Содержание

Как рассчитать силу тока, рассчитать мощность, ампераж

1 Особенности конструкции

Основа конструкции любого предохранителя – заменяемый патрон с плавким элементом, который устанавливают на опорных изоляторах. Для механического и электрического соединения используют специальные контакты, выполненные из различных материалов.

Патрон представляет собой цилиндр из специального фарфора, устойчивого к кратковременному воздействию высоких температур. На торцах цилиндра устанавливают металлические колпачки, соединенные между собой плавкой вставкой, изготовленной из электротехнической меди или нихрома в зависимости от типа модели.

Внутреннее пространство корпуса патрона заполняют кварцевым песком высокой степени очистки, размер фракций и химический состав которого строго регламентированы нормативными документами. Его функция заключается в гашении электрической дуги, возникающей при срабатывании предохранителя.

Конструкция аппарата может включать в себя ударное устройство и указатель срабатывания, который выполняет функцию индикатора.

2 Применение

Высоковольтные предохранители используют на предприятиях энергетики, металлургии, машиностроения, горнодобывающих производствах, объектах атомных электростанций, в железнодорожном транспорте и жилищно-коммунальных хозяйствах. Подобные коммутационные аппараты устанавливают:

  • на комплектных трансформаторных подстанциях;
  • непосредственно на строительных конструкциях;
  • в главные распределительные щиты;
  • сборные камеры одностороннего обслуживания;
  • конденсаторные установки.

3 Основные характеристики

К основным характеристикам предохранителей в электроустановках выше 1000 В относят:

  • номинальную силу тока;
  • номинальный ток отключения;
  • номинальный ток основания;
  • номинальное напряжение;
  • габаритные размеры;
  • климатическое исполнение.

Для упрощения идентификации изделия производители наносят на корпус маркировку, выполненную методом тампопечати.

На маркетплейсе Getenergo можно купить предохранители, изготовленные известными производителями электротехнической продукции. Удачного выбора!

Расчета тока по мощности: формула, онлайн расчет

Чтобы уберечь себя от проблем с электропроводкой в процессе эксплуатации необходимо изначально правильно рассчитать и выбрать сечение кабеля ибо от этого будет зависеть и пожаробезопасность здания. Неправильно выбранное сечение кабеля может привести к короткому замыканию и возгоранию электропроводки, а с ней и всего помещения и здания. Выбор сечения зависит от многих параметров, но, пожалуй, самым главным является сила тока.

Формула расчета мощности электрического тока

Если в уже действующей цепи силу тока можно измерить специальными приборами (амперметром), то как быть при проектировании? Ведь мы не можем измерить силу тока в цепи, которой еще нет. В этом случае пользуются расчетным методом.
При известных параметрах мощности, напряжения в сети и характера нагрузки силу тока можно посчитать используя формулу:

Формула для однофазной сети I=P/(U×cosφ)

Формула для трехфазной сети I=P/(1,73×U×cosφ)

  • P — электрическая мощность нагрузки, Вт;
  • U — фактическое напряжение в сети, В;
  • cosφ — коэффициент мощности.

Мощность определяется, исходя из суммарной мощности всех приборов, планируемых в эксплуатации, подключенных к данной сети, это, как правило, паспортные данные приборов или приблизительные значения для аналогичных приборов. Рассчитывается мощность на этапе планирования электропроводки в квартире.

Коэффициент мощности зависит от характера загрузки, например, для нагревательных приборов, ламп освещения он приближен к 1, но во всякой активной нагрузке есть реактивная составляющая, благодаря чему коэффициент мощности принимают равным 0,95. Это всегда нужно учитывать в разных видах электропроводки.

В мощных приборах и оборудовании (электродвигатели, сварочные аппараты и прочее) доля реактивной нагрузки выше, поэтому для подобных приборов коэффициент мощности принимают 0,8.

Напряжение в сети принимают 220 вольт для однофазного тока и 380 вольт для трехфазного, но для большей точности, если есть такая возможность, рекомендуется использовать для расчета фактические значения напряжения, измеренные приборами.

Форма для расчета мощности тока

Как рассчитать ток зная мощность трехфазного двигателя. Какой ток потребляет двигатель из сети при пуске и работе

Идея этого поста родилась после многочисленных доставалок "сильно грамотных" инженеров на тему о том, что на двигатель мощностью, ну например 15 квт надо ставить автомат не ниже 50А, ибо номинал тока 40А + запас на пусковые токи, бла блаблаблабла...Это типичная ошибка тех, кто пытается считать мощность трехфазных асинхронников по стандартной формуле мощности I=P\U, при этом в расчет не берется ни то что двигатель трехфазный, ни то что у него еще есть непонятные почти никому Косинус Фи и КПД.

Кстати при установке новых двигателей ничего и считать не надо, как правило номинальный ток для обоих режимов (звезда 380 и треугольник 220) указан на шильдике, вместе со всеми остальными параметрами.

Так какже, правильно расчитать, грубо или поточнее мощность асинхронного двигателя в стандартной ситуации?
Для начала определимся с это самой "стандартной ситуацией" и с чем ее едят.
Стандартной я называю ситуацию, когда двигатель расчитанный на 380\220 звезда\треугольник, подключается на стандартные 380 звездой, на все три фазы. В промышленности это встречается наиболее часто, и также часто вызывает вопросы по поводу того, какого номинала автоматы ставить, ибо многие, знают стандартную формулу мощности I=P\U и почемуто, видимо от большой грамотности или большого ума, от которого горе по Грибоедову, начинают для трехфазной нагрузки применять ее.

А теперь раскрываю секрет, страааашный секрет....
Для расчета защиты маломощных двигателей на 380В, мощностью до 30 квт вполне достаточно умножить мощность ровно на 2, то есть P*2=~In , автомат все равно выбирается ближайший по номиналу в большую сторону, то есть 63А для 30 квт двигателя, имеющего на валу нагрузкой ну скажем турбину вентилятора типа Циклон. Это страаашный, нигде в учебниках не озвученный секретный экспресс-метод грубого расчета силы тока двигателей на 380В...Почему так? Очень просто при U=380В на один КВТ мощности приходится примерно сила тока в 2 Ампера. (Да меня щас побьют теоретики, которые помнят про КПД и Косинус ФИ...Помолчите Господа, пока помолчите, я же сказал, для МАЛОМОЩНЫХ двигателей до 30 квт, а для низких мощностей, зная модельный ряд наших автоматов, эти 2 значения можно и не учитывать, особенно если нагрузка на вал минимальная)

А теперь представим типовой двигатель* со следующими параметрами:
P=30 квт
U=380 В
сила тока на шильдике стерлась...
cos φ = 0,85
КПД=0,9

Как найти его силу тока? Если считать так, как советуют и сами считают упрямые "очень умные" горе-инженера, особенно любящие озадачивать этим вопросом на собеседованиях, то получаем цифру в 78,9А, после чего горе-инженера начинают лихорадочно вспоминать про пусковые токи, задумчиво хмурить брови и морщить лбы, а затем не стесняясь требуют поставить автомат минимум на 100А, так как ближайший по номиналу 80А будет выбивать при малейшей попытке запуска офигенными пусковыми токами...И переспорить их очень тяжело, так как все нижеследующее вызывает у умных дяденек бурю эмоций, недержание мочи и кала, разрыв шаблона, и погружение в глубокий транс с причитаниями и маханием корочками тех универов где они учились считать и жить..

Более полная формула, рекомендованная к применению выглядит несколько иначе.
Мощность в квт переводится в ватты, для чего 30*1000=30000 вт
Затем ватты делим на напряжение, затем делим на корень квадратный из 3(1,73), (у нас же ТРИ ФАЗЫ) и получаем примерную силу тока, которую нужно уточнить, поделив дополнительно на cos φ(коэффициент мощности, ибо всякая индуктивная нагрузка имеет и реактивную мощность Q) и затем, уточнить еще раз, поделив при желании на КПД, итак:

30000вт\380в\1,73=45,63 А\0,85=53,6А

Уточняем расчет: 53,6А\0,9 = 59,65А (Кстати программа электрик, считающая по похожей формуле, выдает более точные данные 59,584 А, то есть немного меньше чем мой проверенный временем расчет...то есть расчет довольно точен, а расхождения в десятые и сотые доли ампера в нашем случае никого особо не волнуют, почему - написано ниже)

59,65 Ампер, - почти полное совпадение с первым грубым расчетом, расхождение составляет всего лишь -0,35А, что для выбора автомата защиты не играет никакой роли в данном случае. Ну и какой же автомат выбрать??
При условии что нагрузка на валу не велика, скажем какая нибудь турбина вентилятора, можно смело ставить ВА 47-29 на 63А фирмы ИЭК, категории С..наиболее часто встречающиеся.
На вопли о пусковых токах могу смело ответить, что 63А пакетник категории В,С,D выдерживает по току превышение 1,13 раза дольше часа и 1,45 раза меньше часа, то есть если на автомате написано 63А, то это не значит, что при броске до 70А его сразу выбьет...Нифига подобного, нагрузку в 113% (сила тока равна 71,19А) он будет держать минимум час, особенно это касается дорогих автоматов фирм Легранд\АВВ, и даже при силе тока в 145% номинала = 91,35А он гарантированно продержит несколько минут, а для раскрута асинхронника и выхода на номинальный режим достаточно нескольких секунд, как правило от 5 до 20 секунд. За это время тепловой расцепитель автомата тупо не успеет разогрется и отключить нагрузку.

Конечно, умные дяди мне сейчас напомнят, что у автомата есть еще электромагнитный расцепитель, и уж он то, ну уж он то точно отрубит при превышении 63А несчастный двигатель...Хахаха, хрен вам и горе умное...

Буковки B,C,D, и некоторые другие в наименовании автомата как раз характеризуют кратность уставки электромагнитного расцепителя, и равна она

В - 3...5
С - 5...10
D - по ГОСТ Р - 10...50, большинство производителей заявляет диапазон 10...20.

Есть более редко встречающиеся
G - 6,4...9,6 (КЭАЗ ВМ40)
K - 8...14
L - 3,2...4,8 (КЭАЗ ВМ40)
Z - 2...3

То есть автомат категории С на 63А гарантированно отключится электромагнитным расцепителем только в диапазоне 315-630А и выше, чего при запуске исправного асинхронника на 30 квт никогда все равно не будет.
Второй законный вопрос- какой провод положить на наш двигатель. Ответ- кабель 4х16 миллиметров квадратных, с лихвой хватит, при длине до 50 метров, при большей длине лучше 25мм выбирать, ибо потери.

Все цифры проверены многократно, лично мной, и экспериментально. Проверены и по выбранным автоматам и по многократным замерам реальной силы тока токовыми клещами.

*-Единственное примечание и уточнение: У старых двигателей советского производства, вновь вводимых в эксплуатацию могут быть меньшие значения косинуса фи и КПД, тогда сила тока может быть чуть выше чем значение грубого расчета. Просто выбирается следующий по номиналу автомат на 80А. Не ошибётесь!

Второе примечание:
Для грубого расчета силы тока двигателя подключенного треугольником к сети 220 через конденсатор, можно взять мощность двигателя в Киловаттах, ну например теже 30 КВТ и умножить примерно на 3,9 и так: 30*3,9=117А
А для расчета конденсатора можно воспользоваться сайтом

В паспорте электрического двигателя указан ток при номинальной нагрузке на валу. Если, например, указано 13,8/8 А, то это означает, что при включении двигателя в сеть 220 В и при номинальной нагрузке ток, потребляемый из сети, будет равен 13,8 А. При включении в сеть 380 В из сети будет потребляться ток 8 А, то есть справедливо равенство мощностей: √ 3 х 380 х 8 = √ 3 х 220 х 13,8.

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток . При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле:

I н = P н/(√3U н х η х сosφ) ,

Рис. 1. Паспорт электрического двигателя. Номинальная мощность 1,5 кВ, номинальный ток при напряжении 380 В - 3,4 А.

Если не известны к.п.д. и коэффициент мощности двигателя, например, при отсутствии на двигателе паспорта-таблички, то номинальный его ток с небольшой погрешностью можно определить по соотношению "два ампера на киловатт", т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им ток будет примерно равен 20 А.

Для указанного на рисунке двигателя это соотношение тоже выполняется (3,4 А ≈ 2 х 1,5). Более точные значения токов при использовании данного соотношения получаются при мощностях двигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется незначительный ток (ток холостого хода). При увеличении нагрузки увеличивается и потребляемый ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к тому, что увеличенный ток вызывает перегрей обмоток двигателя, и возникает опасность обугливания изоляции (сгорания электродвигателя).

В момент пуска из сети электрическим двигателем потребляется так называемый пусковой ток , который может быть в 3 - 8 раз больше номинального. Характер изменения тока представлен на графике (рис. 2, а).

Рис. 2. Характер изменения тока, потребляемого двигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Точное значение пускового тока для каждого конкретного двигателя можно определить зная значение кратности пускового тока - I пуск/I ном. Кратность пускового тока - одна из технических характеристик двигателя, которую можно найти в каталогах. Пусковой ток определяется по следующей формуле: I пуск = I н х (I пуск/I ном). Например, при номинальном токе двигателя 20 А и кратности пускового тока - 6, пусковой ток равен 20 х 6 = 120 А.

Знание реальной величины пускового тока нужно для выбора плавких предохранителей, проверке срабатывания электромагнитных расцепителей во время пуска двигателя при выборе автоматических выключателей и для определения величины снижения напряжения в сети при пуске.

Большой пусковой ток, на который сеть обычно не рассчитана, вызывает значительные снижения напряжения в сети (рис. 2, б).

Если принять сопротивление проводов, идущих от источника до двигателя, равным 0,5 Ом, номинальный ток I н=15 А, а пусковой ток равным пятикратному от номинального, то потери напряжения в проводах в момент пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На зажимах двигателя, а также и на зажимах рядом работающих электродвигателей будет 220 - 75 = 145 В. Такое снижение напряжения может вызвать торможение работающих двигателей, что повлечет за собой еще большее увеличение тока в сети и перегорание предохранителей.

В электрических лампах в моменты пуска двигателей уменьшается накал (лампы «мигают»). Поэтому при пуске электродвигателей стремятся уменьшить пусковые токи.

Для уменьшения пускового тока может использоваться схема пуска двигателя с переключением обмоток статора со звезды на треугольник. При этом фазное напряжение уменьшится в √ З раз и соответственно ограничивается пусковой ток. После достижения ротором некоторой скорости обмотки статора переключаются в схему треугольника и напряжение ни них становится равным номинальному. Переключение обычно производится автоматически с использованием реле времени или тока.

Рис. 3. Схема пуска электрического двигателя с переключением обмоток статора со звезды на треугольник

Сумский государственный университет

Расчетно-практическая

работа №1

"Расчет трехфазного асинхронного двигателя

переменного тока"

по предмету "Электротехника"

Группа МВ-81

Вариант 162

Преподаватель Пузько И.Д.

По данным 3-х фазного асинхронного двигателя и заданной схемой соединения обмоток статора определить:

1. Линейное напряжение питающей трехфазной цепи U л и синхронную частоту вращения поля статора n 0 , номинальную n Н и критическую n КР частоту вращения ротора, номинальную мощность P 1 ном, потребляемую двигателем из сети, номинальный и пусковой токи двигателя I НОМ и I ПУС, номинальный и максимальный вращающий моменты двигателя М НОМ и М МАХ.

2. Построить кривую зависимости M(S) при U Л = const и определить

кратность пускового момента K п = М пуск /М ном.

3. Построить механическую характеристику n 2 =f(M) при U C =const и определить диапазон частот вращения ротора, при которых возмодна устойчивая работа двигателя.

4. Построить характеристики M(S) и n 2 =f(M) при U 1 =0.9U C =const.

Исходные данные:

Схема соеди-нения

l М =М МАХ /

m 1 =I ПУСК /I НОМ

голь-ником

Расчетная часть.

1. При соединении триугольником линейное напряжение составляет 220 В.

2. Синхронная частота вращения поля статора:

3. Номинальная частота вращения ротора:

4. Критическое скольжение:

5. Критическая частота вращения ротора:

6. Номинальная мощность, потребляемая из сети:

7. Номинальный ток двигателя:

9. Пусковой ток двигателя:

10. Номинальный вращательный момент:

11. Маскимальный вращательный момент:

12. Момент при пуске:


13. Кратность пускового момента:


важные моменты проектирования. Методика расчета печи с формулами и допусками

Одним из наиболее значимых элементов электропечи является ее нагреватель. Именно он напрямую влияет на мощность, рабочую температуру и общие функциональные характеристики оборудования. Абсолютно неважно, о каких типах приборов идет речь — трубчатых электропечах, шахтных или муфельных моделях. Для всех применимы базовые правила расчета.

Как определить мощность и силу тока печи

Начинается расчет печи с ее будущей мощности. Также определяется сила тока, которая будет проходить по телу нагревателя. Для этого можно использовать базовые эмпирические нормы соотношения размера камеры прибора к ее мощности.

Если объем насчитывает от 1 до 5 литров, желательно, чтобы мощность оборудования была в диапазоне от 300 до 500 Вт на литр. Когда камера планируется для промышленного использования, и ее объем достигает 100 литров и более, расчет муфельной печи должен учитывать примерно 50-60 Вт на каждый из них.

Детальная таблица рекомендуемых норм мощности для различных объемов камер

Провести нужные вычисления совсем несложно. Сам объем легко рассчитывается исходя из данных о высоте, ширине и глубине камеры, а потом умножается на нужный показатель. К примеру, печь на 5 литров и нагрузкой 300 Вт/л будет иметь общую мощность 1500 Вт.

Определить силу тока также достаточно просто. Базовое напряжение сети известно, и составляет 220 В.

После этого производится расчет печей, формула которого имеет следующий вид:

I=P/U

P – предварительно рассчитанная мощность, в нашем случае 1500 Вт.

U – напряжение сети.

Таким образом, имеем: 1500/220 = 6.8 А.

Как рассчитать наименьшее сечение нагревательного элемента электропечи

Расчет электрических печей должен обязательно проводиться с учетом особенностей самого нагревательного элемента. Ведь если через него пройдет сила тока, больше чем он может вынести – выход из строя неизбежен. Планируя конструкцию муфельной или шахтной электропечи, обязательно учитывайте будущий диаметр нагревателя.

Рассчитывать его можно, зная силу тока и предполагаемую рабочую температуру. Рекомендуемые нормы указаны на фото ниже.

Таблица определения параметров нагревателя электропечи. Узнаем нужный диаметр и сечение

Если в таблице отсутствует точное значение, которое совпадает с Вашим расчетом, это не критично. Когда наша сила тока будет равна 6.8 А, стоит брать за основу показатель 7.7, то есть, ближайший больший. Минимальный диаметр и сечение обеспечат бесперебойный и безопасный процесс обжига.

Можно даже заложить в расчет нагревательной печи более мощный элемент для накала. Уменьшать параметры категорически нельзя, поскольку тогда он очень быстро перегорит

Как рассчитать длину проволоки нагревателя для создания спирали

Методика расчета печи также подразумевает определение оптимальной длины проволоки для основы нагревательного элемента. Это очень важно, ведь именно от нее зависит создание необходимого резистивного нагрева.

Для того чтобы провести точный расчет закалочной печи нам потребуются такие данные как:

  • Напряжение сети.
  • Сила тока.
  • Площадь сечения нагревателя.
  • Удельное сопротивление проводника.

Последний показатель можно найти на фото представленном ниже.

Величина удельного сопротивления, в зависимости от диаметра и материала нагревателя

Далее расчет термических печей идет по формуле:

L= (U / I) x S/ p

В нашем случае, если использовать для нагревателя нихромовый сплав Х20Н80-Н, длина проволоки будет составлять: (220/6.8) х 0.785/1.11. То есть, приблизительно 23 метра.

Как проверить правильность поверхностной мощности нагревательного элемента

Если Вы планируете создать долговечные трубчатые печи, расчет обязательно должен включать и пункт проверки поверхностной мощности нагревательного элемента с допустимым значением. Это поможет вовремя обнаружить возможный выход из строя и определить грани возможностей данной составляющей оборудования.

Поверхностная удельная мощность указывает сколько тепловой энергии нужно получать с каждой единицы площади нагревателя

Методика расчета трубчатых печей вначале подразумевает поиск допустимого значения. Его можно получить по формуле:

βдоп = βэф х α

βдоп – непосредственно допустимая мощность.

βэф – мощность, которая зависит от диапазона рабочих температур.

α – коэффициент эффективности излучения тепла нагревательным элементом.

В расчет печи для обжига включаем показатель βэф и α из таблиц, представленных на фото ниже.

Таблица для расчета эффективной мощности на основе температуры заготовок и самого нагревателя

Коэффициент α также подбирается из табличных данных. Он напрямую зависит от местоположения спирали нагревателя внутри конструкции печи.

Значения поправочного коэффициента – важный аспект, который стоит учитывать, выполняя расчет шахтных печей

Впоследствии эти 2 показателя умножаются между собой и дают нам граничное значение допустимой мощности.

Это станет последним этапом проектирования оборудования.

Как видите, расчет нагревательных элементов – дело достаточно непростое. Поэтому, проще и лучше заказать электропечи для обжига и других видов термообработки от надежного производителя. Именно таким является литовский изготовитель SNOL, продукция которого представлена на нашем сайте. Не откладывайте и скорее выбирайте нужную модель!

Расчет параметров для генератора - статьи компании БоромирТрэйд

Расчет параметров для генератора

Выбирая бензиновый генератор 220 Вольт, вам придется рассчитать мощность, которая потребуется для стабильной работы самого оборудования и всех подключаемых к нему приборов.

Большинство представленных на рынке агрегатов относятся к классу бытовых. Оборудование отличается невысокой стоимостью и подходит для нечастного использования.

Но в погоне за объемом продаж производители бытовых бензогенераторов часто завышают технические параметры оборудования. Под прицел попадает мощность. Чтобы не ошибиться с выбором этого параметра, необходимо знать, на сколько Ампер установлен автомат защитного подключения. Зная это значение, вы легко рассчитаете реальную мощность агрегата.

Формула расчета:

  • Сила тока установленного автомата защитного подключения (Амперы) х Напряжение выдаваемого тока (Вольты) = Номинальная мощность генератора (Ватты).

Пример:

  • Сила тока защитного автомата 14 А. Напряжение выдаваемого тока 220 В. Необходимо 14А х 220В = 3080 Ватт. Номинальная мощность генератора равна 3,08 кВт.

Перед покупкой бензогенератора обязательно уточните у продавца силу тока установленного защитного автомата.

Расчет дизельгенератора

Выбирая дизельные генераторы на 380 Вольт, помните, что полная мощность, которую потребляет оборудование, – это кВА. Активная мощность, которую агрегат затрачивает на совершение полезной работы, – это кВт.

Для нахождения суммарной мощности всех энергопотребителей складывают полные мощности оборудования, а не активные.

Расчет можно произвести по номиналу ввода.

Пример:

  • В доме / помещении установлен трехфазный вводный автомат на 35 А. Мощность рассчитывается по формуле (3 х 20А х 380В = 22800 = 22,8 кВА). Плюс должны учитываться типы нагрузок в доме.

Максимально точно подобрать номинальную мощность генератора можно путем замера потребляемого тока в электросети при максимальной нагрузке.

Если вы затрудняетесь с выбором номинальной мощности оборудования, обратитесь за помощью к опытным специалистам. Консультанты «БоромирТрэйд» помогут правильно рассчитать мощность, подберут оборудование с учетом ваших требований и бюджета.

ТЭН Электрический Водяной

Отгрузка ТЭН электрический водяной в любой регион России, доставка до транспортной компании бесплатно.

Изготовим ТЭН воздушный по Вашим чертежам и тех.заданию.

 Заказать продукцию ТЭН для воды, ТЭН для масла, ТЭН для воздуха и других сред, узнать о наличии, сроках поставки Вы можете позвонив по телефонам или написать заявку по электронной почте:

 моб. 8(916) 579-74-12

 т.ф.(499)948-03-51

 тел. (495) 545-70-88
E-mail: [email protected]

При заказе стандартного ТЭНа необходимо знать длину, диаметр трубы, мощность, среда, напряжение, форму ТЭНа.

Пример обозначения при заказе:

ТЭН-100 А10/3,15 Р 220 ф.7 R30 Ш.
100 - развернутая длина трубки ТЭН в см.
А - длина контактного стержня в заделке (А=40 мм, В=65 мм, С=100 мм, D=125 мм, Е=160 мм, F=250 мм, G=400 мм, H=630 мм)
10 - диаметр ТЭН в мм.
3,15 - потребляемая мощность в кВт.
P - рабочая среда (O - воздух, движущийся со скоростью не менее 6м/с, S - спокойный воздух, L - для литейных форм, P - вода, Z - масло).
220 - напряжение питания, В.
ф.7 - типовая форма ТЭН.
R30 - радиус изгиба, мм.
Ш - при необходимости оснащение ТЭН штуцером.

ФОРМА ТЭНов.

 

 

При заказе нестандартного ТЭНа ,  отправьте чертеж  чертёж с заданными характеристиками, или запросите опросный лист на ТЭН по электронной почте E-mail: [email protected]

ТЭН Электрический Водяной.

Для применения в качестве нагревательных элементов вмонтированных в емкость, зачастую используются ТЭНы, от мелких бытовых приборов эл.чайников, или другие подходящие по размерам. Мощность таких ТЭНов, может быть различной. Есть стандартные ТЭНы с обозначением на корпусе мощностью 1.0 кВт и 1.25 кВт. Но есть и другие востребованные мощности, которые можно заказать отдельно или добиться желаемой мощности из соединения нескольких ТЭН.

Бывает, что мощность 1-го ТЭНа, может не устраивать нужным параметрам, для нагрева куба и быть больше или меньше. В таких ситуациях, для получения необходимой мощности нагрева, можно использовать несколько ТЭНов, путем соединенных последовательно или последовательно-параллельно. Коммутируя различные варианты соединения ТЭНов, переключателем от бытовой эл, плиты, возможно получать различную мощность. Возьмем например восемь врезанных ТЭН мощностью 1.25 кВт каждый, в зависимости от комбинации включения, можно в результате получить следующую мощность.

  1. 625 Вт
  2. 933 Вт
  3. 1,25 кВт
  4. 1,6 кВт
  5. 1,8 кВт
  6. 2,5 кВт

Этого диапазона будет достаточно для регулировки и поддержания нужной температуры при перегонке и ректификации. Так же можно получить и иную мощность, добавив количество режимов переключения и используя различные комбинации включения.

Последовательное соединение 2-х ТЭНов по 1.25 кВт и подключение их к сети 220В, в сумме дает 625 Вт. Параллельное соединение, в сумме дает 2.5 кВт.

Для расчета можно прибегнуть к следующей формуле:

Зная напряжение, действующее в сети, это 220Вольт. Зная мощность ТЭНа, обозначенную на его поверхности предположим это 1,25 кВт, значит, нам необходимо узнать силу тока, протекающую в этой цепи. Силу тока, зная напряжение и мощность, узнаем из следующей формулы.

Сила тока = мощность, деленная на напряжение в сети.

Записывается она так: I = P / U.

Где I - сила тока указывается в амперах.

P – мощность указывается в ваттах.

U – напряжение указывается в вольтах.

При подсчете необходимо мощность, указанную на корпусе ТЭН в кВт, перевести в ватты.

1,25 кВт = 1250Вт.  Подставляем известные значения в эту формулу и получаем силу тока.

I = 1250Вт / 220 = 5,681 А

В дальнейшем зная силу тока подсчитываем сопротивление ТЭНа, применяя формулу.

R = U / I, где

R - сопротивление в Омах

U - напряжение в вольтах

I - сила тока в амперах

Подставляем известные значения в формулу и узнаем сопротивление 1 ТЭНа.

R = 220 / 5.681 = 38,725 Ом.

В последующем подсчитываем общее сопротивление всех последовательно соединенных ТЭНов. Общее сопротивление будет равно сумме всех сопротивлений, соединенных последовательно ТЭНов

Rобщ = R1+ R2 + R3 и т.д.

В итоге, два последовательно соединенных ТЭНа, имеют сопротивление равное 77,45 Ом. Остается подсчитать мощность выделяемую этими двумя ТЭН.

P = U/ R где,

- мощность в ваттах

U2 - напряжение в квадрате, в вольтах

- общее сопротивление всех посл. соед. ТЭНов

P = 624,919 Вт, округляем до значения 625 Вт.

 

Далее при необходимости можно подсчитать мощность любого количества последовательно соединенных ТЭНов, или ориентироваться на таблицу.

В таблице 1.1 приведены значения для последовательного соединения ТЭНов.

Таблица 1.1

 

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

1

1250,000

38,725

220

5,68

Последовательное соединение

2

625

2 ТЭН = 77,45

220

2,84

3

416

3 ТЭН =1 16,175

220

1,89

4

312

4 ТЭН=154,9

220

1,42

5

250

5 ТЭН=193,625

220

1,13

6

208

6 ТЭН=232,35

220

0,94

7

178

7 ТЭН=271,075

220

0,81

8

156

8 ТЭН=309,8

220

0,71

В таблице 1.2 приведены значения для параллельного соединения ТЭНов.

Таблица 1.2

 

Кол-во ТЭН

Мощность (Вт)

Сопротивление (Ом)

Напряжение (В)

Сила тока (А)

Параллельное соединение

2

2500

2 ТЭН=19,3625

220

11,36

3

3750

3 ТЭН=12,9083

220

17,04

4

5000

4 ТЭН=9,68125

220

22,72

5

6250

5 ТЭН=7,7450

220

28,40

6

7500

6 ТЭН=6,45415

220

34,08

7

8750

7 ТЭН=5,5321

220

39,76

8

10000

8 ТЭН=4,840

220

45,45

Не маловажное преимущество при последовательном соединении ТЭН это уменьшенный в несколько раз протекающий через них ток, и соответственно небольшой нагрев корпуса нагревательного элемента,

Расчеты выполнены для ТЭНов, мощностью 1.25 кВт. Для ТЭНов другой мощности, общую мощность нужно пересчитать согласно закона Ома, пользуясь выше приведенными формулами.

Если вы заинтересованы что бы тэны были доставлены до терминала вашего города или адресата, укажите это в предварительной заявке и менеджер выставит счет и включит в стоимость продукции доставку тэнов.

При отгрузки продукции Тэн транспортной компанией необходимо указать нужна ли дополнительная упаковка.

Инструкция по эксплуатации ТЭНов электрических.

Данная инструкция по эксплуатации тэн определяет обязательные условия для правильного монтажа и эксплуатации трубчатых электронагревателей (ТЭН) c целью техники безопасности при монтаже, эксплуатации и увеличения ресурса ТЭНов электрических, для различных сред.

1. Подготовка ТЭНа электрического к монтажу.

Перед монтажом ТЭН электрический необходимо: 
1.1. Удалить с оболочки тэн антикоррозионную смазку. 
1.2. Очистить поверхность изоляторов и контактных стержней тэна. 
1.3. Проверить сопротивление изоляции в холодном состоянии. При падении сопротивления изоляции ниже 0,5 МОм, ТЭН нужно просушить при температуре от +120 до +150С в течение 4-6 часов. Допускается сушка нагревателей Тэна путем подключения их на пониженное напряжение или последовательно по несколько штук.

2. Монтаж ТЭН электрический.

2.1. Монтаж электронагревателей ТЭН к нагреваемому устройству нужно осуществлять с помощью крепежной арматуры (штуцеров, зажимов, хомутов, кронштейнов, стяжек, скоб).

2.2. Не разрешается крепление электронагревателей ТЭН за контактные стержни.

2.3. При установке ТЭН на объекте нужно руководствоваться ПУЭ, ПТЭ и ПТБ электроустановок потребителей. Присоединение ТЭН а электрического к питающей сети производится проводниками сечением не менее 1,5 мм2, оснащенными наконечниками по ГОСТ 7386.

2.4. При монтаже тэн нужно учитывать, что тэны электрические при работе не должны соприкасаться друг с другом, минимально допустимое расстояние между тэнами – 5 мм.

2.5. Монтаж тэнов электрических работающих в жидких средах осуществляется таким образом, чтобы активная часть тэна нагревателя полностью находилась в жидкости.

2.6. Все токоведущие детали тэна нужно защитить от случайного прикосновения и от попадания влаги.

2.7. Корпус каждого тэна следует надежно заземлить.

2.8. С целью оперативного выявления выхода из строя любого нагревательного тэна, помещенного в агрегат, рекомендуется подключить тэн к сети через индивидуальные плавкие вставки.

2.9. Все монтажные и демонтажные работы тэном нужно производить при снятом напряжении.

3. Эксплуатационные требования тэна электрического.

3.1. Трубчатые электронагреватели тэн должны работать только в той среде, для нагрева которой были изготовлены.

3.2. Дорабатывать и изменять конструкцию ТЭН у потребителя запрещается.

3.3. При эксплуатации тэна нужно следить за состоянием контактных стержней и токоподводящих проводов, не допуская ослабления соединений.

3.4. Подтягивать контактные гайки следует осторожно, и не допускать проворачивания контактных стержней в корпусе ТЭН.

3.5. Попадание влаги на контактные выводы тэнов не допускается.

3.6. Контактные выводы тэна должны хорошо омываться естественным или искусственным потоком холодного воздуха. Высокая температура в зоне герметика торцов нагревателя (свыше 150 оС) снижает срок службы тэн электрический.

3.7. Активная часть ТЭНа должна полностью находится в рабочей зоне.

3.8. При эксплуатации ТЭНа в жидких средах уровень жидкости должен постоянно находиться выше границы активной части нагревателя, а оболочка ТЭН должна периодически очищаться от накипи.

3.9. При нагревании твердых тел (деталей штампов, пресс-форм, литейных форм) должен быть обеспечен надежный тепловой контакт оболочки электронагревателя тэн с нагреваемой средой.

4. Условия транспортировки и хранения тен электрический.

4.1. Перевозка тэн электрический допускается всеми видами транспорта при условии защиты от влаги и механических повреждений. 4.2. Хранение ТЭН необходимо осуществлять в отапливаемых и вентилируемых помещениях. Температура окружающего воздуха – от +5 до +40 оС. Среднее значение относительной влажности – до 65% при +20 оС.

ТЭН трубчатый.


Время последней модификации 1611822163

Расчёт мощности по току и напряжению онлайн

Калькулятор расчёта мощности по току и напряжению

Данный калькулятор позволяет выполнить расчёт мощности по току и напряжению. Параметры необходимо вводить в базовых величинах, ток в амперах (А), напряжение в вольтах (В).

Формула расчёта мощности по току и напряжению

P = I*U ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;

Обращаем Ваше внимание, что приведённый выше онлайн калькулятор расчёта мощности, производит упрощённый расчёт мощности по току и напряжению, по упрощённой формуле. Онлайн расчёт данным способом позволяет, получить значения близкие к реальным.

Рекомендуем!

Формула расчёта мощности по току и напряжению для однофазной сети:

Однако, существуют формулы и для более точного расчёта. Если Вы обладаете, всеми необходимыми техническими характеристиками сети и устройства, то более точный расчёт мощности для однофазной сети, Вы можете произвести по формуле:

P = I*U*cosφ ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;
  4. cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности). По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.

Формула расчёта мощности по току и напряжению для трёхфазной сети:

P = 1,73*I*U*cosφ ,

  1. P— мощность потребителя, Вт;
  2. I— cила тока, А;
  3. U— напряжение в сети, В;
  4. cosφ -безразмерная величина, которая равна отношению активной мощности к полной (коэффициент мощности).
    По умолчанию значение cosφ равно 0,95 для бытовых электросетей и от 0,95 до 0,65 для промышленных.

Примерные значения cosφ для некоторых типов оборудования:


  • лампы накаливания — 1;
  • обогреватели, электропечи, электроплиты и т.п. — 0,95;
  • электродвигатели — 0,85 ..0,87;
  • дрели, отрезные машинки и т.п. — 0,85 ..0,9;
  • электродвигатели компрессоров, холодильников, стиральных машин и т.п. — 0,7…0,85
  • компьютеры, телевизоры, СВЧ печи, кондиционеры, вентиляторы, энергосберегающие лампы — 0,5 ..0,8

Более точные значения cosφ зачастую можно найти в паспорте прибора или на бирке.

Наши ресурсы в социальных сетях, присоединяйтесь:

[ratings]

Понравилась статья? Поделиться с друзьями:

Как определить требования к питанию

Одна из самых сложных концепций при рассмотрении размещения центров обработки данных - это определение необходимого количества энергооборудования. Есть много способов узнать, каковы ваши требования к питанию, но независимо от того, какой метод вы используете, все вычисления включают три электрические концепции:

  • Ток (амперы)
  • Напряжение (вольт)
  • Электрическая мощность (ватты)

Расчет потребляемой мощности

Для расчета потребляемой мощности эти электрические концепции применяются к простой формуле:

  ампер * вольт = ватт  

Эта формула определяет, сколько энергии использует оборудование в данный момент.

Метод №1: Использование счетчиков и лицевых панелей для определения требований к электропитанию вашего оборудования

Большинство современного оборудования для распределения электроэнергии имеет встроенный счетчик, который отображает использование мощности. На ЖК-дисплее PDU ниже вы можете видеть, что как основной, так и резервный PDU потребляют 9 ампер:

Индикация на ЖК-дисплее PDU

Производители также должны отображать допустимые диапазоны напряжения и силы тока, потребляемые на нагрузку, на лицевой панели оборудования:

Лицевая панель оборудования с указанием допустимого диапазона напряжения и потребляемого тока на нагрузку Подобное ИТ-оборудование

обычно работает в диапазоне напряжений от 100 до 240 В и совместимо с питанием как 120 В, так и 208 В.К этим конкретным блокам распределения питания относятся APC AP7941, которые рассчитаны на ток до 30 ампер в цепях на 208 В (80% от 30 ампер в соответствии с Национальным электротехническим кодексом по соображениям безопасности). Поскольку мы знаем, что оборудование, подключенное к PDU, потребляет 9 ампер, мы можем подставить значения в формулу:

  9 ампер * 208 вольт = 1872 Вт  

Причина, по которой мы используем только одно из значений 9 ампер, связана с тем, как сконфигурированы первичная и резервная мощность. Первичное и резервное питание означает два или более блока питания от разных источников питания.Поскольку к каждому PDU подключено одно и то же устройство, они должны потреблять одинаковое количество энергии.

При планировании резервирования мощности каждая цепь (первичная и резервная) должна быть рассчитана таким образом, чтобы выдерживать общую нагрузку обеих в случае отказа одной из них.

Мы обнаружили, что оборудование шкафа потребляет 1872 Вт (почти 1,9 кВт).

Не забудьте оставить место для маневра для «снижения мощности», поскольку все ИТ-оборудование со временем потребляет больше энергии.

Метод № 2: Использование списков оборудования для определения требований к питанию вашего оборудования

Если у вас нет PDU со считыванием показаний усилителя, вы можете определить требования к питанию, используя полный список оборудования.Вам нужно будет изучить спецификации производителя по мощности для каждой единицы оборудования, чтобы определить:

  • Конфигурация оборудования CPU / RAM / HDD / SSD
  • Назначение оборудования (DNS, база данных, сервер приложений, веб-сервер)
  • Возраст оборудования (более новое оборудование будет иметь более эффективные источники питания)
  • Особые требования, такие как «Power-over-Ethernet» (общие для сетевых коммутаторов)

Например, один из наших клиентов может перечислить следующие единицы оборудования:

  • 4 сервера Dell PowerEdge R420
  • 1 коммутатор Juniper EX4200-48T
  • 1 межсетевой экран FortiGate Fortinet 310B

Давайте определим максимальное энергопотребление для всех шести единиц оборудования.Во-первых, мы ищем в Интернете спецификации производителя по питанию и находим:

  • Dell PowerEdge R420 имеет блок питания мощностью 550 Вт.
  • Juniper EX4200-48T имеет блок питания мощностью 320 Вт.
  • FortiGate Fortinet 310B может потреблять максимум 5–3 А в сетях 100–240 В. Мы знаем, что нам нужна максимальная потребляемая мощность в ваттах. (И мы знаем, что для расчета ватт нам нужно умножить ампер на вольт.) В таблице данных 310B указано, что наш максимальный диапазон составляет от 5 до 3 ампер.Поскольку устройство фактически потребляет на ампер меньше, чем на ампер, чем выше напряжение, наш максимум на самом деле меньше: 3 ампера. Для вольт в таблице данных указан диапазон: 100-240 вольт. Мы можем предположить, что это цепь на 120 В, потому что это стандарт для центров обработки данных в Соединенных Штатах.

Итак, чтобы определить максимальное энергопотребление в любой момент времени, мы сначала должны преобразовать все в ватты:

  • 4 сервера Dell: 4 сервера * 550 Вт каждый = 2200 Вт
  • 1 коммутатор Juniper: 320 Вт (оставьте как есть)
  • 1 межсетевой экран FortiGate: 3 ампера * 120 вольт = 360 Вт

Затем сложите их вместе :

  2200 Вт + 320 Вт + 360 Вт = 2880 Вт  

Максимальное энергопотребление этих шести единиц оборудования составляет 2880 Вт.

Знание максимальной требуемой мощности дает основу для определения того, как используется оборудование и сколько реальной мощности необходимо обеспечить. Однако важно отметить, что ИТ-оборудование редко достигает предела максимальной мощности.

В SCTG мы гарантируем 100% бесперебойную работу при питании (и пропускной способности!). Часть нашего безупречного успеха в этом - это глубокие исследования и анализ, которые проводят наши инженеры по продажам. Другая часть - это уровень резервирования, встроенный в наши центры обработки данных (например, этот).

Все, что нужно, - это базовая формула, чтобы правильно определить ваши требования к мощности. А если вам нужно, чтобы кто-то перепроверил вашу работу, вы всегда можете связаться с нами.

Как рассчитать максимальный входной переменный ток

Как рассчитать максимальный входной переменный ток.
Ан-21

Информация о максимальном входном токе источника питания может быть полезна при выборе требований к электроснабжению, выборе автоматического выключателя, выбора входного кабеля переменного тока и разъема и даже при выборе изолирующего трансформатора для плавающих приложений.Вычислить максимальный входной ток довольно просто, зная несколько основных параметров и некоторую простую математику.

Номинальная мощность высоковольтного блока питания
Все блоки питания Spellman имеют заявленную максимальную номинальную мощность в ваттах. Это первый параметр, который нам понадобится, и его можно найти в паспорте продукта. У большинства блоков питания Spellman максимальная мощность указана прямо в номере модели. Как и в этом примере, SL30P300 / 115 представляет собой блок 30 кВ с положительной полярностью, который может обеспечить максимум 300 Вт; работает от входной линии 115Vac.

КПД источника питания
КПД источника питания - это отношение входной мощности к выходной мощности. Эффективность обычно указывается в процентах или в виде десятичной дроби меньше 1, например, 80% или 0,8. Чтобы вычислить входную мощность, мы берем заявленную максимальную выходную мощность и делим ее на эффективность:

300 Вт / 0,8 = 375 Вт

Коэффициент мощности
Коэффициент мощности - это отношение реальной мощности к полной используемой мощности. Обычно выражается в виде десятичного числа меньше 1.Реальная мощность выражается в ваттах, а полная мощность - в ВА (вольт-амперах). Однофазные импульсные источники питания без коррекции обычно имеют довольно низкий коэффициент мощности, например 0,65. Трехфазные импульсные источники питания без коррекции имеют более высокий коэффициент мощности, например 0,85. Блоки со схемой активной коррекции коэффициента мощности могут иметь очень хороший коэффициент мощности, например 0,98. В нашем примере выше источник питания представляет собой неисправный блок, питаемый от однофазной сети, поэтому:

375 Вт / 0,65 = 577 ВА

Напряжение входной линии
Нам нужно знать входное напряжение переменного тока, от которого устройство предназначено для питания .В приведенном выше примере входное напряжение переменного тока составляет 115 В переменного тока. Это номинальное напряжение, в действительности входное напряжение указано на уровне ± 10%. Нам нужно вычесть 10%, чтобы учесть худший случай, состояние низкой линии:

115Vac - 10% = 103,5Vac

Максимальный входной переменный ток
Если мы возьмем 577 VA и разделим его на 103,5Vac, мы получим:

577 ВА / 103,5 В переменного тока = 5,57 ампер

Если наше входное напряжение переменного тока однофазное, то у нас есть ответ - 5,57 ампер.

Трехфазное входное напряжение
Блоки с трехфазным входным напряжением питаются от трех фаз, поэтому они имеют лучший коэффициент мощности, чем однофазные блоки.Также за счет наличия трех фаз, питающих агрегат, фазные токи будут меньше. Чтобы получить входной ток на каждую фазу, мы разделим наш расчет входного тока на √3 (1,73).

Рассчитаем этот пример: STR10N6 / 208. Из таблицы данных STR мы узнаем, что максимальная мощность составляет 6000 Вт, КПД составляет 90%, а коэффициент мощности составляет 0,85. Несмотря на то, что STR по дизайну будет работать с напряжением до 180 В переменного тока, в этом примере он будет питаться от трехфазной сети 208 В переменного тока. Мы получаем максимальный входной ток на фазу следующим образом:

КПД источника питания
6000 Вт /.9 = 6666 Вт

Коэффициент мощности
6666 Вт / 0,85 = 7843 ВА

Напряжение входной линии
208 В переменного тока - 10% = 187 В переменного тока

Максимальный входной ток переменного тока
7843 ВА / 187 В переменного тока = 41,94 А (если он был однофазным)

Поправка для трехфазного входа
41,94 ампер / √3 (1,73) = 24,21 ампер на фазу

Итак, у нас есть два уравнения, одно для однофазных входов и одно для трехфазных входов:

Однофазное уравнение максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение)

Уравнение трехфазного максимального входного тока
Входной ток = максимальная мощность / (КПД) (коэффициент мощности) (минимальное входное напряжение) ( √3)

Эти расчеты входного тока предназначены для наихудшего случая: предполагается, что агрегат работает на максимальной мощности, работает при низком уровне напряжения в сети и с учетом КПД и коэффициента мощности.

Щелкните здесь, чтобы загрузить pdf.

Как рассчитать мощность (Вт)

Часто говорят, что потребляемая мощность прибора в ваттах равна току, умноженному на напряжение.

К сожалению, не все так просто.

Это общепринятое мнение или «практическое правило» заставит вас рассчитывать кажущуюся мощность, а не реальную мощность (за что вам выставляют счет).

Полная мощность (ВА)

Ампер (А) x Вольт (В) = Вольт-Ампер (ВА)

Формулу выше можно использовать для расчета полной потребляемой мощности в вольт-амперах (ВА).Это уравнение даст вам приблизительное представление об использовании мощности в ваттах для , но это не совсем корректно. Для этого нужно учитывать коэффициент мощности .

Реальная мощность (Вт)

Амперы (А) x Вольт (В) x коэффициент мощности = Ватты (Вт)

Эта формула учитывает коэффициент мощности и, следовательно, показывает точное энергопотребление (за которое выставлен счет).

Запутались? Воспользуйтесь нашим бесплатным онлайн-калькулятором стоимости электроэнергии.

Что такое коэффициент мощности?

Коэффициент мощности

- это мера эффективности, с которой электрическое устройство преобразует вольтамперы в ватты. Коэффициент мощности представлен в виде безразмерного числа от 0 до 1.

Чем ближе число к единице, тем «лучше» коэффициент мощности. Чем выше коэффициент мощности, тем эффективнее используется электроэнергия. Резистивные нагрузки, такие как большинство электрических нагревателей, будут иметь коэффициент мощности 1, поскольку они преобразуют всю подаваемую электрическую мощность в тепло.Оборудование с моторами, такие холодильники и кондиционеры, будет иметь меньший коэффициент мощности.

Почему важен коэффициент мощности?

Коэффициент мощности важен, если вы хотите узнать реальную потребляемую мощность устройства (фактическая мощность - это то, за что вам выставлен счет). См. Ниже демонстрацию того, как коэффициент мощности используется с нашим измерителем мощности для расчета реального энергопотребления моего телевизора.

Для крупных предприятий особенно важно иметь коэффициент мощности, близкий к «единице» (1), поскольку с них может взиматься плата, если они имеют низкий коэффициент мощности.Это связано с тем, что коммунальное предприятие должно подавать на объект больше тока (в амперах), чем фактически требуется. При этом они несут больше потерь при передаче. Хорошая новость заключается в том, что предприятия могут предпринять шаги для увеличения коэффициента мощности.

Пример - расчет фактической мощности телевизора

На этикетке соответствия моего телевизора указана потребляемая мощность 130 Вт .

Проблема в том, что на этикетках соответствия часто указывается максимальная мощность , а не фактическая мощность.Единственный способ узнать фактическую мощность - измерить ее с помощью подключаемого измерителя мощности. В течение двухчасового периода измеритель мощности показал потребляемую мощность от 70 до 110 Вт - существенно меньше, чем указано на этикетке.

В какой-то момент измеритель мощности показал, что телевизор использует 243 вольта и 0,421 ампер. Если мы будем следовать общепринятому мнению и просто умножим Вольт и Ампер без коэффициента мощности, мы получим полную потребляемую мощность следующим образом: -

  • Ампер (А) X Вольт (В) = ВА
  • 243 В x 0.421 А = 102,3 ВА

... затем ложно представить его как 102,3 Вт

Когда мы добавляем в расчет коэффициент мощности, мы получаем совсем другую цифру. Поскольку в то время измеритель мощности показал коэффициент мощности 0,65, расчет будет:

  • Амперы (А) x Вольт (В) x Коэффициент мощности = Ватты (Вт)
  • 234 В x 0,421 А x 0,65 = 66,5 Вт

Надеюсь, вы понимаете, почему так важно делать правильный расчет.

К счастью, наши подключаемые измерители мощности сделают эти расчеты за вас.Имейте в виду, что некоторые дешевые измерители мощности не выполняют эти измерения точно и не всегда отображают реальную мощность.

Наши измерители мощности отображают реальную мощность (ватты), а также амперы (А), вольт (В) и коэффициент мощности, чтобы вы могли проверить расчет, если вам нужно.

Подключаемый измеритель мощности Reduction Revolution - наш самый дешевый и самый популярный вариант. Power Mate Lite - это высокоточная модель, которую используют профессиональные энергоаудиторы.

См. Также: наш бесплатный онлайн-калькулятор эксплуатационных расходов.

- Холли Ловелл-Смит

расчетов мощности

расчет мощности Мощность

Расчет мощности

Power - это умение делать работу, будь то поднимать лифты или шуметь. Когда вы пропускаете ток через провод, вы передаете мощность от источника к точке использования. Одно из главных преимуществ электричества - мы можем делать беспорядок. бизнес по производству электроэнергии в Неваде и удобное использование гостинная.

Единица измерения мощности - ватт, названия после Джеймс Ватт, прославившийся паровым двигателем. Мощность, доступная в электрическом схема

P = EI

P = мощность в ваттах

E = ЭДС в вольтах

I = ток в амперах.

Конечно, ток через провод контролируется импедансом - обычно мы знаем импеданс и напряжение и воспользуйтесь производной формулой

Важно отметить, что мощность будет меняться как квадрат напряжения.Если мы контролируем ток через известное сопротивление, эта формула имеет то же моральный.

Рассеиваемая мощность

Многие электронные устройства выделяют тепло в качестве побочного эффект от их основного использования. Например, резисторы и трансформаторы нагреваются при прохождении через них тока. Жара не хорош для чего угодно (как раз наоборот), но мы должны знать об этом поэтому мы не пытаемся пропустить через что-то достаточно тока, чтобы его сжечь вверх.Большинство устройств имеют максимальную номинальную мощность, превышающую этот рейтинг. рискует уничтожить. Например, большинство резисторов рассчитаны на четверть ватта. Итак, какое напряжение мы можем безопасно подать на 100 Ом? резистор?

Передача энергии

В мире аудио вы все еще слышите много поговорим о «согласовании импедансов». Что это значит? Любое устройство с реальным выходом будет некоторое сопротивление между сигналом схема питания и выходной разъем.Вот типичный вывод строений:

Треугольники обозначают усилители. или какой-то другой источник тока. Всегда есть какая-то комбинация резисторы, конденсаторы и / или трансформаторы для регулировки выхода напряжение и защитить источник тока от коротких замыканий. Что бы ни после того, как источник тока будет иметь импеданс - обычно это все собраны вместе и названы «импедансом источника».

Теперь вот что будет выглядеть любой ввод нравится:

Даже если это не так конструкция, что касается устройства-источника, следующее гаджет по линии представит некоторое (надеюсь, фиксированное) сопротивление через выход.Вы помните из очерка о законе Ома, что когда мы соединим их вместе, у нас будет делитель напряжения. Если сопротивление входа второго устройства достаточно низкое, чтобы загрузить выход второго устройства, напряжение на подключении будет ниже, чем ожидалось, и текущий спрос может превышать источник готов к поставке. (Источник может быть даже поврежден.)

Для предотвращения этого производители указывают полное сопротивление нагрузки, на которое рассчитано их устройство.Это называется «выходным сопротивлением». Это не то же самое, что сопротивление источника - выходное сопротивление - это ожидаемое входное сопротивление нагрузки, и будет работать с импедансом источника (как нижняя ветвь напряжения делитель), чтобы установить правильные выходные уровни.

Раньше, если устройство указывало выходное сопротивление 600 Ом, нужно было подключить нагрузку 600 Ом, ни больше ни меньше. Это потому, что до середины 60-х годов большинство оборудование имело выходные трансформаторы, как на левой схеме выше.(Они требовались для электрических цепей.) Вы помните из эссе о сопротивление, которое индуктор, такой как вторичная катушка трансформатор имеет постоянную времени, зависящую от соответствующего импеданс - с некоторым импедансом он становится фильтром. 600 Ом было входной импеданс промышленного стандарта для передачи плоского сигнала в звуковой диапазон. (Есть еще такой стандарт для видео - 75 Ом, а вам лучше следовать за ним.) Если вы хотите послать сигнал двум устройств приходилось использовать специальный усилитель-распределитель, т.к. просто подключив два входа по 600 Ом к одному выходу, вы получите 300 Ом. нагрузка.

Было легко получить входное сопротивление 600 Ом потому что у большинства оборудования на входе тоже есть трансформатор. Тем не мение, были части оборудования, у которых был более высокий выходной импеданс (сделанный для рынок домашнего аудио, в основном), и если вы нагружаете их на 600 Ом, они бы не работали. В современном оборудовании отсутствуют входные трансформаторы (они либо дорогие, либо низкокачественные, либо и то, и другое) и использует ввод схемы с более высоким импедансом, обычно 10 кОм или даже 50 кОм. В Преимущество этого в том, что вы можете подключиться ко всему, и вы можете водить несколько входов без усилителей распределения.Выходы по-прежнему способен управлять 600 Ом (обычно), но подключать более высокий сопротивление не вредит, поскольку требуется меньший ток. Если вам нужно подключите высокоимпедансный вход к старомодному выходу на 600 Ом, вы должны добавить "согласующий резистор" 600 Ом через связь. Любая часть оборудования, где это действительно важно, будет иметь встроенный такой резистор с переключателем оконечной нагрузки для подключения это когда нужно.

Микрофоны

Микрофоны все еще имеют старое отличие высокий импеданс vs.низкий импеданс. Потому что хорошие микрофоны в них еще есть трансформаторы (см. эссе о связях и балансные кабели), а в дешевых нет. Поскольку микрофон производит очень маленький ток, вы не можете подключить микрофон с высоким Z к входу с низким Z и ожидайте, что это сработает. Микрофон с низким Z будет работать на входе с высоким Z, но частотная характеристика может быть искажена.

Усилители мощности и Колонки

Импеданс действительно критичен, когда дело доходит до подключение колонок.Усилители предназначены для обеспечения большого количества мощности, но мы не можем позволить себе тратить ее зря, подключив более высокую сопротивление, чем необходимо. Истинный импеданс динамика варьируется во всем место с частотой (там катушки), но будет "номинальный" рейтинг, который представляет собой самый низкий рейтинг для любого протяженность времени. Обычно это 8 Ом, хотя сейчас вы видите много Конструкции с сопротивлением 4 Ом на рынке аудиофилов.

Усилители

спроектированы так, чтобы максимально безопасный ток до 2 Ом или около того, поэтому динамик на 8 Ом представляет собой скромный запас прочности.Если вы подключите два динамика на 8 Ом параллельно, вы подадите на усилитель 4 Ом, и звук станет громче с некоторый риск. Риск чего? Что ж, на более дешевых усилителях вы сожжете предохранитель, а на более лучших загорится свет, сообщающий вам текущий сработала защита, и ваш звук будет ужасным - вероятно сильно обрезан. Худшее, что может случиться, - это перегоревший усилитель.

[ПРЕДУПРЕЖДЕНИЕ] Обрезанный звук даже при умеренном громкость, может повредить ваши динамики - почему? Потому что у квадратных волн больше всего их энергии в высоких парциальных.В типичном трехполосном динамике НЧ-динамик, который обычно передает большую часть мощности, будет рассчитан на сотни ватт, но твитер будет рассчитан только на 20-50 Вт. Накачать 75 Вт высокочастотной энергии и до свидания твитер.

При последовательном подключении двух динамиков вы представьте нагрузку 16 Ом и получите половину тока. Так как это сейчас проехав вдвое больше диффузоров, вы получите столько же звука, и это может даже звучать немного лучше, потому что отдельные динамики не работают так усердно.

Немного подумав, вы, наверное, сможете способа подключить четыре динамика и по-прежнему показывать 8 Ом нагрузка.

Это обсуждение должно также указать на необходимость использования толстого провода для громкоговорителей. Проволока 20 калибра имеет сопротивление около 0,01 Ом на фут, поэтому вам нужно всего около 20 футов кабеля для изменения импеданса на 5%, потери тока и отстройка катушек кроссовера. Лучше использовать 18 ga при 0,006 Ом на фут или даже 16 га при 0.004 Ом.

Между прочим, есть такие вещи, как высокий импедансные динамики. Это мелочи, которые можно найти в аэропорту потолки - сотни из них подключены параллельно, и каждый динамик для этого есть понижающий трансформатор. Усилители, которые работают эти системы имеют выход 70 вольт и не будут работать с вашим динамики вообще. Вы можете использовать эти маленькие колонки, если возьмете трансформаторы выключены.

PQE 02.10.98

Назад к музыке 126 темы

Как оценить потребность в электроэнергии

Когда вы получаете счет за электроэнергию каждый месяц, вы можете не понимать, как именно была рассчитана общая сумма.Каждое устройство в вашем доме вносит свой вклад в общую сумму счета. Чтобы выяснить, какие приборы и устройства потребляют больше всего энергии, вы можете оценить общие требования к мощности , для каждого устройства. Эта оценка также полезна для оценки требований к мощности для альтернативной или резервной системы энергоснабжения.

Оценить потребности в энергии и затраты на питание электронного устройства или прибора очень просто. На задней панели каждого устройства есть этикетка с указанием потребляемой мощности.Это число, которое вам понадобится, чтобы вычислить потребление энергии и требования. Наряду с ваттами вам нужно будет оценить количество часов в день, в течение которых устройство или прибор используется. Если вы предпочитаете не проверять все свои устройства вручную, вы можете приобрести устройство, которое поможет вам оценить потребление энергии. Эти устройства варьируются от простых устройств для измерения мощности до сложных решений для домашнего мониторинга. В этом посте мы предполагаем, что у вас нет доступа к сложному решению для домашнего мониторинга.Если вы новичок в чтении этикеток с энергопотреблением на задней панели ваших приборов и устройств, просмотрите следующие несколько разделов с справочной информацией, чтобы получить представление об основах электротехники и терминологии.

Предпосылки: основы электротехники

Чтобы понять электрические термины, указанные на этикетках прибора или устройства, необходимо понять несколько электрических терминов. Основные термины: напряжение, ток и сопротивление:

.

Напряжение (Вольт): Разница потенциальной энергии (заряда) между двумя точками в цепи.Одна точка имеет больше энергии, чем другая, и разница между точками называется напряжением. Напряжение измеряется в вольтах.
Ток (Амперы): Поток электронов (заряд) между двумя точками в цепи. Сила тока измеряется в амперах.
Сопротивление (Ом): Сопротивление - это электрическое сопротивление (сложность) между двумя точками проводника. Сопротивление измеряется в Ом.

Напряжение, ток и сопротивление связаны уравнением, называемым законом Ома:

V = I x R

где V - вольт, I - ток, а R - сопротивление.При описании напряжения, тока и сопротивления часто используется аналогия «вода, текущая в трубе». Ток аналогичен потоку воды, а напряжение - это давление в трубе. Когда напряжение (давление) выше, будет течь более сильный ток. На рисунке 1 показана аналогия с водой с (а) давлением (напряжением) без тока и (б) давлением (напряжением) и током.

Рисунок 1. Механическое изображение напряжения и тока.

Электроэнергия также может быть выражена в единицах мощности, называемых Вт .Ватт - это единица измерения электрической мощности, представленная током в один ампер в цепи с разностью потенциалов в 1 вольт. Мощность связана с напряжением и током следующим уравнением:

P = I x V

где P - мощность, I - ток, а V - вольты. Мощность (электрическая энергия) измеряется в ваттах или киловаттах. Его также можно измерить с течением времени. Например, лампочка мощностью 60 Вт потребляет 60 Вт в определенный момент времени.Киловатт-час (кВтч) - это электрическая энергия, равная мощности, подаваемой одним киловаттом за один час.

Справочная информация: напряжение переменного и постоянного тока

Электрические концепции, которые мы описали до сих пор, являются примерами постоянного тока (DC) . Постоянный ток (DC) - это электрический ток, который течет линейно в постоянном направлении. Существует также другой тип тока, называемый переменным током (AC) , который отличается от постоянного тока, потому что он меняет направление.Рисунок 2 иллюстрирует разницу между этими двумя концепциями. Как показано, постоянное напряжение постоянно. Напряжение переменного тока имеет синусоидальную форму, что означает, что оно изменяется со временем.

Рис. 2. Визуальная разница между постоянным и переменным напряжением.

Мы можем использовать предыдущую аналогию с водой для описания переменного тока; вместо воды, текущей по трубе, вода в трубе перемещается вперед и назад с помощью рукоятки, соединенной с поршнем.На рисунке 3 показана иллюстрация этой концепции. Брызги жидкости могут быть очень быстрыми - 50 или 60 циклов в секунду (50 или 60 Гц). Устройства, которые питаются от топливных элементов , или батарей , используют питание постоянного тока; однако устройства, которые подключаются к стене в наших домах, используют переменный ток.

Рисунок 3. Переменный ток Аналогия напряжения (напряжения) и тока.

Проверка необходимой энергии

Чтобы оценить использование энергии в вашем доме, могут помочь следующие источники:

• Счета за электричество
• Рейтинг оборудования
• Ожидаемые профили нагрузки

Посмотрев на свой счет за электричество, вы можете увидеть, как ваши ватты меняются от месяца к месяцу в течение года.Ваше потребление энергии носит сезонный характер и зависит от того, где вы живете. Например, если вы живете в холодном климате, ваши зимние счета могут быть намного выше, чем ваши летние, из-за необходимости в тепле зимой. В жарком климате ваш летний счет может быть намного выше, чем ваш зимний, из-за того, что кондиционер работает все лето.

Каждый прибор или электронное устройство имеет паспортную табличку, на которой указаны напряжение, сила тока, частота и мощность. Обычно они расположены на задней панели устройства.Эти рейтинги представляют собой максимальное количество мощности, которое может быть поставлено; следовательно, номинальная мощность, указанная на паспортной табличке, теоретически соответствует 100-процентному использованию. Многие устройства не работают со 100-процентной загрузкой; поэтому использование номинальных значений на паспортной табличке может привести к завышению требований к мощности. Пример паспортной таблички показан на Рисунке 4.

Рисунок 4. Паспортные таблички электронного устройства.

Хотя потребление энергии можно рассчитать на основе ваших счетов за электроэнергию и паспортных табличек устройства, фактические измерения дадут более точные данные.Фактические измерения нагрузки можно получить с помощью ватт-часов. Эти фактические измерения нагрузки часто используются для проектирования PV , топливных элементов и систем резервного питания от батарей. Фактическая нагрузка требуется для определения размера и стоимости системы альтернативной энергии . Часто разработчики систем рекомендуют потребителю изменить свои методы энергопотребления, чтобы минимизировать потребление энергии, чтобы фотоэлектрическая система могла быть спроектирована с учетом этих требований вместо установки более крупной системы для компенсации пикового использования.

Расчет потребления энергии

Общее количество энергии, потребляемой вашим домом, можно легко рассчитать, выполнив шесть простых шагов:

1. Укажите количество ватт для каждого прибора или электронного устройства (это называется «нагрузкой» для каждого устройства). Все существующие и планируемые электрические нагрузки должны быть идентифицированы.
2. Оцените среднесуточное использование (количество часов в день, в течение которых прибор или электронное устройство работают)
3. Умножьте мощность устройства на количество часов, в течение которых вы его используете (это даст вам определенное количество «ватт-часов»). Например, если вы используете телевизор на 120 Вт в течение двух часов в день. Вы можете умножить мощность на количество часов, используемых в день, чтобы получить 240 ватт-часов в день.
4. В вашем счете за электричество электричество указано в киловатт-часах. Чтобы сравнить потребление энергии в киловатт-часах, нам нужно будет преобразовать ватт-часы в киловатт-часы. Поскольку 1 киловатт равен 1000 ватт, разделите на 1000, чтобы преобразовать ватт-часы (Втч) в киловатт-часы (кВтч):

240 Втч / 1000 = 0.24 кВтч

5. Чтобы сравнить эти числа с вашим счетом за электроэнергию, нам нужно преобразовать это число в количество часов, которые прибор или устройство использует в месяц. Например, 0,24 кВтч x 30 дней = 7,2 кВтч в месяц.
6. Чтобы рассчитать затраты на электроэнергию и сравнить их с вашим счетом за электричество, посмотрите на свой счет за электричество, чтобы определить, сколько вы платите за кВтч. Если в вашем счете указано, что вы платите 0,12 доллара за киловатт-час, стоимость может быть оценена следующим образом: 7.2 кВтч в месяц x 0,12 доллара США за кВтч = 0,86 доллара США в месяц.

Вы можете организовать эти числа, как в Таблице 1 ниже.

Электрическая нагрузка Мощность (Вт) Среднее ежедневное использование (ч) Среднесуточная энергия (ватт-часы) Среднесуточная энергия (киловатт-часы) Среднемесячная энергия (киловатт-часы) Стоимость в месяц ($)
Телевидение 120 2 240 0.24 7,2 0,86

Таблица 1. Таблица для расчета среднесуточной энергии.

Заполнив Таблицу 1, вы можете получить хорошую оценку количества электроэнергии, которое вы используете каждый месяц, и связанных с этим затрат. Чтобы определить размер системы накопления энергии, вам также нужно будет посмотреть на требуемую пиковую мощность (максимальное количество энергии, которое может потребоваться в день) и продолжительность средней мощности (наибольший промежуток времени, в течение которого средняя мощность составляет нужный).Среднее энергопотребление определяет общее количество энергии, потребляемой за день.

Заключение

В этом посте мы рассмотрели основные электрические термины, такие как напряжение, ток, сопротивление, мощность, постоянный ток (DC) и переменный ток (AC). Затем мы использовали эти концепции для расчета потребности в энергии для прибора или устройства. Эти потребности в энергии можно использовать для оценки общего потребления энергии и связанных с этим затрат на эту энергетическую нагрузку. Расчет этих требований может помочь вам уменьшить ваши счета за электроэнергию и помочь вам определить размер фотоэлектрической, резервной аккумуляторной батареи или другой альтернативной энергетической системы.

Автор Д-р Коллин Шпигель

Доктор Коллин Шпигель - консультант по математическому моделированию и техническому письму (президент SEMSCIO) и профессор, имеющий докторскую степень. и степень магистра инженерных наук. Она имеет семнадцатилетний опыт работы в инженерии, статистике, науке о данных, исследованиях и написании технических статей для многих компаний в качестве консультанта, сотрудника и независимого владельца бизнеса. Она является автором книг « Designing and Building Fuel Cells » (McGraw-Hill, 2007) и «PEM Fuel Cell Modeling and Simulation using MATLAB» (Elsevier Science, 2008).Ранее она владела Clean Fuel Cell Energy, LLC, организацией по топливным элементам, которая обслуживала ученых, инженеров и профессоров по всему миру.

Как определить потребность в мощности для вашего дома на колесах

Как определить потребность в мощности вашего автофургона

В нашей последней статье мы рассмотрели ватт вместе с ватт-часами и их значение для RVer. В этом посте мы рассмотрим, как определить номинальную мощность устройства в ваттах, если его нет в списке или если вы хотите узнать, что конкретное устройство потребляет в течение определенного периода времени (ватт-часов).

Что такое ватты?

Первое, что нужно знать, это то, что ватты - это произведение напряжения на амперы, обычно выражаемое как (ватты = амперы X вольт), которые также можно выразить как (вольт X амперы = ватты) или (амперы X вольт = ватты). Следовательно, если вы знаете рабочее напряжение и потребляемую мощность прибора, вы можете определить мощность в ваттах.

Примеры:

  • Тостер на 120 вольт потребляет 9 ампер. (120 В x 9 А = 1080 Вт)
  • Микроволновая печь на 120 В и потребляемая сила тока 12.5 ампер (120 вольт x 12,5 ампер = 1500 Вт)
  • Не забудьте включить свои 12-вольтовые приборы: 12-вольтовую печь RV (печатная плата и двигатель вентилятора) с потребляемой силой тока 7 ампер (12 вольт X 7 ампер = 84 ватта)

С некоторыми приборами потребляемая сила тока зависит от того, как вы их используете. Например, у вас может быть телевизор с плоским экраном, который позволяет регулировать яркость дисплея вместе с регулятором громкости, который, в свою очередь, влияет на количество ампер, необходимых для его питания.

Эта сумма может быть значительно меньше суммы, указанной на задней стороне устройства. Возможно, у вас есть прибор, который периодически включается и выключается, как холодильник, и вы хотите знать, сколько энергии потребляется в течение установленного периода времени (ватт-часов). В вышеупомянутых ситуациях подумайте о покупке ваттметра.

Следите за потреблением энергии. Фото через Amazon

Как вы измеряете ватт?

Подключив 120-вольтный прибор к ваттметру (или всему вашему жилому дому) в течение заданного периода времени, вы можете измерить потребленные ватт-часы.Даже если прибор потребляет постоянный ток при использовании (например, 120-вольтовая лампа), вы все равно можете использовать ваттметр для расчета требований к мощности в ваттах, а не выполнять математические вычисления (амперы X вольт), как в примерах, приведенных выше. или для проверки заявленных характеристик производителя. Никогда не превышайте номинальную мощность мультиметра.

После того, как вы определили требования для каждого из устройств вашего дома на колесах (не забудьте преобразователь), просто сложите те, которые, вероятно, будут работать одновременно, и вы узнаете, какая потребляемая мощность на берегу выражается в ваттах.Сила тока, необходимая для запуска компрессора кондиционера, требует короткой вспышки чрезмерного тока, чтобы заставить вещи вращаться, что необходимо учитывать.

Теперь, когда мы знаем, как рассчитать ватт и ватт-часы, что вы собираетесь делать с этой информацией? Существует несколько полезных приложений для определения потребности в мощности на берегу (120 В) в ваттах:

  • Если вы часто занимаетесь сушкой в ​​лагере, эта информация поможет вам выбрать генератор правильного размера, отвечающий потребностям вашего дома на колесах.
  • Если вы живете в своем доме на колесах и всегда подключены к береговому источнику питания в течение длительных периодов времени, вы можете определить свое потребление в ватт-часах. Это поможет вам определить, является ли более экономичным платить установленную ежемесячную плату за электричество или попросить кемпинг с электросчетчиком и платить только за то электричество, которое вы фактически потребляете.
  • При въезде в автостоянку, где есть только электрические розетки на 20 и 30 ампер, вам нужно всего лишь разделить потребляемую мощность на 120 вольт, чтобы определить минимальную схему усилителя, к которой вы можете с комфортом подключиться.

Помните: Вт = вольт X ампер, что также может быть выражено как ватт / вольт = ампер. Поэтому, если вы определили, что вашему жилому дому обычно не требуется более 2100 пиковых ватт береговой мощности, вы можете без проблем подключиться к розетке на 20 ампер (2100 Вт / 120 вольт = 17,5 ампер). Потребляемая мощность 17,5 А меньше 20 А, так что у вас может быть комфортный запас «дополнительной» мощности.

И наоборот, вы можете представить себе розетку на 120 В на 20 А как на розетку на 2400 Вт (120 В x 20 А = 2400) или розетку на 120 В 30 А как на розетку 3600 Вт (120 В x 30 амперы = 3600).

Примечание: розетки на 50 ампер содержат две ножки на 50 ампер и 120 вольт, что в сумме дает 100 ампер или 12 000 ватт. Посетите эту страницу, если вам нужна дополнительная информация о розетках на 50 А для жилых домов.

Изучение основ электрических вычислений - еще одно приключение в RVing!

Подробнее: Что такое ватт? Как рассчитать потребности в электроэнергии

Следуйте за приключениями Дэйва на автофургоне, путешествуя по Западу в поисках забытых и уникальных мест. Для Дэйва дом - это место, где вы его припаркуете, и чем дальше, тем лучше!

Расчет мощности переменного тока - Физический класс [Видео 2021]

Power Equations

Но этот урок называется «Мощность переменного тока», так как же нам рассчитать мощность, используемую цепью переменного тока? Как обсуждалось в другом видеоуроке, мощность - это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).А в схеме его можно вычислить, умножив ток на напряжение. Мы можем сделать то же самое для цепи переменного тока; мы просто используем среднеквадратичное значение тока и среднеквадратичное напряжение. Итак, ниже представлено наше основное уравнение для мощности в цепи переменного тока: действующее значение напряжения, измеренное в вольтах, умноженное на действующее значение тока, измеренное в амперах.

Основное уравнение мощности

Но что, если вы не знаете действующее значение напряжения или тока? Что, если вместо этого вы знаете пиковое напряжение V-ноль и пиковое значение тока I-ноль? Что ж, тогда нам нужно будет использовать предыдущие уравнения для среднеквадратичного напряжения и действующего тока.Но чтобы не использовать более одного уравнения, мы можем подставить эти уравнения в уравнение мощности, например:

Уравнение мощности

Это упрощает представление о том, что мощность, используемая в цепи переменного тока, равна пиковому току, умноженному на пиковое напряжение, деленному на два.

Пример расчета

Хорошо, давайте попробуем пример! Вы проводите испытания энергосберегающей лампочки.Вы обнаружите, что максимальное напряжение, которое он когда-либо использует, составляет 240 вольт, а максимальный ток, который проходит через него, составляет 0,12 ампер. Для обычной лампочки вы просматриваете некоторые значения и обнаруживаете, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичный ток - 0,5 ампер. Какая разница в мощности, используемой двумя лампочками?

Хорошо, нам нужно выяснить, сколько энергии потребляет каждая лампочка, а затем сравнить их. Для первого нам даны максимальные значения, а для второго - среднеквадратичные значения.Итак, нам нужно использовать разные уравнения для каждого, а затем сравнить два значения мощности.

Что касается энергосберегающей лампочки, мы знаем, что V-ноль составляет 240 вольт, а I-ноль - 0,12 ампер. Итак, мы можем вычислить мощность, используя это уравнение: (240 * 0,12) / 2 = 14,4 Вт.

Для обычной лампочки известно, что среднеквадратичное напряжение составляет 120 вольт, а среднеквадратичное значение - 0,5 ампер. Итак, все, что нам нужно сделать здесь, это использовать это уравнение и умножить два вместе: 120 * 0,5 = 60 Вт.

Наконец, чтобы найти разницу между ними, вычтите меньшее число из большего: 60 - 14.4 = 45,6 Вт. Таким образом, разница в потребляемой мощности между двумя лампочками составляет 45,6 Вт. Вот и все - готово!

Краткое содержание урока

Почти каждое электрическое устройство, которое мы используем в повседневной жизни, работает от переменного тока. Переменный ток (или переменный ток) - это когда ток очень быстро переключает направление, а не течет только в одном направлении по цепи - в одну сторону, затем в противоположную, снова и снова. Это создает ток, который изменяется синусоидально, что означает, что он изменяется в форме синусоидальной кривой, например, этой:

Синусоидальная кривая цепи переменного тока

Поскольку ток переключается, изменяется и напряжение, и потребляемая мощность.Все они следуют синусоиде. Из-за этого мы склонны выражать ток и напряжение как специальные средние значения, называемые среднеквадратичное значение (или среднеквадратичное значение ). Цепь переменного тока будет иметь среднеквадратичный ток и среднеквадратичное напряжение, и эти значения определяются следующими уравнениями, где V-ноль - пиковое или максимальное напряжение, а I-ноль - пиковый или максимальный ток. Это вершина и основание синусоиды.

Уравнения

Как обсуждалось в другом уроке, мощность - это энергия, используемая в секунду, измеряемая в ваттах (или джоулях в секунду).В цепи переменного тока есть два основных уравнения, которые вы можете использовать для расчета мощности: верхнее, где вы умножаете среднеквадратичное напряжение на среднеквадратичное значение тока; или нижний, где вы умножаете пиковое напряжение на пиковый ток, а затем делите на два.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *