Содержание

Блок питания 12 вольт 20 ампер своими руками

Многие электротехнические устройства питаются от постоянного напряжения величиной 12 вольт. Если такая техника не особо нуждается в высокой стабильности напряжения, то вполне подойдет самый простой блок питания, состоящий из понижающего трансформатора, диодного моста и фильтрующего конденсатора электролита. Тут вопрос остается только за мощностью такого источника питания, ну и следовательно от нее зависит, какие именно функциональные части будет стоять в блоке питания на 12 вольт. В этой статье давайте разберемся более подробно с этой темой.

Итак, схема простого блока питания на 12 вольт начинается с понижающего трансформатора, задача которого сетевое переменное напряжение 220 вольт понизить до более низкого. Логично предположить, что это пониженное напряжение должно в нашем случае быть 12 вольт. Но нет. На выходе вторичной обмотки трансформатора, для получения в итоге постоянных 12 вольт должно быть около 10 вольт. Почему так? Просто существует в электротехнике такой вот эффект – переменное напряжение после диодного моста имеет выпрямленный ток, но он скачкообразной формы.

Когда мы к выходу моста подсоединяем фильтрующий конденсатор электролит эти скачки постоянного напряжения сглаживаются, а само напряжение увеличивается примерно на 18%. Вот и получается, что переменные 10 вольт после выпрямительного моста и фильтрующего конденсатора электролита превратятся в постоянные 12 вольт.

Нам нужно определится, в первую очередь, с мощностью нашего блока питания на 12 вольт. Какую именно максимальную силу тока мы хотим, чтобы он имел. К примеру, нужно иметь максимальную силу тока в 5 ампер. В этом случае, чтобы спаять хороший блок питания на 12 вольт с этим током нам понадобится понижающий трансформатор мощностью около 80 ватт. Напомню, чтобы найти электрическую мощность нужно силу тока перемножить на напряжение. Следовательно мы наши 12 вольт умножаем на 5 ампер и получаем 60 ватт. Плюс к этому мы добавляем небольшой запас (пусть будет 20 ватт). Вот и видим, что нужен трансформатор на 80 ватт (это если идти по оптимальному пути, хотя если вы поставите большей мощности транс, то это только повлияет на общие размеры источника питания).

Для получения тока на вторичной обмотке около 5 ампер, диаметр этой самой обмотки должен быть не менее 1,6 мм (медь). Для определения зависимости диаметра провода вторичной обмотки и силы тока, который она должна обеспечивать нужно смотреть в справочные таблицы (их легко найти в интернете воспользовавшись поиском).

Теперь нужно подобрать подходящий выпрямительный диодный мост, который нам позволит сделать из переменного напряжения постоянное, хотя и скачкообразной формы. Опять же, нужно в начале определится с силой тока, которую диодный мост может выдержать без негативных воздействий на него. Мы определились, что нам нужен максимальный ток 5 ампер. Как и в случае с трансформатором добавим к этому некий запас. В итоге, находим диодный мост (диоды под него) на силу тока в 8-10 ампер. Мост должен быть рассчитан на напряжение не менее 12 вольт (хотя диоды с маленьким обратным напряжением это редкость, обычно они рассчитаны на достаточно большие обратные напряжения). Либо ставим готовый целостный диодный мост, или паяем его сами из четырех диодов с нужными параметрами.

Ну, и последним важным функциональным элементом нашего самодельного блока питания на 12 вольт, что будем паять своими руками, является конденсатор электролит. Он выполняет фильтрующую роль, сглаживая скачки постоянного напряжения, делая постоянное напряжение более ровным (хотя и не идеальным). Для нашего блока питания вполне подойдет конденсатор электролит, рассчитанный на напряжение 16-25 вольт и емкостью около 5 000 – 10 000 микрофарад. Вот и все, осталось только эти все компоненты спаять в единую схему и собрать в подходящем корпусе.

Всем нам известно, что блоки питания сегодня являются неотъемлемой частью большого количества электрических приборов и осветительных систем. Без них наша жизнь нереальна, тем более экономия электроэнергии способствует эксплуатации этих приборов. В основном блоки питания имеют выходное напряжение от 12 до 36 вольт. В этой статье хотелось бы разобраться с одним вопросом, можно ли сделать блок питания на 12В своими руками? В принципе, никаких проблем, ведь этот прибор на самом деле имеет несложную конструкцию.

Из чего можно собрать блок питания

Итак, какие детали и приборы необходимо, чтобы собрать самодельный блок питания? В основе конструкции всего лишь три составляющие:

  • Трансформатор.
  • Конденсатор.
  • Диоды, из которых своими руками придется собрать диодный мост.

В качестве трансформатора придется использовать обычный понижающий прибор, который будет уменьшать вольтаж с 220 В до 12 В. Такие приборы сегодня продаются в магазинах, можно использовать старый агрегат, можно переделать, к примеру, трансформатор с понижением до 36 вольт на прибор с понижением до 12 вольт. В общем, варианты есть, используйте любой.

Что касается конденсатора, то оптимальный вариант для самодельного блока – это конденсатор емкостью 470 мкФ с напряжением 25В. Почему именно с таким вольтажом? Все дело в том, что на выходе из напряжение будет выше запланированного, то есть, больше 12 вольт. И это нормально, потому что при нагрузке напряжение упадет до 12В.

Собираем диодный мостик

А вот теперь очень важный момент, который касается вопроса, как сделать блок питания 12В своими руками.

Во-первых, начнем с того, что диод — это двуполярный элемент, как, в принципе, и конденсатор. То есть, у него два выхода: один минус, другой плюс. Так вот плюс на диоде обозначен полоской, а, значит, без полоски это минус. Последовательность соединения диодов:

  • Сначала соединяются между собой два элемента по схеме плюс-минус.
  • Точно также соединяются между собой и два других диода.
  • После чего две парные конструкции необходимо соединить между собой по схеме плюс с плюсом и минус с минусом. Здесь главное не ошибиться.

В конце у вас должна получиться замкнутая конструкция, которая носит название диодный мостик. У нее четыре соединительных точек: две «плюс-минус», одна «плюс-плюс» и еще одна «минус-минус». Соединять элементы можно на любом плате необходимого устройства. Основное здесь требование – это качественный контакт между диодами.


Во-вторых, диодный мост – это, по сути, обычный выпрямитель, который выпрямляет переменный ток, исходящий с вторичной обмотки трансформатора.

Полная сборка прибора

Все готово, можно переходить к сборке конечного продукта нашей идеи. Сначала надо подключить выводы трансформатора к диодному мосту. Их подключают к точкам соединения «плюс-минус», остальные точки остаются свободными.

Теперь необходимо подключить конденсатор. Обратите внимание, что на нем также есть отметки, которые определяют, полярность прибора. Только на нем все наоборот, чем на диодах. То есть, на конденсаторе обычно помечается минусовой контакт, который подсоединяется к точке диодного моста «минус-минус», а противоположный полюс (положительный) присоединяется к точке «минус-минус».

Остается только подключить два питающих провода. Для этого лучше всего выбрать цветные провода, хотя это необязательно. Можно использовать одноцветные, но при условии, что их придется каким-нибудь образом обозначить, к примеру, на одном из них сделать узелок или обмотать конец провода изолентой.


Итак, делается подключение питающих проводов. Один из них подключим к точке «плюс-плюс» на диодном мосте, другой к точке «минус-минус». Все, понижающий блок питания на 12 вольт готов, можно его тестировать. В холостом режиме он обычно показывает напряжение в пределах 16 вольт. Но как только на него подадут нагрузку, напряжение снизится до 12 вольт. Если есть необходимость выставить точное напряжение, то придется к самодельному прибору подключить стабилизатор. Как видите, сделать блок питания своими руками не очень сложно.

Конечно, это простейшая схема, блоки питания могут быть с различными параметрами, где основных два:

  • Выходное напряжение.
  • Как дополнение, может быть использована функция, которая разграничивает модели блока питания на регулируемый (импульсный) и нерегулируемый (стабилизированный). Первые обозначены возможностью изменять выходное напряжение в пределах от 3 до 12 вольт. То есть, чем сложнее конструкции, тем больше возможностей у агрегатов в целом.


    И последнее. Самодельные блоки питания – это не совсем безопасные аппараты. Так что при их тестировании рекомендуется отойти на некоторое расстояние и только после этого проводить включение в сеть 220 вольт. Если вы что-то неточно рассчитали, к примеру, неправильно подобрали конденсатор, то есть большая вероятность, что этот элемент просто взорвется. В него залит электролит, который при взрыве разбрызгается на приличное расстояние. К тому же не стоит производить замены или пайку при включенном блоке питания. На трансформаторе собирается большое напряжение, так что не стоит играть с огнем. Все переделки надо проводить только на выключенном приборе.

    Похожие записи:

    Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

    • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
    • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
    • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

    Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

    Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

    Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

    Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

    Компоновка прибора

    Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.


    На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.


    Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

    Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.


    Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

    Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

    Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

    Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

    Проблемы простого блока питания с нагрузкой

    Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

    Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

    1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
    2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
    3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

    На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.


    Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

    Блок питания повышенной мощности

    Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

    Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

    На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

    Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

    Тема: как сделать простой, регулируемый плавно, блок питания своими руками.

    Человек, у которого электрика и электроника является хобби, увлечение, делами, что позволяют получать удовольствие или иметь дополнительный заработок, просто обязан иметь у себя в наличии блок питания с плавной регулировкой напряжения! Ведь работая с различной электрической и электронной техникой постоянно приходится сталкиваться с её питанием, а оно, как известно, не всегда одинаково. Постоянно искать источники питания с подходящим напряжением, тоже не выход. Именно в данном случае наиболее рациональным и правильным решением будет создание простого (или сложного, если есть в этом особая необходимость) блока питания, имеющего плавное регулирование напряжения питания. Простая, но надёжная схема представлена на рисунке, давайте её разберём.

    Схема простого, регулируемого плавно, блока питания представляет собой две основные части, это сам блок питания и небольшая транзисторная схема параметрического регулятора напряжения. Первая часть содержит понижающий трансформатор, выпрямитель (диодный мост) и конденсатор (сглаживающий фильтр). По большей части именно от выбора этих частей зависит мощность всего блока питания. Что бы не делать слишком большим блок питания ограничимся электрической мощностью в 30 Вт. Хотя для увеличения этой мощности достаточно будет поменять трансформатор, мост и выходной транзистор, имеющие соответствующие величины токов и напряжений.

    Итак, находим трансформатор, который рассчитан на входное напряжение 220 вольт и выходное 12-15 вольт, вторичная обмотка должна иметь сечение, обеспечивающее номинальную силу тока в 2-3 ампера. Далее, спаиваем диодный мостик, элементы которого должны быть рассчитаны на ток не меньше 5 ампер (лучше брать с небольшим запасом). И к выходу моста припаяем фильтрующий конденсатор с ёмкостью от 1000 микрофарад и более. Схема плавно регулируемого параметрического стабилизатора после её сборки (спайки) должна сразу начать нормально работать, хотя если есть желание донастройки и точной регулировки внутренних параметров, можете сами по изменять имеющиеся электронные компоненты, поставив туда наиболее подходящие на Ваш взгляд.

    Теперь расскажу о самой работе данной схемы плавно регулируемого блока питания. Трансформатор – его задача заключается в преобразовании электрической энергии, то есть он сетевое напряжение 220 вольт понижает до нужных 12 вольт. Заметим, что как был у нас переменный ток, так и остался, хотя и понизилась амплитуда. Диодный мостик занимается тем, что переводит все колебания в один полупериод, а именно значение тока после мостика уже меняется только от нуля и до 12 вольт, не меняя своего полюса. Но волнообразный ток подходит не для всех случаев питания электрооборудования, для многих устройств нужен именно постоянный ток, допускающий минимальные колебания. Для этого и нужен конденсатор, который сглаживает скачки напряжения.

    Схема регулятора является параметрической, то есть в схеме создаётся некое опорное напряжение, уже от которого путём деления напряжения и усиления силы тока создаются необходимые выходные величины электрических параметров. С выхода мостика, на котором уже сглажены скачки (фильтрующим конденсатором), напряжение подаётся на цепь параметрического стабилизатора, состоящего из резистора R1 и стабилитрона VD2. Тут напряжение делиться, причём на стабилитроне образуется некоторое постоянная его величина с малыми отклонениями. Если напряжение будет меняться, по причине внешних обстоятельств, то эти изменения только будут заметны на R1.

    Параллельно стабилитрону, на котором образовалось опорное напряжение постоянной величины, включён переменный резистор R2, что, собственно, и осуществляет плавное изменение выходного напряжения на нашем регулируемом блоке питания. Когда мы его крутим, то получаем определённую величину постоянного напряжения, что далее делится между база-эмиттерными переходами транзисторов, включённых по схеме эмиттерных повторителей. А, как известно, включение по этой схеме заставляет транзисторы работать в режиме усиления только тока, при том, что напряжение остаётся как бы неизменным. То есть, напряжение снятое с переменного резистора передаётся на выход через транзисторы, которые понижают его только на величину своего насыщения (примерно от 0.4 до 0.7 вольт).

    Проще говоря – выставили мы на переменном резисторе значение 5 вольт, оно передалось через транзисторы на выход (минус примерно 1.2 вольта, что осели на транзисторных переходах база-эмиттер), а в силу усиления тока, мы получили повышение мощности, срезанной от основной, которая имеется на выходе диодного мостика. Транзисторы тут являются некими электрическими краниками, которыми мы управляем при помощи изменения напряжения на база-эмиттерных переходах. Чем больше мы подадим на них напряжения с переменного резистора, тем сильнее откроются транзисторы (понизится их внутреннее сопротивление) и больше электрической мощности передастся на выход регулируемого блока питания.

    Какие диоды нужны для диодного моста, как правильно подобрать диоды для выпрямления.

    Порой, когда дело приходится иметь с блоками питания (их ремонтом, сборкой своими руками) сталкиваешься с его выпрямительной частью, которая из переменного напряжения делает постоянное. Эта часть есть не что иное как диодный выпрямительный мост. Для технарей электротехников известно, что это такое и какова функция этого элемента электрических схем. Для непосвященных поясню — большинство электротехники содержат в своих схемах блок питания, который понижает сетевое напряжение 220 вольт в меньшее, что используется устройствами (3, 5, 9, 12, 24 вольта, это наиболее распространенные величины пониженных напряжений). В сети используется переменный ток, а практически все электронные схемы работают на постоянном. Так вот, для преобразования переменного напряжения в постоянное и используется диодный мост.

    Выпрямительные диодные мосты бывают готовыми сборками в едином корпусе, а бывают и самодельными, которые спаиваются из четырех одинаковых диодов. А какие диоды нужны для самодельного диодного моста и как правильно подобрать их для выпрямителя? Все достаточно просто. Основными параметрами для выбора диодов на мост являются напряжение (обратное) и сила тока (которую они могут через себя пропускать без перегрева).

    Напомню, что диоды при прямом подключении (плюс диода к плюсу прилагаемого напряжения, а минус диода к минусу прилагаемого напряжения) к питанию пропускают через себя электрический ток. В этом режиме (открытом) на них оседает небольшое напряжение в пределах около 0,6 вольт. Как и любые другие проводники они имеют свое внутреннее сопротивление (что и обуславливает это небольшое падение напряжения на них в открытом состоянии). Чем оно больше, тем меньшую силу тока диод способен через себя пропустить. Если же на диод приложить постоянное обратное напряжение (на плюс диода подать минус источника, и на минус диода подать плюс источника), то диод будет работать в режиме запирания. Он не будет через себя пропускать постоянный ток (будет закрыт).

    Так вот, есть максимальная величина обратного напряжения, которую диод может выдержать не входя в режим электрического и теплового пробоя. Именно это обратное напряжение и нужно учитывать при выборе диодов на выпрямительный мост. Если на диодный мост будет подаваться напряжение 220 вольт переменного тока, значит диоды моста должны быть рассчитаны на большее напряжение (с запасом не менее 25%). А лучше вовсе брать с достаточно большим запасом. Это убережет полупроводники от попадания на них случайных скачков напряжения, идущие от сети. Сейчас на обычные, небольшие блоки питания ставят диоды серии 1n4007, у которых обратное напряжение равно 1000 вольтам, а долговременный ток они могут выдерживать до 1 ампера (при температуре 75 градусов).

    Второй, и пожалуй главной характеристикой выпрямительного диода является сила тока, которую он может пропускать через себя длительное время (без перегрева). Изначально вы должны знать, на какой максимальный ток рассчитан ваш блок питания. И только после этого уже нужно подбирать выпрямительные диоды на мост. К примеру, вы решили сделать себе самодельный регулируемый блок питания с выходным напряжением до 15 вольт и максимальным током в 6 ампер. Следовательно, под такой источник питания нужно брать диоды, рассчитанные на силу тока порядка 10 ампер (плюс определенный запас по току). Ток в 6 ампер как бы относительно немалый. Он будет нагревать диоды выпрямительного моста. Значит под эти диоды, мост еще нужно предусмотреть охлаждающий радиатор.

    Напомню, что большинство полупроводниковых компонентов сделаны из кремния, а этот материал имеет максимальную рабочую температуру 150—170 °C. Выход за эти пределы разрушаю полупроводник, в нашем случае диоды диодного моста. Лучше держать температуру диодов в пределах до 75 °C. Поставьте на мост небольшой радиатор и посмотрите не выходит ли температура при максимальной нагрузки блока питания за допустимые пределы.

    Диодных мостов и диодов (под них) существует достаточно большое количество. При выборе сначала в поисковике найдите справочную таблицу диодов и диодных мостов, где указаны основные технические характеристики выпрямителей. Выберите наиболее подходящий компонент с учетом номинального обратного напряжения и силы тока. Если вы поставите на диодный мост диоды с большими номинальными токами и напряжениями, ничего страшного, это будет даже лучше, как бы излишний запас. Но подбирать меньшие или впритык лучше не стоит.

    Видео по этой теме:

    P.S. Кроме основных характеристик (тока и напряжения) диодов, которые будут ставится на диодный мост, еще нужно обращать внимание на частоту, на которой они могут нормально работать. Частота сети в 50 герц является достаточно малой и под нее подойдут практически все диоды. Выше приведенный диод 1n4007 имеет рабочую частоту в 1 мГц. Обращать внимание на частоту актуально для электрических схем, рассчитанных на действительно высокие частоты.

    Как сделать мощный блок питания на 12 вольт. Блок питания для ленты светодиодов

    Современная электроника часто комплектуется внешними источниками питания на 5В, 12В, 19В. После того как прибор выходит из строя, они часто валяются в кладовке или тумбочке.

    • 5V — это напряжение зарядных устройств для телефонов и USB;
    • 12V — используется в компьютерах, некоторых планшетах, ТВ, сетевых маршрутизаторах.
    • 19V — в ноутбуках, мониторах, моноблоках.

    Мы будем рассматривать, каким образом можно адаптировать любой . Будут только простые и бюджетные варианты доступные каждому. Зарядники на 5В не подходят. Но из таких зарядников я делаю ночники, на корпус приклеивается от 3 или 6 диодов. Ночью светит не ярко, в самый раз.

    Источники питания на 12V

    Источники питания на 12В от электроники обычно бывают от 6 до 36 Ватт. 10 Ватт хватает для подсветки рабочей поверхности . Такие блоки делятся на 2 основных вида:

    1. старые на трансформаторах, отличаются большим весом;
    2. современные импульсные, еще называют электронный трансформатор, отличаются малым весом и большой мощностью при малых габаритах.

    Использовать на трансформаторах не рекомендую. При я сперва подключил трансформаторный БП от роутера, мощность которого была в 2 раза больше мощности ленты. Сам выпрямитель стал сильно греться. Поставил диодный мост выпрямителя на самодельный радиатор для охлаждения, все равно греется сильно, долго он так не протянет. Времени не было разбираться в тонкостях, поэтому спросил у специалиста. Он кое-как нашел причину, светодиоды имеют особенную вольт-амперную характеристику (сокращенно ВАХ), что приводит к сильному нагреву. Он подарил мне от телевизора на 12В и 2 Ампера, то есть мощность равна 24W. Теперь все работает без проблем и не греется.

    БП на 19V

    БП ноутбучного типа на 19В, 90W

    Напряжение в 19В широко используется в настольной компьютерной технике, чаще всего в ноутбуках, моноблоках, мониторах, сканерах. В эту категорию можно отнести БП от принтеров, они мощные, бывает 16В, 20В, 24В, 32В.

    У меня давно валяется отличный на 90W и 19V от ноутбука Asus. Такой мощности хватит, чтобы запитать светодиодную ленту на 6000 Люмен, а этого хватит, чтобы сделать диодное освещение комнаты 20 квадратов. Но БП не 12 вольт, и потребуется доработка. Внутрь корпуса мы не полезем, перепаивать схему под 12 вольт сложно, долго и надо быть электронщиком. Сделаем проще, подключим небольшой понижатель со стабилизатором. Существует два типа.

    Тип №1


    Стабилизатор на 7812

    Стабилизатор на микросхеме типа КРЕН 7812 (), выглядит почти как транзистор, при установке на радиатор охлаждения выдерживает ток 1 Ампер. Этот вариант устаревший и громоздкий. Для использования всей мощности ноутбучного БП потребуется 5-6 таких (или 1 большая) и большой алюминиевый радиатор для охлаждения.

    Тип №2

    Современный импульсный стабилизатор, миниатюрен, не греется, простой как 3 рубля. В русских магазинах за него просят 600-900 р, цена сильно завышенная. У китайцев на 3 ампера стоит 50 р., 5-7А продается за 100-150 р., поэтому рекомендую заказать пару штук на Aliexpress.

    Рекомендую использовать импульсный, КПД у него выше 80-90%, проще и дешевле. Только не покупайте источник тока на LM2596, вам нужен источник напряжения. Чтобы найти в китайском интерне-магазине используйте запросы:

    • LM2596 power supply;
    • 12v switching regulator;
    • voltage regulator 12v 7a;

    Характеристики импульсных стабилизаторов

    Специалист на видео инструкции расскажет основные технические характеристики современных импульсных стабилизаторов, схемотехнику и рекомендации по их правильному использованию. Чтобы вы своими руками не спалили его во время экспериментов.

    Простые схемы своими руками

    Если вышеописанные БП вам не подходят, то блок питания для светодиодной ленты 12в можно спаять по схеме своими руками. Для самодельного потребуется много времени и немало деталей, не буду рассматривать полные схемы для подключения к сети 220B. при современном развитии электроники их проще купить у китайцев. Есть схемы для сборки своими руками еще на TL594 и других новых элементах. Но мне больше нравится описанный ниже, легко повторяется за 10 минут.

    Рассмотрим оптимальный и современный на LM2596. Потребуется установить всего 4 радиоэлемента. Аналоги, схожие по функционалу, это ST1S10, L5973D, ST1S14.

    Существует несколько модификаций микросхемы:

    • фиксированное 12 V, LM2596-12, указано в конце маркировки;
    • регулируемый вариант LM2596ADJ;
    • цена в России одной 170 р.. В Китае весь собранный блок на LM2596 стоит 35р. включая доставку.

    Характеристики

    Видео, как доработать своими руками

    Коллега подобно расскажет, как подключить и настроить стабилизатор к блоку питания от ноутбука на 19V.

    Готовые модули из Китая


    Вариант с регулятором на выходе от 3 до 37В

    В первой схеме будем использовать LM2596ADJ с регулируемым вольтажом на выходе. Выпускаться она может в разных корпусах, но самый оптимальный как на картинке. Плюсом такой конструкции будет возможность регулировать яркость led ленты без диммера.


    Схема с фиксированным 12B

    Стабилизатор на микросхеме LM2596-12, отсутствует переменный резистор для регулировки, на выходе ровно 12B. Схема проще на одну детальку.

    Питание и драйвер в одном модуле

    Универсальный вариант, регулируется сила тока и напряжение. Можно запитать не только диодную ленту, но и светодиоды. то есть может выступать в качестве драйвера и электронного трансформатора.

    На видео ролике вам покажут как пользоваться и настраивать самостоятельно универсальный вариант модуля с драйвером, регулируемой силой тока.

    Где купить дешево?


    Бывает, что у вас дома не оказалось БП подходящего от бытовых приборов, но точно есть у других, тоже валяется без дела. Сперва спросите у знакомых или соседей, наверняка что то есть. За пару сотен или жидкую валюту вы можете сними договорится.

    Большой ассортимент вы найдете на Авито и на местных форумах. Многие избавляются от ненужного хлама и продают БП за символическую цену, потому что выбрасывать жалко, а реальную стоимость не знают. Таким образом, я часто покупаю хорошие приборы, тем более торг никто не отменял. Недавно мне удалось купить фирменный ACER от моноблока на 190W за 400 р. Он герметичен и высокого качества, так как компьютерная электроника требует очень стабильного и качественного питания в отличие от диодной ленты.

    Лента со светодиодами – светотехническое приспособление, предназначенное для подсветки-декора в доме, кафе, на рекламных щитах. LED-устройство сделано из пластика, на который прикрепляют светодиоды. Напряжение блоков питания для светодиодной ленты составляет 12В или 24В. Иногда используют трансформатор, предназначенный для компьютера. БП производят со встроенной защитой-автоматом, которая спасает от перегрузки сети и короткого замыкания.

    Виды блоков питания

    Источник, который позволяет отрегулировать сетевое напряжение для подсветки светодиодами, подразделяют на несколько типов:

    1. Компактный БП. Это устройство имеет маленькие размеры, немного весит, поэтому зачастую его используют для декора в жилых помещениях. Производится в водонепроницаемом корпусе. Основным минусом компактного трансформатора является невысокая мощность.
    2. Блок в герметичной коробке из алюминия. Представляет собой крупногабаритное устройство с большой массой. Его мощность может составлять больше 100 Ватт. Учитывая размеры БП, его часто применяют для декора на улице (устойчив к воздействию влаги, температурных перепадов).
    3. Открытый проводник. Может иметь разную мощность. Этот трансформатор выигрывает низкой стоимостью. Минусы: БП открытого типа очень громоздкий, тяжелый.

    Блоки питания для светодиодной ленты бывают трансформаторными и импульсными:

    1. Трансформаторный БП снижает напряжение до 12 В со стандартных 220 В. При помощи специального фильтра осуществляется сглаживание пульсирующего напряжения. Главным преимуществом этого трансформатора считаются его элементарная конструкция и развязка от электрической сети переменного тока. Минусы: крупный размер, не справляется с перепадами напряжения.
    2. Импульсный блок тоже работает на трансформаторе. Отличается тем, что функционирует на высокой частоте, характеризуется небольшими габаритами и массой. БП этого типа подключается к электросети 220 Вольт, как и трансформаторное устройство. Недостатки: очень плохо переносит работу «вхолостую», перегрузы. Плюс его схема тяжело поддается ремонту.

    Как подобрать блок питания для светодиодной ленты


    Если для конструкции со светодиодами выбрать неправильный трансформатор, то это может привести к повреждению светотехники и даже стать причиной пожара. Зачастую можно отыскать котроллеры, производящие стабильные показатели напряжения, которые нельзя изменить. Это не влияет на параметры яркости светодиодов, а напротив, делает проще работу проводника. Мини-трансформатор должен быть настроен на показатели выбранной светодиодной ленты – во избежание проблем с напряжением.

    Очень важно приобрести или сделать самостоятельно такой проводник, который будет совпадать со всеми условиями определенной схемы и грамотно использоваться. Как выбрать блок питания для светодиодной ленты? Для грамотного выбора нужно рассчитать:

    • рабочее напряжение;
    • входящую и выдаваемую мощность.

    Как рассчитать мощность

    При расчете мощности необходимо учитывать длину светодиодного устройства. Для выбора устройства с нужными показателями нужна информация о потреблении одного метра ленты. Рассмотрим на примере, как выполнить расчет мощности блока питания. Вы выбрали источник освещения типа SMD 5050 с 30 диодами, его длина составляет 5 м. Расчет:

    1. Показатели мощности для одного метра ленты умножаются на длину светотехники (5х7,2 = 36).
    2. Получается, что 5 метров будут «съедать» 36 Ватт.
    3. Следует помнить о том, что мощность трансформатора нужно выбирать с запасом. В приведенном примере лучше купить БП на 40 Ватт.

    Как подключить

    Подключить блок просто. Если декоративная подсветка будет устанавливаться в процессе возведения здания, то лучше подвести электропроводку максимально близко к месту, где будет размещена лента. Установите там розетку. Когда такая возможность отсутствует, стоит заранее приобрести кабель необходимой длины. БП должен быть оборудован штепселем, который будет подключаться к сети (если такого нет, то его изготавливают собственноручно).

    Схема монтажа


    Этапы подсоединения:

    1. Берем кабель нужной длины. Жила сечения – минимум 1,5 мм.
    2. С одной стороны кабеля устанавливаются провода, которые зачищают от изоляции на 3 мм, с другой – вилка для включения в электросеть.
    3. Провод коричневого цвета подключается к фазе (гнездо L), синий – к нулю (гнездо N).
    4. Концы кабеля надо закрепить при помощи винтов.
    5. Подключают проводник. Если планируется подсоединение нескольких лент сразу, то у него должна быть хорошая мощность.

    Как сделать блок питания 12 вольт своими руками


    Любой желающий самостоятельно сделает проводник, который пригодится для работы устройства со светодиодами. Чтобы сконструировать БП на 20 звеньев понадобятся:

    1. Блок на 12 Вольт, способный передавать электрический ток на 1 Ампер.
    2. Микросхема 7812 для радиатора.
    3. Диодный мост с наличием конденсатора.
    4. Подготовленные устройства соединяют по классической схеме. Осталось только подключить самодельный проводник. Детали БП при желании помещают в корпус от стандартного маленького трансформатора.

    Видео: подключение светодиодной ленты к блокам питания

    Подсоединить БП может каждый желающий. Главное – точно придерживаться инструкции. Благодаря видеоролику вы поймете, как правильно запитать светотехнику, какие действия выполняют для корректной и безопасной работы освещения. На видео подробно показан процесс подключения блока для светодиодной ленты. Видеоинструкция доступно разъяснит особенности каждого этапа работ.

    Если вам нужен источник постоянного питания с напряжением 12 вольт, а его нет под рукой, то его можно и купить. Если брать дешёвый блок питания, то его качество будет оставлять желать лучшего. Обычно такие недорогие БП хороши только с виду. Когда их открываешь, то оказывается, что его характеристики (указанные на корпусе) по току завышены. В реальности он не способен обеспечить в полной мере ту мощность, что заявлена производителем (как правило). Можно купить и более дорогостоящий блок питания на 12 вольт, но собрать своими руками по частям выйдет гораздо дешевле, а по качеству ничуть не хуже.

    Итак, как сделать хороший и простой блок питания на 12 вольт своими руками, что для этого нам понадобится? Нужен понижающий силовой трансформатор, выпрямительный диодный мост и фильтрующий конденсатор электролит. Трансформатор будет понижать сетевое напряжение (220 В) до нужного, а именно до 10 вольт. Почему до 10, а не 12. Потому, что есть такой эффект – переменное напряжение после диодного моста (имеющего конденсатор достаточной емкости) станет процентов примерно на 18 больше, чем без конденсатора. Это стоит учитывать при сборке любого блока питания.

    Трансформатор нужен той мощности, которая вам нужна. То есть, изначально вы должны знать, какой именно максимальный ток должен выдавать данный блок питания. Зная ток и выходное напряжение можно найти электрическую мощность. Нужно просто ток (к примеру 3 ампера) перемножить на напряжение выхода (в нашем случае это 12 вольт). Стоит ещё добавить небольшой запас по мощности процентов 25. В итоге получим, что нужен трансформатор мощностью около 50 Вт.

    С размерами (мощностью) трансформатора определились. Исходя из этого вторичная обмотка транса должна иметь нужное сечение, чтобы обеспечить нужную силу тока. Для 3 ампер (максимальное значение) на выходе нашего самодельного блока питания сечение вторичной обмотки трансформатора должно быть около 1,3 мм. Если на магнитопроводе достаточно места, то можно намотать провод большего диаметра (это только увеличит максимальную силу тока источника питания).

    Итак, наш трансформатор на выходе вторичной обмотки будет выдавать переменное напряжение величиной 10 вольт. Это напряжение имеет форму синусоиды, которая меняет свои полюса с частотой 50 герц. Нам же нужен постоянный ток, который не имел этого периодического изменения полюсов. Для этого используется выпрямительный диодный мост. Его задача сводится к тому, что он все полупериоды делает однополюсными, хотя и скачкообразными (плавно возрастающими и убывающими). Диодный мост можно купить готовым, хотя его можно спаять и самому из 4х одинаковых диодов, которые должны быть также рассчитаны на нужный выходной ток. Для нашего самодельного блока питания с 3 амперами нужно взять диоды, рассчитанные на ток в 6 А (берём с учётом запаса).

    Поскольку после диодов напряжение имеет скачкообразный вид, его нужно отфильтровать. Это делается обычным электролитическим конденсатором, соответствующей емкости. Значит достаем еще и конденсатор, рассчитанный на напряжение 25 вольт, с емкостью 2200 мкф (чем больше, тем лучше фильтрация, но при этом и размеры конденсатора будут увеличиваться). Вот и всё, теперь эти элементы нужно просто спаять между собой (трансформатор, выпрямительный диодный мост и конденсатор электролит).

    Как сделать диодный мост для зарядного устройства?

    Смотрите также обзоры и статьи:

    Многие автолюбители привыкли для своего автомобиля что-то делать собственными руками. Это намного удобнее, менее затратно и можно удостоверится в качестве проведенных работ. Такие манипуляции можно провести и с зарядным устройством от авто. Ведь мотивацией для этого станет то, что обычно его цена очень высока, а если сделать собственноручно, то затраты сократятся в несколько раз. Стоит попробовать.

    Из чего сделать зарядное?

    Самое интересное, что можно ничего не потратить для этого дела, а просто применить, то что можно найти в вашем гараже. А именно — преобразователь с лампового допотопного ТВ, снять с автомобильного генератора диодный мост, найти провода и клеммы, мультиметр, корпус и конденсатор.

    Трансформатор стоит перемотать на 15 вольт энергии на выходе, провода требуются те, у которых диаметр сечения примерно от полутора миллиметров и выше (желательно медные). И теперь нужно подключить диодный мост по особой схеме. Хорошо, когда есть он готовый из генератора. А если нет, то как самому сделать диодный мост для зарядного устройства?

    Изготавливаем диодный мост

    Можно изготовить диодный мост зарядного устройства автомобиля самостоятельно и довольно несложно. По крайней мере, иметь диплом электрика для этого необязательно. Зачем вообще нужен мост? Как минимум для того, чтобы трансформировать переменное значение тока в постоянное.

    Для этого необходимо взять четыре диода, последовательно подключить их по схеме к конденсатору, с понижением напряжения, которое будет снижаться с уровня примерно в 20 вольт и до 14 вольт соответственно. К мосту нужно припаять диоды и провода от нужных выводов. Не забудьте и о предохранителях! После этих манипуляций необходимо соединить крокодилы и штекер в корпусе, и в принципе, если все было выполнено по технологии и безопасно, то зарядное готово к использованию.

    Выбирая модели диодов для диодного моста автомобильного зарядного устройства, стоит обратить внимание на такие модели, которые могут работать с силой тока от десяти ампер и выше того. Например, это могут быть такие разновидности диодов как Д424, Д245 и прочие.

    Как проверить работоспособность вашего устройства на практике?

    Чтобы удостовериться, что собранное вами устройство работает надежно и правильно, для начала стоит его исследовать и протестировать. Для этого необходимо в первую очередь вооружиться амперметром и вольтметром, а лучше сразу мультифункциональным мультиметром.

    Вынуть его контактные измерительные щупы (чёрный и красный), проверить какое номинальное напряжение есть у вас на выходе из устройства, какое входное, измерить силу тока в постоянном значении и удостовериться, что она больше 10 ампер.

    После этого, можно со спокойной душой собирать готовое зарядное устройство в приготовленный корпус и тестировать его непосредственно на самом автомобиле. Однако учтите, что зарядка будет происходить несколько медленнее, чем от прибора, который бы вы приобрели специально.

    Опубликовано: 2020-11-12 Обновлено: 2021-08-30

    Автор: Магазин Electronoff

    ПОДХОДЯЩИЕ ТОВАРЫ

    Поделиться в соцсетях

    назначение и схема подключения, как собрать своими руками

    Простейшим преобразователем переменного тока в постоянный является диодный мост. Им называется такой элемент электрической цепи, который состоит из нескольких диодов, соединённых друг с другом по специальной схеме. Придуманный ещё в 1895 году такой способ включения до сих пор успешно применяется в электроцепях. Практически ни один блок питания не обходится без его использования, ведь фактически все электронные схемы запитываются от источников постоянного тока.

    История изобретения

    В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

    В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

    В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

    Изобретателем же схемы выпрямительного моста считается электротехник из Польши Карол Поллак. Позже в журнале Elektronische Zeitung опубликовали результаты исследований Лео Гретца, поэтому в литературе можно встретить и другое название диодного моста — схема или мост Гретца.

    Физические процессы

    В основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

    Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

    При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

    Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

    Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

    Схема сборки из диодов

    Выражение «мост из диодов» происходит от слияния двух слов, подчёркивающих принцип работы устройства. Под этим словосочетанием понимается электрический прибор, служащий для преобразования переменного тока в пульсирующий. Состоит он из четырёх диодов, образующих соединение по схеме Гретца.

    Переменное электрическое напряжение представляет собой гармонический сигнал, амплитуда которого изменяется по синусоидальному закону во времени. Условно его можно представить в виде отрицательных и положительных полуволн. При подаче сигнала на вход диода через него может пройти только одна полуволна, в результате чего на выходе направление тока станет односторонним.

    На этом принципе и работает диодный мост. Но так как один диод при прохождении через него изменяющегося во времени сигнала даёт на выходе только пачку импульсов, то для получения действительно постоянного напряжения необходимо, чтобы устройство выпрямляло две полуволны. Другими словами, являлось двухполупериодным.

    Для создания полноценного выпрямителя схема диодного моста должна обеспечивать преобразование как положительной, так и отрицательной составляющей сигнала. Если диоды подключить по схеме Гретца, то в каждый полупериод волны ток сможет протекать только через два элемента. То есть устройство будет поочерёдно выпрямлять каждую полуволну.

    При подаче на вход моста переменного напряжения в тот момент, когда сигнал будет описываться положительной составляющей, диоды VD2 и VD3 будут для него открыты, а VD1 и VD4 заперты. При смене полярности состояние выпрямителей изменится, ток потечёт через VD4 и VD1, в то время как VD3, VD2 окажутся закрытыми.

    В итоге форма сигнала станет постоянной, так как на выходе устройства практически не будет промежутка времени, при котором напряжение будет равно нулю. При этом частота выходного сигнала увеличится вдвое. Например, если на устройство подать напряжение 220 в из электросети, то на его выходе получится постоянный ток с частотой 100 Гц. Это пульсирование считается паразитным, мешающим работе электронных узлов, поэтому в электрических схемах выход прибора подключается к электролитическому конденсатору, сглаживающему пульсации. Такая схема применяется в однофазных сетях, в трёхфазных же используется шесть диодов, работающих попарно (по аналогии со схемой Гретца).

    Виды и характеристики

    Современная промышленность выпускает различные по конструкции и характеристикам устройства. Все выпрямительные мосты разделяют на два вида: монолитные и наборные. Первые выполняются в цельном диэлектрическом корпусе, наподобие микросхемы, и имеют четыре вывода. Форма их корпуса может быть прямоугольной, квадратной, цилиндрической. При этом тип корпуса может быть также любым, например, SOT 23, MDI, SDIP, SMD.

    На корпусе обычно подписываются полярные ноги символами + и —, соответствующие выходному сигналу. Входные же выводы могут не подписываться или обозначаться знаком тильды ~. Вторые же представляют собой четыре отдельных диода, запаянных по схеме моста, чаще всего в специально отведённые для них места на плате.

    При работе выпрямительный мост может нагреваться, поэтому некоторые конструкции предполагают их совместное использование с радиатором. Как и любой электрический прибор, мост характеризуется рядом параметров:

    1. Наибольшее обратное напряжение, В — характеризуется максимальным значением напряжения, приложенного при обратном включении диодов, подача которого на прибор не приводит к его повреждению. Превышение этого значения вызывает пробой, то есть полупроводник превращается в проводник.
    2. Действующее напряжение, В — определяется среднеквадратичным значением амплитуды входного сигнала.
    3. Максимальный ток, А — это величина, определяющая наибольшую мощность, которую может потреблять нагрузка, подключённая к прибору.
    4. Максимальное падение напряжения, В — этот параметр обозначает потери мощности сигнала на элементе, то есть фактически характеризует эффективность прибора. Потери мощности связаны с активным внутренним сопротивлением устройства, на котором электрическая энергия преобразуется в тепловую.
    5. Интервал рабочих температур, С — обозначает диапазон, в котором характеристики устройства практически не изменяются.

    Кроме этого, в зависимости от типа используемых диодов устройства могут быть высокочастотными и импульсными. Первые используются в цепях с высокочастотным электричеством. Диоды, на базе которых собирается конструкция, называются Шотки. В них вместо классического p-n перехода используется контакт металл-полупроводник. Вторые же являются обычными выпрямителями.

    Обозначение и маркировка

    Условно-графическое обозначение полупроводникового моста на принципиальных электрических схемах выглядит как ромб, из вершин которого выходят прямые короткие линии, символизирующие выводы. Каждый вывод подписывается знаком, соответствующим виду сигнала. Так, плюсом обозначается положительный выход, минусом — отрицательный, а тильдой — входы для подачи переменного сигнала. В середине ромба может как изображаться выпрямительный диод, так и нет.

    В литературе, различных спецификациях и на схемах устройство подписывается латинскими символами VDS, после которых ставится арабская цифра, обозначающая порядковый номер. В иностранной литературе можно также встретить обозначение BDS. Стандарта для маркировки мостов не существует. Каждый производитель обозначает свою продукцию, как хочет, согласно своей системе.

    Если внимательно изучить различные обозначения, то можно проследить тенденцию в маркировке, нанесённой на корпус прибора. На ней почти всегда присутствуют данные о его основных характеристиках. То есть указывается максимальный ток или рабочее напряжение. Например, DB151S — первые две цифры обозначают ток 1,5 А, а вторая напряжение согласно таблице, в этом случае 50 В.

    Отечественные изделия классифицируются по-другому. Сам мост обозначается буквой «Ц», стоящее за ней число обозначает материал, а последующие цифры номер разработки. Например, популярный мостик у радиолюбителей выдерживающий обратное напряжение до 400 В, маркируется как КЦ407А.

    Самостоятельное изготовление

    Выпрямительные однофазные мосты обычно не являются дефицитными радиодеталями, поэтому их можно купить и выбрать по необходимым параметрам практически в любом радиомагазине. Но не всегда есть на это время, поэтому нужный мост можно собрать и своими руками. Для этого понадобится подготовить:

    1. Четыре одинаковых по своим характеристикам диода. Можно в принципе брать и любые, но следует понимать, что общие параметры моста будут определяться самым слабым элементом.
    2. Монтажный провод.
    3. Паяльник.
    4. Пинцет.
    5. Флюс и припой.
    6. Бокорезы.
    7. Электрическую схему диодного моста выпрямителя.

    После того как всё подготовлено, на первом этапе залуживают выводы диодов. Для этого ножки радиоэлементов смазываются флюсом, и на них с помощью разогретого паяльника переносится олово, образующее тонкий слой. На следующем этапе диоды соединяются согласно схеме.

    Для этого необходимо знать, где у элемента катод, а где анод. На схеме аноду соответствует вершина треугольника, а катоду — основание. На самом же элементе обозначается только анод. Это может быть полоска, точка или условно-графическое обозначение, смещённое к одному из выводов.

    Затем берутся два элемента, и анод одного соединяется с катодом другого. Аналогичное действие повторяется и для оставшихся элементов. В итоге получается пара, каждая из которых состоит из двух диодов. Далее, между собой спаиваются катоды, а поле — аноды. После того как диоды соединены к точкам пайки, подсоединяются проводники, формирующие выводы устройства. На последнем этапе конструкция проверяется с помощью мультиметра.

    Проверка радиоприбора

    Чтобы проверить мост, понадобится взять цифровой прибор и переключить его в режим прозвонки диодов. На мультиметре этот режим соответствует символу диода. К тестеру подключается щуп чёрного цвета в гнездо COM, а красного в V/Ω. Суть проверки заключается в прозвонке переходов. Если за вывод № 1 принять положительный электрод устройства, за № 2 и 3 — входы для переменного сигнала, а за № 4 — отрицательный выход, то тестирование можно выполнить в следующем порядке:

    1. Чёрным щупом дотрагиваются до первого вывода, а красным до третьего. На экране тестера должно загореться трёхзначное число, обозначающее сопротивление перехода. При смене полярности на табло должна появиться единица (бесконечность).
    2. Красным щупом дотрагиваются до третьего вывода, а чёрным — до четвёртого. Тестер должен показать бесконечность, а при смене полярности должно появиться трёхзначное число.
    3. К первой ноге подключается чёрный провод, а ко второй — красный. Прибор должен показать сопротивление перехода, при смене полярности — обрыв.
    4. К третьему выводу подключается красный провод, к четвёртому — чёрный. Переход звониться не должен. При смене положения проводов тестер должен показать сопротивление.

    Если все четыре пункта выполняются, то можно считать, что выпрямитель собран правильно и находится в работоспособном состоянии. При этом таким способом можно проверить любой полупроводниковый мост.

    Назначение и практическое использование

    Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

    Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

    Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

    • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
    • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
    • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

    Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

    Блок питания

    Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

    1. Понижающий трансформатор.
    2. Выпрямительный мост.
    3. Фильтр.

    Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

    Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

    Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

    Трёхфазный выпрямитель

    На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

    Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

    Таким образом, использование мостовых выпрямителей позволяет преобразовывать переменный ток в постоянный, которым запитывается вся электронная аппаратура. Самостоятельно сделать диодный мост несложно. При этом его применение позволяет получить не только качественный сигнал, но и повысить надёжность устройства в целом.

    Мощный импульсный блок питания на 12 В своими руками

    Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
    Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
    Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.

    Детали


    Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
    Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
    Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
    Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 – 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
    В архиве можно скачать схему и плату:


    Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.


    Схема импульсного блока питания на 12 В


    Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.

    В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.

    Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.

    Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

    Проверка блока


    Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
    Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.

    В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.

    Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.

    Смотрите видео


    Мощный импульсный блок питания на 12 В своими руками » Страница 2

    Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.
    Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
    Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.

    Детали


    Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
    Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
    Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
    Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 – 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
    В архиве можно скачать схему и плату:


    Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.


    Схема импульсного блока питания на 12 В


    Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.

    В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.

    Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.

    Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.

    Проверка блока


    Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
    Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.

    В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.

    Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.

    Смотрите видео


    Как работает диод и светодиод? | ОРЕЛ

    С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором. Сегодня мы поговорим о диоде, пресловутом уродливом устройстве управления, которое позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.

    Управляйте потоком

    Диод хорошо известен своей способностью управлять протеканием электрического тока в цепи. В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно погружают руки в приливы и отливы тока, протекающего по нашим устройствам. Есть два способа описать, как ток будет или не течет через диод, и они включают:

    • С опережением. Если вы правильно вставите батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
    • с обратным смещением. Когда вам удается вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.

    Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме

    Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель. Он либо закрыт (включен) и пропускает ток, либо открыт (выключен), и ток не может течь через него.

    Полярность диодов и символы

    Диоды – это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, поэтому для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона – это положительный вывод, называемый анодом . Другой вывод – это отрицательный конец, называемый катодом . Возвращаясь к нашему потоку электричества, ток может течь только в диоде от анода к катоду, а не наоборот.

    Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

    Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод отмечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, – это следовать направлению стрелки.

    Стрелка на символе диода указывает направление протекания тока.

    В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике – кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? С помощью небольшого волшебного трюка под названием допинг.

    Легирование полупроводников

    Странные полупроводниковые элементы. Возьмем, к примеру, кремний.Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.

    Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать поток электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.

    • Развивайте это.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
    • Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может идти двумя путями. Первый – это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Он называется кремнием n-типа или отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
    • Допинг положительно. Силикон можно легировать и в обратном направлении. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это кремний p-типа или положительного типа.
    • Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.

    Именно на этом перекрестке, который можно представить себе как ничейную землю, происходит вся магия диода.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?

    В этом случае отрицательный вывод подключен к кремнию n-типа, а положительный вывод подключен к кремнию p-типа. А между двумя кусками кремния – нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, о котором мы говорили в начале.

    Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)

    Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма – к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.

    Подключите батарею в непреднамеренном направлении, и ваш диод не позволит току течь между n-типом и p-типом.(Источник изображения)

    Прямое напряжение и пробои

    Когда вы работаете с диодами, вы узнаете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.

    Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:

    • Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
    • Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
    • Прочие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

    Я знаю, что мы все это время говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Определенная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в диапазоне от -50 до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

    Семейство диодов – наконец вместе

    Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!

    Стандартные диоды

    Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.

    Стандартный диод для повседневного использования, доступный в компании Digi-Key, обратите внимание на серебряную полоску, которая отмечает катодный конец. (Источник изображения)

    Выпрямительные диоды

    Это более мощные братья и сестры стандартных диодов, они имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.

    Более мощные братья и сестры стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.

    Диоды Шоттки

    Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища свой типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.

    Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.

    Стабилитроны

    Стабилитроны – это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой пробивной способностью, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенной точке цепи.

    Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)

    Фотодиоды

    Фотодиоды – это непокорные подростки из семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.

    Фотодиоды поглощают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)

    Светодиоды (светодиоды)

    Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.

    Что делает эти светодиоды настолько популярными?

    • Эффективность .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им экономить массу энергии.
    • Контроль. Светодиодами также очень легко управлять в электронной схеме. Если перед ними установлен резистор, они обязательно будут работать!
    • Недорого. Светодиоды также очень недороги и рассчитаны на длительный срок службы. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.

    Светодиоды бывают разных форм и цветов, каждый из которых требует разного прямого напряжения для включения! (Источник изображения)

    Наиболее распространенное применение диодов

    Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же богато! Вот лишь несколько примеров использования диодов:

    Преобразование переменного тока в постоянный

    Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока – это то, что позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:

    • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.

      Одиночный диод в цепи однополупериодного выпрямителя, ограничивающий отрицательный полюс сигнала переменного тока. (Источник изображения)

    • Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую ​​как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.

      Двухполупериодный мостовой выпрямитель делает еще один шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)

    Управляющие скачки напряжения

    Вы также найдете диоды, которые используются в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.

    Защита вашего тока

    Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили батарею неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.

    Пора освободиться от потока

    Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений, от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же огласки, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.

    Знаете ли вы, что Autodesk EAGLE включает в себя массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE бесплатно сегодня!

    диодов – learn.sparkfun.com

    Добавлено в избранное Любимый 63

    Введение

    После того, как вы перейдете от простых пассивных компонентов, таких как резисторы, конденсаторы и катушки индуктивности, пора перейти в удивительный мир полупроводников.Одним из наиболее широко используемых полупроводниковых компонентов является диод.

    В этом уроке мы рассмотрим:

    • Что такое диод !?
    • Теория работы диодов
    • Важные свойства диода
    • Диоды разные
    • Как выглядят диоды
    • Типичные применения диодов

    Рекомендуемая литература

    Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:

    Что такое схема?

    Каждый электрический проект начинается со схемы.Не знаю, что такое схема? Мы здесь, чтобы помочь.

    Что такое электричество?

    Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!

    Как пользоваться мультиметром

    Изучите основы использования мультиметра для измерения целостности цепи, напряжения, сопротивления и тока.

    Хотите изучить различные диоды?

    Идеальные диоды

    Ключевая функция идеального диода – управлять направлением тока. Ток, проходящий через диод, может идти только в одном направлении, называемом прямым направлением. Ток, пытающийся течь в обратном направлении, заблокирован. Они похожи на односторонний клапан электроники.

    Если напряжение на диоде отрицательное, ток не может течь *, и идеальный диод выглядит как разомкнутая цепь.В такой ситуации говорят, что диод снят с или смещен в обратном направлении .

    Пока напряжение на диоде не отрицательное, он «включается» и проводит ток. В идеале * диод будет действовать как короткое замыкание (0 В на нем), если он проводит ток. Когда диод проводит ток, он смещен в прямом направлении (жаргон электроники означает «включено»).

    Соотношение тока и напряжения идеального диода. Любое отрицательное напряжение дает нулевой ток – разрыв цепи.Пока напряжение неотрицательно, диод выглядит как короткое замыкание.

    Характеристики идеального диода
    Рабочий режим Вкл. (Смещение вперед) Выкл. В = 0 В
    Диод выглядит как Короткое замыкание Обрыв цепи

    Символ цепи

    Каждый диод имеет две клеммы – соединения на каждом конце компонента – и эти клеммы поляризованы , что означает, что эти две клеммы совершенно разные.Важно не перепутать соединения на диоде. Положительный конец диода называется анодом , а отрицательный конец называется катодом . Ток может течь от конца анода к катоду, но не в другом направлении. Если вы забыли, в каком направлении протекает ток через диод, попробуйте вспомнить мнемонику ACID : «анодный ток в диоде» (также анодный катод – это диод ).

    Обозначение цепи стандартного диода представляет собой треугольник, соприкасающийся с линией.Как мы расскажем позже в этом руководстве, существует множество типов диодов, но обычно их обозначение схемы будет выглядеть примерно так:

    Вывод, входящий в плоский край треугольника, представляет собой анод. Ток течет в направлении, указанном треугольником / стрелкой, но не может идти в обратном направлении.

    Выше приведены несколько простых примеров схем диодов. Слева диод D1 смещен в прямом направлении и пропускает ток через цепь. По сути это похоже на короткое замыкание.Справа диод D2 имеет обратное смещение. Ток не может течь по цепи, и она выглядит как разомкнутая цепь.

    * Внимание! Звездочка! Не совсем так … К сожалению, идеального диода не существует. Но не волнуйтесь! Диоды действительно настоящие, у них просто есть несколько характеристик, которые заставляют их работать немного хуже, чем наша идеальная модель …


    Реальные характеристики диода

    В идеале , диоды будут блокировать любой ток, текущий в обратном направлении, или просто действовать как короткое замыкание, если ток идет вперед.К сожалению, реальное поведение диодов не совсем идеальное. Диоды потребляют некоторое количество энергии при проведении прямого тока, и они не будут блокировать весь обратный ток. Реальные диоды немного сложнее, и все они имеют уникальные характеристики, которые определяют, как они на самом деле работают.

    Соотношение тока и напряжения

    Наиболее важной характеристикой диода является его вольт-амперная зависимость ( i-v ). Это определяет ток, протекающий через компонент, с учетом того, какое напряжение на нем измеряется.Резисторы, например, имеют простую линейную зависимость i-v … Закон Ома. Кривая i-v диода, однако, не является линейной для . Выглядит это примерно так:

    Отношение тока к напряжению диода. Чтобы преувеличить несколько важных моментов на графике, масштабы как в положительной, так и в отрицательной половине не равны.

    В зависимости от приложенного к нему напряжения диод будет работать в одном из трех регионов:

    1. Прямое смещение : Когда напряжение на диоде положительное, диод включен, и ток может протекать через него.Напряжение должно быть больше прямого напряжения (V F ), чтобы ток был значительным.
    2. Обратное смещение : Это режим “выключения” диода, при котором напряжение меньше V F , но больше -V BR . В этом режиме ток (в основном) заблокирован, а диод выключен. Очень небольшой ток (порядка нА), называемый током обратного насыщения, может протекать через диод в обратном направлении.
    3. Пробой : Когда напряжение, приложенное к диоду, очень большое и отрицательное, большой ток может течь в обратном направлении, от катода к аноду.

    прямое напряжение

    Чтобы «включиться» и провести ток в прямом направлении, диод требует приложения определенного количества положительного напряжения. Типичное напряжение, необходимое для включения диода, называется прямым напряжением F ).Его также можно было бы называть либо напряжения включения , либо напряжения включения .

    Как мы знаем из кривой i-v , сквозной ток и напряжение на диоде взаимозависимы. Больше тока означает большее напряжение, меньшее напряжение означает меньший ток. Однако, когда напряжение приближается к номинальному прямому напряжению, большое увеличение тока по-прежнему должно означать лишь очень небольшое увеличение напряжения. Если диод полностью проводящий, обычно можно предположить, что напряжение на нем соответствует номинальному прямому напряжению.

    Мультиметр с настройкой диода можно использовать для измерения (минимального) прямого падения напряжения на диоде.

    V F конкретного диода зависит от того, из какого полупроводникового материала он сделан. Обычно кремниевый диод имеет напряжение V F около 0,6–1 В . Диод на основе германия может быть ниже, около 0,3 В. Тип диода также имеет некоторое значение для определения прямого падения напряжения; светоизлучающие диоды могут иметь гораздо больший V F , в то время как диоды Шоттки разработаны специально для того, чтобы иметь гораздо более низкое, чем обычно, прямое напряжение.

    Напряжение пробоя

    Если к диоду приложить достаточно большое отрицательное напряжение, он поддастся и позволит току течь в обратном направлении. Это большое отрицательное напряжение называется напряжением пробоя . Некоторые диоды на самом деле предназначены для работы в области пробоя, но для большинства нормальных диодов не очень полезно подвергаться воздействию больших отрицательных напряжений.

    Для обычных диодов это напряжение пробоя составляет от -50 В до -100 В или даже более отрицательное.

    Таблицы данных диодов

    Все вышеперечисленные характеристики должны быть подробно описаны в даташите на каждый диод. Например, в этом техническом описании диода 1N4148 указано максимальное прямое напряжение (1 В) и напряжение пробоя (100 В) (среди множества другой информации):

    Таблица данных может даже представить вам хорошо знакомый график вольт-амперной характеристики, чтобы более подробно описать поведение диода. Этот график из таблицы данных диода увеличивает изогнутую переднюю часть кривой i-v .Обратите внимание, как больший ток требует большего напряжения:

    Эта диаграмма указывает на еще одну важную характеристику диода – максимальный прямой ток. Как и любой другой компонент, диоды могут рассеивать только определенное количество энергии, прежде чем они взорвутся. На всех диодах должны быть указаны максимальный ток, обратное напряжение и рассеиваемая мощность. Если диод подвергается большему напряжению или току, чем он может выдержать, ожидайте, что он нагреется (или, что еще хуже, расплавится, задымится и т. Д.).

    Некоторые диоды хорошо подходят для больших токов – 1 А или более – другие, например, малосигнальный диод 1N4148, показанный выше, могут подходить только для тока около 200 мА.


    Этот 1N4148 – лишь крошечная выборка всех существующих типов диодов. Далее мы рассмотрим, какое удивительное разнообразие существует и для какой цели служит каждый тип.

    Типы диодов

    Нормальные диоды

    Сигнальные диоды

    Стандартные сигнальные диоды являются одними из самых простых, средних и простых членов семейства диодов. Обычно они имеют средне-высокое прямое падение напряжения и низкий максимальный ток.Типичный пример сигнального диода – 1N4148.

    Очень общего назначения, он имеет типичное прямое падение напряжения 0,72 В и максимальный номинальный прямой ток 300 мА.

    Слабосигнальный диод, 1N4148. Обратите внимание на черный кружок вокруг диода, который отмечает, какой из выводов является катодом.

    Силовые диоды

    Выпрямитель или силовой диод – стандартный диод с гораздо более высоким максимальным током. Этот более высокий номинальный ток обычно достигается за счет большего прямого напряжения.1N4001 – это пример силового диода.

    1N4001 имеет номинальный ток 1 А и прямое напряжение 1,1 В.

    Диод 1N4001 PTH. На этот раз серая полоса указывает, какой вывод является катодом.

    И, конечно же, большинство типов диодов также выпускаются для поверхностного монтажа. Вы заметите, что у каждого диода есть способ (независимо от того, насколько он крошечный или плохо различимый), чтобы указать, какой из двух контактов является катодом.

    Светодиоды (светодиоды!)

    Самым ярким членом семейства диодов должен быть светодиод (LED).Эти диоды буквально загораются при подаче положительного напряжения.

    Горстка сквозных светодиодов. Слева направо: желтый 3 мм, синий 5 мм, зеленый 10 мм, сверхяркий красный 5 мм, RGB 5 мм и синий 7-сегментный светодиод.

    Как и обычные диоды, светодиоды пропускают ток только в одном направлении. Они также имеют номинальное прямое напряжение, то есть напряжение, необходимое для их включения. Рейтинг светодиода V F обычно выше, чем у обычного диода (1.2 ~ 3 В), и это зависит от цвета, излучаемого светодиодом. Например, номинальное прямое напряжение сверхяркого синего светодиода составляет около 3,3 В, а для сверхяркого красного светодиода такого же размера – всего 2,2 В.

    Очевидно, вы чаще всего найдете светодиоды в осветительных приборах. Они веселые и веселые! Но более того, их высокая эффективность привела к широкому использованию в уличных фонарях, дисплеях, подсветке и многом другом. Другие светодиоды излучают свет, невидимый человеческому глазу, например инфракрасные светодиоды, которые являются основой большинства пультов дистанционного управления.Другое распространенное использование светодиодов – оптическая изоляция опасной высоковольтной системы от низковольтной цепи. Оптоизоляторы соединяют инфракрасный светодиод с фотодатчиком, который пропускает ток при обнаружении света от светодиода. Ниже приведен пример схемы оптоизолятора. Обратите внимание на то, как схематический символ диода отличается от обычного диода. Светодиодные символы добавляют пару стрелок, выходящих из символа.

    Диоды Шоттки

    Другой очень распространенный диод – диод Шоттки.

    Диод Шоттки

    В наличии COM-10926

    Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением. Этот диод Шоттки 1 А 40 В составляет…

    . 1

    Полупроводниковый состав диода Шоттки немного отличается от обычного диода, и это приводит к гораздо меньшему на прямому падению напряжения , которое обычно находится между 0.15 В и 0,45 В. Однако они все равно будут иметь очень большое напряжение пробоя.

    Диоды Шоттки

    особенно полезны для ограничения потерь, когда нужно сберечь каждый последний бит напряжения . Они достаточно уникальны, чтобы получить собственное обозначение схемы с парой изгибов на конце катодной линии.

    Стабилитроны

    Стабилитроны

    – странный изгой из семейства диодов. Обычно они используются, чтобы намеренно проводить обратный ток .

    Стабилитрон – 5.1 В 1 Вт

    В отставке COM-10301

    Стабилитроны полезны для создания опорного напряжения или в качестве стабилизатора напряжения для слаботочных приложений. Эти диоды…

    Пенсионер Стабилитрон

    разработан для обеспечения очень точного напряжения пробоя, называемого стабилитроном или напряжением стабилитрона . Когда через стабилитрон протекает достаточный ток в обратном направлении, падение напряжения на нем будет стабильным на уровне напряжения пробоя.

    За счет преимущества своих пробивных свойств стабилитроны часто используются для создания известного опорного напряжения, точно соответствующего их напряжению стабилитрона. Их можно использовать в качестве регуляторов напряжения для небольших нагрузок, но на самом деле они не предназначены для регулирования напряжения в цепях, которые потребляют значительный ток.

    Стабилитрон

    достаточно особенный, чтобы иметь собственный символ схемы с волнистыми концами на катодной линии. Этот символ может даже обозначать, что такое напряжение стабилитрона диода.Вот стабилитрон 3,3 В, создающий надежное опорное напряжение 3,3 В:

    Фотодиоды

    Фотодиоды – это специально сконструированные диоды, которые улавливают энергию фотонов света (см. Физика, квант) для генерации электрического тока. Вид работы как анти-светодиод.

    Фотодиод BPW34 (не четверть, да еще мелочь). Поместите его на солнце, и он может генерировать около нескольких мкВт энергии !.

    Солнечные элементы – главный благодетель фотодиодной технологии.Но эти диоды также могут использоваться для обнаружения света или даже для оптической связи.


    Применение диодов

    Для такого простого компонента диоды имеют множество применений. Вы найдете диод того или иного типа практически в каждой цепи. Они могут быть представлены в чем угодно, от цифровой логики слабого сигнала до схемы преобразования энергии высокого напряжения. Давайте рассмотрим некоторые из этих приложений.

    Выпрямители

    Выпрямитель – это схема, преобразующая переменный ток (AC) в постоянный (DC).Это преобразование критично для всякой бытовой электроники. Сигналы переменного тока выходят из розеток вашего дома, но именно постоянный ток питает большинство компьютеров и другой микроэлектроники.

    Ток в цепях переменного тока буквально чередуется – быстро переключается между положительным и отрицательным направлениями – но ток в сигнале постоянного тока течет только в одном направлении. Итак, чтобы преобразовать переменный ток в постоянный, вам просто нужно убедиться, что ток не может течь в отрицательном направлении. Похоже на работу для ДИОДОВ!

    Однополупериодный выпрямитель можно сделать всего из одного диода.Если сигнал переменного тока, такой как, например, синусоида, передается через диод, любая отрицательная составляющая сигнала отсекается.

    Формы входного (красный / левый) и выходного (синий / правый) сигналов напряжения после прохождения через схему однополупериодного выпрямителя (в центре).

    Двухполупериодный мостовой выпрямитель использует четыре диода для преобразования этих отрицательных выпуклостей в сигнале переменного тока в положительные.

    Схема мостового выпрямителя (в центре) и форма выходной волны, которую она создает (синий / правый).

    Эти цепи являются критическим компонентом источников питания переменного тока в постоянный, которые преобразуют сигнал 120/240 В переменного тока сетевой розетки в сигналы постоянного тока 3,3 В, 5 В, 12 В и т. Д. Если вы разорвали стенную бородавку, вы, скорее всего, увидели бы там несколько диодов, которые ее исправили.

    Можете ли вы заметить четыре диода, образующие мостовой выпрямитель в этой бородавке?

    Защита от обратного тока

    Когда-нибудь вставлял батарею неправильно? Или поменять местами красный и черный провода питания? Если это так, то диод может быть благодарен за то, что ваша схема все еще жива.Диод, расположенный последовательно с положительной стороной источника питания, называется диодом обратной защиты. Это гарантирует, что ток может течь только в положительном направлении, а источник питания подает только положительное напряжение в вашу цепь.

    Это применение диода полезно, когда разъем источника питания не поляризован, что позволяет легко испортить и случайно подключить отрицательный источник питания к положительному полюсу входной цепи.

    Недостатком диода обратной защиты является то, что он вызывает некоторую потерю напряжения из-за прямого падения напряжения.Это делает диоды Шоттки отличным выбором для диодов обратной защиты.

    Логические ворота

    Забудьте о транзисторах! Простые цифровые логические вентили, такие как И или ИЛИ, могут быть построены из диодов.

    Например, диодный логический элемент ИЛИ с двумя входами может быть построен из двух диодов с общими катодными узлами. Выход логической схемы также находится в этом узле. Когда один из входов (или оба) являются логической 1 (высокий / 5 В), выход также становится логической 1.Когда оба входа имеют логический 0 (низкий / 0 В), на выходе через резистор подается низкий уровень.

    Логический элемент И построен аналогичным образом. Аноды , обоих диодов соединены вместе, где и расположен выход схемы. Оба входа должны иметь логическую единицу, заставляя ток течь по направлению к выходному выводу и также подтягивать его к высокому уровню. Если на каком-либо из входов низкий уровень, ток от источника питания 5 В проходит через диод.

    Для обоих логических вентилей можно добавить больше входов, добавив только один диод.

    Обратные диоды и подавление скачков напряжения

    Диоды

    очень часто используются для ограничения потенциального повреждения из-за неожиданных больших скачков напряжения. Диоды с подавлением переходных напряжений (TVS) – это специальные диоды, вроде стабилитронов с низким пробивным напряжением (часто около 20 В), но с очень большой номинальной мощностью (часто в диапазоне киловатт). Они предназначены для шунтирования токов и поглощения энергии, когда напряжение превышает их напряжение пробоя.

    Обратные диоды

    выполняют аналогичную работу по подавлению скачков напряжения, в частности, вызванных индуктивным компонентом, например двигателем.Когда ток через катушку индуктивности внезапно изменяется, возникает всплеск напряжения, возможно, очень большой отрицательный всплеск. Обратный диод, помещенный на индуктивную нагрузку, даст этому отрицательному сигналу напряжения безопасный путь для разряда, фактически многократно проходя через индуктивность и диод, пока он в конечном итоге не погаснет.

    Это всего лишь несколько вариантов применения этого удивительного маленького полупроводникового компонента.


    Покупка диодов

    Теперь, когда ваш нынешний движется в правильном направлении, пришло время найти хорошее применение вашим новым знаниям.Независимо от того, ищете ли вы отправную точку или просто пополняете запасы, у нас есть набор изобретателя, а также отдельные диоды на выбор.

    Наши рекомендации:

    Диод Шоттки

    В наличии COM-10926

    Диоды Шоттки известны своим низким прямым падением напряжения и очень быстрым переключением.Этот диод Шоттки 1 А 40 В составляет…

    . 1

    Комплект изобретателя SparkFun – версия 3.2

    В отставке КОМПЛЕКТ-12060

    ** Как вы, возможно, видели из [нашего сообщения в блоге] (https://www.sparkfun.com/news/2241), мы недавно переместили нашу литьевую форму для SIK…

    76 Пенсионер

    Ресурсы и движение вперед

    Теперь, когда вы разобрались с диодами, возможно, вы захотите продолжить изучение других полупроводников:

    Или откройте для себя другие распространенные электронные компоненты:

    Semiconductors & Actives Business & Industrial Other Diodes 100 GENERAL SEMICONDUCTOR 1N4003 200V 1A DO-41 PLASTIC RECTIFIER DIODE PREPPED

    Полупроводники и активные компоненты Другие диоды для бизнеса и промышленности 100 GENERAL SEMICONDUCTOR 1N4003 200V 1A DO-41 PLASTIC RECTIFIER DIODE PREPPED

    100 GENERAL SEMICONDUCTOR 1N4003 200V 1A DO-41 PLASTIC RECTIFIER DIODE 1 PREPREPASTIC RECTIFIER DIODE 100 PREPREPASTIC RECTIFIER DIODE 100 PREENPROPASTIC RECTIFIER DIODE 100 PREENPREPAST ПОДГОТОВЛЕННЫЙ ДИОДОМ 100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200 В 1 А ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ DO-41, хотя в выходные будет задержка, ОБЩАЯ ЧАСТЬ ПОЛУПРОВОДНИКА № 1N4003, 1 А, 200 В DO-41 ПОДГОТОВЛЕНО ДЛЯ ВСТАВКИ ПП, ОБЩЕЕ НАЗНАЧЕНИЕ ПЛАСТИКА НЕ НАЗНАЧЕНО вручную напишите ярлыки, Мы постараемся отправить исправленный счет как можно скорее, самые низкие цены, превосходное качество, быстрая доставка, заказ сегодня, 100% гарантия удовлетворения, что сделает вашу жизнь легкой, здоровой и более приятной..







    неоткрытые, например коробка без надписей или пластиковый пакет. См. Список продавца для получения полной информации. См. Все определения условий : Торговая марка: : ОБЩИЙ ПОЛУПРОВОДНИК , MPN: : 1N4003 : Модель: : ВЫПРЯМИТЕЛИ ,。, если товар не был изготовлен вручную или был упакован производителем в нерозничную упаковку. (100) ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200V 1A DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД. ОБЩИЙ ПОЛУПРОВОДНИК № 1N4003. 1A 200V DO-41 ПОДГОТОВЛЕН К ВСТАВКЕ ПЕЧАТНОЙ ПЛАТЫ.ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬНЫЙ ДИОД ОБЩЕГО НАЗНАЧЕНИЯ. Мы не пишем этикетки от руки. Мы постараемся отправить исправленный счет как можно скорее. хотя на выходных будет задержка .. Состояние: Новое: Совершенно новый, неиспользованный, неповрежденный товар в оригинальной упаковке (если упаковка применима). Упаковка должна быть такой же, как в розничном магазине.

    100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200V 1A DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ, ПОДГОТОВЛЕННЫЙ ДИОДОМ



    LQ061Y5DG02 LQ061Y5DG01 Совершенно новый оригинальный класс 6.5-дюймовый автомобильный TFT-дисплей. Винты с головкой под торцевой ключ 100 новых HOLO-KROME 42036 с внутренним шестигранником 1 / 4-20 UNC x 3/4 дюйма с накатанной головкой. Переключатель контроля температуры шкафа термостата 220V 16A для электрического OveO EW. Хромированный выпускной зажим TEC 300 1086 1486 1586. 100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200В 1А DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД ПОДГОТОВЛЕННЫЙ , RES-10.4-PL8T сенсорный экран сенсорная панель сенсорное стекло RES10.4-PL8T, 1-3 / 8 “SBP207-22 Самовыравнивающийся опорный подшипник подушки SBP207-22 ZSKL. Знак “Пожар всегда закрытый” Знак Slide-Fire. Цветной полипропиленовый пластиковый лист A5 A4 A3 0.Изготовление моделей 5 мм. Поделки своими руками. 100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200V 1A DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД ПОДГОТОВЛЕННЫЙ .


    100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200V 1A DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ, ПОДГОТОВЛЕННЫЙ ДИОДОМ

    100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200V 1A DO-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ, ПОДГОТОВЛЕННЫЙ ДИОДОМ

    100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200В 1А ДО-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД, ДО-41 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД 100 ОБЩИЙ ПОЛУПРОВОДНИК 1N4003 200В 1А, ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД 1Н4003 200В 1А, ПЛАСТИЧЕСКИЙ ВЫПРЯМИТЕЛЬ ДИОД 1Н4003 ПЛАСТИКОВЫЙ ВЫПРЯМИТЕЛЬ ДИОД-ДИОД-200

    Сделай сам выпрямитель на 12 вольт. Диодный мост

    Итак, мои дорогие, мы собрали нашу схему и пора ее проверить, протестировать и насладиться этим счастьем. Следующим шагом будет подключение схемы к источнику питания. Давайте начнем. Не будем останавливаться на батареях, аккумуляторах и прочих гаджетах питания, перейдем непосредственно к сетевым блокам питания. Рассмотрим здесь существующие схемы правки, как они работают и что умеют. Для экспериментов нам понадобится однофазное (дома от розетки) напряжение и соответствующие детали.В промышленности используются трехфазные выпрямители, мы их тоже рассматривать не будем. Если вы выросли электриком, то пожалуйста.

    Блок питания состоит из нескольких наиболее важных деталей: Сетевой трансформатор – на схеме он обозначен аналогично рисунку,

    Выпрямитель – его обозначение может быть разным. Выпрямитель состоит из одного, двух или четырех диодов, в зависимости от того, какой выпрямитель. Сейчас разберемся.

    а) – простой диод.
    б) – диодный мост. Состоит из четырех диодов, включенных, как показано на рисунке.
    в) – тот же диодный мост, только для краткости нарисованный более простым способом. Назначение контактов такое же, как и для моста под буквой b).

    Фильтр конденсаторный. Эта вещь неизменна как во времени, так и в пространстве, обозначается она так:

    Конденсатор имеет множество обозначений, столько же систем обозначений в мире. Но в целом все они похожи. Не будем путаться. А для наглядности нарисуем нагрузку, обозначим ее как Rl – сопротивление нагрузки.Это наша схема. Также обозначим контакты блока питания, к которому мы будем подключать эту нагрузку.

    Далее – пара постулатов.
    – Выходное напряжение определяется как Uconst = U * 1,41. То есть если у нас на обмотке 10 Вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Как это.
    – Под нагрузкой напряжение немного проседает, и насколько зависит от конструкции трансформатора, его мощности и емкости конденсатора.
    – Выпрямительные диоды должны быть 1.В 5-2 раза больше тока, чем необходимо. На складе. Если диод предназначен для установки на радиатор (с гайкой или отверстием под болт), то при силе тока более 2-3А его необходимо поставить на радиатор.

    Напомню еще, что такое биполярное напряжение. Если кто забыл. Берем две батареи и соединяем их последовательно. Средняя точка, то есть точка соединения аккумуляторов, будем называть общей точкой. Он широко известен как масса, земля, тело, общий провод.Буржуа называют это GND (земля), часто обозначается как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, по нему в цепи подаются входные сигналы и снимаются выходные сигналы. Поэтому его название – обыкновенный провод. Итак, если к этой точке подключить тестер черным проводом и замерить напряжение на батареях, то на одной батарее тестер покажет плюс 1,5 вольта, а на другой – минус 1,5 вольта. Это напряжение +/- 1,5 В называется биполярным. Обе полярности, то есть плюс и минус, обязательно должны быть равны.То есть +/- 12, +/- 36В, +/- 50 и т. Д. Признак биполярного напряжения – если от цепи к источнику питания идут три провода (плюс, общий, минус). Но это не всегда так – если мы видим, что схема питается напряжениями +12 и -5, то такой блок питания называется двухуровневым, но к блоку питания все равно будет три провода. Что ж, если на цепь поступает аж четыре напряжения, например +/- 15 и +/- 36, то мы будем называть это питание просто – биполярным двухуровневым.

    Ну а теперь по делу.

    1. Схема мостового выпрямителя.
    Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема имеет минимальные пульсации напряжения и проста по конструкции.

    2. Полуволновая схема.
    Так же, как мост, он подает нам униполярное напряжение с одной обмотки трансформатора. Единственное отличие состоит в том, что эта схема имеет вдвое большую пульсацию по сравнению с мостом, но один диод вместо четырех значительно упрощает схему.Он используется при малых токах нагрузки, и только с трансформатором, значительно большей мощности нагрузки, потому что такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

    3. Двухполупериодный со средней точкой.
    Два диода и две обмотки (или одна обмотка со средней точкой) обеспечат нам низкое напряжение пульсаций, плюс мы получим меньшие потери по сравнению с мостовой схемой, потому что у нас 2 диода вместо четырех.

    4.Мостовая схема биполярного выпрямителя.
    Для многих это больная тема. У нас две обмотки (или одна со средней точкой), снимаем с них два одинаковых напряжения. Они будут равны, пульсации будут небольшими, так как схема мостовая, напряжение на каждом конденсаторе рассчитывается как напряжение на каждой обмотке, умноженное на корень из двух – все как обычно. Провод от середины обмоток уравнивает напряжения на конденсаторах, если положительная и отрицательная нагрузки различны.

    5. Схема с удвоением напряжения.
    Это две полуволновые схемы, но с разным включением диодов. Используется, если нам нужно получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться нашей формулой, а общее напряжение на них будет удвоено. Как и полуволновая схема, эта также имеет большую пульсацию. В нем можно увидеть биполярный выход – если середину конденсаторов назвать землей, оказывается, как в случае с батареями, присмотритесь повнимательнее.Но много мощности от такой схемы не убрать.


    6. Получение биполярного напряжения от двух выпрямителей.
    Совсем не обязательно, чтобы это были одинаковые блоки питания – они могут быть как разными по напряжению, так и по мощности. Например, если наша схема потребляет 1 А для +12 В и 0,5 А для -5 В, то нам понадобятся два блока питания – + 12 В 1 А и -5 В 0,5 А. Вы также можете подключить два идентичных выпрямителя для получения биполярного напряжения, например, для питания усилителя.


    7. Параллельное соединение одинаковых выпрямителей.
    Он дает нам такое же напряжение, только с удвоенным током. Если подключить два выпрямителя, то ток у нас увеличится вдвое, у трех – втрое и т. Д.

    Ну а если вам, милые, все понятно, то попрошу, пожалуй, домашнее задание … Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

    Для однополупериодного выпрямителя формула немного другая:

    Два в знаменателе – это количество «делений» выпрямления.Для трехфазного выпрямителя знаменатель будет равен трем.

    Во всех формулах переменные называются так:
    Cf – емкость конденсатора фильтра, мкФ
    Ro – выходная мощность, Вт
    U – выходное выпрямленное напряжение, В
    f – частота переменного напряжения, Гц
    dU – размах колебаний , В

    Для справки – допустимая пульсация:
    Микрофонные усилители – 0,001 … 0,01%
    Цифровая технология – пульсации 0,1 … 1%
    Усилители мощности – пульсации нагруженного источника питания 1… 10% в зависимости от качества усилителя.

    Эти две формулы действительны для выпрямителей напряжения с частотой до 30 кГц. На более высоких частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного иначе. Но это уже другая тема.

    Диодный мост поможет преобразовать переменный ток в постоянный – схема и принцип работы этого устройства приведены ниже. В обычной схеме освещения течет переменный ток, который меняет свою величину и направление 50 раз в течение одной секунды.Превращение его в постоянное – довольно частая необходимость.

    Принцип работы полупроводникового диода

    Рис. 1

    Название описываемого устройства однозначно указывает на то, что данная конструкция состоит из диодов – полупроводниковых устройств, которые хорошо проводят электричество в одном направлении и практически не проводят его в обратном направлении. Изображение этого устройства (VD1) на принципиальных схемах показано на рис. 2в. Когда через него течет ток в прямом направлении – от анода (слева) к катоду (справа), его сопротивление невелико.При изменении направления тока на противоположное сопротивление диода многократно увеличивается. В этом случае через него протекает обратный ток, мало отличающийся от нуля.

    Следовательно, когда переменное напряжение U в (левый график) подается на цепь, содержащую диод, электричество проходит через нагрузку только в течение положительных полупериодов, когда на анод подается положительное напряжение. Отрицательные полупериоды «отсекаются», и в это время практически нет тока в сопротивлении нагрузки.

    Строго говоря, выходное напряжение U out (правый график) непостоянно, хотя течет в одном направлении, а пульсирует. Легко понять, что количество его импульсов (пульсаций) в секунду равно 50. Это не всегда приемлемо, но сглаживать пульсации можно, если параллельно нагрузке подключить конденсатор, имеющий достаточно большую емкость. … Зарядка при импульсах напряжения, в промежутках между ними конденсатор разряжается до сопротивления нагрузки.Пульсации сглаживаются, а напряжение становится близким к постоянному.

    Выпрямитель, выполненный по этой схеме, называется полуволновым выпрямителем, так как в нем используется только один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

    • повышенная степень пульсации выпрямленного напряжения;
    • низкий КПД;
    • большой вес трансформатора и его нерациональное использование.

    Следовательно, такие схемы используются только для питания устройств.малая мощность … Чтобы исправить эту нежелательную ситуацию, были разработаны двухполупериодные выпрямители, преобразующие отрицательные полуволны в положительные. Это можно сделать по-разному, но проще всего использовать диодный мост.

    Рис. 2

    Диодный мост – двухполупериодная схема выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и через них не течет ток.Во время положительного полупериода положительное напряжение подается на анод VD1, а отрицательное – на катод VD3. В результате оба этих диода открыты, а VD2 и VD4 закрыты.

    Во время отрицательного полупериода положительное напряжение подается на анод VD2, а отрицательное – на катод VD4. Эти два диода открываются, а те, которые открыты в течение предыдущего полупериода, закрываются. Ток течет через сопротивление нагрузки в том же направлении. По сравнению с однополупериодным выпрямителем количество пульсаций увеличивается вдвое.Результатом является более высокая степень сглаживания при той же емкости конденсатора фильтра, повышение эффективности трансформатора, используемого в выпрямителе.

    Диодный мост может быть не только собран из отдельных элементов, но и выполнен в виде монолитной конструкции (диодная сборка). Его проще монтировать, да и диоды обычно подбирают по своим параметрам. Также важно, чтобы они работали в одинаковых тепловых условиях. Недостатком диодного моста является необходимость замены всей сборки при выходе из строя хотя бы одного диода.

    Еще ближе к постоянному будет пульсирующий выпрямленный ток, что дает возможность получить трехфазный диодный мост. Его вход подключен к трехфазному источнику. переменного тока (генератор или трансформатор), а выходное напряжение почти такое же, как постоянное напряжение, и его даже легче сгладить, чем после двухполупериодного выпрямления.

    Выпрямитель диодный мост

    Схема двухполупериодного выпрямителя на основе диодного моста, пригодного для самостоятельной сборки, представлена ​​на рис.3а. Напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т, выпрямляется. Для этого к трансформатору необходимо подключить диодный мост.

    Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором C, который имеет достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R действует как выпрямительная нагрузка на холостом ходу … В этом режиме конденсатор C заряжается до значения амплитуды, которое в 1,4 раза (корень из двух) превышает эффективное значение напряжения, снимаемого со вторичной обмотки трансформатора. .

    По мере увеличения нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощается. На рис. 3б показывает, как соответствующий фрагмент на рис. 3а.

    Следует отметить, что, хотя прямое сопротивление диодов невелико, оно, тем не менее, не равно нулю. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца, чем сильнее, тем больше величина тока, протекающего по цепи.Для предотвращения перегрева на радиаторах (радиаторах) часто устанавливают мощные диоды.

    Диодный мост – практически необходимый элемент любого электронного устройства с питанием от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.

    Связанные записи:

    Мост через реку, через овраг, а также через дорогу. Но вы когда-нибудь слышали словосочетание «диодный мост»? Что это за мост? Но мы постараемся найти ответ на этот вопрос.

    Словосочетание «диодный мост» образовано от слова «диод». Получается, что диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, то диод будет пропускать электричество в одном направлении, а в другом – нет. Мы использовали это свойство диодов для определения их характеристик. Кто не помнит, как мы это сделали, то вам сюда. Следовательно, диодный мост используется для получения постоянного напряжения из переменного напряжения.

    А вот схема диодного моста:

    Иногда на схемах также обозначается так:

    Как видим, схема состоит из четырех диодов.Но чтобы схема диодного моста работала, надо правильно подключить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «~». Мы подаем переменное напряжение на эти две клеммы, а постоянное напряжение снимаем с двух других клемм: с плюса и минуса.

    Чтобы преобразовать переменное напряжение в постоянное, можно использовать один диод для выпрямления, но это нежелательно. Взглянем на рисунок:

    Переменное напряжение меняется со временем.Диод пропускает через себя напряжение только тогда, когда напряжение больше нуля, но когда оно становится ниже нуля, диод отключается. Думаю, все элементарно и просто. Диод отсекает отрицательную полуволну, оставляя только положительную полуволну, , которую мы видим на картинке выше. И вся прелесть этой простой схемы в том, что мы получаем постоянное напряжение от переменного. Проблема в том, что мы тратим половину мощности переменного напряжения. Диод тупо отрубает.

    Для исправления этой ситуации была разработана схема диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную. Таким образом, наш потенциал сохраняется. Отлично, не правда ли?

    На выходе диодного моста имеется постоянная пульсация напряжения, часто вдвое превышающая частоту сети: 100 Гц.

    Думаю, нет необходимости писать, как работает схема, она вам все равно не пригодится, главное запомнить, где цепляется переменное напряжение, а откуда постоянное пульсирующее напряжение.

    Давайте посмотрим, как диод и диодный мост работают на практике.

    Сначала возьмем диод.

    Выкинул из блока питания компа. Катод легко узнать по полоске. Практически все производители показывают катод полосой или точкой.

    Чтобы наши эксперименты были безопасными, я взял понижающий трансформатор, который преобразует 12 вольт из 220 вольт. Кто не знает, как он это делает, можете прочитать статью об устройстве трансформатора.

    Подключаем к первичной обмотке 220 Вольт, а со вторичной снимаем 12 Вольт. На карикатуре видно немного больше, так как на вторичную обмотку нагрузка не подключена. Трансформатор работает на холостом ходу.

    Давайте посмотрим на осциллограмму вторичной обмотки транса. Максимальную амплитуду напряжения вычислить несложно. Если вы не помните, как рассчитывать, можете взглянуть на статью Осциллограф.Основы работы. 3.3×5 = 16.5V – максимальное значение напряжения. А если разделить максимальное значение амплитуды на корень из двух, то получится где-то 11,8 Вольт. Это эффективное значение напряжения. Осциллус не врет, все ок.

    Еще раз повторяю, можно было использовать 220 вольт, но 220 вольт – это не шутка, поэтому я снизил переменное напряжение.

    Припаиваем наш диод к одному концу вторичной трансовой обмотки.

    Цепляем снова щупами осциллятора

    Смотрим осциллу

    Где нижняя часть изображения? Отрезался диодом.У диода осталась только верхняя часть, то есть та, что положительная. А так как он отрезал нижнюю часть, значит и отключил питание.

    Находим еще три таких диода и припаиваем диодный мост.

    Цепляем вторичную обмотку транса по схеме диодного моста.

    С двух других концов снимите постоянное пульсирующее напряжение с помощью щупов генератора и посмотрите на генератор.

    Вот теперь все нормально, и питание никуда не пропало :-).

    Чтобы не путаться с диодами, разработчики поместили все четыре диода в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, можно догадаться, где импортный, а где советский))).

    А вот и советский:

    Как вы догадались? 🙂 Например, на советском диодном мосту показаны контакты, на которые нужно подавать переменное напряжение (значком «~»), и контакты, с которых нужно снимать постоянное пульсирующее напряжение («+» и “-“) показаны.

    Проверим импортный диодный мост. Для этого два его контакта цепляем в разрыв, а с двух других контактов снимаем показания на осциллографе.

    А вот осциллограмма:

    Так вот импортный диодный мост чики-связки рабочий.

    В заключение хотелось бы добавить, что диодный мост используется практически во всем радиооборудовании, потребляющем напряжение от сети, будь то простой телевизор или даже зарядное устройство для сотового телефона… Диодный мост проверяется исправностью всех его диодов.

    Во многих электронных устройствах, работающих на переменном токе 220 вольт, установлены диодные мосты. Схема диодного моста на 12 В позволяет эффективно выполнять функцию выпрямления переменного тока. Это связано с тем, что в большинстве устройств для работы используется постоянный ток.

    Как работает диодный мост?

    На входные контакты моста подается переменный ток определенной переменной частоты.На выходах с положительным и отрицательным значением формируется униполярный ток с повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.

    Возникающие пульсации необходимо устранить, иначе электронная схема не сможет нормально работать. Поэтому в схеме присутствуют специальные фильтры, электролитические с большой емкостью.

    Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они включены в общую цепь и расположены в общем корпусе.

    У диодного моста четыре вывода. К двум из них подключено переменное напряжение, а два других являются положительным и отрицательным выходами пульсирующего выпрямленного напряжения.


    Выпрямительный мост в виде диодной сборки имеет значительные технологические преимущества … Таким образом, на печатной плате устанавливается сразу одна монолитная деталь. Во время работы для всех диодов обеспечивается одинаковый тепловой режим. Цена генеральной сборки ниже четырех диодов отдельно.Однако у этой детали есть серьезный недостаток. При выходе из строя хотя бы одного диода необходимо заменить всю сборку. При желании любую общую схему можно заменить четырьмя отдельными частями.

    Применение диодных мостов

    Любые устройства и электроника, питаемые переменным током, имеют схему диодного моста на 12 В. Используется не только в трансформаторах, но и в импульсных выпрямителях. Наиболее характерной импульсной единицей является блок питания компьютера.

    Кроме того, диодные мосты используются в компактных люминесцентных лампах или в энергосберегающих лампах… Они дают очень хороший эффект при использовании в электронных балластах. Они широко используются во всех моделях современных устройств.

    Как сделать диодный мост

    Трехфазный мостовой выпрямитель

    – обзор

    Сравнение основных типов машин

    Приведенные выше замечания о допустимом крутящем моменте синхронной машины имеют особое значение для частотно-регулируемых приводов, где, кроме того, часто требуется быстрое реагирование на скорость. Учитывая такие особенности, сравнение различных типов машин является информативным и кратко представлено на Рисунке 7.24. Электромагнитная способность выдерживать перегрузку по крутящему моменту определяет максимальную скорость ускорения (и замедления). Уникальная особенность постоянного тока. машина его перегрузочная способность; например удвоение тока якоря фактически удвоило бы крутящий момент для любого конкретного значения тока возбуждения. Для переменного тока этого не происходит. машины, потому что угол крутящего момента между статором и ротором м.м.с. не фиксирован, а зависит от нагрузки, и машина может выйти из шага. Таким образом, если требуется кратковременная перегрузка 2 на единицу или даже больше, как в некоторых сталелитейных и тяговых приводах, a.c. Возможно, потребуется уменьшить номинальные параметры машины, чтобы соответствовать этим требованиям, то есть сделать ее больше, чтобы при полной нагрузке она использовалась недостаточно с точки зрения ее продолжительной мощности. Постоянный ток Обычно не требуется снижение номинальных характеристик машины, но при питании от преобразователя SCR коэффициент мощности сети падает как постоянный ток. напряжение снижается, поскольку для этого необходимо увеличить угол задержки зажигания. Эта проблема часто решается последовательным использованием нескольких мостовых выпрямителей.

    На рисунке 7.24a выбран момент перегрузки 2 на единицу до 1 на единицу (базовая) скорость.Это означает, что ток якоря составляет 2 на единицу в этой области постоянного крутящего момента. После достижения полного напряжения дальнейшее увеличение сверх базовой скорости требует ослабления поля, которое при постоянном токе якоря приведет к падению крутящего момента обратно пропорционально уменьшению магнитного потока. Произведение крутящего момента на скорость будет постоянным в этой области постоянной мощности. Свыше 2 на единицу скорости ток якоря, возможно, придется уменьшить из-за ограничений коммутации и стабильности, но в некоторых промышленных приводах использовались диапазоны ослабления поля до 4/1 или более.Контроль скорости путем ослабления поля в своей простоте применения всегда был привлекательной особенностью. Тем не менее, поскольку d.c. машины несут тяжелую нагрузку по техническому обслуживанию, поскольку из-за коммутатора и щеток мощные приводы фактически были заменены переменным током. машины, для которых многие современные схемы управления возникли относительно недавно, вслед за быстрым развитием силовой электроники и микроэлектроники.

    Рисунок 7.24b для индукционной машины основан на работе, проделанной в разделе 4.3 и Примеры 4.11–4.164.114.124.134.144.154.16 и предполагает перегрузочную способность, такую ​​же, как для постоянного тока. машины по 2 на единицу , хотя для нее потребуется около 3 на единицу тока , исходя из тока полной нагрузки (см. Пример 4.13). Предполагается, что частота скольжения регулируется для обеспечения постоянного потока на полюс, что, в свою очередь, происходит с постоянным отношением E / f . Ток должен поддерживаться на уровне перегрузки, необходимой для получения 2 крутящего момента на единицу при запуске.Что касается постоянного тока. машины, дальнейшее увеличение скорости при достижении максимального напряжения требует ослабления магнитного потока, которое происходит при уменьшении частоты при той же сохраняющейся перегрузке по току. Это область постоянной мощности. По мере увеличения частоты крутящий момент для конкретного скольжения становится меньше (уравнение (4.5)), и требуется большее скольжение для получения достаточно большого тока ротора, поэтому кривая регулирования скорости становится более крутой, как показано. С помощью векторного управления можно добиться лучшего управления углом крутящего момента во время переходных процессов, и, поскольку это может быть достигнуто с помощью более простого и дешевого двигателя с короткозамкнутым ротором, d.c. У машины есть еще одно преимущество в том, что она быстро реагирует на требуемый крутящий момент. Однако на приводах средней и малой мощности он все еще может конкурировать по цене.

    Возможности синхронных машин уже обсуждались, а наличие управления полем позволяет работать с более высокими коэффициентами мощности и меньшими токами, чем асинхронные двигатели. На рисунке 7.24c показано близкое сравнение с постоянным током. машина. Тем не менее, для этих кратковременных перегрузок синхронная машина должна быть спроектирована и рассчитана на большее увеличение тока возбуждения и / или якоря, чем для d.c. машина, потому что крутящий момент на ампер ниже, как объяснялось ранее.

    Обычно для силовых электронных приводов, хотя формы сигналов далеки от чистого постоянного тока. или синусоидального переменного тока, характеристики могут быть рассчитаны с разумной точностью путем усреднения гармоник и предположения, что изменение среднего (среднеквадратичного) напряжения является единственным соображением. В методах, использованных в главах 3, 4 и 5 при изменении напряжения и / или частоты, не указывался источник питания, которым сегодня обычно является силовая электронная схема.Хотя пренебрежение гармониками означает пренебрежение дополнительными потерями в машине, проблемами коммутации и наличием пульсаций крутящего момента, это обычно не приводит к значительным ошибкам в расчетах скорости / среднего крутящего момента. Рабочие примеры в этой настоящей главе следуют этой процедуре, хотя для цепи прерывателя были рассчитаны формы кривой тока, а затем вычислены значения среднего крутящего момента.

    Возможно, стоит отметить, что даже при синусоидальном питании при расчетах производительности были сделаны определенные допущения.Например, во время запуска асинхронного двигателя пиковые токи и крутящие моменты могут намного превышать значения, рассчитанные из напряжения, деленного на полное сопротивление эквивалентной цепи. В главе 8 это проиллюстрировано компьютерным моделированием пусковых и синхронизирующих переходных процессов, для которых переменный ток. Машинные уравнения разработаны на основе первых принципов и объяснена организация компьютерной программы.

    Бесщеточные приводы двигателей

    Эти двигатели пытаются электронным образом копировать действие щеток и коммутатора на d.c. машина. Такое расположение гарантирует, что токи якоря-катушки меняются (коммутируются), когда катушки вращаются под влиянием одной полярности поля на противоположную полярность. Таким образом, общая сила и крутящий момент сохраняют одинаковое направление. Коммутатор и щетки в постоянном токе. машина действует как датчик положения вала. Якорь и м.д.с. поля имеют фиксированное угловое смещение δ , иногда называемое углом крутящего момента (φ fa ), которое схематично показано на рисунке 7.25а, где предполагается, что якорь намотан таким образом, что его общая м.м.д. идет в том же направлении, что и ток в щетке.

    Рисунок 7.25. Бесщеточный d.c. двигатель, (а) Нормальный постоянный ток машина; (б) якорь на статоре; (c) схема управления главной цепью; (d) крутящий момент.

    Для полностью бесщеточной машины, для которой поле должно быть постоянным магнитом, катушки якоря намотаны на неподвижный (внешний) элемент (рисунок 7.25b) и соединены через полупроводниковые переключатели, которые активируются из положения вала ( Рисунок 7.25c), так что их токи аналогичным образом меняются местами, чтобы соответствовать полярности полюса вращающегося поля. Таким образом, частота переключения автоматически синхронизируется со скоростью вала, как и в обычном постоянном токе. мотор. При δ, = 90 °, крутящий момент пропорционален F a × F f и, при любом другом угле, при условии синусоидальной m.m.f. распределений крутящий момент пропорционален F a F f sin δ .При движении ротора δ изменяется от 0 ° до 180 °; затем питание переключается, чтобы снова вернуть δ к нулю, и цикл повторяется. Таким образом, крутящий момент будет пульсировать, как однофазная выпрямленная синусоида (рис. 7.25d). Это устройство эквивалентно постоянному току. машина только с двумя сегментами коммутатора и имеет нулевое минимальное значение крутящего момента. Обычно имеется не менее трех выводов от трехфазной обмотки, которые в свою очередь питаются от трехфазного мостового инвертора. Это срабатывает под управлением детектора положения, так что его выходная частота автоматически регулируется скоростью вала.Пульсации крутящего момента теперь будут похожи на форму выходного сигнала трехфазного мостового выпрямителя; поскольку нулевой крутящий момент отсутствует, пусковой крутящий момент доступен всегда. Профилирование поверхности полюса магнита дополнительно улучшает плавность крутящего момента в течение полного цикла. Моменты переключения можно легко изменить, чтобы получить эффекты, подобные смещению оси кисти, которое иногда в умеренной степени используется на обычном постоянном токе. машины. См. Пример 3.1. Характеристика скорости / нагрузки бесщеточной машины аналогична a d.c. машина с фиксированным возбуждением, то есть скорость немного падает с увеличением крутящего момента.

    Бесщеточный постоянный ток приводы обычно используются для приложений с позиционным управлением в области промышленного управления. Поскольку продолжительность цикла зависит от движения ротора, ШИМ обычно не применяется к этим приводам. Поток ротора создается постоянными магнитами на роторе, обеспечивая трапециевидную МПС. Вариант с фасонными магнитами для создания синусоидальной МПД. известен как «бесщеточный переменный ток».Бесщеточная машина обычно питается от трехфазного инвертора, и регенерация снова становится простой, если предоставляется подходящая схема силового электронного преобразователя. Хотя значительные исследовательские усилия были затрачены на повышение скорости отклика или устранение необходимости в дорогостоящих датчиках на бесщеточных датчиках постоянного тока. В большинстве промышленных контроллеров используются простые датчики вала на эффекте Холла и фиксированные углы проводимости с переменным постоянным током. напряжение связи. Коммерческие единицы часто включают в себя контроллеры PI или PID (стр.197).

    Приводы с реактивным реактивным электродвигателем

    Еще одним вариантом в семействе синхронных машин является реактивный электродвигатель, как описано в разделе 5.8. Импульсные реактивные двигатели изменяют напряжение питания статора в зависимости от положения ротора так же, как и в бесщеточных машинах. Характеристики аналогичны характеристикам серии постоянного тока. двигатель или шаговый двигатель (рисунок 5.5), если для срабатывания силовых электронных переключателей статора используется критерий постоянного угла. В некоторых случаях можно использовать меньше переключателей, чем в инверторе.Импульсный реактивный привод чаще всего используется в устройствах с регулируемой скоростью средней мощности. Наряду с другими бесщеточными машинами она также является конкурентом на предстоящем прибыльном рынке приводов для электрических и гибридных дорожных транспортных средств. Ранее это была провинция округа Колумбия. машина, которая в настоящее время сталкивается с проблемой асинхронных двигателей. (13)

    Заключение

    Таким образом, основной постоянный ток Машина обеспечивает наилучшие характеристики разгона и простейшие характеристики управления, а базовая индукционная машина – самые низкие.Это отражает физическую сложность одного по отношению к другому; индукционная машина с сепаратором ротора дешевле, прочнее и практически не требует технического обслуживания. Постоянный ток Машина имеет пределы коммутации и, в случае синхронных и асинхронных двигателей с контактным кольцом, требует обслуживания щеточного оборудования. С добавлением силового электронного преобразователя (ов) и микроэлектронных контроллеров можно управлять любой машиной для обеспечения, при определенной стоимости, аналогичных характеристик. Достижения в области мощных полупроводников с быстрой коммутацией, таких как IGBT, позволили улучшить ШИМ и другие методы формирования волны для снижения гармонических потерь до низких уровней.Хотя d.c. машины остаются популярными для малых прецизионных приводов, некоторые производители прекратили производство постоянного тока. диски. Асинхронный двигатель с векторным управлением значительно увеличил свою долю на рынке и тяговые приводы, долгое время являвшиеся традиционным рынком для больших объемов постоянного тока. серийные двигатели, в настоящее время в основном поставляются с трехфазными асинхронными двигателями; асинхронный двигатель, запускающийся с низкой частотой статора, позволяет избежать перегорания коммутатора или чрезмерного номинала отдельного полупроводника, связанного с остановкой d.c. или бесщеточный постоянный ток мотор соответственно. Хотя наличие сложного микроэлектронного контроллера увеличивает стоимость, можно стандартизировать преобразователь и настроить привод для конкретной машины или набора характеристик путем ввода пользователем в программное обеспечение дополнительных контуров контроля состояния или управления без затрат на индивидуально разработанная система.

    adpcosmetics.com Shamofeng Регулятор напряжения / Выпрямитель 12 В для МОДЕЛЕЙ Harley Davidson Dyna 2006 2007, 74631-06 Электрические детали

    adpcosmetics.com shamofeng регулятор напряжения / выпрямитель 12-вольт для моделей Harley Davidson Dyna 2006 2007 2007, электрические детали 74631-06

    * Регулятор напряжения, гарантия 1 год, 38A, Harley-Davidson Dyna Super Glide Screamin Eagle FXDSE. 12 Вольт, 87 унций, – Harley-Davidson Dyna Street Bob EFI FXDBI, Need, 2 разъема, 8, – Harley-Davidson Dyna Super Glide EFI FXDI. для рассеивания избыточного напряжения, предотвращения чрезмерной зарядки аккумулятора, размер упаковки: прибл., провода, прямая замена оригинального устройства. Регулятор трехфазной системы для Harley Davidson.74631-06: Автомобильная промышленность, OEM Repl, если вы не уверены в том, что этот товар подходит для вашего автомобиля, напишите нам или задайте вопрос перед покупкой, и мы сделаем все возможное, чтобы вы получили все, что вам нужно, – Harley-Davidson Dyna Super Glide Пользовательский EFI FXDCI. – Harley-Davidson Dyna Low Rider FXDL. Вес упаковки: прибл., 9 дюймов, *, – Harley-Davidson Dyna Super Glide Custom FXDC. Особенности :, – Harley-Davidson Dyna Wide Glide FXDWG, # 74631-06, новая запчасть высокого качества. Список пакетов:, Harley-Davidson Dyna Super Glide FXD, 74631-06: Регуляторы – ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при подходящих покупках, – Harley-Davidson Dyna Wide Glide EFI FXDWGI, напишите нам или задайте вопрос ниже перед покупкой, если вы не уверены в изделие, подходящее для вашего автомобиля, Технические характеристики :, – Harley-Davidson Dyna Street Bob FXDB.- Harley-Davidson Dyna Low Rider EFI FXDLI, Купить регулятор напряжения / выпрямитель shamofeng, 12 В для 2006 2007 МОДЕЛИ Harley Davidson Dyna, Need Help, Harley-Davidson Dyna Super Glide th Anniversary FXD, * 6, подходящая конструкция радиатора для лучшего охлаждения . Shamofeng регулятор напряжения / выпрямитель 12 вольт для моделей Harley Davidson Dyna 2006 2007. Эффективно улучшенные теплоотвод и возможности зарядки.






    Перейти к содержанию ГЛАВНАЯОПОРТЕ2021-06-29T17: 59: 43 + 00: 00

    Shamofeng регулятор напряжения / выпрямитель 12-вольт для моделей Harley Davidson Dyna 2006 2007, 74631-06

    shamofeng регулятор напряжения / выпрямитель 12-вольт для моделей Harley Davidson Dyna 2006 2007, 74631-06

    Регулятор / выпрямитель напряжения shamofeng

    , 12 В для 2006 2007 МОДЕЛИ Harley Davidson Dyna, 74631-06, Купите регулятор напряжения / выпрямитель shamofeng, 12 В для 2006 2007 МОДЕЛИ Harley Davidson Dyna, 74631-06: Регуляторы – ✓ Возможна БЕСПЛАТНАЯ ДОСТАВКА при соответствующих критериях Покупки, Абсолютно Соотношение цены и стоимости, Полная стоимость меньше, Гарантия лучшего качества и Быстрая доставка! МОДЕЛИ, 74631-06 Shamofeng регулятор напряжения / выпрямитель 12-вольт для 2006 2007 Harley Davidson Dyna, shamofeng регулятор напряжения / выпрямитель 12-вольт для 2006 2007 Harley Davidson Dyna МОДЕЛИ, 74631-06.

    Вопрос 4. (a) Источник питания двухполупериодного мостового выпрямителя питается от вторичной обмотки …

  • Конденсатор подключен к вторичной обмотке (1). Источник питания полноволнового мостового выпрямителя питается от вторичной обмотки трансформатора, пиковое вторичное напряжение которого составляет 22 В. Первичная трансформация …

    Конденсатор подключен к вторичной (1) Источник питания полноволнового мостового выпрямителя питается от вторичной обмотки трансформатора с пиковым вторичным напряжением 22 В.Первичная обмотка трансформатора подключена к источнику питания 50 Гц, 230 В. Используется фильтрующий конденсатор емкостью 2700 мкФ. Из источника питания потребляется ток 1,5 А (i) Нарисуйте схематическую диаграмму установки (ii) Рассчитайте среднее выходное напряжение постоянного тока (ii) Предположим, что каждый диод проводит одну двенадцатую …

  • 1. Конструкция источника питания (переменного тока в постоянный). [10 баллов] Разработайте схему двухполупериодного мостового выпрямителя, …

    1. Конструкция источника питания (переменного тока в постоянный). [10 баллов] Разработайте схему двухполупериодного мостового выпрямителя для подачи 10 В постоянного тока с напряжением менее 0.Пульсации 1 В (от пика до пика) при потреблении нагрузки до 10 мА. (a) Выберите подходящее входное напряжение переменного тока от вторичной обмотки трансформатора с учетом обычных падений напряжения для кремниевых диодов. (b) Определите правильное значение конденсатора, чтобы обеспечить указанную пульсацию в ваших расчетах. (c) Какое значение предохранителя следует выбрать для первичной обмотки …

  • ВОПРОС 5 (15 баллов) а. У вас есть источник питания – двухполупериодный выпрямитель с конденсаторным фильтром. Он работает …

    ВОПРОС 5 (15 баллов) а.У вас есть источник питания – двухполупериодный выпрямитель с конденсаторным фильтром. Он работает от сети и обеспечивает на выходе Voc-20 В с пульсацией 20%, когда ток нагрузки равен 2 А. Рассчитайте максимальное и минимальное значения формы выходного сигнала этого источника питания. б. Теперь вы создадите последовательный регулятор напряжения между источником питания, описанным в части (а), и электронным устройством, работающим от 12 В постоянного тока …

  • ВОПРОС 5 (15 баллов) а. У вас есть источник питания, который представляет собой двухполупериодный выпрямитель с конденсаторным фильтром. Он работает от f…

    ВОПРОС 5 (15 баллов) а. У вас есть источник питания, который представляет собой двухполупериодный выпрямитель с конденсаторным фильтром. Он работает от сети и обеспечивает выходное напряжение Voc-: 20 В с пульсацией 20%, когда ток нагрузки составляет 2 А. Рассчитайте максимальное и минимальное значения формы выходного сигнала этого источника питания. б. Теперь вы создадите последовательный регулятор напряжения между источником питания, описанным в части (а), и электронным устройством, работающим при 12 …

  • Разработайте схему ПОЛНОГО ВОЛНОВОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ, которая: Возьмите 120 вольт переменного тока, 60 Гц, синусоидальную форму волны…

    Разработайте схему ПОЛНОГО ВОЛНОВОГО МОСТОВОГО ВЫПРЯМИТЕЛЯ, которая: Возьмите 120 вольт переменного тока, 60 Гц, синусоидальную форму волны и преобразуйте до «регулируемого» значения постоянного тока давая 12 вольт +, – 1 вольт на выходе 2000 Ом нагрузочный резистор с не более 2% пульсации напряжения. Вы можете предположить: а. Идеальный силовой трансформатор, как обсуждалось в классе. б. Для ручных вычислений вы должны предположить, что диод имеет вид Рисунок 4.8 на стр.185. c. Конденсатор фильтра, размер которого соответствует уравнению из учебника …

  • D * 4.80 Для создания источника питания необходимо использовать выпрямитель пикового напряжения …

    D * 4.80 Требуется использовать пиковый выпрямитель для создания источника питания, обеспечивающего среднее выходное напряжение 12 В, при котором допускается пульсация не более ± 1 В. Выпрямитель питает нагрузку 200 2. Напряжение на выпрямитель подается от сети (120 В действующее значение, 60 Гц) через трансформатор. Имеющиеся диоды имеют падение напряжения 0,7 В. Если разработчик выбрал однополупериодную схему: (a) Укажите среднеквадратичное значение напряжения…

  • 3. Рассмотрим схему двухполупериодного мостового выпрямителя, показанную ниже. Двухполупериодный мост изготовлен из кремния …

    3. Рассмотрим схему двухполупериодного мостового выпрямителя, показанную ниже. Двухполупериодный мост выполнен на кремниевых диодах. 120 В 15 В 120 В (мс) n 60 Гц 752 В выход a. Найдите максимальное значение VoUT и номинальное напряжение конденсатора с учетом запаса прочности 50%. б. Выберите емкость конденсатора фильтра для размаха пульсаций 1 В и определите соответствующий пиковый ток диода.Какая частота пульсаций напряжения? c. Теперь предположим, что фильтр …

  • 3. Для стабилизированного источника питания, показанного на рисунке 5-3, который представляет собой двухполупериодный мостовой выпрямитель …

    3. Для стабилизированного источника питания, показанного на рис. 5-3, который представляет собой двухполупериодный мостовой выпрямитель, содержащий ter в сочетании с стабилизатором напряжения на стабилитроне, определите напряжение нагрузки VI, ток нагрузки Ir, ток источника Is, ток стабилитрона Iz и пульсации напряжения на входе и выходе регулятора и r (pp) y соответственно, а также частота пульсаций fr a fil- VL Ir.Is Iz =. (d-4) 1a Ur (p-P) Is V ‘1N4002GP Vout = VL + Iz IL 100 V2 120 В …

  • На рисунке 2 показана схема источника питания, содержащая трансформатор, соединяющий напряжение сети на …

    На рисунке 2 показана схема источника питания, содержащая трансформатор, соединяющий сетевое напряжение слева с двухполупериодной схемой выпрямителя справа. Предполагается, что напряжение сети (Vвыход) составляет 230 В RMS, частота сети (fin) составляет 50 Гц, трансформатор T1 имеет соотношение 9: 1, сопротивление нагрузки (RL) составляет 1 кОм.Емкость конденсатора (С) составляет 470 мкФ. а. Рассчитайте следующее: 1. Среднеквадратичное напряжение переменного тока на выходе трансформатора …

  • 4.70 Двухполупериодная мостово-выпрямительная схема с нагрузкой 500-22 работает от сети 120 В (среднеквадратичное значение) 60 Гц …

    4.70 Двухполупериодная мостово-выпрямительная схема с нагрузкой 500-22 работает от бытовой электросети 120 В (действующее значение) 60 Гц через понижающий трансформатор 6 к 1, имеющий единственную вторичную обмотку. В нем используются четыре диода, каждый из которых можно смоделировать так, чтобы он имел 0.Падение 7 В при любом токе. Какое пиковое значение выпрямленного напряжения на нагрузке? Какую долю цикла проводит каждый диод? Какое среднее напряжение на нагрузке? Какой средний ток …

  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован.