальности встречаются отклонения от идеального уравнения, носящие линейный характер (например, связанные с упругими деформациями катушки в линейном приближении).

    Ссылки

    wiki.sc

    Явление самоиндукции

    ЭДС самоиндукции наблюдается в сети при любом изменении величины тока. Самоиндукция также возникает при подключении цепи к напряжению и при его отключении. ЭДС самоиндукции всегда направлено в противоположную сторону относительно изменения напряжения. Другими словами, при возрастании тока, ток самоиндукции направлен против увеличения, в результате чего общий ток повышается не мгновенно, а постепенно или даже принимает обратные значения (зависит от индуктивности цепи).

    Когда происходит размыкание цепи, ток самоиндукции направлен в том же направлении, что и протекающий в системе ток. Явление самоиндукции можно сравнить с инерцией, однако с учётом того, что ЭДС самоиндукции может превышать величины ЭДС источника тока многократно. По этой причине при размыкании цепи часто возникает искра между элементами реле или рубильника. При особо большой индуктивности может установиться дуга, в результате чего контакты выключателя обгорают или повреждаются.

    Величина тока самоиндукции зависит от индуктивности цепи, которая в свою очередь определяется наличием таких элементов как конденсаторы или катушки, особенно последние. Поскольку катушка запасает энергию в виде магнитного поля, в момент изменения тока возникает высвобождение этой энергии в виде тока самоиндукции.

    Токи во время изменения называют переходными, а когда ток цепи устанавливается на новом значении, он называется установившимся. Для того чтобы исключить негативное воздействие токов самоиндукции, цепи агрегатов должны изготавливаться с запасом относительно номинальной нагрузки, поскольку в переходные моменты при недостаточной надёжности могут перегореть провода, или, например, не выдержать элементы генератора (двигателя). В высоковольтных линиях предохраняются от возникающей искры дугогасителями. В то же время явление самоиндукции может не только вызывать нежелательные явления, но с успехом используется в электротехнике. Так, при подаче напряжения 12 на свечи зажигания, ЭДС самоиндукции здесь достигает 7-25 кВ, благодаря чему возникает зажигающая искра. Тот же принцип применяется в люминесцентных лампах и много где ещё.

    pue8.ru

    Самоиндукция — Викизнание... Это Вам НЕ Википедия!

    Самоиндукция

    - частный случай явления индукции токов (см. Индукция), а именно индукция тока в проводнике, вызываемая изменением силы тока, протекающего по этому проводнику. Это явление было замечено Фарадеем в 1834 г., три года спустя после его знаменитого открытия индукции токов. Фарадей нашел, что всякое изменение силы тока в проводнике сопровождается возникновением особой электродвижущий силы, которая стремится возбудить в этом проводнике ток, противодействующий происходящему изменению главного тока. Так, при увеличении силы тока в проводнике появляется в нем электродвижущая сила, вследствие которой происходит замедление в возрастании силы тока; при уменьшении силы тока появляется электродвижущая сила, от которой ослабление тока становится также медленнее. Такая электродвижущая сила, возникающая в проводнике при изменении силы тока в нем, называется электродвижущей силой С., а ток, возбуждаемый ею, носит название экстратока. - С. наблюдается особенно хорошо, когда в цепи тока находится катушка, и еще лучше, когда внутри этой катушки помещен железный сердечник. В последнем случае при замыкании цепи ток появляется сначала слабый, а затем только в течение некоторого промежутка времени он, непрерывно возрастая, достигает своей наибольшей силы. При размыкании цепи С. усиливает искру, являющуюся в месте разрыва цепи, и может вызвать весьма сильное физиологическое действие на организм человека или животного, когда тело человека или животного введено в цепь тока. Закон, которому подчинено явление С., тот же, какой управляет вообще явлениями индукции токов. Самоиндукция происходит вследствие того, что при изменении силы тока изменяется магнитный поток, пронизывающий контур этого тока и возбуждающийся самим этим током. Электродвижущая сила С., являющаяся в какой-либо момент времени, равна скорости изменения силы этого магнитного потока, взятой с обратным знаком и соответствующей рассматриваемому моменту времени, или иначе - она равна взятому с обратным знаком и рассчитанному на единицу времени изменению числа линий магнитной индукции, пронизывающих контур данного тока и возбуждающихся этим же током (см. Магнитизм). Обозначая чрез i силу тока, мы можем силу магнитного потока, пронизывающего контур этого тока и возбуждаемого последним, выразить чрез Li. Величина L, зависящая от формы и размеров контура тока, от свойства окружающей среды и в некоторых случаях (когда проводник приготовлен из сильно магнитного металла) от магнитных свойств проводника, носит название коэффициента С. цепи. Согласно вышеприведенному закону, электродвижущая сила С. ε выражается через

    ε = d(Li)/dt... (1)

    и в случае, когда находящиеся в цепи проводники неизменны, т. е. сохраняют свои размеры и форму, а также магнитные свойства этих проводников остаются одинаковыми при различных силах тока и окружающая среда не подвергается никакому изменению, электродвижущая сила С. вычисляется по формуле

    ε = -L(di/dt)... (2)

    т. е. при данных условиях коэффициент С. имеет постоянную величину. Принимая во внимание закон Ома и формулу (2), мы получаем для силы тока i, являющегося в какой-либо цепи, которой сопротивление R и коэффициент С. L, от электродвижущей силы Е, выражение

    i = [(Е - L)(di /dt)]/R... (3)

    Отсюда при условии, что Е постоянна, т. е. что ток получается от источника, обладающего постоянной электродвижущей силой (элемент, гальваническая батарея или аккумуляторы), при помощи интегрального исчисления находим

    i = (Е/R) [1 - e-(R/L)t]... (4).

    Здесь е обозначает основание Неперовых логарифмов, a t - время, протекшее от момента замыкания цепи до момента, для которого мы определяем силу i. Из формулы (4) видно, что ток достигает своей наибольшей силы Е/R только через бесконечно большое время, но на самом деле величина e-(R/L)t очень быстро становится ничтожно малой и притом тем быстрее, чем больше R и меньше L. Однако для большой величины L, как это будет в том случае, когда в цепи находится электромагнит, продолжительность установления тока может быть немалая. Она может измеряться даже минутами. Когда в цепи находится источник тока, которого электродвижущая сила изменяется гармонически n раз в единицу времени (в секунду), т. е. выражается через Е = Е 0Sin2 π nt, то для получающегося при этом переменного тока теория дает (см. Переменный ток) формулу

    i = Е 0(Sin2 π nt - θ)/(√[R2 +4 π 2n2L2])... (5)

    в которой tgθ = 2 π nL/R. Из формулы (5) видно, что в данном случае для опроделения силы тока необходимо знать, кроме величины электродвижущей силы и сопротивления цепи, еще и коэффициент С. цепи. При таком переменном токе кажущееся сопротивление, т. е. величина √(R2 +4 π 2n2L2) при большой величине L может быть значительно больше R, т. е. того сопротивления, какое оказывает цепь току постоянному. Определение величины L производится в большей части случаев непосредственно путем опыта, так как теория дает возможность только для немногих проводников найти формулу для L. Так, напр., для очень длинной прямой катушки, состоящей из n оборотов, расположенных в одном слое, теоретически выводится формула

    L = 4 π 2(n2/l)S.

    В этой формуле S обозначает поперечное сечение катушки. Для длинной прямой катушки, состоящей из n оборотов, расположенных в нескольких слоях, может быть применена формула

    L =n2r2/(0,01844r + 0,035l + 0,031d)

    в которой r обозначает средний радиус оборотов, l - длину катушки, d - толщину обмотки ее. Для цилиндрического проводника, приготовленного из немагнитного металла и имеющего длину l, а диаметр d, коэффициент С. вычисляется по формуле

    L = 2l[log(4l/d) - 0,75]

    когда ток распространяется равномерно по всей массе проводника, и по формуле

    L = 2l[log(4l/d) - 1]

    - когда ток ограничивается только поверхностным слоем проводника. Последняя формула особенно важна в теории вибратора Гертца (см. Гертца явления). Соответственно абсолютной электромагнитной (С. G. S.) системе единиц величина L выражается в сантиметрах. Практическая единица для коэффициентов С., называемая генри или также квадрантом, равняется 10 9 см.

    Опытное сравнение коэффициентов С. двух проводников может быть произведено по способу, аналогичному способу сравнения сопротивлений проводников при помощи мостика Витстона. Составляется цепь по схеме мостика Витстона, при чем в две соседние ветви четырехугольника этой схемы помещаются сравниваемые проводники, в две другие ветви ящики сопротивлений [Образцы сопротивлений обыкновенно принимаются неиндуктивными, т. е полагают, что коэффициенты самоиндукции их равны 0. Вообще у проволоки, сложенной вдвое, можно считать коэффициент С. равным нулю, хотя это не вполне строго.], в диагональную ветвь помещается вторичная обмотка катушки Румкорфа, а в другую диагональную ветвь, т. е. в самый мостик, вводится телефон. Изменением сопротивлений в двух ветвях четырехугольника достигают наконец того, что телефон перестает издавать звуки. В этом случае должно быть L1:L2 =R3:R4. Здесь L1 и L2 обозначают коэффициенты С. проводников, находящихся в ветвях 1 и 2, R3 и R4 - сопротивления ветвей 3 и 4. Об опытном определении абсолютной величины коэффициента С. см. в подробных курсах физики, напр. в соч. И. Боргмана "Основания учения об электрических и магнитных явлениях" (т. II).

    И. Боргман.

    www.wikiznanie.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *