Как проверить люминесцентную лампу мультиметром
Проверка исправности лампы дневного света и ее элементов
Лампы этого типа (ЛДС) относятся к классу люминесцентных приборов, использующихся для освещения. Они обладают рядом преимуществ по сравнению с лампами накаливания. В то же время сама лампа является только составной частью осветительного прибора, используется в качестве излучателя и работает в составе схемы совместно с пускорегулирующей аппаратурой. Прибор является далеко не безотказным в части возникающих при его эксплуатации неисправностей. Чтобы устранять возникающие неполадки, нужно уметь проверять лампу дневного света с тестером.
Почему перегорают люминесцентные лампы?
Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.
Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха. Это приводит к перегоранию ЛДС. Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.
Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.
Выявление неполадок и их устранение
Для начала надо вспомнить, что электролюминесцентный светильник выполняет свои функции освещения только тогда, когда согласованно работают все его составные части – сама лампа, балласт, который может быть либо электромеханическим, либо электронным. Таким образом, причины неисправной работы светильника могут находиться как в схеме пускорегулирующей аппаратуры, так и быть отказом работы ЛДС из-за ее старения или нарушения условий эксплуатации.
Проверять люминесцентную лампу (светильник) лучше всего удается при наличии работоспособного аналога. Надо обеспечить удобный доступ ко всем его компонентам. Таким способом можно правильно провести анализ неисправности и дать рекомендации по устранению даже при самостоятельном ремонте. Расскажем, как проверить в домашних условиях лампу дневного света.
Целостность спиралей электродов
Спирали электродов находятся внутри газонаполненной трубки ЛДС и при производстве припаяны к ножкам цоколей лампы. Они расположены в торцевых частях колбы. Таким образом, используя мультиметр в режиме измерения сопротивлений, можно прозвонить лампу дневного света.
Для этого устанавливаем на тестере минимальный предел и подключаем его щупы между электродами. Измеренная величина сопротивления каждой исправной спирали должна находиться в пределах (10-20) Ом. При оборванной нити накала мультиметр покажет бесконечно большую величину на любом пределе измерения. Так своими руками можно определить возможный обрыв. При таком дефекте ЛДС подлежит замене.
Неисправности в электронном балласте
ЭПРА или электронный балласт выполняет функции обеспечения цикла запуска поджига используемой совместно с ним люминесцентной лампы и поддержания тлеющего разряда в колбе в процессе ее работы. Нагревательные спирали ЛДС, обладающие некоторой индуктивностью, используются в схеме автогенератора в диапазоне (30-130) кГц. Применение высокой частоты исключает мигание светового потока такого светильника.
На выходе схемы используются мощные транзисторные ключи. Питание активных элементов ЭПРА постоянным током производится от встроенного выпрямительного устройства, питающегося от розетки сети 220 В 400 Гц. Электронный балласт можно включать только вместе с лампой. Схема подключения электронного балласта изображается на корпусе каждого готового изделия. Проверка на исправность выполняется включением в сетевую розетку и контролем яркости свечения, которую можно установить вручную специальным регулятором.
При возникновении неисправности пользователю можно проверить исправность ЛДС путем ее замены, не забывая «обесточивать» перед этим схему. При замене надо использовать только рекомендуемую лампу. Информация о ней содержится на корпусе изделия. В случае неудачи остается только ремонт электронного балласта специалистами из мастерской.
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА).
На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта.
Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Как проверить стартер?
Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.
Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.
Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск.
Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.
Как проверить емкость конденсатора тестером?
При обесточенной схеме и присоединении щупов тестера в режиме омметра к выводам стартера, к которым подключен конденсатор, он не должен прозваниваться и иметь бесконечно большое сопротивление.
Включение люминесцентной лампы без дросселя
Для решения этого вопроса собирается схема выпрямления напряжения с ее удвоением. Выводы каждой нити накала объединяются. Постоянного напряжения такой схемы хватит для создания тлеющего разряда внутри ЛДС.
Как проверить люминесцентную лампу мультиметром
Люминесцентные лампы на разных этапах срока эксплуатации могут в разной степени снизить свою работоспособность. Освещенность становится недостаточной, лампа гудит и мерцает, оказывая неблагоприятное воздействие на организм человека. В связи с этим приходится решать задачу, как проверить люминесцентную лампу мультиметром, чтобы устранить выявленные недостатки и причины, вызвавшие их появление.
Как работают люминесцентные лампы
Люминесцентные лампы относятся к энергосберегающим, а их работу можно сравнить с различными типами газоразрядных источников света. Все элементы размещаются в стеклянной колбе, из которой предварительно откачан воздух. Взамен закачивается инертный газ с небольшим количеством ртути.
С противоположных сторон установлены спиральные электроды, выполняющие функцию нитей накаливания. Каждый из них соединяется с двумя контактными штырьками, расположенными на пластинах из диэлектрического материала. Внутренняя сторона стеклянной трубки покрыта люминофором. Конструкция всех ламп одинаковая, независимо от размеров колбы. Сами лампы вставляются в специальные светильники.
Для включения осветительного прибора применяется электромагнитная (ЭмПРА) или электронная (ЭПРА) пускорегулирующая аппаратура. Основным элементом ЭмПРА является дроссель, выполняющий функцию балластного сопротивления. Конструктивно он представляет собой катушку индуктивности, включенную последовательно в цепь с лампой дневного света.
Дроссель следит за равномерностью разряда и поддерживает его на одном уровне. В случае необходимости осуществляется корректировка тока. В момент включения происходит сдерживание пускового тока до полного разогрева спиральных нитей. За счет этого они не перегреваются и не перегорают. Далее за счет самоиндукции в дросселе возникает напряжение, от которого и загорается лампа.
Балластное сопротивление должно работать с минимальными потерями мощности, обладать небольшими размерами и весом. Важным требованием является бесшумная работа и величина температуры накаливания, не превышающая 600 0 С.
Еще одной деталью системы ЭмПРА, играющей важную роль, служит стартер тлеющего разряда. При включении лампы в нем появляется разряд тока, обеспечивающего накал биметаллических контактов. После их замыкания ток в цепи возрастает, и электроды начинают разогреваться.
Через определенное время контакты стартера остывают и цепь размыкается. В этот момент из дросселя на электроды подается высоковольтный импульс, что приводит к появлению между ними дугового разряда. Под его воздействием появляется ультрафиолетовое излучение, а люминофор, нанесенный на стекло, начинает светиться в видимом спектре, то есть лампа загорится.
Люминесцентные светильники нового поколения оборудуются ЭПРА – электронной пускорегулирующей аппаратурой (рис. 3). Срок службы и коэффициент полезного действия таких ламп существенно увеличился. В режиме свечения они могут работать даже с перегоревшей спиралью, в отличие от традиционных ЭмПРА. Кроме того, в современных схемах отсутствуют стартеры.
Балласты электронного типа считаются дорогими и достаточно сложными в ремонте, поэтому в большинстве случаев они полностью заменяются новыми изделиями.
Основные причины выхода из строя
Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.
Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.
Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.
Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.
Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.
Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.
Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.
Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 50 0 С и ниже, а также при перепадах напряжения свыше 7%.
Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.
Проверка нитей накаливания (спиралей-электродов)
Одной из причин неисправности становятся электроды, выполняющие функцию нитей накаливания. Они помещаются внутрь трубки, наполненной газом, а их концы припаяны к контактным ножкам цоколя, выходящим наружу. Проверка целостности спиралей проводится с помощью мультиметра или тестера, подключаемого к выводам, расположенным на одном из концов стеклянной колбы.
Для проведения замеров на мультиметре устанавливается режим измерения сопротивления с минимальным пределом или режим прозвонки. Проверка спиралей осуществляется поочередно, на обоих концах. Если спирали находятся в исправном состоянии, загорится контрольная лампа, а зуммер будет производить звуковые сигналы. На дисплее мультиметра высветится сопротивление в пределах 5-10 Ом.
В случае отсутствия звуковых и световых сигналов и наличия сопротивления со знаком бесконечности, можно предположить обрыв одной из спиралей, при котором лампа уже не будет работать и должна быть заменена.
Тестирование дросселя
В том случае, когда предыдущая проверка не дала результата, проверяется дроссель, относящийся к наиболее устойчивым элементам лампы. Он ломается намного реже остальных деталей, однако нельзя полностью исключить его возможную неисправность.
Дроссель люминесцентной лампы по своей сути является обычной катушкой индуктивности, внутри которой находится ферромагнитный сердечник с высокой магнитной проницаемостью. Он входит в состав ЭмПРА и при включении лампы так же как и стартер участвует в разогреве катодов и создании высоковольтного импульса. За счет ЭДС самоиндукции внутри колбы создается тлеющий разряд.
После отключения стартера, дроссель за счет своего индуктивного сопротивления поддерживает ток разряда на нужном уровне, обеспечивающем стабильную ионизацию смеси газа и ртути. За счет индуктивности и сопротивления дроссель защищает электроды от перегрева и перегорания под действием переменного тока.
Основными неисправностями данного элемента может стать обрыв или перегорание обмотки, а также нарушения межвитковой изоляции. Обе поломки выявляются с помощью мультиметра, подключенного к выводам дросселя и настроенного на замер сопротивления. Если на табло высвечивается знак бесконечности, следовательно обмотка оборвана или сгорела. Предвестником перегорания чаще всего становится неприятный запах, появляющийся во время работы дросселя.
Если же сопротивление имеет малую величину, то в большинстве случаев оказывается нарушенной изоляция проводников, что в свою очередь приводит к межвитковому замыканию или замыканию обмотки с сердечником.
Проверка работоспособности стартера
Наряду с другими элементами люминесцентной лампы, проверяется исправность стартера. В любом случае корпус светильника следует вскрыть и провести визуальный осмотр внутреннего пространства. Если обнаружены почернения, то это прямо указывает на имеющуюся неисправность. Поэтому придется проверить люминесцентную лампу, в том числе и сам стартер.
Дело в том, что этот компонент наиболее часто подвержен поломкам. Его элементы испытывают постоянные механические нагрузки в условиях многократных перепадов температур. После того как корпус стартера оказывается разобран следует провести осмотр внутренней схемы. Неисправный конденсатор имеет вздутия или бывает полностью разрушен из-за скачков сетевого напряжения. При отсутствии внешних повреждений конденсатор следует проверить мультиметром.
Тестирование конденсатора выполняется на его выводах в режиме омметра, с выставлением на шкале максимального предела замеров сопротивления. При нормальном состоянии данного элемента на табло мультиметра будет показан знак бесконечности. Если же сопротивление составляет 2 Мом и ниже, то возможно недопустимое значение тока утечки в конденсаторе. В домашних условиях не всегда удается точно прозвонить и проверить состояние стартера, для этого рекомендуется воспользоваться исправным светильником. Стартер, оказавшийся неисправным, подлежит замене.
Проверить исправность стартера возможно не только тестером. Для этого стартер аккуратно извлекается из гнезда, без нарушений других элементов схемы. После этого включается питание и контакты в гнезде стартера коротко замыкаются исправным, хорошо изолированным инструментом. Если все остальные детали схемы исправны, то лампа должна загореться.
Как проверить люминесцентную лампу мультиметром
Несмотря на появление светодиодов, люминесцентные светильники остаются распространённым источником света. При его отсутствии появляется необходимость проверить лампу мультиметром.
Что учесть при проверке
При рассмотрении особенности люминесцентной лампы автор не зря взял в кавычки «слово обрыв». Даже если прибор и не «зажигается» и нить не прозванивается, это еще не свидетельство того, что она сгорела и ее следует выбрасывать. Что необходимо проделать?
- Зачистить выводы лампы, только аккуратно. Для снятия налета можно использовать спиртосодержащие жидкости, ластик, шкурку (мелкоабразивную). После этого повторить прозвонку.
- Дополнительно следует зачистить пластины в механизме ламподержателей. Иногда их нелишне и подогнуть, чтобы обеспечить более плотный и надежный контакт.
Все изложенное справедливо для изделий линейных. А как быть с проверкой люминесцентной компактной лампы? Принцип тот же. Зная спецификацию прибора, найти в интернете его электронную схему – не проблема. Останется только уточнить, где на плате фиксируются выводы, и перед прозвонкой один из них отпаять. Хотя на практике этим мало кто занимается, так как произвести разборку довольно трудно, а продукцию отдельных изготовителей и невозможно.
Если после постановки в светильник люминесцентная лампа все-таки не загорается, то причину нужно искать в другом месте (балласт, линия и так далее). Но это уже несколько иная тема.
Как устроен люминесцентный светильник
Стеклянная загерметизированная трубка из тонкого прозрачного стекла, на стенки которой внутри нанесен люминофор тонким слоем. Она заполнена смесью инертного газа с незначительным количеством ртутных паров. На концах колбы внутри баллона размещены маленькие нагревательные спирали. Разогрев нити током вызовет тлеющий газовый разряд смеси, сопровождаемый свечением газа в ультрафиолетовом спектре, не видимом глазу. Это свечение вызывает излучение люминофорным слоем света в видимом спектре. Химический состав люминофора определяет цвет полученного от люминесцентного источника света.
Кроме тлеющего разряда в источниках дневного света может использоваться дуговой разряд. Ртутная дуговая лампа обладает очень высокой светоотдачей. Спектр свечения не приятен для глаз, поэтому ДРЛ в основном используются в уличном освещении.
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Причины перегорания люминесцентных ламп
Нередко ЛДС перегорает, что придаёт ей схожести с традиционной лампой накаливания. При включении в колбе формируется дуга из электричества, вследствие чего спиралевидные электроды из вольфрама сильно нагреваются. Скачки высокой температуры влекут за собой разрушение и перегорание нитей.
Чтобы продлить эксплуатационный срок, на нить из вольфрама наносят слой активного щелочного металла. Разряд между электродами стабилизируется и снижается температура, благодаря этому нить намного дольше служит.
Учащённое включение/выключение лампы влечёт за собой разрушение защитного слоя, он просто опадает. Проходящий через оголённые нити разряд греет спираль в слабых точках, вследствие чего происходит перегорание.
С чего начинать проверку работоспособности лампочки мультиметром
При помощи мультиметра нужно проверить обрыв нитей накала. Мультиметр установить в режим прозвонки или измерения сопротивлений на малом пределе. Проверяем спирали с обоих концов трубки. В режиме прозвонки, при исправных спиралях, будет слышен зуммер. В режиме измерения, на индикаторе мультиметра при исправности будет светиться 5-10 Ом. Перегорание спирали нити подогрева — это самая распространенная причина отказа светильника дневного света и легко выявляется проверкой мультиметром.
Как протестировать дроссель лампы дневного света мультиметром
Для проверки берем мультиметр в режиме прозвонки или измерения маленького сопротивления и замеряем дроссель. Зуммер или показания индикатора укажут на наличие или отсутствие обрыва провода внутри дросселя.
Проверить изоляцию на пробой изоляции, нужно выставить мультиметр в режим измерения сопротивления на максимальном пределе. Индикатор мультиметра должен показать обрыв при касании любого из выводов и металлического корпуса.
Прозвонка стартера
Тестирование стартера мультиметром заключается в проверке неоновой лампочки на внутреннее замыкание. Для этого снимаем корпус и мультиметром становимся на один вывод лампы любым щупом. Вторым проводом мультиметра касаемся другого вывода неонки. Мультиметр не должен показать сопротивления.
Испытать работоспособность стартера можно без мультиметра. Вытащить стартер из гнезда без нарушения остальной схемы. Включить питание. Соблюдая осторожность и убедившись в хорошей изоляции инструмента, кратковременно закоротить контакты гнезда стартера. Лампа светильника должна загореться при исправности всех остальных элементов схемы.
Основные причины выхода из строя
Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.
Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.
Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.
Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.
Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.
Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.
Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.
Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 500С и ниже, а также при перепадах напряжения свыше 7%.
Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.
Проверка стартера
Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.
После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.
При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:
- конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
- лампа не должна быть сильно почерневшей;
- далее конденсатор можно проверить с помощью универсального тестера – мультиметра.
Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.
Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.
В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.
Как проверить дроссель
Основное предназначение дросселя – это регулировка электротока и предотвращение перегорания спирали из-за высокого перегрева. Внешне он выглядит как обмотка из тонкой проволоки, дополненная сердечником из металла. Включение в работу происходит последовательно. Установка проводится параллельно пусковому устройству.
О неисправности детали свидетельствует:
- сильное гудение светильника;
- быстрое загорание люминесцентной лампы с последующим угасанием и проявлением темных пятен на ее колбе;
- сильный нагрев колбы с момент работы;
- наличие мерцания.
Провести проверку дросселя можно и дома, используя мультиметр. Чаще всего причиной повреждения выступает:
- Обрыв. Это означает, что в обмотке один из проводов был оборван. Выявляется данная проблема с помощью тестера. Для этого достаточно выставить режим «сопротивление» и присоединить его щупы к выводам ограничителя. Значение «бесконечность» будет означать обрыв провода.
- Замыкание 2-ух обмоток. Некоторые модели оборудованы 2-мя обмотками, которые изолируются друг от друга, но при нарушении этого условия могут замыкаться. О замыкании свидетельствуют малые значения сопротивления на экране мультиметра.
- Замыкание витков на 1-ой обмотке. Обнаружить эту неисправность можно только при оплавлении нескольких проводов в обмотке. Чтобы определить дефект необходимо знать основные значения мощности и соответствующего ему сопротивления. Так при показателях в 20 ВТ – сопротивление должно варьироваться от 55 до 60 Ом, при 40 Вт – 24-30 Ом, а при 80 Вт – не более 20 Ом.
- Дефект магнитопровода. Металлический сердечник дросселя изготовлен из ферромагнитов. При активной или неправильной эксплуатации на их поверхности могут возникнуть сколы или трещинки, что негативно скажется на индуктивности.
- Металлические части корпуса. Свидетельство этой поломки – нулевое сопротивление катушки относительно корпуса. Испытание проводится мультиметром с помощью щупов, подносимых к металлическим элементам корпуса. Проверка производится в выставленном режиме «прозвон цепи».
Важно! Если же дроссель исправен, то причину неработоспособности люминесцентной лампы нужно искать в другом.
Утилизация прибора
Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.
Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.
Видео
Проверка исправности лампы дневного света и дросселя
Один из наиболее востребованных источников искусственного освещения – люминесцентные лампы. Они потребляют в 5-6 раз меньше энергии, нежели стандартные лампы накаливания, но при этом светят с той же яркостью. Светодиодные светильники с драйверами являются более экономичными, но в силу своей дороговизны им не удалось вытеснить с рынка лампы дневного света (ЛДС). При длительной эксплуатации люминесцентные лампы могут утратить свою работоспособность. Устранить такие неполадки можно, но для этого нужно знать, как проверить лампу дневного света, в том числе при помощи мультиметра.
Устройство и принцип работы ламп дневного света
Масса достоинств ЛДС обусловлена тем, что они представляют собой приборы газоразрядного типа, в которых ультрафиолетовое излучение формируется благодаря электрическим разрядам в испарениях ртути.
Особенность здесь одна – видимое освещение от лампы возникает только после того, как ультрафиолетовое излучение модифицируется. Такое преобразование возможно лишь при применении тех соединений, в которых содержится галофосфат кальция или иные составы с наличием люминофоров.
По принципу функционирования ЛДС можно приравнять к источникам освещения газоразрядного типа. В колбу из стекла помещают инертный газ, предварительно откачав из неё воздух, а после добавляют в газ 30 мг ртути. В оба края сосуда устанавливаются спиралевидные электроды, схожие с нитью накаливания. Они с каждой стороны припаиваются к 2 контактным ножкам, которые помещаются в пластины диэлектрического типа. Внутреннюю поверхность трубки покрывает слой люминофора.
Включается дневной светильник при помощи пускорегулирующего устройства – электромагнитного или электронного типа. Электромагнитное устройство включает в себя основной элемент – дроссель. Это сопротивление балластного типа в форме индуктивной катушки с сердечником из металла, которое последовательно соединено с люминесцентной лампой.
Дроссель необходим для поддержки равномерности разряда и корректировки тока при надобности. Когда лампочка включается, дроссель подавляет пусковой ток до того момента, пока спиралевидные нити не разогреются, а после выдаёт максимальное напряжение от самоиндукции, вследствие чего ЛДС зажигается.
Причины перегорания люминесцентных ламп
Нередко ЛДС перегорает, что придаёт ей схожести с традиционной лампой накаливания. При включении в колбе формируется дуга из электричества, вследствие чего спиралевидные электроды из вольфрама сильно нагреваются. Скачки высокой температуры влекут за собой разрушение и перегорание нитей.
Чтобы продлить эксплуатационный срок, на нить из вольфрама наносят слой активного щелочного металла. Разряд между электродами стабилизируется и снижается температура, благодаря этому нить намного дольше служит.
Учащённое включение/выключение лампы влечёт за собой разрушение защитного слоя, он просто опадает. Проходящий через оголённые нити разряд греет спираль в слабых точках, вследствие чего происходит перегорание.
Проверка цифровым тестером
С помощью цифрового тестера можно проверять целостность нитей накала. Выполнить это можно как в режиме прозвонки, так и в режиме проверки сопротивления. Необходимо выставить мультиметр в нужный режим и выполнить проверку спирали с обеих краёв трубки.
В режиме прозвонки, если спираль исправна, тестер выдаст характерный звук – зуммер.
В режиме проверки сопротивления при исправной спирали индикатор мультиметра высветит значение 5-10 Ом.
Перегорание нитей нагрева – наиболее распространённая поломка дневных ламп, которую легко обнаружить при помощи цифрового тестера.
Выявление неполадок и их устранение
ЛДС неисправна в таких случаях:
- не включается;
- временно мерцает перед включением;
- долго мерцает, но не включается;
- гудит;
- мерцает при горении.
Целостность спиралей-электродов
Прозвонить спираль-электрод на присутствие сопротивления можно с помощью мультиметра. На приборе выставляется режим замера сопротивления, а после того щупы прикладывают к ножкам колбы с обеих сторон.
Если спираль неисправна, мультиметр продемонстрирует нулевое сопротивление – нить порвана. Целая спираль всегда показывает небольшое сопротивление – до 10 Ом. Если хотя бы одна из спиралей окажется неисправной, лампу необходимо менять. Восстановлению она не подлежит.
Неисправности в электронном балласте
Чтобы проверить исправность электронного балласта, его нужно заменить на рабочий. Если лампа зажглась, значит причина поломки заключалась в нём. Сломанный балласт можно починить самостоятельно. Вначале нужно сменить предохранитель на аналогичную модель с теми же характеристиками. Если нити светятся слабо – значит в конденсаторе между ними имеется пробой. Он также заменяется схожим, но с показателем рабочего напряжения 2 кВ. слабые модели будут быстро сгорать.
Вследствие скачков напряжения могут сгореть транзисторы. Их нужно менять. Взять новые можно из старых балластов. После замены необходимо проверить люминесцентный фонарь с помощью лампы на 40 Вт.
Как проверить дроссель люминесцентного светильника
Перед тем как проверить дроссель лампы дневного света мультиметром, необходимо ознакомиться с основными признаками его поломки:
- гудение осветительного прибора;
- лампа включается и через время гаснет, темнея по краям;
- ЛДС перегревается;
- внутри трубки появляются “змейки”;
- светильник сильно мерцает.
Чтобы проверить дроссель на работоспособность, необходимо вытащить из светильника стартер, а потом замкнуть в его патроне контакты. Затем вынимается лампа и контакты в обеих патронах также закорачиваются. Мультиметр выставляется на замер сопротивления, после чего его щупы подсоединяются к контактам в ламповом патроне. Если имеется обрыв, прибор покажет нескончаемое сопротивление. При межвитковом замыкании прибор покажет нулевое значение.
Как проверить стартер
Если светильник стал мерцать сразу после включения, но при этом так и не загорелся – вышел из строя стартер. Выполнить его прозвонку отдельно от ЛДС не получится, так как без напряжения его контакты являются разомкнутыми.
Проверка исправности стартера возможна другим методом – последовательно подсоединив его с лампой накаливания к стандартной электросети.
Основная причина выхода из строя – биметаллическая пластина сильно изнашивается.
Как проверить ёмкость конденсатора тестером
Если конденсатор ЛДС неисправен, её показатель КПД уменьшается до 35-40%. Для осветительных приборов с мощностью не более 40 Вт вполне достаточно конденсатора с ёмкостью 4,5 мкФ. Если она меньше данной нормы, КПД будет уменьшено, если больше – освещение будет мигать.
Для осуществления замера конденсатор необходимо прозвонить мультиметром. При прикосновении щупами выходов детали прибор демонстрирует нескончаемое сопротивление. Когда этот показатель меньше, чем 2 Мом – это симптоматика значительной утечки тока.
Включение люминесцентной лампы без дросселя
Сгоревшую лампу дневного света можно вернуть в работу, если подсоединить её в схему посредством постоянного напряжения, исключая стартер и дроссельный элемент. Здесь поможет использование двухполупериодного выпрямителя с удваиванием напряжения. Если через некоторое время яркость лампы снизится, её необходимо перевернуть в светильнике, вследствие чего сменятся полюса подсоединения.
Данная схема предполагает использование радиоэлементов с показателем напряжения не больше 900 В. Именно такого значения достигает ЛДС при запуске.
Схема подключения перегоревших ламп
Из-за перегорания нитей накала люминесцентные лампы нередко приходят в негодность. Вернуть вторую жизнь такой лампе можно, используя нетрадиционную схему запуска, многократно испытанную народными умельцами.
Из таблицы можно узнать номинальные значения радиоэлементов для ЛДС с разной мощностью. Ограничительные резисторы R1 в обязательном порядке должны быть из проволоки.
Отремонтировать ЛДС в домашних условиях можно, если руководствоваться схемами и следовать определённым инструкциям. Такие знания дают возможность продлить эксплуатационный период осветительного прибора.
Способы проверки работоспособности лампы дневного света
Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.
В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.
Люминесцентная лампа к содержанию ↑
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Почему перегорают люминесцентные лампы
Часто лампы дневного света перегорают, что делает их похожими на обычные лампы накаливания. Во время включения светильника в колбе возникает электрическая дуга и происходит сильный нагрев спиральных электродов из вольфрама. Высокая температура приводит к разрушению нитей и перегоранию.
Для продления срока эксплуатации вольфрамовую нить покрывают слоем активного щелочного металла. Это стабилизирует тлеющий разряд между электродами и понижает температуру, сохраняя целостность нити на долгое время. Частое включение-выключение светильника разрушает защитное покрытие, оно осыпается. Разряд, проходя через оголенные части нити, точечно нагревает спираль, что приводит к перегоранию. Это видно на старых трубках как потемнение люминофора.
Перегоревшая лампа дневного света
Перегоревшая лампа дневного светаКолба не должна иметь повреждений, иначе лампа сгорит. Если на концах трубки обнаруживается оранжевое свечение, а лампа не загорается, – внутрь ЛДС попадает воздух. ЛЛ нужно менять.
Выявление неполадок и их устранение
Неисправность лампы дневного света выражается в:
- Полном отсутствии включения.
- Кратковременных мерцаниях лампы с дальнейшим включением.
- Продолжительном мерцании без дальнейшего включения.
- Гудении.
- Мерцании в режиме горения.
Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.
Следует помнить! Чтобы понять, где неисправность, в лампе или в светильнике, нужно заменить ЛЛ на заведомо исправную. Если она загорится, это означает, что дело в лампе. Если нет – следует искать неисправность в светильнике.
Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.
Целостность спиралей-электродов
Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.
Проверка целостности спиралей-электродов к содержанию ↑
Неисправности в электронном балласте
В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.
Устройство электронного балласта
Транзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.
Помните! Электронный балласт нельзя включать без нагрузки, он может быстро сломаться. Стоит уделить внимание контактам. При подключении ЭПРА нужно строго соблюдать полярность.
Как проверить дроссель люминесцентного светильника
Признаки неисправности дросселя:
- гудение светильника из-за дребезжания пластин;
- лампа зажигается нормально, потом темнеет по краям и гаснет;
- перегрев ЛДС;
- после включения внутри колбы бегают змейки;
- сильное мерцание.
Проверка дросселя
Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.
Сгоревший дроссель выдаст себя паленым запахом и пятнами коричневого цвета. Неисправный элемент не подлежит ремонту и требует замены. Новый дроссель подбирают в соответствии с мощностью лампы.
Как проверить стартер
Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.
Схема проверки стартера к содержанию ↑
Как проверить емкость конденсатора тестером
Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.
Включение люминесцентной лампы без дросселя
Перегоревшим лампам можно дать вторую жизнь, если подключить их в схему без дросселя и стартера, применив постоянное напряжение. Для такой цели применяется двухполупериодный выпрямитель с удвоением напряжения. Когда яркость уменьшится со временем, нужно перевернуть лампу в светильнике, чтобы поменять полюса подключения. Следует подбирать радиоэлементы для схемы с напряжением до 900 В, такое значение достигается при пуске.
Схема подключения сгоревшей лампы к содержанию ↑
Утилизация прибора
Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.
Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.
Проверка ламп дневного света мультиметром
В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света (ЛДС).
Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в 5-7 раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.
В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света.
Устройство
Принцип работы ламп дневного света основан на свечении люминофоров в ультрафиолетовом свете.
Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав. Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. Перегорание спиралей можно проверить тестером.
В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.
Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.
Принцип работы
Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением 220 В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы.
И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника. Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе.
Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.
Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.
Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания.
В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры (а их тоже будет два или более – по количеству ламп), тоже подключаются последовательно. В этом случае стартеры должны быть на напряжение 127 В, иначе они не сработают.
Проверка стартера
Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.
После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.
При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:
- конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
- лампа не должна быть сильно почерневшей;
- далее конденсатор можно проверить с помощью универсального тестера – мультиметра.
Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.
Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.
В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.
Целостность спиралей-электродов
Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.
Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.
Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.
Проверка дросселя
Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.
Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.
Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.
Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.
Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).
В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.
Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.
инструкция для разных видов ламп
В инструкциях к современным осветительным приборам производителями указываются «волшебные» сроки эксплуатации, но на практике, даже качественные и дорогие лампочки редко работают больше 1 года. Изделия устаревших конструкций, в которых источником света является раскаленная вольфрамовая нить, прослужат еще меньше. Чтобы случайно не выбросить лампу, которая еще пригодна к дальнейшему использованию, рекомендуется проверять такие изделия. Самый простой метод — установка в другой осветительный прибор. К сожалению, такой способ не всегда является удобным, а если применяется изделия с оригинальным видом цоколя, то реализация его на практике невозможна без выполнения довольно опасных действий с использованием электрических проводов, находящихся под высоким напряжением. Хорошей альтернативой этому варианту диагностики является использованием портативных измерительных приборов. Как проверить лампочку мультиметром будет подробно рассказано в этой статье.
Какой мультиметр использовать для проверки
Если проверить работоспособность лампочки необходимо срочно, а в наличии нет мультиметра либо прибор оказался неисправным, то можно собрать самодельное устройство, которое может вполне справиться с этой задачей. Для этой цели можно использовать стрелочный индикатор и батарейку на 1.5 вольта. Достаточно соединить эти элементы последовательно с использованием разрыва с 2 щупами. Таким образом можно эффективно проверить обрывы некритичной к повышенному току электрической цепи.
Подготовительные работы
Каких-либо специальных навыков обращения с электроизмерительными приборами не требуется. Кроме мультиметра для успешного выполнения тестирования лампочек могут понадобиться только перчатки. Некоторые модели электрических источников света запрещается брать голыми руками, иначе оставленные на поверхности лампы жировые следы могут привести к скорому выходу изделия из строя. Также может понадобиться спирт и старая зубная щетка для очистки контактов. Если лампочка эксплуатировалась во влажной среде, то на ее металлических элементах может образоваться довольно прочная оксидная пленка, которая часто становится причиной вынесения ложного заключения о неисправности электрического источника света. С этой целью можно также использовать универсальное средство WD-40.
Перед выполнением диагностической операции следует также убедиться в том, что измерительный прибор находится в работоспособном состоянии. Для этой цели достаточно перевести устройство в режим «прозвона» и соединить плюсовой и минусовой щупы. По звуковому сигналу можно определить исправность мультиметра. При отсутствии возможности проверить мультиметр таким образом, прибор следует перевести в режим измерения сопротивления. Исправность тестера также может быть установлена соединением контактов, но, в этом случае, на индикаторе должно появиться числовое отображение сопротивления (около 1 Ома).
Безопасность выполнения диагностической операции превыше всего, поэтому, если нет уверенности в том, что фазный провод подключен к лампе через выключатель, перед ее извлечением из патрона рекомендуется отключить предохранительные автоматы в электрическом щитке.
Проверка лампы накаливания
В большинстве случаев неисправность лампы накаливания можно определить при визуальном осмотре. Если спираль внутри колбы повреждена, то дальнейшая эксплуатация электрического источника света невозможна.
Иногда повреждение проводников образуется в местах припайки контактов либо на участке между цоколем и спиралью. Такую поломку определить на глаз практически невозможно, поэтому если спираль целая, то следует воспользоваться мультиметром для того, чтобы убедиться в отсутствии обрыва цепи. Если стеклянная колба изготовлена из непрозрачного стекла либо была окрашена, то без тестера определить внутренний обрыв проводника также не получится.
Как проверить лампу мультиметром (последовательность действий):
- Перевести мультиметр в режим «прозвона».
- Присоединить щупы к контактам лампы накаливания (полярность не имеет значения).
Исправность электрической лампы будет определена по звуковому сигналу. Наличие прохождения электрического тока по внутренней спирали можно также определить, если замерить сопротивление лампочки. Для этой цели мультиметр следует перевести в режим измерения сопротивления, а затем также присоединить щупы к металлическим контактам источника света.
Если в результате проверки дисплей цифрового прибора покажет бесконечно большое сопротивление либо звуковой сигнал будет отсутствовать, то лампу накаливания потребуется заменить (при использовании стрелочного прибора будет отсутствовать механическое движение индикатора). Чтобы убедиться в том, что причиной неисправности лампы является обрыв цепи, следует внимательно осмотреть контакты электрического источника света. Даже при наличии незначительно окисла их необходимо смочить спиртом и почистить зубной щеткой или любым неметаллическим твердым предметом, после чего провести повторную диагностику.
С помощью мультиметра можно диагностировать обрыв электрической цепи и у автомобильной лампочки. Если необходимо проверить элемент головного освещения, то следует обратить внимания на тот факт, что в таких устройствах используется 2 нити, рассчитанные на 12 Вольт, которые необходимо прозвонить отдельно.
Каких-либо отличий в том, как проверить галогеновую лампу такого же напряжения не существует. Такой источник света отличается от обычного элемента только использованием инертного газа в колбе.
Диагностика люминесцентной лампы
О том, как проверить люминесцентную лампу мультиметром несложно догадаться, если знать принцип работы этого прибора освещения. В каждом отдельном элементе устанавливаются с двух противоположных сторон спирали-электроды, с помощью которых осуществляется запуск тлеющего разряда внутри колбы. Выход люминесцентной лампы из строя происходит в момент перегорания нитей накаливания, поэтому, как и в случае с вольфрамовой нитью, достаточно измерить сопротивление между контактами, чтобы выяснить возможность дальнейшей эксплуатации изделия.
Для того чтобы проверить мультиметром люминесцентную лампу достаточно извлечь ее из держателя и замерить сопротивление между контактами с каждой стороны. При отсутствии звукового сигнала либо наличии бесконечно большого сопротивления можно констатировать неисправность осветительного прибора.
Многих владельцев мощных ртутных источников света интересует вопрос, как проверить лампу ДРЛ тестером. Наиболее часто возникает необходимость определения исправности ДРЛ 250 на 220 Вольт. Диагностическая операция осуществляется с помощью тестера, который также следует перевести в режим проверки резисторов, затем коснуться щупами выводов осветительного прибора. При отсутствии изменений в показаниях прибора лампу потребуется заменить.
Проверка дросселя
Если лампочки окажутся исправными, то отсутствие запуска тлеющего разряда может происходить по причине выхода из строя дросселя. Эту деталь также можно проверить с помощью тестера.
Инструкция, как проверить дроссель лампы дневного света мультиметром:
- Перевести мультиметр в режим измерения сопротивления.
- Подсоединить один щуп к входу, второй — к выходу электронного элемента.
При отсутствии обрыва цепи дроссель лампы дневного света можно считать исправным, но только при условии, что его изоляция не повреждена. Если есть потемневшие места, то на таких участках, возможно, произошел электрический пробой, который может стать причиной неработоспособности элемента.
Проверка светодиодной лампы
Для того чтобы проверить светодиодную лампу потребуется аккуратно снять рассеиватель. Затем перевести измерительный прибор в режим измерения сопротивления до 200 Ом. В этом случае на щупах тестера будет небольшое напряжение, которое не в состоянии полностью зажечь светодиод, но слегка подсветить его вполне возможно.
При такой проверке важно соблюсти полярность. В точке вывода электричества от внутреннего блока питания, как правило, указывается «+» и «−». Полупроводники подключаются последовательно, поэтому чтобы их проверить необходимо поочередно подключить щупы к каждому элементу (со стороны «плюса» подключается красный щуп). В первую очередь следует прозвонить элементы, на поверхности которых есть темные пятна.
Не лишней будет информация о том, как проверить светодиодную лампочку, если каждый элемент «отзовется» на прикосновение щупов мультиметра небольшим свечением. В этом случае прозванивают провода от цоколя, до платы питания. Также следует проверить исправность транзистора и диодного моста.
Если в результате проверки будет выявлены неисправности внутренних элементов, то энергосберегающую лампу дешевле заменить, чем тратить время на поиск подходящих электрических деталей.
Диагностика неисправности лампы подсветки монитора
Как проверить лампу подсветки монитора правильно, зависит от того, какой тип осветительных элементов используется в экране компьютера. Для выполнения этой задачи могут применяться:
- CCFL (флуоресцентные лампочки).
- Светодиоды.
Флуоресцентные лампочки подсветки экрана можно проверить с помощью специального тестера. Светодиоды проверяются таким же образом, как и при диагностике полупроводниковых ламп, работающих от сети. Если подключить щупы к элементам соблюдая полярность, то они начнут немного светиться (в режиме измерения сопротивления до 200 Ом).
Основная проблема при выполнении диагностической операции — добраться до осветительных элементов. При выполнении работы следует соблюдать осторожность, ведь даже в отключенном мониторе может оставаться опасное для жизни напряжение.
Буквенные обозначения электрических лампочек
Если вы узнали, как прозвонить лампочку, но не знаете о том, к какому типу элементов питания относится изделие, то следует поискать на ее корпусе обозначение. Тип осветительного прибора, как правило, указывается несколькими символами:
- LED — светодиодные.
- CCFL — флуоресцентные.
- ДРЛ — ртутная.
- ЛДС — дневного света.
- ЛН — накаливания.
На светильниках также может быть указана буквенная маркировка. По первому символу можно установить принадлежность прибора к определенной категории, например:
- Н — накаливания.
- Д — светодиодная.
- И — кварцево-галогенная.
- Р — газоразрядная ртутная лампа.
Вне зависимости от того на двенадцать вольт используется осветительный элемент или подключается к бытовой электрической сети, буквенное обозначение остается неизменным.
Видео по теме
Как измерить дроссель мультиметром – Строительство домов и бань
Как проверить дроссель с помощью мультиметра
Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.
Назначение и устройство
В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.
Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.
Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.
В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.
В светильниках
В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.
Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.
Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.
Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.
Проверка в лампах
Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.
До того, как проверить дроссель лампы, проверяются сама лампа и стартер.
Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.
Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.
В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.
Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.
Проверка межвиткового замыкания
В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.
Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.
Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.
В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.
Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.
Схема прибора приведена на рисунке.
Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).
Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.
Последовательность действия
Порядок проверки следующий:
- включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
- в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
- к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.
Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.
Проверка индуктивности
Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.
Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.
При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.
Тестирование дросселя – как проверить дроссель мультиметром
В широком понимании слова, дроссель является специальным ограничительным элементом.
Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.
Конструктивные особенности
Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:
- в желтоватых тонах;
- в холодных белых тонах;
- в теплых белых тонах.
Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.
Cиловые дроссели EPCOS AG
В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.
Особенности дросселя
Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:
- защитой от перепадов в показателях напряжения;
- разогревом катода;
- созданием напряжения достаточного уровня для запуска светильника;
- ограничением силовых показателей электрического тока непосредственно после запуска;
- стабилизацией процессов работы осветительного прибора.
Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.
Характеристики ЭмПРА
Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:
- пульсирующим световым потоком, вызывающим усталость органов зрения;
- порядка 10-15% потери электрической энергии;
- шумностью работы в пусковой момент;
- недостаточно устойчивым запуском в низкотемпературных условиях;
- большими размерами и ощутимым весом;
- продолжительным запуском источника света.
Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.
Характеристики электронного балласта
Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.
Преимущества электронного балласта представлены:
- любой скоростью запуска;
- отсутствием необходимости устанавливать стартер;
- исключено проявление мерцания;
- максимальными показателями световой отдачи;
- компактными размерами и небольшим весом устройства;
- оптимальными условиями функционирования.
Так выглядит электронный балласт
Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.
Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.
Самые часты неисправности
Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:
- наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
- темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
- перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.
Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.
Как проверить дроссель лампы дневного света мультиметром
Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.
Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.
Стартер и дроссель для люминесцентных ламп
Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.
Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.
Как проверить стартер люминесцентной лампы
Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.
- конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
- колба источника света, которая не должна быть почерневшей.
Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.
Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.
Видео на тему
Катушка индуктивности, дроссель.
Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.
К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc. В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.
Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.
Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.
Как работает дроссель.
В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.
Каково устройство дросселя, на чем основан принцип его работы?
Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.
Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам — индуктивности. Это явление легче всего понять, поставив несложный опыт.
Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).
Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.
Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.
Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.
Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.
Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.
Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.)
Т. е — магнитная проницаемость вакуума принята за еденицу.
В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.
В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.
Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.
У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.
Как работает трансформатор.
Рассмотрим работу дросселя собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно — нет.
Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться — перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее — номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.
Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1. Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить — наведенная Э.Д.С. также, возрастет. Получается, что на каждый виток, приходится какая-то определенная часть напряжения.
Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается — вторичной .
Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений — Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).
Таким образом, устройство состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока можно использовать для изменения питающего напряжения — трансформации. Соответственно, оно так и называется — трансформатор .
Если подключить к вторичной обмотке какую-либо нагрузку, в ней возникнет ток(Is ). Это вызовет пропорциональное увеличение тока(Ip ) и в первичной обмотке. Будет верным соотношение:
Трансформаторы могут применяться как для преобразовния питающего напряжения, так и для развязки и согласования усилительных каскадов. При работе с трансформаторами необходимо обратить внимание на ряд важных параметров, таких как:
1. Допустимые токи и напряжения для первичной и вторичной обмоток.
2. Максимальную мощность трансформатора — мощность которая может длительное время передаваться через него, не вызывая перегрева обмоток.
3. Диапазон рабочих частот трансформатора.
Параллельный колебательный контур.
Если соединить катушку индуктивности и конденсатор — получится очень интересный элемент радиотехники — колебательный контур. Если зарядить конденсатор или навести в катушке Э.Д.С. используя электромагнитное поле — в контуре начнут происходить следующие процессы: Конденсатор разряжаясь, возбуждает электромагнитное поле в катушке индуктивности. Когда заряд истощается, катушка индуктивности возвращает запасенную энергию обратно в конденсатор, но уже с противоположным знаком, за счет Э.Д.С. самоиндукции. Это будет повторяться снова и снова — в контуре возникнут электромагнитные колебания синусоидальной формы. Частота этих колебаний называется резонансной частотой контура, и зависит от величин емкости конденсатора(С), и индуктивности катушки (L).
Параллельный колебательный контур обладает очень большим сопротивлением на своей резонансной частоте. Это позволяет использовать его для частотной селекции(выделения) в входных цепях радиоаппаратуры и усилителях промежуточной частоты, а так же — в различных схемах задающих генераторов.
Цветовая и кодовая маркировка индуктивностей.
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.
Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
D=±0,3 нГн; J=±5%; К=±10%; M=±20%
Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.
Как измерить индуктивность катушки, дросселя.
ЗЫ: Взял где взял, обобщил и добавил немного.
Простите за качество некоторых картинок (чем богаты).
Берегите себя и своих близких!
Дубликаты не найдены
Как измерить индуктивность катушки мультиметром? Взять мультиметр с функцией измерения индуктивности. Лодку мне.
Как проверить дроссель при помощи мультиметра
Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.
Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Дроссель
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:
При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Проверка приборов низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
- Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
- Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
- Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
- Измерение индуктивности обмотки.
- Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Стартер
При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.
При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.
Неисправности светильников с ЭМПРА
Лампа не зажигается
- Неисправность электросети — проверить наличие напряжения на контактах патрона.
- Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
- Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
- Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
- Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.
Лампа не зажигается. Свечение по краям лампы
- Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.
Лампа мигает, но не зажигается
- Неисправен стартер — заменить стартер.
- Низкое напряжение сети — проверить мультиметром напряжение.
- Потеря эмиссии электродов лампы — заменить лампу.
На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается
- В лампу попал воздух — заменить лампу.
Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы
- Замыкание на корпус светильника — проверить изоляцию.
- Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.
Лампа периодически зажигается и гаснет
- Неисправна лампа — заменить лампу
- Неисправен стартер — заменить стартер
Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки
- Неисправен дроссель — проверить значение пускового и рабочего токов.
- Неисправна лампа — заменить лампу.
При включении лампы перегорают, потемнение на концах лампы
- Пробой изоляции дросселя — заменить дроссель
При работе светильника слышно гудение
- Колебание пластин дросселя — заменить дроссель
Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.
Как проверить дроссель люминесцентного светильника?
Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.
После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.
Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.
Как проверить стартер
Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.
Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.
Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.
Заключение
В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.
Инструкция по проверке дросселя на лампах дневного света при помощи мультиметра
Одним из наиболее часто встречаемых осветительных приборов, особенно в помещениях общественного назначения, является лампа дневного света. Такие осветительные изделия благодаря своему строению получили широкое применение в самых разнообразных сферах человеческой деятельности.
Но бывают ситуации, когда такие светильники выходят из строя и их нужно проверить на предмет обнаружения поломки. При этом очень большую роль в работоспособности такой осветительной продукции играет дроссель. О том, что и где следует искать, а также причем здесь мультиметр, расскажет наша статья.
Какое строение имеют источники светового потока
Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:
- теплый белый;
- холодный белый;
- желтоватый тон.
Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света.
Обратите внимание! Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд.
Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света.
Очень часто дроссель входит в состав люминесцентных ламп. Здесь, для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.
Обратите внимание! По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.
Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже.
Люминесцентные светильники: строение и принцип работы
Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки.
На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.
Строение люминесцентной лампы
Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).
Сверху колба покрыта специальным слоем из люминофоров.
Принцип работы лампы таков:
- при поступлении электрического тока на электроды (спирали) они нагреваются;
- в результате нагревания спиралей происходит зажигание газа;
- под действием него начинает светиться люминофор.
Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.
Принцип работы люминесцентной лампы
Первым в работу вступает стартер. Его роль сводится к прогреванию биметаллических электродов. В результате этого наблюдается их короткое замыкание. Затем ток в цепи, ограниченный только внутренним сопротивлением дросселя, резко увеличивается (более чем в три раза). Электроды быстро разогреваются. В то же время у стартера его биметаллические контакты остывают и размыкают цепь запуска. Во время разрыва электрической цепи наблюдается эффект самоиндукции, который приводит к высоковольтному импульсу. Он и обеспечивает в среде инертного газа электрический разряд. Под влиянием созданного разряда формируется видимое ультрафиолетовое свечение находящихся в колбе паров ртути.
В дальнейшем при работе лампы происходит равномерное распределение электрического тока, а дроссель обеспечивает ее стабильную работу.
Какие неисправности возможны и как их устранить
В ситуации, когда уровень освещения, которое дают лампы дневного света, перестал быть стабильным, нужно искать причины дабы выяснить, подлежит ли источник света ремонту или нуждается в замене.
Обратите внимание! Поверку ламп дневного света (мультиметром) следует начинать со стартера или дросселя, так как это два наиболее важных элемента источника света.
Стоит отметить, что чаще всего из строя выходят стартеры. Поэтому проверить в первую очередь нужно именно их. У него обычно ломается конденсатор, который подключается параллельно источнику света. Делая замену конденсатора, необходимо учитывать напряжение, на которое рассчитан этот элемент. Здесь нет универсального решения и каждый случай нужно оценивать отдельно.
А вот дроссель ломается гораздо реже. Хотя такая ситуация не является исключением. Дроссель может престать функционировать из-за того, что произошел обрыв его обмотки. Это связано с тем, что при межвитковом замыкании данный элемент сильно нагревается. При этом можно почувствовать характерный запах, который источает горелая изоляция. В такой ситуации через некоторое время источник дневного света также выйдет из строя.
Также очень часто поломка люминесцентной лампы происходит из-за перегорания вольфрамовой спирали. Это вообще самая распространенная причина выхода источника света из строя.
О неисправности дросселя или постепенному, но верному перегоранию вольфрамовой спирали свидетельствует появление на концах изделия почернений разной площади. Если такие пятна появились, то лампе осталось функционировать уже чуть-чуть, и она подлежит замене в ближайшее время.
Но это все лишь домыслы, так как для определения причины поломки нужно прибегать к помощи специального прибора – мультиметра.
Как проводится проверка работоспособности ламп
Проверка источника света сводится к тому, чтобы убедиться в сохранности целостности спирали с обеих сторон колбы. Для этих целей можно использовать цифровой мультиметр или тестер.*
Обратите внимание! Многие модели мультиметров оснащены функцией звуковой прозвонки. Вместо нее можно включить наименьший предел измерения сопротивлений.
Если прибор выдал значение (например, 10 ом), то лампа целая и нити не перегорели. А вот если мультиметр выдает полный обрыв, то нить перегорела.
Дополнительным визуальным способом определить неисправность дросселя, без помощи измерительного прибора, является наличие эффекта «огненной змейки». Она периодически «вьется» по колбе. Ее появление демонстрирует факт того, что ток в источнике света превышает свои допустимые значения. Поэтому электрический заряд стал нестабильным. В такой ситуации мультиметром нужно проверить вольт-амперные характеристики источника света. Если будут выявлены даже незначительные несоответствия с заданными производителями параметрам, то необходимо менять дроссель.
Обратите внимание! Проверку дросселя рекомендуется проводить при помощи контрольного светильника, который точно исправлен.
В данной ситуации проверка проводиться следующим образом:
- два провода, идущие от дросселя, нужно отсоединить;
- их соединяем с цоколем рабочей контрольной лампы;
- подключаем полученную конструкцию к электросети.
Если люминесцентный осветительный прибор загорелся в полную силу, то значит дроссель исправен и причина поломки кроется в другом.
Самостоятельно ремонтировать устройство источников света дневного типа можно только людям, имеющим необходимые знания, а также набор инструментов. Заменяя дроссель нужно обязательно отключить осветительный прибор от сети электропитания.
Обратите внимание! Помните, что просто нажав на выключатель, вы не сможете полностью обесточить светильник. Напряжение в нем все равно останется.
При ремонте внимательно следите за схемой подключения определенных элементов устройства прибора, а также обязательно используйте мультиметр для проверки конечного результата ремонтных работ.
Заключение
При неисправности дросселя, находящегося в составе лампы дневного света, можно и нужно использовать такой измерительный прибор, как мультиметр. С его помощью вы сможете быстро и эффективно не только обнаружить причину поломки, но и своими руками провести необходимые ремонтные действия.
Тестирование дросселя – как проверить дроссель мультиметром
В широком понимании слова, дроссель является специальным ограничительным элементом.
Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.
Конструктивные особенности
Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:
- в желтоватых тонах;
- в холодных белых тонах;
- в теплых белых тонах.
Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.
Cиловые дроссели EPCOS AG
В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.
Особенности дросселя
Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:
- защитой от перепадов в показателях напряжения;
- разогревом катода;
- созданием напряжения достаточного уровня для запуска светильника;
- ограничением силовых показателей электрического тока непосредственно после запуска;
- стабилизацией процессов работы осветительного прибора.
Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.
Характеристики ЭмПРА
Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:
- пульсирующим световым потоком, вызывающим усталость органов зрения;
- порядка 10-15% потери электрической энергии;
- шумностью работы в пусковой момент;
- недостаточно устойчивым запуском в низкотемпературных условиях;
- большими размерами и ощутимым весом;
- продолжительным запуском источника света.
Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.
Характеристики электронного балласта
Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.
Преимущества электронного балласта представлены:
- любой скоростью запуска;
- отсутствием необходимости устанавливать стартер;
- исключено проявление мерцания;
- максимальными показателями световой отдачи;
- компактными размерами и небольшим весом устройства;
- оптимальными условиями функционирования.
Так выглядит электронный балласт
Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.
Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.
Самые часты неисправности
Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:
- наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
- темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
- перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.
Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.
Как проверить дроссель лампы дневного света мультиметром
Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.
Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.
Стартер и дроссель для люминесцентных ламп
Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.
Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.
Как проверить стартер люминесцентной лампы
Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.
- конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
- колба источника света, которая не должна быть почерневшей.
Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.
Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.
Видео на тему
Как проверить лампочку мультиметром – инструкция
Подготовка мультиметра к работе
Первым делом извлечём наш мультиметр из упаковки и осмотрим внимательно. На корпусе не должно присутствовать каких-либо повреждений, батарейный отсек должен закрываться плотно. Проверяем качество и целостность щупов и идущих к ним проводов. Если изоляция отсутствует, используем изоленту. Неплохо справится с задачей и термоусадочная трубка. Если на щупах имеются сколы, также их заматываем.
Переключатель режимов выставляем для работы с омами, напротив деления 200 Ом. Кабель чёрного цвета присоединяем к гнезду Com. Кабель красного цвета подключаем в гнездо, где имеются символы тех величин, которые мы собираемся измерять.
Устройство должно отобразить на своём экране цифру «1». Если её нет или отображается что-то другое, пора его ремонтировать. Скрещиваем щупы друг с другом. Единичка меняется на нолик. Если именно так всё и происходит, значит, работа идёт в штатном режиме. Если на экране идёт мельтешение цифр, они бледные, нужно попробовать поменять батарейки. Если попытка не удалась, прибор подлежит ремонту. Для начала тестирования лампы выставляем на тумблере режим поиска обрыва. Данный режим обозначается пиктограммой диода.
Простейший способ
Самый простой способ диагностики подходит как для лампочек накаливания, так и для люминесцентных и светодиодных ламп. Он предполагает вкрутить подозрительную лампочку в другой светильник и включить его. К сожалению, это не всегда возможно. Иногда резьбовая часть цоколя изготовлена с отклонением от стандартного размера и при вкручивании в патрон не замыкает оба электрических контакта. Или в доме больше нет светильников с точно таким же патроном.
Покупая лампочку в магазине электротоваров, многие обращали внимание на то, как продавец проверяет её с помощью тестера. В корпусе тестера есть несколько разъёмов, предназначенных для диагностики лампочек разного типа: накаливания, люминесцентных и галогенных. Его задача – проверить целостность проводников внутри лампы, о чём свидетельствует звуковой сигнал. Эту же самую операцию можно проделать в домашних условиях, воспользовавшись мультиметром или многофункциональной индикаторной отвёрткой.
Последовательность проверки
Так как проверить лампочку мультиметром?
- Перевести прибор в режим «прозвонки»;
- Проверить целостность цепи прибора путем краткого замыкания щупов между собой;
- Расположить лампочку рядом с прибором на поверхности;
- Взять любой из щупов прибора, и коснуться им центрального контакта лампочки;
- Взять другой щуп, и приложить его к боковому контакту лампочки.
Прибор издаст звуковой сигнал при исправности лампы. Но здесь те же особенности, что и в предыдущем способе: звуковой сигнал может не сработать. Тогда остается проверить лампочку измерением сопротивления.
Проверяем лампу накаливания
Для проверки лампочки ее можно ввинтить в другую люстру или фонарик. Однако это не во всех случаях можно сделать. Иногда диаметр цоколя лампочки отличается от разъема на светильнике либо в доме больше нет устройств с аналогичным патроном.
Лампы накаливания на 220 В работают в сетях переменного тока, поэтому полярность при их прозвонке не важна.
В режиме прозвонки
Чтобы узнать, работает ли лампочка, с
помощью тестера, сначала нужно установить на нем соответствующий режим. После
этого одним измерительным щупом нужно дотронуться до контакта в центре
обыкновенной или галогеновой лампы, а другим – до контакта на резьбе цоколя.
Если лампочка исправна, мультиметр запищит, а на его
экране отобразится цифра от 3 до 200 Ом.
Перед каждым тестированием нужно замыкать измерительные
щупы друг с другом, чтобы удостовериться в исправности измерительного
оборудования.
Лампочки светодиодного или люминесцентного типа
невозможно проверить этим способом, т.к. в них встроена электронная плата. В
таком случае можно лишь отдельно протестировать спираль из стекла
люминесцентного устройства. Для этой цели спираль необходимо аккуратно снять с
цоколя и проверить выводные кабели, которые подключены к электронной плате.
В режиме проверки сопротивления
Существует ещё один, более точный, метод диагностики спиральных ламп с помощью мультиметра. Им можно не только определить пригодность лампочки, но и узнать её сопротивление. Зачем это нужно? Например, заводской отпечаток на колбе лампы накаливания стёрт. Следовательно, её мощность неизвестна. Данный способ поможет решить эту проблему.
Теперь о том, как проверить лампочку мультиметром в режиме сопротивления. Для этого нужно перевести переключатель на позицию с пределом 200 Ом, а затем коснуться щупами электрических контактов лампы точно так же, как в режиме прозвонки. В этом случае звуковой сигнал отсутствует, а на ЖК-дисплее появится значение сопротивления в Омах. Если на табло осталась «1», то внутри осветительного прибора обрыв.
По измеренному сопротивлению спирали в холодном состоянии можно сделать вывод о её мощности. В нами составленной таблице приведены данные об основных типах ламп, применяемых в быту.
Во время замера следует помнить, что за счёт плохого контакта щупов с тестером полученный результат может отличаться от табличного в большую сторону на несколько Ом.
Проверка светодиодной лампы мультиметром
К сожалению, светодиодную лампу невозможно проверить мультиметром. Полупроводниковый прибор с достаточно сложной схемой можно в домашних условиях можно проверить на работоспособность только закрутив в исправный патрон и подав напряжение.
Светодиодная лампа с цоколем Е27
Проверка светодиодной лампы имеет свои особенности.
Эти лампочки имеются в большинстве современных люстр и других устройств освещения. Для проверки на исправность (или же неисправность) светодиода делаем следующее:
- При помощи старой банковской карты (пластиковой) избавляемся от рассеивателя, который находится между корпусом и самим светодиодом.
- Пластик постепенно продвигаем по линии склейки. Чтобы шов легче поддавался, его можно нагреть при помощи технического фена.
- Вскрываем плату.
- Прижимаем щупу к светодиодам и ждём, пока они не начнут тускло светиться.
Если никакого свечения не появилось, лампочку пора менять.
Мощные светодиоды
Проверяем яркий светодиод.
В гирляндах обычно используют светодиоды синего, жёлтого и белого цвета. Для их тестирования щупы не применяются, вместо этого их размещают в транзисторных гнёздах. Делается всё следующим образом:
- Сначала нужно определить какая у СМД распиновка.
- В нижней части мультиметра находим восемь гнёзд.
- Размещаем щупы: для анода используем гнездо Е, а для катода — гнездо С.
- Открываем PNP, на эмиттер Е подаётся заряд положительного значения. Если светодиод рабочий, то он загорится.
- Далее полярность меняем для NPN транзисторов. Устанавливаем анод в С отверстие, катод ставим в отверстие Е.
Справка. В транзисторных гнёздах очень удобно проверять светодиоды, которые оснащены длинными контактами.
Проверка дуговой ртутной лампы
Светильник с дуговой ртутной люминофорной лампой (ДРЛ) обычно можно встретить на улице или в заводском цехе. Для определения работоспособности прозванивают дроссель – устройство, ограничивающее ток, питающий ДРЛ.
Если схема была разорвана, то сопротивление будет неограниченно большим, что и покажет прибор. Если имеется потеря изоляции, ведущая к короткому замыканию, показатель повышается незначительно. В случае наличия замыкания в обмотке дросселя, сопротивление не меняется.
Если при проверке тестером дросселя проблем не было выявлено, то дуговая лампочка может не функционировать по причине неисправностей в системе подачи электроэнергии, к примеру, из-за окисления контактов. Принцип работы светильника очень простой, поэтому неисправности непосредственно в лампе ДРЛ встречаются редко.
При тестировании ДРЛ следует соблюдать значительную осторожность. При нарушении целостности стеклянной колбы, содержащей газ под высоким давлением, пары ртути могут распространяться на большие расстояния, загрязняя помещение.
Галогеновые лампочки
Для начала напомним, что галогеновую лампу относят к тепловому источнику освещения. В ней, как и в обычной лампочке, есть спираль. Под воздействием тока она нагревается и производит световое излучение. Повышенная яркость и насыщенность создается за счет наличия в колбе газовой смеси, в состав которой входят галогены (отсюда и название). Такой тип ламп широко применяют для создания точечного освещения или подсветки.
Что делать, если галогеновая лампочка перестала гореть?
- для начала стоит проверить напряжение в цоколе осветительного прибора;
- если с напряжением все в порядке проверке подвергают лампочку.
Последовательность проверки галогеновой лампы
Проверять будем также мультиметром. Для этого устанавливаем на приборе режим для измерения минимального сопротивления.
Внимание! Голыми руками лампочку не трогаем. В случае прикосновения кожи к колбе возникает жировой отпечаток. В последующем в этом месте лампочка будет больше нагреваться, что вызовет сокращение срока ее эксплуатации или приведет к полному выходу из строя. Поэтому работаем в перчатках.
- кладем лампочку рядом с прибором;
- берем щупы в руки;
- прикладываем к выводам лампочки.
Показания зависят от типа лампочки и от того насколько она остыла после предыдущего включения. Сопротивления также будут разными для бытовой лампы на 220 вольт и для автомобильной на 12 вольт, но в любом случае величина сопротивления будет в пределах от 0.5 Ом до единиц Ом. Если же значение стремится к бесконечности, то лампа признается нерабочей.
Проверка энергосберегающей лампы мультиметром
КЛЛ — компактная люминесцентная лампа, которую в России называют энергосберегающей, также не поддаётся проверке мультиметром. Её колба включена в сеть через сложную схему, которую нельзя прозвонить с внешних контактов. Проверяем работу лампы закручиванием её в заранее исправный патрон.
Таблица: соотношение мощности и сопротивления
Ω | Вт |
150 | 25 |
85 | 40 |
63 | 60 |
48 | 75 |
38 | 100 |
27 | 150 |
Справка. Точность измерений может иметь погрешность в два-три ома.
Аналогично можно протестировать и лампочки в автомашине на двенадцать вольт. Нужно иметь в виду, что иногда в этих лампах имеется по две спирали. Одна из них отвечает за дальний свет, а вторая — за ближний. Этот же метод применим и для ламп дневного света трубчатого типа, они имеют тоже по две спирали, установленные по краям между электродами.
Справка. Компактные люминесцентные лампы, энергосберегающие галогенные, а также лампы на светодиодах проверить таким образом не получится. В их цепи имеются дополнительные элементы, такие как микросхема, электронный блок для подключения и запуска. Поэтому для их проверки используются другие методы.
Проверка исправности LED-прожекторов
«Начинка» прожектора имеет свои особенности.
Прежде чем проверять светодиод, следует установить, к какому типу он относится. Внутри таких прожекторов обычно ставят:
- плату с несколькими небольшими SMD, которые можно проверить методом прозвонки, аналогично обычным светодиодным лампам;
- мощный светодиод жёлтого цвета, имеющий напряжение от десяти до тридцати вольт.
Справка. У мощного светодиода слишком велико напряжение для мультиметра, проверяют его при помощи драйвера. Своими характеристиками драйвер должен совпадать с показателями светодиода.
Тестирование автомобильной лампочки
Автолюбителей часто интересует вопрос о том, как проверить лампу, вышедшую из строя. В чем причина неисправности? Проблема может заключаться не только в автомобильной лампочке, но и в электропроводке или патроне. Проверка мультиметром проводится так же, как и при тестировании обычных лампочек с нитью накаливания. Рекомендуется следующий порядок действий:
после остывания электронной системы автомобиля демонтировать неработающие лампочки;- установить тестер в положение проверки минимального сопротивления;
- приложить щупы к контактам, чтобы проверить лампочки с помощью мультиметра.
Если прибор измерит сопротивление, то лампочки исправны, если же на экране будут буквенные символы или знак бесконечности – это свидетельствует об их непригодности.
Анализ работоспособности диодов и радиоламп
Радиолампы представляют собой ламповые диоды, использовавшиеся ранее в электронном оборудовании. В настоящее время они заменены полупроводниковыми диодами. Тестирование любых видов диодов, в том числе радиоламп, с помощью мультиметра имеет свои особенности.
Диод имеет два полюса – катод и анод. Если поднести положительный щуп мультиметра (красный) к аноду, а отрицательный (черный) к катоду, ток будет протекать через диод. На экране мультиметра отобразится пороговое напряжение, величина которого может колебаться от 200 до 800 мВ.
Если поменять местами щупы тестера, ток протекать не будет, поскольку диод обладает однонаправленной проходимостью. В случае с радиолампой сопротивление нужно определять между нитью накала, являющейся катодом, и управляющей сеткой.
Существует специальный прибор, называемый тестер ламп. Такие анализаторы, обеспечивающие проверку электроламп, снабжены приспособлениями для испытания вакуума. Эти приборы полезны не только как испытатели, но и как анализаторы для быстрого измерения рабочего режима ламповых элементов любого радиоаппарата.
Испытатель несколько отличается от мультиметра, он больше похож на стенд и позволяет измерять анодно-сеточные характеристики. На нем присутствуют гнезда для лампочек, миллиамперметр, работающий как милливольтметр, а также источники питания. Для любителей старых ламповых приемников тестер становится отличным помощником в работе.
Проверка индикаторной отверткой
Чтобы в домашних условиях проверить на исправность лампочку, необязательно иметь под рукой мультиметр. Гораздо быстрее это сделать с помощью многофункциональной индикаторной отвёртки. Её отличие от обычного индикатора заключается в наличии батарейки-таблетки внутри корпуса. Работоспособность такой отвертки проверяется касанием пальцев её металлических контактов с торцов. При этом индикаторный светодиод внутри неё должен светиться.
Последовательность действий по проверке лампы накаливания следующая:
- В одну руку берут лампочку, касаясь резьбы (боковой контакт).
- В другую руку берут индикаторную отвёртку и металлическим стержнем касаются центрального контакта лампы, а большим пальцем – торца отвёртки. Таким образом, цепь замыкается через отвёртку, лампу и тело человека. Весь тест занимает всего пару секунд.
Как проверить лампу мультиметром – смотрим видео
Источники
- https://setafi.com/lampa/kak-proverit-lampochku-multimetrom/
- https://ledjournal.info/vopros-otvet/kak-proverit-lampu.html
- https://simplelight.info/istochniki-osveshheniya/kak-proverit-lampochku-multimetrom.html
- https://multimetri.ru/proverit/kak-proverit-lampu-multimetrom/
- https://svetilnik.info/lampy-i-svetilniki/kkak-mozhno-multimetrom-proverit-rabotosposobnost-lampochki.html
- https://EvoSnab.ru/instrument/test/kak-proverit-lampochku-multimetrom
Как сделать дроссель на лампу ДРЛ 250
Так как лампы высокого давления ДРЛ 250 имеют довольно долгий срок службы и высокую экономичность по сравнению с лампами накаливания, их с успехом применяют для освещения дачных участков, двора частного дома, а иногда даже гаражей внутри.Они годами доказали свою надежность, качество освещения, и все это за небольшую сумму. Приобрести лампу ДРЛ 250 не составит особого труда. Она есть в продаже как специализированных магазинах, так и на рынках.
Проблему может составить дроссель, который входит в схему питания лампы. Так как он состоит из медной проволоки, стоимость его, даже бывшего в употреблении довольно высока. Поэтому в этой статье будет описано – как сделать дроссель для этой лампы из других часто встречающихся материалов. Например, из трех дросселей распространенных некогда светильников дневного света. Такие дроссели применялись в светильниках на лампы ЛД 40, соответственно дроссель у них был 40 Ватт. Также светильники на лампы ЛД 80 в которых дросселя рассчитаны на 80 Ватт. Для замены дросселя под лампу ДРЛ 250 ватт, вам понадобится два дросселя на 80 Ватт и один на 40 Ватт. Схемы их соединения можно видеть на рисунке.
Здесь видно, что все дроссели соединяются в параллель, то есть соединенные в параллель дроссели образуют один общий балласт.
Один провод, идущий от розетки 220 соединяется с одним концом дросселей, а другой провод в розетке 220 идет прямо на лампу. Провод с выхода дросселей идет на второй контакт лампы. Вариант монтажа дросселей на корпусе светильника можно увидеть на фотографиях.
Здесь также видно как подключаются провода. Очень важно позаботиться, чтобы контакты на клеммах дросселей имели хорошее соединение, иначе они будут искрить и нагреваться. На фото можно видеть, как работает такой дроссель и запускает лампу ДРЛ 250.
Такая конструкция была сделана и испытана, показавши хорошие результаты. Помимо монтажа дросселей на светильники, можно сделать отдельный ящик в котором они будут располагаться, а провода с него вывести на лампу. Такой вариант сборки обойдется гораздо дешевле покупки специального дросселя. Хотелось бы напомнить, что по правилам монтажа ламп ДРЛ, они должны находиться на высоте не менее трех метров. Так как считается, что они излучают достаточно много ультрафиолета, а это нежелательно для человеческой кожи.
На этом все. Пробуйте, и у вас получиться.
Как проверить люминесцентную лампу . Электропара
Люминесцентные лампы используются в самых различных областях. Они долговечны, обладают низким уровнем энергопотребления и отличными характеристиками. Со временем на концах лампы могут появиться темные пятна, что свидетельствует о постепенном выгорании вольфрамовой нити, из которой сделаны электроды.
Конструкция люминесцентной лампы
Колба люминесцентной лампы заполнена парами газов – аргона и ртути, с внутренней стороны нанесено покрытие из люминофора. С обеих сторон колбы расположены вольфрамовые электроды, покрытые специальной щелочной пастой, обеспечивающей защиту спирали от перегрева вследствие электрического разряда между нитями.
Покрытие вольфрамовых нитей выгорает после длительного использования, особенно в момент запуска – электрический разряд возникает на небольшом участке нити и вызывает его перегрев, поэтому появляются потемнения на краях лампы. Чем дольше эксплуатируется лампа, тем больше нагрузка на лампу в местах электродов. В результате лампа перестает включаться.
Также в лампе имеется стартер, необходимый для плавного запуска. Выглядит он в виде двух электродов в колбе с неоном, один из электродов является биметаллической пластиной. При включении лампы между электродами появляется электрический разряд, заставляющий пластину изгибаться под воздействием высокой температуры нагрева и замкнуть второй контакт.
После нагрева электродов до температуры около 1000 градусов биметаллическая пластина начинает остывать, выпрямляется, в результате чего цепь размыкается. Помимо стартера для корректной работы люминесцентной лампы требуется дроссель и конденсатор.
Проверка люминесцентной лампы на исправность
Проверить работоспособность люминесцентной лампы можно мультиметром или тестером (специальной отверткой-индикатором). Для этого нужно установить переключатель в режим прозвона, при котором сопротивление минимально. Далее нужно подвести концы щупа (или отвертку-тестер) к концам цоколя сначала с одной стороны, затем с другой. Если сопротивление небольшое, значит с лампой все в порядке, и она может еще поработать. Если же сопротивление очень большое, значит, случился обрыв цепи и лампа не работает.
Средний срок службы люминесцентных ламп около 10 000 часов. Это вовсе не значит, что все ваши лампы будут работать одинаковый период времени. При номинальном сроке службы в 10 000 часов может случиться так, что некоторые лампы выйдут из строя раньше, а другие будут работать дольше, но в среднем выходит около 10 000 часов на каждую лампу.
На срок службы влияет время непрерывной работы лампы, перепады напряжения в сети, использование стартеров и ПРА ненадлежащего качества. Также при эксплуатации следует иметь в виду, что чем меньше включений/выключений, тем дольше будет служить лампа.
Как проверить люминесцентную лампу мультиметром – пошаговая инструкция
Несмотря на появление светодиодов, люминесцентные светильники остаются распространённым источником света. При его отсутствии появляется необходимость проверить лампу мультиметром.
Люминесцентные лампы
Блок: 1/6 | Кол-во символов: 199
Источник: https://amperof.ru/osveshenie/lampy/kak-proverit-lyuminestsentnuyu-lampu.html
Что учесть при проверке
При рассмотрении особенности люминесцентной лампы автор не зря взял в кавычки «слово обрыв». Даже если прибор и не «зажигается» и нить не прозванивается, это еще не свидетельство того, что она сгорела и ее следует выбрасывать. Что необходимо проделать?
- Зачистить выводы лампы, только аккуратно. Для снятия налета можно использовать спиртосодержащие жидкости, ластик, шкурку (мелкоабразивную). После этого повторить прозвонку.
- Дополнительно следует зачистить пластины в механизме ламподержателей. Иногда их нелишне и подогнуть, чтобы обеспечить более плотный и надежный контакт.
Все изложенное справедливо для изделий линейных. А как быть с проверкой люминесцентной компактной лампы? Принцип тот же. Зная спецификацию прибора, найти в интернете его электронную схему – не проблема. Останется только уточнить, где на плате фиксируются выводы, и перед прозвонкой один из них отпаять. Хотя на практике этим мало кто занимается, так как произвести разборку довольно трудно, а продукцию отдельных изготовителей и невозможно.
Если после постановки в светильник люминесцентная лампа все-таки не загорается, то причину нужно искать в другом месте (балласт, линия и так далее). Но это уже несколько иная тема.
Блок: 2/2 | Кол-во символов: 1222
Источник: https://electroadvice.ru/equipment/kak-proverit-lyuminescentnuyu-lampu-multimetrom/
Как устроен люминесцентный светильник
Стеклянная загерметизированная трубка из тонкого прозрачного стекла, на стенки которой внутри нанесен люминофор тонким слоем. Она заполнена смесью инертного газа с незначительным количеством ртутных паров. На концах колбы внутри баллона размещены маленькие нагревательные спирали. Разогрев нити током вызовет тлеющий газовый разряд смеси, сопровождаемый свечением газа в ультрафиолетовом спектре, не видимом глазу. Это свечение вызывает излучение люминофорным слоем света в видимом спектре. Химический состав люминофора определяет цвет полученного от люминесцентного источника света.
Кроме тлеющего разряда в источниках дневного света может использоваться дуговой разряд. Ртутная дуговая лампа обладает очень высокой светоотдачей. Спектр свечения не приятен для глаз, поэтому ДРЛ в основном используются в уличном освещении.
Блок: 2/4 | Кол-во символов: 863
Источник: https://VseOToke.ru/instrument/kak-proverit-lyuminescentnuyu-lampu-multimetrom
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.
Блок: 2/6 | Кол-во символов: 2839
Источник: https://220.guru/osveshhenie/istochniki-sveta/kak-proverit-lyuminescentnuyu-lampu.html
Причины перегорания люминесцентных ламп
Нередко ЛДС перегорает, что придаёт ей схожести с традиционной лампой накаливания. При включении в колбе формируется дуга из электричества, вследствие чего спиралевидные электроды из вольфрама сильно нагреваются. Скачки высокой температуры влекут за собой разрушение и перегорание нитей.
Чтобы продлить эксплуатационный срок, на нить из вольфрама наносят слой активного щелочного металла. Разряд между электродами стабилизируется и снижается температура, благодаря этому нить намного дольше служит.
Учащённое включение/выключение лампы влечёт за собой разрушение защитного слоя, он просто опадает. Проходящий через оголённые нити разряд греет спираль в слабых точках, вследствие чего происходит перегорание.
Блок: 3/7 | Кол-во символов: 748
Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-proverit-lampu-dnevnogo-sveta/
С чего начинать проверку работоспособности лампочки мультиметром
При помощи мультиметра нужно проверить обрыв нитей накала. Мультиметр установить в режим прозвонки или измерения сопротивлений на малом пределе. Проверяем спирали с обоих концов трубки. В режиме прозвонки, при исправных спиралях, будет слышен зуммер. В режиме измерения, на индикаторе мультиметра при исправности будет светиться 5-10 Ом. Перегорание спирали нити подогрева — это самая распространенная причина отказа светильника дневного света и легко выявляется проверкой мультиметром.
Как протестировать дроссель лампы дневного света мультиметром
Для проверки берем мультиметр в режиме прозвонки или измерения маленького сопротивления и замеряем дроссель. Зуммер или показания индикатора укажут на наличие или отсутствие обрыва провода внутри дросселя.
Проверить изоляцию на пробой изоляции, нужно выставить мультиметр в режим измерения сопротивления на максимальном пределе. Индикатор мультиметра должен показать обрыв при касании любого из выводов и металлического корпуса.
Прозвонка стартера
Тестирование стартера мультиметром заключается в проверке неоновой лампочки на внутреннее замыкание. Для этого снимаем корпус и мультиметром становимся на один вывод лампы любым щупом. Вторым проводом мультиметра касаемся другого вывода неонки. Мультиметр не должен показать сопротивления.
Испытать работоспособность стартера можно без мультиметра. Вытащить стартер из гнезда без нарушения остальной схемы. Включить питание. Соблюдая осторожность и убедившись в хорошей изоляции инструмента, кратковременно закоротить контакты гнезда стартера. Лампа светильника должна загореться при исправности всех остальных элементов схемы.
Блок: 4/4 | Кол-во символов: 1689
Источник: https://VseOToke.ru/instrument/kak-proverit-lyuminescentnuyu-lampu-multimetrom
Основные причины выхода из строя
Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.
Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.
Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.
Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя. Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.
Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.
Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.
Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость. При необходимости контактные пластинки подгибаются или полностью меняются.
Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 500С и ниже, а также при перепадах напряжения свыше 7%.
Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник. Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.
Блок: 3/6 | Кол-во символов: 2763
Источник: https://electric-220.ru/news/kak_proverit_ljuminescentnuju_lampu_multimetrom/2018-11-25-1608
Проверка стартера
Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров.
После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.
При отсутствии «признаков жизни» в светильнике следует проверить в первую очередь стартер. Он выходит из строя чаще всего, так как его элементы работают механически в условиях многократно изменяющейся температуры. Разобрав корпус стартера, необходимо осмотреть конденсатор и лампу:
- конденсатор не должен быть вздутым или взорвавшимся, что может быть следствием наличия скачков большого напряжения в сети;
- лампа не должна быть сильно почерневшей;
- далее конденсатор можно проверить с помощью универсального тестера – мультиметра.
Чтобы проверить ЛДС, мультиметр переводится в режим омметра с наибольшим возможным пределом измерения сопротивления. При проведении измерений между выводами конденсатора сопротивление должно быть бесконечным.
Если при измерении будет зафиксировано сопротивление менее 2 МОм, то, скорее всего конденсатор имеет недопустимый ток утечки. Но эти признаки, указывающие на неисправность, могут и не выявиться. Очень часто в домашних условиях проверить стартер можно только, установив его в заведомо исправный светильник.
В любом случае, если выяснится, что причиной отказа в работе светильника является стартер, его необходимо заменить.
Блок: 4/6 | Кол-во символов: 1616
Источник: https://EvoSnab.ru/instrument/test/proverka-lamp-dnevnogo-sveta-multimetrom
Как проверить дроссель
Основное предназначение дросселя – это регулировка электротока и предотвращение перегорания спирали из-за высокого перегрева. Внешне он выглядит как обмотка из тонкой проволоки, дополненная сердечником из металла. Включение в работу происходит последовательно. Установка проводится параллельно пусковому устройству.
О неисправности детали свидетельствует:
- сильное гудение светильника;
- быстрое загорание люминесцентной лампы с последующим угасанием и проявлением темных пятен на ее колбе;
- сильный нагрев колбы с момент работы;
- наличие мерцания.
Провести проверку дросселя можно и дома, используя мультиметр. Чаще всего причиной повреждения выступает:
- Обрыв. Это означает, что в обмотке один из проводов был оборван. Выявляется данная проблема с помощью тестера. Для этого достаточно выставить режим «сопротивление» и присоединить его щупы к выводам ограничителя. Значение «бесконечность» будет означать обрыв провода.
- Замыкание 2-ух обмоток. Некоторые модели оборудованы 2-мя обмотками, которые изолируются друг от друга, но при нарушении этого условия могут замыкаться. О замыкании свидетельствуют малые значения сопротивления на экране мультиметра.
- Замыкание витков на 1-ой обмотке. Обнаружить эту неисправность можно только при оплавлении нескольких проводов в обмотке. Чтобы определить дефект необходимо знать основные значения мощности и соответствующего ему сопротивления. Так при показателях в 20 ВТ – сопротивление должно варьироваться от 55 до 60 Ом, при 40 Вт – 24-30 Ом, а при 80 Вт – не более 20 Ом.
- Дефект магнитопровода. Металлический сердечник дросселя изготовлен из ферромагнитов. При активной или неправильной эксплуатации на их поверхности могут возникнуть сколы или трещинки, что негативно скажется на индуктивности.
- Металлические части корпуса. Свидетельство этой поломки – нулевое сопротивление катушки относительно корпуса. Испытание проводится мультиметром с помощью щупов, подносимых к металлическим элементам корпуса. Проверка производится в выставленном режиме «прозвон цепи».
Важно! Если же дроссель исправен, то причину неработоспособности люминесцентной лампы нужно искать в другом.
Блок: 4/9 | Кол-во символов: 2120
Источник: https://svetilnik.info/lampy-i-svetilniki/kak-proverit-lyuminestsentnuyu-lampu.html
Утилизация прибора
Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.
Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.
Блок: 6/6 | Кол-во символов: 396
Источник: https://220.guru/osveshhenie/istochniki-sveta/kak-proverit-lyuminescentnuyu-lampu.html
Видео
Блок: 6/6 | Кол-во символов: 5
Источник: https://amperof.ru/osveshenie/lampy/kak-proverit-lyuminestsentnuyu-lampu.html
Схема подключения перегоревших ламп
Из-за перегорания нитей накала люминесцентные лампы нередко приходят в негодность. Вернуть вторую жизнь такой лампе можно, используя нетрадиционную схему запуска, многократно испытанную народными умельцами.
Из таблицы можно узнать номинальные значения радиоэлементов для ЛДС с разной мощностью. Ограничительные резисторы R1 в обязательном порядке должны быть из проволоки.
Отремонтировать ЛДС в домашних условиях можно, если руководствоваться схемами и следовать определённым инструкциям. Такие знания дают возможность продлить эксплуатационный период осветительного прибора.
Блок: 7/7 | Кол-во символов: 618
Источник: https://StrojDvor.ru/elektrosnabzhenie/kak-proverit-lampu-dnevnogo-sveta/
Основные выводы
Проверка газоразрядного устройства сложнее диагностики обычной лампы накаливания. В первую очередь, это связано с ее более сложным устройством и наличием дополнительных элементов.
- Причиной выхода из строя лампы может быть поломка одного из ее элементов: ограничителя, стартера, ЭПРА или конденсатора.
- Проверить их исправность в большинстве случаев можно с помощью тестера-мультиметра.
- По ряду внешних признаков можно диагностировать причину поломки люминесцентной лампы.
Выяснить, почему люминесцентная лампа перестала работать можно и дома, не прибегая к помощи специалиста. Для этого достаточно иметь под рукой измерительный прибор и сводную таблицу значений сопротивления.
Предыдущая
Лампы и светильникиВыбираем варианты подсветки для картин
Следующая
Лампы и светильникиВиды и принцип работы люминесцентной лампы
Блок: 9/9 | Кол-во символов: 824
Источник: https://svetilnik.info/lampy-i-svetilniki/kak-proverit-lyuminestsentnuyu-lampu.html
Количество использованных доноров: 8
Информация по каждому донору:
- https://220.guru/osveshhenie/istochniki-sveta/kak-proverit-lyuminescentnuyu-lampu.html: использовано 2 блоков из 6, кол-во символов 3235 (17%)
- https://StrojDvor.ru/elektrosnabzhenie/kak-proverit-lampu-dnevnogo-sveta/: использовано 2 блоков из 7, кол-во символов 1366 (7%)
- https://electric-220.ru/news/kak_proverit_ljuminescentnuju_lampu_multimetrom/2018-11-25-1608: использовано 1 блоков из 6, кол-во символов 2763 (14%)
- https://svetilnik.info/lampy-i-svetilniki/kak-proverit-lyuminestsentnuyu-lampu.html: использовано 2 блоков из 9, кол-во символов 2944 (15%)
- https://electroadvice.ru/equipment/kak-proverit-lyuminescentnuyu-lampu-multimetrom/: использовано 1 блоков из 2, кол-во символов 1222 (6%)
- https://VseOToke.ru/instrument/kak-proverit-lyuminescentnuyu-lampu-multimetrom: использовано 2 блоков из 4, кол-во символов 2552 (13%)
- https://EvoSnab.ru/instrument/test/proverka-lamp-dnevnogo-sveta-multimetrom: использовано 1 блоков из 6, кол-во символов 1616 (8%)
- https://amperof.ru/osveshenie/lampy/kak-proverit-lyuminestsentnuyu-lampu.html: использовано 4 блоков из 6, кол-во символов 3755 (19%)
Как использовать мультиметр напряжения для поиска и устранения неисправностей при установке светодиодов
1.) Выберите правильную настройку переменного тока на вольтметре
.Для проверки высокого напряжения переменного тока необходимо сначала установить мультиметр в правильное положение на переключателе диапазонов и вставить измерительный провод в соответствующее гнездо. На нашем мультиметре напряжение переменного тока отмечено красным. Как видите, есть вариант 600 или 200. Вы хотите выбрать вариант с более высоким напряжением, чем тестируемое вами. В этом случае мы проверяем напряжение 120 В переменного тока, поэтому мы устанавливаем циферблат на 200.Если вы тестируете напряжение выше 200 В переменного тока, вы должны установить переключатель в положение 600.
2.) Подключите измерительные провода к источнику питания переменного тока
.Подсоедините испытательные провода к двум точкам, в которых должно быть снято показание напряжения, в этом случае один вывод на вашей нагрузке и один вывод на нейтрали, полярность не имеет значения (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ ОДНИМ ПРОВОДОМ, ПОРАЖЕНИЕ ЭЛЕКТРИЧЕСКИМ ТОКОМ БУДЕТ ПРОИСХОДИТЬ). Будьте осторожны, не касайтесь проводов под напряжением какими-либо частями тела. Никогда не заземляйте себя при проведении электрических измерений.Не прикасайтесь к оголенным металлическим трубам, розеткам, арматуре и т. Д., Которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой одобренный изоляционный материал. Никогда не прикасайтесь к оголенной проводке, соединениям или любым проводам цепи под напряжением при проведении измерений. Перед использованием всегда проверяйте правильность работы испытательного оборудования.
3.) Проверьте показания напряжения переменного тока на мультиметре
.Если все было сделано правильно, вы должны увидеть показание напряжения на цифровом экране вашего мультиметра.В этом случае мы тестировали, чтобы убедиться, что источник питания получает входное напряжение 120 В переменного тока, а показание составило 118,9 В переменного тока, что является приемлемым. При любом показании напряжения следует ожидать небольшого отклонения в любом направлении.
1.) Выберите правильную настройку постоянного тока на вольтметре
.Для проверки низкого напряжения постоянного тока необходимо сначала установить мультиметр в правильное положение на переключателе диапазонов и вставить измерительный провод в соответствующее гнездо. На нашем мультиметре напряжение постоянного тока отмечено черным цветом.Как видите, есть вариант 200, 20 или 2. Вы хотите выбрать вариант с более высоким напряжением, чем тестируемое вами. В этом случае мы тестируем на 12 В постоянного тока, поэтому мы устанавливаем шкалу на 20. Если вы тестировали напряжение выше 20, вы должны установить селекторный переключатель на 200.
2.) Подключите измерительные провода к источнику постоянного тока
.Подсоедините тестовые провода к двум точкам, в которых должно быть снято показание напряжения, в этом случае красный провод к положительному положению, а черный провод к отрицательному, обратная полярность даст вам отрицательное показание (НИКОГДА НЕ ПРИКАСАЙТЕСЬ К ДВУМ ТОЧКАМ С ОДИН ПРИВОД).Будьте осторожны, не касайтесь проводов под напряжением какими-либо частями тела. Никогда не заземляйте себя при проведении электрических измерений. Не прикасайтесь к оголенным металлическим трубам, розеткам, арматуре и т. Д., Которые могут иметь потенциал земли. Изолируйте свое тело от земли, используя сухую одежду, резиновую обувь, резиновые коврики или любой одобренный изоляционный материал. Никогда не прикасайтесь к оголенной проводке, соединениям или любым проводам цепи под напряжением при проведении измерений. Перед использованием всегда проверяйте правильность работы испытательного оборудования.
3.) Проверьте показания постоянного напряжения на мультиметре
.Если все было сделано правильно, вы должны увидеть показание напряжения на цифровом экране вашего мультиметра. В этом случае мы тестировали, чтобы убедиться, что источник питания выдает 12 В постоянного тока, а показания составили 12,12 В постоянного тока, что является приемлемым. При любом показании напряжения следует ожидать небольшого отклонения в любом направлении. Если вы измените полярность на тестовых проводах, показание будет -12,12 В постоянного тока, это хороший способ проверить полярность, если она не отмечена на вашем светодиодном продукте.
1.) Найдите проблему непрерывности
Выполняется проверка целостности цепи, чтобы определить, является ли цепь разомкнутой или замкнутой. Например, настенный выключатель замкнут, когда он переведен в положение «включено», и разомкнут, когда он выключен. Обрыв цепи не может проводить электричество. Замкнутый контур имеет непрерывность. Этот тест следует проводить при НЕТ тока. Перед проверкой целостности всегда отключайте устройство от сети или выключайте главный прерыватель цепи. Перед использованием всегда проверяйте правильность работы испытательного оборудования.Если все сделано правильно, можно использовать тест на непрерывность, чтобы определить точное место проблемы, например, обрыва паяного соединения или потери провода, в этом случае у светодиодной ленты есть разрыв паяного соединения.
2.) Выберите правильную настройку на вашем вольтметре
.Чтобы проверить целостность цепи, установите переключатель выбора диапазона в положение минимального сопротивления или значок, который выглядит как боковой символ Wi-Fi, и вставьте красный измерительный провод в соответствующее гнездо. Существует множество вариантов проверки уровней сопротивления, но эти параметры не очень важны для устранения каких-либо распространенных проблем со светодиодами.Вы можете проверить, правильно ли работает мультиметр, соприкоснув два тестовых провода вместе, прибор должен издать звуковой сигнал или зарегистрировать показание 0, что означает отсутствие сопротивления.
3.) Проверьте целостность источника проблемы
После того, как вы нашли то, что, по вашему мнению, является источником проблемы, и настроили для мультиметра правильную настройку, вы можете приступить к поиску и устранению источника проблемы. В этом случае мы проверили положительное соединение на каждой стороне светодиодной ленты, где, по нашему мнению, паяное соединение сломано.Как вы можете видеть, вольтметр не опустился на ноль и не издал звуковой сигнал, что означает отсутствие непрерывности между этими двумя точками, а это означает, что питание не может продолжаться между этими двумя точками. Теперь мы можем проверить два момента до и после проблемы, чтобы убедиться, что это единственное место с проблемой.
4.) Проверьте целостность до и после источника проблемы
После того, как вы нашли то, что, по вашему мнению, является источником проблемы, и проверили непрерывность, теперь вы можете протестировать непрерывность до и после проблемы, чтобы убедиться, что это единственный источник проблемы.Поместив два тестовых провода на две положительные медные площадки до и после разрыва паяного соединения, измеритель напряжения сообщает мне с помощью дисплея 0 и звукового сигнала, что между этими двумя точками есть непрерывность. Теперь я могу быть уверен, что причиной проблемы является сломанный паяный стык, и с помощью быстрой пайки внахлест я могу легко решить проблему.
1.) Падение напряжения на светодиодах
Распространенное заблуждение при установке светодиодов состоит в том, что вы можете просто соединить вместе большое количество светодиодных продуктов в серию без каких-либо проблем.У нас есть некоторые продукты, которые могут работать дальше, чем другие в одной серии, но в целом, чем дольше вы запускаете светодиодный продукт в серии, тем большее падение напряжения вы испытаете, особенно когда вы используете длинные соединительные провода от источника питания. источник. Параллельное соединение – лучший способ бороться с падением напряжения в светодиодном продукте, и знание напряжения, которое получают ваши светодиодные продукты, имеет решающее значение для срока службы и яркости ваших светодиодных продуктов.
2.) Проверка выхода постоянного тока от источника питания
Если вы читали приведенное выше руководство по тестированию напряжения постоянного тока, вы должны знать, как правильно измерять выходную мощность источника постоянного тока.В этом случае источник питания выдает 12,12 Вольт, как и предполагалось, но когда я добавлю 200 футов провода между источником питания и моими лампами, вы увидите падение напряжения. Имейте в виду, что 200 футов проволоки предназначены просто для демонстрационных целей. В любой установке светодиодного освещения, чем короче провод, тем лучше и равномернее будет светоотдача.
3.) Проверка входа постоянного тока на светодиодном приборе
После добавления 200-футового провода 18AWG между моими светодиодными лампами и источником питания постоянного тока я могу просто использовать тестовые провода мультиметра для измерения входного напряжения моих светодиодных фонарей.В этом случае входное напряжение составляет 10,91 В постоянного тока в начале полосы, поэтому мы потеряли более 1 В по всей проводке. Вам также следует проверить конец установки светодиодов, поскольку падение напряжения на светодиодах продолжает происходить. Если на конце светодиода наблюдается падение напряжения, подайте питание на оба конца и начало, чтобы выровнять падение напряжения.
4.) Регулировка выходного напряжения источника питания светодиодов
** Никогда не регулируйте потенциометр на источнике питания без вольтметра. Это неправильный способ сделать ваш свет ярче, со временем неправильное напряжение на ваших светодиодных светильниках сократит срок службы и потенциально может стать причиной возгорания.**
Вы можете регулировать выходное напряжение на некоторых источниках питания с помощью регулировочного потенциометра, расположенного на передней панели устройства. Только наши неводонепроницаемые источники питания имеют потенциометр для регулировки напряжения. Просто поверните потенциометр по часовой стрелке для увеличения и против часовой стрелки для уменьшения, а затем повторно проверьте напряжение в начале светодиодов.
5.) Повторно протестируйте вход постоянного тока на светодиодном приборе
После регулировки выходного напряжения источника питания светодиодов вы можете повторно проверить входное напряжение в начале светодиодных индикаторов.После регулировки потенциометра мое напряжение на моей светодиодной полосе теперь составляет 12,15 В постоянного тока, что гораздо более приемлемо, чем 10,9 В постоянного тока. Обязательно проверьте напряжение на всех ваших светодиодных лентах, оптимальное напряжение составляет + или – 0,75 В.
Дневные ходовые огниGM не работают – Бесплатные советы по ремонту автомобилей Ricks Бесплатные советы по ремонту автомобилей Ricks
Диагностика и исправление дневных ходовых огней GM
GM использует несколько различных схем дневных ходовых огней, но в большинстве случаев используется метод последовательной проводки, который разделяет напряжение аккумулятора пополам через последовательную проводку.Вот как работает система дневных ходовых огней GM.
Как работают дневные ходовые огни GM
Через тридцать секунд после запуска автомобиля с выключенными фарами модуль управления кузовным оборудованием (BCM) проверяет напряжение на датчике внешней освещенности. Чтобы система DRL работала, IGN должен находиться в положении RUN, стояночный тормоз не должен быть активирован, а коробка передач не должна находиться в PARK. Если эти условия соблюдены и BCM определяет, что есть дневной свет, он обеспечивает заземление катушке управления на реле DRL.Контакты реле DRL замыкаются, что обеспечивает питание аккумуляторной батареи от предохранителя EXT LTS через правую фару дальнего света, а затем через левую фару дальнего света до достижения земли. Последовательно направляя мощность через обе фары дальнего света, каждый свет горит с половинной яркостью. GM и многие другие автопроизводители выбирают фары HIGH в качестве источника DRL, чтобы избежать выгорания нитей в ближнем свете.
ПРИМЕЧАНИЕ: Для работы системы ДХО обе лампы дальнего света должны иметь хорошую нить.
Схема подключения дневных ходовых огней
Проверить цепь дневных ходовых огней
Проверить предохранитель EXT LTS.С другом в автомобиле запустите двигатель в светлое время суток с выключенным стояночным тормозом и включенной трансмиссией. Снимите разъем с правой лампы дальнего света и проверьте напряжение аккумулятора на оранжевом проводе. Если вы видите напряжение аккумулятора, значит, предохранитель исправен, а проводка к правой балке исправна. Затем проверьте разъем лампы на левом дальнем свете (не снимайте разъем). Проверить напряжение на розовом проводе. Если вы видите около 6 вольт, система пока работает.Если вы видите напряжение аккумулятора, подозревайте обрыв в темно-синем проводе, неисправное реле DRL или плохое соединение с массой.
Диагностика реле DRL
С другом в автомобиле запустите двигатель в течение
19116058 GM DRL relay
дневное время с выключенным стояночным тормозом и включенной трансмиссией, выньте реле DRL из розетки и используйте вольтметр для проверьте напряжение аккумулятора на одной клемме в гнезде реле и частичное напряжение на другой клемме. Затем проверьте надежность заземления на двух других клеммах.
Если вы не видите хорошего заземления на катушке управления реле ДХО, подозревайте неисправный датчик внешней освещенности или неисправный модуль управления кузовом.
Купите новое реле ДХО GM 19116058
©, 2017 Рик Маскоплат
Опубликовано Рик МаскоплатЛампа заднего хода не работает – Бесплатная консультация по ремонту автомобилей Ricks Бесплатная консультация по ремонту автомобилей
Диагностика и устранение неисправности лампы заднего фонаря
Часто у домашних мастеров не работает задний фонарь, и они заменяют лампу на новую.Затем они обнаруживают, что новый задний фонарь не работает, и задаются вопросом, что делать дальше. Вот шаги, которые необходимо выполнить для диагностики состояния.
Сначала проверьте наличие коррозии и наличие напряжения в патроне лампы заднего фонаря.
Наиболее частой причиной проблем с задним фонарем является коррозия внутри патрона лампы заднего фонаря. Вытащив лампочку, ищите зеленую коррозию. Если вы обнаружите их, сотрите их небольшой пилочкой для ногтей. После очистки попробуйте новую лампочку. Если это сработало, значит, вы устранили проблему. Но не останавливайтесь на достигнутом.Чтобы предотвратить дальнейшую коррозию, нанесите тонкий слой диэлектрической смазки на клеммы в розетке. Найдите небольшой пакет диэлектрической смазки в любом магазине автозапчастей. Нанесите его ватной палочкой или кончиком маленькой отвертки.
Если лампа по-прежнему не горит, проверьте наличие питания в патроне лампы. В зависимости от года выпуска, марки и модели вашего автомобиля или грузовика лампа заднего фонаря может иметь одинарную или двойную нить накала. Лампа с одной нитью накала используется только для стояночных / задних фонарей, а лампа с двойной нитью накала используется для парковки / заднего хода и поворота / остановки.Производитель автомобилей использует более яркую нить накала для функций поворота и остановки.
Гнездо с одной нитью имеет только два провода. Один для питания, другой для земли.
Если вы сняли лампу, и у нее только одна нить накала (только два провода входят в патрон), используйте эту процедуру проверки. Вам понадобится автомобильная контрольная лампа или цифровой мультиметр.
Подсоедините зажим заземления к любой чистой металлической поверхности. Затем включите габаритные огни и пощупайте обе клеммы в розетке.Если в розетку подано питание, загорится контрольная лампа. Если контрольная лампа загорается, но лампа не работает, значит, у вас неисправная лампа или неисправное заземление розетки. Обратитесь к руководству магазина, чтобы узнать, где находится заземление.
Проверить патрон лампы заднего фонаря с помощью цифрового мультиметра.
Установите измеритель на 12 вольт постоянного тока. Коснитесь черным датчиком чистой металлической поверхности. Затем проверьте две клеммы в розетке. Вы должны увидеть +12 вольт.
Если контрольная лампочка не горит, значит, в розетку не поступает питание. Если задний фонарь на противоположной стороне работает, это не проблема с предохранителем. Оба задних фонаря питаются от одного и того же предохранителя для большинства марок и моделей. В этом случае проблема заключается либо в жгуте проводов, либо в модуле управления кузовным оборудованием (BCM).
В автомобилях последних моделей переключатель фар фактически не переключает питание на задние фонари. Он действует только как вход для модуля управления кузовным оборудованием или другого интеллектуального коммутационного устройства.В этом случае для решения проблемы вам потребуется профессиональная диагностика.
Если у вас лампа заднего хода с двойной нитью накала
Патрон будет иметь три провода. Один подает питание на нить накала задних фонарей, другой – на нить накала стоп-сигнала и поворота, а третий обеспечивает заземление. Тестирование трехпроводной розетки аналогично двухпроводной розетке. При включенных задних фонарях проверьте все три контакта. Только у одного должна быть сила. Если контрольная лампа загорается, проблема в новой лампе или заземлении.
©, 2019 Rick Muscoplat
Размещено автор: Rick MuscoplatДХО и автоматические фары | PriusChat
Там, где я живу, нужны дневные ходовые огни, и я решил сделать автоматические. Я не люблю поворачивать или нажимать переключатели, или когда меня останавливают, потому что я переместил машину на 100 футов и не включил фары на это расстояние …Итак, идея заключалась в том, чтобы ДХО были постоянно включены и когда включаю фары (более точный вариант на мой взгляд – габаритные огни), ДХО должны быть выключены.
Когда я искал схемы (схемы подключения), я увидел, что штырь 19 на переключателе фары предназначен для автоматического включения фар. У меня их нет, но оказалось, что проводка есть, поэтому я взял мультиметр и проверил соединения. ДА! Мне нужен только новый подрулевой переключатель, при заземлении пина 19 (белый провод) включены фары автомат. Проверено на местных складах металлолома и на ebay, но эй … 100 долларов за выключатель фар, я сказал, черт возьми, я сделаю свой за 1 доллар.
Детали, которые я использовал для ДХО и автоматических фары:
1.2 реле: 15 А 12 В
2. 2 предохранителя: 15 А и 7,5 А (чем меньше, тем лучше)
3. 2 переключателя
4. Провода (правильное сечение … Или толщина проводов)
Краткое описание ДХО :
У меня в противотуманных фарах две (примерно) 3-ваттные светодиодные лампочки. Китайцы рекламировали их как 7,5 Вт каждый, но при 12,5 В они используют 0,55 А.
Идея состоит в том, чтобы получить 12 В от источника +12 В в режиме READY и запитать противотуманные фары напрямую через предохранитель на 10-15 А. Такой провод представляет собой толстый зеленый провод на нижнем разъеме модуля – это четвертый контакт – правая сторона снизу вверх (см. Первое фото).Затем подключите его через замкнутые контакты реле к более тонкому зеленому проводу в том же разъеме (3-й контакт – правая сторона, третий сверху вниз) – это питание противотуманных фар.
Я хотел, чтобы это “короткое замыкание” отключалось при включении габаритных огней, поэтому реле должно разорвать цепь и я подключил один из контактов к массе, а другой к коричневому проводу на том же разъеме (габаритные огни) – это первая булавка в правом верхнем углу.
Отлично, но если вы хотите по какой-то причине выключить ДХО? Итак, провод, который вы подключили к толстому зеленому проводу, должен пройти через другое реле, на этот раз разомкнутое.Это реле замкнется в состоянии ГОТОВНОСТЬ, и провода его драйвера пройдут через выключатель. Не забудьте вставить предохранители. 10-15 ампер один – на питание противотуманок и 7,5 (и ниже) – питание на реле.
ДХО сделаны, далее: автофары:
Проведите соединительный провод между массой и белым проводом на маленьком правом разъеме от модуля. Это третий провод снизу вверх с правой стороны разъема. Поставьте переключатель между этим соединением – вы хотите, чтобы автоматические фары иногда выключались, верно?
Ааи мы готовы! При этом самое главное – ОЧЕНЬ хорошо заизолировать каждое соединение! Каждое соединение между проводами припаяно, а для соединения между проводами и предохранителями, проводами и реле я использовал кабельные наконечники, чтобы упростить задачу, если когда-нибудь что-то выйдет из строя и потребует замены.Вот результат той разводки:
0:07 – Готово, ДХО
0:16 – Габаритные огни, ручная
0:18 – ближний свет, ручная
0:20 – все на “выключено”, автомат активирован
0:31 – положите что-нибудь поверх датчика, чтобы заблокировать солнечный свет
0:37 – фары, габаритные огни, пластина и т. Д. Включаются автоматически (настраивает отзывчивость с помощью Techstream)
0:43 – убрана «тень»
0:48 – ДХО
На фотографиях показаны некоторые шаги и расположение переключателей.Я использовал двойной переключатель с двумя кнопочными переключателями (не знаю, как они называются по-английски, извините) и вставил его в пустое отверстие на пластиковой крышке над педалями. Отверстие получилось немного тугим, а пластик немного толстым, но я разрезал его ножом.
Если кому-то интересен этот мод, я могу сделать схему подключения, если будет проще.
электрическая – Неисправность дневных ходовых огней – только с одной стороны
У меня Миата 1991 года выпуска. Это канадский автомобиль, поэтому он оснащен дневными ходовыми огнями.Недавно заметил, что габаритный свет пассажира не работает как ДХО. Водительский габаритный свет работает нормально. Мультиметр показывает, что на лампочку со стороны пассажира не подается ток, а со стороны водителя – 14 В.
Лампа указателя поворота используется как дневной ходовой свет. Пассажирский габаритный свет работает и во всем остальном. При указании правого поворота мигает. Когда горит основной свет, он горит. Когда включены фары дальнего света, он включен.
Я подозреваю, что реле, отвечающее за включение дневных ходовых огней, выходит из строя, но прежде чем я закажу деталь, я подумал, что проверю здесь, есть ли другие возможные объяснения такого поведения.
ОБНОВЛЕНИЕ
Еще немного информации в ответ на вопросы в комментариях:
Лампа для ДХО двуниточная. Более яркая нить накала для ДХО и указателя поворота. Менее яркая нить накаливания горит при включенных фарах.
Когда ДХО включены, последовательность сигналов поворота выключена-включена-выключена-включена, потому что ДХО и указатель поворота используют одну и ту же нить накала.
Провода к разъему – красный, зеленый и черный.
И еще одна интересная новая информация. Указатель поворота со стороны пассажира (правый поворот) начинает периодически странно работать. Реле работает быстрее, возможно, вдвое больше нормальной скорости. Передний поворотник вообще не горит, а задний работает нормально. Такое поведение я наблюдал раньше, когда перегорела лампа переднего индикатора.
Я начинаю думать, что проблема не в реле ДХО, а скорее в неисправности электрооборудования где-то между реле и лампочкой.Поскольку указатель поворота и DRL используют одну и ту же нить накала, но разные реле, тот факт, что оба выходят из строя, заставляет меня думать, что есть проблема в проводке после реле.
Карточки по электрическим / электронным системам | Контрольные лампы подушек безопасности Quizlet
обычно предназначены для того, чтобы оставаться включенными в течение нескольких секунд после запуска двигателя, пока он выполняет свои проверки. Если все пройдет проверку, свет погаснет. Если индикатор не гаснет, неисправна система подушек безопасности.Когда подушка безопасности установлена в режим диагностики, световой индикатор будет мигать кодами. Если этот индикатор не работает, может также быть резервная копия, которая использует тон через систему убывающего звонка. Для получения кодов неисправностей подушек безопасности можно использовать диагностический прибор.Системы подушек безопасности могут “знать” количество и размер пассажиров на передних сиденьях. На пассажирском сиденье может быть датчик давления, который определяет вес пассажира, и, если пассажир весит меньше заданной величины, подушка безопасности может не раскрыться на том же уровне или может не раскрыться вообще.Если датчик обнаруживает отсутствие веса в сиденье, подушка безопасности пассажира может вообще не сработать в случае столкновения. Эти датчики требуют калибровки и диагностики с помощью диагностического прибора.
Некоторые двигатели стеклоочистителя содержат катушку последовательного возбуждения, катушку шунтирующего возбуждения и реле. При активации обмотка реле заземляется через один набор контактов переключателя. Это замыкает контакты реле, подавая ток на катушку последовательного возбуждения и якорь. Тогда двигатель стеклоочистителя начнет вращаться. Если переключатель стеклоочистителя находится в положении высокой скорости, шунтирующая катушка не будет заземлена, и двигатель будет вращаться с высокой скоростью.
Когда переключатель стеклоочистителя установлен на низкую скорость, шунтирующая катушка заземляется через второй набор контактов. Ток будет течь через шунтирующую катушку и переключатель стеклоочистителя на землю. Когда через шунтирующую катушку протекает ток, возникает сильное магнитное поле, которое индуцирует более противоположное напряжение в обмотках якоря. Это противоположное напряжение в обмотках уменьшит ток, протекающий через последовательную катушку и обмотки, и замедлит якорь. Если электродвигатель стеклоочистителя не паркуется или паркуется в неправильном положении, вероятно, неисправен переключатель парковки или кулачок.
Двигатель стеклоочистителя может иметь постоянные магниты вместо катушек возбуждения. Эти двигатели будут иметь щетку с низкой и высокой скоростью. Щетка с низкой скоростью вращения может быть прямо напротив щетки с высокой скоростью вращения, а щетка с высокой скоростью вращения может находиться между ними.
Постоянная работа дворников может быть вызвана коротким замыканием в цепи управления, неисправностью или заеданием переключателя.
Стеклоочистители, которые не могут припарковаться, могут иметь неисправный механизм парковки внутри двигателя, поврежденную цепь парковки или поврежденный блок стеклоочистителя с прерывистой работой.
Периодическая работа дворников может быть вызвана ослабленным или поврежденным проводом или разъемом.
Неработающие дворники могут быть вызваны неисправным электродвигателем стеклоочистителя или обрывом в цепи.
Система омывателя довольно проста и состоит из насоса, установленного внутри бачка омывателя, который при подаче напряжения перекачивает омывающую жидкость через шланги в распылители. Насос омывателя может управляться BCM, поэтому, когда переключатель активирован, BCM активирует дворники на несколько циклов.
При диагностике системы омывателя проверьте исправность соединений и уровни омывающей жидкости. Отсоедините шланг от насоса, чтобы проверить, будет ли вытекать жидкость при включении переключателя. Если это так, проверьте, нет ли сломанных или засоренных шлангов омывателя или форсунок. Убедитесь, что насос получает напряжение, чтобы определить, есть ли разрыв в цепи, вызванный неисправным переключателем, повреждением провода или соединения.
Системы круиз-контроля могут сочетать в себе электрические компоненты, механические соединения и компоненты с вакуумным приводом.Перед проверкой вакуумных и электрических компонентов проверьте сцепление на предмет заедания. Может потребоваться регулировка тяги. Вакуумные устройства можно проверить с помощью ручного вакуумного насоса. При приложении вакуума диафрагма должна двигаться. Устройство должно поддерживать вакуум, а диафрагма должна высвобождаться при сбросе вакуума.
В некоторых системах модуль управления и более крутой двигатель могут быть объединены в один блок. Шаговый двигатель соединен тросом с рычагом дроссельной заслонки. Переключатель круиз-контроля, переключатель тормоза и VSS (датчик скорости автомобиля) обеспечивают входные данные для блока управления.Шаговый двигатель получает команды от модуля управления для определения желаемого открытия дроссельной заслонки. Неисправный VSS может повлиять на работу круиз-контроля.
Некоторые автомобили могут приводить в действие электрический серводвигатель с кабелем, прикрепленным к корпусу дроссельной заслонки, или рычажным механизмом для управления скоростью, управляемой компьютером PCM. Входы VSS, переключателя тормоза, рулевого колеса и переключателя круиза будут отправлять информацию в PCM, который будет контролировать скорость и контролировать скорость через VSS. Эти сигналы могут передаваться через часовую пружину, поэтому поврежденная часовая пружина может повлиять на любую из систем, которые проходят через нее.
Некоторые системы круиз-контроля имеют возможность замедлить транспортное средство, если объект или транспортное средство быстро приближается. Эта система использует радар для обнаружения этих объектов. Осмотр передатчика и приемников должен быть выполнен при диагностике проблем круиза.
HUD или системы отображения на лобовом стекле проецируют данные приборной панели на лобовое стекло. HUD использует зеркальную технологию для выполнения проекции. При работе с этой системой можно использовать обычные процедуры диагностики панели приборов.
Системы помощи при парковке обычно используют датчики, установленные в заднем бампере, для обнаружения объектов в непосредственной близости при движении задним ходом. При закрытии объекта внутри автомобиля загораются индикаторы, предупреждающие водителя. Эти системы имеют встроенную диагностику в программное обеспечение и должны быть проверены с помощью диагностического прибора.
Камеры заднего вида обычно устанавливаются в заднем бампере и отображаются на экране внутри автомобиля, когда он движется задним ходом. Неисправности могут произойти в камере, экране или жгуте проводов.Осмотрите на предмет физических повреждений, состояния и герметичности соединения и т. Д. Для связи с этой системой можно использовать диагностический прибор.
Устранение неполадок со светодиодной лентой | Освещение формы волны
Светодиодные ленты бывают самых разных размеров, плотности и качества цвета, но все их объединяет то, что в какой-то момент вы можете столкнуться с некоторыми трудностями, заставив их работать. За многие годы работы со светодиодными лентами мы собрали некоторые из наиболее распространенных причин проблем со светодиодными лентами и то, что вы можете сделать для их решения.ВНИМАНИЕ : Низковольтная электроника постоянного тока обычно считается безопасной и представляет относительно небольшую опасность поражения электрическим током. Однако, когда это возможно, мы настоятельно рекомендуем вам выключить питание или отсоединить источник питания перед тестированием или регулировкой каких-либо светодиодных лент или аксессуаров.
Обратите внимание, что для выполнения некоторых шагов по устранению неполадок, которые мы предлагаем ниже, вам потребуется подключить и включить источник питания для завершения теста. Будьте осторожны и обратитесь за советом к квалифицированному специалисту, если вы не знаете, как безопасно выполнять эти тесты.
Вы подключили блок питания к светодиодной ленте, включили выключатель и … ничего. Что дает?
Для устранения неполадок попробуйте следующие шаги:
1) Убедитесь, что номинальное напряжение и ток вашего источника питания совместимы с вашей светодиодной лентой.
Если, например, ваш источник питания 12 В постоянного тока, он не будет работать со светодиодной лентой 24 В. Проверьте заднюю часть блока питания, на которой указано выходное напряжение. Затем проверьте саму светодиодную ленту, входное напряжение которой будет обозначено в точках подключения светодиодной ленты.
2) Убедитесь, что ваш блок питания работает правильно.
Быстрый тест с использованием мультиметра для проверки напряжения на двух выходных проводах или напряжения между внутренним контактом разъема постоянного тока и внешним цилиндром должен указывать на разность напряжений. Если он показывает напряжение ниже номинального, возможно, неисправен источник питания.
Обратите внимание, что для этого теста источник питания должен быть включен.
3) Проверьте и изолируйте другие аксессуары в той же цепи.
Удалите из схемы все дополнительные диммеры и контроллеры и определите, сможете ли вы заставить светодиодную ленту загораться без дополнительных аксессуаров. Если светодиодная лента работает, это означает, что у вас проблема с диммером или контроллером, либо с подключением, ведущим к этим аксессуарам или от них.
Обратите внимание, что для этого теста источник питания должен быть включен.
Это должно быть само собой разумеющимся, но никогда не подключайте низковольтную светодиодную ленту постоянного тока (например, 12 В / 24 В) непосредственно к сетевому напряжению (например.грамм. 120В / 240В) розетка!
4) Проверьте наличие видимых ослабленных соединений.
Убедитесь, что все ваши разъемы и провода находятся на своих местах и не выпали. Попробуйте затянуть винты на адаптерах постоянного тока и снова вставить светодиодные ленты в беспаечные разъемы, которые являются частыми точками выхода из строя контактов.
Если у вас есть мультиметр, проверьте каждую точку цепи на наличие разности напряжений между положительным и отрицательным (заземлением) проводами / клеммами. Начните с выхода постоянного тока блока питания и пройдите к светодиодной ленте.Если положительная и отрицательная медные контактные площадки светодиодной ленты не имеют разницы в напряжении, питание не подается на светодиодную ленту из-за неисправности, прежде чем питание может даже достигнуть секции светодиодной ленты.
5) Проверьте наличие видимых признаков короткого замыкания.
Особенно, если вы паяете свои собственные провода вместо использования беспаечных аксессуаров, вы могли случайно создать короткое замыкание, позволив положительному и отрицательному проводам соприкоснуться.
Выполните быструю визуальную проверку всех соединений светодиодной ленты и убедитесь, что эти провода достаточно разделены.
Короткие замыкания этого типа особенно вероятны при работе с многоканальными ленточными светильниками, такими как 5-цветные светодиодные ленты с 6 точками подключения.
6) Проверка на невидимые признаки короткого замыкания
Если после визуальной проверки вы не обнаружили видимых коротких замыканий, вы можете проверить их на наличие невидимых коротких замыканий. Самый быстрый способ проверить это – снова использовать мультиметр.
Приложите контакты мультиметра к положительной (+) и отрицательной (-) медным контактным площадкам светодиодной ленты и проверьте значение сопротивления.Если короткого замыкания нет, мультиметр должен показывать бесконечное сопротивление. Если он указывает какое-либо значение сопротивления, это указывает на короткое замыкание.
Если есть индикация короткого замыкания, отсоедините все аксессуары и провода и определите, сохраняется ли короткое замыкание на светодиодной ленте. Если это так, это означает, что возникла проблема со светодиодной лентой.
Одним из распространенных мест короткого замыкания является линия разреза светодиодной ленты, на которой использовались ножницы.Светодиодные ленты обычно состоят из двух слоев меди, разделенных тонким слоем изоляции. В некоторых случаях, если ножницы не сделают чистый разрез, изолирующий слой может выйти из строя в месте разреза, создавая короткое замыкание.
Если вы определили короткое замыкание на сегменте светодиодной ленты, но не можете найти никаких видимых признаков места короткого замыкания, попробуйте отрезать последние 1-2 дюйма светодиодной ленты на обоих концах, чтобы удалить потенциально поврежденный разрез. отрезок. Мы рекомендуем использовать острые ножницы, чтобы обеспечить чистый разрез, поскольку тупые, тупые ножницы с большей вероятностью «раздавят» медный и изоляционный слои, создавая короткое замыкание.
Ваша светодиодная лента работает нормально, но демонстрирует заметно более низкую яркость на одном конце? Это часто наблюдаемая проблема с светодиодными лентами низкого качества, и ее основная причина – падение напряжения.
Падение напряжения в основном вызвано чрезмерным электрическим током для данной конструкции схемы, или чрезмерным сопротивлением в схеме, или комбинацией того и другого.
Проверьте свою схему проектирования
Большинство светодиодных лент имеют рекомендованную максимальную длину пробега, основанную на потребляемой мощности на фут и конструкции внутренней схемы.Поскольку каждая секция светодиодной ленты должна пропускать ток для всех «нисходящих» сегментов светодиодной ленты, подключение слишком длинной светодиодной ленты превысит номинальную мощность секций светодиодной ленты, подключенных к источнику питания.
Самым непосредственным следствием перегрузки светодиодной ленты слишком большой мощностью является падение напряжения, в результате чего напряжение, подаваемое на каждую секцию светодиодной ленты, постепенно уменьшается по мере удаления от источника питания. Причина снижения напряжения связана с внутренним сопротивлением в медных дорожках печатной платы.
Не забывайте, что провода, соединяющие светодиодные ленты или между ними, также имеют внутреннее сопротивление, а использование проводов недостаточной толщины также может привести к чрезмерному падению напряжения. Воспользуйтесь нашим онлайн-калькулятором калибра проводов, чтобы узнать, подходят ли ваши спецификации проводов для вашей установки.
Возможно, вам удастся изменить конфигурацию вашей схемы на «параллельную», а не на «последовательную».
Проверка электрического сопротивления
Чрезмерное электрическое сопротивление может быть вызвано плохим электрическим контактом и корродированной медью.Проверьте проводку светодиодной ленты и убедитесь, что все контакты чистые и достаточные.
В крайних случаях плохие точки контакта могут нагреться, что приведет к опасности возгорания, поэтому определение и устранение таких ситуаций может стать важной проверкой безопасности.
Диагностика падения напряжения
Самый точный способ определить, вызывает ли падение напряжения проблемы для вашей светодиодной ленты, – это просто измерить напряжение между медными контактными площадками в различных точках вдоль светодиодной ленты. Если напряжение постепенно уменьшается по мере удаления от источника питания, это признак падения напряжения.
Почти все светодиодные ленты будут демонстрировать некоторое падение напряжения, и станет ли это серьезной проблемой, в первую очередь, зависит от степени падения напряжения. Например, светодиодная лента на 12 В может упасть до 11,5 В на самом дальнем от источника питания конце, но это обычно не является достаточно значительным падением напряжения, чтобы вызывать какие-либо опасения. Если, с другой стороны, напряжение падает ниже 10 В, это признак того, что существует значительное падение напряжения, которое, скорее всего, приводит к очень заметному падению яркости.
Если ваши светодиодные ленты теряют яркость по всей полосе, это может быть вызвано двумя проблемами:
1) Входное напряжение светодиодной ленты упало ниже расчетного
Чтобы определить, какая из этих двух проблем виновата, Сначала определите входное напряжение в точке, где светодиодная лента подключена к источнику питания (т.е. первая пара медных контактных площадок).
Если входное напряжение здесь ниже ожидаемого напряжения (например, 10 В для светодиодной ленты 12 В), вы, вероятно, столкнулись с проблемой с источником питания или ненадежным / корродированным соединением между светодиодной лентой и источником питания.
Хорошая новость заключается в том, что ваша светодиодная лента, скорее всего, в порядке, и простая корректировка проводки или замена источника питания решат вашу проблему.
2) Сами светодиоды теряют яркость
Если в первом тесте вы определили, что на светодиодные ленты подается полное расчетное входное напряжение (например, 12 В для системы 12 В), но вы все равно видите падение яркости, у вас может быть серьезная проблема со светодиодной лентой.
Светодиодыобычно рассчитаны на срок службы более 36 тыс. Часов, но некоторые продукты более низкого качества будут сокращать углы при проектировании и производстве, что приводит к преждевременным сбоям.В таких ситуациях единственным выходом может быть полная замена светодиодной ленты.
Если части вашей светодиодной ленты падают с установленной поверхности, возможно, вы использовали светодиодную ленту с недостаточным двусторонним скотчем. Вы можете повторно нанести новый слой двусторонней ленты или использовать монтажные кронштейны и винты для более надежного способа крепления.
Мы рекомендуем «приклеивать» более качественные светодиодные ленты, которые, скорее всего, будут использовать двухстороннюю ленту с более высокой адгезией, например 3M VHB.
Если у вас горит весь сегмент светодиодной ленты, но вы заметили, что часть из 3 светодиодов (или 6 светодиодов для 24 В) остается темной, у вас может быть «разрыв цепи» в одной из частей.
Это означает, что из-за производственного брака или некоторого механического повреждения во время транспортировки или установки один из светодиодов или компонентов для одной секции вышел из строя, что привело к полному электрическому разъединению только для этой секции светодиодов.
Если вы знакомы с пайкой, вы можете попробовать повторно нагреть паяные соединения для каждого из светодиодов и компонентов вдоль мертвой секции.Если нет, лучше всего будет попросить вашего поставщика заменить его (если он предоставляет гарантию) или просто удалить неисправную секцию, разрезав по линиям разреза и снова соединив два сегмента с помощью соединительных зажимов.
Waveform Lighting производит светодиодные ленты в соответствии со строгими требованиями к качеству и надежности, чтобы избежать распространенных проблем, подобных описанным выше. К сожалению, этого нельзя сказать о многих других «бюджетных» светодиодных лентах, доступных для покупки.
Пожалуйста, немедленно свяжитесь с нами, если у вас возникла проблема со светодиодной лентой, которую вы купили у нас. Даже если у вас возникли проблемы со светодиодной лентой, купленной в другом месте, мы будем более чем рады помочь и обсудить варианты замены.
Другие сообщения
Лампы E26 против E27 – Взаимозаменяемы? Не обязательно!
Вам может быть интересно, являются ли E26 и E27 одинаковыми или взаимозаменяемыми, и можно ли использовать лампу E26 в патроне E27 или наоборот.Перед … Подробнее
Какую цветовую температуру светодиодной ленты выбрать?
Во время поиска белой светодиодной ленты вы могли встретить значения цветовой температуры. Не знаете, что это значит или что выбрать? Читать … Подробнее
Почему эти лампочки не могут быть доставлены в Калифорнию? Обзор Закона Калифорнии по энергетике Title 20
Штат Калифорния исторически был лидером в продвижении энергоэффективности на политическом уровне, часто требуя производства… Подробнее
Каковы характеристики CRI светодиодных лент?
Изучая спецификации светодиодных лент, вы, возможно, натолкнулись на метрику под названием CRI. В отличие от цветовой температуры, CRI связан с цветом … Подробнее
Вернуться к блогу об освещении осциллограмм
Просмотрите нашу коллекцию статей, практических рекомендаций и руководств по различным приложениям освещения, а также подробные статьи по науке о цвете.