Добрый вечер! Пожалуйста помогите ответить на вопрос с полноценным объяснением. На первом участке пути тело двигалось со скоростью v1, а на втором со … скоростью v2. Возможна ли ситуация, в которой путевая скорость движения тела равна среднему арифметическому скоростей v1 и v2? И что такое в целом представляет из себя путевая скорость ( типо просто S = v/t ? ) То есть по сути, если изменить трактовку, то путевая скорость это по путю S, а по перемещению средняя скорость, это по х?
Контейнер на 50 г с деревянным бруском 20 г плавает в воде. Затем деталь вынимается, приклеивается к дну сосуда и опускается обратно в воду. Каков объ … ем погруженной части сосуда вначале?плотность древесины 800, воды 1000
Распишите как вывести формулу для буквы “А”
№8. Два тела массами m1 = 1 кг и m2 = 3 кг соединены пружиной жесткости k = 50 Н/м (см.
рисунок). На тело m2 начинает действовать постоянная сила F =
… 10 Н в направлении тела m1.
№6. В калориметр, содержащий 30 кг воды при температуре 20 ˚С, положили 20 кг льда с температурой -10 ˚С. Какая температура установится в калориметре? … cв = 4200 Дж/(кг ∙˚С), cл = 2100 Дж/(кг ∙˚С), λ = 330 кДж/кг.
Два груза, связанные нерастяжимой и невесомой нитью, движутся по гладкой горизонтальной поверхности под действием горизонтальной силы , приложенной к … грузу массой М1 = 1 кг (см. рисунок). Минимальная сила F, при которой нить обрывается, равна 12 Н. Известно, что нить может выдержать нагрузку не более 8 Н. Чему равна масса второго груза?
Задача по физике 10 класс, даю 50 баллов
срочно даю 40 Балов можно только ответ!!!
ЭДС самоиндукции и индуктивность цепи
Дата публикации: .
Категория: Статьи.
При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье “Явление электромагнитной индукции”, эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.
Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.
Рисунок 1.![]() | Рисунок 2. График постоянного тока |
На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси – ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.
На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени – 4 А, в третий – 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.
Рисунок 3.![]() | Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения |
При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.
При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.
Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.
Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.
Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции | Рисунок 6. Индукционные токи при размыкании цепи |
При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).
В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.
Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.
Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.
Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.
youtube.com/embed/vEzEGouqSPU?wmode=transparent” allowfullscreen=””/>
Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:
Ф = L × I ,
где L – коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:
Ом × сек иначе называется генри (Гн).
1 генри = 103; миллигенри (мГн) = 106 микрогенри (мкГн).
Индуктивность, кроме генри, измеряют в сантиметрах:
1 генри = 109 см.
Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.
Если ток в контуре изменился на Δi, то магнитный поток изменится на величину Δ Ф:
Δ Ф = L × Δ i .
Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):
При равномерном изменении тока по времени выражение
будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:На основании последней формулы можно дать определение единицы индуктивности – генри:
Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.
Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как
. В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.
Рисунок 7. Бифилярная обмотка катушки |
Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)
Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.
Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:
или
Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:
Если в этих формулах изменения скорости во времени
уподобить изменению тока во времени , механическую силу – электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.
При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).
В цепях постоянного тока величина тока не меняется
и поэтому eL = 0.Источник: Кузнецов М.И., “Основы электротехники” – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.
Самоиндукция. Энергия магнитного поля.
Определение 1 Самоиндукция – это значимый частный случай электромагнитной индукции, когда магнитный поток, изменяясь и вызывая ЭДС индукции, создается током в самом контуре.В случае, когда ток рассматриваемого контура по каким-либо причинам изменен, то имеет место изменение и магнитного поля этого тока, а значит и собственного магнитного потока, проходящего через контур. В контуре создается ЭДС самоиндукции, создавая препятствие для изменений тока в контуре (по правилу Ленца).
Собственный магнитный поток Φ, который проходит через контур или катушку с током, является пропорциональным силе тока I: Φ=LI.
Определение 2Коэффициент пропорциональности L в формуле Φ=LI есть коэффициент самоиндукции или индуктивность катушки. Единица индуктивности в СИ носит название генри (Гн). Индуктивность контура или катушки равна 1 Гн, когда при силе постоянного тока 1 А собственный поток составляет 1 Вб: 1 Гн=1 Вб1 А.
Расчет индуктивности
Пример 1Для наглядности произведем расчет индуктивности длинного соленоида, который имеет N витков, площадь сечения S и длину l. Соленоид – это цилиндрическая катушка индуктивности, у которой длина много больше диаметра. Магнитное поле соленоида задается формулой:
B=μ0nI,
где I является обозначением тока в соленоиде, n = Ne указывает число витков на единицу длины соленоида.
Магнитный поток внутри катушки соленоида, проходящий через все N витков, составляет:
Φ=B·S·N=μ0n2Sl
Таким образом, индуктивность соленоида будет выражена формулой:
L=μ0n2S·l=μ0n2V,
где V=Sl – объем соленоида, содержащий магнитное поле.
Результат, который мы получили, не берет в расчет краевых эффектов, а значит он является приближенно верным лишь для катушек достаточной длины. Когда соленоид заполнен веществом, имеющим магнитную проницаемость μ, при заданном токе I индукция магнитного поля будет возрастать по модулю в μ раз, а значит и индуктивность катушки с сердечником тоже получит увеличение в μ раз:
Lμ=μ·L=μ0·μ·n2·V.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание Определение 3ЭДС самоиндукции, которая возникает в катушке при постоянном значении индуктивности, в соответствии с законом Фарадея записывается в виде формулы:
δинд=δL=-∆Φ∆t=-L∆I∆t.
ЭДС самоиндукции является прямо пропорциональной индуктивности катушки и скорости изменения силы тока в ней.
Магнитное поле выступает носителем энергии. Так же, как заряженный конденсатор обладает запасом электрической энергии, катушка, по виткам которой проходит ток, обладает запасом магнитной энергии.
Рисунок 1.21.1. Магнитная энергия катушки. В момент размыкания ключа K лампа ярко вспыхнет.
Закон сохранения энергии позволяет говорить, что вся энергия, составляющая запас катушки, будет выделена в виде джоулева тепла. Обозначим как Rполное сопротивление цепи, тогда за время Δt будет выделено количество теплоты ΔQ=I2·R·Δt.
Ток в цепи составляет:
I=δLR=-LR∆I∆t
Выражение для ΔQ можем записать так:
∆Q=-L·I·∆I=-Φ(I)∆I
В данной записи ΔI < 0; значение тока в цепи постепенно снижается от изначального I0 до нуля. Полное количество теплоты, которое выделится в цепи, возможно получить, осуществив действие интегрирования в пределах от I0 до 0.
Q=LI022
Графический вывод формулы
Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ(I) от тока I (рис. 1.21.2). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1.21.2 треугольника:
Рисунок 1.21.2. Вычисление энергии магнитного поля.
В итоге формула энергии Wм магнитного поля катушки с индуктивностью L, создаваемого током I, будет записана в виде формулы:
Wм=ΦI2=LI22=Φ22L
Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля
Wм=μ0·μ·n2·I22V=B22μ0·μV
В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.
Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: Wм=B22μ·μ.
В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.
Формула ЭДС индукции, E
Закон Фарадея – Максвелла для электромагнитной индукции
Основной формулой, которая определяет ЭДС индукции, является закон Фарадея – Максвелла, больше известный как основной закон электромагнитной индукции (или закон Фарадея). Этот закон утверждает, что ЭДС индукции в контуре, находящемся в переменном магнитном поле, равна по величине и противоположна по знаку скорости изменения магнитного потока () через поверхность, которую ограничивает данный контур:
где – скорость изменения магнитного потока. Полная производная в законе (1) охватывает весь спектр причин изменения магнитного потока через поверхность контура. Знак минус в формуле (1) соответствует правилу Ленца. Формула (1) для ЭДС индукции записана для системы СИ.
В случае равномерного изменения магнитного потока формулу ЭДС индукции можно записать как:
Частные случаи формул ЭДС индукции
где – потокосцепление.
При движении прямолинейного проводника в однородном магнитном поле в нем возникает ЭДС индукции, которая равна:
где v – скорость движения проводника; l – длина проводника; B – модуль вектора магнитной индукции поля; .
При вращении с постоянной скоростью в однородном магнитном поле плоского контура вокруг оси, которая лежит в плоскости контура в нем возникает ЭДС индукции, равная:
где S – площадь, которую ограничивает виток; – поток самоиндукции витка; — угловая скорость; () – угол поворота контура. Следует учесть, что формула (5) справедлива, если ось вращения составляет прямой угол с направлением вектора внешнего поля .
Если во вращающейся рамке имеется N витков и самоиндукцией рассматриваемой системы можно пренебречь, то:
В стационарном проводнике, который находится в переменном магнитном поле, ЭДС индукции находят по формуле:
Примеры решения задач по теме «ЭДС индукции»
Глава 23. Закон электромагнитной индукции
Если в магнитном поле находится замкнутый проводящий контур, не содержащий источников тока, то при изменении магнитного поля в контуре возникает электрический ток. Это явление называется электромагнитной индукцией. Появление тока свидетельствует о возникновении в контуре электрического поля, которое может обеспечить замкнутое движение электрических зарядов или, другими словами, о возникновении ЭДС. Электрическое поле, которое возникает при изменении поля магнитного и работа которого при перемещении зарядов по замкнутому контуру не равна нулю, имеет замкнутые силовые линии и называется вихревым.
Для количественного описания электромагнитной индукции вводится понятие магнитного потока (или потока вектора магнитной индукции) через замкнутый контур. Для плоского контура, расположенного в однородном магнитном поле (а только такие ситуации и могут встретиться школьникам на едином государственном экзамене), магнитный поток определяется как
(23.1) |
где — индукция поля, — площадь контура, — угол между вектором индукции и нормалью (перпендикуляром) к плоскости контура (см. рисунок; перпендикуляр к плоскости контура показан пунктиром). Единицей магнитного потока в международной системе единиц измерений СИ является Вебер (Вб), который определяется как магнитный поток через контур площади 1 м2 однородного магнитного поля с индукцией 1 Тл, перпендикулярной плоскости контура.
Величина ЭДС индукции , возникающая в контуре при изменении магнитного потока через этот контур, равна скорости изменения магнитного потока
(23. |
Здесь — изменение магнитного потока через контур за малый интервал времени . Важным свойством закона электромагнитной индукции (23.2) является его универсальность по отношению к причинам изменения магнитного потока: магнитный поток через контур может меняться из-за изменения индукции магнитного поля, изменения площади контура или изменения угла между вектором индукции и нормалью, что происходит при вращении контура в поле. Во всех этих случаях по закону (23.2) в контуре будет возникать ЭДС индукции и индукционный ток.
Знак минус в формуле (23.2) «отвечает» за направление тока, возникающего в результате электромагнитной индукции (правило Ленца). Однако понять на языке закона (23.2), к какому направлению индукционного тока приведет этот знак при том или ином изменении магнитного потока через контур, не так-то просто. Но достаточно легко запомнить результат: индукционный ток будет направлен таким образом, что созданное им магнитное поле будет «стремиться» компенсировать то изменение внешнего магнитного поля, которое этот ток и породило. Например, при увеличении потока внешнего магнитного поля через контур в нем возникнет индукционный ток, магнитное поле которого будет направлено противоположно внешнему магнитному полю так, чтобы уменьшить внешнее поле и сохранить, таким образом, первоначальную величину магнитного поля. При уменьшении потока поля через контур поле индукционного тока будет направлено так же, как и внешнее магнитное поле.
Если в контуре с током ток в силу каких-то причин изменяется, то изменяется и магнитный поток через контур того магнитного поля, которое создано самим этим током. Тогда по закону (23.2) в контуре должна возникать ЭДС индукции. Явление возникновения ЭДС индукции в некоторой электрической цепи в результате изменения тока в самой этой цепи называется самоиндукцией. Для нахождения ЭДС самоиндукции в некоторой электрической цепи необходимо вычислить поток магнитного поля, создаваемого этой цепью через нее саму. Такое вычисление представляет собой сложную проблему из-за неоднородности магнитного поля. Однако одно свойство этого потока является очевидным. Поскольку магнитное поле, создаваемого током в цепи, пропорционально величине тока, то и магнитный поток собственного поля через цепь пропорционален току в этой цепи
(23.3) |
где — сила тока в цепи, — коэффициент пропорциональности, который характеризует «геометрию» цепи, но не зависит от тока в ней и называется индуктивностью этой цепи. Единицей индуктивности в международной системе единиц СИ является Генри (Гн). 1 Гн определяется как индуктивность такого контура, поток индукции собственного магнитного поля через который равен 1 Вб при силе тока в нем 1 А. С учетом определения индуктивности (23.3) из закона электромагнитной индукции (23.2) получаем для ЭДС самоиндукции
(23.4) |
Благодаря явлению самоиндукции ток в любой электрической цепи обладает определенной «инерционностью» и, следовательно, энергией. Действительно, для создания тока в контуре необходимо совершить работу по преодолению ЭДС самоиндукции. Энергия контура с током и равна этой работе. Необходимо запомнить формулу для энергии контура с током
(23.5) |
где — индуктивность контура, — сила тока в нем.
Явление электромагнитной индукции широко применяется в технике. На нем основано создание электрического тока в электрических генераторах и электростанциях. Благодаря закону электромагнитной индукции происходит преобразование механических колебаний в электрические в микрофонах. На основе закона электромагнитной индукции работает, в частности, электрическая цепь, которая называется колебательным контуром (см. следующую главу), и которая является основой любой радиопередающей или радиопринимающей техники.
Рассмотрим теперь задачи.
Из перечисленных в задаче 23.1.1 явлений только одно есть следствие закона электромагнитной индукции — появление тока в кольце при проведении сквозь него постоянного магнита (ответ 3). Все остальное — результат магнитного взаимодействия токов.
Как указывалось во введении к настоящей главе, явление электромагнитной индукции лежит в основе работы генератора переменного тока (задача 23.1.2), т.е. прибора, создающего переменный ток, заданной частоты (ответ 2).
Индукция магнитного поля, создаваемого постоянным магнитом, уменьшается с увеличением расстояния до него. Поэтому при приближении магнита к кольцу (задача 23.1.3) поток индукции магнитного поля магнита через кольцо изменяется, и в кольце возникает индукционный ток. Очевидно, это будет происходить при приближении магнита к кольцу и северным, и южным полюсом. А вот направление индукционного тока в этих случаях будет различным. Это связано с тем, что при приближении магнита к кольцу разными полюсами, поле в плоскости кольца в одном случае будет направлено противоположно полю в другом. Поэтому для компенсации этих изменений внешнего поля магнитное поле индукционного тока должно быть в этих случаях направлено по-разному. Поэтому и направления индукционных токов в кольце будут противоположными (ответ 4).
Для возникновения ЭДС индукции в кольце необходимо, чтобы менялся магнитный поток через кольцо. А поскольку магнитная индукция поля магнита зависит от расстояния до него, то в рассматриваемом в задаче 23.1.4 случае поток через кольцо будет меняться, в кольце возникнет индукционный ток (ответ 1).
При вращении рамки 1 (задача 23.1.5) угол между линиями магнитной индукции (а, значит, и вектором индукции) и плоскостью рамки в любой момент времени равен нулю. Следовательно, магнитный поток через рамку 1 не изменяется (см. формулу (23.1)), и индукционный ток в ней не возникает. В рамке 2 индукционный ток возникнет: в положении показанном на рисунке, магнитный поток через нее равен нулю, когда рамка повернется на четверть оборота — будет равен , где — индукция, — площадь рамки. Еще через четверть оборота поток снова будет равен нулю и т.д. Поэтому поток магнитной индукции через рамку 2 изменяется в процессе ее вращения, следовательно, в ней возникает индукционный ток (ответ 2).
В задаче 23.1.6 индукционный ток возникает только в случае 2 (ответ 2). Действительно, в случае 1 рамка при движении остается на одном и том же расстоянии от проводника, и, следовательно, магнитное поле, созданное этим проводником в плоскости рамки, не изменяется. При удалении рамки от проводника магнитная индукция поля проводника в области рамки изменяется, меняется магнитный поток через рамку, и возникает индукционный ток
В законе электромагнитной индукции утверждается, что индукционный ток в кольце будет течь в такие моменты времени, когда изменяется магнитный поток через это кольцо. Поэтому пока магнит покоится около кольца (задача 23.1.7) индукционный ток в кольце течь не будет. Поэтому правильный ответ в этой задаче — 2.
Согласно закону электромагнитной индукции (23.2) ЭДС индукции в рамке определяется скоростью изменения магнитного потока через нее. А поскольку по условию задачи 23.1.8 индукция магнитного поля в области рамки изменяется равномерно, скорость ее изменения постоянна, величина ЭДС индукции не изменяется в процессе проведения опыта (ответ 3).
В задаче 23.1.9 ЭДС индукции, возникающая в рамке во втором случае, вчетверо больше ЭДС индукции, возникающей в первом (ответ 4). Это связано с четырехкратным увеличением площади рамки и, соответственно, магнитного потока через нее во втором случае.
В задаче 23.1.10 во втором случае в два раза увеличивается скорость изменения магнитного потока (индукция поля меняется на ту же величину, но за вдвое меньшее время). Поэтому ЭДС электромагнитной индукции, возникающая в рамке во втором случае, в два раза больше, чем в первом (ответ 1).
При увеличении тока в замкнутом проводнике в два раза (задача 23.2.1), величина индукции магнитного поля возрастет в каждой точке пространства в два раза, не изменившись по направлению. Поэтому ровно в два раза изменится магнитный поток через любую малую площадку и, соответственно, и весь проводник (ответ 1). А вот отношение магнитного потока через проводник к току в этом проводнике, которое и представляет собой индуктивность проводника , при этом не изменится (задача 23.2.2 — ответ 3).
Используя формулу (23.3) находим в задаче 32.2.3 Гн (ответ 4).
Связь между единицами измерений магнитного потока, магнитной индукции и индуктивности (задача 23.2.4) следует из определения индуктивности (23.3): единица магнитного потока (Вб) равна произведению единицы тока (А) на единицу индуктивности (Гн) — ответ 3.
Согласно формуле (23.5) при двукратном увеличении индуктивности катушки и двукратном уменьшении тока в ней (задача 23.2.5) энергия магнитного поля катушки уменьшится в 2 раза (ответ 2).
Когда рамка вращается в однородном магнитном поле, магнитный поток через рамку меняется из-за изменения угла между перпендикуляром к плоскости рамки и вектором индукции магнитного поля. А поскольку и в первом и втором случае в задаче 23.2.6 этот угол меняется по одному и тому же закону (по условию частота вращения рамок одинакова), то ЭДС индукции меняются по одному и тому же закону, и, следовательно, отношение амплитудных значений ЭДС индукции в рамках равно единице (ответ 2).
Магнитное поле, создаваемое проводником с током в области рамки (задача 23.2.7), направлено «от нас» (см. решение задач главы 22). Величина индукции поля провода в области рамки при ее удалении от провода будет уменьшаться. Поэтому индукционный ток в рамке должен создать магнитное поле, направленное внутри рамки «от нас». Используя теперь правило буравчика для нахождения направления магнитной индукции, заключаем, что индукционный ток в рамке будет направлен по часовой стрелке (ответ 1).
При увеличении тока в проводе будет возрастать созданное им магнитное поле и в рамке возникнет индукционный ток (задача 23.2.8). В результате возникнет взаимодействие индукционного тока в рамке и тока в проводнике. Чтобы найти направление этого взаимодействия (притяжение или отталкивание) можно найти направление индукционного тока, а затем по формуле Ампера силу взаимодействия рамки с проводом. Но можно поступить и по-другому, используя правило Ленца. Все индукционные явления должны иметь такое направление, чтобы компенсировать вызывающую их причину. А поскольку причина — увеличение тока в рамке, сила взаимодействия индукционного тока и провода должна стремиться уменьшить магнитный поток поля провода через рамку. А поскольку магнитная индукция поля провода убывает с увеличением расстояния до него, то эта сила будет отталкивать рамку от провода (ответ 2). Если бы ток в проводе убывал, то рамка притягивалась бы к проводу.
Задача 23.2.9 также связана с направлением индукционных явлений и правилом Ленца. При приближении магнита к проводящему кольцу в нем возникнет индукционный ток, причем направление его будет таким, чтобы компенсировать вызывающую его причину. А поскольку эта причина — приближение магнита, кольцо будет отталкиваться от него (ответ 2). Если магнит отодвигать от кольца, то по тем же причинам возникло бы притяжение кольца к магниту.
Задача 23.2.10 — единственная вычислительная задача в этой главе. Для нахождения ЭДС индукции нужно найти изменение магнитного потока через контур . Это можно сделать так. Пусть в некоторый момент времени перемычка находилась в положении, показанном на рисунке, и пусть прошел малый интервал времени . За этот интервал времени перемычка переместится на величину . Это приведет к увеличению площади контура на величину . Поэтому изменение магнитного потока через контур будет равно , а величина ЭДС индукции (ответ 4).
Магнетизм – Физика – Теория, тесты, формулы и задачи
Оглавление:
Основные теоретические сведения
Сила Ампера
К оглавлению…
Заряженные тела способны создавать кроме электрического еще один вид поля. Если заряды движутся, то в пространстве вокруг них создается особый вид материи, называемый магнитным полем. Следовательно, электрический ток, представляющий собой упорядоченное движение зарядов, тоже создает магнитное поле. Как и электрическое поле, магнитное поле не ограничено в пространстве, распространяется очень быстро, но все же с конечной скоростью. Его можно обнаружить только по действию на движущиеся заряженные тела (и, как следствие, токи).
Для описания магнитного поля необходимо ввести силовую характеристику поля, аналогичную вектору напряженности E электрического поля. Такой характеристикой является вектор B магнитной индукции. В системе единиц СИ за единицу магнитной индукции принят 1 Тесла (Тл). Если в магнитное поле с индукцией B поместить проводник длиной l с током I, то на него будет действовать сила, называемая силой Ампера, которая вычисляется по формуле:
где: В – индукция магнитного поля, I – сила тока в проводнике, l – его длина. Сила Ампера направлена перпендикулярно вектору магнитной индукции и направлению тока, текущего по проводнику.
Для определения направления силы Ампера обычно используют правило «Левой руки»: если расположить левую руку так, чтобы линии индукции входили в ладонь, а вытянутые пальцы были направлены вдоль тока, то отведенный большой палец укажет направление силы Ампера, действующей на проводник (см. рисунок).
Если угол α между направлениями вектора магнитной индукции и тока в проводнике отличен от 90°, то для определения направления силы Ампера надо взять составляющую магнитного поля, которая перпендикулярна направлению тока. Решать задачи этой темы нужно так же как и в динамике или статике, т.е. расписав силы по осям координат или складывая силы по правилам сложения векторов.
Момент сил, действующих на рамку с током
Пусть рамка с током находится в магнитном поле, причём плоскость рамки перпендикулярна полю. Силы Ампера будут сжимать рамку, а их равнодействующая будет равна нулю. Если поменять направление тока, то силы Ампера поменяют своё направление, и рамка будет не сжиматься, а растягиваться. Если линии магнитной индукции лежат в плоскости рамки, то возникает вращательный момент сил Ампера. Вращательный момент сил Ампера равен:
где: S – площадь рамки, α – угол между нормалью к рамке и вектором магнитной индукции (нормаль – вектор, перпендикулярный плоскости рамки), N – количество витков, B – индукция магнитного поля, I – сила тока в рамке.
Сила Лоренца
К оглавлению…
Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B может быть выражена через силы, действующие на отдельные носители заряда. Эти силы называют силами Лоренца. Сила Лоренца, действующая на частицу с зарядом q в магнитном поле B, двигающуюся со скоростью v, вычисляется по следующей формуле:
Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции. Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика (как и сила Ампера). Вектор магнитной индукции нужно мысленно воткнуть в ладонь левой руки, четыре сомкнутых пальца направить по скорости движения заряженной частицы, а отогнутый большой палец покажет направление силы Лоренца. Если частица имеет отрицательный заряд, то направление силы Лоренца, найденное по правилу левой руки, надо будет заменить на противоположное.
Сила Лоренца направлена перпендикулярно векторам скорости и индукции магнитного поля. При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется. Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору индукции магнитного поля, то частица будет двигаться по окружности, радиус которой можно вычислить по следующей формуле:
Сила Лоренца в этом случае играет роль центростремительной силы. Период обращения частицы в однородном магнитном поле равен:
Последнее выражение показывает, что для заряженных частиц заданной массы m период обращения (а значит и частота, и угловая скорость) не зависит от скорости (следовательно, и от кинетической энергии) и радиуса траектории R.
Теория о магнитном поле
К оглавлению…
Магнитное взаимодействие токов
Если по двум параллельным проводам идёт ток в одном направлении, то они притягиваются; если в противоположных направлениях, то отталкиваются. Закономерности этого явления были экспериментально установлены Ампером. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:
где: μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно:
μ0 = 4π·10–7 H/A2 ≈ 1,26·10–6 H/A2.
Сравнивая приведенное только что выражение для силы взаимодействия двух проводников с током и выражение для силы Ампера нетрудно получить выражение для индукции магнитного поля создаваемого каждым из прямолинейных проводников с током на расстоянии R от него:
где: μ – магнитная проницаемость вещества (об этом чуть ниже). Если ток протекает по круговому витку, то в центре витка индукция магнитного поля определяется по формуле:
Силовыми линиями магнитного поля называют линии, по касательным к которым располагаются магнитные стрелки. Магнитной стрелкой называют длинный и тонкий магнит, его полюса точечны. Подвешенная на нити магнитная стрелка всегда поворачивается в одну сторону. При этом один её конец направлен в сторону севера, второй – на юг. Отсюда название полюсов: северный (N) и южный (S). Магниты всегда имеют два полюса: северный (обозначается синим цветом или буквой N) и южный (красным цветом или буквой S). Магниты взаимодействуют так же, как и заряды: одноименные полюса отталкиваются, а разноименные – притягиваются. Невозможно получить магнит с одним полюсом. Даже если магнит разломать, то у каждой части будет по два разных полюса.
Вектор магнитной индукции
Вектор магнитной индукции – векторная физическая величина, являющаяся характеристикой магнитного поля, численно равная силе, действующей на элемент тока в 1 А и длиной 1 м, если направление силовой линии перпендикулярно проводнику. Обозначается В, единица измерения – 1 Тесла. 1 Тл – очень большая величина, поэтому в реальных магнитных полях магнитную индукцию измеряют в мТл.
Вектор магнитной индукции направлен по касательной к силовым линиям, т.е. совпадает с направлением северного полюса магнитной стрелки, помещённой в данное магнитное поле. Направление вектора магнитной индукции не совпадает с направлением силы, действующей на проводник, поэтому силовые линии магнитного поля, строго говоря, силовыми не являются.
Силовая линия магнитного поля постоянных магнитов направлена по отношению к самим магнитам так, как показано на рисунке:
В случае магнитного поля электрического тока для определения направления силовых линий используют правило «Правой руки»: если взять проводник в правую руку так, чтобы большой палец был направлен по току, то четыре пальца, обхватывающие проводник, показывают направление силовых линий вокруг проводника:
В случае прямого тока линии магнитной индукции – окружности, плоскости которых перпендикулярны току. Вектора магнитной индукции направлены по касательной к окружности.
Соленоид – намотанный на цилиндрическую поверхность проводник, по которому течёт электрический ток I. Магнитное поле соленоида подобно полю прямого постоянного магнита. Внутри соленоида длиной l и количеством витков N создается однородное магнитное поле с индукцией (его направление также определяется правилом правой руки):
Линии магнитного поля имеют вид замкнутых линий – это общее свойство всех магнитных линий. Такое поле называют вихревым. В случае постоянных магнитов линии не оканчиваются на поверхности, а проникают внутрь магнита и замыкаются внутри. Это различие электрического и магнитного полей объясняется тем, что, в отличие от электрических, магнитных зарядов не существует.
Магнитные свойства вещества
Все вещества обладают магнитными свойствами. Магнитные свойства вещества характеризуются относительной магнитной проницаемостью μ, для которой верно следующее:
Данная формула выражает соответствие вектора магнитной индукции поля в вакууме и в данной среде. В отличие от электрического, при магнитном взаимодействии в среде можно наблюдать и усиление, и ослабление взаимодействия по сравнению с вакуумом, у которого магнитная проницаемость μ = 1. У диамагнетиков магнитная проницаемость μ немного меньше единицы. Примеры: вода, азот, серебро, медь, золото. Эти вещества несколько ослабляют магнитное поле. Парамагнетики – кислород, платина, магний – несколько усиливают поле, имея μ немного больше единицы. У ферромагнетиков – железо, никель, кобальт – μ >> 1. Например, у железа μ ≈ 25000.
Магнитный поток. Электромагнитная индукция
К оглавлению…
Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 году. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину:
где: B – модуль вектора магнитной индукции, α – угол между вектором магнитной индукции B и нормалью (перпендикуляром) к плоскости контура, S – площадь контура, N – количество витком в контуре. Единица магнитного потока в системе СИ называется Вебером (Вб).
Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции εинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум возможным причинам.
- Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.
- Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре.
При решении задач важно сразу определить за счет чего меняется магнитный поток. Возможно три варианта:
- Меняется магнитное поле.
- Меняется площадь контура.
- Меняется ориентация рамки относительно поля.
При этом при решении задач обычно считают ЭДС по модулю. Обратим внимание также внимание на один частный случай, в котором происходит явление электромагнитной индукции. Итак, максимальное значение ЭДС индукции в контуре состоящем из N витков, площадью S, вращающемся с угловой скоростью ω в магнитном поле с индукцией В:
Движение проводника в магнитном поле
К оглавлению…
При движении проводника длиной l в магнитном поле B со скоростью v на его концах возникает разность потенциалов, вызванная действием силы Лоренца на свободные электроны в проводнике. Эту разность потенциалов (строго говоря, ЭДС) находят по формуле:
где: α – угол, который измеряется между направлением скорости и вектора магнитной индукции. В неподвижных частях контура ЭДС не возникает.
Если стержень длиной L вращается в магнитном поле В вокруг одного из своих концов с угловой скоростью ω, то на его концах возникнет разность потенциалов (ЭДС), которую можно рассчитать по формуле:
Индуктивность. Самоиндукция. Энергия магнитного поля
К оглавлению…
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:
Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки. Единица индуктивности в СИ называется Генри (Гн).
Запомните: индуктивность контура не зависит ни от магнитного потока, ни от силы тока в нем, а определяется только формой и размерами контура, а также свойствами окружающей среды. Поэтому при изменении силы тока в контуре индуктивность остается неизменной. Индуктивность катушки можно рассчитать по формуле:
где: n – концентрация витков на единицу длины катушки:
ЭДС самоиндукции, возникающая в катушке с постоянным значением индуктивности, согласно формуле Фарадея равна:
Итак ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней.
Магнитное поле обладает энергией. Подобно тому, как в заряженном конденсаторе имеется запас электрической энергии, в катушке, по виткам которой протекает ток, имеется запас магнитной энергии. Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, может быть рассчитана по одной из формул (они следуют друг из друга с учётом формулы Φ = LI):
Соотнеся формулу для энергии магнитного поля катушки с её геометрическими размерами можно получить формулу для объемной плотности энергии магнитного поля (или энергии единицы объёма):
Правило Ленца
К оглавлению…
Инерция – явление, происходящее и в механике (при разгоне автомобиля мы отклоняемся назад, противодействуя увеличению скорости, а при торможении отклоняемся вперёд, противодействуя уменьшению скорости), и в молекулярной физике (при нагревании жидкости увеличивается скорость испарения, самые быстрые молекулы покидают жидкость, уменьшая скорость нагревания) и так далее. В электромагнетизме инерция проявляется в противодействии изменению магнитного потока, пронизывающего контур. Если магнитный поток нарастает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать нарастанию магнитного потока, а если магнитный поток убывает, то возникающий в контуре индукционный ток направлен так, чтобы препятствовать убыванию магнитного потока.
Правило Ленца для определения направления индукционного тока: возникающий в контуре индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, которое вызывало этот ток.
Тема №8548 Тесты по физике 7-11 класс с частичными ответами (Часть 6)
Тема №8548
147
Тест 10-4
8. Какой минимальный по абсолютному значению отрицательный электрический заряд может быть передан от одного тела другому?
А. е 1,6 • 10 -19 Кл. Б. 2е 3,2 • 10 -19 Кл. В. e 5,3 • 10 -20 Кл.
Г. Любой сколько угодно малый. Д. 1 Кл.
9. Имеется четыре типа проводников электрического тока:
1) металлы;
2) полупроводники;
8) растворы электролитов;
4) плазма.
Прохождение электрического тока через какие из них не
сопровождается переносом вещества?
А. 1, 2, 3, 4. Б. 1, 2, 3. В. 2, 3, 4. Г. 1, 3, 4. Д. 1, 2, 4. Е. 1, 2. Ж. 3, 4. З. 1, 4. И. 2, 3.
К. Только 1. Л. Только 3.
10. В каком из перечисленных ниже случаев наблюдается явление термической ионизации?
А. Ионизация атомов под действием света. Б. Ионизация атомов в результате столкновений при высокой температуре. В. Испускание электронов о поверхности нагретого катода в телевизионной трубке. Г. При прохождении электрического тока через раствор электролита.
11. Какова сила тока в цепи, если на резисторе с электрическим сопротивлением 20 Ом напряжение равно 10 В?
А. 2 А. Б. 0,5 А. В. 200 А.
12. Источник тока с ЭДС 18 В имеет внутреннее сопротивление 60 Ом. Какое значение будет иметь сила тока при подключении к этому источнику резистора с электрическим сопротивлением 80 Ом?
А. 0,6 А. Б. 0,3 А. В. 0,2 А. Г. 0,9 А. Д. 0,4 А.
13. Определите электрическое сопротивление провода длиной 100 м с площадью поперечного сечения 0,1 мм2. Удельное электрическое сопротивление материала 5 • 10 -7 Ом • м.
А. 500 Ом. Б. 50 Ом. В. 5 Ом. Г. 0,5 Ом. Д. 5 • 10 -4 Ом. Е. 2 • 10 -5 Ом.
14. При пропускании электрического тока через раствор электролита за время t на катоде выделилось т грамм вещества при силе тока в цепи I. Какое значение будет иметь масса вещества, выделившегося на катоде, при увеличении силы тока в 3 раза и времени электролиза в 2 раза?
А. 18m. Б. 12m. В. 3m. Г. 6m. Д. 2m
148
Тест 10-4
15. Какими типами проводимости в основном обладают полупроводниковые материалы:
1) без примесей;
2) с акцепторными примесями?
A. 1 — электронной, 2 — дырочной. В. 1 — дырочной, 2 — электронной.
B. 1 — электронной, 2 — электронной. Г. 1 — дырочной, 2 — дырочной. Д. 1 — электронной и дырочной, 2 — электронной. Е. 1 — электронной и дырочной, 2 — дырочной.
16. Какое значение имеет сила магнитного взаимодействия двух длинных параллельных прямолинейных проводников на расстоянии 1 м друг от друга в вакууме на 1 метр длины при силе тока 1 ампер?
А.1Н. Б. 9 109 Н. В. 2 • 10 -7 Н. Г. Н. Д. Н.
17. Для определения направления вектора силы, действующей на движущийся положительный электрический заряд в магнитном поле, ладонь была поставлена так, что линии индукции магнитного поля входили в нее перпендикулярно, а четыре пальца раскрытой ладони были расположены по направлению вектора скорости заряда. Какая рука используется при этом и каково направление вектора силы?
А. Правая, по направлению отогнутого в плоскости ладони большого пальца.
Б. Правая, по направлению тока. В. Правая, по направлению вектора индукции.
Г. Левая, по направлению отогнутого в плоскости ладони большого пальца.
Д. Левая, по направлению тока. Е. Левая, по направлению вектора индукции.
18. По какой из приведенных ниже формул вычисляется значение силы, действующей на проводник с током в магнитном поле?
A. Б. В. Г. Д.
19. Вектор индукции однородного магнитного поля направлен вертикально вверх. Как будет двигаться первоначально неподвижный протон в этом поле? Влияние силы тяжести не учитывать.
А. Останется неподвижным. Б. Равноускоренно вниз. В. Равноускоренно вверх. Г. Равномерно вниз. Д. Равномерно вверх.
20. Вектор индукции однородного магнитного поля направлен вертикально вверх. Как будет двигаться в вакууме протон, вектор скорости которого перпендикулярен вектору магнитной индукции? Влияние силы тяжести не учитывать.
А. Равномерно прямолинейно. Б. Равномерно по окружности в горизонтальной плоскости, против часовой стрелки при взгляде по направлению вектора индукции. В. Равномерно по окружности в горизонтальной плоскости, по часовой стрелке при взгляде по направлению вектора индукции. Г. По спирали к центру в горизонтальной плоскости. Д. По спирали от центра в горизонтальной плоскости.
149
Тест 10-4
21. Частица с электрическим зарядом 1,6 • 10 -19 Кл движется в однородном магнитном поле с индукцией 1 Тл со скоростью 200 000 км/с, вектор скорости направлен под углом 30° к вектору индукции. С какой силой магнитное поле действует на частицу?
А. Б. В. Г. Д.
22. С какой силой действует однородное магнитное поле с индукцией 2 Тл на прямолинейный проводник длиной 40 см с током 10 А, расположенный перпендикулярно вектору индукции?
А. 0 Н. Б. 800 Н. В. 8 Н. Г. 0,5 Н. Д. 50 Н.
23. Ядро атома гелия, влетевшее со скоростью в однородное магнитное поле перпендикулярно вектору индукции , вращается по окружности радиуса R с периодом Т. Какими будут радиус и период обращения протона, влетевшего таким же образом в это магнитное поле?
А. 2R, 2Т. Б. 4R, 4T. В. 4R, 8T. Г. . Д. . Е.
24. Как изменится сила кулоновского взаимодействия двух небольших заряженных шаров, если электрический заряд каждого шара увеличить в 2 раза, а расстояние между шарами увеличить в 4 раза?
А. Увеличится в 64 раза. Б. Увеличится в 16 раз. В. Увеличится в 4 раза. Г. Увеличится в 2 раза. Д. Останется неизменной. Е. Уменьшится в 2 раза. Ж. Уменьшится в 4 раза. 3. Уменьшится в 16 раз. И. Уменьшится в 64 раза.
25. Электронагревательный прибор подключен к источнику тока с ЭДС и внутренним сопротивлением . При каком значении сопротивления R прибора полезная мощность максимальна? Каково при этом значение КПД?
A. r = R, 100%. Б. R , 50% В. r = R, 50% Г. R , 100% Д. R 0, 100%.
Е. R 0, 50%.
150
Тест 10-4
26. Каким сопротивлением должен обладать шунт для подключения к амперметру с внутренним сопротивлением 1 Ом, если требуется расширить пределы измерения в 10 раз?
А. Ом. Б. Ом. В. 9 Ом. Г. 10 Ом.
27. Какое дополнительное сопротивление нужно подключить к вольтметру с внутренним сопротивлением 9 кОм для расширения его пределов измерения в 10 раз?
А. 0,9 кОм. Б. 1 кОм. В. 81 кОм. Г. 90 кОм.
28. Как изменяется радиус траектории движения заряженной частицы в однородном магнитном поле перпендикулярно вектору индукции при уменьшении ее энергии в 4 раза? Масса частицы не изменяется.
А. Уменьшается в 4 раза. Б. Уменьшается в 2 раза. В. Не изменяется. Г. Увеличивается в 2 раза. Д. Увеличивается в 4 раза.
29. При пропускании тока I в течение времени t объем водорода, выделившегося при электролизе воды, оказался равным V при температуре Т и давлении р. По какой из приведенных ниже формул можно вычислить по этим данным заряд одного электрона?
А Б В Г Д Е.
30. При измерении напряжения вольтметром класса точности 2,0 получено значение напряжения 50 В. Какова граница абсолютной погрешности измерения, если предел измерения прибора 100 В, а цена деления шкалы 5 В?
А. 1 В. Б. 2 В. В. 2,6 В. Г. 3,5 В. Д. 4,5 В. Е. 5 В. Ж. 6 В. 3. 7 В.
11 класс
Электромагнитная индукция
Тест 11-1
Вариант 1
1. Кто открыл явление электромагнитной индукции?
А. X. Эрстед. Б. Ш. Кулон. В. А. Вольта. Г. А. Ампер. Д. М. Фарадей. E. Д. Максвелл.
2. Выводы катушки из медного провода присоединены к чувствительному гальванометру. В каком из перечисленных опытов гальванометр обнаружит возникновение ЭДС электромагнитной индукции в катушке?
1) В катушку вставляется постоянный магнит.
2) Из катушки вынимается постоянный магнит.
3) Постоянный магнит вращается вокруг своей продольной оси внутри катушки.
А. Только в случае 1. Б. Только в случае 2. В. Только в случае 3. Г. В случаях 1 и 2. Д. В случаях 1, 2 и 3.
3. Как называется физическая величина, равная произведению модуля В индукции магнитного поля на площадь S поверхности, пронизываемой магнитным полем, и косинус угла а между вектором индукции и нормалью к этой поверхности?
А. Индуктивность. Б. Магнитный поток. В. Магнитная индукция. Г. Самоиндукция. Д. Энергия магнитного поля.
4. Каким из приведенных ниже выражений определяется ЭДС индукции в замкнутом контуре?
A. . Б. . В. . Г. . Д. .
5. При вдвигании полосового магнита в металлическое кольцо и выдвигании из него в кольце возникает индукционный ток. Этот ток создает магнитное поле. Каким полюсом обращено магнитное поле тока в кольце к:
1) вдвигаемому северному полюсу магнита
2) выдвигаемому северному полюсу магнита.
A. 1 — северным, 2 — северным. В. 1 — южным, 2 — южным.
B. 1 — южным, 2 — северным. Г. 1 — северным, 2 — южным.
152
Тест 11-1
6. Как называется единица измерения магнитного потока?
А. Тесла. Б. Вебер. В. Гаусс. Г. Фарад. Д. Генри.
7. Единицей измерения какой физической величины является 1 генри?
А. Индукции магнитного поля. Б. Электроемкости. В. Самоиндукции. Г. Магнитного потока. Д. Индуктивности.
8. Каким выражением определяется связь магнитного потока через контур с индуктивностью L контура и силой тока I в контуре?
A. . Б. В. . Г. . Д. .
9. Каким выражением определяется связь ЭДС самоиндукции с силой тока в катушке?
А. -n . Б. – . В. . Г. . Д.
10. Ниже перечислены свойства различных полей. Какими из них обладает электростатическое поле?
1) Линии напряженности обязательно связаны с электрическими зарядами.
2) Линии напряженности не связаны с электрическими зарядами.
3) Поле обладает энергией.
4) Поле не обладает энергией.
5) Работа сил по перемещению электрического заряда по замкнутому пути может быть не равна нулю.
6) Работа сил по перемещению электрического заряда по любому замкнутому пути равна нулю.
А. 1, 4, 6. В. 1, 3, 5. В. 1, 3, 6. Г. 2, 3, 5. Д. 2, 3, 6. Е. 2, 4, 6.
11. Контур площадью 1000 см2 находится в однородном магнитном поле с индукцией 0,5 Тл, угол между вектором индукции и нормалью к поверхности контура 60°. Каков магнитный поток через контур?
А. 250 Вб. Б. 1000 Вб. В. 0,1 Вб. Г. 2,6 • 10 -2 Вб. Д. 2,5 Вб.
12. Какая сила тока в контуре индуктивностью 5 мГн создает магнитный поток 2 • 10 -2 Вб?
А. 4 мА. Б. 4 А. В. 250 А. Г. 250 мА. Д. 0,1 А. Е. 0,1 мА.
153
Тест 11-1
13. Магнитный поток через контур за 5 • 10-2 с равномерно уменьшился от 10 мВб до 0 мВб. Каково значение ЭДС в контуре в это время?
А. 5 • 10 -4 В. Б. 0,1 В. В. 0,2 В. Г. 0,4 В. Д. 1 В. Е. 2 В.
14. Каково значение энергии магнитного поля катушки индуктивностью 5 Гн при силе тока в ней 400 мА?
А. 2 Дж. Б. 1 Дж. В. 0,8 Дж. Г. 0,4 Дж. Д. 1000 Дж. Е. 4 105 Дж.
15. Катушка, содержащая п витков провода, подключена к источнику постоянного тока с напряжением U на выходе. Каково максимальное значение ЭДС самоиндукции в катушке при увеличении напряжения на ее концах от 0 В до 17 В?
A. U В. Б. nU В. В. U/n В. Г. Может быть во много раз больше U, зависит от скорости изменения силы тока и от индуктивности катушки.
16. Две одинаковые лампы включены в цепь источника постоянного тока, первая последовательно с резистором, вторая последовательно с катушкой. В какой из ламп (рис. 1) сила тока при замыкании ключа К достигнет максимального значения позже другой?
А. В первой. Б. Во второй. В. В первой и второй одновременно. Г. В первой, если сопротивление резистора больше сопротивления катушки. Д. Во второй, если сопротивление катушки больше сопротивления резистора.
17. Катушка индуктивностью 2 Гн включена параллельно с резистором электрическим сопротивлением 900 Ом, сила тока в катушке 0,5 А, электрическое сопротивление катушки 100 Ом. Какой электрический заряд протечет в цепи катушки и резистора при отключении их от источника тока (рис. 2)?
А. 4000 Кл. Б. 1000 Кл. В. 250 Кл. Г. 1 • 10 -2 Кл. Д. 1,1 • 10 -3 Кл. Е. 1 • 10 -3 Кл.
154
Тест 11-1
18. Самолет летит со скоростью 900 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4 • 10 -5 Тл. Какова разность потенциалов между концами крыльев самолета, если размах крыльев равен 50 м?
А. 1,8 В. Б. 0,9 В. В. 0,5 В. Г. 0,25 В.
19. Какой должна быть сила тока в обмотке якоря электромотора для того, чтобы на участок обмотки из 20 витков длиной 10 см, расположенный перпендикулярно вектору индукции в магнитном поле с индукцией 1,5 Тл, действовала сила 120 Н?
А. 90 А. Б. 40 А. В. 0,9 А. Г. 0,4 А.
20. Какую силу нужно приложить к металлической перемычке для равномерного ее перемещения со скоростью 8 м/с по двум параллельным проводникам, расположенным на расстоянии 25 см друг от друга в однородном магнитном поле с индукцией 2 Тл? Вектор индукции перпендикулярен плоскости, в которой расположены рельсы. Проводники замкнуты резистором с электрическим сопротивлением 2 Ом.
А. 10000 Н. Б. 400 Н. В. 200 Н. Г. 4 Н. Д. 2 Н. Е. 1 Н.
Вариант 2
1. Как называется явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока через контур?
А. Электростатическая индукция. Б. Явление намагничивания. В. Сила Ампера. Г. Сила Лоренца. Д. Электролиз. Е. Электромагнитная индукция.
2. Выводы катушки из медного провода присоединены к чувствительному гальванометру. В каком из перечисленных опытов гальванометр обнаружит возникновение ЭДС электромагнитной индукции в катушке?
1) В катушку вставляется постоянный магнит.
2) Катушка надевается на магнит.
3) Катушка вращается вокруг магнита, находящегося внутри нее.
А. В случаях 1, 2 и 3. Б. В случаях 1 и 2. В. Только в случае 1. Г. Только в случае 2. Д. Только в случае 3.
155
Тест 11-1
3. Каким из приведенных ниже выражений определяется магнитный поток?
A. . Б. . В. . Г. . Д. .
4. Что выражает следующее утверждение: ЭДС индукции в замкнутом контуре пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром?
А. Закон электромагнитной индукции. Б. Правило Ленца. В. Закон Ома для полной цепи. Г. Явление самоиндукции. Д. Закон электролиза.
5. При вдвигании полосового магнита в металлическое кольцо и выдвигании из него в кольце возникает индукционный ток. Этот ток создает магнитное поле. Каким полюсом обращено магнитное поле тока в кольце к: 1) вдвигаемому южному полюсу магнита и 2) выдвигаемому южному полюсу магнита.
A. 1 — северным, 2 — северным. Б. 1 — южным, 2 — южным.
B. 1 — южным, 2 — северным. Г. 1 — северным, 2 — южным.
6. Единицей измерения какой физической величины является 1 вебер?
А. Индукции магнитного поля. Б. Электроемкости. В. Самоиндукции. Г. Магнитного потока. Д. Индуктивности.
7. Как называется единица измерения индуктивности?
А. Тесла. Б. Вебер. В. Гаусс. Г. Фарад. Д. Генри.
8. Каким выражением определяется связь энергии магнитного потока в контуре с индуктивностью L контура и силой тока I в контуре?
А. . Б. . В. . Г. . Д. .
9. Какая физическая величина х определяется выражением х = -п для катушки из п витков?
А. ЭДС индукции. Б. Магнитный поток. В. Индуктивность. Г. ЭДС самоиндукции.
Д. Энергия магнитного поля. Е. Магнитная индукция.
10. Ниже перечислены свойства различных полей. Какими из них обладает вихревое индукционное электрическое поле?
1) Линии напряженности обязательно связаны с электрическими зарядами.
2) Линии напряженности не связаны с электрическими зарядами.
3) Поле обладает энергией.
4) Поле не обладает энергией.
5) Работа сил по перемещению электрического заряда по замкнутому пути может быть не равна нулю.
6) Работа сил по перемещению электрического заряда по любому замкнутому пути равна нулю.
А. 1, 4, 6. Б. 1, 3, 5. В. 1, 3, 6. Г. 2, 3, 5. Д. 2, 3, 6. Е. 2, 4, 6.
156
Тест 11-1
11. Контур площадью 200 см2 находится в однородном магнитном поле с индукцией 0,5 Тл, угол между вектором индукции и нормалью к поверхности контура 60°. Каков магнитный поток через контур?
А. 50 Вб. Б. 2 • 10 -2 Вб. В. 5 • 10 -3 Вб. Г. 200 Вб. Д. 5 Вб.
12. Ток 4 А создает в контуре магнитный поток 20 мВб. Какова индуктивность контура?
А. 5 Гн. Б. 5 мГн. В. 80 Гн. Г. 80 мГн. Д. 0,2 Гн. Е. 200 Гн.
13. Магнитный поток через контур за 0,5 с равномерно уменьшился от
10 мВб до 0 мВб. Каково значение ЭДС в контуре в это время?
А. 5 • 10 -3 В. Б. 5 В. В. 10 В. Г. 20 В. Д. 0,02 В. Е. 0,01 В.
14. Каково значение энергии магнитного поля катушки индуктивностью 500 мГн при силе тока в ней 4 А?
А. 2 Дж. Б. 1 Дж. В. 8 Дж. Г. 4 Дж. Д. 1000 Дж. Е. 4000 Дж.
15. Катушка, содержащая п витков провода, подключена к источнику постоянного тока с напряжением U на выходе. Каково максимальное значение ЭДС самоиндукции в катушке при уменьшении напряжения на ее концах от U В до 0 В?
A. U В. Б. nU В. В. U/n В. Г. Может быть во много раз больше U, зависит от скорости изменения силы тока и от индуктивности катушки.
16. В электрической цепи, представленной на рисунке 1, четыре ключа 2, 2У 3 и 4 замкнуты. Размыкание какого из четырех даст лучшую возможность обнаружить явление самоиндукции?
А. 1. Б. 2. В. 3. Г. 4. Д. Любого из четырех.
157
Тест 11-1
17. Катушка индуктивностью 2 Гн включена параллельно с резистором электрическим сопротивлением 100 Ом, сила тока в катушке 0,5 А, электрическое сопротивление катушки 900 Ом. Какой электрический заряд протечет в цепи катушки и резистора при отключении их от источника тока (рис. 2)?
A. 4000 Кл. Б. 1000 Кл. В. 250 Кл. Г. 1 • 10 -2 Кл. Д. 1,1 • 10 -3 Кл.
B. 1 10 -3 Кл.
18. Самолет летит со скоростью 1800 км/ч, модуль вертикальной составляющей вектора индукции магнитного поля Земли 4 • 10 -5 Тл. Какова разность потенциалов между концами крыльев самолета, если размах крыльев равен 25 м?
А. 1,8 В. Б. 0,5 В. В. 0,9 В. Г. 0,25 В.
19. Прямоугольная рамка площадью S с током I помещена в магнитном поле с индукцией . Чему равен момент силы, действующей на рамку, если угол между вектором и нормалью к рамке равен ?
A. IBS sin . Б. IBS. В. IBS cos . Г. I2BS sin . Д. I2BS cos .
20. По двум вертикальным рельсам, верхние концы которых замкнуты резистором электрическим сопротивлением R, начинает скользить проводящая перемычка массой т и длиной l. Система находится в магнитном поле. Вектор индукции перпендикулярен плоскости, в которой расположены рельсы. Найдите установившуюся скорость движения перемычки. Сила трения пренебрежимо мала.
A. Б. B. Г. Д.
158
Электромагнитные колебания и волны
Тест 11-2
Вариант 1
1. При вращении витка провода с частотой v в однородном магнитном поле с индукцией магнитный поток Ф через площадь S витка изменяется со временем по закону: Ф = . По какому закону изменяется при этом ЭДС индукции в витке?
А. Б. В. Г. Д.
Е. Ж. З.
2. Напряжение на активном сопротивлении R в цепи переменного тока изменяется по закону и =U m cos t. По какому закону изменяется при этом сила тока в активном сопротивлении?
A. . Б. В. Г. Д.
3. Какое из приведенных ниже выражений определяет индуктивное сопротивление катушки индуктивностью L в цепи переменного тока частотой ?
А. Б. В. Г. Д.
4. Каким выражением определяется амплитуда Iт колебаний силы тока в последовательной цепи переменного тока с частотой при амплитуде колебаний напряжения Um на конденсаторе электроемкостью С?
А. Б. В. Г. Д.
5. Напряжение на конденсаторе в цепи переменного тока изменяется по закону и = Um cos . По какому закону изменяется при этом сила тока через конденсатор?
A. . Б. В. Г. Д.
159
Тест 11-2
6. Через активное сопротивление течет переменный ток с амплитудой гармонических колебаний Im, амплитуда колебаний напряжения Um, циклическая частота . Чему равна мгновенная мощность переменного тока на активном сопротивлении?
А. Б. В. Г. Д.
Е.
7. Амплитуда гармонических колебаний напряжения равна 10 В. Чему равно действующее значение переменного напряжения?
А. В. Б. В. В. 5 В. Г. В. Д. 0 В.
8. Каково значение резонансной частоты 0 в электрической цепи из конденсатора электроемкостью С и катушки индуктивностью L?
A. LC. Б. В. Г. Д.
9. При каких условиях движущийся электрический заряд излучает электромагнитные волны?
А. Только при гармонических колебаниях. Б. Только при движении по окружности. В. При любом движении с большой скоростью. Г. При любом движении с ускорением. Д. При любом движении.
10. Какая физическая величина определяется отношением энергии Е электромагнитного излучения, излучаемой или поглощаемой телом, ко времени t излучения?
A. Поток излучения. Б. Поверхностная плотность потока излучения.
B. Магнитный поток. Г. Поток вектора напряженности электрического поля.
11. При одинаковой амплитуде колебаний электрических зарядов в антенне как изменяется энергия излучаемых электромагнитных волн с увеличением частоты v колебаний?
А. Не изменяется. Б. Изменяется пропорционально v . В. Изменяется пропорционально v4. Г. Изменяется пропорционально v2. Д. Обратно пропорционально v. Е. Обратно пропорционально v2.
Ж. Обратно пропорционально v 4.
160
Тест 11-2
12. Какой смысл имеет утверждение: электромагнитные волны — это поперечные волны?
А. В электромагнитной волне вектор направлен поперек, а вектор — вдоль направления распространения волны. Б. В электромагнитной волне вектор направлен поперек, а вектор — вдоль направления распространения волны.
В. В электромагнитной волне векторы и направлены перпендикулярно направлению распространения волны. Г. Электромагнитная волна распространяется только поперек поверхности проводника. Д. Электромагнитная волна распространяется только поперек направления вектора скорости движущегося заряда.
13. В колебательном контуре из конденсатора электроемкостью 10 нФ и катушки частота свободных электрических колебаний была равна 200 кГц. Какой будет частота свободных электрических колебаний в контуре с той же катушкой и конденсатором электроемкостью 40 нФ?
А. 800 кГц. Б. 3,2 МГц. В. 50 кГц. Г. 12,5 кГц. Д. 400 кГц. Е. 100 кГц.
14. Емкостное сопротивление конденсатора на частоте 50 Гц равно 100 Ом. Каким оно будет на частоте 200 Гц?
А. 400 Ом. Б. 200 Ом. В. 1600 Ом. Г. 25 Ом. Д. 6,25 Ом. Е. 50 Ом.
15. Индуктивное сопротивление катушки на частоте 100 Гц равно 80 Ом. Каким оно будет на частоте 25 Гц?
А. 20 Ом. Б. 5 Ом. В. 40 Ом. Г. 1280 Ом. Д. 160 Ом. Е. 320 Ом.
16. Каким образом осуществляется передача электрической энергии из первичной обмотки трансформатора во вторичную обмотку?
А. Через конденсатор, испускающий только переменный ток. Б. Через провода, соединяющие обмотки трансформатора. В. С помощью переменного электрического поля, проходящего через обе катушки. Г. С помощью электромагнитных волн. Д. С помощью переменного магнитного поля, проходящего через обе катушки.
17. Какую функцию выполняет антенна радиоприемника?
А. Выделяет из электромагнитной волны модулирующий сигнал. Б. Усиливает сигнал одной избранной волны. В. Принимает все электромагнитные волны. Г. Принимает все электромагнитные волны и выделяет среди них одну нужную. Д. Выделяет из всех электромагнитных волн совпадающие по частоте с собственными колебаниями.
161
Тест 11-2
18. Составлена электрическая цепь из последовательно соединенных активного сопротивления, конденсатора и катушки. Цепь соединена с выходом генератора переменного напряжения, амплитуда колебаний напряжения в опыте не изменяется. Как будет изменяться амплитуда колебаний силы тока в цепи при увеличении частоты колебаний напряжения, начиная от нуля?
A. Не будет изменяться. Б. Будет линейно возрастать с частотой от нуля.
B. Будет линейно убывать с частотой от некоторого начального значения. Г. Будет сначала возрастать с частотой от нуля, достигнет максимального значения, затеи будет убывать. Д. Будет сначала убывать с частотой от некоторого начального значения, достигнет минимального значения, затем будет возрастать.
19. При осуществлении передачи электроэнергии под напряжением 10 кВ тепловые потери энергии в линии электропередачи составляли 2% передаваемой мощности. Какими будут потери в линии с таким же активным сопротивлением при передаче энергии под напряжением 90 кВ?
А. 18%. Б. 2%. В. 6%. Г. 2/3 %. Д. 2/9 %. Е. 8/81 %.
20. Если v1 — скорость электромагнитной волны в первой среде, v2 — ее скорость во второй среде, угол есть угол падения волны на границу раздела двух сред, а — угол преломления, то каким равенством выражается закон преломления?
А. Б. В. Г.
21. Какие условия необходимы и достаточны для наблюдения минимума интерференции электромагнитных волн от двух источников?
А. Источники волн когерентны, разность хода может быть любой.
Б. Разность хода , источники могут быть любые. В. Разность хода , источники могут быть любые. Г. Источники волн когерентны, разность хода . Д. Источники когерентны, разность хода
22. Дифракционная решетка имеет ряд параллельных щелей шириной а каждая, щели разделены непрозрачными промежутками шириной b. Каким условием определяется угол к нормали, под которым наблюдается первый дифракционный максимум?
А. Б. В. Г. Д. Е.
162
Тест 11-2
23. Как изменяются частота и длина волны света при переходе из вакуума в прозрачную среду с абсолютным показателем преломления п = 2?
А. Не изменяются. Б. Увеличиваются в 2 раза. В. Уменьшаются в 2 раза. Г. Частота увеличивается в 2 раза, длила волны не изменяется. Д. Длина волны увеличивается в 2 раза, частота не изменяется. Е. Частота уменьшается в 2 раза, длина волны не изменяется. Ж. Длина волны уменьшается в 2 раза, частота не изменяется.
24. Почему после прохождения через стеклянную призму пучок белого света превращается в разноцветный спектр?
А. Призма поглощает белый свет одной частоты, а излучает свет разных частот. Б. Призма поглощает белый свет одной длины волны, а излучает свет с разными длинами волн. В. Белый свет есть смесь света разных частот, цвет определяется частотой, коэффициент преломления света зависит от частоты. Поэтому свет разного цвета идет по разным направлениям. Г. Цвет света определяется длиной волны. В процессе преломления длина световой волны изменяется, поэтому происходит превращение белого света в разноцветный спектр.
25. Какие из трех приведенных ниже утверждений справедливы только для плоско поляризованных электромагнитных волн?
1) Векторы и в волне колеблются во взаимно перпендикулярных плоскостях.
2) Векторы и перпендикулярны вектору скорости волны.
3) Векторы волн колеблются в одной плоскости.
А. Только 1. Б. Только 2. В. Только 3. Г. 1 и 2. Д. 1 и 3. Е. 2 и 3. Ж. 1, 2 и 3.
26. Расположите перечисленные ниже виды электромагнитных излучений в порядке увеличения длины волны.
1) Видимый свет.
2) Ультрафиолетовое излучение.
3) Инфракрасное излучение.
4) Радиоволны.
А. 1, 2, 3, 4. Б. 1, 3, 2, 4 В. 2, 3, 4, 1. Г. 4, 3, 2, 1. Д. 4, 2, 1, 3. Е. 2, 1, 3, 4. Ж. 3, 4, 1, 2.
З. 4, 3, 1, 2.
27. На каком расстоянии от собирающей линзы с фокусным расстоянием 40 см будет находиться изображение предмета, если расстояние от предмета до линзы 50 см?
А. 2 м. Б. 45 см. В. – 22 см. Г. 50 см.
163
Тест 11-2
28. Лампа находится на расстоянии 5 м от экрана. На каком расстоянии от лампы нужно поместить собирающую линзу с фокусным расстоянием 0,8 м для получения на экране увеличенного изображения лампы?
А. 4 м. Б. 3 м. В. 2 м. Г. 1 м. Д. 0,5 м.
29. Какие из приведенных ниже утверждений противоречат постулатам теории относительности: 1 — все процессы природы протекают одинаково в любой инерциальной системе отсчета; 2 — скорость света в вакууме одинакова во всех инерциальных системах отсчета; 3 — все процессы природы относительны и протекают в различных инерциальных системах отсчета неодинаково?
А. Только 1. Б. Только 2. В. Только 3. Г. 1 и 2. Д. 1 и 3. Е. 2 и 3. Ж. 1, 2 и 3.
30. На поверхности Земли работает радиолокатор, скорость посылаемых им электромагнитных волн относительно Земли . Какова скорость х электромагнитных волн относительно самолета, который движется со скоростью относительно Земли против направления вектора скорости .
А. с. Б. с + v. В. с – v. Г. с < х < с + v. Д. с – v < х < с.
Вариант 2
1. При вращении витка провода с частотой v в однородном
магнитном поле с индукцией магнитный поток Ф через площадь S витка изменяется со временем по закону: Ф = BS cos . По какому закону изменяется при этом ЭДС индукции в витке?
A. Б. В. Г.
Д. E. Ж. З.
2. Сила тока в активном сопротивлении R в цепи переменного тока изменяется по закону i = Im cos t. По какому закону изменяется при этом напряжение на активном сопротивлении?
A. . Б. В. Г. Д.
164
Тест 11-2
3. Какое из приведенных ниже выражений определяет емкостное сопротивление конденсатора электроемкостью С в цепи переменного тока частотой ?
A. Б. В. Г. Д.
4. Каким выражением определяется амплитуда Iт колебаний силы тока в последовательной цепи переменного тока с частотой при амплитуде колебаний напряжения Um на катушке индуктивностью L?
A. Б. В. Г. Д.
5. Напряжение на катушке в цепи переменного тока изменяется по закону
и = Um cos . По какому закону изменяется при этом сила тока через катушку?
A. . Б. В. Г. Д.
6. Через активное сопротивление течет переменный ток с амплитудой гармонических колебаний Iт, амплитуда колебаний напряжения Um, циклическая частота . Чему равна средняя за период мощность переменного тока на активном сопротивлении?
А. Б. В. Г. Д.
Е.
7. Амплитуда гармонических колебаний силы тока равна 10 А. Чему равно действующее значение силы тока?
А. A. Б. 5 A. В. A. Г. A. Д. 0 А.
8. Каков период свободных колебаний в электрической цепи из конденсатора электроемкостью С и катушки индуктивностью L?
A. LC. Б. В. Г. Д.
165
Тест 11-2
9. Существует ли такое движение электрического заряда, при котором он не излучает электромагнитные волны?
А. Такого движения нет. Б. Существует, это равномерное прямолинейное движение. В. Существует, это равномерное движение по окружности. Г. Существует, это любое движение с небольшой скоростью. Д. Существует, это движение с большой скоростью.
10. Какая физическая величина определяется отношением потока излучения, излучаемого или поглощаемого телом, к площади поверхности, через которую проходит это излучение?
A. Поверхностная плотность потока излучения. Б. Поток излучения.
B. Магнитный поток. Г. Поток вектора напряженности электрического поля.
11. При одинаковой амплитуде колебаний электрических зарядов в антенне как изменяется энергия излучаемых электромагнитных волн с уменьшением частоты v колебаний?
А. Не изменяется. Б. Изменяется пропорционально v. В. Изменяется пропорционально v4. Г. Изменяется пропорционально v2. Д. Обратно пропорционально v. E. Обратно пропорционально v2. Ж. Обратно пропорционально v4.
12. Какой смысл имеет утверждение: электромагнитные волны — это поперечные волны?
А. В электромагнитной волне вектор направлен поперек, а вектор — вдоль направления распространения волны.
Б. В электромагнитной волне вектор направлен поперек, а вектор — вдоль направления распространения волны.
В. Электромагнитная волна распространяется только поперек поверхности проводника.
Г. В электромагнитной волне векторы и направлены перпендикулярно направлению распространения волны.
Д. Электромагнитная волна распространяется только поперек направления вектора скорости движущегося заряда.
13. В колебательном контуре из конденсатора электроемкостью 10 нФ и катушки частота свободных электрических колебаний была равна 200 кГц. Какой будет частота свободных электрических колебаний в контуре с той же катушкой и конденсатором электроемкостью 2,5 нФ?
А. 800 кГц. Б. 3,2 МГц. В. 50 кГц. Г. 12,5 кГц. Д. 400 кГц. Е. 100 кГц.
14. Емкостное сопротивление конденсатора на частоте 50 Гц равно 100 Ом. Каким оно будет на частоте 12,5 Гц?
А. 400 Ом. Б. 200 Ом. В. 1600 Ом. Г. 25 Ом. Д. 6,25 Ом. Е. 50 Ом.
166
Тест 11-2
15. Индуктивное сопротивление катушки на частоте 100 Гц равно 80 Ом. Каким оно будет на частоте 400 Гц?
А. 20 Ом. Б. 5 Ом. В. 40 Ом. Г. 1280 Ом. Д. 160 Ом. Е. 320 Ом.
16. Каким образом осуществляется передача электрической энергии из первичной обмотки трансформатора во вторичную обмотку?
А. Через конденсатор, испускающий только переменный ток. Б. Через провода, соединяющие обмотки трансформатора. В. С помощью переменного электрического поля, проходящего через обе катушки. Г. С помощью переменного магнитного поля, проходящего через обе катушки. Д. С помощью электромагнитных волн.
17. Какую функцию выполняет колебательный контур радиоприемника?
А. Выделяет из электромагнитной волны модулирующий сигнал. Б. Усиливает сигнал одной избранной волны. В. Принимает все электромагнитные волны. Г. Принимает все электромагнитные волны и выделяет среди них одну нужную. Д. Выделяет из всех электромагнитных волн совпадающие по частоте собственным колебаниям.
18. Составлена электрическая цепь из параллельно соединенных активного сопротивления, конденсатора и катушки. Цепь соединена с выходом генератора переменного напряжения, амплитуда колебаний напряжения в опыте не изменяется. Как будет изменяться амплитуда колебаний силы тока в общей цепи при увеличении частоты колебаний напряжения, начиная от нуля?
A. Не будет изменяться. Б. Будет линейно возрастать с частотой от нуля.
B. Будет линейно убывать с частотой от некоторого начального значения. Г. Будет сначала возрастать с частотой от нуля, достигнет максимального значения, затем будет убывать. Д. Будет сначала убывать с частотой от некоторого начального значения, достигнет минимального значения, затем будет возрастать.
19. При осуществлении передачи электроэнергии под напряжением 10 кВ тепловые потери энергии в линии электропередачи составляли 2% передаваемой мощности. Какими будут потери в линии с таким же активным сопротивлением при передаче энергии под напряжением 30 кВ?
А. 2/81 %. Б. 2/9 %. В. 2/3 %. Г. 6%. Д. 2%. Е. 18%.
20. Если — угол падения электромагнитной волны, — угол ее преломления, v1 — скорость электромагнитной волны в первой среде, v2 — ее скорость во второй среде, то какое из двух ниже представленных отношений называется относительным коэффициентом преломления второй среды относительно первой? 1) 2)
А. Только 1. Б. Только 2. В. 1 и 2. Г. Ни 1, ни 2.
167
Тест 11-2
21. Какие условия необходимы и достаточны для наблюдения максимума интерференции электромагнитных волн от двух источников?
А. Источники волн когерентны, разность хода может быть любой. Б. Разность хода —, источники могут быть любые. В. Разность хода — источники могут быть любые.
Г. Источники волн когерентны, разность хода . Д. Источники когерентны, разность хода
22. Дифракционная решетка имеет ряд параллельных щелей шириной а каждая, щели разделены непрозрачными промежутками шириной b. Каким условием определяется угол к нормали, под которым наблюдается второй дифракционный максимум?
A. Б. В. Г. Д.
Е.
23. Как изменяются частота и длина волны света при переходе из среды с абсолютным показателем преломления п = 2 в вакуум?
А. Не изменяются. Б. Увеличиваются в 2 раза. В. Уменьшаются в 2 раза. Г. Частота увеличивается в 2 раза, длина волны не изменяется. Д. Длина волны увеличивается в 2 раза, частота не изменяется. Е. Частота уменьшается в 2 раза, длина волны не изменяется. Ж. Длина волны уменьшается в 2 раза, частота не изменяется.
24. Чем объясняется дисперсия белого света?
A. Цвет света определяется длиной волны. В процессе преломления длина световой волны изменяется, поэтому происходит превращение белого света в разноцветный спектр. Б. Белый свет есть смесь света разных частот, цвет определяется частотой, коэффициент преломления света зависит от частоты. Поэтому свет разного цвета идет по разным направлениям.
B. Призма поглощает белый свет одной длины волны, а излучает свет с разными длинами волн. Г. Призма поглощает белый свет одной частоты, а излучает свет разных частот.
168
Тест 11-2
25. Какие из трех приведенных ниже утверждений справедливы как для плоско поляризованных электромагнитных волн, так и для неполяризованных волн?
1) Векторы и в волне колеблются во взаимно перпендикулярных плоскостях.
2) Векторы и перпендикулярны вектору скорости волны.
3) Векторы волн колеблются в одной плоскости.
А. Только 1. Б. Только 2. В. Только 3. Г. 1 и 2. Д. 1 и 3. Е. 2 и 3. Ж, 1, 2 и 3.
26. Расположите перечисленные ниже виды электромагнитных излучений в порядке уменьшения длины волны.
1) Видимый свет.
2) Ультрафиолетовое излучение.
3) Инфракрасное излучение.
4) Радиоволны.
А. 1, 2, 3, 4. Б. 1, 3, 2, 4 В. 2, 3, 4, 1. Г. 4, 3, 2, 1. Д. 4, 2, 1, 3. Е. 2, 1, 3, 4. Ж. 3, 4, 1, 2. З. 4, 3, 1, 2.
27. На каком расстоянии от собирающей линзы с фокусным расстоянием 40 см нужно поместить предмет для того, чтобы изображение предмета было получено на расстоянии 2 м от линзы?
А. 2 м. Б. 50 см. В. 3 м. Г. – 33 см.
28. Лампа находится на расстоянии 5 м от экрана. На каком расстоянии от лампы нужно поместить собирающую линзу с фокусным расстоянием 0,8 м для получения на экране уменьшенного изображения лампы?
А. 4 м. Б. 3 м. В. 2 м. Г. 1 м. Д. 0,5 м.
29. Какие из приведенных ниже утверждений соответствуют постулатам теории относительности: 1 — все процессы природы протекают одинаково в любой инерциальной системе отсчета; 2 — скорость света в вакууме одинакова во всех инерциальных системах отсчета; 3 — все процессы природы относительны и протекают в различных инерциальных системах отсчета неодинаково?
А. Только 1. Б. Только 2. В. Только 3. Г. 1 и 2. Д. 1 и 3. Е. 2 и 3. Ж, 1, 2 и 3.
30. На поверхности Земли работает радиолокатор, скорость посылаемых им электромагнитных волн относительно Земли . Какова скорость х электромагнитных волн относительно самолета, который движется со скоростью относительно Земли по направлению вектора скорости .
А. с – v < х < с. Б. с < х < с + v. В. с -v . Г. с + v. Д. с.
Что такое собственная индуктивность? определение и объяснение
Определение: Самоиндукция или, другими словами, индуктивность катушки определяется как свойство катушки, благодаря которому она противодействует изменению тока, протекающего через нее. Катушка обеспечивает индуктивность за счет самоиндуцированной ЭДС, возникающей в самой катушке при изменении тока, протекающего через нее.
Если ток в катушке увеличивается, самоиндуцированная ЭДС, создаваемая в катушке, будет противодействовать увеличению тока, это означает, что направление индуцированной ЭДС противоположно приложенному напряжению.
Если ток в катушке уменьшается, ЭДС, индуцированная в катушке, имеет такое направление, чтобы препятствовать падению тока; это означает, что направление самоиндуцированной ЭДС совпадает с направлением приложенного напряжения. Самоиндукция не препятствует изменению тока, но задерживает изменение тока, протекающего через него.
Это свойство катушки только противодействует изменяющемуся току (переменному току) и не влияет на установившийся ток (постоянный ток), когда он протекает через нее.Единица индуктивности – Генри (Гн).
Выражение для собственной индуктивности
Самоиндуктивность катушки можно определить с помощью следующего выражения.
Вышеупомянутое выражение используется, когда известны величина самоиндуцированной ЭДС (e) в катушке и скорость изменения тока (dI / dt). .
Если подставить следующие значения в приведенные выше уравнения как e = 1 В и dI / dt = 1 А / с, то значение индуктивности будет L = 1 Гн.
Следовательно, из вышеприведенного вывода можно сделать утверждение, что катушка, как говорят, имеет индуктивность 1 Генри, если в ней индуцируется ЭДС 1 В, когда ток, протекающий через нее, изменяется со скоростью 1 Ампер / секунду. .
Выражение для собственной индуктивности также может быть дано как:
где,
N – количество витков в катушке
Φ – магнитный поток
I – ток, протекающий через катушку
Из приведенного выше обсуждения можно сделать следующие выводы о собственной индуктивности
- Значение индуктивности будет большим, если магнитный поток сильнее для данного значения тока.
- Значение индуктивности также зависит от материала сердечника и количества витков в катушке или соленоиде.
- Чем выше будет значение индуктивности в Генри, тем ниже будет скорость изменения тока.
- 1 Генри также равен 1 Веберу / ампер
Соленоид имеет большую самоиндукцию.
Самоиндуктивность и индукторы – University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Сопоставьте скорость изменения тока с наведенной ЭДС, создаваемой этим током в той же цепи
- Вывести самоиндукцию цилиндрического соленоида
- Вывести самоиндукцию прямоугольного тороида
Взаимная индуктивность возникает, когда ток в одной цепи создает изменяющееся магнитное поле, которое индуцирует ЭДС в другой цепи.Но может ли магнитное поле повлиять на ток в исходной цепи, создавшей поле? Ответ положительный, и это явление называется самоиндукцией .
Катушки индуктивности
(рисунок) показывает некоторые силовые линии магнитного поля, возникающие из-за тока в кольцевой проволочной петле. Если ток постоянный, магнитный поток через контур также постоянен. Однако, если бы ток I изменялся со временем – скажем, сразу после замыкания переключателя S – тогда соответственно изменился бы магнитный поток.Тогда закон Фарадея говорит нам, что в цепи будет индуцирована ЭДС, где
Поскольку магнитное поле, создаваемое токоведущим проводом, прямо пропорционально току, поток, создаваемый этим полем, также пропорционален току; то есть
Магнитное поле создается током I в контуре. Если бы значения – менялись со временем, магнитный поток, проходящий через петлю, также изменился бы, и в петле была бы индуцирована ЭДС.
Это также можно записать как
, где постоянная пропорциональности L известна как самоиндукция проволочной петли.Если петля имеет N витков, это уравнение принимает вид
.По соглашению, положительное значение нормали к петле связано с током по правилу правой руки, поэтому на (Рисунок) нормаль направлена вниз. В соответствии с этим соглашением положительное значение на (Рисунок), поэтому L всегда имеет положительное значение .
Для контура с Н витков, поэтому наведенная ЭДС может быть записана в терминах самоиндукции как
При использовании этого уравнения для определения L проще всего игнорировать знаки и рассчитать L как
Поскольку самоиндукция связана с магнитным полем, создаваемым током, любая конфигурация проводников обладает самоиндукцией.Например, помимо проволочной петли, длинный прямой провод имеет самоиндукцию, как и коаксиальный кабель. Коаксиальный кабель чаще всего используется в индустрии кабельного телевидения, и его также можно найти для подключения к кабельному модему. Коаксиальные кабели используются из-за их способности передавать электрические сигналы с минимальными искажениями. Коаксиальные кабели имеют два длинных цилиндрических проводника, которые обладают током и самоиндукцией, что может иметь нежелательные эффекты.
Элемент схемы, используемый для обеспечения самоиндукции, известен как индуктор.Он представлен символом, показанным на (Рисунок), который напоминает катушку с проводом, основную форму индуктора. (Рисунок) показывает несколько типов индукторов, обычно используемых в схемах.
Символ, обозначающий катушку индуктивности в цепи.
Катушки индуктивности разнообразные. Независимо от того, заключены ли они в капсулу, как показанные три верхних, или намотаны в катушку, как самая нижняя, каждая из них представляет собой просто относительно длинную катушку с проволокой. (Источник: Windell Oskay)
В соответствии с законом Ленца отрицательный знак на (рис.) Указывает, что наведенная ЭДС на катушке индуктивности всегда имеет полярность, которая противодействует изменению тока.Например, если бы ток, протекающий от A, к B на (Рисунок) (a), увеличивался, наведенная ЭДС (представленная воображаемой батареей) имела бы указанную полярность, чтобы противодействовать увеличению. Если бы ток от A, до B, уменьшался, то наведенная ЭДС имела бы противоположную полярность, опять же, чтобы противодействовать изменению тока ((Рисунок) (b)). Наконец, если бы ток через катушку индуктивности был постоянным, в катушке не было бы индуцированной ЭДС.
Индуцированная ЭДС на катушке индуктивности всегда противодействует изменению тока. Это можно представить себе как воображаемую батарею, заставляющую течь ток, чтобы противодействовать изменению в (а) и усиливать изменение в (б).
Одно из распространенных применений индуктивности – это возможность светофора определять, когда автомобили ждут на перекрестке. Электрическая цепь с индуктором размещается на дороге под местом остановки ожидающего автомобиля.Кузов автомобиля увеличивает индуктивность, и схема изменяется, посылая сигнал на светофор, чтобы изменить цвет. Точно так же металлоискатели, используемые для безопасности аэропортов, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и как приемник. Импульсный сигнал от катушки передатчика вызывает сигнал в приемнике. На самоиндукцию цепи влияет любой металлический объект на пути ((Рисунок)). Металлоискатели можно настроить на чувствительность, а также они могут определять присутствие металла на человеке.
Знакомые ворота безопасности в аэропорту не только обнаруживают металлы, но также могут указывать их приблизительную высоту над полом. (кредит: «Alexbuirds» / Wikimedia Commons)
Во вспышках фотокамер обнаруживаются большие наведенные напряжения. Во вспышках камеры используются аккумулятор, два индуктора, которые работают как трансформатор, и система переключения или осциллятор для создания больших напряжений. Вспомните из статьи «Колебания при колебаниях», что «колебание» определяется как колебание величины или повторяющиеся регулярные колебания величины между двумя крайними значениями вокруг среднего значения.Также вспомните (из «Электромагнитная индукция об электромагнитной индукции»), что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы вызвать напряжение в другой катушке. Система генератора делает это много раз, когда напряжение батареи повышается до более чем 1000 вольт. (Вы можете услышать пронзительный свист трансформатора, когда конденсатор заряжается.) Конденсатор сохраняет высокое напряжение для последующего использования для питания вспышки.
Самоиндуктивность катушки Индуцированная ЭДС 2.0 В измеряется на катушке из 50 плотно намотанных витков, в то время как ток через нее равномерно увеличивается от 0,0 до 5,0 А за 0,10 с. а) Какова собственная индуктивность катушки? (б) Каков поток через каждый виток катушки при токе 5,0 А?
СтратегияОбе части этой проблемы предоставляют всю информацию, необходимую для решения самоиндукции в части (а) или потока через каждый виток катушки в части (b). Необходимые уравнения (рисунок) для части (a) и (рисунок) для части (b).
Решение
- Игнорируя отрицательный знак и используя величины, мы получаем, из (Рисунок),
- Из (Рисунок), магнитный поток выражается в единицах тока по так
Значение Самоиндукция и магнитный поток, вычисленные в частях (a) и (b), являются типичными значениями для катушек, используемых в современных устройствах. Если ток не меняется во времени, поток не изменяется во времени, поэтому ЭДС не индуцируется.
Проверьте свое понимание Ток течет через катушку индуктивности на (Рисунок) от B до A вместо A до B , как показано.Увеличивается или уменьшается ток, чтобы создать ЭДС, показанную на диаграмме (а)? На диаграмме (б)?
а. уменьшение; б. увеличение; Поскольку ток течет в противоположном направлении диаграммы, чтобы получить положительную ЭДС в левой части диаграммы (а), нам нужно уменьшить ток влево, что создает усиленную ЭДС там, где положительный конец находится слева. Чтобы получить положительную ЭДС в правой части диаграммы (b), нам нужно увеличить ток слева, что создает усиленную ЭДС там, где положительный конец находится справа.
Проверьте свое понимание Изменяющийся ток индуцирует ЭДС 10 В на катушке индуктивности 0,25 Гн. С какой скоростью меняется ток?
Хороший подход к расчету самоиндукции катушки индуктивности состоит из следующих шагов:
Стратегия решения проблем: самоиндуктивность
- Предположим, что через катушку индуктивности протекает ток I .
- Определите магнитное поле, создаваемое током.Если есть соответствующая симметрия, вы можете сделать это с помощью закона Ампера.
- Получить магнитный поток,
- При известном потоке самоиндукция может быть определена по формуле (Рисунок),.
Чтобы продемонстрировать эту процедуру, мы теперь вычисляем самоиндуктивности двух катушек индуктивности.
Цилиндрический соленоид
Рассмотрим длинный цилиндрический соленоид длиной l , площадью поперечного сечения A, и N витков провода.Мы предполагаем, что длина соленоида настолько больше, чем его диаметр, что мы можем считать, что магнитное поле распространяется по всей внутренней части соленоида, то есть мы игнорируем концевые эффекты в соленоиде. При токе I , протекающем через катушки, магнитное поле, создаваемое внутри соленоида, составляет
, поэтому магнитный поток на один виток равен
Используя (рисунок), находим для самоиндукции соленоида
Если – количество витков на единицу длины соленоида, то можно записать (рисунок) как
где – объем соленоида.Обратите внимание, что : собственная индуктивность длинного соленоида зависит только от его физических свойств (таких как количество витков провода на единицу длины и объема), а не от магнитного поля или тока. Это верно для индукторов в целом.
индуктивность | Физика
Индукция – это процесс, при котором ЭДС индуцируется изменением магнитного потока. До сих пор обсуждалось множество примеров, некоторые из которых более эффективны, чем другие. Трансформаторы, например, спроектированы так, чтобы быть особенно эффективными при наведении желаемого напряжения и тока с очень небольшими потерями энергии в другие формы.Есть ли полезная физическая величина, связанная с тем, насколько «эффективно» данное устройство? Ответ положительный, и эта физическая величина называется индуктивностью и . Взаимная индуктивность – это влияние закона индукции Фарадея для одного устройства на другое, например, первичная катушка, при передаче энергии вторичной обмотке в трансформаторе. См. Рис. 1, где простые катушки индуцируют ЭДС друг в друге.
Рис. 1. Эти катушки могут вызывать ЭДС друг в друге, как неэффективный трансформатор.Их взаимная индуктивность M указывает на эффективность связи между ними. Здесь видно, что изменение тока в катушке 1 вызывает ЭДС в катушке 2. (Обратите внимание, что « E 2 индуцированный» представляет наведенную ЭДС в катушке 2.)
Во многих случаях, когда геометрия устройств является фиксированной, магнитный поток изменяется за счет изменения тока. Поэтому мы сконцентрируемся на скорости изменения тока Δ I / Δ t как причине индукции. Изменение тока I 1 в одном устройстве, катушка 1 на рисунке, индуцирует ЭДС 2 в другом.Мы выражаем это в форме уравнения как
[латекс] {\ text {emf}} _ {2} = – M \ frac {\ Delta {I} _ {1}} {\ Delta t} \\ [/ latex],
, где M определяется как взаимная индуктивность между двумя устройствами. Знак минус является выражением закона Ленца. Чем больше взаимная индуктивность M , тем эффективнее связь. Например, катушки на рисунке 1 имеют небольшой размер M по сравнению с катушками трансформатора на рисунке 3 от Transformers. Единицами измерения для M являются (В с) / A = Ом ⋅ с, который назван генри (H) в честь Джозефа Генри.То есть 1 H = 1 Ω⋅s. Природа здесь симметрична. Если мы изменим ток I 2 в катушке 2, мы индуцируем ЭДС 1 в катушке 1, что равно
[латекс] {\ text {emf}} _ {1} = – M \ frac {\ Delta {I} _ {2}} {\ Delta t} \\ [/ latex],
, где M то же, что и для обратного процесса. Трансформаторы работают в обратном направлении с такой же эффективностью или взаимной индуктивностью M . Большая взаимная индуктивность M может быть, а может и не быть желательной.Мы хотим, чтобы трансформатор имел большую взаимную индуктивность. Но такой прибор, как электрическая сушилка для одежды, может вызвать опасную ЭДС на корпусе, если взаимная индуктивность между его катушками и корпусом велика. Один из способов уменьшить взаимную индуктивность M состоит в том, чтобы намотать катушки противотоком для подавления создаваемого магнитного поля. (См. Рисунок 2.)
Рис. 2. Нагревательные катушки электрической сушилки для одежды могут быть намотаны в противоположную сторону, так что их магнитные поля нейтрализуют друг друга, что значительно снижает взаимную индуктивность по сравнению с корпусом сушилки.
Самоиндукция , действие закона индукции Фарадея устройства на самого себя, также существует. Когда, например, увеличивается ток через катушку, магнитное поле и магнитный поток также увеличиваются, вызывая противоэдс, как того требует закон Ленца. И наоборот, если ток уменьшается, индуцируется ЭДС, которая препятствует уменьшению. Большинство устройств имеют фиксированную геометрию, поэтому изменение магнитного потока полностью связано с изменением тока Δ I через устройство.Индуцированная ЭДС связана с физической геометрией устройства и скоростью изменения тока. Выдается
[латекс] \ text {emf} = – L \ frac {\ Delta I} {\ Delta t} [/ latex],
, где L – собственная индуктивность устройства. Устройство, которое демонстрирует значительную самоиндукцию, называется индуктором и обозначено символом на рисунке 3.
Рисунок 3.
Знак минус является выражением закона Ленца, означающего, что ЭДС препятствует изменению тока.Единицами самоиндукции являются генри (Гн), как и для взаимной индуктивности. Чем больше самоиндукция L устройства, тем сильнее оно сопротивляется любому изменению тока через него. Например, большая катушка с множеством витков и железным сердечником имеет большой L и не позволит току быстро меняться. Чтобы избежать этого эффекта, необходимо добиться небольшого размера L , например, за счет встречной намотки катушек, как показано на рисунке 2. Катушка индуктивности 1 H – это большая индуктивность. Чтобы проиллюстрировать это, рассмотрим устройство с L = 1.0 H, через который протекает ток 10 A. Что произойдет, если мы попытаемся быстро отключить ток, возможно, всего за 1,0 мс? ЭДС, заданная как ЭДС = – L (Δ I / Δ t ), будет препятствовать изменению. Таким образом, ЭДС будет индуцирована ЭДС = – L (Δ I / Δ t ) = (1,0 H) [(10 A) / (1,0 мс)] = 10 000 В. Положительный знак означает, что это большое напряжение идет в том же направлении, что и ток, противодействуя его уменьшению. Такие большие ЭДС могут вызвать дуги, повредить коммутационное оборудование, и поэтому может потребоваться более медленное изменение тока.Есть применение для такого большого наведенного напряжения. Во вспышках камеры используются батарея, два индуктора, которые работают как трансформатор, и система переключения или генератор для создания больших напряжений. (Помните, что нам нужно изменяющееся магнитное поле, вызванное изменяющимся током, чтобы вызвать напряжение в другой катушке.) Система генератора будет делать это много раз, когда напряжение батареи повышается до более чем тысячи вольт. (Вы можете услышать пронзительный свист трансформатора во время зарядки конденсатора.) Конденсатор сохраняет высокое напряжение для последующего использования при питании вспышки. (См. Рисунок 4.)
Рис. 4. Благодаря быстрому переключению катушки индуктивности можно использовать батареи 1,5 В для индукции ЭДС в несколько тысяч вольт. Это напряжение можно использовать для хранения заряда в конденсаторе для последующего использования, например, в насадке для вспышки камеры.
Можно рассчитать L для индуктора, учитывая его геометрию (размер и форму) и зная создаваемое магнитное поле. В большинстве случаев это сложно из-за сложности создаваемого поля.Таким образом, в этом тексте индуктивность L обычно является заданной величиной. Единственным исключением является соленоид, потому что он имеет очень однородное поле внутри, почти нулевое поле снаружи и простую форму. Поучительно вывести уравнение для его индуктивности. Начнем с того, что наведенная ЭДС определяется законом индукции Фарадея как ЭДС = – Н (Δ Φ / Δ t ) и, по определению самоиндукции, как ЭДС = – L . (Δ I / Δ т ).Приравнивая эти доходности к
[латекс] \ text {emf} = – N \ frac {\ Delta \ Phi} {\ Delta t} = – L \ frac {\ Delta I} {\ Delta t} \\ [/ latex]
Решение для L дает
[латекс] L = N \ frac {\ Delta \ Phi} {\ Delta I} \\ [/ latex]
Это уравнение для самоиндукции L устройства всегда верно. Это означает, что самоиндукция L зависит от того, насколько эффективен ток для создания магнитного потока; чем эффективнее, тем больше Δ Φ / Δ I .Давайте воспользуемся этим последним уравнением, чтобы найти выражение для индуктивности соленоида. Поскольку площадь A соленоида является фиксированной, изменение магнитного потока составляет Δ Φ = Δ ( B A ) = A Δ B . Чтобы найти Δ B , заметим, что магнитное поле соленоида определяется выражением [латекс] B = {\ mu} _ {0} {nI} = {\ mu} _ {0} \ frac {NI} { \ ell} \\ [/ латекс]. (Здесь n = N / , где N – количество катушек, а ℓ – длина соленоида. {2} \ влево (1.{2} \ right)} {0.100 \ text {m}} \\ & = & 0.632 \ text {mH} \ end {array} \\ [/ latex].
ОбсуждениеЭтот соленоид среднего размера. Его индуктивность около миллигенри также считается умеренной.
Одно из распространенных применений индуктивности используется в светофорах, которые могут определить, когда автомобили ждут на перекрестке. Электрическая цепь с индуктором размещается на дороге под местом остановки ожидающей машины. Кузов автомобиля увеличивает индуктивность, и схема изменяется, посылая сигнал на светофор, чтобы изменить цвет.Точно так же металлоискатели, используемые для безопасности аэропортов, используют ту же технику. Катушка или индуктор в корпусе металлоискателя действует как передатчик и как приемник. Импульсный сигнал в катушке передатчика вызывает сигнал в приемнике. На самоиндукцию цепи влияет любой металлический предмет на пути. Такие детекторы могут быть настроены на чувствительность, а также могут указывать приблизительное местонахождение обнаруженного на человеке металла. (Но они не смогут обнаружить пластиковую взрывчатку, подобную той, которая была обнаружена на «бомбардировщике в нижнем белье.”) См. Рисунок 5.
Рис. 5. Знакомые ворота безопасности в аэропорту могут не только обнаруживать металлы, но и указывать их приблизительную высоту над полом. (Источник: Alexbuirds, Wikimedia Commons)
Закон индукции Фарадея: Закон Ленца
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте ЭДС, ток и магнитные поля, используя закон Фарадея.
- Объясните физические результаты Закона Ленца
Закон Фарадея и Ленца
Эксперименты Фарадея показали, что ЭДС, вызванная изменением магнитного потока, зависит только от нескольких факторов.Во-первых, ЭДС прямо пропорциональна изменению магнитного потока Δ Φ . Во-вторых, ЭДС является наибольшей, когда изменение во времени Δ t наименьшее, то есть ЭДС обратно пропорциональна Δ t . Наконец, если катушка имеет Н витков, будет создана ЭДС, которая в Н в раз больше, чем для одиночной катушки, так что ЭДС прямо пропорциональна Н . Уравнение для ЭДС, вызванной изменением магнитного потока, равно
[латекс] \ text {emf} = – N \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].
Это соотношение известно как закон индукции Фарадея . Обычно единицами измерения ЭДС являются вольты. Знак минус в законе индукции Фарадея очень важен. Минус означает, что ЭДС создает ток I и магнитное поле B, которые препятствуют изменению потока Δ Φ – это известно как закон Ленца . Направление (обозначенное знаком минус) ЭДС настолько важно, что оно было названо законом Ленца в честь русского Генриха Ленца (1804–1865), который, подобно Фарадею и Генри, независимо исследовал аспекты индукции.Фарадей знал о направлении, но Ленц так ясно изложил его, что ему приписывают его открытие. (См. Рисунок 1.)
Рис. 1. (a) Когда стержневой магнит вставляется в катушку, сила магнитного поля в катушке увеличивается. Ток, наведенный в катушке, создает другое поле в направлении, противоположном стержневому магниту, чтобы противодействовать увеличению. Это один из аспектов закона Ленца: индукция препятствует любому изменению потока. (b) и (c) – две другие ситуации. Убедитесь сами, что показанное направление индуцированной катушки B действительно противодействует изменению магнитного потока и что показанное направление тока согласуется с RHR-2.
Стратегия решения проблем закона ЛенцаЧтобы использовать закон Ленца для определения направлений индуцированных магнитных полей, токов и ЭДС:
- Сделайте набросок ситуации для использования при визуализации и записи направлений.
- Определите направление магнитного поля Б.
- Определите, увеличивается или уменьшается поток.
- Теперь определите направление индуцированного магнитного поля B. Оно противодействует изменению магнитного потока путем добавления или вычитания из исходного поля.
- Используйте RHR-2 для определения направления индуцированного тока I, который отвечает за индуцированное магнитное поле B.
- Направление (или полярность) наведенной ЭДС теперь будет управлять током в этом направлении и может быть представлено как ток, выходящий из положительного вывода ЭДС и возвращающийся к его отрицательному выводу.
Для практики примените эти шаги к ситуациям, показанным на Рисунке 1, и другим, которые являются частью следующего текстового материала.
Применение электромагнитной индукции
Существует множество применений закона индукции Фарадея, которые мы исследуем в этой и других главах. На этом этапе позвольте нам упомянуть несколько, которые связаны с хранением данных и магнитными полями. Очень важное приложение связано с аудио и видео , записывающими лентами . Пластиковая лента, покрытая оксидом железа, проходит мимо записывающей головки. Эта записывающая головка представляет собой круглое железное кольцо, вокруг которого намотана катушка с проволокой – электромагнит (рис. 2).Сигнал в виде переменного входного тока от микрофона или камеры поступает на записывающую головку. Эти сигналы (которые являются функцией амплитуды и частоты сигнала) создают переменные магнитные поля на записывающей головке. Когда лента движется мимо записывающей головки, ориентация магнитного поля молекул оксида железа на ленте изменяется, таким образом записывая сигнал. В режиме воспроизведения намагниченная лента проходит мимо другой головки, аналогичной по конструкции записывающей головке. Различная ориентация магнитного поля молекул оксида железа на ленте индуцирует ЭДС в проволочной катушке в воспроизводящей головке.Затем этот сигнал отправляется на громкоговоритель или видеоплеер.
Рис. 2. Головки для записи и воспроизведения, используемые с аудио- и видеомагнитными лентами. (кредит: Стив Юрветсон)
Аналогичные принципы применимы и к жестким дискам компьютеров, но с гораздо большей скоростью. Здесь записи находятся на вращающемся диске с покрытием. Исторически считывающие головки создавались по принципу индукции. Однако входная информация передается в цифровой, а не аналоговой форме – на вращающемся жестком диске записывается серия нулей или единиц.Сегодня большинство считывающих устройств с жестких дисков не работают по принципу индукции, а используют технологию, известную как гигантское магнитосопротивление . (Открытие того факта, что слабые изменения магнитного поля в тонкой пленке из железа и хрома могут приводить к гораздо большим изменениям электрического сопротивления, было одним из первых крупных успехов нанотехнологии.) Еще одно применение индукции можно найти на магнитной полосе на магнитной полосе. на оборотной стороне вашей личной кредитной карты, которая использовалась в продуктовом магазине или в банкомате.Это работает по тому же принципу, что и аудио- или видеопленка, упомянутая в последнем абзаце, в которой голова считывает личную информацию с вашей карты.
Другое применение электромагнитной индукции – это когда электрические сигналы должны передаваться через барьер. Рассмотрим кохлеарный имплант , показанный ниже. Звук улавливается микрофоном на внешней стороне черепа и используется для создания переменного магнитного поля. Ток индуцируется в приемнике, закрепленном в кости под кожей, и передается на электроды во внутреннем ухе.Электромагнитная индукция может использоваться и в других случаях, когда электрические сигналы должны передаваться через различные среды.
Рис. 3. Электромагнитная индукция, используемая при передаче электрического тока через среды. Устройство на голове ребенка индуцирует электрический ток в приемнике, закрепленном в кости под кожей. (кредит: Бьорн Кнетч)
Еще одна современная область исследований, в которой электромагнитная индукция успешно реализуется (и имеет значительный потенциал), – это транскраниальное магнитное моделирование.Множество расстройств, включая депрессию и галлюцинации, можно объяснить нерегулярной локальной электрической активностью в головном мозге. В транскраниальной магнитной стимуляции быстро меняющееся и очень локализованное магнитное поле помещается рядом с определенными участками, идентифицированными в головном мозге. В идентифицированных участках индуцируются слабые электрические токи, которые могут привести к восстановлению электрических функций в тканях мозга.
Апноэ сна («остановка дыхания») поражает как взрослых, так и младенцев (особенно недоношенных детей, и это может быть причиной внезапной детской смерти [SID]).У таких людей дыхание может многократно останавливаться во время сна. Прекращение действия более чем на 20 секунд может быть очень опасным. Инсульт, сердечная недостаточность и усталость – вот лишь некоторые из возможных последствий для человека, страдающего апноэ во сне. У младенцев проблема заключается в задержке дыхания на это более длительное время. В одном из типов мониторов, предупреждающих родителей о том, что ребенок не дышит, используется электромагнитная индукция. В проводе, обмотанном вокруг груди младенца, проходит переменный ток. Расширение и сжатие грудной клетки младенца во время дыхания изменяет площадь спирали.В расположенной рядом катушке датчика индуцируется переменный ток из-за изменения магнитного поля исходного провода. Если ребенок перестанет дышать, наведенный ток изменится, и родители могут быть предупреждены.
Установление соединений: сохранение энергииЗакон Ленца – это проявление сохранения энергии. Индуцированная ЭДС создает ток, который противодействует изменению потока, потому что изменение потока означает изменение энергии.Энергия может входить или уходить, но не мгновенно. Закон Ленца – следствие. Когда изменение начинается, закон гласит, что индукция противодействует и, таким образом, замедляет изменение. Фактически, если бы индуцированная ЭДС была в том же направлении, что и изменение потока, была бы положительная обратная связь, которая не давала бы нам бесплатную энергию из любого видимого источника – закон сохранения энергии был бы нарушен.
Пример 1. Расчет ЭДС: насколько велика наведенная ЭДС?Рассчитайте величину наведенной ЭДС, когда магнит, изображенный на Рисунке 1 (а), вдавливается в катушку, учитывая следующую информацию: одноконтурная катушка имеет радиус 6.00 см, а среднее значение B cos θ (это дано, поскольку поле стержневого магнита сложное) увеличивается с 0,0500 Тл до 0,250 Тл за 0,100 с.
СтратегияЧтобы найти величину ЭДС, мы используем закон индукции Фарадея, как указано в [latex] \ text {emf} = – N \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex], но без знака минус, указывающего направление:
[латекс] \ text {emf} = N \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].
РешениеНам дано, что N = 1 и Δ t = 0.100 с, но мы должны определить изменение потока Δ Φ , прежде чем мы сможем найти ЭДС. Поскольку площадь петли фиксирована, мы видим, что
ΔΦ = Δ ( BA cos θ ) = AΔ ( B cos θ ).
Теперь Δ ( B cos θ ) = 0,200 Тл, поскольку было задано, что B cos θ изменяется с 0,0500 до 0,250 Тл. Площадь контура A = πr2 = (3,14…) ( 0,060 м) 2 = 1,13 × 10 −2 м 2 .{2} \ right) \ left (0.200 \ text {T} \ right)} {0.100 \ text {s}} = 22.6 \ text {mV} \\ [/ latex].
ОбсуждениеХотя это напряжение легко измерить, его явно недостаточно для большинства практических приложений. Больше петель в катушке, более сильный магнит и более быстрое движение делают индукцию практическим источником напряжения, которым она и является.
Исследования PhET: Электромагнитная лаборатория ФарадеяПоиграйте с стержневым магнитом и катушками, чтобы узнать о законе Фарадея.Поднесите стержневой магнит к одной или двум катушкам, чтобы лампочка загорелась. Просмотрите силовые линии магнитного поля. Измеритель показывает направление и величину тока. Просмотрите силовые линии магнитного поля или используйте измеритель, чтобы показать направление и величину тока. Вы также можете играть с электромагнитами, генераторами и трансформаторами!
Щелкните, чтобы загрузить симуляцию. Запускать на Java.
Сводка раздела
Концептуальные вопросы
- Человек, работающий с большими магнитами, иногда помещает голову в сильное поле.Она сообщает, что у нее кружится голова, когда она быстро поворачивает голову. Как это может быть связано с индукцией?
- Ускоритель частиц отправляет заряженные частицы с высокой скоростью по откачанной трубе. Объясните, как катушка с проволокой, намотанная вокруг трубы, может обнаруживать прохождение отдельных частиц. Нарисуйте график выходного напряжения катушки при прохождении через нее одиночной частицы.
Задачи и упражнения
1. Как показано на Рисунке 5 (а), каково направление тока, индуцируемого в катушке 2: (а) Если ток в катушке 1 увеличивается? (b) Если ток в катушке 1 уменьшается? (c) Если ток в катушке 1 постоянный? Ясно покажите, как вы следуете шагам из приведенной выше стратегии решения проблем для закона Ленца .
Рис. 5. (a) Катушки лежат в одной плоскости. (б) Проволока находится в плоскости катушки.
2. Как показано на Рисунке 5 (b), в каком направлении индуцируется ток в катушке: (a) Если ток в проводе увеличивается? (б) Если ток в проводе уменьшится? (c) Если ток в проводе внезапно меняет направление? Ясно покажите, как вы следуете шагам из приведенной выше стратегии решения проблем для закона Ленца .
3. Как показано на Рисунке 6, каковы направления токов в катушках 1, 2 и 3 (предположим, что катушки лежат в плоскости цепи): (a) Когда переключатель в первый раз замкнут? (б) Когда выключатель был замкнут в течение длительного времени? (c) Сразу после размыкания переключателя?
Рисунок 6.
4. Повторите предыдущую проблему с перевернутой батареей.
5. Убедитесь, что единицами измерения Δ Φ / Δ t являются вольты. То есть показать, что 1 Тл м 2 / с = 1 В.
6. Предположим, что 50-витковая катушка лежит в плоскости страницы в однородном магнитном поле, направленном внутрь страницы. Змеевик изначально имел площадь 0,250 м 2 . Он растягивается, чтобы не было площади за 0,100 с. Каковы направление и величина наведенной ЭДС, если однородное магнитное поле имеет напряженность 1.50 т?
7. (a) Техник МРТ перемещает свою руку из области очень низкой напряженности магнитного поля в поле 2,00 Тл сканера МРТ, указывая пальцами в направлении поля. Найдите среднюю ЭДС, индуцированную в его обручальном кольце, учитывая его диаметр 2,20 см и предполагая, что для его перемещения в поле требуется 0,250 с. (б) Обсудите, может ли этот ток существенно изменить температуру кольца.
8. Integrated Concepts Ссылаясь на ситуацию в предыдущей задаче: (a) Какой ток индуцируется в кольце, если его сопротивление равно 0.0100 Ом? (б) Какая средняя мощность рассеивается? (c) Какое магнитное поле индуцируется в центре кольца? (d) Каково направление индуцированного магнитного поля относительно поля МРТ?
9. ЭДС индуцируется вращением катушки с 1000 витками диаметром 20,0 см в магнитном поле Земли 5,00 × 10 −5 Тл. Какая средняя ЭДС индуцируется, если плоскость катушки изначально перпендикулярна полю Земли и повернута параллельно полю за 10,0 мс?
10.Катушка с 500 витками радиусом 0,250 м поворачивается на одну четверть оборота за 4,17 мс, первоначально ее плоскость перпендикулярна однородному магнитному полю. (Это 60 об / с.) Найдите напряженность магнитного поля, необходимую для индукции средней ЭДС 10 000 В.
11. Integrated Concepts Примерно как ЭДС, наведенная в петле на рисунке 5 (b), зависит от расстояния центра петли от провода?
12. Integrated Concepts (a) Молния создает быстро меняющееся магнитное поле.Если болт ударяется о землю вертикально и действует как ток в длинном прямом проводе, он вызывает напряжение в петле, выровненной, как показано на рисунке 5 (b). Какое напряжение индуцируется в петле диаметром 50,0 м 1,00 м от удара молнии 2,00 × 10 6 , если ток падает до нуля за 25,0 мкс? (b) Обсудите обстоятельства, при которых такое напряжение может привести к заметным последствиям.
Глоссарий
- Закон индукции Фарадея:
- средство расчета ЭДС в катушке из-за изменения магнитного потока, заданное как [latex] \ text {emf} = – N \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex]
- Закон Ленца:
- знак минус в законе Фарадея, означающий, что индуцированная в катушке ЭДС противодействует изменению магнитного потока.
Избранные решения проблем и упражнения
1.(a) CCW (b) CW (c) Нет наведенного тока
3. (a) 1 против часовой стрелки, 2 против часовой стрелки, 3 по часовой стрелке (b) 1, 2 и 3 без тока индуцированного (c) 1 CW, 2 CW, 3 CCW
7. (a) 3,04 мВ (b) В качестве нижнего предела для кольца оценим R = 1,00 мОм. Передаваемое тепло составит 2,31 мДж. Это небольшое количество тепла.
9. 0,157 В
11. пропорционально [латексу] \ frac {1} {r} \\ [/ latex]
Страница не найдена | MIT
Перейти к содержанию ↓- Образование
- Исследовать
- Инновации
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
- Подробнее ↓
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов
Предложения или отзывы?
Собственная индуктивность | Примечания по электронике
– основная информация о самоиндукции, о том, как она возникает, основная формула самоиндукции и соответствующие расчеты.
Индуктивность и руководство по трансформатору Включает:
Индуктивность
Символы
Закон Ленца
Собственная индуктивность
Расчет индуктивного реактивного сопротивления
Теория индуктивного реактивного сопротивления
Индуктивность проволоки и катушек
Трансформеры
Самоиндукция – это эффект, который замечается, когда одна катушка испытывает влияние индуктивности.
Под действием самоиндукции и изменения тока индуцируют ЭДС или электродвижущую силу в том же проводе или катушке, создавая то, что часто называют обратной ЭДС.
Поскольку эффект наблюдается в том же проводе или катушке, которые генерируют магнитное поле, эффект известен как самоиндукция.
Определения самоиндукции
Полезно упомянуть различные определения, связанные с самоиндукцией.
- Самоиндукция: Самоиндукция определяется как явление, при котором изменение электрического тока в цепи вызывает индуцированную электродвижущую силу в той же цепи.
- Единица самоиндукции: Самоиндукция катушки считается равной одному генри, если изменение тока в цепи на один ампер в секунду создает в цепи электродвижущую силу в один вольт.
Основы самоиндукции
Когда ток проходит по проводу, особенно когда он проходит через катушку или индуктор, индуцируется магнитное поле. Он выходит наружу от провода или индуктора и может соединяться с другими цепями.Однако он также связан с цепью, из которой он настроен.
Магнитное поле можно представить в виде концентрических контуров магнитного потока, которые окружают провод, и более крупных, которые соединяются с другими из других контуров катушки, обеспечивая самосвязь внутри катушки.
Когда ток в катушке изменяется, это вызывает индуцирование напряжения в различных контурах катушки – результат самоиндукции.
СамоиндукцияС точки зрения количественной оценки влияния индуктивности, основная формула, приведенная ниже, дает количественную оценку этого эффекта.
Где:
VL = индуцированное напряжение в вольтах
N = количество витков в катушке
dφ / dt = скорость изменения магнитного потока в веберах / секунду
Наведенное напряжение в катушке индуктивности также может быть выражено через индуктивность (в генри) и скорость изменения тока.
Самоиндукция – это способ работы одиночных катушек и дросселей. Дроссель используется в радиочастотных цепях, потому что он противодействует любому изменению, то есть радиочастотному сигналу, но допускает любое устойчивое, т.е.е. Постоянный ток течет.
Другие основные концепции электроники:
Напряжение
Текущий
Мощность
Сопротивление
Емкость
Индуктивность
Трансформеры
Децибел, дБ
Законы Кирхгофа
Q, добротность
РЧ шум
Вернуться в меню «Основные понятия электроники». . .
Самоиндуктивность – определение, формула, единицы измерения и ответы на часто задаваемые вопросы
Давайте рассмотрим волшебство концепции самоиндукции.
Рассмотрим катушку и пропустим через нее ток, не только ток, но и изменяющийся ток.
Теперь из-за изменения тока в нем индуцируется дополнительный ток, т. Е. Индуцированный ток.
Итак, вы знаете, что означает этот наведенный ток?
Ну, индуцированный ток нематериален, и это свойство катушки генерировать его из-за изменяющегося тока, подаваемого нами через батарею.
Не все ли так просто?
Однако наше внимание уделяется самоиндукции, поэтому давайте вернемся к рассмотрению этой волшебной концепции.
Итак, что вы наблюдали в этом явлении и почему оно волшебное?
Итак, волшебство заключается в следующем: при передаче тока в катушку она индуцирует внутри себя ток, известный как самоиндуцированный. Вот почему это явление известно как самоиндукция.
Собственная индуктивность катушки
Рассмотрим катушку и пропустим через нее ток. Подача тока является первичным током, и здесь мы рассмотрим два случая, а именно:
Подача, которая постоянно увеличивается, и
Подача тока уменьшается.
Случай a: Рассмотрим катушку, в которой первичный (подаваемый) ток увеличивается в направлении, показанном на диаграмме ниже.
(изображение будет загружено в ближайшее время)
Как вы знаете, возрастающий (изменяющийся) ток сам по себе генерирует индуцированный ток, то есть самоиндуцированный ток, но он течет в направлении, противоположном направлению тока ток поставлен. Направление этого самоиндуцированного тока показано на диаграмме ниже.
(изображение будет загружено в ближайшее время)
Этот индуцированный ток препятствует любому изменению (или увеличению тока) того тока, из-за которого он возникает.
Теперь возьмем другой случай:
Случай b: Рассмотрим катушку, в которой ток уменьшается. Здесь происходит следующее: индуцированный ток способствует изменению (или уменьшению) приложенного тока.
Это означает, что индуцированный ток течет в направлении приложенного тока и способствует его увеличению.
(изображение будет загружено в ближайшее время)
Мы поняли, что индуцированный ток противодействует увеличению тока и поддерживает уменьшение тока.
(изображение скоро будет загружено)
Что такое самоиндуктивность?
Рассмотрим круг, в котором изменяющийся ток создает магнитное поле (B).
Направление этого поля можно определить, согнув пальцы правой руки, и мы получим направление B, которое указывает внутрь, что можно увидеть в виде крестиков на диаграмме ниже:
(изображение будет загружу скоро)
Теперь при увеличении тока силовые линии магнитного поля тоже увеличиваются.Это означает B α i.
Из-за увеличения B также увеличивается поток (ΦB).
Как только поток увеличивается, тогда, согласно закону индукции Фарадея, в этой катушке возникает наведенная ЭДС.
По закону Ленца,
Эта наведенная ЭДС представляет собой разность потенциалов между двумя точками этой катушки, из-за которой генерируется наведенный ток. Этот индуцированный ток уменьшит первичный ток. Его направление наружу, т. Е. Противоположно направлению B.
Этот ток создает свой поток, который противодействует потоку (ΦB), из-за которого он был создан.
Итак, это явление самоиндукции.
Формула самоиндуктивности
Давайте рассмотрим катушку с током, имеющую количество витков N, как показано ниже:
(изображение будет загружено в ближайшее время)
Если поток через одну катушку равен Φ, то для N количества витков катушек, это будет:
ΦT (общий поток) = NΦ, и
ΦT α i
После удаления знака пропорциональности получим
ΦT = Li ⇒ L = \ [\ frac {N \ Phi T} {i} \]
Где L – коэффициент самоиндукции.
Здесь L – постоянная, не зависящая от Φ и i. Скорее, это зависит от следующего:
Геометрия,
Форма и
Размер индуктора (катушки).
Это означает, что индуктивность не изменяется при увеличении или уменьшении при изменении Φ и i.
Единица самоиндукции
Единица самоиндукции – Вебер / Ампер или Генри «H».
Размер самоиндукции составляет [ML 2 T -2 A -2 ].
Определение коэффициента самоиндукции
По закону Фарадея ЭДС, \ [e = – \ frac {\ Phi T} {dt} \]
Итак, \ [e = | – L \ frac {di} {dt} | \ Rightarrow L = \ frac {e} {| \ frac {di} {dt} |} \]
Если значение изменения тока или di / dt составляет 1 ампер / секунду, тогда L = e. Это определение коэффициента самоиндукции.
Мы знаем, что индуктивность – это свойство электрического проводника, благодаря которому изменение тока вызывает ЭДС.
Самоиндукция и взаимная индукция
S.№ | Самоиндукция | Взаимная индукция |
1. Определение | Если скорость тока вызывает ЭДС или напряжение в той же катушке, то этот тип индукции является самоиндукция. | Если скорость изменения тока вызывает наведенную ЭДС в соседней катушке, то это взаимная индукция. |
2. Формула | \ [e = – L \ frac {di} {dt} \] и \ [L = \ frac {e} {| di / dt |} \] Для N числа витков в катушке, \ [L = \ frac {N \ Phi T} {i} \] | Если ток течет в первичной катушке, то коэффициент взаимной индукции, \ [ M = \ frac {N_ {2} \ Phi_ {12}} {i_ {1}} \] Если ток течет во вторичной катушке, то \ [M = \ frac {N_ {1} \ Phi_ { 21}} {i_ {2}} \] |