Содержание

ЕСКД. Обозначения условные графические в схемах. Приборы электроизмерительные

Наименование

Обозначение

1а. Датчик измеряемой неэлектрической величины

1. Прибор электроизмерительный

 

а) показывающий

б) регистрирующий

в) интегрирующий (например, счетчик электрической энергии)

Примечания:

1. При необходимости изображения нестандартизованных электроизмерительных приборов следует попользовать сочетания соответствующих основных обозначении, например, комбинированный прибор, показывающий и регистрирующий.

2. Для указания назначения электроизмерительного прибора в его обозначение вписывают условные графические обозначения, установленные в стандартах ЕСКД. а также буквенные обозначения единиц измерения или измеряемых величин, которые помещают внутри графического обозначения электроизмерительного прибора

a) амперметр

б) вольтметр

в) вольтметр двойной

г) вольтметр дифференциальный

д) вольтамперметр

е) ваттметр

W

ж) ваттметр суммирующий

W

з) варметр (измеритель активной мощности)

var

и) микроамперметр

μA

к) миллиамперметр

тА

л) милливольтметр

mV

м) омметр

Ω

н) мегаомметр

MΩ

о) частотомер

Hz

п) волномер

λ

р) фазометр: измеряющий сдвиг фаз

φ

измеряющий коэффициент мощности

cosφ

с) счетчик ампер-часов

Ah

т) счетчик ватт-часов

Wh

у) счетчик вольт-ампер-часов реактивный

varh

ф) термометр, пирометр

t°

(допускаетсяΘо)

х) индикатор полярности

+

и) тахометр

n

ч) измеритель давления

Pa или Р

т) измеритель уровня жидкости

ш) измеритель уровня сигнала

dB

3.

В обозначения электроизмерительных приборов допускается вписывать необходимые данные согласно действующим стандартам на электроизмерительные приборы.

4. Если необходимо указать характеристику отсчетного устройства прибора, то в его обозначение вписывают следующие квалифицирующие символы:

а) прибор, подвижная часть которого может отклоняться в одну сторону от нулевой отметки:

 

вправо

влево

б) прибор, подвижная часть которого может отклоняться в обе стороны от нулевой отметки

допускается применять обозначение

в) прибор вибрационной системы

г) прибор с цифровым отсчетом

д) прибор с непрерывной регистрацией (записывающий)

е) прибор с точечной регистрацией (записывающий)

ж) прибор печатающий с цифровой регистрацией

з) прибор с регистрацией перфорированием

Например:

 

вольтметр с цифровым отсчетом

вольтметр с непрерывной регистрацией

амперметр, подвижная часть которого отклоняется в обе стороны от нулевой отметки

2. Гальванометр

3. Синхроноскоп

4. Осциллоскоп

5. Осциллограф

6. Гальванометр осциллографический:

а) тока или напряжения

б) мгновенной мощности

7. Счетчик импульсов

8. Электрометр

9. Болометр полупроводниковый

10. Датчик температуры

10а. Датчик давления

Примечание: При необходимости указания конкретной величины, в которую преобразуется неэлектрическая величина, допускается применять следующие обозначения, например, датчик давления

11. Термоэлектрический преобразователь:

а) с бесконтактным нагревом

б) с контактным нагревом

По ГОСТ 2.768-90

По ГОСТ 2.768-90

П. 12 по ГОСТ 2.728-74

13. Часы вторичные

Примечание. Для указания часов, минут и секунд используют следующее обозначение

14. Часы первичные

15. Часы с контактным устройством

16. Часы синхронные, например, на 50 Гц

17. Индикатор максимальной активной мощности, имеющий обратную связь с ваттметром

18. Дифференциальный вольтметр

19. Соленомер

20. Самопишущий комбинированный ваттметр и варметр

21. Счетчик времени

22. Счетчик ватт-часов, измеряющий энергию, передаваемую в одном направлении

23. Счетчик ватт-часов с регистрацией максимальной активной мощности

24. Отличительный символ функции счета числа событий

25. Счетчик электрических импульсов с ручной установкой на n (установка на нуль при n=0)

26. Счетчик электрических импульсов с установкой на нуль электрическим путем

27. Счетчик электрических импульсов с несколькими контактами; контакты замыкаются соответственно на каждой единице (10°), десятке (101), сотне (102), тысяче (103) событий, зарегистрированных счетным устройством

28. Счетное устройство, управляемое кулачком и управляющее замыканием контакта через каждые п событий

Примечания к п.1-28

1. При изображении обмоток измерительных приборов разнесенным способом используют следующие обозначения:

 

а) обмотка токовая

б) обмотка напряжения

в) обмотка секционирования с отводами:

 

токовая

напряжения

г) обмотка секционирования переключаемая:

токовая

напряжения

2. Обмотка в схемах измерительных приборов, отражающих их взаимное расположение в измерительном механизме, изображают следующим образом:

 

а) обмотка токовая

б) обмотка напряжения

в) обмотки токовые для сложения или вычитания

г) обмотки напряжения для сложения или вычитания

Например, механизм измерительный:

 

амперметра однообмоточного

вольтметра однообмоточного

ваттметра однофазного

ваттметра трехфазного одноэлементного с двумя токовыми обмотками

ваттметра трехфазного двухэлементного

ваттметра трехфазного трехэлементного

логометра магнитоэлектрического (например, омметра-логометра)

логометра ферродинамического (например, частотомера)

логометра электродинамического (например, фазометра однофазного)

логометра трехобмоточного (например, фазометра трехфазного с двумя токовыми обмотками)

логометра четырехобмоточного (например, синхроноскопа трехфазного)

логометра четырехобмоточного (например, фазометра трехфазного с одной токовой обмоткой)

3. Выводные контакты обмоток допускается не изображать, если это не приведет к недоразумению

 

4. Выводные контакты обмоток допускается не зачернять, например, вольтметр однообмоточный

Виды и обозначения вольтметров

28.05.2014

Виды и обозначения вольтметров

Вольтметр — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечным внутренним сопротивлением. В реальном вольтметре, чем выше внутреннее сопротивление, тем меньше влияния прибор будет оказывать на измеряемый объект и, следовательно, тем выше будет точность и разнообразнее области применения.

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмысоответствующих типов с показывающими устройствами. Для увеличения предела измерений используются добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразова­нии измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к примирению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

  • Диапазон измерения напряжений
  • Допустимая погрешность или класс точности
  • Диапазон рабочих частот

Вольтметр – это.

.. Что такое Вольтметр? Два цифровых вольтметра. Верхний — коммерческая модель. Нижний сконструировали студенты Берлинского технического университета

Вольтметр (вольт + гр. μετρεω измеряю) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами. Для увеличения предела измерений используются добавочные сопротивления.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Аналоговые электронные вольтметры общего назначения

Цифровые электронные вольтметры общего назначения

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к примирению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Фазочувствительные вольтметры

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

История

Первым в мире вольтметром был «указатель электрической силы» русского физика Г.  В. Рихмана (1745). Принцип действия «указателя» используется в современном электростатическом вольтметре.

См. также

Другие средства измерения напряжений и ЭДС

  • Для измерения абсолютного значения:
    • Потенциометр — точные измерения компенсационным методом
    • Мультиметр (тестер) — комбинированный прибор для измерения напряжения, силы тока и сопротивления
    • Осциллограф — измерение мгновенных значений напряжения сигнала, изменяющегося во времени
    • Электрометр — прибор, служащий для измерения электрического потенциала
  • Для измерения относительного значения:
    • Измерители отношений напряжений
    • Измерители нестабильности напряжений
  • Преобразователи:
  • Меры:

Прочие ссылки

Литература и документация

Литература

  • Справочник по электроизмерительным приборам; Под ред. К. К. Илюнина — Л.:Энергоатомиздат, 1983
  • Справочник по радиоизмерительным приборам: В 3-х т. ; Под ред. В. С. Насонова — М.:Сов. радио, 1979

Нормативно-техническая документация

  • ГОСТ 8711-93 (МЭК 51-2-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 2. Особые требования к амперметрам и вольтметрам
  • ГОСТ 8.006-72, ГОСТ 8.012-72, ГОСТ 8.117-82, ГОСТ 8.118-85, ГОСТ 8.119-85, ГОСТ 8.402-80, ГОСТ 8.429-81, ГОСТ 8.497-83 — методики поверки вольтметров разных видов
  • ТУ Тч2.710.010 Вольтметры универсальные цифровые

Ссылки

Контакторы — Обозначения – Энциклопедия по машиностроению XXL

Контактор (общее обозначение)  [c.246]

Выключатель Вк подключает к зажимам селенового выпрямителя вольтметр, розетку подогревателя газа и цепь управления контактором (фиг. 35). Контактор — электромагнитное устройство для дистанционного замыкания и размыкания электрической цепи. На электрической схеме контактор условно обозначен КС. Его катушка и главные контакты также условно обозначены значками 2 и Контактор КС позволяет включать и выключать сварочную цепь, находясь на некотором удалении от пульта управления.  [c.64]


Обмотка реле или контактора (общее обозначение)  [c.352]

Быстродействующий выключатель. Схемное обозначение ВБ1. Электропневматические и электромагнитные контакторы. Схемное обозначение К1…К70. Имеют два положения первое — Выключено, второе — Включено. Нормальное положение — Выключено, силовые контакты изображаются разомкнутыми, а вспомогательные — замкнутыми.  [c.12]

А. Контакторы В — ход вперед, вверх ДТ — динамического торможения КБ — блокировочный НП — промежуточный НФ — форсировки Л — линейный // — ход назад, вниз П — противовключения Т – тормозной У — ускорения УП — управления полем Примечание. Контакторы, управляющие включающими соленоидами высоковольтных выключателей, называются релейными и перед функциональным обозначением выключателя имеют две буквы КР. Например, релейный контактор выключателя нулевой точки обозначается КРН.  [c.437]

Каждый аппарат обозначается одной или несколькими начальными буквами слов, выражающих функцию, выполняемую данным аппаратом в схеме, но не наименование конструктивного типа аппарата. Если таких аппаратов имеется несколько, перед функциональным обозначением ставится порядковый номер аппарата. Так как одну и ту же функцию могут выполнять и контакторы, и реле, перед функциональным буквенным обозначением реле всегда ставится буква Р. Ниже приведены часто встречающиеся функциональные обозначения аппаратуры (табл. I).  [c.540]

Контакторы, все контакты которых включены в цепи управления или возбуждения, обычно имеют перед функциональным обозначением букву К. Например, контактор ускорения полем обозначается КУП, контактор блокировочный— КБ и т. д.  [c.540]

Контакторы — Обозначения 541 —— переменного тока 537  [c.714]

На контакторных панелях с двух сторон должны быть надписи белилами с обозначением контакторов в соответствии с принципиальной и монтажной схемами,  [c.659]
Принципиальная схема установки с машинным генератором для индукционного нагрева токами высокой частоты показана на рис. 80. От сети с частотой 50 гц через контакторы 1 и 4 подается напряжение на электродвигатель 2, приводящий во вращение машинный генератор тока высокой частоты 3, и на электродвигатель 5, приводящий во вращение возбудитель тока 6. Понижение напряжения и увеличение силы тока высокой частоты осуществляются в трансформаторе, обозначенном на схеме цифрами 9 и 10. Деталь 12 помещают в медный водоохлаждаемый индуктор 11. В поверхностных слоях детали под воздействием магнитного поля тока высокой частоты, протекающего по индуктору, наводятся вихревые токи. Они нагревают поверхностные слои детали до температуры, необходимой для закалки. Чем выше частота тока, проходящего по индуктору, тем тоньше получается нагретый слой. Машинные генераторы позволяют получить частоту от 500 до 10000 гц, а ламповые генераторы — до 10000 кгц. Машинные генераторы применяют для нагрева круп-  [c.150]

Здесь через М обозначен электродвигатель, через К контактор и его катушка, через РТ — тепловое реле.  [c.265]

Примечания I. Контакторы с серебряно-керамическими накладками на главных контактах имеют в обозначении дополнительную букву С.  [c.57]

Обозначения на схеме и назначения реле и контакторов  [c.40]

Обозначение на схеме и назначение реле и контакторов. Назначение контакторов КВ, КН, КБ, КМ, реле РКД, РОД, РЗД и РВ2 приведено в электрической схеме лифта грузоподъемностью 320 кг со скоростью 0,71 м/с.  [c.63]

Находят конец и начало третьей катушки электродвигателя. Для этого присоединяют вольтметр к катушке II (рис. 101, в) соединяют провода 3 и 5, принадлежащие катушкам I и III, между собой присоединяют к проводам 1 я 6 катушек и III сетевые провода включают автоматический выключатель и воздействием на якорь контактора подают напряжение на электродвигатель записывают показание вольтметра и отключают автоматический выключатель маркируют провода, принадлежащие катушке III так, как показано на рис. 101, в (обозначения указаны не в скобках), если показание вольтметра максимальное если же показание вольтметра минимальное, то маркировка начала и концов проводов /// катушки производится, как указано в скобках.  [c.278]

На втягивающей катушке контактора указывают заводское обозначение катушки, номинальное нанряжение, марку проволоки и ее диаметр (в мм), число витков и сопротивление катушки.  [c.214]

Катушка электромеханического устройства (контактора, реле, электромагнита общее обозначение)  [c.134]

Принципиальная электрическая схема определяет полный состав элементов (машин, аппаратов и т. п.) и связей между ними и дает детальное представление о принципах работы устройства. Электрические машины, аппараты, приборы и связи между ними на принципиальной схеме показывают в виде условных графических обозначений (табл. 12). Коммутирующие устройства (выключатели, кнопки, контакты контакторов, реле и т. п.) изображаются на схеме в отключенном положении, т. е. при отсутствии тока во всех цепях схемы и внешних сил, воздействующих на подвижные части контактов. Контакты, разомкнутые в отключенном положении аппарата, называются замыкающими. Контакты, замкнутые в отключенном положении аппарата, называются размыкающими.  [c.133]

Контакт и блок-контакт контактора, пускателя, силового контроллера а — замыкающий б — размыкающий Контакт с гашением (общее обозначение) а — замыкающий б — размыкающий  [c.136]

Обмотка реле, контактора и магнитного пускателя. Общее обозначение  [c.121]

Допускается для изображения обмоток реле, контакторов и магнитных пускателей применять обозначения, например обмотка контактора и магнитного пускателя  [c.121]

Выполните условное графическое обозначение трехполюсного выключателя, лампы местного освещения, обмотки контактора.  [c.435]

Все аппараты управления и контакторы должны иметь надписи с обозначением их в принципиальной и монтажной электросхемах.  [c.185]

Примечание. Обозначения контакторов К — контактор М — морской 2 — серия вторая цифра — исполнение главных контактов 1 — замыкающий (а) 2 — 3 з 3 — 3 з 4 — 1 размыкающий (р) 5—1з+1 (р) 6 —2з + 1р 7 — 2з + +2р третья цифра — род тока главной цепи и условное обозначение исполнения блок-контактов нечетные — переменный ток, четные — постоянный 1 и 2 — минимальное количество блок-контактов 3 и 4 — максимальное 5 и 7 — исполнение для пускателей 6 — клиновые блок-контакты расположены перед магнитной системой контактора четвертая цифра — величина контактора по номинальному току К —разрешено применение в передвижных установках.  [c.51]


Ток фазы А1, пройдя через автоматический выключатель под обозначением А2 идет на контакторы реверса грз зовой лебедки — КМ1 и КМ2, механизма поворота — КМЗ и КМ4, механизма передвижения — КМЗ и КМб, стреловой лебедки — КМ7 и КМ8. Ток фаз В1 я С1 после автоматического выключателя под обозначением фаз В2 и С2 подается на неподвижные контакты линейного контактора КМ17. При включении линейного контактора ток фазы В2 под обозначением СЗ (прямая фаза) подается на статоры электродвигателей подъема — М1, тормоза ТКТГ-300 грузовой лебедки — В1, механизма поворота — Л/2, механизма передвижения – М3 и М4, стреловой лебедки — М3 У1 через контакты промежуточного реле КА2 иа статор электродвигателя Мб тормоза стреловой лебедки. Ток фазы С2, пройдя контактор, под обозначением СЗ поступает на катушки максимальных реле всех электро-  [c.60]
Рис. 37. Принципиальная электрическая схема электропогрузчика ЭП-1631 Д1 и Д2—вентили, обеспечивающие соединение секций аккумуляторной батареи с последовательного на параллельное, Кт1 — контактор соединения секций аккумуляторной батареа с параллельного на последовательный, — контактор отключения и включения в цепь электродвигателя передвижения сопротивления ПС, КгЗ — контактор включения электродвигателя гидронасоса. К/—/С- — микровыключатели контроллера, /С7-/—Кг5 — катушки контакторов аналогичного обозначения, V —вольтметр
Фаза Л31, пройдя линейный контактор, под обозначением Л32 оступает на катушки максимальных реле всех электродвигателей — грузового двигателч МП МРВ — двигателя поворота МВ  [c.473]

Обмотка реле, контактора и магнитного пускателя общее обозначение (а), допускается (б). В обозначении (б) указыв ну тип реле Г — реле тока, Я — реле напряжения и др. (ГОСТ 2.725—68). Например, реле тока (в). Допускается изображать контакты и указывать выводы обмоток (г)  [c.317]

А. Проверка состояния изоляции проводов друг относительно друга. Присоединяют провода мегаомметра к отключенным от напряжения клеммам АВ (обозначение трех фаз сети А, В, С слева направо при прямом чередовании фаз) или к любым двум отключенным от электродвигателя проводам сети. Включают вручную контактор направления, большой или малой скорости. Вращают ручку генератора мегаомметра и отсчитывают показание. В таком же порядке замеряют сопротивление изоляции проводов фаз ВС и АС. Показания мегаом-  [c.15]

Обозначение реле, контактора, электродвигателя и других элементов схемы (за исключением контактов), участву ощих в приведенной последовательности ее действия ЗРЭ, КБ, КВ, PH, Ml, ЭмТ и др. Выражения в скобках, приводимые после обозначения реле, контактора или электродвигателя (вкл.) — включается, (откл.) — отключается, (откл. с выд. врём. 0,7 с) —реле отключается с выдержкой времени 0,7 с пишется после обозначения элемента схемы и указывает, какой следующий аппарат меняет свое состояние (включается или отключается). Выражения в скобках, приводимые после обозначения контакта кнопки или выключателя, которые участвуют в последовательности включения (отключения) элементов схемы (зам.)—замыкается, (разм.) —размыкается.  [c.32]

Обозначение на схеме и назначение реле и контакторов. Назначение контакторов КВ, КН, КБ и КМ, реле РОД, РЗД, РВ2, РПК, РБЗ, PH, РТС, РУН, РУБ, РЗ, РПВ, РИС, РИТО приведены выше при описании прин-  [c.90]

Следовательно, начинать поиск причины неисправности, которая привела к блокированию работы лифтов в режиме парного управления, следует с определения по индексу (буквенному обозначению) отключенного реле РОК в блоке парной работы шкафа управления неисправного лифта. В шкафу управления неисправного лифта определяется состояние релейной аппаратуры. Если включены реле РКД и РПК, а кабина лифта не находится в зоне точной остановки первого этажа (т. е. включено реле 1РИС), то следует проверить наличие напряжения последовательно на шинах 131, 221, 265, 271, 515, 233, 235 и 237. При этом следует иметь в виду, что шины 131, 221, 265, 271, 515, 233 и 235 выведены на зажимы клеммных реек шкафа управления. В случае отсутствия маркировки (плохо различима или стерта) наличие напряжения на шинах 131 и 221 удобно проверить на винтовых зажимах переключателя ВР2-3 на шинах 271 и 515 на зажимах контакта реле РВ2 на шинах 233 и 235 на контакте контактора КВ и на шине 237 — непосредственно на катушке реле РУН. Наличие напряжения на шинах 265 и 271 также удобно проверить на винтовых зажимах клеммной рейки блока парной работы.  [c.160]

Низковольтное комплектное устройство управления лифтом (НКУ) получает напряжение от вводного устройства. На НКУ монтируют всю аппаратуру защиты и управления, как правило, в металлических щкафах (шкафы управления) реечного исполнения автоматические выключатели, контакторы, реле, нереключатели, выпрямительные устройства, сигнальную арматуру, сопротивления, конденсаторы, средства телефонизации и диспетчеризации, коммутационную аппаратуру. В НКУ пассажирских л1гфтов нового поколения устанавливают также блок понижающих трансформаторов. Обозначения применяемых для основных типов лифтов НКУ приведены в табл. 28— 31 (в табл. не вошли НКУ парного и группового управления лифтами для общественных зданий).  [c.102]

Изображение электрооборудования и аппаратуры. Все аппараты на схеме указываются в нормальном состоянии рубильники и выключатели отключены электрическая аппаратура обесточена н. о. контакты разомкнуты, н. з. — замкнуты конечные выключатели не нажаты. С целью упрощения вычерчивания схемы обозначение искрогашения на контактах контакторов и магнитных пускателей не показывается. Аппаратура, имеющая искрогасители, учитывается при ее выборе и внесении в спецификации.  [c.73]


Завод-изготовитель при отправке заказчику обязан каждый контактор снабдить прикрепленным на видном месте щитком, па котором четкими знаками должны быть указаны паименовапие завода-изготовителя или его товарный знак, заводской номер контактора, его тип и год выпуска, номинальные ток и напряжение и обозначение рода тока.  [c.214]

На рис. 422 в качестве. примера приведена электрическая принципиальная схема токарно-винторезного станка модели 1К62. На схеме с помощью условных графических обозначений, установленных соответствующими стандартами ЕСКД, изображены выключатели трехполюсные S/Л, 52Л и однополюсный 53Л, выключатели кнопочные нажимные S1B, S2B, выключатели путевые S1Q, S2Q, лампа местного освещения EL, электродвигатели Ml, М2, М3, М4, предохранители плавкие F1U. ..F8U, контакторы К1М, К2М, контакты контактора (размыкающий К1М, замокающий К2М), обмотки контактора (изображены прямоугольниками КШ, К2М), обмотка реле времени КТ, обмотки теплового реле К1К . К6К и их контакты К1К. .. К6К, трансформатор Т и контакт (штырь и гнездо) контактного разъемного соединения Е — штепсельный разъем, а также амперметр РА.  [c.430]

Рис. 12,8. Электрофакельный подогреватель а — электрическая схема, б — факельная штифтовая свеча I — стартер, 2 — аккумуляторная батарея, 3 — дистанционный выключатель, 4 — выключатель аккумуляторных батарей, 5 — контактор, 6 — выключатель приборов и стартера, 7 — амперметр, 8 — реле стартера, 9 — реле выключения резистора свечей, 0 — предохранители, Ц — кнопочный выключатель подогревателя, 12 — реле отключения обмотки возбуждения генератора, 13 — термореле, 14 — свечи, 15 — контрольная лампа готовности к пуску, 16 — электромагнитный топливный клалан, 17 — экран, 18 — объемная сетка, 19 — сетка, 20 — трубка, 2/ — жиклер, 22 — топливный фильтр, 23 — штуцер подвода топлива, 24 — корпус, 25 — нагревательный элемент, АМ, ВК, КЗ, ПР, СТ — обозначения зажимов на выключателе приборов и стартера

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Физика, 8 кл

Тема:Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Цель урока: дать понятие напряжение как физической величины характеризующей электрическое поле, создающее электрический ток, вести единицу напряжения.

Оборудование: амперметры двух видов, вольтметры двух видов, портрет Алессандро Вольта.

Ход урока

I. Актуализация знаний.

Проверка домашнего задания. Слайд 2.

  1. Что такое сила тока? Какой буквой она обозначается?

  2. По какой формуле находится сила тока?

  3. Как называется прибор для измерения силы тока? Как он обозначается в схемах?

  4. Как называется единица силы тока? Как она обозначается?

  5. Какими правилами следует руководствоваться при включении амперметра в цепь?

  6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?

  7. Индивидуальные задания:

1) Через поперечное сечение проводника в 1 с проходит 6*10-19 электронов. Какова сила тока в проводнике? Заряд электрона 1,6*10-19Кл.
2) Определите силу тока в электрической лампе, если через нее за 10 мин проходит электрический заряд, равный 300 Кл. 
3) Какой электрический заряд протекает за 5 мин через амперметр при силе тока в цепи 0,5 А.

  1. Проверочная работа (по карточкам):

Вариант I

1.Сколько миллиампер в 0,25 А?

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Выразите 0,25мА в микроамперах.

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 1 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.1

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

Вариант II

1.Выразите 0,025 А в амперметрах.

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Сколько микроампер в 0,025мА?

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 2 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.2

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

9) Проверка теста. Слайд 3

II. Изучение нового материала.

1. Диск Виртуальная школа Кирилла и Мефодия. Уроки физики Кирилла и Мефодия, 8 класс.

1) Что такое электрический ток?

Ответ учащихся: Электрический ток – это направленное движение заряженных частиц.

2) Каковы условия существования электрического тока?

Ответ учащихся: 1 условие – свободные заряды,

2 условие – должен быть в цепи источник тока.

3) Объяснение учителя:

Направленное движение заряженных частиц создаётся электрическим полем, которое при этом совершает работу. Работа, которую совершает электрический ток при перемещении заряда в 1 Кл по участку цепи, называется электрическим напряжением (или просто напряжением).

U = A/q,

где U – напряжение (В)

А – работа (Дж)

q – заряд (Кл)

Напряжение измеряется в вольтах (В): 1В = 1Дж/Кл.

4) Сообщение ученика: Историческая справка об Алессандро Вольта.

ВОЛЬТА Алессандро (1745-1827), итальянский естествоиспытатель, физик, химик и физиолог. Его важнейшим вкладом в науку явилось изобретение принципиально нового источника постоянного тока, сыгравшее определяющую роль в дальнейших исследованиях электрических и магнитных явлений. В честь него названа единица разности потенциалов электрического поля – вольт.

Вольта был членом-корреспондентом Парижской академии наук, членом-корреспондентом академии наук и литературы в Падуе и членом Лондонского Королевского общества.

В 1800 г. Наполеон открыл университет в Павии, где Вольта был назначен профессором экспериментальной физики. По предложению Бонапарта ему была присуждена золотая медаль и премия первого консула. В 1802 г. Вольта избирается в академию Болоньи, через год – членом-корреспондентом Института Франции и удостаивается приглашения в Петербургскую академию наук (избран в 1819). Папа назначает ему пенсию, во Франции его награждают орденом Почетного Легиона. В 1809 Вольта становится сенатором Итальянского королевства, а в следующем году ему присваивается титул графа. В 1812 г. Наполеон из ставки в Москве назначает его президентом коллегии выборщиков.

С 1814 г, Вольта – декан философского факультета в Павии. Австрийские власти даже предоставляют ему право исполнять обязанности декана без посещения службы и подтверждают законность выплаты ему пенсий почётного профессора и экс-сенатора.

5) Дольные и кратные единицы:

1 мВ = 0,001 В; 
1 мкВ = 0, 000 001 В;
1 кВ = 1 000 В.

6) Работа с учебником.

Работа с таблицей №7 в учебнике на стр.93.

7) Рабочее напряжение в осветительной сети жилых домов, социальных объектов – 127 и 220 В.

Опасность тока высокого напряжения.

Правила безопасности при работе с электричеством и электроприборами. Слайд 4.

8) Прибор для измерения напряжения называется вольтметром.

На схемах изображается знаком:

Правила включения вольтметра в цепь найдите в учебнике.

Слайд 5:

1. Зажимы вольтметра присоединяются к тем точкам цепи, между которыми надо измерить напряжение (параллельно соответствующему участку цепи).

2. Клемму вольтметра со знаком “+” следует соединять с той точкой цепи, которая соединена с положительным полюсом источника тока, а клемму со знаком “ – ” с точкой, которая соединена с отрицательным полюсом источника тока.

Демонстрация двух типов вольтметров.

Отличие вольтметра от амперметра по внешнему виду.

Определение цены деления демонстрационного вольтметра, лабораторного вольтметра.

9) Работа с учебником: (задание по вариантам)

Найдите в учебнике (§ 41) ответы на вопросы:

А) Как с помощью вольтметра измерить напряжение на полюсах источника тока?

Б) Какой должна быть сила тока, проходящего через вольтметр, по сравнению с силой тока в цепи?

III. Закрепление изученного материала.

Слайд 6.

  1. Выразите в вольтах напряжение, равное:

А) U =2 000 мВ =
Б) U = 100 мВ =
В) U = 55 мВ =
Г) U = 3 кВ =
Д) U = 0,5 кВ =
Е) U = 1,3 кВ =

2. Выразите в мВ напряжение, равное:

А) U = 0,5 В =
Б) U = 1,3 В =
В) U = 0,1 В =
Г) U = 1 В =
Д) U = 1 кВ =
Е) U = 0,9 кВ =

3. Решим задачки: Слайд 7. (работа у доски)

А) На участке цепи при прохождении электрическогозаряда25 Кл совершена работа 500 Дж.Чему равно напряжении на этом участке?

Б) Напряжение на концах проводника 220 В. Какая работа будет совершена при прохождении по проводнику электрического заряда, равного 10 Кл?

4. Вопросы на закрепление:

1) Что показывает напряжение в электрической цепи?
2) В каких единицах измеряется напряжение?
3) Кто такой Алессандро Вольта?
4) Как называют прибор для измерения напряжения?
5) Назовите правила включения вольтметра для измерения напряжения на участке цепи?

IV. Домашнее задание.

§ 39 – 41. Упр.16. Подготовиться к лабораторной работе №4 (с.172).

V. Итог урока.

Если Вы являетесь автором этой работы и хотите отредактировать, либо удалить ее с сайта – свяжитесь, пожалуйста, с нами.

Вольтметры и амперметры | Электричество

Поговорим о двух приборах, которые часто используются во время тех или иных измерений, связанных с электрическим током.

Сперва нам понадобится какая-нибудь электрическая цепь. Давайте возьмем что-нибудь незамысловатое вроде двух проводников, соединенных с обычной батарейкой:

Первый прибор, с которым мы сейчас познакомимся, называется вольтметр. Если вы читали предыдущие параграфы, то с самого начала можете догадаться о назначении этого устройства – оно применяется для нахождения напряжения между двумя точками электрической цепи. На схемах вольтметр обозначают в виде кружка с буквой V внутри. Чтобы узнать напряжение на том или ином участке, вольтметр нужно подсоединить параллельно этому участку.

Теперь рассмотрим второй прибор, часто применяющийся в электрических измерениях. Он называется амперметром. Опять же, по его названию сразу можно судить о его назначении – амперметр используется для нахождения силы тока в электрической цепи. На схемах его обозначают в виде кружка с буквой A внутри. Амперметр, в отличии от вольтметра, всегда нужно присоединять последовательно к цепи электрического тока. Скоро узнаем, почему это так.

Теперь поговорим про особенности каждого из описанных выше приборов.

Начнем с амперметра. Так как это устройство используется для измерения тока в цепи, при его проектировании всегда стараются сделать так, чтобы оно обладало минимальным сопротивлением: если амперметр будет обладать большим сопротивлением, он будет менять ток, протекающий через него, и показывать совсем другое значение силы тока. Поэтому – повторим это еще раз – такие приборы обладают чрезвычайно малым сопротивлением.

Отсюда становится понятно, почему амперметры ни в коем случае нельзя подключать параллельно в электрическую цепь. Если мы так сделаем, электрический ток, который всегда выбирает путь наименьшего сопротивления, будет идти через наш прибор, пропуская все остальные участки цепи. Сила тока обратно пропорциональна сопротивлению, амперметр же обладает очень маленьким сопротивлением, поэтому даже при небольшом напряжении сила тока будет значительной, в связи с чем прибор может просто сгореть.

Что касается вольтметра, то с ним ситуация прямо противоположная. Так как напряжение можно измерить только между двумя точками, прибор нужно подключать параллельно к электрической цепи. Чтобы ни произошло ситуации, описанной выше, вольтметр проектируют исходя из того, что он должен обладать максимальным сопротивлением. Если же все-таки подключить вольтметр не параллельно, а последовательно, то это просто нарушит течение тока в цепи: он предпочтет двигаться по участкам с наименьшим сопротивлением, пропуская все остальные.

Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Физика, 8 кл

Тема:Электрическое напряжение. Единицы напряжения. Вольтметр. Измерение напряжения.

Цель урока: дать понятие напряжение как физической величины характеризующей электрическое поле, создающее электрический ток, вести единицу напряжения.

Оборудование: амперметры двух видов, вольтметры двух видов, портрет Алессандро Вольта.

Ход урока

I. Актуализация знаний.

Проверка домашнего задания. Слайд 2.

  1. Что такое сила тока? Какой буквой она обозначается?

  2. По какой формуле находится сила тока?

  3. Как называется прибор для измерения силы тока? Как он обозначается в схемах?

  4. Как называется единица силы тока? Как она обозначается?

  5. Какими правилами следует руководствоваться при включении амперметра в цепь?

  6. По какой формуле находится электрический заряд, проходящий через поперечное сечение проводника, если известны сила тока и время его прохождения?

  7. Индивидуальные задания:

1) Через поперечное сечение проводника в 1 с проходит 6*10-19 электронов. Какова сила тока в проводнике? Заряд электрона 1,6*10-19Кл.
2) Определите силу тока в электрической лампе, если через нее за 10 мин проходит электрический заряд, равный 300 Кл. 
3) Какой электрический заряд протекает за 5 мин через амперметр при силе тока в цепи 0,5 А.

  1. Проверочная работа (по карточкам):

Вариант I

1.Сколько миллиампер в 0,25 А?

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Выразите 0,25мА в микроамперах.

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 1 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.1

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

Вариант II

1.Выразите 0,025 А в амперметрах.

а) 250 мА; 
б)25мА; 
в) 2,5мА;
г) 0,25мА;
д)0,025мА;

2.Сколько микроампер в 0,025мА?

а) 250 мкА; 
б)25мкА; 
в) 2,5мкА;
г) 0,25мкА;
д)0,025мкА;

На рис. 2 изображена схема электрической цепи.

3. Где на этой схеме у амперметра знак “+”?

Рис.2

а) у точки М
б) у точки N

4. Какое направление имеет ток в амперметре?

а) от точки М к N
б) от точки N к М

9) Проверка теста. Слайд 3

II. Изучение нового материала.

1. Диск Виртуальная школа Кирилла и Мефодия. Уроки физики Кирилла и Мефодия, 8 класс.

1) Что такое электрический ток?

Ответ учащихся: Электрический ток – это направленное движение заряженных частиц.

2) Каковы условия существования электрического тока?

Ответ учащихся: 1 условие – свободные заряды,

2 условие – должен быть в цепи источник тока.

3) Объяснение учителя:

Направленное движение заряженных частиц создаётся электрическим полем, которое при этом совершает работу. Работа, которую совершает электрический ток при перемещении заряда в 1 Кл по участку цепи, называется электрическим напряжением (или просто напряжением).

U = A/q,

где U – напряжение (В)

А – работа (Дж)

q – заряд (Кл)

Напряжение измеряется в вольтах (В): 1В = 1Дж/Кл.

4) Сообщение ученика: Историческая справка об Алессандро Вольта.

ВОЛЬТА Алессандро (1745-1827), итальянский естествоиспытатель, физик, химик и физиолог. Его важнейшим вкладом в науку явилось изобретение принципиально нового источника постоянного тока, сыгравшее определяющую роль в дальнейших исследованиях электрических и магнитных явлений. В честь него названа единица разности потенциалов электрического поля – вольт.

Вольта был членом-корреспондентом Парижской академии наук, членом-корреспондентом академии наук и литературы в Падуе и членом Лондонского Королевского общества.

В 1800 г. Наполеон открыл университет в Павии, где Вольта был назначен профессором экспериментальной физики. По предложению Бонапарта ему была присуждена золотая медаль и премия первого консула. В 1802 г. Вольта избирается в академию Болоньи, через год – членом-корреспондентом Института Франции и удостаивается приглашения в Петербургскую академию наук (избран в 1819). Папа назначает ему пенсию, во Франции его награждают орденом Почетного Легиона. В 1809 Вольта становится сенатором Итальянского королевства, а в следующем году ему присваивается титул графа. В 1812 г. Наполеон из ставки в Москве назначает его президентом коллегии выборщиков.

С 1814 г, Вольта – декан философского факультета в Павии. Австрийские власти даже предоставляют ему право исполнять обязанности декана без посещения службы и подтверждают законность выплаты ему пенсий почётного профессора и экс-сенатора.

5) Дольные и кратные единицы:

1 мВ = 0,001 В; 
1 мкВ = 0, 000 001 В;
1 кВ = 1 000 В.

6) Работа с учебником.

Работа с таблицей №7 в учебнике на стр.93.

7) Рабочее напряжение в осветительной сети жилых домов, социальных объектов – 127 и 220 В.

Опасность тока высокого напряжения.

Правила безопасности при работе с электричеством и электроприборами. Слайд 4.

8) Прибор для измерения напряжения называется вольтметром.

На схемах изображается знаком:

Правила включения вольтметра в цепь найдите в учебнике.

Слайд 5:

1. Зажимы вольтметра присоединяются к тем точкам цепи, между которыми надо измерить напряжение (параллельно соответствующему участку цепи).

2. Клемму вольтметра со знаком “+” следует соединять с той точкой цепи, которая соединена с положительным полюсом источника тока, а клемму со знаком “ – ” с точкой, которая соединена с отрицательным полюсом источника тока.

Демонстрация двух типов вольтметров.

Отличие вольтметра от амперметра по внешнему виду.

Определение цены деления демонстрационного вольтметра, лабораторного вольтметра.

9) Работа с учебником: (задание по вариантам)

Найдите в учебнике (§ 41) ответы на вопросы:

А) Как с помощью вольтметра измерить напряжение на полюсах источника тока?

Б) Какой должна быть сила тока, проходящего через вольтметр, по сравнению с силой тока в цепи?

III. Закрепление изученного материала.

Слайд 6.

  1. Выразите в вольтах напряжение, равное:

А) U =2 000 мВ =
Б) U = 100 мВ =
В) U = 55 мВ =
Г) U = 3 кВ =
Д) U = 0,5 кВ =
Е) U = 1,3 кВ =

2. Выразите в мВ напряжение, равное:

А) U = 0,5 В =
Б) U = 1,3 В =
В) U = 0,1 В =
Г) U = 1 В =
Д) U = 1 кВ =
Е) U = 0,9 кВ =

3. Решим задачки: Слайд 7. (работа у доски)

А) На участке цепи при прохождении электрическогозаряда25 Кл совершена работа 500 Дж.Чему равно напряжении на этом участке?

Б) Напряжение на концах проводника 220 В. Какая работа будет совершена при прохождении по проводнику электрического заряда, равного 10 Кл?

4. Вопросы на закрепление:

1) Что показывает напряжение в электрической цепи?
2) В каких единицах измеряется напряжение?
3) Кто такой Алессандро Вольта?
4) Как называют прибор для измерения напряжения?
5) Назовите правила включения вольтметра для измерения напряжения на участке цепи?

IV. Домашнее задание.

§ 39 – 41. Упр.16. Подготовиться к лабораторной работе №4 (с.172).

V. Итог урока.

электросчетчиков

Вольтметры

Вольтметры – это инструменты, используемые для измерения разности потенциалов между двумя точками в цепи. Вольтметр подключается параллельно измеряемому элементу, что означает создание пути переменного тока вокруг измеряемого элемента и через вольтметр. Вы правильно подключили вольтметр, если вы можете удалить вольтметр из цепи, не разрывая цепь. На схеме справа вольтметр подключен для правильного измерения разности потенциалов на лампе.Вольтметры имеют очень высокое сопротивление, чтобы минимизировать ток, протекающий через вольтметр, и влияние вольтметра на цепь.


Амперметры

Амперметры – это инструменты, используемые для измерения тока в цепи. Амперметр включен последовательно со схемой, так что измеряемый ток протекает непосредственно через амперметр. Чтобы правильно вставить амперметр, цепь должна быть разомкнута. Амперметры имеют очень низкое сопротивление, чтобы минимизировать падение потенциала через амперметр и воздействие амперметра на цепь, поэтому включение амперметра в цепь параллельно может привести к очень высоким токам и может вывести из строя амперметр.На схеме справа амперметр подключен правильно для измерения тока, протекающего по цепи.

Вопрос: На электрической схеме справа возможно расположение амперметра и вольтметра обозначены кружками 1, 2, 3 и 4. Где должен быть расположен амперметр, чтобы правильно измерить полный ток и где должен ли вольтметр быть правильно расположен измерить общее напряжение?

Ответ: Для измерения полного тока амперметр должен быть помещен в положение 1, так как весь ток в цепи должен проходить через этот провод, а амперметры всегда подключаются последовательно.

Для измерения общего напряжения в цепи вольтметр может быть размещен либо в позиции 3, либо в позиции 4. Вольтметры всегда размещаются параллельно с анализируемым элементом цепи, а позиции 3 и 4 эквивалентны, потому что они соединены проводами ( и потенциал всегда одинаков в любом месте идеального провода).

Вопрос: На какой схеме ниже правильно показано соединение амперметра A и вольтметра V для измерения сквозного тока и разности потенциалов на резисторе R?

Ответ: (4) показывает амперметр, включенный последовательно, и вольтметр, включенный параллельно резистору.

Вопрос: По сравнению с сопротивлением измеряемой цепи внутреннее сопротивление вольтметра спроектировано так, чтобы оно было очень высоким, так что счетчик не будет потреблять ток

  1. из цепи
  2. мало тока из цепи
  3. большая часть тока от цепи
  4. весь ток из схемы

Ответ: (2) вольтметр должен потреблять как можно меньше тока из схемы, чтобы минимизировать его влияние на схему, но для работы требуется небольшое количество тока.OoV} Iʳ ު ۯ M_O) ȥN (wx] FwO. ߷ ooW i j ٴ ᆳ ~ e7w; b ئ]? 7 ~ _ Am iovw oa {6ůmw; û {Ӱk a {i0Ln {Nŗ۶jBP2 ո [j0 ݶ (a : & 5ӲVZSӋ \ 0 8-BVIhqoaqb’a ~ 60Ia! H | xA_baql yM i “? ɠ6 & 0+ Â: 7xDP = A

Вольтметры и амперметры постоянного тока – College Physics

Цели обучения

  • Объясните, почему вольтметр нужно подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. (См. Рисунок).) Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, позволяют лучше понять применение последовательного и параллельного подключения.

Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и температуре двигателя. (Источник: Кристиан Гирсинг)

Вольтметры подключаются параллельно к любому измеряемому напряжению устройства. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов.(См. (Рисунок), где вольтметр обозначен символом V.)

Амперметры подключаются последовательно к любому измеряемому току устройства. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. (Рисунок), где амперметр обозначен символом A.)

(a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b.Невозможно подключить вольтметр напрямую к ЭДС без учета ее внутреннего сопротивления,. (b) Используемый цифровой вольтметр. (Источник: Messtechniker, Wikimedia Commons)

Для измерения тока последовательно подключают амперметр (А). Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС и обозначает внутреннее сопротивление источника разности потенциалов.)

Измерители аналоговые: гальванометры

У аналоговых счетчиков есть стрелка, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков, которые имеют числовые показания, аналогичные ручному калькулятору. Сердцем большинства аналоговых измерителей является устройство, называемое гальванометром, обозначаемое буквой G. Ток, протекающий через гальванометр, вызывает пропорциональное отклонение стрелки. (Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току.Чувствительность по току – это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор. Например, гальванометр с чувствительностью по току имеет максимальное отклонение стрелки при прохождении через него, считывает половину шкалы при протекании через него и т. Д.

Если у такого гальванометра есть сопротивление, то при напряжении, равном только полномасштабное показание. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению, часто называемому шунтирующим сопротивлением, как показано на (Рисунок). Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие токи, вызывающие полное отклонение гальванометра.

Предположим, например, что необходим амперметр, который дает полное отклонение на 1.0 А, и содержит такой же гальванометр со своей чувствительностью. Поскольку и параллельны, напряжение на них одинаковое.

Эти капли такие то. Решив и отметив, что это 0,999950 А, мы имеем

Проведение измерений изменяет схему

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. (Рисунок) (a).) (Большое сопротивление, параллельное малому сопротивлению, имеет общее сопротивление, по существу равное малому.) Если, однако, сопротивление вольтметра сравнимо с сопротивлением измеряемого устройства, тогда два соединенных параллельно имеют меньшее сопротивление, что существенно влияет на схему.(См. (Рисунок) (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

(а) Вольтметр, имеющий сопротивление намного больше, чем сопротивление устройства (), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как и у устройства, и не оказывает заметного влияния на измеряемую цепь. (b) Здесь вольтметр имеет то же сопротивление, что и устройство (), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен. Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно. (См. (Рисунок) (a).) Однако, если задействованы очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, и ток в ветви измеряется уменьшается.(См. (Рисунок) (b).)

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

(a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается.Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Связи: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя.Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знание системы – даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.

Существует еще один метод измерения, основанный на полном отсутствии тока и, следовательно, без изменения схемы.Они называются нулевыми измерениями и являются темой нулевых измерений. Цифровые измерители, которые используют твердотельную электронику и нулевые измерения, могут достигать точности в одну часть.

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики.Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. Обратитесь к (Рисунок) и (Рисунок) и их обсуждение в тексте.

Исследования PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и следите за тем, что происходит. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Сводка раздела

  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы получить полный ток, протекающий через ответвление, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на (Рисунок)? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставляете его в режиме вольтметра. Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

Для измерения токов на (рис.) Замените провод между двумя точками амперметром.Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) текущий ток; (c) через; (d) через. Обратите внимание, что на каждую часть может быть несколько ответов.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 8A

        • класс 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 6A

        • класс 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (версии без бренда)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием – дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Видео с вопросом: Определение количества вольтметров в цепи

Стенограмма видеозаписи

На схеме показан электрический схема.Сколько вольтметров есть в схема?

В этом вопросе нам дается схема электрической цепи с множеством различных компонентов. Помните, что каждый символ на принципиальная схема представляет собой конкретный компонент. Так что любой, кто смотрит на диаграмму, может быстро расскажу, что в нем.

Давайте кратко обозначим каждую из этих так что мы можем определить, сколько вольтметров присутствует.Это символ силы ячейка, с маленькой линией, представляющей отрицательную сторону, и большой линией, Положительная сторона. Символ слева от этой ячейки – переключатель, обозначенный этими двумя кружками и линией, с помощью которой можно обрыв в цепи. Все остальные символы, кроме это два круга, но с разными отметками внутри них. Кружки с крестиками обозначают свет лампочки, кружок с A указывает амперметр, а кружки с V указывают вольтметры.

Итак, учтены все компоненты, хорошо видно, что здесь два вольтметра. Но часто этого недостаточно просто иметь вольтметры или любой другой компонент, если на то пошло, в цепи. Мы также должны убедиться, что они настроил правильно. Когда прикрепляем вольтметр к цепи, важно, чтобы мы подключили ее параллельно цепи на на обоих концах компонента, на котором мы хотим измерить разность потенциалов.Мы делаем это, взяв концы вольтметр и прикрепив их в двух отдельных точках вдоль провода. Для этой конкретной схемы такой настройка позволяет нам измерить разность потенциалов между этой лампочкой и этой один.

Поскольку оба эти вольтметра подключенных параллельно схеме, можно сказать, что они настроены правильно. Сравните эти подключения вольтметра к амперметру.Мы видим, что он прикреплен в последовательно с цепью, а не параллельно, потому что он должен измерять ток в проводе, а не разность потенциалов на конкретном составная часть. Поэтому можно сказать, что это тоже подключил правильно. Но нам не нужно знать, сколько амперметры есть, просто вольтметры. Как мы уже определили, количество вольтметров в этой цепи, кружки с буквой V внутри них, только два.

(решено) – Обычный вольтметр переменного тока со средним показанием (вольт-омный мультиметр) … (1 ответ)

Электромеханические измерительные механизмы переменного тока бывают двух основных типов: основанные на конструкции механизма постоянного тока и разработанные специально для переменного тока. использовать.

Движение счетчика с подвижной катушкой с постоянным магнитом (PMMC) не будет работать правильно, если он подключен напрямую к переменному току, потому что направление движения стрелки будет меняться с каждым полупериодом переменного тока.(Рисунок ниже)

Движение счетчика с постоянными магнитами, как и двигатели с постоянными магнитами, – это устройства, движение которых зависит от полярности приложенного напряжения (или, вы можете думать об этом с точки зрения направления тока).

Прохождение переменного тока через этот механизм измерителя Д’Арсонваля вызывает бесполезное трепетание стрелки.

Чтобы использовать механизм измерения постоянного тока, такой как конструкция D’Arsonval, переменный ток должен быть выпрямлен в постоянный ток.

Это проще всего осуществить с помощью устройств, называемых диодами . Мы видели диоды, использованные в примере схемы, демонстрирующей создание гармонических частот из искаженной (или выпрямленной) синусоидальной волны. Не вдаваясь в подробности того, как и почему диоды работают именно так, просто помните, что каждый из них действует как односторонний клапан для протекания тока.

Стрелка в каждом символе диода указывает на допустимое направление тока.

Расположенные в виде моста, четыре диода будут служить для управления переменным током через движение счетчика в постоянном направлении на всех этапах цикла переменного тока:

Пропускание переменного тока через этот счетчик выпрямленного переменного тока будет перемещать его в одном направлении.

Еще одна стратегия для практического механизма измерителя переменного тока заключается в изменении конструкции механизма без присущей типам постоянного тока чувствительности к полярности.

Это означает отказ от использования постоянных магнитов. Вероятно, самая простая конструкция заключается в использовании немагнитной железной лопасти для перемещения иглы против натяжения пружины, при этом лопатка притягивается к неподвижной катушке с проволокой, на которую подается напряжение переменного тока, которое необходимо измерить, как показано на рисунке ниже.

Электромеханический счетчик с металлической крыльчаткой.

Электростатическое притяжение между двумя металлическими пластинами, разделенными воздушным зазором, является альтернативным механизмом для создания силы перемещения иглы, пропорциональной приложенному напряжению.

Это работает для переменного тока так же хорошо, как и для постоянного тока, или, я бы сказал, так же плохо! При этом задействованные силы очень малы, намного меньше, чем магнитное притяжение между возбужденной катушкой и железной лопастью, и поэтому эти «электростатические» движения измерителя имеют тенденцию быть хрупкими и легко нарушаются физическим движением.

Но для некоторых приложений с высоковольтным переменным током электростатический механизм представляет собой элегантную технологию.

По крайней мере, эта технология обладает преимуществом чрезвычайно высокого входного импеданса, что означает, что от тестируемой цепи не требуется отводить ток.Кроме того, механизмы электростатического измерителя способны измерять очень высокие напряжения без необходимости диапазона

Схема подключения – обзор

Тест производительности

Самодельное оборудование для сбора данных sEMG (рис. 3.16) заключено в корпус размером 8,2 × 5,5 × 2,5 см корпус из полиэфирного пластика с питанием от литиевой батареи емкостью 2000 мАч, которая объединяет в себе высокопроизводительную систему управления питанием и питания. Оборудование для сбора сигналов sEMG имеет четыре канала сбора аналоговых сигналов; Интерфейс DB25 экранированного кабеля отведений ЭКГ подключается к поверхностному электроду.Кроме того, плата сбора данных включает контроллер 802.11 b / g для обеспечения доступа Wi-Fi. Последовательности необработанных сигналов sEMG, полученные путем дискретизации и квантования, передаются через этот интерфейс на ПК, смартфон и другие терминалы обработки.

Рис. 3.16. Беспроводное устройство регистрации сигналов sEMG собственной разработки.

Плата регистрации sEMG получает сигналы sEMG от длинной малоберцовой мышцы, передней большеберцовой мышцы, длинного разгибателя пальцев и короткой малоберцовой мышцы в состоянии покоя и в состоянии сокращения.Путем вычисления спектральной плотности мощности можно получить SNR и полосу пропускания оборудования для сбора данных sEMG. Схема визуального подключения представлена ​​на рис. 3.17.

Рис. 3.17. Визуальная схема подключения электродов.

Две группы экспериментальных образцов были проанализированы в автономном режиме в этом исследовании. Спектр мощности соответствующего канала в двух состояниях показан соответственно на рис. 3.18 и 3.19.

Рис. 3.18. Спектр мощности в состоянии покоя.

Фиг.3.19. Спектр мощности в состоянии сжатия.

В состоянии покоя мышцы не высвобождают потенциал действия, поэтому энергия на каждой частотной составляющей примерно равна нулю; общая энергия около 50 Гц должна быть значительно ниже, чем мощность других шумов, в противном случае могут возникнуть серьезные помехи от линии электропередачи. Из спектра мощности состояния покоя на рис. 3.18 видно, что шумовые характеристики каналов Ch3 и Ch4 стабильны, а в каналах Ch2 и Ch5 присутствует определенная степень шумовых помех, поэтому их необходимо дополнительно отфильтровать в последующая обработка.

В состоянии сокращения мышцы высвобождают потенциал действия, и энергия в основном находится в диапазоне от 50 до 500 Гц. Как видно из рис. 3.19, спектральная плотность мощности Ch3 является наибольшей, а основная энергия сосредоточена в диапазоне сигналов sEMG. Из-за разной амплитуды сокращения энергетические спектры других мышц показали разную интенсивность, что согласуется с сущностью сигналов пЭМГ. Кроме того, эффективная ширина полосы сигнала составляет от 50 до 500 Гц, а внеполосные сигналы рассматриваются как шум.

Ранее обсуждавшийся анализ показывает, что оборудование для получения sEMG, разработанное в этом исследовании, может точно отражать изменение сигналов sEMG, в то время как помехи небольшие, а SNR каждого канала высокое, поэтому данные, полученные этим оборудованием, достаточно эффективны для соответствующих анализ и обработка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *