Содержание

Преобразователь 3 фаз в одну… – Электрика

Иногда возникает необходимость подключить мощную однофазную нагрузку к трехфазной сети. Самый простой путь — подключить нагрузку к любой из трех фаз (то есть между фазным проводом и нейтралью) — подходит далеко не всегда. Во-первых, это может привести к так называемому перекосу фаз, т.е. к возникновению существенной разницы между напряжениями разных фаз. Перекос фаз нарушает нормальную работу трехфазных приборов (например, электродвигателей), а также приводит к понижению или повышению напряжения питания однофазных потребителей. Во-вторых, во многих случаях разрешенная мощность сети ограничивается автоматическими выключателями («автоматами»), которые могут срабатывать при питании мощной однофазной от одной из фаз, даже если мощность однофазного потребителя не превышает разрешенную мощность трехфазной сети в целом.

Для решения указанных проблем можно использовать устройство, преобразующее трехфазное напряжение сети в однофазное. Помимо равномерного распределения нагрузки по фазам сети, устройство дополнительно может обеспечивать также гальваническую развязку нагрузки от питающей трехфазной сети, регулировать в некоторых пределах выходное напряжение.

разработаны, запатентованы и производятся трансформаторы, преобразующие трёхфазную сеть в однофазную. Сокращенно такие трансформаторы называются ТСТО — трансформатор симметрирующий трёхфазно-однофазный. Трансформаторы производятся двух видов. В ТСТО с гальванической развязкой (ГР) выходные зажимы не имеют гальванической связи с питающей сетью; в ТСТО без гальванической развязки (обозначаются буквами НГР) выходные зажимы имеют гальваническую связь с питающей сетью. Цифры в наименовании указывают мощность в кВА. Так, например, обозначение ТСТО-20-НГР расшифровывается так: трансформатор симметрирующий трёхфазно-однофазный, не имеющий гальванической развязки с питающей сетью, мощностью 20 кВА.

ТСТО обеих разновидностей (как ГР, так и НГР) подключаются к питающей сети с помощью трех проводов, нейтральный провод не используется. Токи потребления по фазам распределяются в соотношении 1:2:1, или 25-50-25 %, при этом ток через нейтральный провод отсутствует.

При необходимости использования нейтрального провода он может быть соединен с одним из зажимов нагрузки, о чем указано в паспорте изделия.

При принятии решения о том, применять ли ТСТО с гальванической развязкой или без гальванической развязки, необходимо учитывать следующее.

Как распределить три фазы в частном доме?

Содержимое статьи:

  • Как распределить три фазы в частном доме?
  • Как распределить нагрузку по фазам в частном доме?
  • Перекос фаз в трехфазной сети
  • Как рассчитать нагрузку?
  • Как распределить нагрузку по фазам в частном доме?
  • Подключение, разводка, схемы трёхфазного напряжения и равномерное распределение 380 вольт в частном доме
  • Отправим материал на почту
  • Устройство электрического щита
  • Особенности
  • Перекос фаз
  • Расчёт энергопотребителей
  • Правила распределения
  • Разбивка на группы
  • Пример разводки по одному этажу
  • Заключение
  • Расчет трехфазной цепи для жилого дома
  • Порядок распределения нагрузки по фазам
  • 1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
  • 2. Рассчитать нагрузку на каждую фазу.
  • 3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
  • 4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.
  • Расчет нагрузки по фазам
  • Разводка однофазного щитка
  • Распределение полной мощности двигателя на три фазы по 0,6 кВт:
  • Распределение нагрузки по фазам — схема, правила, видео
  • Перекос фаз в трехфазной сети
  • Как рассчитать нагрузку?
  • Порядок расчета
  • 1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем
  • 2. Рассчитать нагрузку на каждую фазу
  • 3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность
  • 4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата
  • Разделение электропроводки на группы
  • Разводка однофазного щитка
  • Как подключить три фазы к частному дому?
  • Преимущества и недостатки трехфазной системы электроснабжения
  • Как оформить подключение трех фаз

Как распределить нагрузку по фазам в частном доме?

При 3 фазном вводе в дом электричества самым сложным вопросом в электромонтаже является сборка распределительного щита. Как правильно распределить нагрузку по фазам в частном доме? Давайте подробно разберем, как это сделать.

При «некачественно» собранном щите, без учета мощности потребителей произойдет перекос по фазам. Что это означает и чем это опасно?

В начале я расскажу почему так происходит. Потом дам рекомендации как распределить нагрузку по фазам в частном доме и в конце статьи опишу некую типовую схему.

Перекос фаз в трехфазной сети

Прямой опасности в этом никакой для вас нет. Есть только постоянно отключающийся трехфазный автоматический выключатель. Почему так происходит?

В трехполюсном автоматическом выключателе, например С 25 есть три однофазных автомата. Каждый из них выдерживает 25 А. То есть на каждую фазу приходится по 5 кВт мощности, отсюда и получается, что подключенная мощность к дому 15 кВт. Все три однофазных автоматических выключателя соединены в один и имеют единый рычаг. Здесь о том как правильно подобрать автоматические выключатели.

Что происходит если распределить нагрузку по фазам в частном доме в случайном порядке? Рассмотрим на примере: на фазе «А» подключен весь свет, на фазу «В» подключен весь второй этаж розетки, а на фазу «С» первый этаж.

На втором этаже три спальни и мощные потребители отсутствуют. Современные светодиодные светильники также потребляет немного. А вот фаза «С» будет нагружена стиральной машиной, духовкой, микроволновкой, посудомоечной машиной, электрочайником и возможно еще пылесос, фен в ванне и многим чем еще.

Вы включили стиральную машину (1,7 кВт), на кухне включили разогреваться духовку (+2 кВт) и поставили в неё вкусную пиццу. Тем временем нужно немного пропылесосить (+2 кВт) вокруг стола т.к. рассыпался сахар и вскипятить чайник (+2 кВт). Итого 7,7 кВт, что вполне хватит «перекосить» трехфазный автоматический выключатель на 25 ампер.

Из-за общего рычага воздействия перегруженная фаза выбьет весь автомат. В итоге вместо возможности использования 15 кВт у вас останется только 5 кВт. Кстати о том какой счётчик будет вам выгоднее иметь однотарифный и двухтарифный здесь.

Как рассчитать нагрузку?

Для того чтобы правильно распределить нагрузку по фазам в загородном доме необходимо составить список особо мощных потребителей и хоть немного представить какие из них одновременно используются.

Для того чтобы было немного проще ориентироваться вот перечень наиболее мощных потребителей на, которые стоит ориентироваться при распределении нагрузки по фазам:

  1. Варочная поверхность 7 кВт;
  2. Духовой шкаф или духовка потребляет 2,5 кВт мощности;
  3. Стиральная машина — 1,7 кВт;
  4. Посудомоечная машина — 1,7 кВт;
  5. Электрический чайник — 2 кВт;
  6. Микроволновая печь — 1 кВт;
  7. Пылесос — 2 кВт;
  8. Утюг — 2 кВт;
  9. Бойлер накопительный — 2 кВт;
  10. Сплит-система — 1 кВт.

Как распределить нагрузку по фазам в частном доме?

Теперь давайте вместе подумаем, что из этого будет работать совместно, а что вряд ли. И сделаем некую виртуальную модель как распределить нагрузку по фазам в частном доме. Для этого посчитаем возможную максимальную мощность.

Итак, как мы видим самое нагруженное помещение в доме — кухня.

Самая мощная в доме — варочная поверхность. Для загородного дома использовать необходимо трехфазную плиту, причем подключаем мы ее только на две фазы «В» и «С». Если мы задействуем только одну фазу, то мощности нам хватит только на две конфорки. Дальше поймете почему мы будем использовать только две фазы, а не три.

Все остальные розетки на кухне мы распределяем на фазу «А». Больше эту фазу мы не будем задействовать вообще. Это будет самая нагруженная фаза.

Однако и другую фазу мы не будем использовать на кухне. Исключение составит варочная поверхность, которая соединена по двухфазной схеме.

Это сделано для того, чтобы исключить появление двух разных фаз в соседних розетках. Тем самым мы обезопасим себя от возможности встречи с линейным напряжением. Это те 380 вольт, которые могут серьезно навредить здоровью. 220 вольт вообще не страшны по сравнению с 380 В. Запомните это.

Осталось совсем чуть-чуть. Бойлер вместе со стиральной машинкой подключаем через устройство защитного отключения на фазу «В».

Оставшееся оборудование вешаем на фазу «С».

Вот примерно так и распределяем нагрузку по фазам в частном доме.

Конечно, это приведена типовая схема распределения. Возможно, вы вообще не любите готовить и у вас есть только микроволновка. Также все относительно по поводу котельного оборудования, но результат везде должен получаться одинаковый. Мощность электроприборов распределяется равномерно по трем фазам, желательно, чтобы двух разных фаз не было в одной комнате. Если так не получается разводите их по противоположным сторонам помещения.

Если при сборке распределительного щита поставить устройства защиты от перенапряжения с индикаторами напряжения и тока: можно в режиме онлайн увидеть какая фаза перегружена, а где нет нагрузки. Тоже самое можно сделать с помощью токовых клещей.

Однако правильно собрать щит на этапе строительства выйдет гораздо дешевле и лучше, чем перекраивать его после.

Надеюсь, статья была полезна для вас. Теперь, после прочтения вопрос: Как распределить нагрузку по фазам в частном доме? — решен окончательно если нет задавайте вопросы в комментариях.

Добавляйте статью к себе в закладки и делитесь с друзьями. Готов ответить на ваши вопросы.

Подключение, разводка, схемы трёхфазного напряжения и равномерное распределение 380 вольт в частном доме

Отправим материал на почту

  • Устройство электрического щита
  • Особенности
  • Перекос фаз
  • Расчёт энергопотребителей
  • Правила распределения
  • Разбивка на группы
  • Пример разводки по одному этажу
  • Заключение

При подключении коттеджа правильное распределение нагрузки по фазам позволяет оптимизировать использование электроэнергии, снизить вероятность перегрузок, поломок электроприборов из-за несоответствующего напряжения и даже уменьшить показания счётчика. Разберёмся с возможными нюансами и рассмотрим несколько наиболее популярных схем на наглядных примерах.

Устройство электрического щита

Перед тем, как распределить нагрузку по фазе в частном доме, позаботьтесь правильном «содержимом» электрощитка на который напряжение приходит с опоры. В данной ситуации, в нём должны иметься следующие устройства:

  • Автоматический выключатель (автомат).
  • Трёхфазный прибор учёта электроэнергии.
  • Автоматические выключатели или УЗО (устройства защитного отключения), на которые (по-отдельности) приходит каждая фаза. Общий ноль подключается к нулевой шине.
  • Защитный проводник заземления соединяется с общей шиной заземления.

Важно! Представленный перечень приведён в порядке подключения кабеля с опоры ВЛЭП (воздушной линии электропередач).

Особенности

Чтобы снизить вероятность перегрузки фазы, нагрузку распределяют на фазы равномерно. Несоблюдение этого условия так же, как и отгорание «нулевой» жилы или её плохой контакт, приведут к разнице в напряжении на фазных жилах в большую или меньшую сторону.

Таким образом, преобразованное однофазное питание (220 В) приведёт к неисправности подключённых к нему электропотребителей. Произойдёт это из-за того, что на одни приборы будет приходить повышенное напряжение (240-270 В), на другие – пониженное (160-200 В).

Важно! При неравномерном распределении нагрузки по фазам, на не чувствительных к перекосам счётчиках, произойдёт повышенный расход электроэнергии.

Перекос фаз

Фактически распределение нагрузки по фазам в частном доме, выполненное с перекосом фаз не несёт серьёзных проблем для техники. Но периодическое отключение автоматического выключателя вам гарантировано.

Перед распределением нагрузки необходимо разобраться в устройстве трёхполюсного автомата. Рассмотрим ситуацию на примере автомата С 25. Он состоит из 3 однофазных автоматов, каждый из которых способен выдерживать 25 А. Таким образом, каждая фаза получает по 5 кВт мощности, откуда и выходит, что присоединение коттеджа мощностью в 15 кВт. Автоматы при этом могут разрывать питание одним выключателем (рычагом).

Если вы рассматриваете вопрос, как распределить нагрузку по фазам в случайном (хаотичном) порядке, обратите внимание на следующий пример:

  • Фаза № 1 подключена к освещению коттеджа.
  • Фаза № 2 запитывает электроснабжение на розетки 1-го этажа.
  • Фаза № 3 питает розетки на 2-ом этаже.

В результате произойдёт следующее:

  • На 2-ом этаже несколько спален и санузел. Мощных энергопотребителей здесь нет. В результате Фаза № 3 не будет работать на полную мощность.
  • Аналогичная ситуация произойдёт и с фазой № 1. Современное светодиодное освещение потребляет мало электричества.
  • Последняя фаза № 2 окажется перегруженной, из-за того, что на неё «повешены» основные, мощные потребители: стиральная машина, микроволновка, холодильник и прочая техника, находящаяся в помещениях первого этажа.

Важно! В результате, одновременное включение нескольких элементов бытовой техники перегрузит автомат, что станет результатом его отключения.

Расчёт энергопотребителей

Перед тем, как распределить нагрузку по фазам рекомендуется выполнить предварительный расчёт потребителей. Сделать это легко, составив список потенциальных источников, которые будут «повешены» на ту или иную фазу. Например, перечислите основную бытовую технику и её мощность согласно заявленной производителем:

  • Варочная электроплита 6,5-7,5 кВт.
  • Стиральная машина 1,5-1,8 кВт.
  • Посудомоечная машина 1,5-1,8 кВт.
  • Микроволновая печь 0,9-1,2 кВт.
  • Духовой шкаф 2,0-2,6 кВт.
  • Пылесос 1,9-2,2 кВт.
  • Утюг 1,9-2,2 кВт.

Важно! По необходимости список может пополняться другими, имеющимися на балансе электроприборами.

Правила распределения

Как очевидно из вышесказанного, ответ на вопрос, как распределить нагрузку по фазам в частном доме, кроется в равномерном делении потребителей на все токопитающие жилы. Популярным способом является подключение отдельной группы розеток в комнатах к отдельному фазному проводу. Причём последующая группировка происходит так, чтобы оптимизировать нагрузку на сеть. По аналогичному принципу подключается и освещение, распределение нагрузки по фазам проводника должно быть равномерным.

Приведённое выше изображение показывает правильное подключение 380 вольт, 3 фазы. Частный дом, схема электроснабжения которого представлена, «разведён» правильно, с учётом всех требований.

Следующее изображение показывает правильное подключение электрощитка на 380 вольт 3 фазы. Частный дом, схема технологического присоединения которого показана на картинке, подсоединён верно, что снижает вероятность отключения автоматов в результате перегрузки сети.

Разбивка на группы

Перед тем, как распределить нагрузку по фазам в частном доме, займитесь разбивкой отдельных линий вышеупомянутых энергопотребителей. На этом этапе необходимо подготовить отдельную линию электропроводки для розеток в каждую комнату и отдельно для света.

Верное распределение нагрузки по фазе в частном доме выполняется прокладкой отдельной магистрали к самым мощным энергопотребителям из вышеупомянутого списка. Для наглядного и понятного разбора ситуации, обратите внимание на приведённую чуть выше план-схему.

Чертёж показывает, как распределить нагрузку по фазам в частном доме и разбить потребителей на группы. Вводным кабелем, идущим от счётчика, здесь выступает ВВнг 5*10 (5 жил с сечением 10 мм2). Защита от перегрузок и коротких замыканий возложена на автомат ВА 40 А.

  • К первой группе (фаза L1) подключаются световые приборы. В качестве защиты используется автомат на 10 А. кабель для протяжки линий: ВВГнг 3*1,5 мм2.
  • Второй группой объединены потребители, подключенные к розеткам ванной и санузла. В качестве автоматического выключателя здесь установлено устройство защитного отключения (УЗО 10А-10mA). Марка кабеля, который здесь используется ВВГнг 3*2,5 мм2, не менее. Подключается она также на фазу L1.

Полезно! Допускается использование УЗО с допустимым большим значением силы тока, но не более 30 А.

  • Третья группа потребителей – розетки, установленные в остальных комнатах (гостиная, спальные, рабочий кабинет, кладовая, гардеробная). Линия подключается на фазу L2 с проводом, сечение которого не менее 2,5 мм2. Защита оборудования и людей возлагается на автомат 16 А.
  • К четвёртой группе потребителей относят розетки кухни и коридора. Запитываются через фазу, обозначенную как L3. Подключается по принципу, аналогичному тому, который использовался для третьей группы: трёхжильный кабель в 2,5 «квадрата» и 16-ти амперный автомат.
  • Пятой группой является провод, идущий на электроплиту. Подключается на 3 фазы с нулём и обязательным заземлением. Кабель здесь используется марки ВВГнг 5*6 мм2, защитное устройство: УЗО 32 А-32mA.

Важно! Перед тем, как распределить нагрузку по фазам в частном доме, по вышеуказанной схеме, имейте в виду, что она приведена в качестве примера. Для каждой отдельной ситуации она может отличаться по тем или иным признакам.

Пример разводки по одному этажу

Рассмотрим пример технологической схемы для 1-го этажа коттеджа. Такой вариант ещё одно верное решение того, как распределить нагрузку по фазе в частном доме. Этот вариант связан с тем, что максимальное количество энергопотребителей сконцентрировано именно на этом этаже.

Для более наглядного понятия того, как распределить нагрузку по фазам в частном доме, приведена следующая план-схема. Такой проект является необходимым при прокладке новой линии, строящегося или ремонтирующегося коттеджа. В дальнейшем изображение значительно облегчит поиск возможной неисправности, внесение изменений или добавление новых точек.

Заключение

Перечисленные примеры и схемы представлены в качестве ориентировочного ознакомления с вопросом, как распределить нагрузку по фазам в частном доме без вероятности последующих переделок. Кроме того, они облегчат выбор параметров кабеля, УЗО и автоматических выключателей для трёхфазной электросети.

Расчет трехфазной цепи для жилого дома

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Порядок распределения нагрузки по фазам

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
2. Рассчитать нагрузку на каждую фазу.
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.

Расчет нагрузки по фазам

Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.

Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).

По теореме Пифагора можно определить реактивную мощность.

Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.

На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.
Распределение полной мощности двигателя на три фазы по 0,6 кВт:
  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Распределение нагрузки по фазам — схема, правила, видео

Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.

Прежде всего, нужно провести расчет трехфазной цепи.

Перекос фаз в трехфазной сети

Прямой опасности в этом никакой для вас нет. Есть только постоянно отключающийся трехфазный автоматический выключатель. Почему так происходит?

В трехполюсном автоматическом выключателе, например С 25 есть три однофазных автомата. Каждый из них выдерживает 25 А. То есть на каждую фазу приходится по 5 кВт мощности, отсюда и получается, что подключенная мощность к дому 15 кВт. Все три однофазных автоматических выключателя соединены в один и имеют единый рычаг. Здесь о том как правильно подобрать автоматические выключатели.

Что происходит если распределить нагрузку по фазам в частном доме в случайном порядке? Рассмотрим на примере: на фазе «А» подключен весь свет, на фазу «В» подключен весь второй этаж розетки, а на фазу «С» первый этаж.

На втором этаже три спальни и мощные потребители отсутствуют. Современные светодиодные светильники также потребляет немного. А вот фаза «С» будет нагружена стиральной машиной, духовкой, микроволновкой, посудомоечной машиной, электрочайником и возможно еще пылесос, фен в ванне и многим чем еще.

Вы включили стиральную машину (1,7 кВт), на кухне включили разогреваться духовку (+2 кВт) и поставили в неё вкусную пиццу. Тем временем нужно немного пропылесосить (+2 кВт) вокруг стола т.к. рассыпался сахар и вскипятить чайник (+2 кВт). Итого 7,7 кВт, что вполне хватит «перекосить» трехфазный автоматический выключатель на 25 ампер.

Из-за общего рычага воздействия перегруженная фаза выбьет весь автомат. В итоге вместо возможности использования 15 кВт у вас останется только 5 кВт. Кстати о том какой счётчик будет вам выгоднее иметь однотарифный и двухтарифный здесь.

Как рассчитать нагрузку?

Для того чтобы правильно распределить нагрузку по фазам в загородном доме необходимо составить список особо мощных потребителей и хоть немного представить какие из них одновременно используются.

Для того чтобы было немного проще ориентироваться вот перечень наиболее мощных потребителей на, которые стоит ориентироваться при распределении нагрузки по фазам:

  1. Варочная поверхность 7 кВт;
  2. Духовой шкаф или духовка потребляет 2,5 кВт мощности;
  3. Стиральная машина — 1,7 кВт;
  4. Посудомоечная машина — 1,7 кВт;
  5. Электрический чайник — 2 кВт;
  6. Микроволновая печь — 1 кВт;
  7. Пылесос — 2 кВт;
  8. Утюг — 2 кВт;
  9. Бойлер накопительный — 2 кВт;
  10. Сплит-система — 1 кВт.

Порядок расчета

1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем
2. Рассчитать нагрузку на каждую фазу
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата

Разделение электропроводки на группы

Из-за использования в жилье большого количества таких электроприборов как стиральных машин, кондиционеров, бойлеров, различной аудио и видео техники возросла нагрузка на современную электропроводку. Кухонное помещение занимает первое место в доме по сосредоточению бытовых приборов – электроплита, холодильник, микроволновка, посудомойка, пароварка, электрический чайник и множество дополнительной техники, которая потребляет большое количество электроэнергии.

Например, трехфазный ввод (380 В) и чтобы избежать на нем перегрузки, все фазы должны быть равномерно распределены. В противном случае напряжение на фазных проводах будут различаться между собой в большую или меньшую сторону. В случае, когда имеется однофазное питание равное 220 В при перепадах напряжения в пределах от 150 до 280 В может привести к поломке электроприборов.

Также при такой работе происходит увеличение потребления электроэнергии у техники, которая не защищена от перепадов напряжения в сети. Поэтому очень важно грамотно распределить нагрузки по фазам.

Распределение нагрузки в щетке 380 вольт в загородном доме

Для распределения нагрузки и обеспечения защиты и безопасности при эксплуатации электропроводка делится на группы. Такой способ позволит раздельно управлять подачей тока отдельных приборов или совокупностью электро потребителей. Этот метод удобен при проведении ремонтных работ, так как можно отключать нужную группу электропитания. При различных аварийных ситуациях – затопили соседи, был неудачно забит гвоздь в стену, который повредил проводку. Отключив аварийный блок, можно продолжать пользоваться остальными линиями.

Рекомендации по разделению:

Распределение по фазам при 380 вольтовом распределения автомата тов

  • Крупные бытовые приборы, которые выступаю в роли мощных энергопотребителей, устанавливаются отдельно с монтажом защитного автомата в распределительном боксе. Такой техникой является электрическая плита, электрическая духовка, электрочайник, водонагревающее устройство, кондиционер, стиральная машина.
  • Группа розеток, каждое помещение гостиную, спальню, детскую, кабинет рекомендуется изготовить индивидуальными блоками.
  • Кухня является очень загруженной частью любого жилья, где розетки также следует сделать раздельно.
  • Система освещения делается индивидуальным блоком, по возможности лучше сделать и освещение каждой комнаты по отдельности.
  • Санитарный узел, который входит в пункт самых опасных помещений по системе электробезопасности, где имеется повышенная влажность, также должен быть выполнен отдельной группой.

Перед тем как начать разделение электропроводки на группы, следует составить план помещения с нанесенными местами расположения розеток и мощных бытовых приборов, светильников, выключателей. Зная заранее, какие места подключения электротехники будут задействованы, можно избежать в дальнейшем переделки проводки.

Схема разграничение фаз в щетке 380 вольт в квартире

Совокупность розеток и осветительных приборов рассчитывается из электрической нагрузки для этого ряда. В случае, когда мощность всех подключаемых агрегатов превышает норму допустимую для этой системы, блок разделяется на два или при надобности большее количество линий.

Схема подключения автоматов при вводном напряжении 220 в

В комнатах с повышенным уровнем влажности устанавливается дифференциальная защита на утечку тока 10 мА. Наиболее подходящие приборы для установки – автоматический выключатель в комплексе с УЗО или комплексный защитный аппарат, выполняющий защитные функции двух аппаратов. Позволит защитить питаемую цепь от перегрузок, токов короткого замыкания такие сочетания кабелей с автоматами:

  1. Для прочих линий монтируется дифференциальная защитная система на ток утечки 30 мА.
  2. Освещение выполняется кабелем с сечением 3х1.5 мм2, защита автоматом 10 А.
  3. Розетки лучше выполнить кабелем 3х2.5 мм2 и защитой автоматического выключателя 16 ампер.
  4. Потребители с мощностью более 3.5 кВт – электродуховки, электроплиты должны подключаться напрямую к электрокабелю с установкой автоматического выключателя нужного номинала.

Калькулятором онлайн, произвести расчет сечения провода.

Схема распределения нагрузки в квартире с подводом 220 вольт в квартире

Выбирать автоматы защиты и сечение, питающие провода следует по более загруженной фазе. Неравномерное распределение загрузки фаз и неучтенные асимметрии в распределении нагрузки тока, приводит к серьезным погрешностям при выборе сечений проводов, что приводит к перегрузке электрической системы – перегрев, поломка, риск воспламенения. При покупке электрокабеля, рекомендуется выбирать провода с показателями пожарной безопасности.

Подробно, о монтаже щитка квартиры.

Разводка однофазного щитка

Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.

Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.

Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.

  • Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
  • Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
  • К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.

Распределение полной мощности двигателя на три фазы по 0,6 кВт:

  • первая фаза: 7,2+0,6=7,8 кВт;
  • вторая фаза: 4,3+3,5+0,6=8,4 кВт;
  • третья фаза: 5,5+3,5+0,6=9,6 кВт.

По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.

Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.

Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?

После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.

В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.

Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.

Пишите , дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Как подключить три фазы к частному дому?

Этапы подключения дома к трехфазной сети. Перечень необходимых документов для получения разрешения на проведения 380 Вольт к частном дому.

В наше время без качественной и продуманной системы электроснабжения не обойтись. Если при покупке квартиры эта проблема решается не хозяином жилья, а строительной компанией, то для снабжения электричеством частного дома существует выбор. В квартиру подведено уже однофазное питание, да и такого напряжения там вполне достаточно. Однако в частном секторе трехфазная сеть может быть вполне актуальной. В этой статье мы расскажем, какая электрическая сеть лучше: трёхфазная или же однофазная, а также как провести 380 Вольт в частный дом по закону. Содержание:

  • Преимущества и недостатки трехфазной системы электроснабжения
  • Как оформить подключение трех фаз

Преимущества и недостатки трехфазной системы электроснабжения

Не секрет, что трехфазное электроснабжение частного дома стает всё более актуально, и это связанно не только с величиной напряжения. Давайте разберёмся во всех преимуществах 380 Вольт и вот их перечень:

  1. Подключение самых распространённых в быту и на производстве асинхронных электродвигателей с короткозамкнутым ротором. При подключении к однофазной цепи теряется их мощность, крутящий момент, а также КПД. Ведь они первоначально были рассчитаны на три фазы. Применение таких электромашин в частном доме может понадобиться при обустройстве точильного, сверлильного или деревообрабатывающего станка и других видов техники. Владелец, который обладает навыками работы на таком оборудовании, всегда найдёт ему применение. На даче всегда пригодится мощный насос, поэтому провести 380 Вольт и тут не помешает.
  2. Подключив три фазы, владелец частного дома получает, по большому счёту, сразу три независимые однофазные сети, которыми может распоряжаться по своему усмотрению. Для этого того чтобы получить однофазное напряжение 220 Вольт, нужно подключить один провод к фазе, а другой к нулю. Оно будет называться фазным. Напряжение между двумя фазами равняется 380 Вольт и называется линейное.
  3. При поломке или аварийной ситуации на распределительной подстанции может отгореть одна или даже две фазы. При этом у владельца частного дома с тремя фазами как минимум освещение и холодильник будет работать. При этом нужно помнить, что для трёхфазных двигателей работа на две фазы повлечёт за собой неминуемый выход его из строя.

Учтите, и тут есть свои подводные камни. Трехфазная сеть нужна в том случае, если недостаточно мощности однофазной сети. И даже если однофазной недостаточно не нужно спешить подключать три фазы, лучше уточнить о возможности увеличения лимита мощности для однофазной сети — эта процедура намного проще, чем согласование и подключение трех фаз. Три фазы в обязательном порядке подключают в том случае, если нужно запитать трехфазные электродвигатели, которые не могут работать в однофазном режиме, либо в случае одновременного использования большого количества электроприборов, оборудования, например, если в доме большое хозяйство, налажено какое-то мелкое производство.

Также следует отметить еще несколько недостатков трехфазной системы электроснабжения. Один из минусов — необходимость равномерного распределения нагрузок по каждой из фаз. Второй недостаток — большая сложность в подключении, приобретении другого щитка, защитных аппаратов и т.д. Третий недостаток — большая опасность с точки зрения поражения током, так как в доме будет не только однофазное напряжение 220 В, но и линейное — 380 В

Как видите, преимущества питания потребителя от сети 380 Вольт не всегда очевидны. Теперь стоит разобраться, какие документы нужны для подключения трехфазной сети. Об этом мы сейчас и поговорим.

Как оформить подключение трех фаз

Конечно же, перед тем как перейти к технической стороне вопроса и непосредственно к подключению нужно обратиться в компанию, являющуюся поставщиком электроэнергии в данном конкретном регионе. Для этого заказчику необходимо чётко понимать и согласовать следующие моменты:

  • Мощность сети.
  • Тип счётчика и тариф. Это может быть многотарифный прибора учёта или однотарифный.
  • Количество фаз (в данном случае 3).
  • Схема подключения;
  • Организация заземления, которое крайне необходимо для защиты людей от электрического тока при пробое или ухудшении сопротивления изоляции.

Важно! Самостоятельное подключение к энергосетям запрещено законом! Процедура подключения и организации энергоснабжения должна выполняться высококвалифицированным персоналом. Для того чтобы подключить частный дом к трехфазной сети, она должна быть полностью обесточена, а выполнять это без энергослужбы также запрещается.

Поставщики при этом придерживаются чётких требований и правил. Поэтому, если расстояние от частного дома до сетей 380 Вольт, проходящих чаще всего по столбам, будет больше 300 метров в черте города (500 за городом), то чтобы провести электричество придется оплачивать ещё и установку опоры.

Важно также отметить, что часто перед подключением необходимо предоставлять данные о состоянии домашней электропроводки. Если в доме старая электропроводка, то высока вероятность, что представители электросетей не только не дадут разрешение на подключение трех фаз, но и сократят до минимального лимит по однофазной сети из соображений безопасности, так как проводка не может выдержать большой нагрузки.

Следующим ключевым вопросом по подключению дома к сети 380 Вольт будет мощность, которую потребитель будет брать из сети.

Есть три степени:

  • первая — не больше 16 кВт;
  • вторая — от 16 до 50 кВт.
  • третья — от 50 до 160 кВт.

Конечно, лучше организовать электроснабжение с запасом по мощности, тем более что рост количества приборов, которые работают на этом виде энергии, пока очевиден. Однако стоимость данной системы будет выше.

Еще важно отметить насчет лимита мощности — обычно для рядового потребителя не дают больше 50 кВт. И в данном случае все зависит от состояния электрических сетей, мощности трансформатора в КТП либо в ТП. Если мощность небольшая, то снабжающая организация распределяет примерно мощность по домам и выше этой мощности нельзя подключить, тем более три фазы. В этом случае для подключения трех фаз необходимого лимита мощности нужен отдельный трансформатор — это уже более сложная процедура, так как нужно приобретать КТП, подключать к высоковольтной сети 6 (10) кВ. Поэтому рядовому потребителю приходится довольствоваться определенным лимитом мощности однофазной сети.

В перечень документов, которые должны быть для подключения 380 Вольт (помимо самой заявки), входят:

  1. Удостоверение личности.
  2. Идентификационный номер законопослушного налогоплательщика.
  3. Правоустанавливающая документация на жилое или нежилое помещение (в случае подключения гаража).
  4. Утвержденный полный план жилого помещения (при наличии).

С указанных документов снимается копия, которая и подаётся в компанию поставщику электрической энергии. Однако сверка с оригиналами тоже обязательна.

Некоторые поставщики также могут запросить дополнительные документы, на всякий случай, их нужно тоже взять с собой:

  • Информацию о мощности и список всего имеющегося электрооборудования в частном доме, в гараже или на даче. В зависимости от того, куда нужно провести трехфазное электричество. Если подключение выполняется на участок, не имеющий электрооборудования, то указать придется предположительные его виды и мощность.
  • Сведения об их максимальной мощности.
  • Приблизительное время ввода в эксплуатацию жилья, если это ещё не жилой объект.

Установка многотарифных счётчиков очень выгодна, так как если не использовать мощные приборы в часы пик, можно существенно сэкономить. Например, ночью стоимость электроэнергии в разы дешевле чем днём.

Порядок оформления многотарифного счётчика:

  1. Подготовка заявления с просьбой установки электросчетчика.
  2. Получение технические условий для данного счётчика, который нужно приобрести, если у поставляющей электроэнергию компании нет данного оборудования. Зачастую они и сами предоставляют услуги не только подключения, но и продажи приборов учета.
  3. Приобретение, а также программирование электросчетчика.
  4. Вызов представителя энергоснабжающей компании для проверки правильности подключения прибора учета, а также его опломбировки.
  5. Внесение изменения в соглашение или же составление нового, при организации нового подключения трёх фаз.
  6. Получение разрешения на подключение 380 Вольт.

Кстати, существует еще такой вариант, как преобразование однофазного напряжения в трехфазное. О том, как сделать 380 Вольт из 220 можете узнать, перейдя по ссылке.

Номинальные характеристики автоматических выключателей должны полностью соответствовать нагрузке, подключаемой к ним. На автоматах нет указанной мощности, на корпусе указаны только напряжение и ток, на который он рассчитан. О том, как выбрать автоматический выключатель, мы рассказали в отдельной статье.

Что касается технической части, а именно подключения трехфазного напряжения к частному дому, это дело лучше доверить специалистам, т.к. при отсутствии опыта и навыков самостоятельно провести три фазы будет практически невозможно.

Чтобы вы понимали, насколько все серьезно, ниже предоставлена примерная схема подключения 380 Вольт в частном доме, с разводкой на автоматы:

Для ознакомления с технологией проведения трех фаз рекомендуем изучить следующий блок статей:

  • Как соединить СИП с медным кабелем
  • Как провести электропроводку в доме
  • Как сделать заземление в доме
  • Как собрать трехфазный щит
  • Как распределить нагрузку по фазам
  • Как разделить электропроводку на группы
  • Схема подключения трехфазного УЗО

Конечно же, для того чтобы получить в частный дом, на дачный участок или в гараж выгодное, довольно мощное и универсальное трёхфазное напряжение, придется потратить некоторые усилия, время и средства. Документы, согласование, подключение, более сложная схема проводки и соответственно дороже электромонтаж, поэтому еще раз хорошо подумайте, нужны ли вам три фазы.

Напоследок рекомендуем просмотреть полезные видео, на которых рассказывается целесообразность подключения трех фаз, а также нюансы подготовки документов:


Теперь вы знаете, как провести 380 Вольт в частный дом и какие документы нужны для этого. Надеемся, наша пошаговая инструкция была для вас полезной и помогла самостоятельно подключить дом к трехфазной сети!


3 фазы из одной схема. Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. Инвертор. Схема. Конструкция. Своими руками. Собрать самому. Метод использования трех фаз

В этой схеме, как и в любой другой, могут быть ошибки. Если Вы их обнаружите, пожалуйста, напишите нам . Подпишитесь на новости, чтобы быть в курсе исправлений и обновлений материала.

Внимание! Сборка прибора требует навыков в области силовой электроники, связана с контактом с высоким напряжением, которое может быть опасным для жизни как самого инженера, так и пользователей прибора. Убедитесь, что Вы обладаете нужной квалификацией.

D5 – операционный усилитель, рассчитанный на работу при однополярном питании 12В, с высоким входным сопротивлением и с возможностью подключения к выходу нагрузки 2 кОм или менее. Хорошо подходит К544УД1, КР544УД1 .

D6 – интегральный стабилизатор напряжения (КРЕН) на 12В.

VT5 – Маломощный высоковольтный транзистор на 600 вольт. Он работает только в момент включения схемы. Так что в процессе работы мощность не рассеивает.

VD9 – Стабилитрон 15В.

C11 – 1000мкФ 25В.

R25 – 300кОм 0.5Вт

D1 – Интегральные широтно-импульсно модулирующие (ШИМ) контроллеры. Это 1156ЕУ3 или его импортный аналог UC3823.

Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резисторы R22, исключить резисторы R17 и R18, подвесить (никуда не подключать) ножки 16 и 11 всех трех микросхем. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.

D3 – Драйверы полумоста. IR2184

R7, R6 – Резисторы по 10кОм. C3, C4 – Конденсаторы по 100нФ.

R10, R11 – Резисторы по 20кОм. C5, C6 – Электролитические конденсаторы по 30 мкФ, 25 вольт.

R8 – 20кОм, R9 – подстроечный резистор 15кОм

R1, R2 – подстроечники по 10кОм

R3 – 10 кОм

C2, R5 – резистор и конденсатор, задающие частоту работы ШИМ – контроллеров. Их выбираем таким образом, чтобы частота была около 50 кГц. Подбор стоит начать с конденсатора 1 нФ и резистора 100 кОм.

R4 – Эти резисторы в разных плечах – разные. Дело в том, что для получения синусоидального напряжения со сдвигом фаз на 120 гр. используется фазосдвигающая цепь. Кроме сдвигания она еще и ослабляет сигнал. Каждое звено ослабляет сигнал в 2.7 раза. Так что подбираем резистор в нижнем плече в диапазоне от 10 кОм до 100 кОм так, чтобы ШИМ контролер при минимальном значении синусоидального напряжения (с выхода операционного усилителя) был закрыт, при небольшом его увеличении начинал выдавать короткие импульсы, при достижении максимума был практически открыт. Резистор среднего плеча будет в 9 раза больше, резистор верхнего – в 81 раз.

После подбора этих резисторов более точно коэффициент усиления можно регулировать подстроечными резисторами R1.

R17 – 300 кОм, R18 – 30 кОм

C8 – 100нФ. Это могут быть низковольтные конденсаторы. На них высокого напряжения не бывает, хотя они стоят в высоковольтной части.

R22 – 0.23 Ом. 5Вт.

VD11 – Диоды Шоттки. Выбраны диоды Шоттки, чтобы обеспечить минимальное падение напряжения на диоде в открытом состоянии.

R23, R24 – 20 Ом. 1Вт.

L1 – дроссель 10мГн (1E-02 Гн), на ток 5А, C12 – 1мкФ, 400 В.

L2 – несколько витков тонкого провода поверх дросселя L1. Если в дросселе L1 – X витков, то в катушке L2 должно быть [X ] / [60 ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!

Для одноквартирных домов лучше без деления!

Почему, писал в теме .

Проводник прошедший через счетчик делить, заземлять нельзя! Это не говоря о глупости установки в ЩУ ещё шины N , добавляющей ни чем не оправданных 2-ва контактных соединения. Про розетку в ЩУ, так подключенную, вообще нет культурных слов. Это не говоря, что по умолчанию в ЩУ на столбе, трубостойке розетки вообще не должно быть.

В самом крайнем случае, как исключение, заземлять после счетчика можно, но только если нейтральный полюс счетчика глухо закорочен и не с таким сечением как на фото и только для ЩУ на столбе, трубостойке.

Если всё же деление будет, то вместо автомата после счетчика должно обязательно стоять ВДТ, чтоб была хотя бы какая-то защита на случай нарушения целостности цепи РЕ между ЩУ и домом!

СП 31-110-2003 сказал(а):

А. 2.1 Устройства защитного отключения, управляемые дифференциальным током, наряду с устройствами защиты от сверхтока относятся к основным видам защиты от косвенного прикосновения, обеспечивающим автоматическое отключение питания.

А. 2.2 Защита от сверхтока обеспечивает защиту от косвенного прикосновения путем отключения поврежденного участка цепи при глухом замыкании на корпус. При малых токах замыкания, снижении уровня изоляции, а также при обрыве нулевого защитного проводника УЗО является, по сути дела, единственным средством защиты.

Плохой параметр бесперебойности питания дома!

ПУЭ-7 Россия сказал(а):

1.1.17. Для обозначения обязательности выполнения требований ПУЭ применяются слова ” должен “, “следует”, “необходимо” и производные от них. …

7.1.73. При установке УЗО последовательно должны выполняться требования селективности. При двух- и многоступенчатой схемах УЗО, расположенное ближе к источнику питания, должно иметь уставку и время срабатывания не менее чем в 3 раза большие, чем у УЗО, расположенного ближе к потребителю.

Что усугублено тем, что в большей части схемы применен худший способ применения дифзащиты!

ПУЭ-7 Россия сказал(а):

1.1.17. … Слово “допускается ” означает, что данное решение применяется в виде исключения как вынужденное (вследствие стесненных условий, ограниченных ресурсов необходимого оборудования, материалов и т. п.). …

7.1.79. … Допускается присоединение к одному УЗО нескольких групповых линий через отдельные автоматические выключатели (предохранители). …

Что ещё больше усугубляется применением там, где применен худший способ применения дифзащиты 1Р автоматов, а не 2Р или 1Р+ N автоматов! Что повышает вероятность, вместо устранения аварии, тупого исключения из схемы Вами или таким же безграмотным в электро/пожаро безопасности электриком дифзащиты, например как описано в теме , что опасно , так как не будет вообще защитного отключения!

Там где применен лучший способ применения дифзащиты групповые АВ стоят не правильно относительно групповых ВДТ!

ПУЭ-7 Россия сказал(а):

1.1.17. Для обозначения обязательности выполнения требований ПУЭ применяются слова “должен “, “следует”, “необходимо” и производные от них. Слова “как правило ” означают, что данное требование является преобладающим, а отступление от него должно быть обосновано. …

СП 31-110-2003 сказал(а):

Настоящий Свод правил конкретизирует и развивает требования нормативных документов, в том числе серии стандартов ГОСТ Р 50571.1 – ГОСТ Р 50571.18 и новых Правил устройства электроустановок (ПУЭ седьмого издания).

А. 1.1 Для защиты от поражения электрическим током УЗО, как правило , должно применяться в отдельных групповых линиях. …

Если будут светильники управляемые 2-х клавишными выключателями, некоторыми типпами диммеров, то понадобится ещё кабель 4х1,5 мм2, а в некоторых случаях и 5х1,5 мм2.

Частичная селективность допускается в одном щите, но лучше её избегать, как и установку общего ВДТ не в ЩУ, а в доме, особенно при косяке с 1Р автоматами при худшем способе применения дифзащиты.

Нет, для принудительного не аварийного обесточивания можно только вводным АВ и только без нагрузки.

Сильно завышен номинал АВ на варочную!

ВДТ 10 мА с таким рабочим током сложно приобрести.

Кроме улицы, погружного насоса характеристика С групповых АВ скорей всего не нужна.

Групповые автоматы на обычные бытовые розетки с характеристикой С нужно ставить только при необходимости, там где будут подключаться электроприборы без плавного пуска мощностью ≥1000 ватт, например в мастерской, на улице, а так же на электроприборы без плавного пуска с меньшей мощностью, если номинал автомата устанавливается в притырочку к мощности электроприбора, чтоб помимо защиты проводки защищать и сам электроприбор. Инверторные сварочные аппараты, холодильники, кондиционеры, особенно инверторные, стиральные машины, микроволновки с обычной бытовой вилкой не требуют установку автомата с характеристикой С.

Если напряжение в сети опускается меньше 198 вольт, то автоматы с характеристикой С ставить не стоит.


Всем привет! Сегодня я покажу как получить из обычной однофазной сети 220 В – трехфазную, причем без особых затрат. Но сначала расскажу о своей проблеме предшествующей поиску подобного решения.
У меня имелась советская мощная настольная циркулярная пила (2 кВт), которая подключалась к трехфазной сети. Мои попытки запитать ее от однофазной сети, как это обычно принято, не представлялось возможным: была сильная просадка мощности, грелись пусковые конденсаторы, грелся сам двигатель.
Благо в свое время я потратил должное время на поиск решения в интернете. Где я наткнулся на одно видео, где один парень сделал своеобразный расщепитель при помощи мощного электромотора. Далее он пустил по периметру своего гаража эту трехфазную сеть и подключил к ней все остальные приборы требующий трехфазного напряжения. Перед началом работ, приходил в гараж, запускал раздающий двигатель и до ухода он работал. В принципе, решение мне понравилось.
Решил повторить и сделать свой расщепитель. В роли двигателя взял старый советский на 3,5 кВт мощности, с обмотками включенными звездой.

Схема

Вся схема состоит всего из нескольких элементов: общий сетевой выключатель, кнопка для запуска, конденсатор на 100 мкФ и собственно мощного мотора.


Как все работает? Сначала подаем однофазное питание на раздающий мотор, пусковой кнопкой подключаем конденсатор, тем самым запуская его. Как только мотор раскрутился до нужных оборотов, конденсатор можно выключить. Теперь можно подключить к выходу расщепителя фаз нагрузку, в моем случае настольную циркулярку и ещё несколько трехфазных нагрузок.


Корпус устройства – рама выполнен из Г-образных уголков, все оборудование закреплено на кусок листа OSB. Сверху переделаны ручки для переноски всей конструкции, а на выход подключенная трехвыводная розетка.

После подключения пилы через такое устройство получилось существенное улучшение в работе, ничего не греется, мощности вполне хватает и не только на пилу. Ничего не рычит, не гудит, как это было раньше.
Только желательно брать раздающий мотор мощнее потребителей хотя бы на 1 кВт, тогда не будет заметно особой просадки мощности при резкой нагрузке.
Кто бы что не говорил про не чистый синус или это ничего не даст, советую их не слушать. Синус напряжения чистый и разбитый ровно на 120 градусов, в результате подключенная техника получает качественного напряжение, ввиду чего и не греется.
Вторая половина читателей которые будут говорить по 21-век и большое наличие частотных преобразователей трехфазного напряжения могу сказать, что мой выход в разы дешевле, так как старый мотор довольно просто найти. Можно взять даже негодный для нагрузки, со слабыми и почти разбитыми подшипниками.
Мой расщепитель фаз в холостом режиме потребляет не столь много: 200 – 400 Вт где-то, мощность подключенных инструментов вырастает в разы, по сравнению с обычной схемой подключения через пусковые конденсаторы.
В заключении хочу обосновать свой выбор данного решения: надежность, невероятная простота, небольшие затраты, высокая мощность.

Итак, почему в некоторые электрощитки приходит напряжение 380 В, а в некоторые – 220? Почему у одних потребителей напряжение трёхфазное, а у других – однофазное? Было время, я задавался этими вопросами и искал на них ответы. Сейчас расскажу популярно, без формул и диаграмм, которыми изобилуют учебники.

Другими словами. Если к потребителю подходит одна фаза, то потребитель называется однофазным, и напряжение его питания будет 220 В (фазное). Если говорят о трехфазном напряжении, то всегда идёт речь о напряжении 380 В (линейное). Какая разница? Далее – подробнее.

Чем три фазы отличаются от одной?

В обоих видах питания присутствует рабочий нулевой проводник (НОЛЬ). Про защитное заземление я , это обширная тема. По отношению к нулю на всех трёх фазах – напряжение 220 Вольт. А вот по отношению этих трёх фаз друг к другу – на них 380 Вольт.

Напряжения в трёхфазной системе

Так получается, потому что напряжения (при активной нагрузке, и ток) на трёх фазных проводах отличаются на треть цикла, т.е. на 120°.

Подробнее можно ознакомиться в учебнике электротехники – про напряжение и ток в трехфазной сети, а также увидеть векторные диаграммы.

Получается, что если у нас есть трехфазное напряжение, то у нас есть три фазных напряжения по 220 В. И однофазных потребителей (а таких – почти 100% в наших жилищах) можно подключать к любой фазе и нулю. Только делать это надо так, чтобы потребление по каждой фазе было примерно одинаковым, иначе возможен перекос фаз.

Кроме того, чрезмерно нагруженной фазе будет тяжело и обидно, что другие “отдыхают”)

Преимущества и недостатки

Обе системы питания имеют свои плюсы и минусы, которые меняются местами или становятся несущественными при переходе мощности через порог 10 кВт. Попробую перечислить.

Однофазная сеть 220 В, плюсы

  • Простота
  • Дешевизна
  • Ниже опасное напряжение

Однофазная сеть 220 В, минусы

  • Ограниченная мощность потребителя

Трехфазная сеть 380 В, плюсы

  • Мощность ограничена только сечением проводов
  • Экономия при трехфазном потреблении
  • Питание промышленного оборудования
  • Возможность переключения однофазной нагрузки на “хорошую” фазу при ухудшении качества или пропадании питания

Трехфазная сеть 380 В, минусы

  • Дороже оборудование
  • Более опасное напряжение
  • Ограничивается максимальная мощность однофазных нагрузок

Когда 380, а когда 220?

Так почему же в квартирах у нас напряжение 220 В, а не 380? Дело в том, что к потребителям мощностью менее 10 кВт, как правило, подключают одну фазу. А это значит, что в дом вводится одна фаза и нейтральный (нулевой) проводник. В 99% квартир и домов именно так и происходит.

Однофазный электрощиток в доме. Правый автомат – вводной, далее – по комнатам. Кто найдёт ошибки на фото? Хотя, этот щиток – одна сплошная ошибка…

Однако, если планируется потреблять мощность более 10 кВт, то лучше – трехфазный ввод. А если имеется оборудование с трехфазным питанием (содержащее ), то я категорически рекомендую заводить в дом трехфазный ввод с линейным напряжением 380 В. Это позволит сэкономить на сечении проводов, на безопасности, и на электроэнергии.

Не смотря на то, что есть способы включения трехфазной нагрузки в однофазную сеть, такие переделки резко снижают КПД двигателей, и иногда при прочих равных условиях можно за 220 В заплатить в 2 раза больше, чем за 380.

Однофазное напряжение применяется в частном секторе, где потребляемая мощность, как правило, не превышает 10 кВт. При этом на вводе применяют кабель с проводами сечением 4-6 мм². Потребляемый ток ограничивается вводным автоматическим выключателем, номинальный ток защиты которого – не более 40 А.

Про выбор защитного автомата я уже . А про выбор сечения провода – . Там же – жаркие обсуждения вопросов.

Но если мощность потребителя – 15 кВт и выше, то тут обязательно нужно использовать трехфазное питание. Даже, если в данном здании нет трехфазных потребителей, например, электродвигателей. В таком случае мощность разделяется по фазам, и на электрооборудование (вводной кабель, коммутация) ложится не такая нагрузка, как если бы ту же мощность брали от одной фазы.

Например, 15 кВт – это для одной фазы около 70А, нужен медный провод сечением не менее 10 мм². Стоить кабель с такими жилами будет существенно. А автоматов на одну фазу (однополюсных) на ток больше 63 А на ДИН-рейку я не встречал.

Поэтому в офисах, магазинах, и тем более на предприятиях применяют только трёхфазное питание. И, соответственно, трёхфазные счетчики, которые бывают прямого включения и трансформаторного включения (с трансформаторами тока).

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

И на вводе (перед счетчиком) стоят примерно такие “ящички”:

Трехфазный ввод. Вводной автомат перед счетчиком.

Существенный минус трехфазного ввод а (отмечал его выше) – ограничение по мощности однофазных нагрузок. Например, выделенная мощность трехфазного напряжения – 15 кВт. Это значит, что по каждой фазе – максимум 5 кВт. А это значит, что максимальный ток по каждой фазе – не более 22 А (практически – 25). И надо крутиться, распределяя нагрузку.

Надеюсь, теперь понятно, что такое трехфазное напряжение 380 В и однофазное напряжение 220 В?

Схемы Звезда и Треугольник в трехфазной сети

Существуют различные вариации включения нагрузки с рабочим напряжением 220 и 380 Вольт в трехфазную сеть. Эти схемы называются “Звезда” и “Треугольник”.

Когда нагрузка рассчитана на напряжение 220В, то она включается в трехфазную сеть по схеме “Звезда” , то есть к фазному напряжению. При этом все группы нагрузки распределяются так, чтобы мощности по фазам были примерно одинаковы. Нули всех групп соединены вместе и подключены к нейтральному проводу трехфазного ввода.

В “Звезду” подключены все наши квартиры и дома с однофазным вводом, другой пример – подключение ТЭНов в мощных и .

Когда нагрузка на напряжение 380В, то она включается по схеме “Треугольник”, то есть к линейному напряжению. Такое распределение по фазам наиболее типично для электродвигателей и другой нагрузки, где все три части нагрузки принадлежат к единому устройству.

Система распределения электроэнергии

Исходно напряжение всегда является трехфазным. Под “исходно” я подразумеваю генератор на электростанции (тепловой, газовой, атомной), с которого напряжение в много тысяч вольт поступает на понижающие трансформаторы, которые образуют несколько ступеней напряжения. Последний трансформатор понижает напряжение до уровня 0,4 кВ и подаёт его конечным потребителям – нам с вами, в квартирные дома и в частный жилой сектор.

Далее напряжение поступает на трансформатор ТП2 второй ступени, на выходе которого действует напряжение конечного потребителя 0,4 кВ (380В). Мощность трансформаторов ТП2 – от сотен до тысяч кВт. С ТП2 напряжение поступает к нам – на несколько многоквартирных домов, на частный сектор, и т.п.

Схема упрощённая, ступеней может быть несколько, напряжения и мощности могут быть другие, но суть от этого не меняется. Только конечное напряжение потребителей одно – 380 В.

Фото

Напоследок – ещё несколько фото с комментариями.

Электрощит с трехфазным вводом, но все потребители – однофазные.

Друзья, на сегодня всё, всем удачи!

Жду отзывов и вопросов в комментариях!

  • ” win2 return false > Печать

Трехфазные электродвигатели в быту и любительской практике приводят в действие самые различные механизмы – циркулярную пилу, электрорубанок, вентилятор, сверлильный станок, насос. Чаще всего используются трехфазные асинхронные двигатели с коротко- замкнутым ротором. К сожалению, трехфазная сеть в быту – явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют:

♦ фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя;

♦ тринисторные «фазосдвигающие» устройства, которые еще в большей степени снижают мощность на валу двигателей;

♦ другие различные емкостные или индуктивно-емкостные фазо­сдвигающие цепи.

Но лучше всего – получить трехфазное напряжение из однофаз­ного с помощью электродвигателя, выполняющего функции генера­тора. Рассмотрим схемы, позволяющие, имея однофазное переменное напряжение, получить две недостающие фазы.

Примечание.

Любая электрическая машина обратима: генератор может слу­жить двигателем, и наоборот.

Ротор обычного асинхронного электродвигателя после случайного отключения одной из обмоток продолжает вращаться, причем между выводами отключенной обмотки имеется ЭДС. Это явление дает воз­можность использовать трехфазный асинхронный электродвигатель для преобразования однофазного напряжения в трехфазное.

Схема № 1. Например, обычный трехфазный асинхронный элек­тродвигатель с короткозамкнутым ротором для этого применил С. Гуров (с. Ильинка Ростовской обл.). У этого двигателя так же, как и у генератора, имеются: ротор; три статорные обмотки, сдвинутые в про­странстве на угол 120°.

Подадим на одну из обмоток однофазное напряжение. Ротор дви­гателя не сможет самостоятельно начать вращение. Ему необходимо каким-либо способом дать начальный толчок. Далее он будет вращаться за счет взаимодействия с магнитным полем одной обмотки статора.

Вывод.

Магнитный поток вращающегося ротора наведет ЭДС индукции в двух других статорных обмотках, т. е. недостающие фазы будут восстановлены.

Ротор можно заставить вращаться, например, при помощи устрой­ства с пусковым конденсатором. Кстати, его емкость не обязательно должна быть большой, так как ротор асинхронного преобразователя приводится в движение без механической нагрузки на валу.

Один из недостатков такого преоб­разователя – неодинаковые фазные напряжения, что приводит к сниже­нию КПД самого преобразователя и двигателя-нагрузки.

Если дополнить устройство авто­трансформатором соответствующей мощности, включив его, как показано на рис. 1, можно добиться приблизи­тельного равенства фазных напряжений, переключая отводы. В качестве магнитопровода автотрансформатора был использован статор неисправного электродвигателя мощностью 17 кВт. Обмотка – 400 витков эмалирован­ного провода сечением 4-6 мм 2 с отводами после каждых 40 витков.

Рис. 1. Принципиальная схема преобразователя

В качестве электродвигателей преобразователей лучше использо­вать «тихоходные» двигатели (до 1000 об/мин.).

Они очень легко запускаются, отношение пускового тока к рабо­чему у них гораздо меньше, чем у двигателей с частотой вращения 3000 об/мин., а следовательно, «мягче» нагрузка на сеть.

Правило.

Мощность двигателя, используемого в качестве преобразователя, должна быть больше, чем подключаемого к нему электропривода. Первым всегда следует запускать преобразователь, а затем под­ключать к нему потребители трехфазного тока. Выключают установку в обратной последовательности.

Например, если преобразователем служит двигатель на 4 кВт, мощ­ность нагрузки не должна превышать 3 кВт. Преобразователь мощно­стью 4 кВт, рассмотренный выше и изготовленный С. Гуровым , исполь­зуется в его личном хозяйстве уже несколько лет. От него работают пилорама, крупорушка, точильный станок.

Схемы № 2-4. Под действием магнитного поля статора в короткозамкнутой обмотке ротора асинхронного двигателя протекают токи, превращающие ротор в электромагнит с явно выраженными полю­сами, индуктирующий напряжение синусоидальной формы в обмот­ках статора, в том числе не подключенных к сети.

Сдвиг фаз между синусоидами в разных обмотках зависит только от расположения последних на статоре и в трехфазном двигателе в точности равен 120°.

Примечание.

Основное условие превращения асинхронного электродвигателя в преобразователь числа фаз – вращающийся ротор.

Поэтому его следует предварительно раскрутить, например, с помо­щью обычного фазосдвигающего конденсатора.

Емкость конденсатора рассчитывают по формуле:

C=k*I ф /U сети

где к = 2800, если обмотки двигателя соединены звездой; к = 4800, если обмотки двигателя соединены треугольником; I ф – номинальный фазный ток электродвигателя, А; U ce ти – напряжение однофазной сети, В.

Можно применять конденсаторы МБГО, МБГП, МБГТ К42-4 на рабочее напряжение не менее 600 В или МБГЧ К42-19 на напряжение не менее 250 В.

Примечание.

Конденсатор нужен только для пуска двигателя-генератора, затем его цепь разрывают, а ротор продолжает вращаться, поэтому емкость фазосдвигающего конденсатора не влияет на качество генерируемого трехфазного напряжения.

К обмоткам статора можно подключить трехфазную нагрузку. Если ее нет, энергия питающей сети расходуется лишь на преодоление трения в подшипниках ротора (не считая обычных потерь в меди и железе), поэтому КПД преобра­зователя довольно велик.

В качестве преобразовате­лей числа фаз автором схем Клейменовым В. было испытано несколько различных электро­двигателей. Те из них, обмотки которых соединены звездой, с выводом от общей точки (ней­тралью) подключали по схеме, показанной на рис. 2. В случае соединения обмоток звездой без нейтрали или треугольником применяли схемы, показанные, соответственно, на рис. 3 и рис. 4.


Рис. 2. Схема преобразователя, обмотки двигателя в котором соединены звездой, с выводом от общей точки (нейтралью)


Рис. 3. Схема преобразователя обмотки двигателя в котором соединены звездой без нейтрали


Рис. 4. Схема преобразователя; обмотки двигателя в котором соединены треугольником

Во всех случаях двигатель , запускали, нажав на кнопку SB 1 и удерживая ее в течении 15 С, пока частота вращения ротора не достигнет номинальной. Затем замы­кали выключатель SA 1, а кнопку отпу­скали.

Схемы № 5. Обычно концы обмо­ток асинхронного трехфазного элек­тродвигателя выведены на трех- или шестиклеммную колодку. Если колодка трехклеммная, значит, фазные статорные обмотки соединены звездой или треугольником. Если же она шестиклеммная, фазные обмотки не подключены друг к другу (Я. Шаталов , п. Ирба Красноярского края).

В последнем случае важно правильно их соединить. При включе­нии звездой одноименные выводы обмоток (начало или конец) сле­дует объединить в нулевую точку. Для того чтобы соединить обмотки треугольником, необходимо:

♦ конец первой обмотки соединить с началом второй;

♦ конец второй – с началом третьей;

♦ конец третьей – с началом первой.

А как быть, если выводы обмоток электродвигателя не маркиро­ваны?

Тогда поступают следующим образом. Омметром определяют три обмотки, условно обозначив их I , II и III. Чтобы найти начало и конец каждой из них, две любые соединяют последовательно и подают на них переменное напряжение 6-36 В. К третьей обмотке подключают вольтметр переменного тока (рис. 5).


Рис. 5. Схема подключения вольтметра для определения обмоток

Наличие переменного напряжения свидетельствует о том, что обмотки I и II включены согласно, а отсутствие напряжения – встречно. В последнем случае выводы одной из обмоток следует поменять местами. После этого отмечают начало и конец обмоток I и II (одноименные выводы обмоток I и II на рис. 5 отмечены точками). Чтобы определить начало и конец обмотки III, меняют местами обмотки, например, II и III, и по описанной выше методике повторяют измерения.

Поделись статьей:

Похожие статьи

Преобразователь фазы

– преобразование 1-фазного в 3-фазное питание

Вы ищете способы преобразования трехфазной энергии в однофазную? Есть несколько способов сделать это. Сначала вам нужно принять во внимание ваши текущие потребности в балансе. Если вы собираетесь использовать одну фазу в работе чувствительных машин, вам нужно искать более точные системы фазового преобразования. Есть другие, которые связаны с игрой с соединительными линиями, а некоторые потребуют от вас покупки чувствительного трансформатора.

Некоторые из методов, которые вы можете применить, включают следующие:

Используйте одну из фаз системы и нейтральный провод

Вы можете игнорировать две фазы в трехфазной линии питания и вместо этого использовать нейтральный провод с одной фазой. Это простой метод, который может привести к получению одной фазы из трехфазной системы, но он менее точен. Вы можете попробовать это, если ваши потребности в питании не слишком чувствительны к балансировке тока.

Преобразование трехфазного переменного тока в постоянный, а затем в однофазное

Вы можете использовать электронный выпрямитель для преобразования источника питания в систему постоянного тока. Из системы постоянного тока вы можете затем преобразовать ее обратно в соединение с однофазной линией переменного тока. Это простой метод, при котором вам понадобится только выпрямитель, и вы можете преобразовать источник питания в желаемую фазу.

Используйте однофазный трансформатор

Если у вас есть однофазный трансформатор, вы можете легко преобразовать трехфазное соединение в однофазное соединение.Это простой процесс, который вы легко можете достичь, если купите правильный трансформатор. Он идеально подходит для подключений мощностью менее 5 кВА. Если вы намереваетесь преобразовать мощность более 5 кВА, вам может потребоваться поиск другого метода преобразования.

Трансформаторы с открытым треугольником

Если вы намереваетесь преобразовать более 5 кВА в однофазную, вам понадобится более мощный трансформатор для этой работы.Применение трансформатора с разомкнутым треугольником работает очень хорошо. Он прочен, чтобы вы могли легко выполнить преобразование. Всегда проверяйте свои требования к нагрузке, прежде чем вы решите применить данный метод в своих фазовых преобразованиях.

Трансформеры Скотта Т

Это еще один трансформатор, который можно использовать для изменения фазы с трехфазного на однофазное соединение. Подключение предполагает использование тизерного трансформатора и главного трансформатора, которые работают согласованно для достижения фазового преобразования.Достигнутый ток более сбалансирован, что может хорошо работать, если вы используете машины, которым требуется хорошо сбалансированный ток.

Трансформаторы Le-Blanc

Этот трансформатор позволяет преобразовать три фазы с более чем 5 кВА и 400 В в одну фазу. С помощью этого трансформатора вы можете добиться точных преобразований, которые обеспечат надежный ток для работы чувствительных машин.

Вы все еще задаетесь вопросом, как преобразовать трехфазную мощность в однофазную? Выше приведены несколько простых методов, которые можно применить для преобразования.Различные методы позволяют достичь различных уровней текущего баланса, поэтому вам необходимо проверить свои требования к нагрузке, прежде чем вы выберете тот или иной метод.

Inslee объявляет о переходе в масштабе штата к этапу 3 плана восстановления, возвращению к зрелищным мероприятиям и критериям вакцинации этапа 1B, уровня 2 | канцелярии губернатора Вашингтон | Офис губернатора штата Вашингтон

План возобновления работы штата вернется к подходу от округа к округу

Губернатор Джей Инсли сегодня объявил, что «Здоровый Вашингтон: дорожная карта к выздоровлению» будет переходить от регионального подхода к оценке от округа к округу. процесс.Губернатор также объявил о новом третьем этапе «Дорожной карты» и возвращении личных зрителей для профессиональных и школьных видов спорта.

С 22 марта весь штат перейдет в Фазу 3.

«В связи с прогрессом, которого мы достигли в снижении количества случаев заболевания и госпитализаций, а также благодаря нашим огромным усилиям по вакцинации большего числа людей, наш план возобновления работы снова на основе округов, а не регионов », – сказал Инсли на пресс-конференции в четверг. «Мы рады сделать этот шаг, и мы будем продолжать оценивать наш прогресс и влияние этих изменений, чтобы определить, как и когда мы снова откроемся».

Кроме того, губернатор объявил, что начиная со среды, 17 марта, все участники Фазы 1B, Уровня 2 будут иметь право на вакцину против COVID. Сюда входят, в частности, работники сельского хозяйства, пищевой промышленности, продуктовых магазинов, общественного транспорта, пожарные и правоохранительные органы. Фаза 1B, уровень 2 также включает беременных или людей старше 16 лет с инвалидностью, которая подвергает их высокому риску.

Показатели

Согласно обновленному плану, округа будут оцениваться индивидуально каждые три недели. Оценка будет проводиться по понедельникам, любые возможные изменения вступят в силу в пятницу, а первая оценка запланирована на 12 апреля.

Помимо индивидуальной оценки, большие и малые округа будут иметь разные наборы критериев. Если в каком-либо округе не удается выполнить один или несколько показателей, указанных ниже, этот округ перейдет на один этап вниз по плану Heathy Washington.

Для того, чтобы крупные округа оставались в Фазе 3, определяемые как округа с более чем 50000 жителей, они должны поддерживать 14-дневное среднее количество новых случаев COVID на уровне 200 на 100000 жителей или ниже, а среднее число новых госпитализаций за семь дней на 100000 при пяти или меньше.

Небольшие округа с населением 50 000 человек и менее должны поддерживать среднее 14-дневное количество новых случаев на уровне 30 или меньше, а новое среднее количество госпитализаций в течение семи дней на уровне трех или меньше.

Если в любой момент пропускная способность отделения интенсивной терапии в масштабе штата превысит 90%, все округа перейдут на одну фазу. Департамент здравоохранения всегда оставляет за собой право перемещать округ вперед или назад по своему усмотрению.

«Мы знаем, что есть энтузиазм по поводу открытия школ и предприятий, и что переход к этапу 3 является приятной новостью для многих вашингтонцев», – сказала Лейси Ференбах, заместитель секретаря Департамента здравоохранения по реагированию на COVID-19. «Мы хотим вместе идти вперед, чтобы вырваться из пандемии, и наш успех зависит от ношения масок, мытья рук, соблюдения дистанции, сокращения круга общения и, конечно же, от вакцинации, когда придет наша очередь. Это то, что поможет нам подавить COVID-19, что является ключом к нашему дальнейшему прогрессу на пути к выздоровлению ».

Этап 3

Спортивные рекомендации будут изменены в Этапе 3, чтобы впервые за год разрешили лично присутствовать на мероприятиях.Зрителям будет разрешено посещать открытые площадки с постоянными местами для сидения с максимальной вместимостью 25%. Это изменение коснется как профессионального спорта, так и школьного спорта, а также автоспорта, родео и других мероприятий для зрителей на открытом воздухе. Социальное дистанцирование и маскировка лица по-прежнему необходимы.

Новая фаза также позволяет максимум 400 людям посещать мероприятия на открытом воздухе, а также мероприятия в помещениях – при условии, что 400 человек не превышают 50% вместимости места, и применяются протоколы физического дистанцирования и маскировки.Более крупные мероприятия рассчитаны на заполнение 25% или до 9000 человек, в зависимости от того, что меньше, и должны соответствовать правилам для зрителей.

Кроме того, на этапе 3 все внутренние помещения будут заполнены до 50% или максимум 400 человек, в зависимости от того, что меньше. Это относится ко всем отраслям промышленности и внутренним видам деятельности, разрешенным в настоящее время; рестораны, тренажерные залы, фитнес-центры и кинотеатры, среди прочего, могут увеличить свою вместимость.

«Некоторые из наиболее пострадавших предприятий в Вашингтоне смогут вернуться на 50% мощности, поскольку мы продолжим путь к восстановлению», – сказал Инсли. «22 марта мы делаем еще один шаг к победе над этим вирусом и омоложению нашей экономики».

Полный список отраслевых изменений для нового этапа будет выпущен на следующей неделе.

Основы фазовых переходов – Химия LibreTexts

Фазовый переход – это переход вещества из твердого, жидкого или газообразного состояния в другое состояние. Каждый элемент и вещество могут переходить из одной фазы в другую при определенной комбинации температуры и давления.

Изменения фаз

У каждого вещества есть три фазы, в которые оно может превращаться; твердое, жидкое или газообразное (1) . Каждое вещество при определенных температурах находится в одной из этих трех фаз. Температура и давление, при которых вещество будет изменяться, очень зависят от межмолекулярных сил, действующих на молекулы и атомы вещества (2) . В одном контейнере одновременно могут сосуществовать две фазы. Обычно это происходит, когда вещество переходит из одной фазы в другую.Это называется двухфазным состоянием (4) . В примере с таянием льда, когда лед тает, в чашке есть как твердая вода, так и жидкая вода.

Существует шесть способов изменения вещества между этими тремя фазами; плавление, замораживание, испарение, конденсация, сублимация и осаждение (2) . Эти процессы обратимы, и каждый переносится между фазами по-разному:

  • Плавление: переход от твердой фазы к жидкой
  • Замораживание: переход из жидкой фазы в твердую
  • Испарение: переход из жидкой фазы в газовую
  • Конденсация: переход из газовой фазы в жидкую
  • Сублимация: переход из твердой фазы в газовую
  • Осаждение: переход из газовой фазы в твердую

Как работает фазовый переход

При рассмотрении фазового перехода следует учитывать две переменные: давление (P) и температуру (T).2} \ right) \ left (V-nb \ right) = nRT \]

Где V – объем, R – газовая постоянная, а n – количество молей газа.

Закон идеального газа предполагает, что никакие межмолекулярные силы никак не влияют на газ, в то время как уравнение Ван-дер-Ваальса включает две константы, a и b, которые учитывают любые межмолекулярные силы, действующие на молекулы газа.

Температура

Температура может изменять фазу вещества. Один из распространенных примеров – положить воду в морозильную камеру, чтобы превратить ее в лед.На картинке выше у нас есть твердое вещество в контейнере. Когда мы помещаем его на источник тепла, например на горелку, тепло передается веществу, увеличивая кинетическую энергию молекул вещества. Температура повышается до тех пор, пока вещество не достигнет точки плавления (2) . По мере того, как все больше и больше тепла передается за пределы точки плавления, вещество начинает плавиться и превращаться в жидкость (3) . Этот тип фазового перехода называется изобарическим процессом, потому что давление в системе остается на постоянном уровне.

Температура плавления (T
f )

У каждого вещества есть точка плавления. Точка плавления – это температура, при которой твердое вещество становится жидкостью. При разном давлении требуется разная температура для плавления вещества. Каждый чистый элемент в периодической таблице имеет нормальную температуру плавления, температуру, при которой элемент станет жидким при давлении 1 атмосфера (2) .

Точка кипения (T
b )

У каждого вещества также есть точка кипения.Точка кипения – это температура, при которой жидкость превратится в газ. Точка кипения будет меняться в зависимости от температуры и давления. Как и точка плавления, каждый чистый элемент имеет нормальную точку кипения в 1 атмосферу (2) .

Давление

Давление также можно использовать для изменения фазы вещества. На картинке выше у нас есть контейнер с поршнем, который герметично закрывает газ. Когда поршень сжимает газ, давление увеличивается. По достижении точки кипения газ конденсируется в жидкость.По мере того как поршень продолжает сжимать жидкость, давление будет увеличиваться до тех пор, пока не будет достигнута точка плавления. Затем жидкость замерзнет и превратится в твердое вещество. Этот пример относится к изотермическому процессу, в котором температура постоянна, а изменяется только давление.

Краткое описание фазовой диаграммы

Фазовый переход можно представить в виде фазовой диаграммы. Фазовая диаграмма – это визуальное представление того, как вещество меняет фазы.

Это пример фазовой диаграммы.Часто, когда вас спрашивают о фазовом переходе, вам нужно будет обратиться к фазовой диаграмме, чтобы ответить на него. На этих диаграммах обычно отмечены нормальная точка кипения и нормальная точка плавления, а по оси ординат – значения давления, а по оси абсцисс – температуры. Нижняя кривая отмечает комбинации температуры и давления, при которых вещество будет сублимировать (1) . Слева слева отмечены комбинации температуры и давления, при которых вещество будет плавиться (1) .Наконец, правая линия отмечает условия, при которых вещество будет испаряться (1) .

Список литературы

  1. Оландер, Дональд Р. Общая термодинамика . Бока-Ратон: CRC, 2008.
  2. Окстоби, Дэвид У., Х. П. Гиллис и Алан Кэмпион. “Фаза перехода.” Основы современной химии . 6-е изд. Сингапур: Томсон / Брукс / Коул, 2008. 428-30.
  3. Шмидт, Филип С. Термодинамика: интегрированная система обучения .Хобокен, Нью-Джерси: Уайли, 2006.
  4. Шервин, Кит. Введение в термодинамику . Лондон: Chapman & Hall, 1994.
  5. .

Проблемы

1. Используя приведенную ниже диаграмму состояния диоксида углерода, объясните, в какой фазе диоксид углерода обычно находится при стандартной температуре и давлении, 1 атм и 273,15 К.

Фазовая диаграмма для CO2. Из Википедии.

2: Глядя на ту же диаграмму, мы видим, что диоксид углерода не имеет нормальной температуры плавления или нормальной температуры кипения.Объясните, какое изменение вызывает углекислый газ при давлении 1 атм, и оцените температуру в этой точке.

Решения

1: Прежде чем мы сможем полностью ответить на вопрос, нам нужно преобразовать данную информацию, чтобы она соответствовала единицам на диаграмме. Сначала мы конвертируем 25 градусов Кельвина в Цельсия: \ (K = 273,15 + C \) \ [298.15-273.25C \] Теперь мы можем посмотреть на диаграмму и определить ее фазу. При 25 градусах Цельсия и 1 атм углекислый газ находится в газовой фазе.

2: Углекислый газ сублимируется при давлении 1 атм, потому что он переходит из твердой фазы непосредственно в газовую фазу.Температура сублимации при 1 атм около -80 градусов по Цельсию.

Авторы и авторство

  • Кирстен Амдал (Калифорнийский университет в Дэвисе)

Открытие штата Массачусетс: администрация Бейкера-Полито инициирует переход к третьей фазе четырехэтапного подхода

БОСТОН. Сегодня администрация Бейкера-Полито объявила, что 6 июля начнется этап III плана повторного открытия Содружества и вступят в силу обновленные данные о собраниях.Для города Бостон этап III и порядок проведения собраний вступят в силу в понедельник, 13 июля.

Министерство здравоохранения (DPH) также выпустило обновленное руководство по предотвращению распространения COVID-19.

Шаг первый этапа III:

18 мая администрация опубликовала четырехэтапный план восстановления экономики, основанный на данных общественного здравоохранения, с затратами не менее трех недель на каждую фазу. Ключевые данные общественного здравоохранения, такие как новые случаи и госпитализации, тщательно отслеживались, и их количество снизилось, что позволило начать фазу III 6 июля.Фаза III начнется 13 июля в Бостоне.

С середины апреля средний показатель за 7 дней для положительных результатов теста на COVID-19 снизился на 94 процента, средний показатель госпитализированных пациентов за 3 дня снизился на 79 процентов, а количество больниц, подверженных всплеску, снизилось на 86 процентов.

Было проведено более 1000000 тестов на COVID-19, и тестирование продолжается по всему штату.

Следующие предприятия будут иметь право на повторное открытие на первом этапе фазы III в соответствии с отраслевыми правилами, касающимися мощности и операций:

  • Кинотеатры и открытые площадки для представлений;
  • Музеи, памятники культуры и истории;
  • Фитнес-центры и клубы здоровья;
  • Определенные развлекательные мероприятия в помещении с низким потенциалом контакта;
  • Профессиональные спортивные команды в соответствии с общими правилами лиги могут проводить игры без зрителей

Полное руководство и список предприятий, имеющих право на повторное открытие на первом этапе этапа III, можно найти на сайте www.mass.gov/reopening. Предприятия и отрасли, которые должны начать работу на этапе III, должны соответствовать всем обязательным стандартам безопасности.

Пересмотренный заказ на собрания:

Согласно обновленному порядку собраний, собрания в помещении ограничены до восьми человек на 1000 квадратных футов, но не должны превышать 25 человек в одном замкнутом помещении.

Собрания на открытом воздухе в закрытых помещениях ограничены 25 процентами от максимально допустимой вместимости объекта, с максимумом 100 человек в одном закрытом открытом пространстве.Сюда входят общественные мероприятия, общественные мероприятия, спортивные мероприятия, концерты, съезды и многое другое. Этот приказ не распространяется на собрания на открытом воздухе, не закрытые, если возможны надлежащие меры социального дистанцирования.

Это пересмотренное постановление не отменяет ранее выпущенное руководство по сектору и вступает в силу с понедельника, 6 июля. Оно вступит в силу в понедельник, 13 июля, в городе Бостон.

Руководство по общественному здравоохранению:

На Этапе III поставщики медицинских услуг могут продолжать предоставлять личные процедуры и услуги, как это разрешено на Этапе II, с добавлением определенных программ группового лечения и дневных программ.Эти программы включают дневное оздоровление взрослых, дневные программы абилитации, дневное лечение наркозависимости и амбулаторные услуги. Некоторые программы социальных услуг могут возобновиться, в том числе дневные службы по месту жительства для взрослых с интеллектуальными и когнитивными нарушениями и клубы психосоциальной реабилитации.

Поставщики медицинских услуг должны соблюдать все обязательные стандарты безопасности и должны продолжать использовать политику приоритизации, установленную на этапе II для оказания и планирования помощи, а также контролировать количество пациентов для несущественных, выборных процедур и услуг.

Полное руководство читайте здесь .

На Этапе III были обновлены правила посещения круглосуточных центров и программ коллективного ухода, находящихся под надзором Исполнительного управления здравоохранения и социальных служб, в том числе департаментов служб развития, молодежных служб, детей и семьи, общественного здравоохранения, психического здоровья и Комиссия по массовой реабилитации. Выездные визиты, в том числе с ночевкой, будут разрешены в соответствии с определенными правилами. Другие обновленные инструкции, включая посещение учреждений длительного ухода, будут выпущены позже сегодня.Полное руководство по посещению доступно на www.mass.gov/hhs/reopening.

MassHealth также расширит свою текущую гибкость телемедицины, по крайней мере, до конца года, чтобы обеспечить участникам доступ к важнейшим медицинским услугам и поощрить постоянное соблюдение профилактических мер предосторожности в области общественного здравоохранения.

###

Покупка однофазного генератора против трехфазного

Покупка однофазного генератора против трехфазного

Однофазные и трехфазные генераторы могут быть родственниками в генеалогическом дереве производителей электроэнергии, но предприятиям и управляющим зданиями не следует совершать ошибку, объединяя их для удовлетворения энергетических потребностей своего предприятия.

Хотя оба могут работать для выработки первичной энергии для коммерческого и промышленного оборудования для автономных приложений или альтернативной энергии в случае сбоев, люди постоянно задаются вопросом о различиях между однофазными и трехфазными генераторами, о том, что каждый из них может питать и для чего сколько.

Это естественные вопросы. Как владелец бизнеса или собственности, менеджер предприятия или просто физическое лицо, стремящееся обеспечить круглосуточную работу своих операций и отделов, не беспокоясь о дорогостоящих простоях или остановках производства, понимание разницы в трехфазных двигателях является ключевым моментом.

Более того, если вы выберете неправильный тип, вы обязательно столкнетесь с большим количеством болевых точек, чем у вас было раньше – от слабого и точечного питания до стремительно растущих счетов за электроэнергию и целого парка неисправных генераторов.

Обзор бывших в употреблении генераторов

Покупка однофазного или трехфазного генератора с Woodstock Power

Лучшие закупки новых и бывших в употреблении генераторов – информированные. Что такое однофазный генератор, а что трехфазный? Woodstock Power проведет вас через их параллели, различия и области применения, чтобы вы могли сделать правильный выбор для своей деятельности.

Прежде чем мы углубимся в технические детали, вот что вам нужно знать о сходствах, лежащих в основе обоих этих типов генераторов:

  • Однофазный и 3-фазный генераторы используют переменный ток (AC): AC – это тип электрического тока, который фактически меняет направление, а не течет непрерывно по односторонним линиям. Это означает, что электричество переменного тока немного более изменчиво, чем другие электрические токи, но оно производит более высокие уровни мощности.
  • Однофазный и 3-фазный генераторы содержат циклы включения питания: Потоки переменного тока работают циклически, с пиковыми и пониженными выходами в зависимости от того, как электроны движутся по чередующимся путям. Однофазные генераторы производят и полагаются на один поток переменного тока с одним циклом повышения и понижения, в то время как трехфазные генераторы производят и работают с тремя циклами одновременно.

Как однофазный генератор обеспечивает питание

Как следует из названия, однофазный генератор использует одну волну переменного тока, описанную выше, для создания своих киловаттных выходов.

Это существенное отличие от генератора данного типа. Поскольку они работают только от одной «линии» мощности, вырабатываемой между небольшим количеством проводящих проводов – иногда минимальным, как два, – и эта линия имеет выходные циклы с повышением и понижением частоты, однофазные генераторы не будут обеспечивать столь стабильный источник питания. по сравнению с его трехфазным аналогом.

К счастью, даже на самом низком уровне однофазные генераторы не полностью «выпадают». Низкие циклические токи обычно должны оставаться незаметными, если генератор этого типа не работает с избыточной мощностью.Вот почему вы не замечаете мерцания света в комнате, когда включена лампа или потолочный светильник. Коммерческие фонари являются основным продуктом однофазных генераторов, но они переключаются так быстро, что мерцание, вызванное низкими точками тока, незаметно для человеческого глаза.

В целом однофазный генератор имеет следующие характеристики:

  • Содержит один ток, генерируемый напряжением
  • Как минимум будет иметь всего два компонента обмотки, заряжающих всю систему
  • Обычно используется менее проводящая обмотка
  • Более низкие первоначальные закупочные расходы, но более высокие затраты на техническое обслуживание
  • Грузы должны оставаться относительно легкими, например отдельные светильники, электроника или приборы
  • Единичные циклы делают его менее эффективным, менее мощным и более подверженным сбоям напряжения

Как 3-фазный генератор обеспечивает питание

Трехфазный генератор обеспечивает питание тремя последовательными токами, протекающими одновременно.Эти токи действительно требуют более сильного базового напряжения, но это также означает, что у вас будет непрерывный, непрерывный поток энергии, генерируемый вашим устройством.

Более того, эта мощность не только более постоянна, но и сильнее. Трехфазный генератор формирует свои линии для циклического цикла со смещением 120 градусов и сможет поддерживать питание для более интенсивных приложений или критически важного оборудования. Пропорция в 120 градусов означает, что, когда цикл одного тока находится на самом низком уровне, другой будет на максимуме, предлагая дополнительные длины волн, которые работают по касательной для обеспечения стабильного количества энергии.

3-фазные генераторы

обеспечивают идеальный баланс между предоставленной мощностью и стоимостью строительства и обслуживания. У них также есть дополнительный бонус в том, что они более универсальны. Операторы могут выбрать синхронизацию всех трех токовых циклов для питания одной большой единицы промышленного оборудования. Или они могут подключить три меньших устройства к отдельным линиям тока, удерживаемым в одном и том же трехфазном генераторе.

Первое часто используется на заводах и в промышленных предприятиях для питания отдельной машины или системы, в то время как лестница работает в таких вещах, как многоэтажные офисные здания для питания лифтов и офисных рабочих столов.

В целом трехфазный генератор будет включать в себя следующие характеристики:

  • Три одновременно генерируемых напряжения тока, колеблющиеся с интервалом в 120 градусов
  • Требуется как минимум три медных компонента обмотки для зарядки всей системы
  • Использует более сложную обмотку или проводку в целом, но легче и эффективнее
  • Подвижные грузы могут быть тяжелыми и промышленными, а также использоваться в различных более легких областях применения
  • – более экономичный, прочный и надежный генератор типа
  • .

Преимущества трехфазного генератора

Понимание функциональных и механических преимуществ трехфазного генератора играет важную роль в выборе наиболее подходящего для вас.

Однако, хотя однофазное и трехфазное питание часто противопоставляются друг другу, следует отметить, что определяющим элементом вашего решения о покупке является то, для чего вы будете использовать этот генератор. Это интуитивно понятный вопрос, и он поможет вам увидеть фактические преимущества генератора для себя, а не полагаться исключительно на запутанные спецификации или ярких продавцов.

Для промышленного, коммерческого и сельскохозяйственного применения трехфазные генераторы – ваш лучший выбор.Преимущества трехфазных генераторов для этих отраслей обширны, со многими из следующих возможностей.

1. Сильнее, долговечнее и надежнее

Следует повторить, что наиболее значительным преимуществом трехфазных генераторов является их высокая выходная мощность и даже более высокий уровень эффективности. Они являются «рабочими лошадками» промышленного оборудования, тяжелой техники, больших офисных зданий и сооружений, обеспечивая стабильные потоки электроэнергии, которые являются основными продуктами в высокопотребляемых операциях.

2. Снижение общих эксплуатационных расходов

Хотя их предварительное приобретение может быть более дорогостоящим, трехфазные генераторы являются расчетными победителями, когда речь идет о техническом обслуживании, обновлении системы и общем содержании. Они более стабильны и эластичны благодаря меньшему износу от крутящего момента, больших нагрузок, пульсирующего распределения и многого другого.

Более того, если учесть случаи простоя системы или остановки производства из-за однофазной дегенерации и исправлений, трехфазные генераторы становятся еще более конкурентоспособными по стоимости.

3. Меньше алюминия или меди на киловатт выработки или выработку

Поначалу это звучит сбивающе с толку, поскольку в трехтактном генераторе задействовано больше проводов, чем в традиционном одном или двух тактовом генераторе. Однако на самом деле трехфазные генераторы имеют так называемую более низкую передачу мощности, что означает, что им нужны менее проводящие материалы, чтобы производить такое же количество энергии при том же уровне вольт.

В данном случае это означает, что трехфазные генераторы имеют более легкие компоненты проводки из меди или алюминия, чем однофазные генераторы, что делает весь блок потенциально легче, но все же более эффективным.

4. Меньший крутящий момент

Меньший крутящий момент в генераторе означает меньше механических вибраций. Это, в свою очередь, помогает дополнить превосходную надежность трехфазного генератора по сравнению с однофазным аналогом.

Высокие уровни крутящего момента вызовут на вашем устройстве спираль, похожую на домино. Волны переменного тока становятся прерывистыми и менее стабильными, так как магниты смещаются с места или другие веса и силы повреждают механику, что в свою очередь означает нерегулярные циклы. С гармоничными циклами в качестве основы для типов генераторов переменного тока вы получите менее прочный и менее функциональный трехфазный блок.

5. Превосходный коэффициент мощности

Большинство трехфазных генераторов в среднем имеют номинальный коэффициент мощности 0,8. Это почти в 1,5 раза выше, чем типичный коэффициент мощности однофазного генератора того же размера и веса. Эти более высокие значения коэффициента мощности означают более крупные конечные выходы, способные работать с вашими промышленными приложениями.

Когда выбрать однофазный или трехфазный генератор?

Наиболее важным фактором при выборе однофазного или трехфазного генератора является то, для чего вы собираетесь его использовать.В частности, подумайте, какие виды оборудования или устройств необходимо включать, как часто и как долго.

Когда следует выбирать однофазный генератор

Владельцам бизнеса и руководителям предприятий следует подумать о выборе однофазных генераторов, когда приложениям не требуется мощность более 240 киловатт. Как правило, однофазные генераторы не предназначены для масштабирования. Они также не идеальны для питания современного или круглосуточного оборудования, если только это оборудование не является узкоспециализированным или каким-либо образом не буферизовано другим источником питания.

Управляющим или операторам зданий не рекомендуется использовать однофазные генераторы для большинства основных систем своего объекта. Эти системы включают в себя такие вещи, как отопление, охлаждение, вентиляция, лифты, большие электронные системы, а также промышленное или производственное оборудование. Каждый из них, скорее всего, не сможет работать без надлежащего источника с высокой выходной мощностью, например, с трехфазным питанием.

Однофазные блоки рекомендуются только для маломощных приборов и оборудования, например:

  • Индивидуальные или небольшие наборы настольных или портативных компьютеров
  • Индивидуальные системы освещения
  • Телевизоры
  • Модемы
  • Генераторы переносные резервные

Когда следует выбирать трехфазный генератор Трехфазные генераторы

– очевидный выбор для коммерческого и промышленного использования.Они могут выдерживать более длительное время работы, выдерживать более высокие напряжения и работать с максимальной стабильностью и надежностью.

Владельцам предприятий и управляющим предприятиями особенно важно оборудовать свои здания трехфазными генераторами на случай отключения электроэнергии или чрезвычайной ситуации. В некоторых отраслях промышленности отключение электричества может стоить тысячи расходов, связанных с сокращением прибыли в минуту, не говоря уже о том, что в некоторых случаях это может поставить под угрозу жизнь. Без резервного источника питания ваше предприятие рискует потерять доход и привести к многим другим критически важным для бизнеса обязательствам.

Вам следует выбрать трехфазный генератор, если ваша установка или работа зависит от любого из следующих факторов:

  • Промышленное оборудование: Крупные двигатели и другие двигатели большой нагрузки, торговые холодильники, конвейерные системы и промышленное производственное оборудование – ручное и компьютеризированное
  • Системы отопления, вентиляции и кондиционирования воздуха: Центральное кондиционирование воздуха, электрические котлы коммерческого или промышленного назначения, печи или плинтусы, обогреватели и вентиляция воздуха, включая вытяжные, приточные или сбалансированные системы
  • Тяжелое сельскохозяйственное оборудование: Тракторные генераторы отбора мощности, большие генераторы с приводом от двигателя и открытые резервные блоки

Отрасли и ситуации, в которых обычно требуется трехфазный генератор

3-фазные генераторы

необходимы для многих типов бизнеса и ситуаций.Без надлежащих 3-фазных генераторов для резервного копирования, расширения определенных единиц оборудования или выработки электроэнергии в полевых условиях следующие отрасли промышленности не могут работать с максимальной производительностью.

1. Мелкосерийное и непрерывное производство

Многочисленные исследования показали, что производители больше всего теряют от перебоев в подаче электроэнергии. Будь то мелкосерийные производственные линии или круглосуточное производственное предприятие, производство знает, насколько жизненно важен надежный промышленный источник энергии.Менеджеры предприятий работают над обеспечением безопасности и устойчивости своих электросетей, а также над их буферизацией с помощью собственных резервных трехфазных генераторов, чтобы поддерживать работу машин и регулировать компьютерные системы. Без них объект станет безжизненным.

2. Оборудование для обработки пищевых продуктов и напитков

Скоропортящиеся продукты питания и напитки требуют непрерывного энергоснабжения для поддержания работоспособности холодного охлаждения и других методов консервации. Поскольку запасы чрезвычайно подвержены загрязнению и сокращаются или испорчены срок службы, одно отключение электроэнергии может вынудить вас выбросить тысячи товаров.

Менеджеры по производству продуктов питания и напитков должны иметь полный набор трехфазных резервных генераторов на месте, чтобы помочь в эти трудные времена – по крайней мере, для поддержания регулируемой температуры и стерильности циклов вентиляции воздуха.

3. Многоэтажные офисные здания, башни и небоскребы

Большие и сложные электрические системы в многоэтажных зданиях требуют столь же динамичной системы. Трехфазные генераторы – это естественный выбор инженеров-электриков и руководителей зданий для регулирования мощности на каждом этаже.Более того, эти уровни мощности должны быть постоянными, независимо от сюжета или требований к электричеству. Только трехфазные генераторы обладают универсальностью, позволяющей распределять токи по нескольким приложениям, а также обеспечивать стабильность и однородность, которые необходимы для высотных зданий.

4. Сельскохозяйственная техника, навесное оборудование и электроинструменты

Немногие источники энергии могут удовлетворить потребности сельскохозяйственных работ. Электричество необходимо фермам для работы практически во всех отраслях, от регулирования температуры и вентиляции в животноводческих помещениях до питания ирригационных систем или посевной и уборочной техники.Поскольку эти операции происходят в повседневной работе, статические и портативные трехфазные генераторы являются лучшим выбором для питания существующих систем или повышения функциональности навесного оборудования и инструментов для полевого оборудования.

5. Дата-центры

По мере того, как облачные и сторонние системы хранения данных продолжают расти, возрастает и важность обеспечения работы этих центров. Эти массивные объекты не могут подвергнуться риску отключения электроэнергии – даже на несколько минут – поскольку отключение электроэнергии означает возможность необратимой потери или повреждения записей в дополнение к последующим осложнениям ответственности.Тем, кто работает в сфере финансов, телекоммуникаций, здравоохранения или информационных технологий, необходимы надежные центры обработки данных с трехфазными источниками питания, чтобы транзакции с данными выполнялись гладко, безопасно и без сбоев.

Новые или бывшие в употреблении трехфазные генераторы для коммерческих или промышленных предприятий

У вас есть вопросы, и у нас есть ответы. Выбор правильного фазогенератора для вашей собственности – это не то, что вы решаете по прихоти. Woodstock Power может помочь вам определить точную схему сети и электроснабжения вашего предприятия, завода, фермы или объекта, а также эксплуатационные потребности, чтобы найти подходящие генераторы, чтобы связать все это воедино.

Мы всегда готовы ответить на ваши вопросы и защитить ваш бизнес от дорогостоящих простоев. Свяжитесь с нами сегодня через нашу онлайн-форму для связи или по телефону (610) 658-3242. Нам не терпится поработать с вами.

Подпишитесь на нас в LinkedIn, YouTube, Facebook и Twitter, чтобы узнать больше о коммерческих генераторах!

Трехфазное напряжение + расчеты

Трехфазное электричество. В этом уроке мы узнаем больше о трехфазном электричестве.Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном руководстве мы рассмотрели основы того, что происходит внутри трехфазных систем электроснабжения, и в этом руководстве мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем вилки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся. Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке.Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это. Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и полезные, поэтому я рекомендую вам их приобрести.

Теперь эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают при соединении одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключу осциоскоп к однофазной сети, я получу синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения? и почему мы получаем эти синусоидальные волны?

Итак, напомним.Получаем полезную электроэнергию, когда много электроны движутся по кабелю в том же направлении. Мы используем медные провода, потому что каждый из миллиардов атомов внутри медного материала имеет слабосвязанные электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться. между другими атомами меди, и они действительно движутся все время, но случайным образом направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит по медной проволоке. Магнитное поле заставляет свободные электроны двигаться в одном направлении.Если мы намотаем медную проволоку в катушку, тогда мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов. Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад, инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг улица. Мы разделяем катушку на две, но держим их соединенными, а затем размещаем один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед.По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю. Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля.Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу. Эта катушка испытывает изменение магнитного поля в разное время по сравнению с к первой фазе, поэтому форма волны будет такой же, но с задержкой. Форма волны фазы 2 и не начинается, пока магнит не вращается в Вращение на 120 градусов.Если мы затем добавим третью катушку, вращающуюся на 240 градусов от сначала мы получаем третью фазу. Снова эта катушка испытает изменение магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна к остальным, за исключением того, что он будет отложен и начнется при 240 градусах вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц.Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц – это производитель, который сообщает вам, к какому типу источника питания необходимо подключить оборудование. Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из Южная Америка и несколько других стран используют 60 Гц в остальном мире использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц – 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не может быть постоянно 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение в розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, равное средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind.info/3-Phase- Excel-AU

Если разделить окружность генератора на сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько вам нравится, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы вычисляем мгновенное напряжение на каждом сегменте по формуле.
(Мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим график, то мы получим синусоидальную волну, показывающую напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как магнитное поле становится сильнее и заставляет течь больше электронов, затем оно уменьшается, пока не достигнет нуля, где магнитное поле находится точно между север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно увеличивается по мере изменения напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325.27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем изобразить это, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и затем разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство между любой фазой и нейтралью, тогда мы получаем среднеквадратичное значение 120, 220, 230 или 240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений. напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Именно так мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Так мы получаем больше энергии от источника питания.

Например, в США многим приборам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому. Мы рассмотрим это в другом уроке.


Что такое обрыв фазы? Как я могу защитить свое оборудование?

Вопрос:

Что такое обрыв фазы? Как я могу защитить свое оборудование?

Ответ:

Когда одна фаза трехфазной системы потеряна, происходит потеря фазы. Это также называется «однофазным».Обычно обрыв фазы вызван перегоревшим предохранителем, тепловой перегрузкой, обрывом провода, изношенным контактом или механическим отказом. Обрыв фазы, который остается незамеченным, может быстро привести к небезопасным условиям, отказам оборудования и дорогостоящим простоям.

В условиях обрыва фазы двигатели, насосы, воздуходувки и другое оборудование потребляют чрезмерный ток на оставшихся двух фазах, что приводит к быстрому перегреву обмоток двигателя. Выходная мощность значительно снижается, и запуск в таких условиях невозможен. Это потенциально может оставить оборудование в состоянии «заблокированного ротора», что приведет к перегреву и еще более быстрому повреждению оборудования.

Часто бывает сложно быстро найти неисправность при потере фазы и определить основную причину. Напряжения и токи в трехфазной системе обычно не просто падают до нуля при потере фазы. Часто измерения дают сбивающие с толку значения, которые требуют большого сложного анализа для правильной интерпретации. Между тем, повреждения и простои оборудования продолжают расти.

Трехфазное реле контроля, также называемое реле обрыва фазы, является экономичным вложением, которое легко установить.Трехфазное реле контроля защищает от повреждений, вызванных обрывом фазы, а также другими условиями трехфазного короткого замыкания. Эти реле уведомляют об условиях неисправности и предоставляют управляющие контакты для отключения двигателей или другого оборудования до того, как произойдет повреждение. Кроме того, реле обеспечивает четкую индикацию наличия неисправности, что позволяет быстро устранять неисправности и сокращать время простоя.

Трехфазные реле контроля могут быть спроектированы в новых установках или легко модернизированы в существующие установки.Доступно несколько моделей, обеспечивающих различные типы защиты, и предлагается несколько диапазонов напряжения для большинства трехфазных приложений.

Трехфазные двигатели и другое оборудование широко используются в различных отраслях промышленности:

  • HVAC
  • Горное дело
  • Насосная
  • Лифт
  • Кран
  • Подъемник
  • Генератор
  • Орошение
  • Петро-Хим
  • Сточные воды
  • и др.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *