Содержание

Как проверить транзистор мультиметром

Поделиться ссылкой:

 

   

Во время ремонта или сборки радиоэлектронных устройств у всех радиолюбителей возникает необходимость проверить транзистор мультиметром. И для этого есть очень простой и самый распространенный способ. В основном эта статья предназначена для начинающих радиолюбителей, поэтому я более доступно для понимания расскажу, как это сделать. Для начала нужно представить, что собой представляет биполярный транзистор (о том, как проверить полевой транзистор будет написано в отдельной статье).

Это 2 p-n перехода. Как мы уже знаем диод имеет один переход. Поэтому представим, что транзистор состоит из двух диодов, как на рисунках ниже. N-p-n и p-n-p структур.

n-p-n транзистор p-n-p транзистор

Получается, что транзистор это два встречно включенных диода с отводом от средней точки, который является базой. Но на самом деле его структура намного сложнее. Наша задача заключается в том, чтобы проверить диоды на исправность. Как проверить диод есть уже отдельная статья. Т.е. сначала проверяем диоды в одну сторону, а потом в другую сторону. Как это сделать видно на рисунках ниже. Для примера взят n-p-n транзистор кт315. Мультиметр включается в режим проверки диодов. Напомню, что при проверке диодов при прямом включении, кода плюс (+) мультиметра подсоединен к аноду, а минус (-) к катоду падение напряжения при исправном диоде будет составлять от 0,1 до 0,8 вольта.

А при обратном включении, когда полярность щупов мультиметра поменяна, будет максимальным около 3 вольт, потому что сопротивление диода будет стремиться к бесконечности (т.к. не проводит ток в обратном включении).

На фото обозначена полярность щупов, цоколевка транзистора и выделен режим мультиметра. Ножки транзистора я удлиннил для наглядности.

База – коллектор База – эмиттер
Проверка при прямом включении переходов

 

База – коллектор База – эмиттер
Проверка при обратном включении переходов

Если хотя бы один переход пропускает ток в обоих направлениях или не пропускает в обе стороны, то такой транзистор является неисправным. И еще одним этапом проверки транзистора является проверка проводимости между коллектором и эмиттером. Ток не должен проходить ни в одном направлении. Бывает, что пробивает транзистор между коллектором и эмиттером по подложке. Если хотя бы в одном направлении проводит, значит, транзистор не исправен. Как это сделать видно на фото ниже.

Коллектор – эмиттер Эмиттер – коллектор
Проверка перехода между коллектором и эмиттером

Кратко весь процесс можно описать следующим образом. Сначала проверяются переходы «база-коллектор» «база-эмиттер» в одном направлении, потом в обратном. Далее проверяется переход «коллектор-эмиттер» в одном направлении и в другом. По результатам проверки делаются выводы о исправности транзистора. Вся проверка занимает не более 1 минуты. Проверив несколько десятков транзисторов, вы будете делать это уже на «автомате», и за более короткое время. И в заключение хочу сказать, что транзисторы необходимо проверять не только при ремонте радиотехники, но и при создании каких либо радиоэлектронных устройств. Часто бывает так, что купленный в магазине или выпаянный из вторичной платы транзистор оказывается неисправным. Кроме простых биполярных транзисторов существует множество других видов. Это однопереходные, составные и так далее. Которые могут содержать в себе дополнительно резисторы, диоды и предохранители. Методика их проверки иная. Поэтому перед проверкой сначала узнайте

характеристики транзисторов.

 


Анекдот:

Открыли супермагазин в котором есть ВСЕ: 
Приходит мужик: 
– Взвесьте мне полкило крокодильего хвоста. 
– Пожалуйста… 
Приходит другой: 
– Дайте мене 2 десятка яиц бурундука.  
– Нет проблем. 
Приходит третий: 
– Дай мене 2 кг ни%уя. 
Продавец немного растерялся – решил позвать директора, тот пришел и 

говорит: 
– Я сам обслужу этого покупателя. 
Приглашает мужика пройти с ним. Заходят они в подвал, свет выключен. 
Директор спрашивает: 
– Что вы видите??? 
Тот: 
– Ни%уя… 
Директор: 
– Здесь как раз 2 кило. Берите и пройдем в кассу!!!

     

Как проверить тарнзистор – тестирование биполярных, полевых, цифровых, однопереходных транзисторов

Прежде чем рассмотреть способы как проверить исправность транзисторов необходимо знать, как проверять исправность p-n перехода или как правильно тестировать диоды.

Именно с этого мы и начнем…

Тестирование полупроводниковых диодов

При тестировании диодов с помощью стрелочных ампервольтомметрами следует использовать нижние пределы измерений. При проверке исправного диода сопротивление в прямом направлении составит несколько сотен Ом, в обратном направлении — бесконечно большое сопротивление. При неисправности диода стрелочный (аналоговый) ампервольтомметр покажет в обоих направлениях сопротивление близкое к 0 (при пробое диода) или бесконечно большое сопротивление при разрыве цепи. Сопротивление переходов в прямом и обратном направлениях для германиевых и кремниевых диодов различно.

Проверка диодов с помощью цифровых мультиметров производится в режиме их тестирования. При этом, если диод исправен, на дисплее отображается напряжение на р-n переходе при измерении в прямом направлении или разрыв при измерении в обратном направлении. Величина прямого напряжения на переходе для кремниевых диодов составляет 0,5.

..0,8 В, для германиевых — 0,2…0,4 В. При проверке диода с помощью цифровых мультиметров в режиме измерения сопротивления при проверке исправного диода обычно наблюдается разрыв как в прямом, так и в обратном направлении из-за того, что напряжение на клеммах мультиметра недостаточно для того, чтобы переход открылся.

Как проверить исправность транзистора

Для наиболее распространенных биполярных транзисторов их проверка аналогична тестированию диодов, так как саму структуру транзистора р-n-р или n-р-n можно представить как два диода (см. рисунок выше), с соединенными вместе выводами катода, либо анода, представляющими собой вывод базы транзистора. При тестировании транзистора прямое напряжение на переходе исправного транзистора составит 0,45…0,9 В. Говоря проще, при проверке омметром переходов база-эмиттер, база-коллектор исправный транзистор в прямом направлении имеет маленькое сопротивление и большое сопротивление перехода в обратном направлении. Дополнительно следует проверять сопротивление (падение напряжения) между коллектором и эмиттером, которое для исправного транзистора должно быть очень большое, за исключением описанных ниже случаев.

Однако есть свои особенности и при проверке транзисторов. На них мы и остановимся подробнее.

Одной из особенностей является наличие у некоторых типов мощных транзисторов встроенного демпферного диода, который включен между коллектором и эмиттером, а также резистора номиналом около 50 Ом между базой и эмиттером. Это характерно в первую очередь для транзисторов выходных каскадов строчной развертки. Из-за этих дополнительных элементов нарушается обычная картина тестирования. При проверке таких транзисторов следует сравнивать проверяемые параметры с такими же параметрами заведомо исправного однотипного транзистора. При проверке цифровым мультиметром транзисторов с резистором в цепи база-эмиттер напряжение на переходе база-эмиттер будет близким или равным 0 В.

Другими «необычными» транзисторами являются составные, включенные по схеме Дарлингтона. Внешне они выглядят как обычные, но в одном корпусе имеется два транзистора, соединенные по схеме, изображенной на рис. 2. От обычных их отличает высокий коэффициент усиления — более 1000.

Тестирование таких транзисторов особенностями не отличается, за исключением того, что прямое напряжение перехода база-эмиттер составляет 1,2…1,4 В. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв.

Тестирование однопереходных и программируемых однопереходных транзисторов

Однопереходный транзистор (ОПТ) отличается наличием на его вольт-амперной характеристике участка, с отрицательным сопротивлением. Наличие такого участка говорит о том, что такой полупроводниковый прибор может использоваться для генерирования колебаний (ОПТ, туннельные диоды и др.).

Однопереходный транзистор используется в генераторных и переключательных схемах. Для начала разберем, чем отличается однопереходный транзистор от программируемого однопереходного транзистора. Это несложно:

  • общим для них является трехслойная структура (как у любого транзистора) с 2мя р-n переходами;
  • однопереходный транзистор имеет выводы, называемые база 1 (Б1), база 2 (Б2), эмиттер. Он переходит в состояние проводимости, когда напряжение на эмиттере превышает значение критического напряжения переключения, и находится в этом состоянии до тех пор, пока ток эмиттера не снизится до некоторого значения, называемого током запирания. Все это очень напоминает работу тиристора;
  • программируемый однопереходный транзистор имеет выводы, называемые анод (А), катод (К) и управляющий электрод (УЭ). По принципу работы он ближе к тиристору. Переключение его происходит тогда, когда напряжение на управляющем электроде превышает напряжение на аноде (на величину примерно 0,6 В — прямое напряжение р-n перехода). Таким образом, изменяя с помощью делителя напряжение на аноде, можно изменять напряжение переключения такого прибора т.е. “программировать” его.

Чтобы проверить исправность однопереходного и программируемого однопереходного транзистора следует измерить омметром сопротивление между выводами Б1 и Б2 или А и К для проверки на пробой. Но наиболее точные результаты можно получить, собрав схему для проверки однопереходных и программируемых однопереходных транзисторов (см. схему ниже – для ОПТ — рис. слева, для программируемого ОПТ — рис. справа).

Рис. 3

Проверка цифровых транзисторов

Рис. 4 Упрощенная схема цифрового транзистора слева, Справа – схема тестирования. Стрелка означает «+» измерительного прибора

Другими необычными транзисторами являются цифровые (транзисторы с внутренними цепями смещения). На рис 4. выше изображена схема такого цифрового транзистора. Номиналы резисторов R1 и R2 одинаковы и могут составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы.

Цифровой транзистор внешне не отличается от обычного, но результаты его «прозвонки» могут поставить в тупик даже опытного мастера. Для многих они как были «непонятными», так таковыми и остались. В некоторых статьях можно встретить утверждение – “тестирование цифровых транзисторов затруднено… Лучший вариант – замена на заведомо исправный транзистор”. Бесспорно, это самый надежный способ проверки. Попробуем разобраться, так ли это на самом деле. Давайте разберемся, как правильно протестировать цифровой транзистор и какие выводы сделать из результатов измерений.

Для начала обратимся к внутренней структуре транзистора, изображенной на рис.4, где переходы база-эмиттер и база-коллектор для наглядности изображены в виде двух включенных встречно диодов. Резисторы R1 и R2 могут быть как одного номинала, так и могут отличаться и составлять либо 10 кОм, либо 22 кОм, либо 47 кОм, или же иметь смешанные номиналы. Пусть сопротивление резистора R1 будет 10 кОм, a R2 – 22 кОм. Сопротивление открытого кремниевого перехода примем равным 100 Ом. В частности, эту величину показывает стрелочный авометр Ц4315 при измерении сопротивления на пределе х1.

В прямом направлении цепь база-коллектор рассматриваемого транзистора состоит из последовательно соединенных резистора R1 и сопротивления собственно перехода база-коллектор (VD1 на рис. 1). Сопротивлением перехода, так как оно значительно меньше сопротивления резистора R1, можно пренебречь, и этот замер даст величину, приблизительно равную значению сопротивления резистора R1, которое в нашем примере равно 10 кОм. В обратном направлении переход остается закрытым, и ток через этот резистор не течет. Стрелка авометра должна показать «бесконечность».

Цепь база-эмиттер представляет собой смешанное соединение резисторов R1, R2 и сопротивления собственно перехода база-эмиттер (VD2 на рис. 4 слева). Резистор R2 включен параллельно этому переходу и практически не изменяет его сопротивления. Следовательно, в прямом направлении, когда переход открыт, ампервольтомметр вновь покажет величину сопротивления, приблизительно равную значению сопротивления базового резистора R1. При изменении полярности тестера переход база-эмиттер остается закрытым, и ток протекает через последовательно соединенные резисторы R1 и R2. В этом случае тестер покажет сумму этих сопротивлений. В нашем примере она составит приблизительно 32 кОм.

Как видите, в прямом направлении цифровой транзистор тестируется так же, как и обычный биполярный транзистор, с той лишь разницей, что стрелка прибора показывает значение сопротивления базового резистора. А по разности измеренных сопротивлений в прямом и обратном направлениях можно определить величину сопротивления резистора R2.

Теперь рассмотрим тестирование цепи эмиттер-коллектор. Эта цепь представляет собой два встречно включенных диода, и при любой полярности тестера его стрелка должна была бы показать «бесконечность». Однако, это утверждение справедливо только для обычного кремниевого транзистора.

В рассматриваемом случае из-за того, что переход база-эмиттер (VD2) оказывается зашунтированным резистором R2, появляется возможность открыть переход база-коллектор при соответствующей полярности измерительного прибора. Измеренное при этом сопротивление транзисторов имеет некоторый разброс, но для предварительной оценки можно ориентироваться на значение примерно в 10 раз меньшее сопротивления резистора R1. При смене полярности тестера сопротивление перехода база-коллектор должно быть бесконечно большим.

На рис. 4 справа подведен итог вышесказанному, которым удобно пользоваться в повседневной практике. Для транзистора прямой проводимости стрелка будет означать «-» измерительного прибора.

В качестве измерительного прибора необходимо использовать стрелочные (аналоговые) АВОметры с током отклонения головки около 50 мкА (20 кОм/В).

Следует отметить, что вышеизложенное носит несколько идеализированный характер, и на практике, могут быть ситуации, требующие логического осмысления результатов измерений. Особенно в случаях, если цифровой транзистор окажется дефектным.

Как проверить полевой МОП-транзистор

Существует несколько разных способов проверки полевых МОП-транзисторов. Например такой:

  • Проверить сопротивление между затвором — истоком (3-И) и затвором — стоком (3-С). Оно должно быть бесконечно большим.
  • Соединить затвор с истоком. В этом, случае переход исток — сток (И-С) должен прозваниваться как диод (исключение для МОП-транзисторов, имеющих встроенную защиту от пробоя — стабилитрон с определенным напряжением открывания).

Самой распространенной и характерной неисправностью полевых МОП-транзисторов является короткое замыкание между затвором — истоком и затвором — стоком.

Другим способом является использование двух омметров. Первый включается для измерения между истоком и стоком, второй — между истоком и затвором. Второй омметр должен иметь высокое входное сопротивление — около 20 МОм и напряжение на выводах не менее 5 В. При подключении второго омметра в прямой полярности транзистор откроется (первый омметр покажет сопротивление близкое к нулю), при изменении полярности на противоположную транзистор закроется. Недостаток этого способа — требования к напряжению на выводах – второго омметра. Естественно, цифровые мультиметры для этих целей не подходит. Это ограничивает применение такого способа проверки.

Еще один способ похож на второй. Сначала кратковременно соединяют между собой выводы затвора и истока для того, чтобы снять имеющийся на затворе заряд. Далее к выводам истока-стока подключают омметр. Берут батарейку напряжением 9 В и кратковременно подключают ее плюсом к затвору, а минусом — к истоку. Транзистор откроется и будет открыт некоторое время после отключения батарейки за счет сохранения заряда. Большинство полевых МОП-транзисторов открывается при напряжении затвор-исток около 2 В.

При тестировании полевых МОП-транзисторов следует соблюдать особую осторожность, чтобы не вывести его из строя транзистор статическим электричеством.

Как определить структуру и расположения выводов транзисторов, тип которых неизвестен

При определении структуры транзистора, тип которого неизвестен, следует путем перебора шести вариантов – определить вывод базы, а затем измерить прямое напряжение на переходах. Прямое напряжение на переходе база-эмиттер всегда на несколько милливольт выше прямого напряжения на переходе база-коллектор (при пользовании стрелочного мультиметра сопротивление перехода база-эмиттер в прямом направлении несколько выше сопротивления перехода база-коллектор). Это связано с технологией производства транзисторов, и правило применимо к обыкновенным биполярным транзисторам, за исключением некоторых типов мощных транзисторов, имеющих встроенный демпферный диод. Полярность щупа мультиметра, подключенного при измерениях на переходах в прямом направлении к базе транзистора укажет на тип транзистора: если это «+» — транзистор структуры n-p-n, если «-» — структуры р-n-р.

Как проверить биполярный транзистор на пригодность обычным мультиметром, тестером.

Иногда возникает необходимость в проверке биполярного транзистора на его пригодность. Это легко можно сделать с помощью обычного мультиметра, электронного тестера даже самой простой модели типа DT830. Как известно, биполярный транзистор представляет собой полупроводник, имеющий три вывода – эмиттер, коллектор и база.

Электротехнически биполярный транзистор можно представить как два диода. Причем, при одной проводимости (n-p-n) эти диоды как бы соединены одними своими полярностями (плюсами, и это база), а при другой проводимости (p-n-p), противоположными полярностями (минусами, это также база). И по сути вся проверка биполярного транзистора сводится к двум типам измерения – это наличие нормальной полупроводимости у переходов база-эмиттер и база-коллектор, и наличие нужного коэффициента усиления данного транзистора.

Для тех кто не знает напомню, что основная функциональная задача транзистора является усиление тока. То есть, пропускание небольших токов через база-эмиттерный переход приводит к тому, что на переходе эмиттер-коллектор можно получить токи в десятки-тысячи раз больше. Причем имеется прямая зависимость, чем больше ток будет проходит через базу, тем больше тока мы получим на коллекторе. Но это усиление тоже не бесконечное.

У маломощных биполярных транзисторов коэффициент усиления может быть от десятков до тысяч раз. Чем мощнее транзистор, тем больший ток он может через себя пропустить, но при этом обычно жертвуя этим самым коэффициентом усиления. У мощных транзисторов этот коэффициент усиления обычно не превышает десятков, реже сотен раз.

Теперь вернемся к проверке биполярного транзистора обычным мультиметром. Первым вариантом будет просто проверить на транзисторе два полупроводящих перехода. Это переход база-эмиттер и база коллектор. Берем мультиметр, колесо выбора измерения переводим на диод и измеряем. Если Вы не знаете где какой вывод у транзистора, то без справочника тут не обойтись. Просто через поиск картинок в интернете набираете «цоколевка транзистора (пишем его название)» и смотрите результаты.

Когда вы знаете где, какие выводы, то еще нужно знать тип проводимости транзистора (n-p-n или p-n-p). Для тех кто не вкурсе – это, проще говоря, либо два диода направлены в одну сторону или же в противоположную. Опять же, через поиск в интернете набираем «проводимость транзистора (пишем его название)». Хотя можно просто, зная где у биполярного транзистор база, сначала одним щупом мультиметра прикоснутся к базе, а вторым к эмиттеру и коллектору. Если измерительный прибор ничего не показывает, то просто поменять местами щупы измерителя. Если транзистор работоспособен, то на экране электронного тестера должно отобразится падение напряжения перехода, которое равно около 600-700 милливольт. На переходах база-эмиттер и база коллектор эти значения падения напряжения могут немного отличаться, это нормально.

Теперь, что мы увидим на мультиметре в случае если транзистор неисправен. Возможен полный или частичный пробой. При полном пробое переходы либо вовсе перегорают (один или сразу два) или наоборот, становятся полными проводниками. То есть, в одном случае полупроводниковый переход разрывается, контакта нет, электронный тестер ничего не покажет. Во втором случае переход начинает проводит в обе стороны, превращаясь из полупроводника в полный проводник (хотя имеющее уже свое какое-то сопротивление). Тут мультиметр должен показать нули, или около того. Если же биполярный транзистор пробивается частично, то в этом случае мы на экране измерительного прибора можем увидеть не нормальное падение напряжения на переходах (значительно больше или меньше нормальных значений). Этот транзистор будет работать, но уже не так как нужно изначально. Его необходимо заменить на заведомо работоспособный.

Мультиметр также позволяет измерить коэффициент усиления биполярного транзистора. И это второй способ проверки биполярного транзистора на пригодность.  Для этого на электронном тестере предусмотрен специальный разъем. Для проверки нужно свой транзистор вставить в нужные гнезда (соблюдая цоколевку и тип проводимости). Переводим колесо выбора измерения мультиметра в положение hFE. Если биполярный транзистор рабочий, то на экране тестера мы увидим реальный коэффициент усиления данного элемента. Если же транзистор неисправен, то измерительный прибор ничего не покажет.

И еще одно замечание, которое следует учесть. Новичок может вначале подумать, что проверить транзисторные переходы база-эмиттер и база-коллектор можно через измерение по сопротивлению. По идее это логично. Но технически это сделать не получится (по крайней мере на тех мультиметрах, у которых измерение диода вынесено на отдельный селектор). Дело в том, что в самом электронном тестере при измерении малых сопротивлений на щупы подается всего лишь 0,5 вольта. Для открытия кремниевых полупроводников (которым и является транзистор, диод и т.д.) нужно не менее 0,6 вольта. И получается что измеряя даже рабочий полупроводник через сопротивление тестер нам ничего не покажет. Когда же мы проверяем полупроводники через диоды, то на щупы измерителя подается уже 2,5 вольта, что вполне хватает для проведения измерения. Так что учтите этот момент.

P.S. Как видно проверить биполярный транзистор не составляет большого труда. Хотя в высокоточных схемах даже работоспособный транзистор, который имеет значительные отклонения в своих параметра, может работать некорректно. И тут уж такая проверка мультиметром не выявит неисправность. В этом случае нужно искать дефективный элемент на самой схеме при ее работе или просто заменять подозрительные компоненты на запасные, заведомо исправные.

Проверить транзистор мультиметром прозвонкой на исправность: биполярный, полевой, составной


Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром.

Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.


Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).


Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Правила безопасной работы

Мосфеты очень уязвимы по отношению к статическому электричеству. В этом случае может произойти пробой. Для того, чтобы этого не случилось, нужно при помощи проведения тестирования его удалять.

При пайке возможна ситуация, когда тепло, попадающее на транзистор, приведёт к его порче. В этом случае нужно обеспечить теплоотвод. Для этого достаточно придерживать выводы транзистора плоскогубцами в процессе пайки.

Полевики имеют широкое распространение в современных электронных приборах. Когда происходит поломка, необходимо знать, как проверить мосфет. Выяснить, исправен ли он, возможно, если использовать для этого мультиметр.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.


Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.


Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.


Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.


Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Основные причины неисправности

Наиболее часто встречающиеся причины выхода из рабочего состояния триодного элемента в электронной схеме следующие:

  1. Обрыв перехода между составными частями.
  2. Пробой одного из переходов.
  3. Пробой участка коллектора или эмиттера.
  4. Утечка мощности под напряжением цепи.
  5. Видимое повреждение выводов.

Характерными внешними признаками такой поломки являются почернение детали, вспучивание, появление черного пятна. Поскольку эти изменения оболочки происходят только с мощными транзисторами, то вопрос диагностики маломощных остается актуальным.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.


Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Советы

  1. Существует множество способов определения неисправности, но для начала нужно разобраться в строении самого элемента, и четко понимать конструкционные особенности.
  2. Выбор прибора для проверки – это важный момент, касающийся качества результата. Поэтому при недостатке опыта не стоит ограничиваться подручными средствами.
  3. Проводя проверку, следует четко понимать причины выхода из строя тестируемой детали, чтобы не вернуться со временем к тому же состоянию неисправности бытовой электротехники.

Как проверять на исправность полевые транзисторы без тестера | Электронные схемы

как проверять полевые транзисторы

как проверять полевые транзисторы

Полевые транзисторы можно проверять на исправность очень простым способом,которому не нужны мультиметр или тестер.Проверять буду два вида полевых транзисторов: с изолированным затвором и с затвором на основе p-n перехода.

Проверка мосфета с изолированным затвором.У таких транзисторов между затвором и истоком есть конденсатор,его емкость указывают в даташитах как Ciss input.У транзистора irf3205 емкость этого конденсатора равна около 3247 пФ. Если начать заряжать этот конденсатор,транзистор постепенно начнет открываться и сопротивление канала сток-исток начнет уменьшаться,и лампа накаливания начнет светить.

как проверять мосфеты с помощью лампочки и источника питания

как проверять мосфеты с помощью лампочки и источника питания

Подключаем плюс к лампе и цепляем лампу на сток,минус цепляем на исток,питание 10 Вольт.Вначале лампа не светит.

заряжаю входную емкость полевого mosfet транзистора

заряжаю входную емкость полевого mosfet транзистора

Далее касаемся пальцем затвора и стока,конденсатор заряжается и лампа светит.

проверка на исправность полевых транзисторов без мультиметра

проверка на исправность полевых транзисторов без мультиметра

Чтобы выключить лампочку,касаемся пальцем затвора и истока.Конденсатор будет разряжен и лампа не светит.Вот и вся проверка.Если не разрядить конденсатор,то лампа будет светить пока этот конденсатор не разрядиться.

Проверяю полевой транзистор с затвором на p-n переходе.Таким транзистором является КП103. Берем светодиод и подключаем анодом к стоку а катодом к минус питания.Плюс питания цепляем на исток,питание 5 Вольт.Светодиод будет светить.

как проверить полевой транзистор с затвором на p-n переходе

как проверить полевой транзистор с затвором на p-n переходе

Теперь кратковременно касаемся пальцем только до затвора и светодиод погаснет примерно на одну секунду если убрать палец.Если есть такая реакция,значит транзистор исправен.

транзистор кп103 чует проводку в стене и другие источники помех

транзистор кп103 чует проводку в стене и другие источники помех

Затворы таких транзисторов очень чувствительны к различным источникам помех,такие как фон 50 Гц или высоковольтные разряды.На транзисторе кп103 изготавливают детекторы для поиска проводки в стене.Но надо учесть,что затворы также чувствительны к статике,поэтому желательно перед касанием дотронуться пальцем до заземления или до батареи центрального отопления. Таким способом нельзя проверять транзисторы типа кп350,кп305. Для их проверки уже нужен мультиметр или тестер

Как проверить транзистор

Это самый быстрый и простой способ проверить транзистор. Здесь не нужно возиться с распиновкой или идентификацией базы, коллектора и эмиттера. Не возитесь с тестовым измерителем и не пытайтесь удерживать один провод на одном соединении, касаясь другого.

Если вы хотите узнать, как проверить транзистор с помощью мультиметра, я также показал этот метод позже в этой статье.

Самый простой способ – использовать это устройство. LCR-T4 ESR Meter Транзисторный тестер Емкость диодного триода Индуктивность SCR 328 ЖК-дисплей MOS PNP NPN (Застежка батареи с футляром).

Это лучшее устройство, которое я когда-либо покупал для своего хобби конструирования электронных проектов. Это также один из самых дешевых – менее пятнадцати фунтов.

Я купил их в комплекте, но вы также можете купить их в готовом виде. О версии комплекта можно прочитать здесь. Он не представляет особой сложности и может быть собран за несколько минут при тщательной пайке.

Что вы получите в итоге, соберете ли вы его сами или купите в готовом виде, так это вот что.

Есть несколько версий этого с тремя винтовыми клеммами для подключения.Я предпочитаю версию гнезда с нулевым усилием вставки просто потому, что ее проще использовать.

Вокруг гнезда с нулевым усилием вставки пронумерованы клеммы, как показано на рисунке ниже.

Не имеет значения, к каким терминалам вы подключаетесь. Просто убедитесь, что вы подключили каждую ножку транзистора к клеммам 1, 2 и 3. Тестер сделает все остальное и определит за вас клеммы, а также проверит и расскажет, что это за транзистор. Он укажет, является ли устройство PNP или NPN, пороговое напряжение эмиттера и коэффициент усиления тока.

Просто вставьте транзистор и бросьте рычаг. Затем просто нажмите кнопку тестирования. Это так просто.

Здесь вы можете увидеть тестер с транзистором 2N3906 PNP. С помощью этого устройства легко просто вставить его в верхний правый угол розетки, так как три клеммы 1,2 и 3 расположены рядом друг с другом. Как вы можете видеть, устройство работает и было идентифицировано как транзистор PNP с выводом из 1 E 2 B 3 C. «B = 284» во второй строке дисплея – это текущий коэффициент усиления или коэффициент усиления. более широко известен.Я думаю, что используется буква «B», так как это также греческая буква B или бета. Другое число «677 мВ» – это пороговое напряжение эмиттера.

Здесь представлен тестер с транзистором 2N3904 NPN. Он идентифицирует контакт как 1 E 2 B 3 C. Просто чтобы доказать, что ему все равно, какие ножки подключаются, где я повернул устройство и повторно протестировал его.

Как вы можете видеть, вывод теперь показывает 1 C 2 B 3 E.

Здесь тестируется 2N3819, обычный N-канальный JFET.

На дисплее показано, что это полевой транзистор типа N с выводом из 1 истока, 2 затвора и 3 стока.другие числа показывают емкость затвора и пороговое напряжение затвора.

Как проверить транзистор с помощью мультиметра

Как видите, это не намного проще, однако, если вы ищете, как проверить транзистор, и у вас нет этого набора, вы можете сделать это с помощью мультиметр с диодным тестом. Большинство мультиметров имеют эту функцию.

Перед тем, как начать, вам нужно знать несколько вещей.

1 Убедитесь, что вы знаете, что это за устройство. NPN является более распространенным, другой тип – PNP.Самый простой способ – посмотреть номер на устройстве и найти его в Интернете.

2 Вам также необходимо знать штырь устройства. Вот какие ноги являются базовым коллектором и эмиттером. Самый простой способ – снова поискать его в Интернете.

3. Получив штырь, нарисуйте его. Это значительно упростит идентификацию потенциальных клиентов во время тестирования.

Вам необходимо знать распиновку, если вы проверяете транзистор с помощью мультиметра.

Установите мультиметр на диодный диапазон.Это будет выглядеть примерно так, как показано ниже.

Тестирование транзистора NPN

Для наших целей тестирования мы тестируем транзистор, как если бы это были 2 диода, как показано на рисунке ниже. Возможно, вы слышали об этой аналогии раньше.

Убедитесь, что провода правильно подключены к вашему глюкометру. Я видел людей, у которых красный провод был подключен к черному выводу.

1. Подключите красный положительный вывод к базе транзистора.

2. Прикоснитесь к черному отрицательному проводу эмиттера, и вы должны получить показание обрыва цепи.

3. Прикоснитесь к черному отрицательному проводу коллектора, и вы должны получить показание обрыва цепи.

Обрыв цепи будет выглядеть так же, как если бы он не был подключен ни к чему обрыву цепи, подобному этой картинке.

4. Теперь подключите черный отрицательный провод к базе транзистора.

5. Коснитесь красного плюсового провода на эмиттере, и на этот раз вы должны получить показания.

6. Коснитесь красного плюсового провода на коллекторе, и вы также должны получить показания.

Под чтением я подразумеваю что-то вроде 0,740, как показано на рисунке ниже.

Последняя проверка – подсоединить щупы измерителя через коллектор и эмиттер. Это также должно считаться обрывом цепи в любом случае, когда провода подключены.

Проверка транзистора PNP

Еще раз убедитесь, что провода правильно подключены к вашему глюкометру.

1. Подключите черный отрицательный вывод к базе транзистора.

2. Коснитесь красного плюсового провода на эмиттере, и вы должны получить показание обрыва цепи.

3. Коснитесь красного плюсового провода на коллекторе, и вы должны получить показание обрыва цепи.

Обрыв цепи будет считаться таким же, как если бы он не был подключен к какой-либо разомкнутой цепи, подобной этой картинке.

4. Теперь подключите красный положительный провод к базе транзистора.

5. Коснитесь черного отрицательного вывода эмиттера, и на этот раз вы должны получить показания.

6. Коснитесь черного негатива на коллекторе, и вы также должны получить показания.

Под чтением я подразумеваю что-то вроде 0,740, как показано на рисунке ниже.

Последняя проверка – подсоединить щупы измерителя через коллектор и эмиттер. Это также должно считаться обрывом цепи в любом случае, когда провода подключены.

Самая большая проблема, с которой я сталкиваюсь при использовании этого метода, – это попытка удерживать щупы мультиметра устойчиво во время проверки показаний. Я обнаружил, что намного проще использовать миниатюрные зажимы-крокодилы и закрепить их на одном зажиме. Это также помогает использовать изолированные, чтобы избежать короткого замыкания во время тестирования.

Я уверен, вы согласитесь, что это не так просто, как использовать тестер транзисторов.

Тест транзисторов для идентификации клемм, типа и состояния. – Все о технике

Как выполнить тест транзистора для определения клемм, типа (NPN или PNP) и состояния (хорошее или плохое)

Как мы знаем, транзистор является наиболее часто используемым компонентом в любом проекте, схеме или устройстве, но вы не можете использовать его до испытания транзистора. Самая важная задача в любом проекте или построении схемы – это знать « Как выполнить тест транзистора ».Этот тест транзистора поможет вам в идентификации терминала , NPN / PNP и Хорошие / поврежденные транзисторы .

Этот тест применим только для транзисторов BJT . Итак, перед любым тестом транзистора нам нужно узнать о структуре биполярного транзистора .

Транзистор (БЮТ)

BJT (Bipolar Junction Transistor) – это трехконтактный полупроводниковый прибор. Он состоит из двух переходных диодов P-N , соединенных вместе, образующих три слоя, известных как Base, Emitter & Collector .

Существует два типа транзисторов в зависимости от полярности слоев.

НПН

В этом BJT Base , то есть слой , легированный P, расположен между N-легированными слоями , известными как Collector & Emitter .

Разница между коллектором и эмиттером состоит в том, что эмиттер представляет собой сильно легированный слой .

NPN соответствует двум диодам, соединенным вместе клеммой анода, как показано на рисунке ниже.

Также читайте: Разница между силовым трансформатором и распределительным трансформатором

PNP

PNP-транзистор состоит из слоя , легированного N, ( Base ), зажатого между слоями , легированного P, , известного как Collector & Emitter .

Транзистор

PNP соответствует двум диодам, катодный вывод этих двух диодов сплавляется вместе, как показано на рисунке ниже.

Также прочтите: Как проверить реле?

В этом тесте транзисторов используется функция проверки диодов мультиметра.Итак, для этого теста транзистора вам нужно знать о тесте диода .

режим проверки диодов:

Прямое смещение P-N переход: мультиметр считывает напряжение и подает звуковой сигнал.

Соединение P-N с обратным смещением: мультиметр показывает OL (превышение предела)

Идентификация терминала

Первым шагом в тесте транзистора является идентификация выводов (основание , эмиттер и коллектор ) транзистора.

Для начала нужно обозначить выводы транзистора номерами 1,2,3 . Для этого возьмите транзистор плоской стороной к себе и начните с левой стороны, как показано на рисунке ниже.

Читайте также: Тиристор | Его работа, типы и применение

Идентификация базового терминала
  • Перевести мультиметр в режим проверки диодов .
  • Поместите черный (общий) зонд и красный зонд на любые две клеммы одновременно.
  • Проверьте все возможные комбинации клемм, например, 1-2 , 1-3 , 2-1 , 2-3 , 3-1 , 3-2 .
  • Две из этих комбинаций должны пройти проверку диодов (показания показывают напряжение от 0,5 В до 0,8 В ), общая клемма в этих двух комбинациях является клеммой Base .
  • Предположим, 2-1 и 2-3 комбинации проходят проверку диода, тогда 2 является базовым выводом.

Идентификация излучателя и коллектора

При успешной идентификации базового терминала два терминала ( 1 и 3 ) остаются неизвестными. если вы идентифицируете второй терминал, впоследствии вы также узнаете и третий терминал.

  • Установите мультиметр в режим проверки диодов .
  • Запишите показания напряжения клеммы базы с обеих клемм 1 и 3 по очереди.
  • Клемма, имеющая на более высокое напряжение между ними, – это эмиттер .
  • Клемма с более низким напряжением по сравнению с другим Коллектор .

В этом примере предположим, что значение напряжения 2-1 = 0,6 В и 2-3 Значение напряжения = 0,7 В

  • Итак, эмиттер является клеммой 3, а коллектор – клеммой 1.

Также прочтите: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

Тип: NPN или PNP

Следующим шагом в тесте транзистора является определение типа передатчика: NPN или PNP .

Этот шаг зависит от результатов вышеуказанного теста транзистора.

Тест NPN
  • Перевести мультиметр в режим проверки диодов .
  • Поместите красный зонд (положительный) на Базовый терминал и черный (общий или отрицательный) терминал на Эмиттер и Коллектор по очереди.
  • Если они проходят проверку диодов, это означает, что переходы имеют прямое смещение и это транзистор NPN .

Если вы не знаете терминалы.

  • Установите мультиметр в режим проверки диодов .
  • Проверьте все шесть комбинаций клемм для проверки диодов.
  • Обратите внимание на две комбинации , , у которых тест диодов положительный (мультиметр издает звуковой сигнал или показывает напряжение).
  • Если общая клемма в этих двух комбинациях подключена к красному щупу мультиметра, транзистор NPN .
Тест PNP Тест транзистора

PNP немного отличается от теста транзистора NPN .

  • Переведите мультиметр в режим проверки диодов .
  • Соедините датчик Black (общий) с основанием Base и датчик Red с эмиттером и коллектором по очереди.
  • Если эти обе комбинации проходят проверку диодов, транзистор PNP .

Если вы не знаете терминалы.

  • Проверьте все (шесть) возможных комбинаций клемм для проверки диода .
  • Обратите внимание на две комбинации , которые проходят проверку диодов.
  • Если общая клемма в этих двух комбинациях подключена к Black или общему щупу мультиметра, то используется транзистор PNP .

Проверка транзистора (исправна или повреждена)

Этот тест транзистора помогает нам определить, является ли транзистор исправным или поврежденным .

Установите мультиметр в режим проверки диодов и проверьте все возможные комбинации для проверки диодов. Запишите показания для каждой комбинации.

Если транзистор соответствует показаниям, приведенным в таблице ниже, это хороший .

Если показания не совпадают с приведенной выше таблицей, транзистор поврежден и его необходимо заменить .

Вы также можете прочитать:

Проверка транзистора цифровым мультиметром

Несколько неисправностей, которые могут возникнуть в цепи, и сопровождающие их симптомы показаны на рисунке ниже.Симптомы показаны в виде неверных измеренных напряжений. Если схема транзистора работает неправильно, рекомендуется проверить, что VCC и земля подключены и работают. Простая проверка в верхней части резистора коллектора и на самом коллекторе быстро установит, присутствует ли VCC и работает ли транзистор нормально, или находится в состоянии отсечки или насыщения.

Если он в отключенном состоянии, напряжение на коллекторе будет равно VCC; если он находится в состоянии насыщения, напряжение коллектора будет близко к нулю.Еще одно ошибочное измерение можно увидеть, если в тракте коллектора есть обрыв. Термин с плавающей точкой относится к точке в цепи, которая электрически не связана с землей или «постоянным» напряжением. Обычно очень малые и иногда колеблющиеся напряжения в диапазоне от мВ до мВ обычно измеряются с плавающей запятой. Неисправности на рисунке ниже являются типичными, но не отражают все возможные неисправности, которые могут произойти.

Проверка транзистора с помощью цифрового мультиметра

Цифровой мультиметр может использоваться как быстрый и простой способ проверить транзистор на наличие открытых или коротких переходов.Для этого теста вы можете рассматривать транзистор как два диода, подключенных, как показано на рисунке ниже, для транзисторов npn и pnp. Переход база-коллектор – это один диод, а переход база-эмиттер – другой.

Хороший диод покажет чрезвычайно высокое сопротивление (или открытый) при обратном смещении и очень низкое сопротивление при прямом смещении. Неисправный открытый диод покажет чрезвычайно высокое сопротивление (или открыт) как для прямого, так и для обратного смещения. Неисправный закороченный или резистивный диод покажет нулевое или очень низкое сопротивление как для прямого, так и для обратного смещения.Открытый диод – наиболее частый тип отказа. Поскольку pn-переходы транзистора фактически являются диодами, применимы те же основные характеристики.

Положение для проверки диода цифрового мультиметра

Многие цифровые мультиметры (DMM) имеют положение для проверки диодов, которое обеспечивает удобный способ проверки транзистора. Типичный цифровой мультиметр, показанный на рисунке ниже, имеет небольшой диодный символ, обозначающий положение функционального переключателя. В режиме проверки диодов измеритель выдает внутреннее напряжение, достаточное для прямого и обратного смещения транзисторного перехода.

Когда транзистор исправен

На рисунке (a) красный (положительный) вывод измерителя подключен к базе npn-транзистора, а черный (отрицательный) вывод подключен к эмиттеру для прямого смещения перехода база-эмиттер. Если переход в порядке, вы получите показание от 0,6 В до 0,8 В, при этом 0,7 В является типичным для прямого смещения. На рисунке (b) выводы переключаются для обратного смещения перехода база-эмиттер, как показано.Если транзистор работает правильно, вы обычно получаете индикацию OL. Только что описанный процесс повторяется для перехода база-коллектор, как показано на рисунках (c) и (d). Для pnp-транзистора полярность выводов измерителя меняется на обратную для каждого теста.

Когда транзистор неисправен

Когда транзистор вышел из строя из-за открытого перехода или внутреннего соединения, вы получаете показание напряжения холостого хода (OL) как для прямого, так и для обратного смещения для этого перехода, как показано на рисунке (a).Если соединение закорочено, измеритель показывает 0 В как при прямом, так и при обратном смещении, как указано в части (b). На передней панели некоторых цифровых мультиметров имеется тестовый разъем для проверки транзистора на значение hFE (β DC ). Если транзистор неправильно вставлен в гнездо или если он не функционирует должным образом из-за неисправного перехода или внутреннего соединения, на обычном измерителе будет мигать 1 или отображаться 0. Если значение β DC находится в пределах нормального диапазона для отображается конкретный транзистор, устройство работает нормально.Нормальный диапазон β DC можно определить из таблицы данных.

Проверка транзистора с помощью функции ОМ

Цифровые мультиметры

, у которых нет положения для проверки диодов или гнезда hFE, можно использовать для проверки транзистора на обрыв или короткое замыкание, установив функциональный переключатель в положение Ом. Для проверки прямого смещения исправного pn перехода транзистора вы получите показание сопротивления, которое может варьироваться в зависимости от внутренней батареи измерителя. Многие цифровые мультиметры не имеют достаточного напряжения в диапазоне Ом для полного прямого смещения перехода, и вы можете получить показание от нескольких сотен до нескольких тысяч Ом.

При проверке обратного смещения исправного транзистора вы получите индикацию выхода за пределы допустимого диапазона на большинстве цифровых мультиметров, потому что обратное сопротивление слишком велико для измерения. Индикацией выхода за пределы допустимого диапазона может быть мигающая цифра 1 или отображение тире, в зависимости от конкретного цифрового мультиметра.

Даже если вы не можете получить точные показания прямого и обратного сопротивления на цифровом мультиметре, относительных показаний достаточно, чтобы указать на исправное функционирование PN перехода транзистора. Индикация выхода за пределы диапазона показывает, что обратное сопротивление очень велико, как и следовало ожидать.Значение от нескольких сотен до нескольких тысяч Ом для прямого смещения указывает на то, что прямое сопротивление мало по сравнению с обратным сопротивлением, как и следовало ожидать.

Как проверить транзисторы | Hackaday.io

Первый способ

Первый метод, который я использую чаще всего, – это светодиодный метод. Итак, предположим, что у вас нет мультиметра, просто наденьте источник напряжения от 5 до 12 В.Это может быть даже батарея на 9 В или что-то подобное.

  • Подключите + к коллектору,
  • Подключите анод светодиода к эмиттеру
  • И – в катоде светодиода, как на картинке ниже.

Эта установка выполняется очень быстро, и вам не нужно ничего паять. Просто используйте зажим из кожи аллигатора или что-то подобное, как я использую в этом примере.

Затем откройте переход транзистора, коснувшись пальцем между коллектором и базой вот так.Помогает, если пальцы не очень сухие.

Или просто прикоснувшись к базе. Ваше тело обычно ведет себя как антенна и принимает переменные милливольты из окружающей среды. Скорее всего, потенциал вашего тела значительно отличается от напряжения источника питания, и вам нужно всего около 0,6 В, чтобы открыть соединение база-эмиттер через сопротивление вашей кожи.

Для смещения PNP-транзистора в этом режиме вам необходимо одновременно коснуться базы и земли, например:

Я успешно использовал этот метод, пока не сжег ни одного транзистора.Я думаю, это объясняется очень высоким сопротивлением кожи. Что-то между 200 кОм и 10 МОм. Это допускает только очень небольшой ток база-эмиттер, и транзистор никогда не будет насыщаться.

Я понимаю, что у этого метода есть свои недостатки, и он может подвергнуть компонент небольшой вероятности возможных повреждений от электростатического разряда. Случайное прикосновение + к базе NPN-транзистора определенно могло поджарить его и светодиод. С другой стороны, он очень нагляден и хорош для демонстрационных целей, особенно для начинающих и студентов.


Project 31 – полнофункциональный тестер транзисторов

Project 31 – полнофункциональный тестер транзисторов
Elliott Sound Products пр.31

© Октябрь 1999 г., Род Эллиотт (ESP)

верхний
Введение

При создании усилителей или любых других силовых каскадов часто необходимо тестировать транзисторы, чтобы убедиться, что они (все еще) работают, или для некоторых эзотерических конструкций может даже потребоваться сопоставление определенных характеристик.Не думайте, что, поскольку ваш мультиметр (или небольшие «автоматические» тестеры компонентов) может тестировать транзисторы, он может тестировать силовые устройства, потому что это не так. Ток коллектора обычно ограничен максимум несколькими миллиампер, и это совершенно бесполезно для силового транзистора, который может не показывать никакого полезного усиления, пока не будет проводить где-то между 10 и 100 мА.

Представленный здесь дизайн – это именно то, что вам нужно, и дает возможность протестировать:

  • Коэффициент усиления (также обозначается как h FE или бета)
  • Коэффициент усиления при различных токах коллектора до 5А
  • Напряжение пробоя (с или без Rbe – значение выбирается)

Как и в случае с некоторыми другими моими проектами, это не так уж и дешево в строительстве, но если у меня есть собственный блок, он прослужит долгие годы.(На самом деле, мой у меня был так долго, что в источнике переменного высокого напряжения использовался клапан – его только недавно заменили транзистором.) Эта конструкция на самом деле лучше, чем мой существующий блок – он имеет больший блок питания и более гибкая в эксплуатации.

В конце статьи есть пара фотографий моего устройства, так что вы можете получить некоторое представление о том, как он может выглядеть, когда закончите. Имейте в виду, что этот тестер отличается от моего (у него больше функций), поэтому не пытайтесь проводить прямое сравнение переключения.У меня (к сожалению) нет отдельных переключателей диапазонов тока базы и коллектора, поэтому он менее полезен. Может, в следующий раз мне придется сделать такое.

Предупреждение
С самого начала я должен сделать одно предостережение. Как и любое подобное коммерческое предложение, этот тестер способен взорвать транзистор так же, как и проверить его. Пользователь полностью отвечает за правильность настроек перед нажатием переключателя усиления.Автор не несет абсолютно никакой ответственности за любой ущерб, прямой или косвенный, который может быть нанесен тестируемому устройству или оператору в результате использования или невозможности использования описанного проекта. Например, если вы оставите базовый ток, установленный на 10 мА, а диапазон тока коллектора (скажем) 1 А или более, когда вы попытаетесь проверить транзистор с малым сигналом, он, вероятно, немедленно выйдет из строя. Всегда проверяйте диапазоны перед нажатием кнопки тестирования!


Описание

Основной метод проверки усиления транзистора показан на рисунке 1, и хотя он не идеален, его гораздо проще реализовать, чем с использованием фиксированного тока коллектора.Результаты более чем приемлемы, и из-за конструкции этого устройства можно наблюдать падение усиления и другие нежелательные явления вплоть до максимального тока.


Рисунок 1 – Базовый метод тестирования транзисторов

Переключение диапазонов последнего блока и другие функциональные блоки показаны на рисунке 2, и легко заметить, что он почти полностью состоит из переключателей и резисторов. Печатная плата не требуется, поскольку большинство резисторов следует подключать непосредственно к переключателям или их можно установить на бирках, как это было в моем оригинальном устройстве.


Рисунок 2 – Переключение функций тестера

Диапазон измерителя простирается от максимальной чувствительности измерителя в 100 мкА с шагом декады до 1А. Максимальный диапазон был намеренно ограничен до 5А – даже при этом токе транзистор будет рассеивать до 20 Вт в худшем случае, поэтому тестируемое устройство следует установить на радиаторе, или тест должен быть очень коротким, в противном случае транзистор перегреется и может (будет) разрушен или серьезно поврежден.

Номинальная мощность резисторов


Значения мощности для различных шунтирующих резисторов измерителя важны. Резистор на 2 Ом (диапазон 5 А) лучше всего сделать из пяти резисторов 10 Ом 10 Вт, включенных параллельно. Максимальное рассеивание составит около 70 Вт, но оно будет использоваться только в течение короткого времени, иначе транзистор перегреется и выйдет из строя. Установите резисторы на секции радиатора с помощью алюминиевого кронштейна, убедившись, что кронштейн и радиатор имеют хороший тепловой контакт.Используйте термопасту, чтобы отвести как можно больше тепла. Не используйте тот же радиатор, что и регулятор мощности. Дополнительное тепло от резисторов слишком сильно повысит температуру и поставит под угрозу срок службы полупроводников.

Резистор 10 Ом (диапазон 1 А) также должен быть 10 Вт, но не требует радиатора (хотя установка его с другими не повредит). Держите его подальше от других компонентов, потому что он сильно нагреется.

100 Ом (диапазон 100 мА) может быть 5-ваттным блоком и будет работать довольно прохладно (только 1.Рассеиваемая мощность 6 Вт в худшем случае), а все остальные резисторы должны быть типа 1/2 Вт. Поскольку абсолютная точность не слишком важна, допускается допуск 5%, но при желании можно использовать 1%.

Функции переключателей
Ниже перечислены различные переключатели и функции:


Рисунок 3 – Переключение NPN / PNP

На рисунке 3 показано переключение для NPN и PNP (полярность должна быть обратной), а также измеритель и его калибровочные резисторы и защитные диоды.Они будут проводить, когда напряжение на измерителе превысит 0,65 В, поэтому, если используется такое же движение измерителя (или примерно такое же), возможен максимальный ток перегрузки 170 мкА. Хотя это приведет к резкому повороту иглы до упора, это не повредит движению.

Я использовал аналоговый измерительный механизм, потому что его гораздо проще реализовать, хотя обычно они несколько дороже, чем цифровой панельный измерительный прибор. Последним требуется плавающее питание, и они легко выходят из строя из-за паразитных высоких напряжений.Высокое напряжение используется для проверки напряжения пробоя транзистора и может сильно укусить, поэтому я предлагаю вам относиться к нему с большим уважением.

Движение измерителя – это стандартная единица измерения 100 мкА, и я основал значения резистора на указанном сопротивлении измерителя в 3900 Ом. Если вы используете другой измеритель, вам необходимо отрегулировать резисторы 82 кОм и 15 кОм. Их цель – обеспечить сопротивление всей цепи 100 кОм. Поскольку на шунтирующих резисторах для полной шкалы вырабатывается 10 В, это означает, что 10 В и 100 кОм = 100 мкА.Конечно, вы можете использовать многооборотный триммер, чтобы измеритель можно было откалибровать, если вы захотите.

Если сложить значения, мы получим 3,9 тыс., 15 тыс. И 82 тыс., Что в сумме составит 100,9 тыс. (Лучше, чем 1%), что более чем достаточно для этого приложения.

Резистор для измерения сопротивления 4 МОм (помечен *) может быть изготовлен с использованием 3,9 МОм последовательно с 100 кОм. Это должно быть достаточно точным, иначе показания измерителя напряжения не будут полезны. Обратите внимание, что защитные диоды счетчика отключены в режиме проверки напряжения, но остаются подключенными к остальной части коммутационной цепи счетчика.Это необходимо для гарантии того, что ток нагрузки на питании высокого напряжения не изменится при нажатии кнопки проверки напряжения. Если этого не сделать, нагрузка измерителя исчезнет, ​​и показания напряжения станут бессмысленными.

Обратите внимание, что переключатель диапазонов рассчитан на ток до 5 А. Это, вероятно, находится на самом пределе мощности переключателя (в зависимости от используемого устройства), но, поскольку ток является прерывистым, он будет иметь долгую и плодотворную жизнь в любом случае. Обычно я никогда не буду эксплуатировать что-либо на пределе (или выше) его пределов, но стоимость альтернативы слишком ужасна, чтобы думать о ней.


Блок питания

Блок питания несложный, но потребует некоторой изобретательности, чтобы убедиться, что напряжения соответствуют заданным. Использование второго трансформатора, как показано, не самый эффективный способ создания источника высокого напряжения / низкого тока, но, безусловно, самый простой и надежный, и именно поэтому я выбрал именно этот способ.

Основное питание вполне обычное (ну почти), а для установки напряжения используется стабилизатор 7812. Диод увеличивает его до 12.6 В (приблизительно), чтобы обеспечить точность базовых токов, и использует обходной транзистор для подачи максимального тока 5 А, на который я рассчитывал. Ограничение тока не используется, так как оно не требуется – даже с измерителем в диапазоне 5А прямое короткое замыкание может потреблять максимум около 6,3А, что вполне соответствует возможностям источника питания.


Рисунок 4 – Блок питания

Регулятор и силовой транзистор должны быть установлены на радиаторе. Хотя это не обязательно должно быть массовым (тесты, как правило, непродолжительны), я предлагаю, чтобы блок 1 ° C / ватт был идеальным.Регулятор должен быть изолирован от радиатора слюдяной шайбой, но я рекомендую устанавливать силовой транзистор непосредственно для наиболее эффективной передачи тепла. При таком расположении радиатор будет работать при напряжении около 25 В над землей, поэтому рекомендуется внутренний монтаж. Убедитесь, что имеется достаточный воздушный поток для надлежащего охлаждения.

Некоторые подходящие высоковольтные транзисторы для высоковольтного питания включают 2N6517C, KSP44TF, ZTX458 и STX83003. Они доступны с 2015 года, но, возможно, вам все равно придется их искать.Первоначально предложенные транзисторы больше не доступны. Другие подходящие устройства включают BUL310FP или 2SC3749M. Транзистору необходимо номинальное напряжение не менее 400 В, а рассеиваемая мощность в худшем случае составит около 250 мВт. Также можно использовать высоковольтный полевой МОП-транзистор (например, IRF840), но вы должны добавить стабилитрон на 12 В между выводами затвора и истока, иначе он будет разрушен – вероятно, при первом использовании!

Помните, что этот транзистор работает с максимальным напряжением более 300 В, поэтому не пытайтесь использовать какое-либо устройство с номинальным напряжением менее 350 В (минимум).Убедитесь, что он рассчитан на работу с низким током – многие сильноточные транзисторы имеют очень низкий коэффициент усиления при малых токах. Я должен признать, что BF338, который я использовал (больше не доступен), на самом деле рассчитан всего на 225 В, но одна из действительно хороших вещей в наличии такого тестера – это то, что вы можете выбирать транзисторы, которые часто значительно лучше, чем их спецификации. Даже не думайте о нем как о альтернативе предлагаемым устройствам, если вы не можете проверить его напряжение пробоя.

Последовательный резистор к линии питания HV2 – компромисс.Он должен быть достаточно высоким, чтобы предотвратить повреждение транзистора (или пользователя), но также должен быть достаточно низким, чтобы обеспечить приемлемый ток пробоя. Обычно для проверки напряжения пробоя транзистора требуется около 50–100 мкА. Если ток слишком велик, тестируемый транзистор может быть поврежден.

В источнике высокого напряжения используется второй трансформатор, и я предполагаю, что достаточно напряжения около 300 В постоянного тока. Нет никаких причин, по которым это значение нельзя увеличить (кроме поиска подходящего транзистора), но для работы со звуком в этом, как правило, нет необходимости.Имейте в виду, что высокое напряжение может убить вас, поэтому не забывайте о нем, пока строится тестер.

Все диоды в цепи должны быть 1N4007 (1000 В) и использовать мостовой выпрямитель на 10 А или 25 А. Убедитесь, что все подключения к электросети должным образом изолированы, чтобы предотвратить случайный контакт. Это включает в себя участок высокого напряжения, который по-прежнему опасен во всех точках цепи.


ПРЕДУПРЕЖДЕНИЕ

Даже в готовом и собранном блоке максимальный ток составляет примерно 600 мкА – такая величина тока потенциально опасна, особенно при 300 В за ней. ЭТО МОЖЕТ УБИТЬ ВАС !!!

Никогда не используйте тестер при включенном источнике высокого напряжения, если он вам не нужен для тестирования пробоя, и всегда проверяйте, чтобы напряжение было установлено на минимум сразу после тестирования. Не пренебрегайте этими предупреждениями.

Выбор трансформатора для источника высокого напряжения немного сложен, так как трансформаторы, которые вы можете получить, будут зависеть от того, где вы живете (у меня под рукой был старый силовой трансформатор вентильного усилителя, но вам может не повезти).Схема высоковольтного выпрямителя представляет собой удвоитель напряжения, поэтому вторичное напряжение трансформатора должно составлять около 110 В переменного тока. Это обеспечит номинальное напряжение постоянного тока около 310 В, но оно может сильно варьироваться в зависимости от используемого трансформатора.

ПРИМЕЧАНИЕ – Если вы находитесь в США или другой стране с напряжением 110 В, не поддавайтесь ни малейшему искушению использовать источник питания без трансформатора. Если вы сделаете это, вы создадите невероятно опасный запас, который почти гарантированно убьет вас рано или поздно (возможно, первое!).Даже с трансформатором это питание опасно по своей природе – этого нельзя избежать, и его следует всегда использовать с большой осторожностью.

Главный трансформатор должен иметь номинальную мощность не менее 100 ВА (предпочтительно 150 ВА или около того), и для него потребуется вторичное напряжение 15 В. Чтобы выбрать второй трансформатор …

  • Если в США (или вы можете достать трансформаторы на 110 В), используйте вторичную обмотку 15 В. Поскольку вторая трансмиссия работает в обратном направлении, это даст вам необходимое напряжение 110 В.
  • В Европе вам понадобится трансформатор с вторичным напряжением около 30 В. Поскольку он подключен к источнику переменного тока 15 В, вторичное напряжение будет около 110 В переменного тока.
  • В Австралии, Новой Зеландии и других странах, где раньше было 240 В (сейчас это в основном номинальное 230 В), вам все равно понадобится трансформатор 30 В, но выходное напряжение будет быть выше, чем должно быть. Один из способов – это поэкспериментировать с последовательным резистором в линии 15 В переменного тока, или вы можете просто смириться с более высоким напряжением.

Второй трансформатор должен иметь мощность около 10 ВА, чтобы обеспечить ток, достаточный для подачи высокого напряжения. Скорее всего, потребуются некоторые эксперименты, поскольку я не могу предсказать, что вы можете (или не можете) получить в свои руки.

Посмотрев на схему, вы увидите, что нет общего соединения между источниками низкого и высокого напряжения. Это сделано намеренно. Общее соединение выполняется в зависимости от настройки переключателя NPN / PNP, поэтому не соединяйте отрицательные стороны двух источников питания!

Хотя они не показаны в предполагаемых положениях, вам следует использовать светодиоды в качестве индикаторов питания.Стандартный светодиод с параллельным диодом и последовательным резистором 2k2 (как показано в нижнем левом углу) следует использовать для индикатора основного питания (непосредственно через обмотку 15 В), а другой – через обмотку 15 В (или 30 В) второго трансформатора. как индикатор высокого напряжения.


Использование тестера

Поскольку он настолько всеобъемлющий, это не самый простой в использовании тестер в мире. С другой стороны, он очень гибкий и позволяет проводить полные испытания практически любого биполярного транзистора.Он не подходит для полевых МОП-транзисторов, поскольку процессы тестирования совершенно разные, но вы можете провести некоторые элементарные тесты, если напряжение на затворе 12 В в порядке. Я не делаю здесь никаких претензий – так как я не проводил никаких испытаний MOSFET на своем собственном устройстве (я не могу, потому что он немного отличается от этой конструкции и использует источник высокого напряжения для базового тока – это мгновенно разрушит устройство! ).

Перед началом работы
Всегда устанавливайте переключатель диапазона на 100 мкА при подключении транзистора.Если он подключен неправильно или закорочен, вы не нанесете никакого ущерба. Только когда вы убедитесь, что у вас есть правильные соединения и полярность, вы можете попытаться пойти дальше. При малых токах большинство транзисторов выдерживают любые нагрузки, при при высоких токах они умирают.

Тестирование прироста
В зависимости от транзистора выберите подходящий диапазон для тока коллектора. Например, если вы выбираете 10 мА, всегда начинайте с минимального значения базового тока 1 мкА.Если вы обнаружите, что вам необходимо увеличить базовый ток до 100 мкА, показания полной шкалы на тестере покажут коэффициент усиления 100.

Для всех транзисторов всегда устанавливайте диапазон тока коллектора на значение, подходящее для устройства, и начинайте с самого низкого значения базового тока. Увеличивайте его до тех пор, пока показание измерителя не будет больше 10 мкА по шкале измерителя. Поскольку все диапазоны указаны в десятилетиях, мысленным расчетом легко определить усиление тестовой составляющей.

Например, если базовый ток составляет 10 мкА, а измеритель показывает 35 в диапазоне 10 мА (т.е.е. 3,5 мА), коэффициент усиления составляет 350. Если переключатели диапазона и базового тока установлены в минимальное положение (100 мкА и 1 мкА соответственно), полная шкала измерителя показывает коэффициент усиления 100.

Испытательное напряжение пробоя
Еще раз предупреждаем, что напряжение потенциально опасно. Установите переключатель диапазона в положение 100 мкА, а переключатель R-be в положение «Открыть». Медленно увеличивайте напряжение, наблюдая за счетчиком. Обычно вы видите постепенное увеличение тока, которое внезапно будет быстро увеличиваться. Это BVceo (напряжение пробоя, коллектор к эмиттеру при открытой базе).Нажмите кнопку «Проверка напряжения», чтобы считать напряжение (вам может потребоваться изменить диапазон – счетчик откалиброван от 0 до 100 В и от 0 до 500 В, как показано на рисунке, поэтому для диапазона x5 потребуется некоторая мысленная арифметика).

В качестве альтернативы можно использовать второе движение измерителя для измерения напряжения, или вы можете использовать мультиметр в контрольных точках эмиттера и коллектора. Это наиболее точно (но такая точность не требуется, поскольку мудрый разработчик не будет эксплуатировать устройство слишком близко к его измеренной производительности, которая в некоторых случаях может превышать спецификацию на 100% или более).

Во многих случаях напряжение пробоя транзистора может быть указано с некоторым значением сопротивления между эмиттером и базой – это BVcer (напряжение пробоя с указанным сопротивлением от эмиттера к базе). Такая конструкция допускает сопротивление от 100 кОм до 0 Ом в диапазоне декад, и я обнаружил, что этого вполне достаточно для промышленных испытаний. Когда эмиттер замкнут на базу, напряжение пробоя примерно такое же, как указанное BVcbo (напряжение пробоя, коллектор на базу, эмиттер открыт).


Мой тестер существующих транзисторов

На фотографиях показан мой собственный тестер, который немного отличается от представленного здесь. Он не такой исчерпывающий и не может делать некоторые из тех вещей, которые есть в новом дизайне.

Верхнее изображение показывает внутреннее устройство тестера. Хорошо видны два силовых трансформатора, регулятор (крайний справа) и крышка главного фильтра. Все переключатели находятся на передней панели и состоят в основном из поворотных переключателей.Внимательный взгляд может увидеть реле, прячущееся в верхнем левом углу панели. Это было использовано, потому что я не мог достать подходящий кнопочный переключатель, когда я построил тестер, поэтому дополнительное переключение было получено с помощью реле.

Этому подразделению уже более 40 лет, и он продолжает развиваться. Мне приходилось это исправлять пару раз, один из которых заключался в замене высоковольтного буфера клапана на транзистор, и регулятор тоже однажды вышел из строя. Вы должны полюбить идею использования клапана в тестере транзисторов, но когда он был построен, транзисторов высокого напряжения не существовало.Клапан был 12AU7 с двумя параллельными секциями, использовавшимися в качестве катодного повторителя.

Переключение никогда не вызывало проблем, но, в отличие от новой конструкции, здесь для калибровки используются подстроечные головки. Они нуждаются в периодической настройке, чтобы восстановить точность, но, как видно на схемах, этого полностью удалось избежать с помощью нового дизайна (и это тоже хорошо). Опять же, когда устройство было построено, резисторы 1% были практически недоступны, а стандартный допуск, который я имел в то время, составлял 5%.

Ярлык, который я использовал для установки всех резисторов, виден в верхней части фотографии, но для этого требуется слишком много проводов. Новый дизайн требует совсем немного – всего несколько соединений между переключателями.

На втором фото изображена передняя часть устройства, на которой вручную нанесены надписи Letraset «rub-on» и нанесен прозрачный лак. С учетом всех обстоятельств он продержался довольно хорошо.

При сборке нового блока я предлагаю вам использовать гнездо для транзистора (если вы можете его получить – у меня он есть, но он является модернизированным) для малых сигнальных транзисторов, и использовать гнезда для клемм / бананов для проводов, к которым подключаются силовые устройства.Не используйте простые банановые розетки, как я – вы пожалеете об этом, потому что они причинят боль, если вы захотите использовать двухсторонние зажимы.

Крепежные штыри обеспечивают большую гибкость при использовании тестера, а с помощью подвесных выводов вы сможете тестировать транзисторы, все еще установленные на радиаторе (однако они не должны оставаться подключенными к остальной части схемы – это НЕ внутрисхемный тестер).

Счастливое тестирование транзисторов.



Основной индекс Указатель проектов
Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и © 1999. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены в соответствии с Международные законы об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Журнал изменений: обновлен 23 октября 2005 г.


Как определить транзисторы NPN и PNP с помощью мультиметра

Как определить транзисторы NPN и PNP (BJT) с помощью мультиметра?



Представьте себе, что из коробки с компонентами вы выбрали пару биполярных переходных транзисторов (BJT) и не знаете, являются ли они транзисторами типа NPN или PNP … (Почти каждый столкнется с этой проблемой)

В этом посте мы обсудим, как определить транзисторы NPN и PNP с помощью мультиметра…

Прежде чем продолжить, давайте освежим информацию о том, как идентифицировать выводы транзистора.

Идентификация клемм BJT:

Мы знаем, что биполярный переходной транзистор имеет три вывода, а именно

.
  1. Излучатель (E)
  2. База (B)
  3. Коллектор (C)

Транзисторы доступны на рынке в различных корпусах. Поговорим о пакете ТО-92.

Держите транзистор так, чтобы плоская поверхность была обращена к вам, как показано на рисунке ниже:
Теперь, начиная слева, отметьте 1,2 и 3.Их соответственно

  1. Излучатель (E)
  2. База (B)
  3. Коллектор (C)

Условное обозначение BJT приведено ниже:

Определение типов BJT:

Оба транзистора NPN и PNP внешне похожи. Мы не можем различить их, увидев их. Нам понадобится мультиметр для определения типа БЮТ.

Запомните следующие моменты:

  1. Транзистор внутри имеет два диода (NPN ≡ N – P – N ≡ NP Junction + PN Junction и PNP ≡ P – N – P ≡ PN Junction + NP Junction).
    , т. Е. Эмиттер-база – это одно PN-переход (диод), а база-коллектор – другой PN-переход (диод).
  2. В режиме диода мультиметр будет показывать напряжение, когда мы поднесем положительный щуп мультиметра к аноду диода, а отрицательный щуп к катоду.
  3. Если положительный щуп мультиметра подсоединен к катоду диода, а отрицательный щуп к аноду, то он не будет давать никакого напряжения (показывает ноль).
Шаги по идентификации транзистора типа NPN:
  1. Держите мультиметр в диодном режиме.
  2. Держите положительный щуп на центральном контакте (основании) транзистора.
  3. Коснитесь отрицательным щупом контакту 1 (эмиттер). Вы увидите напряжение на мультиметре.
  4. Аналогичным образом прикоснитесь отрицательным щупом к контакту 3 (коллектор) по отношению к контакту 2. Вы увидите напряжение на мультиметре.
  5. Это гарантирует, что это транзистор NPN. Логика, лежащая в основе этого, в NPN-транзисторе
    Эмиттер (E) – Материал типа N – Эквивалент катоду диода
    База (B) – Материал типа P – Эквивалент аноду диода
    Коллектор (C) – Материал типа N – Эквивалент катодному диоду
  6. Если положительный зонд мультиметра подключен к аноду, а отрицательный – к катоду, то он покажет напряжение.Если соединения поменять местами, значение не будет отображаться.
Шаги для идентификации транзистора типа PNP:
  1. Держите мультиметр в диодном режиме.
  2. Поднесите положительный щуп к выводу 1 (эмиттер) транзистора.
  3. Коснитесь отрицательным датчиком центрального штифта (основания). Вы увидите напряжение на мультиметре.
  4. Аналогичным образом прикоснитесь отрицательным щупом к центральному штырю (основанию) относительно штифта 3 (коллектора). Вы увидите напряжение на мультиметре.
  5. Это гарантирует, что это транзистор PNP. Логика, лежащая в основе этого, в PNP-транзисторе
    Эмиттер (E) – Материал типа P – Эквивалентен аноду диода
    База (B) – Материал типа N – Эквивалент катоду диода
    Коллектор (C) – Материал типа P – Аналог анода диода
  6. Если положительный зонд мультиметра подключен к аноду, а отрицательный – к катоду, то он покажет напряжение. Если соединения поменять местами, значение не будет отображаться.


С помощью вышеупомянутых шагов мы можем идентифицировать транзисторы NPN и PNP с помощью мультиметра. Как мы можем гарантировать, что транзисторы находятся в хорошем состоянии и вышли из строя? Прочтите, пожалуйста, пост Как проверить транзистор с помощью мультиметра?

Вы также можете прочитать:

Как работает люминесцентная лампа?
Как контролировать скорость параллельных двигателей постоянного тока?
Сравнение электрических и магнитных цепей
MOSFET и JFET Сравнение

Пожалуйста, оставьте свои комментарии ниже…

Как построить тестер транзисторов и как он работает?

Тестер транзисторов

Биполярные транзисторы

часто используются в различных электрических и электронных проектах в качестве основного компонента для проверки функционирования транзисторов. Основным мотивом этой схемы является проверка транзисторов NPN и PNP и их подключения. Берутся транзисторы и определяется их расположение выводов, то есть ECB и EBC. Транзисторы проверяются с их расположением выводов и наблюдаются их типы.Создавать тестовую схему на макетной плате становится неудобно. Итак, мы разработаем простую, которая будет незамысловатой схемой, позволяющей тестировать транзисторы.

Тестер транзисторов для транзисторов PNP и NPN

В общем, тестер транзисторов используется в дорогостоящих устройствах на базе микропроцессоров и может похвастаться роскошной индикацией выводов транзисторов с использованием букв b, e и c. Тестер транзисторов – это инструмент, который используется для проверки электрических характеристик транзистора или диода.Мультиметры или омметры подходят для тестирования транзисторов PNP и NPN.

Тестер транзисторов для PNP и NPN

Типы тестеров транзисторов

Тестер транзисторов – это тип прибора, используемый для проверки электрических характеристик транзисторов. Существует три типа тестеров транзисторов, каждый из которых выполняет эксклюзивную операцию:

  • Устройство быстрой проверки цепи
  • Тестер типа обслуживания
  • Лабораторный стандартный тестер

Устройство быстрой проверки цепи

Тестер транзисторов для быстрой проверки цепи используется для проверки правильности работы транзистора в цепи.Этот тип тестера транзисторов указывает технику, работает ли транзистор или нет. Преимущество использования этого тестера заключается в том, что среди всех компонентов схемы не удаляется только транзистор.

Тестер транзисторов служебного типа

Этот тип тестера транзисторов обычно выполняет три типа тестов: усиление прямого тока, ток утечки от базы к коллектору с открытым эмиттером и короткие замыкания от коллектора к базе и эмиттеру.

Лабораторный стандартный тестер

Лабораторный стандартный тестер используется для измерения параметров транзистора в различных условиях эксплуатации.Показания, измеренные этим тестером, являются точными, и среди важных измеренных характеристик входят входное сопротивление Rin, общая база и общий эмиттер.

Процедура для тестера транзисторов

Цифровой мультиметр или цифровой мультиметр – один из наиболее распространенных и полезных элементов испытательного оборудования. Он используется для проверки PN перехода между базой и эмиттером и PN-переходом между базой и коллектором биполярного транзистора.

Процедура тестера транзисторов с использованием цифрового мультиметра

Цифровой мультиметр используется для проверки соединения базы с эмиттером и базы с коллекторным PN переходом BJT.Используя этот тест, вы также можете определить полярность неизвестного устройства. Транзисторы PNP и NPN можно проверить с помощью цифрового мультиметра.

Тестер транзисторов с использованием цифрового мультиметра

Цифровой мультиметр состоит из двух проводов: черного и красного. Подключите красный (положительный) вывод к клемме базы транзистора PNP, а черный (отрицательный) провод к эмиттеру или клемме базы транзистора. Напряжение исправного транзистора должно составлять 0,7 В, а измерение на коллекторе эмиттера должно показывать 0.0V. Если измеренное напряжение составляет около 1,8 В, то транзистор не работает.

Аналогичным образом подключите черный провод (отрицательный) к клемме базы NPN-транзистора, а красный провод (положительный) к клемме эмиттера или коллектора транзистора. Напряжение исправного транзистора должно составлять 0,7 В, а измерение на коллекторе эмиттера должно быть 0,0 В. Если измеренное напряжение составляет около 1,8 В, то транзистор не работает.

Схема тестера транзисторов

Эта схема тестера транзисторов, в которой используется микросхема таймера 555, подходит для тестирования транзисторов PNP и NPN.Эта схема проста по сравнению с другими тестерами транзисторов и поэтому полезна как для технических специалистов, так и для студентов. Его можно легко построить на печатной плате общего назначения. Для разработки этой схемы используются основные электронные компоненты, такие как резисторы, диоды, светодиоды и NE5555. Используя эту схему, можно проверить различные неисправности – например, узнать, в хорошем ли состояние транзистор, открыт или закорочен, и так далее. NE 555 Timer IC – это мультивибратор, который работает в трех режимах: нестабильный, моностабильный и бистабильный.Также эта схема может работать от батареи в течение длительного времени.

Схема тестера транзисторов

Схема работы тестера транзисторов такова, что она работает на частоте 2 Гц. Выходные контакты 3 составляют схему тестера транзисторов с положительным напряжением, а затем с ненулевым напряжением. На другом конце этой цепи делитель напряжения подключен к средней точке примерно на 4,5 В, и результат будет таким:

Если к тестеру не подключен транзистор, зеленый и красный светодиоды мигают попеременно.Когда транзистор помещается на измерительный провод, оба светодиода мигают. Если мигает только один светодиод, состояние транзистора в порядке. Если напряжение будет только в одном направлении, это приведет к короткому замыканию пары светодиодов. Если ни один из светодиодов не мигает, транзистор будет закорочен, а если оба светодиода мигают – транзистор будет открыт.

Тестер транзисторов на основе светодиодов Проект

Вышеупомянутая схема представляет собой простую схему тестера транзисторов; где КМОП с входом Quad2 (комплементарный металлооксидный полупроводник), ИС затвора И-НЕ, CD4011B является сердцем схемы.В этой схеме мы использовали два светодиода для отображения состояния. Используя эту схему, мы можем проверить как транзисторы PNP, так и NPN. Внутри ИС из четырех вентилей NAND используются только три логических элемента. Эти ворота используются как ворота НЕ, закорачивая их входные клеммы.

Тестер транзисторов на основе светодиодов

Здесь резистор R1, конденсатор C1, вентили U1a и U1b образуют генератор прямоугольной формы. Частота этого генератора регулируется с помощью резистора R1, а выходной сигнал генератора инвертируется с помощью затвора U1c.Выходы инвертированного и неинвертированного генератора подключены к базе тестируемого транзистора через резисторы R2 и R3.

Тестируемый статус светодиодов указывает на состояние транзистора. Если красный светодиод горит, это означает, что транзистор NPN исправен. Если зеленый светодиод горит, это означает, что транзистор PNP исправен. Если горят оба светодиода, это означает, что тестируемый транзистор закорочен. Если оба светодиода не горят, это означает, что проверяемый транзистор открыт или неисправен.

Автоматический аварийный свет со светодиодами

Основная цель этого проекта – разработать схему автоматического аварийного освещения, которая может автоматически включать светодиодные фонари (питание от аккумуляторных батарей) всякий раз, когда происходит сбой питания в ночное время.

Автоматический аварийный свет со светодиодной блок-схемой от Edgefxkits.com

В этой схеме мы используем транзистор PNP в качестве переключателя, который активируется при обнаружении отсутствия сетевого питания. Преимущество этого аварийного освещения заключается в том, что мы используем его в комнате со светодиодным источником света, который питается от батарей с высокой эффективностью преобразования энергии.В этой цепи используются аккумуляторные батареи типа NiCd, NIMh или LI-Ion для увеличения срока службы.

Автоматический аварийный свет со светодиодным проектным комплектом от Edgefxkits.com

Итак, речь идет о схеме тестера транзисторов и цифровом мультиметре. Тестеры транзисторов имеют важные переключатели и элементы управления для правильной настройки тока, напряжения и сигнала. Кроме того, эти тестеры транзисторов предназначены для проверки твердотельных диодов. Также существуют предпочтительные тестеры для проверки транзисторов и выпрямителей с высоким напряжением.Кроме того, если у вас есть какие-либо вопросы по этой теме, вы можете оставить комментарий ниже в разделе комментариев.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *