Содержание

Как измерить ток и напряжение с помощью мультиметра | Энергофиксик

Мультиметр – это самый важный прибор в каждом доме, а измерение силы тока, напряжения и прозвонка – три наиболее часто используемые функции прибора. И даже эти вроде бы простые операции могут вызвать затруднения. В этой статье я расскажу как измерять силу тока и напряжение с помощью мультиметра.

Мультиметр

Подробно все функции мультиметра я разбирал в этой статье, здесь лишь вкратце остановимся на необходимых опциях.

Из всего разнообразия нам с вами понадобится лишь возможность измерения напряжения переменной и постоянной составляющей (обведено красным кругом под номером 1) и измерение силы тока (обведено красным кругом под номером 2).

В качестве измерительного прибора я использую проверенный и хорошо зарекомендовавший себя мультиметр MASTECH MY68.

Параллельно или последовательно

Прежде чем приступить к непосредственным измерениям, давайте вспомним (запомним) основные правила измерения силы тока и напряжения.

Сила тока измеряется путем последовательного подсоединения амперметра в цепь:

Напряжение измеряется путем параллельного подсоединения вольтметра в цепь:

Освежив эти знания, можно двигаться дальше.

Проверяем напряжение

Итак, для того, чтобы успешно выполнить проверку напряжения, измерительные концы устанавливаем следующим образом: черный щуп в разъем COM, а красный щуп в разъем VΩFCx.

Переменное напряжение

Итак, начнем с самого простого, а именно с проверки напряжения. Для проверки напряжения берем мультиметр и с помощью регулятора выставляем:

В моем случае прибор автоматически определяет предел измерений, если у вас другой прибор, то выставляйте следующее положение:

Важно. Всегда выбирайте предел измерений на мультиметре выше, чем на измеряемом приборе. Если вы даже приблизительно не знаете какое по величине напряжение нужно измерить, то выставляйте на мультиметре максимальный предел.

Теперь вставляем концы, например, в розетку и наблюдаем показания прибора.

При этом в какое гнездо какой щуп вы поместите не играет никакой роли.

Измерение постоянного напряжения

Итак, теперь давайте произведем проверку постоянного напряжения, например, от регулируемого блока питания.

Для этого переводим положение регулятора в V‒, и выбираем предел измерений (либо выставляем максимальный) и все так же присоединяем щупы.

Конечно, полярность при измерении постоянного напряжения важна. Но если даже вы перепутаете концы местами и минусом коснетесь плюса или наоборот, то мультиметр все так же подсчитает напряжение и отобразит его только с отрицательным знаком.

Самое важное правило при измерении напряжения – это правильно выбрать диапазон измерений, поэтому если вы не уверены, что в конкретном случае будет 12 Вольт, а не 24 Вольта, то лучше поставить предел измерения в 600 Вольт и затем при необходимости уменьшить его.

Измерение силы тока

Постоянный ток

Теперь давайте произведем измерение постоянного тока. Первым делом на мультиметре необходимо изменить положение красного щупа и если вы также не знаете какова будет примерная величина силы тока, то выбирайте максимальное значение. В моем случае это 10 Ампер. Затем регулятор переводим в положение “A” с выбранным пределом измерений:

Затем нам нужно последовательным образом подключить мультиметр в цепь, где необходимо измерить величину тока.

Теперь просто включаем источник питания и наблюдаем показания на включенном приборе.

Переменный ток

Если нужно произвести измерение величины переменного тока, то на мультиметре выбираем необходимое положение регулятора, а в остальном процедура полностью идентична вышеописанной.

Примечание. Заинтересовал мой мультиметр? Можете купить такой же здесь.

Заключение

Вот таким нехитрым образом происходит измерение напряжения и силы тока с помощью мультиметра. Если статья оказалась вам полезна или интересна, то оцените ее лайком. Спасибо за ваше драгоценное внимание!

Все способы измерения силы электрического тока.

Многие помнят из школьной физики закон Ома: сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

СИЛА ТОКА является количественной характеристикой электрического тока- это физическая величина, равная количеству электричества, протекающего через сечение проводника за единицу времени. Измеряется в амперах.

Для электропроводки в квартире сила тока  играет огромную роль, потому что исходя из максимально возможного значения для отдельной линии, идущей от электрощита зависит сечение проводника и величина максимального тока автоматического выключателя, защищающего электрический кабель от повреждений в случае возникновения короткого замыкания или токов перегрузки.


Поэтому, если не правильно выбрано сечение и автоматический выключатель- его будет просто выбивать, а заменить его на более мощный просто не получится.

Например, самые распространенные провода и кабеля в электропроводке сечением 1.5 квадратных миллиметра- из меди или 2.5- из алюминия. Они рассчитаны на максимальный ток 16 Ампер или подключение  мощности не более 3 с половиной киловатт. Если Вы подключите мощные электропотребители превышающие эти пределы, то просто заменить автомат на 25 А нельзя- не выдержит электропроводка и придется от щита перекладывать медный кабель сечением 2. 5 кв. мм, который рассчитан на максимальный ток 25 А.

Единицы измерения мощности электрического тока.

Кроме Амперов, Мы часто сталкиваемся с понятием мощности электрического тока. Эта величина показывает работу тока, совершенную в единицу времени.

Мощность равняется отношению совершенной работы ко времени, в течение которого она была совершена. Мощность измеряется в Ваттах и обозначается буквой Р. Высчитывается по формуле  P  =  А х B, т. е. для того что бы узнать мощность- необходимо величину напряжения электросети умножить на потребляемый ток, подключенными к ней электроприборами, бытовой техникой, освещением и т. д.

На электропотребителях часто на табличках или в паспорте только указывается потребляемая мощность, зная которую легко можно высчитать ток. Например, потребляемая мощность телевизором 110 Ватт. Что бы узнать величину потребляемого тока- делим мощность на напряжение 220 Вольт и получаем 0. 5 А.
Но учтите, что это максимальная величина, в реальности она может быть меньше т. к. телевизор на низкой яркости и при других условиях будет меньше расходовать электроэнергии.

Приборы для измерения электрического тока.

Для того что бы узнать реальный расход электроэнергии с учетом работы в разных режимах для электроприборов, бытовой техники и т. п. — нам понадобятся электроизмерительные приборы:

  1. Амперметр— хорошо всем знакомый с практических уроков физики в школе (рисунок 1).
    Но в быту и профессионалами они не используются из-за непрактичности.
  2. Мультиметр— это электронное устройство выполняет многоразличных замеров, в том числе и силы тока (рисунок 2). Очень широко распространен, как среди электриков так и в быту. Как с его помощью измерять силу тока Я уже рассказывал в этой статье.
  3. Тестер— то же самое практически, что и мультиметр, но без использования электронники со стрелкой, которая указывает величину измерения по делениям на экране. Сегодня редко можно встретить, но они широко использовались в советское время.
  4. Измерительные клещи электрика (рисунок 3), именно ими Я пользуюсь в своей работе, потому что они не требуют разрыва проводника для измерения, нет необходимости лезть под напряжение и отключать нагрузку. Ими измерять одно удовольствие- быстро и легко.

Как правильно измерять силу тока.

Для того что бы измерить силу  для потребителей постоянного тока, необходимо  один зажим от амперметра, тестера или мультиметра присоединить к плюсовой клемме  аккумулятора или  проводу от блока питания или трансформатора, а второй зажим- к проводу идущему к потребителю и после включения режима измерения постоянного тока с запасом по верхнему максимальному пределу- делать замеры.

Будьте аккуратны при размыкании работающей цепи возникает дуга, величина которой возрастает вместе с силой тока.

Для того что бы измерить ток для потребителей подключаемых напрямую в розетку или к электрическому кабелю от домашней электросети,  измерительное устройство переводится в режим измерения переменного тока  с запасом по верхнему пределу. Далее тестер или мультиметр включаются в разрыв фазного провода. Что такое фаза читаем в этой статье.

Все работы необходимо проводить только после снятия напряжения.

После того как все готово, включаем и проверяем силу тока. Только следите, что бы Вы не касались оголенных контактов или проводов.

Согласитесь, что выше описанные методы очень не удобны и да же опасны!

Я уже давно в своей профессиональной деятельности электрика пользуюсь для измерения силы тока токоизмерительными клещами (на картинке справа). Они не редко идут в одном корпусе с мультиметром.

Мерить ими просто- включаем и переводим в режим измерения переменного тока, затем разводим находящиеся сверху усы и пропускаем во внутрь фазный провод, после этого следим что бы они плотно прилегли к друг другу и производим измерения.

Как видите- быстро, просто и можно измерять силу тока под напряжением данным способом, только будьте аккуратны не закоротите в электрощите случайно соседние провода.

Только помните, что для правильного замера- нужно делать обхват только одного фазного провода, а если обхватить цельный кабель, в котором вместе идут фаза и ноль- измерения провести будет не возможно!

Как правильно измерять постоянный ток с помощью мультиметра, электронного тестера.

У новичка может появится затруднение в измерении постоянного тока в какой-нибудь электрической цепи. Первое, что может прийти в голову, это взять два щупа мультиметра и просто их приложить к двум контактам на устройстве, где нужно измерить ток. Но электрический ток измеряется не так как напряжение. Он измеряется в разрыв цепи! То есть, нам нужно, как бы, сделать обрыв провода между питанием и устройством потребления, и между оборванными проводами подсоединить два щупа мультиметра. Предварительно на нем выставив измерение постоянного тока в том пределе, который соответствует имеющейся величине.

А что будет, если случайно, все-таки, прикоснуться к электрической цепи измерительными щупами в параллель (как при измерении напряжения)? Произойдет обычное короткое замыкание. В самом амперметре (тестер в режиме измерения тока) эти щупы закорочены шунтом, имеющим очень маленькое электрическое сопротивление (сотые ома). То есть, это равносильно тому, что внутри стоит обыкновенная проволочная перемычка между щупами мультиметра. Естественно, при параллельном подсоединении щупов тестера к источнику питания будет равносильно тому, что мы возьмем кусок провода и закоротив плюс и минус на питании.

Перед измерением постоянного тока электронным мультиметром на нем нужно выставить подходящий предел. То есть, на самом приборе имеются несколько диапазонов измерения тока. Это микроамперы, миллиамперы и амперы. Микро и миллиамперы в основном используют в электронике. Это достаточно малая величина силы тока. К примеру, обычный, маломощный светодиод потребляет всего около 20 миллиампер. Амперы, это уже достаточно большая величина тока. У большинства блоков питания, что запитывают такую аппаратуру как ноутбуки, компьютеры, телевизоры, магнитолы и тому подобное токи лежат в пределах до 6 ампер.

Если вы совсем не знаете какая величина тока может быть, то выставьте на мультиметре максимальное значение в миллиамперах (у большинства тестеров это предел 200 мА). Если при измерении тока в этом диапазоне начнет показывать меньшие числа, то переведите колесо выбора предела на меньшее значение. Ну, и если на экране кратковременно мелькнет какое-то значение и появится единица, то тут нужно будет переключаться на диапазон 10 А (на некоторых тестерах это 20 А). Перед этим для измерения уже таких относительно больших токов (10 А, 20 А) плюсовой щуп мультиметра нужно также будет переключить из одного гнезда в другое.

Стоит учесть, что при измерении токов на пределе амперов имеет значение толщина и длина измерительных щупов, что подключены к мультиметру. Чем длиннее и тоньше эти самые измерительные щупы, тем большая потеря по току может происходить при измерении этого тока. В итоге, вы можете получить неточные значения тока. Если есть возможность, то лучшим вариантом будет сделать самодельные измерительные щупы именно для тока. Они должны иметь минимально возможную  свою длину (например у меня эти щупы длиной по 30 см). А также у них должно быть достаточное сечение провода (у моих сечение провода около 2,5 кв.мм). С такими щупами при измерении силы тока вы будете иметь максимально верные показания, с минимальными потерями по току в самих этих проводах.

Также стоит сказать о такой вещи, с которой порой приходится сталкиваться при измерении силы тока мультиметром. Поскольку, как я уже выше сказал, что если попытаться ток измерить путем параллельного прикладывания измерительных щупов к источнику питания, то мы получим короткое замыкание. Естественно, это вызовет резкое увеличение силы тока в закороченной цепи. В этом случае может пострадать, в том числе, и ваш измерительный прибор. У него внутри перегорят дорожки на плате. Поскольку вероятность таких случаев велика, то специально для этого в мильтиметрах имеется защитный предохранитель. Он стоит именно в цепи измерения тока. Если все же происходит такое КЗ, то этот предохранитель сгорает. После этого электронный тестер может измерять все, кроме тока, в малых пределах. Для решения проблемы нужно просто заменить предохранитель.

К сожалению, для измерения силы тока в диапазоне 10, 20 ампер предохранителя нет. На самой плате стоит достаточно толстый шунт между измерительными щупами. Если все же и произойдет КЗ при таких токах, то скорей всего перегорят места, имеющие меньшее сечение. Так что при измерении силы тока на больших пределах будьте предельно внимательны и осторожны, поскольку при коротком замыкании электрической цепи вы можете испортить как сам мультиметр, так и близлежащие цепи, что находятся между тестером и источником питания схемы. В любом случае ничего хорошего не будет при этом.

Видео по этой теме:

P.S. Я и сам по началу, когда делал первые шаги в познании электротехники, пытался измерять ток неправильным образом. Естественно, первое короткое замыкание при таких вот измерениях меня быстро научило правильности, внимательности и аккуратности при работе с подобными вещами. А ведь просто хотел измерить силу тока в бытовой розетки 220 вольт. Бахнуло, выбило пробки, задумался!

Чем измерить постоянный ток. Как измерить напряжение мультиметром. Как устроены токовые измерительные клещи

Для измерения силы тока применяется измерительный прибор, который называется . Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление , но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I , а к числу, чтобы было ясно, что это величина тока, приписывается буква А . Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

На измерительных приборах для измерения переменного тока перед буквой А ставится знак “

~ “, а предназначенных для измерения постоянного тока ставится ““. Например, –А означает, что прибор предназначен для измеренная силы постоянного тока.

О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока» . Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного ток величиной до 3 Ампер.

Схема измерения силы тока Амперметром

Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

Как измерять потребляемый ток электроприбором

Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.


Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.


У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А~ для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь .

Рассчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца .

Чем измерить напряжение в розетке или определить значение тока, протекающего через нее? Такой вопрос становился практически перед каждым из нас. Ответ на него достаточно прост – это мультиметр, универсальное устройство для измерения самых различных электрических параметров.

Главной особенностью данного устройства является сочетание в себе самых разнообразных устройств, которые могут потребоваться как профессиональному, так и доморощенному электрику. При этом чтоб пользоваться таким прибором не надо обладать какими-либо специфическими знаниями. Достаточно вспомнить школьные уроки физики.

Перед тем как измерить напряжение в розетке мультиметром давайте разберемся как работает данный прибор. А также разберемся с величинами, которые он способен измерять.

Мультиметры могут быть аналоговыми или цифровыми. Ответ на вопрос какой из них лучше очевиден – цифровой прибор. Ведь цифровые мультиметры всегда указывают точное значение измеряемой величины, лояльно воспринимают неправильное подключение щупов, да и не так требовательны к условиям эксплуатации. В то же время в пользу аналоговым приборов есть только один аргумент – цена.

Именно поэтому в нашей статье мы рассмотрим цифровой мультиметр. И начнем наш обзор с щупов мультиметра. Для их подключения обычный прибор имеет два или три гнезда.

Итак:

  • Черный щуп должен подключаться к гнезду «СОМ» , который является минусовым или заземлением. Это зависит от измеряемой величины.

  • Красный щуп подключается к одному из двух оставшихся гнезд . Аббревиатура «VΩmA» обозначает, что данное гнездо предназначено для измерения напряжения, сопротивления и силы тока, но только при небольших его значениях. Для измерения силы тока в 1А и более следует использовать гнездо 10АDC, которое обладает более мощной контактной частью.

Теперь давайте поговорим о величинах, которые может измерять обычный цифровой мультиметр. У разных производителей обозначение некоторых величин может отличаться, поэтому мы приведем все возможные варианты.

Итак:

  • Для измерения постоянного напряжения следует использовать предел, обозначенный DCV . В данном пределе обычно имеется несколько положений для измерений напряжения от 200mV до 1кV. Для измерения переменного напряжения следует использовать предел с обозначением ACV. Он обычно так же имеет несколько положений для измерений от 100В до 1000В.
  • Для измерения токов предназначен предел DCA . Он так же имеет несколько положений нескольких сотен микроампер, до нескольких сотен миллиампер. Кроме того, обычно имеется положение для измерения силы тока в до 10А. Но для подключения устройства в данное положение инструкция советует переставить красный щуп в соответствующее гнездо. Это необходимо для того, что ток в 10А достаточно большой и слабенькие контакты гнезда «VΩmA» просто перегорят от него.
  • Для измерения сопротивления цепи у нас имеется предел «Ω» . Он имеет несколько положений для измерений величин от 200Ом до 2МОм.

Обратите внимание! Измерять любую величину можно и при помощи большего предела. Например, напряжение в 100В можно измерять в положении не 200В, а в положении 1000В. Но с увеличением предела измерения увеличивается и погрешность прибора. В связи с этим полученные результаты измерений могут быть недостаточно достоверными.

Кроме этих основных величин многие устройства имеют дополнительные пределы для измерения коэффициента усиления транзистора по току, прозвонки на короткое замыкание, измерения параметров диодов и некоторые другие. Данные пределы уже более узконаправленные и более детально мы их рассматривать не будем.

Измерение тока и напряжения мультиметром

Умея пользоваться мультиметром можно рассмотреть вопрос как им производить измерение в зависимости от измеряемых величин. Ведь измерение токa в розетке сильно отличается от измерения напряжения. Кроме того, мы рассмотрим другие возможные варианты измерения этих величин в бытовых условиях.

Измерение напряжения мультиметром

Начнем с рассмотрения вопроса как измерить напряжение мультиметром в розетке? Данная процедура поможет ответить вам на вопрос соответствуют ли параметры сети нормативам и возможно ли подключение определенной электроустановки к ней.

  • Для этого прежде всего устанавливаем щупы в соответствующие гнезда. В нашем случае это гнездо «СОМ» для черного щупа и гнездо «VΩmA» для красного щупа.
  • Теперь производим необходимые переключения на самом мультиметре. Так как ток в розетке у нас имеет переменное значение, то необходимо выставить предел ACV.

  • Положение переключателя должно быть выше предполагаемого напряжения. То есть для розетки в которой должно быть 220В вы должны выбрать ближайшее большее значение. Если брать наш мультиметр, то мы выбираем значение в 750В. Для двух или трехфазных розеток номинальное значение напряжения составляет 380В, то есть мы так же выбираем положение в 750В.

Пусть далеко не каждому из нас уготована судьба электрика, но знание того, как измеряется сила тока, может быть таким же базовыми, как и навыки работы с компьютером для рядового пользователя ПК. Вы же не зовете компьютерного специалиста для того, чтобы отправить e-mail или скачать программу? Точно также и правильное подключение электроприборов, замена пробок в квартире, автоматических выключателей, подбор проводки и многое другое скоро для вас станет не менее элементарным делом, удели вы не более 10 минут на прочтение статьи.

Определение силы тока теоретическим способом

Для того, чтобы измерить силу тока, совсем не обязательно лезть в электрическую схему прибора. Если мы говорим о бытовых вещах – абсолютно все они имеют необходимую техническую характеристику на бирках или наклейках на своем корпусе.

Возьмем, к примеру, электрический чайник. Скорее всего там будет написана следующая информация: 220-240V; 50-60Hz; 1500W. Последняя запись как раз и означает, что мощность чайника – 1500 Ватт (Вт), а величина мощности напрямую зависит от силы тока.

Теперь нам остается только поделить мощность (для нашего конкретного чайника это 1500 Вт) на напряжение в бытовых сетях (220 В). В данном конкретном примере мы получим 6,8 Ампер (А). Это и есть сила тока. Проверьте сами, это крайне простая арифметика!

И что нам это дает:

  • Не стоит подключать много электрических приборов в одну розетку, рекомендуемая длительная нагрузка для обычной домашней розетки не более 10 А.
  • Если в вашей квартире часто “выбивают пробки”, возможно, проблема в том, что вы включаете слишком много приборов. Попробуйте посчитать их суммарный ток и сравнить с цифрой на защитной пробке или автомате.
  • Сила тока напрямую влияет на выбор сечения проводника, определяется элементарным способом по таблицам.


Измерение силы тока специальным прибором

Сила тока измеряется таким прибором, как Амперметр, на их табло гордо красуется большая буква “А”. Важно понимать, что ток может быть переменным, обозначается волнистой линией “~” и постоянным, обозначается прямой линией “-”. Род тока, который измеряет прибор, также указан у него на табло. Бытовая электрическая сеть 220 В – сеть переменного тока. Все, что питается от батареек, как правило, постоянный ток.

Самые простые Амперметры, которые вы возможно найдете на барахолках или у дедушки в гараже, мало того, что аналоговые со стрелками, так еще и, зачастую, могут измерить только определенный род тока.

Важно понимать, токи каких величин мы будем определять, измеряемые токи не должны выходить за пределы возможных значений для прибора, иначе мы рискуем его спалить!

Правильное подключение Амперметра – последовательно с измеряемой нагрузкой и никак по другому, иначе мы провоцируем Короткое Замыкание (К.З.). Для постоянного тока также может быть важной полярность включения (плюс-минус).


Впрочем, использовать сегодня Амперметр – нечто сродни архаизму, ведь есть такие замечательные приборы, как Мультиметры. Приставка “мульти” говорит сама за себя – многометр, если говорить простым языком. Он может мерить буквально все, когда дело касается электрических величин, просто переключите его на силу тока и “вуаля”.

Важно помнить! Бытовое напряжение 220 В опасно для жизни, не стоит лезть с прибором к оголенным проводам, которые находятся под напряжением, или напрямую в розетку. Если вы профан в этом деле – лучше лишний раз перестраховаться. Безопасным считается напряжение 42 Вольта (В) и ниже.

Ошибись вы с подключением – можно спровоцировать К.З., которое может красиво вспыхнуть и сжечь прибор или выбить пробки в квартире. И хорошо, если отделаетесь легким испугом, а ведь вполне можно получить и ожог. Никогда не забывайте, что электрический ток опасен.


Самый безопасный способ измерения электрического тока

Практически в любом магазине электротехники можно купить такой прибор, как Токоизмерительные Клещи. Принцип измерения до невероятного прост и безопасен: ток, протекающий через проводник, излучает вокруг себя электромагнитное поле, а это поле тем сильнее, чем сильнее сам ток. Так почему бы не мерить это поле, а не лезть в электрическую схему с прибором. Просто замечательный вариант, не так ли?

Конечно, не везде можно подлезть именно клещами. Тем более, что работает этот способ только для переменного тока. Не говоря уже о том, мерить необходимо каждый проводок по отдельности, ведь “соседи” со своим электрическим полем вокруг себя будут сильно мешать вычислять правильную токовую нагрузку.

.

Измерение силы тока – дело нехитрое. Главное помнить про технику безопасности и правильно подключить прибор в схему. Современные цифровые приборы позволяют не только очень точно определить величину тока, но и вычислять ее бесконтактным способом при помощи Токоизмерительных Клещей. Зная силу тока можно не только более грамотно подключать в сеть электрические приборы, но и заменять автоматику и вычислять допустимое сечение проводника.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Приборы для измерения переменного тока могут быть различными.

Для измерения тока промышленной частоты (50 – 100 Гц) используют в основном приборы непосредственной оценки на основе электромагнитной и электродинамической систем, а также термоэлектрической систем.

В маломощных цепях высоких частот ток измеряется выпрямительными, термоэлектрическими, электронными цифровыми и аналоговыми вольтметрами на резисторе с известным сопротивлением. Амперметр должен иметь минимальные значения входного сопротивления, индуктивностей и емкостей.

Приборы электромагнитной системы. Принцип действия этих приборов основан на явлении втягивания стальной пластины, соединенной со стрелкой, магнитным полем катушки. Отклонение подвижной части измерительного механизма зависит от квадрата измеряемого тока и может быть использовано для измерения как постоянного, так и переменного тока с частотой не выше 5 кГц. Подбором формы сердечника удается получить практически равномерную шкалу. Амперметры магнитоэлектрической системы выпускаются в качестве щитовых приборов классов точности 0,5, 1,0, 2,5 на частотах до 1500 Гц, и 0,5, 1,0 – до 2400 Гц. Для расширения пределов измерения тока электромагнитным амперметром применяются не шунты, а секционные катушки или трансформаторы. Достоинства – простота конструкции, дешевизна и надежность. Недостатки – малая точность и чувствительность. Электромагнитные амперметры применяют для непосредственного измерения токов до 200 А, катушка измерительного механизма включается последовательно в цепь измеряемого тока. Предел измерения определяется числом витков катушки. Чем выше предел, тем меньше витков из более толстого провода.

Электродинамические приборы. Принцип действия основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по двум катушкам, одна из которых подвижна. В результате взаимодействия магнитных полей катушек и противодействующих пружин, подвижная катушка поворачивается на некоторый угол, пропорциональный токам в катушках. Измеряется этими приборами действующее (среднеквадратическое) значение тока. Схемы включения обмоток катушек различны. При последовательном включении измеряются малые токи (менее 0,5 А), шкала прибора квадратична. При параллельном включении обмоток измеряются большие токи, шкала тоже квадратичная. Электродинамические амперметры выпускаются различных классов точности до 0,1. Применяются в основном на промышленных частотах. Для расширения пределов применяют переключение катушек измерительного механизма с последовательного на параллельное и трансформаторы тока.

Выпрямительные приборы.

Они широко применяются для измерения тока в звуковом диапазоне частот. Принцип действия основан на выпрямительных свойствах диода. Постоянная составляющая выпрямленного диодом тока измеряется прибором магнитоэлектрической системы. Обычно используются выпрямители однополупериодные и двухполупериодные. Выпрямительные приборы измеряют среднее значение переменного тока, а не среднеквадратическое. Шкалу прибора градуируют в среднеквадратических значениях, поэтому показания пересчитывают через коэффициент формы. Выпрямительные приборы для измерения токов широко применяют как составные элементы комбинированных приборов:тестеров, авометров, используемых для измерения токов, напряжений, сопротивлений. При использовании соответствующих диодов выпрямительные приборы могут применяться в диапазоне СВЧ. Германиевые и кремниевые диоды обеспечивают частотный диапазон до 100 МГц. Основные достоинства выпрямительных приборов – высокая чувствительность, малое собственное потребление и возможность измерения в широком диапазоне частот. Недостаток – невысокая точность. Основные источники погрешностей – изменение параметров диодов со временем. Класс точности выпрямительных приборов 1,5 и 2,5, пределы измерений по току от 2 мА до 600 А, по напряжению от 0,3 до 600 В.

Термоэлектрические приборы.

Они используются для измерения токов высокой частоты. Прибор состоит из термопреобразователя, термоэлемента и измерительного прибора.

Измерительный прибор И выполнен по магнитоэлектрической системе. Простейший термопреобразователь имеет подогреватель 2 и термопару 1 из двух разнородных проводников, спаянных между собой. Если через подогреватель термоэлемента пропускать измеряемый ток, то вследствие нагрева спая в цепи термопары и прибора И будет протекать термоток постоянного напряжения. Прибор измеряет действующее значение переменного тока. Шкала термоэлектрических приборов близка к квадратичной. Чувствительность зависит от материала термопары. Достоинства термоэлектрических приборов – высокая чувствительность, большой диапазон измерения токов, широкий диапазон частот, возможность измерения токов произвольной формы. Недостатки – неравномерность шкалы, которая в начальной части получается сжатой. Кроме того показания зависят от температуры. Общий частотный диапазон термоэлектрических приборов лежит в пределах от 45 Гц до 300 МГц, номинальные токи – от 1 мА до 50 А, классы точности – от 1,0 до 2,5.

Измерение напряжения

Измерение постоянного напряжения

При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором надо измерить напряжение. Относительная погрешность измерения напряжения равна
, т.е. чем больше внутреннее сопротивление вольтметра, тем меньше погрешность измерения.

Измерение постоянного напряжения может быть выполнено любыми измерителями напряжений постоянного тока (магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми вольтметрами.) Выбор вольтметра обусловлен мощностью объекта измерений и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от долей микровольт до десятков киловольт.

Если необходимая точность может быть обеспечена приборами электромеханической группы, то следует предпочесть этот простой метод непосредственной оценки. При измерении напряжений с более высокой точностью следует использовать приборы, основанные на методе сравнения. При любом методе измерения могут быть использованы аналоговый и цифровой отсчеты.

Приборы непосредственной оценки.

Магнитоэлектрические приборы используются при проверке режимов радиосхем и используются при измерении напряжений в приборах других систем. Кроме того они используются в качестве индикаторов. Вольтметры магнитоэлектрической системы имеют равномерную шкалу, высокую точность, большую чувствительность, но низкое входное сопротивление.

Электростатические вольтметры имеют достоинство малое потребление, независимость от температуры окружающей среды, высокое входное сопротивление, а недостатки – неравномерная шкала и опасность пробоя между пластинами.

Наиболее широко для измерения постоянного напряжения применяют электронные вольтметры. Они могут быть аналоговыми и цифровыми.

Аналоговые электронные вольтметры постоянного тока.

В отличие от вольтметров электромеханической группы электронные вольтметры постоянного тока имеют высокое входное сопротивление и малое потребление тока от измерительной цепи. На рисунке М2-6 представлена структурная схема аналогового электронного вольтметра.

Рисунок М2-6. Структурная схема аналогового электронного вольтметра постоянного напряжения.

Основными элементами являются входное устройство, усилитель постоянного тока и измерительный прибор магнитоэлектрической системы. Входное устройство содержит входные зажимы, делитель напряжения, предварительный усилитель. Высокоомный делитель на резисторах служит для расширения пределов измерения. Усилитель постоянного тока служит для повышения чувствительности вольтметра и является усилителем мощности измеряемого напряжения до значения, необходимого для создания достаточного вращающего момента у измерительного прибора.

К усилителям постоянного напряжения предъявляются такие требования, как высокая линейность характеристики, постоянство коэффициента усиления. Основные технические характеристики вольтметров постоянного тока приведены в таблице М2-3.

Таблица М2-3. Основные технические характеристики вольтметров постоянного тока.

Тип, наименование прибора

Диапазон измеряемых напряжений, В

Основная погрешность измерения, %

В2–34, вольтметр постоянного тока, дифференциальный, цифровой

0,01 мВ – 1000В,

поддиапазоны:

В2 – 36, вольтметр постоянного тока, цифровой

В2-38, нановольтметр цифровой постоянного тока

Измерение постоянного напряжения цифровыми приборами.

Цифровые вольтметры все шире применяются для измерения напряжений и токов. Упрощенная структурная схема цифрового вольтметра представлена на рис.М2-7.

Рисунок М2-7. Структурная схема цифрового вольтметра

Входное устройство содержит делитель напряжения. Аналого-цифровой преобразователь (АЦП) преобразует аналоговый сигнал в цифровую форму и представляет его цифровым кодом. Цифровое отсчетное устройство регистрирует измеряемую величину.

По типу АЦП цифровые вольтметры делятся на кодоимпульсные и времяимпульсные. Поскольку АЦП преобразует сигнал постоянного тока в цифровой код, цифровые вольтметры считают приборами постоянного напряжения. Для измерения переменного напряжения на выходе вольтметра ставится преобразователь.

По виду измеряемой величины цифровые приборы делятся на приборы:

    для измерения постоянного напряжения;

    для измерения переменного напряжения;

    мультиметры (универсальные вольтметры для измерения напряжения, сопротивления, тока)

Цифровые вольтметры обычно имеют высокое входное сопротивление более 100 Мом, диапазоны измерений 100мВ, 1 В, 10В, 100 В, 1000В. Порог чувствительности на диапазоне 1 00 мВ может быть 10 мкВ.

Измерение тока и напряжения. Вольтметр и амперметр.

Приветствую всех читателей на нашем сайте и сегодня в рамках курса «Основы электроники» мы будем изучать основные способы измерения силы тока, напряжения и других параметров электрических цепей. Естественно, без внимания не останутся и основные измерительные приборы, такие как вольтметр и амперметр.

Измерение тока. Амперметр.

И начнем мы с измерения тока. Прибор, используемый для этих целей, называется амперметр и в цепь он включается последовательно. Рассмотрим небольшой примерчик:

Как видите, здесь источник питания подключен напрямую к резистору. Кроме того, в цепи присутствует амперметр, включенный последовательно с резистором. По закону Ома сила тока в данной цепи должна быть равна:

I = \frac{U}{R} = \frac{12}{100} = 0.12

Получили величину, равную 0.12 А, что в точности совпадает с практическим результатом, который демонстрирует амперметр в цепи 🙂

Важным параметром этого прибора является его внутреннее сопротивление r_А. Почему это так важно? Смотрите сами — при отсутствии амперметра ток определяется по закону Ома, как мы и рассчитывали чуть выше. Но при наличии амперметра в цепи ток изменится, поскольку изменится сопротивление, и мы получим следующее значение:

I = \frac{U}{R_1+r_А}

Если бы амперметр был абсолютно идеальным, и его сопротивление равнялось нулю, то он бы не оказал никакого влияния на работу электрической цепи, параметры которой необходимо измерить, но на практике все не совсем так, и сопротивление прибора не равно 0. Конечно, сопротивление амперметра достаточно мало (поскольку производители стремятся максимально его уменьшить), поэтому во многих примерах и задачах им пренебрегают, но не стоит забывать, что оно все-таки и есть и оно ненулевое.

При разговоре об измерении силы тока невозможно не упомянуть о способе, который позволяет расширить пределы, в которых может работать амперметр. Этот метод заключается в том, что параллельно амперметру включается шунт (резистор), имеющий определенное сопротивление:

R = \frac{r_А}{n\medspace-\medspace 1}

В этой формуле n — это коэффициент шунтирования — число, которое показывает во сколько раз будут увеличены пределы, в рамках которых амперметр может производить свои измерения. Возможно это все может показаться не совсем понятным и логичным, поэтому сейчас мы рассмотрим практический пример, который позволит во всем разобраться.

Пусть максимальное значение, которое может измерить амперметр составляет 1 А. А схема, силу тока в которой нам нужно определить имеет следующий вид:

Отличие от предыдущей схемы заключается в том, что напряжение источника питания на этой схеме в 100 раз больше, соответственно, и ток в цепи станет больше и будет равен 12 А. Из-за ограничения на максимальное значение измеряемого тока напрямую использовать наш амперметр мы не сможем. Так вот для таких задач и нужно использовать дополнительный шунт:

В данной задаче нам необходимо измерить ток I. Мы предполагаем, что его значение превысит максимально допустимую величину для используемого амперметра, поэтому добавляем в схему еще один элемент, который будет выполнять роль шунта. Пусть мы хотим увеличить пределы измерения амперметра в 25 раз, это значит, что прибор будет показывать значение, которое в 25 раз меньше, чем величина измеряемого тока. Нам останется только умножить показания прибора на известное нам число и мы получим нужное нам значение. Для реализации нашей задумки мы должны поставить шунт параллельно амперметру, причем сопротивление его должно быть равно значению, которое мы определяем по формуле:

R = \frac{r_А}{n\medspace-\medspace 1}

В данном случае n = 25, но мы проведем все расчеты в общем виде, чтобы показать, что величины могут быть абсолютно любыми, принцип шунтирования будет работать одинаково.

Итак, поскольку напряжения на шунте и на амперметре равны, мы можем записать первое уравнение:

I_А\medspace r_А = I_R\medspace R

Выразим ток шунта через ток амперметра:

I_R = I_А\medspace \frac{r_А}{R}

Измеряемый ток равен:

I = I_R + I_А

Подставим в это уравнение предыдущее выражение для тока шунта:

I = I_А + I_А\medspace \frac{r_А}{R}

Но сопротивление шунта нам также известно (R = \frac{r_А}{n\medspace-\medspace 1}). В итоге мы получаем:

I = I_А\medspace (1 + \frac{r_А\medspace (n\medspace-\medspace 1)}{r_А}\enspace) = I_А\medspace n

Вот мы и получили то, что и хотели. Значение, которое покажет амперметр в данной цепи будет в n раз меньше, чем сила тока, величину которой нам и нужно измерить 🙂

С измерениями тока в цепи все понятно, давайте перейдем к следующему вопросу, а именно определению напряжения.

Измерение напряжения. Вольтметр.

Прибор, предназначенный для измерения напряжения называется вольтметр. И, в отличие от амперметра, в цепь он включается параллельно участку цепи, напряжение на котором необходимо определить. И, опять же, в противоположность идеальному амперметру, имеющему нулевое сопротивление, сопротивление идеального вольтметра должно быть равно бесконечности. Давай разберемся с чем это связано:

Если бы в цепи не было вольтметра, ток через резисторы был бы один и тот же и определялся по Закону Ома следующим образом:

I_1 = I_2 = \frac{U}{R_1 + R_2} = \frac{30}{10 + 20} = 1

Итак, величина тока составила бы 1 А, а соответственно напряжение на резисторе 2 было бы равно 20 В. С этим все понятно, а теперь мы хотим измерить это напряжение вольтметром и включаем его параллельно с R_2. Если бы сопротивление вольтметра было бы бесконечно большим, то через него просто не потек бы ток (I_B = 0), и прибор не оказал бы никакого воздействия на исходную цепь. Но поскольку r_В имеет конечную величину и не равно бесконечности, то через вольтметр потечет ток. В связи с этим напряжение на резисторе R_2 уже не будет таким, каким бы оно было при отсутствии измерительного прибора. Вот поэтому идеальным был бы такой вольтметр, через который не проходил бы ток.

Как и в случае с амперметром, есть специальный метод, который позволяет увеличить пределы измерения напряжения для вольтметра. Для осуществления этого необходимо включить последовательно с прибором добавочное сопротивление, величина которого определяется по формуле:

R_Д = r_В\medspace (n\medspace-\medspace 1)

Это приведет к тому, что показания вольтметра будут в n раз меньше, чем значение измеряемого напряжения. По традиции давайте рассмотрим небольшой практический пример:

Здесь мы добавили в цепь добавочное сопротивление R_3. Перед нами стоит задача измерить напряжение на резисторе R_2:\medspace U_2 = R_2\medspace I_2. Давайте определим, какой результат при таком включении выдаст нам вольтметр:

U_2 = I_2\medspace R_2 = U_В + I_В\medspace R_3

Подставим в эту формулу выражение для расчета сопротивления добавочного резистора:

U_2 = U_В + I_В\medspace (r_В\medspace (n\medspace-\medspace 1)) = U_В + I_В\medspace r_В\medspace n\medspace-\medspace I_В\medspace r_В = U_В + U_В\medspace n\medspace-\medspace U_В = U_В\medspace n

Таким образом: U_В = \frac{U_2}{n}. То есть показания вольтметра будут в n раз меньше, чем величина напряжения, которое мы измеряли. Так что, используя данный метод, возможно увеличить пределы измерения вольтметра!

В завершении статьи пару слов об измерении сопротивления и мощности.

Для решения обеих задач возможно совместное использование амперметра и вольтметра. В предыдущих статьях (про мощность и сопротивление) мы подробно останавливались на понятиях сопротивления и мощности и их связи с напряжением и сопротивлением, таким образом, зная ток и напряжение электрической цепи можно произвести расчет нужного нам параметра. Ну а кроме того есть специальные приборы, которые позволяют произвести измерения сопротивления участка цепи — омметр — и мощности — ваттметр.

В общем-то, на этом, пожалуй, на сегодня закончим, следите за обновлениями и заходите к нам на сайт! До скорых встреч!

Как измерить ток инвертора простым и доступным способом

Как измерить ток инвертора простым и доступным способом

Начинающие сварщики очень часто задаются вопросом о том, как измерить ток инвертора. Казалось бы, зачем замерять ток на выходе сварочного аппарата?

На самом же деле, большинство проблем при сварке электродом как раз и приходится на то, что инвертор выдаёт неправильные значения тока. В таком случае, вроде бы все выставил правильно, напряжение в сети нормальное, а инвертор не хочет варить.

Давайте разберёмся, так как же самым простым способом измерить ток инвертора, чтобы узнать, сколько он выдаёт на выходе ампер.

Как измерить ток инвертора

Ни для кого не секрет что дешевые инверторы очень часто грешат регулировкой сварочного тока. Зачастую красивая и аккуратная рукоятка регулятора служит лишь для красоты, но никак не для регулировки сварочного тока.

Например, очень частой проблемой многих сварочных аппаратов является погрешность с выдачей желаемых ампер. То есть, сварочный аппарат на 250 Ампер, ну никак не выдаёт столько же. В таком случае и возникают различного рода проблемы при сваривании металлов.

Самый простой способ измерить ток сварочного аппарата, это использовать специальные клещи для замеров. Принцип работы данных клещей основан на действии катушек индуктивности. Однако такой способ измерить ампераж аппарата для сварки подходит только в том случае, если он выдаёт «переменку».

Для измерения сварочного тока в инверторах необходимо использовать амперметр, который подключается через шунт. При этом очень важно не подключать амперметр напрямую к инвертору, а делать это надо именно через шунт. Таким образом, получится узнать всю правду, и сколько максимум получится выжать из инвертора ампер сварочного тока.

Чтобы измерить ток инвертора на 250 Ампер, вполне хватит 250 Амперного шунта. Шунт необходим для сброса напряжения, так как в противном случае амперметр может сгореть. Шунт подключается параллельно с амперметром в разрыв сварочных кабелей.

Следует заметить, что данная схема проверки ампеража, подходит только для сварочных инверторов. То есть, аппаратов для сварки, которые выдают «постоянку».

Почему так важно знать, сколько ампер выдаёт инвертор

На самом деле это очень важно, поскольку если инвертор не выдаст желаемые амперы, то не получится использовать электроды определённого диаметра. Также могут возникнуть различного рода проблемы при сварке, когда электрод начнёт прилипать к металлу.

И здесь можно сколько угодно будет грешить на некачественную электроэнергию или на то, что электроды плохие. Знать, а сколько же реально выдаёт ампер сварочный инвертор очень важно, чтобы нормально и качественно варить.

Таким образом, вы знаете, как измерить ток инвертора. Подписывайтесь на канал ММА Сварка в Дзен, и получайте новую порцию полезной информации. Всем удачи.

Поделиться в соцсетях

Как измерить ток | Хиоки

Почему необходимо измерять ток? Причины, методы и меры предосторожности

Обзор

Вы не можете увидеть поток электричества своими глазами. Следовательно, для измерения таких свойств, как сила тока, необходимы специально разработанные измерительные приборы. Но зачем вообще нужно измерять ток? И как этого добиться?

Эта страница предлагает подробное объяснение причин для измерения силы тока и методов использования связанных инструментов.

Необходимость измерения тока

Электронные устройства очень тонкие и точные. Следовательно, многие устройства необходимо регулярно проверять, и техническое обслуживание является ключевым моментом. Если бы не было измерительных приборов, было бы трудно точно определить проблемы во время обслуживания и при выходе из строя оборудования. По этой причине измерение тока является важной частью обслуживания электронных устройств и выявления причин неисправностей и отказов.

Существует ряд измерительных приборов, которые можно использовать для измерения тока.Наиболее часто используются следующие три:

  • Цифровые мультиметры

  • Токоизмерительные щупы

  • Токоизмерительные клещи

Каждый из этих инструментов может использоваться для измерения тока. Важно выбрать лучший инструмент для вашего приложения.

На этой странице объясняется, как измерять ток с помощью каждого типа прибора.

Как измерить ток цифровым мультиметром

Цифровой мультиметр – это прибор, который обеспечивает функциональные возможности для выполнения основных измерений электрических цепей, от тока до напряжения и сопротивления.Доступны различные типы, от больших моделей до устройств карточного типа, и они используются в различных сценариях измерения электроэнергии.

Большинство цифровых мультиметров имеют поворотный переключатель для изменения функций, поэтому первым шагом является установка прибора на текущую функцию.

Затем подключите черную (отрицательную) клемму измерительных проводов к «COM», а красную (положительную) клемму к «A.» При подключении измерительных проводов к цепи подключите черный провод к отрицательной стороне источника питания, а красный провод – к стороне нагрузки, чтобы прибор был включен последовательно со схемой.

Необходимо соблюдать осторожность, поскольку ввод напряжения, когда измерительный провод вставлен в клемму «A», может повредить цифровой мультиметр. Следовательно, рекомендуется отключать питание измеряемой цепи, чтобы случайно не подать напряжение. Затем подключите ток последовательно к измерительным клеммам и снова включите питание.

Как измерить ток с помощью токового пробника

Токовый пробник – это инструмент, который позволяет прибору, например осциллографу, измерять формы волны тока путем преобразования тока в напряжение.Они полезны в широком диапазоне сценариев измерения тока, поскольку позволяют наблюдать сигнал с внешней изоляции (без обрезания кабеля или другого проводника) и потому, что они могут выдерживать токи различной величины.

Доступны следующие шесть типов датчиков тока, которые следует выбирать в зависимости от области применения.

CT тип

Эти датчики тока предназначены исключительно для измерения переменного тока. Они сравнительно недороги и не требуют источника питания, хотя не могут использоваться для измерения постоянного тока.

Тип элемента Холла

Эти датчики тока могут использоваться для измерения как переменного, так и постоянного тока. Они недороги, но имеют недостатки, в том числе сравнительно низкую точность и дрейф, вызванный температурой и временем, что делает их плохо подходящими для приложений, в которых ток должен измеряться в течение длительного периода времени.

Rogowski type

Эти датчики измеряют ток путем преобразования напряжения, индуцированного в катушке с воздушным сердечником магнитным полем переменного тока, возникающим вокруг измеряемого тока.Они недороги и могут измерять большие токи, поскольку отсутствие магнитного сердечника устраняет проблему магнитного насыщения. Кроме того, они не страдают магнитными потерями. Однако они чувствительны к воздействию шума и поэтому плохо подходят для высокоточных измерений. Кроме того, у них есть недостаток в том, что они не могут измерять токи постоянного тока из-за принципа их работы.

Тип нулевого потока переменного тока

Эти пробники улучшают характеристики пробников CT-типа в низкочастотном диапазоне.Благодаря низкой фазовой ошибке они могут выполнять измерения в широком диапазоне частот, что делает их хорошо подходящими для измерения мощности. Однако они используют метод трансформатора тока и поэтому не могут измерять постоянный ток.

Тип AC / DC с нулевым потоком (тип обнаружения элемента Холла)

Эти датчики сочетают в себе метод ТТ с элементом Холла, что позволяет им измерять как постоянный, так и переменный ток.

Тип AC / DC с нулевым потоком (тип обнаружения феррозонда)

Эти датчики сочетают в себе метод CT с элементом FG (феррозонды), что позволяет им измерять как постоянный, так и переменный ток.
Поскольку магнитный датчик демонстрирует чрезвычайно малый дрейф смещения в широком диапазоне температур благодаря своему принципу работы, он может обеспечивать исключительно точные и стабильные измерения, что делает этот тип датчика тока идеальным для сопряжения с высокоточными измерителями мощности для обеспечения бескомпромиссной точности

Как измерить ток токоизмерительными клещами

Чтобы измерить ток токоизмерительными клещами, сначала установите поворотный переключатель в положение «A». Затем выполните настройку нуля и зажать трос губками.Поскольку токоизмерительные клещи могут измерять ток, просто зажимая их вокруг кабеля, их также можно использовать для проверки значений тока без разрезания цепей. Эти инструменты используют тот факт, что магнитное поле, возникающее при протекании тока, пропорционально величине тока; измеряя это поле, можно измерить ток.

Если токоизмерительные клещи зажать вокруг двух проводов с обратным ходом, магнитные поля нейтрализуют друг друга. Необходимо избегать зажатия счетчика вокруг таких пар проводов, за исключением измерения тока утечки.

Поскольку магнитное поле увеличивается пропорционально количеству витков катушки в одном направлении вокруг сердечника зажима, точность может быть увеличена путем добавления витков к прибору для усиления магнитного поля.

Выбор лучшего прибора для вашего приложения

Измерительные приборы необходимы для измерения таких свойств, как ток, для поддержания и выявления неисправностей в точных, чувствительных электронных приборах.Для измерения тока часто используются такие инструменты, как цифровые мультиметры, токоизмерительные щупы и токоизмерительные клещи. Почему бы не попробовать использовать инструмент, который соответствует вашим требованиям и целям для измерения силы тока?

Сопутствующие товары

Подробнее

Как измерить ток в цепи с помощью амперметра

Ток – это мера скорости потока электрических зарядов по проводнику. Он измеряется в единицах ампер. Это измерение тока в цепи в основном выполняется амперметром .

Амперметр

Амперметр измеряет электрический ток в цепи. Название происходит от единицы измерения электрического тока в системе СИ – ампера. Чтобы измерить электрический ток в цепи, амперметр должен быть подключен последовательно, потому что при последовательном подключении амперметр испытывает такое же количество тока, которое протекает в цепи. Амперметр рассчитан на работу с малой долей вольт. Так что падение напряжения должно быть минимальным.

Обозначение амперметра

Заглавная буква A представляет собой амперметр в цепи.

Символ амперметра

Как пользоваться амперметром

Прежде чем мы начнем измерять ток, мы сначала установим диапазон амперметра. Сохранение максимального диапазона предотвратит взрыв внутреннего предохранителя амперметра. Затем установите тип тока, то есть постоянного или переменного тока.

Теперь соедините клеммы амперметра последовательно с сопротивлением или нагрузкой. При таком расположении амперметр испытывает такое же количество тока, которое протекает в цепи. Например, допустим простая схема; к аккумулятору подключена лампочка.Положительный полюс батареи подключен к положительной клемме лампы, а отрицательный полюс батареи – к отрицательной клемме лампы.

Теперь отсоедините любую клемму лампы и подключите амперметр таким образом, чтобы один щуп амперметра был подсоединен к батарее, а другой щуп – к колбе.

Теперь вы можете наблюдать показания амперметра, и это количество тока, протекающего в вашей цепи.

Теперь, когда вы отметили показания амперметра, отсоедините амперметр и подключите провода, как в простой схеме.

ВНИМАНИЕ:

Для измерения силы тока необходимо принять некоторые меры предосторожности. Не подключайте щупы амперметра напрямую к батарее, чтобы проверить ток этой батареи. Это вызовет короткое замыкание в амперметре, и иногда это может привести к перегоранию внутреннего предохранителя амперметра. Поэтому, пожалуйста, не выполняйте это действие.

Если вы хотите проверить ток батареи. Добавьте сопротивление к батарее и последовательно подключите амперметр.Показания будут правильными и точными, не о чем беспокоиться.

Шунт амперметра

Другие методы измерения силы тока


Магнитный метод

Магнитный метод, мы используем эффект Холла для измерения силы тока. Когда провод лежит с потоком электронов, внутри него течет ток. Но в них нет электрического потенциала. Если этот провод помещен в магнитное поле, разность потенциалов возникает перпендикулярно магнитному полю и направлению тока.Эта разность потенциалов будет прямо пропорциональна текущему расходу. Здесь заряды взаимодействуют с магнитным полем, вызывая изменение распределения тока, что создает напряжение Холла.

Преимущество этого магнитного метода в том, что он позволяет измерять большие токи.

Измерение тока гальванометром

Гальванометр – это устройство, которое используется только для определения наличия тока в цепи.Отклонение гальванометра указывает направление потока тока, т. Е. Отклонение вправо; ток течет в правильном направлении и наоборот. В гальванометре соответствующее сопротивление шунта было подключено параллельно катушке гальванометра, чтобы преобразовать его в амперметр для измерения тока.

Это два широко используемых метода помимо измерения амперметром.

Итак, вот как следует использовать амперметр с соблюдением всех мер предосторожности и мер.Амперметр упростил расчет тока в электрических устройствах, и теперь с помощью амперметра мы можем измерять малые токи в мА (миллиампер) до больших токов в кА (килоампер).

Измерение электрических токов | IOPSpark

Электрическая цепь

Электричество и магнетизм

Измеритель электрического тока

Повествование о физике для 11–14

Ток – это расход заряда

Электрический ток состоит из движущихся заряженных частиц.Итак, заряженные частицы движутся по кругу.

Чтобы разобраться в электрических цепях, вам нужно смоделировать поведение токов в цепях. Теперь мы рассмотрим, как можно измерить электрические токи и как мы можем разобраться в этих измерениях.

Электрический ток в одной части цепи измеряется амперметром, который дает значение в амперах.

Для проведения измерения в цепи делается зазор, и в этот зазор подключается амперметр, так что заряженные частицы, движущиеся по цепи, должны проходить через измеритель.

Поскольку амперметр подключается непосредственно к цепи, он должен иметь низкое сопротивление, чтобы не уменьшать поток заряда, который он используется для измерения.

Повышение тока

Что на самом деле измеряет амперметр, когда он включен в цепь? Вы можете представить себе работу амперметра как подсчет зарядов по мере их прохождения через прибор, чтобы увидеть, сколько зарядов проходит каждую секунду. Количество заряда, проходящего в секунду, является мерой электрического тока:

Количество заряженных частиц, проходящих в секунду: большой ток

Мало заряженных частиц проходит в секунду: небольшой ток

Мы можем уточнить это до , электрический ток = количество заряда, проходящего в секунду .

Это эквивалентно электрическому току = скорости потока заряда .

Более формально, возможно:

ток = зарядка

Вы можете записать это символами:

I = Q т

Где I – текущий; Q – заряд; t – время, за которое течет заряд (длительность).

Вы также можете записать все отношения с помощью единиц:

ток в амперах = заряд в кулонах время в секундах

Для увеличения величины электрического тока,

  • Либо нужно привести в движение больше заряженных частиц (изменить материал или толщину проволоки),
  • Или нужно заставить заряженные частицы быстрее перемещаться по цепи.

Оба эти действия приводят к тому, что через любую точку цепи каждую секунду проходит больше заряда, и это больший электрический ток. В эпизоде ​​02 вы увидите, как можно увеличить электрический ток.

Ампер: мера электрического тока, который представляет собой скорость протекания заряда

Когда амперметр используется для измерения силы электрического тока, показания счетчика выражаются в единицах ампер. Включите амперметр в цепь последовательно, чтобы не было разветвлений: ток в проводах будет таким же, как и в амперметре.

Постоянный электрический ток в 1,0 ампер означает, что в секунду проходит один кулон заряда.

Что это значит? Сколько электронов составляют заряд на один кулон? Поскольку заряд одного электрона составляет 1,6 × 10 -19 кулонов, то в одном кулонах заряда должно быть около 6 × 10 18 электронов (6 миллионов, миллионов, миллионов!).

Когда вы думаете об электрических токах в проводах, хорошая мысленная картина – это огромное количество электронов, дрейфующих по цепи с довольно умеренной скоростью!

Единица измерения электрического тока – ампер.

Обозначение ампера: A

Независимо от проводника, независимо от заряда, связь между током и накопленным количеством прошедшего заряда универсальна.

Как измерить ток с помощью датчиков тока

Автор: Грант Малой Смит, эксперт по сбору данных

В этой статье мы обсудим, как измеряется электрический ток, применительно к приложениям сбора данных (DAQ) сегодня, с достаточной детализацией, чтобы вы:

  • См. , какие датчики и преобразователи тока доступны сегодня
  • Изучите основы точного измерения тока
  • Понимать , как различные датчики применяются в приложениях для измерения тока

Готовы начать? Пойдем!

Введение

Как и напряжение, ток может быть переменным (AC) или постоянным (DC).Электрический ток – это сила или скорость протекания электрического заряда. Подобно измерению напряжения, нам иногда нужно измерять очень малые токи, то есть в диапазоне микроампер, в то время как в других случаях нам может потребоваться измерить очень большие токи в тысячи ампер.

Для реализации этого широкого диапазона возможностей Dewesoft предлагает ряд преобразователей и датчиков тока, которые имеют выходное напряжение или ток, совместимые с одним из преобразователей сигнала напряжения , доступных для нашего оборудования для тестирования сбора данных.

Системы сбора данных Dewesoft могут измерять электрические свойства всех основных типов, включая напряжение, ток и т. Д. Эта комбинация датчика и формирователя сигнала плавно преобразует широкий диапазон токов в выходной сигнал низкого уровня, который может быть оцифрован для отображения, хранения и анализа.

Но какой датчик выбрать? Цель этой статьи – описать различные типы доступных датчиков тока, их плюсы и минусы, а также с какими приложениями каждый тип справляется лучше всего.

Что такое электрический ток?

Как упоминалось выше, ток – это сила или скорость протекания электрического заряда. В системах постоянного тока ток течет в одном направлении, иначе говоря, «однонаправленно». Общие источники постоянного тока включают батареи и солнечные элементы.

Переменный и постоянный ток

В системах переменного тока ток меняет направление на заданную частоту. В наших офисах и дома у нас есть сеть переменного тока с частотой 50 или 60 Гц (в зависимости от вашей страны).Этот переменный ток обычно является синусоидальным (например, в форме синусоидальной волны).

Наиболее типичным источником переменного тока является местная электростанция. Ток, создаваемый фотоэлектрическими элементами, является постоянным и должен быть преобразован в переменный, чтобы обеспечить питание наших домов. То же самое и с ИБП, или с системой резервного питания от компьютерных батарей – энергия накапливается в батарее и должна быть преобразована в переменный ток, чтобы обеспечивать электроэнергией дом.

Переменный ток также используется несинусоидальным образом для модуляции информации в цепи, например, в радиосигналах и передаче звука.

Типовой аудиосигнал

В Международной системе единиц (СИ) для обозначения силы тока используется ампер, который обычно сокращается до слова «амперы» и обозначается символом A.

Current также часто пишется с буквой I. Это восходит к французской фразе tensité de courant («сила тока» на английском языке). И A, и I являются допустимыми сокращениями для тока.

Переменный ток и постоянный ток часто обозначают аббревиатурой AAC и ADC соответственно.

Один ампер равен одному кулону электрического заряда, проходящего мимо данного места за одну секунду (один кулон содержит примерно 6,242 × 1018 электронов).

А ток всегда создает магнитное поле. Чем сильнее ток, тем сильнее поле. Измеряя это поле с помощью различных методов: эффекта Холла, индукции или магнитного потока, мы можем измерить поток электронов (ток) в электрической цепи.

Как измерить ток?

Поскольку ток всегда создает магнитное поле, существуют датчики на эффекте Холла и другие датчики, которые позволяют нам измерять это поле и тем самым измерять ток.

Также можно подключить шунтирующий резистор внутри самой схемы и напрямую измерять ток, как в классическом амперметре и токовом шунте. Мы рассмотрим оба метода в следующих разделах.

Датчики тока с разомкнутым контуром и замкнутым контуром

Возможно, вы слышали о датчиках тока разомкнутого и замкнутого контура. Какие отличия?

Датчики тока с разомкнутым контуром дешевле, чем датчики с замкнутым контуром, такие как датчики тока с нулевым потоком.Они состоят из датчика Холла, установленного в зазоре магнитопровода. Выходной сигнал датчика Холла усиливается и измеряет поле, создаваемое током, без какого-либо контакта с ним. Это обеспечивает гальваническую развязку между цепью и датчиком.

Датчик тока без обратной связи

Некоторые датчики тока без обратной связи имеют компенсационную электронику, которая помогает компенсировать дрейф, вызванный изменениями температуры окружающей среды. По сравнению с датчиками с обратной связью, датчики с обратной связью меньше и дешевле.Они имеют низкие требования к мощности и могут использоваться для измерения как переменного, так и постоянного тока. В то же время они не так точны, как их собратья с замкнутым контуром: они подвержены насыщению и обеспечивают низкую температурную компенсацию и помехозащищенность.

Датчики тока с обратной связью используют схему управления с обратной связью для обеспечения выхода, пропорционального входу. По сравнению с датчиками без обратной связи, эта конструкция с обратной связью с обратной связью по своей сути обеспечивает повышенную точность и линейность, а также лучшую компенсацию температурного дрейфа и устойчивость к шумам.

Датчик тока с обратной связью

Для датчиков с разомкнутым контуром дрейф, вызванный температурой, или любые нелинейности в датчике вызовут ошибку. С другой стороны, датчики с обратной связью используют катушку, которая активно приводится в действие за счет создания магнитного поля, которое противодействует полю проводника тока. Это «замкнутый контур», который обеспечивает повышенную точность и характеристики насыщения.

Так что лучше? Это полностью зависит от приложения. Более низкие требования к стоимости, размеру и мощности делают датчики тока без обратной связи очень популярными.Это отчасти компенсируется тем фактом, что их чувствительность к насыщению означает, что они должны быть «завышены» в некоторых приложениях, чтобы избежать этой проблемы.

Датчики тока

с замкнутым контуром являются явным фаворитом в приложениях, требующих максимально возможной точности и устойчивости к насыщению, или которые используются в средах с большими экстремальными температурами или электрическими шумами.

Датчики тока без обратной связи используются в таких приложениях, как:

  • Цепи с батарейным питанием (в связи с низким энергопотреблением)
  • Приводы, в которых точность крутящего момента не должна быть высокой
  • Измерение тока вентилятора и насоса
  • Сварочные аппараты
  • Системы управления батареями
  • Регулируемые приводы
  • Применение источников бесперебойного питания

Датчики тока с обратной связью используются в таких приложениях, как:

  • Приводы с регулируемой скоростью (когда точность и линейность имеют первостепенное значение)
  • Сервоуправление
  • Максимальная токовая защита
  • Датчики замыкания на землю
  • Промышленные приводы постоянного и переменного тока
  • Управление роботом
  • Приложения для измерения энергии

Как и в случае с любым другим датчиком, желаемый конечный результат должен быть определяющим фактором при выборе типа датчика.

Приложения для измерения тока

Как фундаментальный компонент электричества, ток и точное измерение необходимы в бесчисленных приложениях. Можете ли вы представить себе энергетическую компанию, не знающую, сколько ампер она вырабатывает? Или что они не будут знать, сколько энергии потребляют их клиенты?

Конечно, это было бы абсурдно. Но есть миллионы других целей и требований к текущим измерениям. Фактически, эти требования можно разделить на разомкнутый контур или замкнутый контур .

Обратите внимание, что это не следует путать с датчиками открытого или закрытого контура , как описано в предыдущем разделе. Здесь мы говорим о самом текущем измерительном приложении как о разомкнутом или замкнутом контуре.

В приложении для измерения тока с обратной связью нам нужно знать ток, потому что нам нужно управлять им в реальном времени . Приложения включают:

  • Компоненты, в которых ток должен быть ограничен до определенного уровня, e.g., импульсные источники питания и зарядные устройства, и это лишь некоторые из них.
  • Функции автоматического отключения критических систем в зависимости от потребляемого тока.
  • Электромагнитные клапаны с регулируемым током, используемые в автомобилях, самолетах и ​​т. Д.
  • Усилитель мощности смещает регулятор тока.
  • И многое другое.

В приложениях для измерения тока с разомкнутым контуром нет необходимости в управлении в реальном времени, но нам нужно знать текущее значение для различных целей, в том числе:

  • Исследования и разработки электродвигателей автомобилей, поездов, товаров народного потребления и т. Д.
  • Потребление энергии для получения дохода.
  • Проверка работоспособности приводов, используемых в самолетах, ракетах и ​​т. Д.
  • Измерение подачи и потребления электроэнергии в электропоездах, а также в третьем рельсе и цепных сетях, питающих их.
  • Приложения качества электроэнергии как для производителей, так и для потребителей энергии.
  • Буквально миллионы приложений в исследованиях, производстве, автомобилестроении, аэрокосмической промышленности, военном деле, здравоохранении, образовании, промышленной автоматизации и многом другом.

Типы основных датчиков тока

Таким образом, для этих различных методов доступны различные датчики тока и преобразователи тока, каждый из которых адаптирован к среде измерения, а также к диапазону тока, который должен быть измерен. Например, требования к измерению микроампер (мкА) сильно отличаются от требований, предъявляемых к измерению тысяч ампер. Мы рассмотрим каждый тип датчика и опишем принцип его действия, а также его применение.

Шунт Эффект Холла CT Роговски Нулевой поток
Тип подключения Прямой Косвенный Косвенный Косвенный Косвенный
Текущий переменного и постоянного тока переменного и постоянного тока AC AC переменного и постоянного тока
Точность Высокая Средний Средний Низкий Высокая
Диапазон Низкий Средний Высокая Средний Высокая
Выколотка Низкий Средний Средний Высокая Низкий
Изоляция 1) Есть Есть Есть Есть

1) Шунты могут быть изолированы через внутренний или внешний формирователь сигнала, но они не изолированы по своей природе

Как упоминалось ранее, существует два основных метода измерения тока:

  • При прямом контакте с током (шунт / амперметр)
  • Путем измерения электромагнитного поля или потока тока

Наиболее распространенный способ измерения тока – это подключение амперметра , (измеритель для измерения тока) или шунтирующего резистора последовательно со схемой.Амперметр или шунт амперметра на самом деле не более чем высокоточный резистор. Когда мы помещаем в цепь прецизионный резистор, на ней происходит падение напряжения. Выходной сигнал шунтирующего датчика измеряется системой сбора данных, которая применяет закон Ома для определения силы тока, протекающей по цепи.

Обратите внимание, что максимальный диапазон тока, который может измерять данный амперметр, ограничен номиналом его резистора. Поэтому обычной практикой является добавление дополнительного шунтирующего резистора параллельно для увеличения максимального диапазона измерения нашего испытательного оборудования.

Это ограничение является причиной того, что прямое соединение с электрическими проводниками цепи более широко используется в приложениях с низким током, но редко в приложениях с высоким током, где гораздо более распространены косвенные измерительные датчики, такие как токовые клещи и гибкие катушки.

Измерение тока шунта

При подключении низкоомного резистора параллельно цепи ток протекает через шунтирующий резистор -R- и вызывает падение напряжения.

Типовое подключение для измерения шунта в простой цепи

Мы можем измерить это падение и применить закон Ома для расчета тока.

Графическое представление закона Ома

Закон

Ома описывает взаимосвязь между напряжением (В), током (I) и сопротивлением (R). Если мы знаем два из трех из них, мы можем легко вычислить третье с помощью простой арифметики. На приведенной выше диаграмме показаны три способа выражения закона Ома:

I = V / R OR V = IR OR R = V / I

Итак, если мы знаем напряжение (падение) и сопротивление, мы можем рассчитать ток, используя I = V / R.

Шунтирующий резистор следует выбирать для соответствующего диапазона напряжения и тока, поскольку слишком высокое сопротивление повлияет на измерение, а также приведет к потере энергии и искажению измерения по мере нагрева резистора. Эта потеря энергии равна:

I2 * R

Кроме того, важным фактором является точность резистора, так как это напрямую влияет на точность самого измерения.

Токовый шунт Dewesoft DSIi-10A

Dewesoft предлагает несколько токовых шунтов компактного размера, каждый из которых имеет внутри свой собственный резистор, предназначенный для измерения различных диапазонов тока.Эти шунты были спроектированы таким образом, чтобы оказывать наименьшее влияние на саму цепь.

Адаптеры

DSI можно подключить практически ко всем устройствам сбора данных Dewesoft. Изолированные аналоговые входы усилителей Dewesoft являются важным фактором для обеспечения точных измерений, поскольку шунт подключается непосредственно к измеряемой цепи, а изоляция между цепью и измерительной системой всегда важна. Изолированные входы означают, что вы можете разместить свой шунт на стороне низкого или высокого уровня цепи и не беспокоиться о контуре заземления или об ошибках измерения синфазного сигнала .


Снова принимая во внимание закон Ома и взаимосвязанный характер напряжения, тока и сопротивления, становится абсолютно ясно, что система сбора данных должна иметь возможность выполнять очень точное измерение напряжения и сопротивления, чтобы производить точное измерение тока.

IOLITE STG со встроенным токовым шунтом

Некоторые формирователи сигналов Dewesoft имеют встроенный шунт для измерения малых токов . Возьмем, к примеру, формирователь сигналов STG серии IOLITE и IOLITEd для сбора данных.Этот модуль является универсальным, что означает, что он может работать с широким спектром датчиков и типов входов.

Например, он может работать с тензодатчиками в полномостовых, полумостовых и четвертьмостовых конфигурациях, напряжениями до 50 В, потенциометрическими датчиками и токами до 20 мА . Кроме того, адаптеры серии DSI могут использоваться для работы с термопарами, датчиками RTD, датчиками положения LVDT, напряжениями до 200 В, токами до 5 А, акселерометрами IEPE и т. Д.

Система сбора данных IOLITE с различными модулями
(6xSTG с 6 универсальными аналоговыми входами в первых двух слотах)

IOLITE 6xSTG имеет шесть дифференциальных входов с защитой от перенапряжения и питанием датчика от каждого из его универсальных входов и частотой дискретизации до 20 kS / s / ch.

Для измерения тока он имеет встроенный шунтирующий резистор 50 Ом , который можно применять в программном обеспечении, что позволяет инженерам измерять ток до 2 мА или 20 мА по выбору пользователя.

Шасси

IOLITE доступны в настольной модели «IOLITEs», которая поддерживает до 8 многоканальных модулей (показано на рисунке выше). Для стационарной установки существует модель «ИОЛИТЕР», предназначенная для стандартной установки в 19-дюймовую стойку. В данной модели 12 слотов для модулей:

IOLITEr, модель для монтажа в стойку

Обе модели IOLITE оснащены источниками питания с двойным резервированием для надежной работы в критически важных приложениях.У них также есть две параллельные шины EtherCAT. Первичная шина используется для получения буферизованных данных на полной скорости на жесткий диск ПК с программным обеспечением DEWESoft X. Вторичная шина в основном используется для передачи данных с малой задержкой в ​​реальном времени в любую стороннюю систему управления на основе EtherCAT.

IOLITE – это уникальная система сбора данных, которая объединяет миры управления в реальном времени и высокоскоростного сбора данных, объединяя их в одном надежном приборе.

Измерение электромагнитного поля или потока тока

Поскольку ток всегда создает магнитное поле, пропорциональное величине тока, мы можем измерить это поле с помощью различных датчиков и, таким образом, измерить ток.

Теперь давайте рассмотрим некоторые из наиболее распространенных датчиков и преобразователей тока, их основные принципы работы и способы их наилучшего использования.

Измерение датчика эффекта Холла

Принцип действия датчиков

на эффекте Холла основан на измерении магнитных полей. В 1879 году, за двадцать лет до открытия электрона, американский физик Эдвин Холл заметил, что когда ток течет по проводнику, электроны движутся по прямой линии. Однако, когда этот проводник подвергается воздействию магнитного поля, на него действует сила Лоренца, и путь электронов искривляется.

Кроме того, когда электроны выталкиваются больше к одной стороне проводника, чем к другой, создается разность потенциалов между двумя сторонами проводника. Холл заметил, что эта разность потенциалов прямо и линейно пропорциональна силе магнитного поля.

Эта разность потенциалов, измеренная между сторонами (или «плоскостями») проводника, называется напряжением Холла .

Эффект Холла был принят для тысяч приложений, включая бесконтактные переключатели, схемы управления скоростью двигателя, тахометры, датчики LVDT и даже в качестве датчика уровня топлива в автомобилях.Но мы остановимся на его применении именно с датчиками тока.

Типовой датчик тока на эффекте Холла

Токовые клещи

на эффекте Холла работают, пропуская провод через открытый сердечник. Таким образом, они обеспечивают бесконтактный метод измерения постоянного и переменного тока. Им требуется очень мало энергии, поэтому они могут питаться напрямую от предусилителя SIRIUS с разъемом DSUB9. Никакого дополнительного источника питания не требуется.

Они не так точны, как токовые клещи с магнитным затвором или преобразователи с нулевым магнитным потоком, но они предлагают гораздо более широкий диапазон измерения.

Датчики на эффекте Холла

доступны в вариантах с разомкнутым и замкнутым контуром. Датчики с замкнутым контуром добавляют компенсационную обмотку и улучшают бортовую обработку сигнала, что делает их более точными, чем их аналоги с разомкнутым контуром.

DS-ЗАЖИМ-150DC DS-ЗАЖИМ-150DCS DS-ЗАЖИМ-1800DC
Тип Датчик Холла Датчик Холла Датчик Холла
Диапазон 200 А постоянного тока или 150 А переменного тока, среднеквадратичное значение 290 А постоянного тока или 150 А переменного тока, среднеквадратичное значение 1800 А постоянного или переменного тока, среднеквадратичное значение
Ширина бренда от 0 до 100 кГц от 0 до 100 кГц от 0 до 20 кГц
Точность 1% + 2 мА 1% + 2 мА 0 – 1000 А: ± 2.5% от показаний ± 0,5 A
1000 – 1500 A: ± 3,5% от показаний
1500 – 1800 A: ± 5% от показаний
Чувствительность 20 мВ / А 20 мВ / А 1 мВ / А
Разрешение ± 1 мА ± 1 мА ± 1 мА
Возможность перегрузки 500 А постоянного тока (1 мин) 500 А постоянного тока (1 мин) 2000 А постоянного тока (1 мин)
TEDS Полностью поддерживается Полностью поддерживается Полностью поддерживается
Размеры 205 мм x 60 мм x 15 мм
(отверстие под зажим d = 32 мм)
106 мм x 100 мм x 25 мм
(отверстие зажима d = 25 мм)
205 мм x 60 мм x 15 мм
(отверстие под зажим d = 32 мм)

Датчики тока на эффекте Холла марки Dewesoft

DS-CLAMP 150DC и 150DCS могут быть подключены напрямую к усилителю Sirius® LV или Sirius® HS-LV с помощью разъема DSUB9.DS-CLAMP-1800DC можно подключать напрямую ко всем усилителям DEWESoft® с разъемом DSUB9 (например, Sirius® LV-DB9).

Типовой датчик Холла от Dewesoft

Подробные характеристики датчиков тока Dewesoft.

Измерение трансформатора тока (ТТ)

Трансформаторы тока (ТТ) используются для измерения переменного тока (AC). Это индуктивные датчики, состоящие из первичной обмотки, магнитопровода и вторичной обмотки.

По сути, высокий ток преобразуется в более низкий с помощью магнитного носителя, поэтому очень высокие токи можно измерять безопасно и эффективно. В большинстве трансформаторов тока первичная обмотка имеет очень мало витков, в то время как вторичная обмотка имеет намного больше витков. Это соотношение витков первичной и вторичной обмоток определяет, насколько снижается величина токовой нагрузки.

Типовой трансформатор тока

Переменный ток, обнаруживаемый первичной обмоткой, создает магнитное поле в сердечнике, которое индуцирует ток во вторичной обмотке.Этот ток преобразуется в выходной сигнал датчика.

Они доступны в конфигурации с разделенным сердечником от Dewesoft, что обеспечивает удобные возможности подключения, так как не нужно каким-либо образом изменять схему. Вы можете просто открыть зажимы и освободить их вокруг провода, что делает эти токовые клещи для переменного тока особенно удобными в использовании.

Трансформаторы тока CT марки Dewesoft

DS-ЗАЖИМ-5AC DS-ЗАЖИМ-15AC DS-ЗАЖИМ-200AC DS-ЗАЖИМ-1000AC
Тип Железный сердечник Железный сердечник Железный сердечник Железный сердечник
Диапазон 5 А 15 А 200 А 1000 А
Полоса пропускания 5 кГц 10 кГц 10 кГц 10 кГц
Точность 0.5% для 12A
0,5% для 5A
1% для 500 мА
2% для 5 мА
1% для токов 1-15 А
2,5% для токов <1 А
1% для токов 100-240 А
2,5% для токов 10-100 А
3,5% для токов 0,5 – 10 А
0,3% для токов от 100 А до 1200 А
0,5% для токов от 10 до 100 А
2% для токов <1 А
Фаза ≤ 2,5 ° ≤3 ° для токов 1-15A
≤5 ° для токов <1A
≤2.5 ° для токов 100-240 А
≤ 5 ° для токов 10-100 А
Не указано для токов 0,5 – 10 А
0,7 ° для токов от 100 A до 1200 A
1 ° для токов от 10 до 100 A
Не указано для токов <1 A
TEDS Полностью поддерживается Полностью поддерживается Полностью поддерживается Полностью поддерживается
Чувствительность 60 мВ / А 100 мВ / А 10 мВ / А 1 мВ / А
Разрешение 0.01 A 0,01 А 0,5 А 0,001 А
Возможность перегрузки Крест-фактор 3 Крест-фактор 3 Крест-фактор 3 1200 А в течение 40 минут
Размеры 102 мм x 34 мм x 24 мм
(отверстие зажима d = 15 мм)
135 мм x 51 мм x 30 мм
(отверстие зажима d = 20 мм)
135 мм x 51 мм x 30 мм
(отверстие зажима d = 20 мм)
216 мм x 111 мм x 45 мм
(отверстие зажима d = 52 мм)

Dewesoft Iron Core CT Трансформатор тока

Датчики переменного тока с железным сердечником предлагают удобство использования очень небольшого количества энергии, поэтому они могут питаться непосредственно от предусилителя SIRIUS с разъемом DSUB9.Никакого дополнительного источника питания не требуется. Они имеют полосу пропускания от 2 Гц до 10 кГц (от 2 Гц до 5 кГц для DS-CLAMP-5AC) и до 10 кГц для других моделей этой серии). Эти зажимы можно подключать напрямую ко всем усилителям Dewesoft с разъемами DSUB9 (например, Sirius-LV).

Подробные характеристики датчиков тока Dewesoft.

Измерение датчика тока Роговского

Датчики

Роговского обладают тем преимуществом, что обходят большие кабельные пучки, шины и проводники неправильной формы, чего не могут обычные зажимы.

Они созданы для измерения переменного тока, а их низкая индуктивность означает, что они могут реагировать на быстро меняющиеся токи. А отсутствие железного сердечника делает их очень линейными даже при очень больших токах. Они обеспечивают отличные характеристики при измерении содержания гармоник. Необходим небольшой интегратор и силовая цепь, которые встроены в каждый датчик DS-FLEX.

Типовая схема катушки Роговского

Число в названии модели, например 300, 3000 или 30 000, означает максимальную силу тока, которую они могут прочитать.Последнее число относится к длине «веревки» в см. Так, например, DS-FLEX-3000-80 может считывать до 3000 AAC и имеет длину «веревки» 80 см (то есть 800 мм или 31 дюйм).

Датчики тока Dewesoft Rogowski Coil «FLEX»

DS-FLEX-3000-17 DS-FLEX-3000-35 DS-FLEX-3000-35HS DS-FLEX-3000-80 DS-FLEX-30000-120
Тип Катушка Роговского Катушка Роговского Катушка Роговского Катушка Роговского Катушка Роговского
Диапазон 3, 30, 300, 3000 A
AC среднекв.
3, 30, 300, 3000 А
АСкв.
3000 А
AC среднекв.
3, 30, 300, 3000 A
AC среднекв.
30, 300, 3000, 30000 А
АСкв.
Полоса пропускания 3A: от 10 Гц до 10 кГц
Прочие: от 10 Гц до 20 кГц
3A: от 10 Гц до 10 кГц
Прочие: от 10 Гц до 20 кГц
5 Гц – 1 МГц 3A: от 10 Гц до 10 кГц
Прочие: от 10 Гц до 20 кГц
3A: от 10 Гц до 5 кГц
Прочие: от 10 Гц до 20 кГц
Точность <1.5% <1,5% <1,5% <1,5% <1,5%
Длина рулона 170 мм (Ø 45 мм) 350 мм (Ø 100 мм) 350 мм (Ø 100 мм) 800 мм (Ø 250 мм) 1200 мм (Ø 380 мм)
TEDS Не поддерживается Не поддерживается Полностью поддерживается Не поддерживается Не поддерживается

Dewesoft DS-FLEX-3000 Датчик тока с поясом Роговского

Эти зажимы можно подключать напрямую ко всем усилителям DEWESoft® с помощью разъемов DSUB9 (например,грамм. СИРИУСи Л.В.).

Обратите внимание, что переменный ток обычно выводится как истинное среднеквадратичное значение, а постоянный ток выводится как дискретное значение.

Подробные характеристики датчиков тока Dewesoft.

Измерение датчиков нулевого потока

Датчик тока с нулевым потоком или «FluxGate» аналогичен датчику тока на эффекте Холла, за исключением того, что он использует магнитную катушку вместо системы на эффекте Холла. Более высокая точность результатов делает эти датчики идеально подходящими для промышленных, аэрокосмических и других приложений, требующих высокоточных измерений.Преобразователи тока с нулевым потоком измеряют ток с гальванической развязкой. Они снижают токи высокого напряжения до гораздо более низкого уровня, который может легко считываться любой измерительной системой.

Типовой датчик нулевого потока / FluxGate

Они имеют две обмотки, которые работают в режиме насыщения для измерения постоянного тока, одну обмотку для переменного тока и дополнительную обмотку для компенсации. Этот вид измерения тока очень точен благодаря компенсации нулевого потока.Почему? Обычно магнитопровод сохраняет остаточный магнитный поток, что снижает точность измерения. Однако в преобразователях с нулевым потоком этот паразитный поток компенсируется.

Преобразователи нулевого потока идеальны при высокой точности переменного / постоянного тока и / или широкой полосе пропускания (до 1 МГц). Они очень линейны и имеют низкую фазовую ошибку и ошибку смещения. Но они не так удобны для выполнения более простых измерений, которые не требуют такой высокой точности или полосы пропускания. Для этих приложений рекомендуются датчики тока, указанные в предыдущих разделах.

Технология

Flux расширяет этот принцип за счет использования магнитной катушки в качестве элемента обнаружения вместо элемента Холла. Кроме того, это датчик с обратной связью, что означает, что вторичная обмотка используется для устранения смещений, которые могут привести к неточностям измерения. Датчики потока могут обрабатывать даже очень сложные формы сигналов переменного и постоянного тока и, как правило, считаются обеспечивающими превосходную точность, линейность и полосу пропускания и являются неотъемлемой частью любого анализатора качества электроэнергии или анализатора мощности.

Токовые клещи Dewesoft FluxGate

Dewesoft предлагает несколько токовых клещей FluxGate, которые были соединены с нашими системами SIRIUS, включая соединительные и силовые кабели.Эти зажимы FluxGate должны получать питание от блока питания SIRIUSi-PWR-MCTS2.

DS-ЗАЖИМ-200DC DS-ЗАЖИМ-500DC DS-ЗАЖИМ-500DCS DS-ЗАЖИМ-1000DS
Тип Датчик магнитного клапана Датчик магнитного клапана Датчик магнитного клапана Датчик магнитного клапана
Диапазон 200 А постоянного или переменного тока, среднеквадратичное значение 500 А постоянного или переменного тока, среднеквадратичное значение 500 А постоянного или переменного тока, среднеквадратичное значение 1000 А постоянного или переменного тока, среднеквадратичное значение
Ширина бренда от 0 до 500 кГц от 0 до 100 кГц от 0 до 200 кГц от 0 до 20 кГц
Точность ± 0.3% от показания ± 40 мА ± 0,3% от показания ± 100 мА ± 0,3% от показания ± 100 мА ± 0,3% от показания ± 200 мА
Чувствительность ± 10 мВ / А ± 4 мВ / А ± 4 мВ / А ± 2 мВ / А
Разрешение ± 1 мА ± 1 мА ± 1 мА ± 1 мА
Возможность перегрузки 500 А (1мин) 1000 А постоянный ток 720 А постоянный ток 1700 А постоянный ток
TEDS Полностью поддерживается Полностью поддерживается Полностью поддерживается Полностью поддерживается
Размеры 153 мм x 67 мм x 25 мм
(отверстие зажима d = 20 мм)
116 мм x 38 мм x 36 мм
(отверстие под зажим d = 50 мм)
153 мм x 67 мм x 25 мм
(отверстие зажима d = 20 мм)
238 мм x 114 мм x 35 мм
(отверстие зажима d = 50 мм)

Подробные характеристики датчиков тока Dewesoft.

Трансформаторы тока с нулевым потоком Dewesoft

Dewesoft предлагает несколько трансформаторов тока с нулевым потоком, которые были соединены с нашими системами SIRIUS DAQ, включая соединительные и силовые кабели. Эти датчики должны работать с блоками питания SIRIUSi-PWR-MCTS2 или SIRIUSir-PWR-MCTS2.

ИТ-60-С Т-200-С ИТ-400-С IT-700-S IT-1000-S ИН-1000-С ИН-2000-С
Диапазон первичного тока DC
RMS Синус
60 А 200 А 400 А 700 А 1000 А 1000 А 2000 А
Кратковременная перегрузочная способность (100 мс) 300 Apk 1000 Apk 2000 Apk 3500 Apk 4000 Apk 5000 Apk 10000 Apk
Макс.нагрузочный резистор (100% Ip) 10 Ом 10 Ом 2,5 Ом 2,5 Ом 2,5 Ом 4 Ом 3,5 Ом
di / dt (точное следование) 25 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс 100 А / мкс
Влияние температуры <2.5 частей на миллион / K <2 частей на миллион / K <1 частей на миллион / K <1 частей на миллион / K <1 частей на миллион / K <0,3 частей на миллион / K <0,1 частей на миллион / к
Коэффициент выхода 100 мА при 60 А 200 мА в 200 А 200 мА при 400 А 400 мА в 200 А 1 А при 1000 А 666 мА при 1000 А 1A при 2000 A
Пропускная способность (0,5% от Ip) DC… 800 кГц DC … 500 кГц DC … 500 кГц DC … 250 кГц DC … 500 кГц DC … 440 кГц DC … 140 кГц
Линейность <0,002% <0,001% <0,001% <0,001% <0,001% <0,003% <0,003%
Смещение <0,025% 0.008% <0,004% <0,005% <0,005% <0,0012% <0,0012%
Влияние частоты 0,04% / кГц 0,06% / кГц 0,06% / кГц 0,12% / кГц 0,06% / кГц 0,1% / кГц 0,1% / кГц
Угловая точность <0,025 ° + 0,06 ° / кГц <0,025 ° + 0.05 ° / кГц <0,025 ° + 0,09 ° / кГц <0,025 ° + 0,18 ° / кГц <0,025 ° + 0,09 ° / кГц <0,01 ° + 0,05 ° / кГц <0,01 ° + 0,075 ° / кГц

Номинальное среднеквадратичное напряжение изоляции, одинарная изоляция
CAT III, степень загрязнения. 2
Стандарты IEC 61010-1
Стандарты EN 50178

2000 В
1000 В
2000 В
1000 В
2000 В
1000 В
1600 В
1000 В
300 В
300 В
Х Х
Испытательное напряжение 50/60 Гц, 1 мин 5.4 кВ 5,4 кВ 5,4 кВ 4,6 кВ 3,1 кВ 4,2 кВ 6 кВ
Внутренний диаметр 26 мм 26 мм 26 мм 30 мм 30 мм 38 мм 70 мм
Шунт DEWESoft® 5 Ом 5 Ом 2 Ом 2 Ом 1 Ом 1 Ом 1 Ом

Подробные характеристики датчиков тока Dewesoft.

Изоляция и фильтрация

Изоляция и фильтрация – важные аспекты любого прибора для сбора данных или испытательной системы.

Изоляция

Изоляция особенно важна при прямых измерениях цепи, т. Е. При использовании шунтирующего метода. Изоляция, встроенная практически во все формирователи сигналов и предусилители Dewesoft, достаточно высока и достаточна для надлежащей изоляции измерительной системы от тестируемого объекта.

Это обеспечивает целостность ваших измерений и защищает от коротких замыканий.Кроме того, он позволяет размещать шунт на стороне низкого или высокого уровня цепи большую часть времени, обеспечивая дополнительную гибкость. Измерения шунта на стороне низкого напряжения обычно предпочтительны, потому что относительно небольшое падение тока на шунте означает, что на формирователь сигнала подается выход с высоким импедансом. Но у измерения нижней стороны есть два недостатка:

.
  • Шунт не обнаружит неисправность, если резистор замкнут на массу
  • Шунты на стороне низкого давления не подходят для измерения нескольких нагрузок или тех, которые выключаются и включаются независимо.

Следовательно, иногда требуется измерение тока шунта на стороне высокого давления с использованием дифференциальных и изолированных предварительных усилителей Dewesoft.

Фильтрация

Фильтрация – еще одна важная функция любой высокопроизводительной системы сбора данных. Электрические шумы и помехи – повседневная проблема для инженеров-испытателей. Это может быть вызвано люминесцентными лампами, другим электрическим оборудованием и бесчисленным множеством других источников.

Формирователи сигналов Dewesoft обеспечивают мощную аппаратную фильтрацию нижних частот, которая позволяет инженерам подавлять частоты выше определенного уровня.А в программном обеспечении DEWESoft доступна широкая палитра низкочастотной, высокочастотной, полосовой и полосовой фильтрации – и их можно применять в реальном времени или после того, как измерение будет выполнено.

Как измерить электрический ток, Руководство по измерению постоянного электрического тока

Введение: сантехника аналогия Возможно, вы слышали это раньше. Электричество и сантехника аналогична. В одном случае у вас есть электроны, текущие по проводу, и в другом случае вода течет по трубе.То, что делает воду движение в трубе происходит под давлением. То, что заставляет электроны двигаться в проводе, – это Напряжение. Количество воды, перемещаемой по трубе, измеряется в галлонах. Номер электронов, или количество заряда, перемещаемого по проводу, измеряется в кулонов (кулон – это фиксированное количество электронов, например дюжина, но больше).

Вот таблица, показывающая аналогию

Concept Сантехника Электричество Комментарии
Движущая «сила» Давление Напряжение
Кол-во галлонов Кулоны 6.24 x 10 18 электронов на кулон
Расход галлонов в минуту Амперы 1 ампер – это один кулон в секунду

Сантехнический вариант основной схемы Электрический вариант основной схемы

Теперь вопрос в том, как измерить скорость течь, или ток по одному из путей?

Давление или напряжение относительно легкий.В сантехническом случае вы просто просверливаете отверстие в трубе и добавляете давление измерять. В электрическом корпусе вы подключаете вольтметр между точкой интерес и почва.

Для измерения давления просто просверлите отверстие
в трубка и ввинтить манометр
Измерение напряжения в любой точке цепи

Для измерения расхода в трубе необходимо отрезать трубу и вставьте расходомер.Чтобы измерить силу тока, вам нужно отрезать схему и установить амперметр

Расходомеры необходимо вставить в поток
путем обрезки труба.
Амперметры также должны быть вставлены в поток
ток обрезанием цепи

Как фактически измеряется сила тока


Есть два свойства движущихся зарядов, которые полезны для измерения тока
  1. Электрический ток, протекающий через сопротивление, приводит к падение напряжения по закону Ома
  2. Электрический ток всегда будет связан с магнитным поле.

Давайте сначала посмотрим на использование закона Ома. Предполагая, что напряжение легко измерить, вам нужно ввести известное фиксированное сопротивление в схема. Тогда напряжение, измеренное на резисторе, пропорционально ток, протекающий через него. Для правильного измерения резистор должен быть точный по значению и стабильный (сопротивление не меняется в зависимости от температуры, давления, освещение и т. д.) И чтобы не нарушать цепь слишком сильно он также должен быть невысоким по стоимости.Этот резистор часто ошибочно называют шунтируют резистор , но лучше называть его резистором смысла . Согласно закону Ома V = I · R, если сопротивление резистора 1 Ом, то напряжение на нем будет 1 вольт на ампер. Вот практическое использование этого техника.


Вот практическое применение измерения тока. Это Применяется к проектированию источников питания:

Здесь инженер пытается управлять силовой цепью.Q1 возбуждает импульсами трансформатор Т, но ему нужно знать, сколько во время импульса через транзистор протекает ток. Он использует резистор R8, который составляет всего 0,03 Ом в качестве резистора считывания. Для каждого усилителя, протекающего через резистор 0,03 В или 30 мВ появляется на нем, что определяется датчиком вход контроллера ШИМ, контакт 15. Контроллер ШИМ использует эти данные для контролировать ток, напряжение или выходную мощность источника питания в зависимости от остальная часть схемы.

Одним из первых способов обнаружения электрического тока был несколько витков проволоки вокруг компаса. Д’Арсенваль расширил эту идею, чтобы устройство измерения силы тока (амперметр) путем помещения катушки внутрь магнитных полюсов с подшипниками и пружинами спуска часов. Так аналоговые измерители работа сегодня.

Другой способ использования магнитное поле – зажимом на амперметре постоянного тока. Они используют эффект Холла, чтобы Измерьте очень слабые магнитные поля, создаваемые электричеством в проводе.Эти относительно недавние изобретения, и они чрезвычайно удобны, так как в этом случае вы не нужно обрезать провод, чтобы вставить традиционный амперметр.

Как измерить ток цепи с помощью шунтирующего резистора

В последние годы возросла потребность в многофункциональных электронных схемах, повышающих безопасность, в которых используется измерение тока. Мы представим метод определения тока с помощью шунтирующего резистора и фактически запустим схему определения тока, чтобы увидеть, как она себя ведет.

Содержание

‧ Измерьте ток для безопасного прохождения цепи
‧ Основы схем обнаружения тока и шунтирующего сопротивления
‧ Подключение шунтирующих резисторов к схемам дифференциального усилителя
‧ Изготовление схемы обнаружения тока и ее измерение
‧ Наблюдение за током с помощью осциллографа
‧ Повышение точности и детектирования тока за счет изменения сопротивления шунта
‧ Резюме

Измерьте ток для безопасной работы цепи

Растет потребность в многофункциональных устройствах и усовершенствованиях безопасности, в которых используются измерения тока для устройств, оснащенных более новыми электронными схемами.
Например, схема мониторинга для обнаружения перегрузки по току и ненормальной работы цепи и ее безопасного останова, функция зарядки аккумулятора и измерения емкости аккумулятора, а также мониторинг тока также важны для управления двигателем, поэтому мониторинг тока стал незаменимой технологией. в современной схемотехнике.
Мы представим метод определения тока и фактически запустим схему обнаружения тока, чтобы увидеть, как она себя ведет.
Основы схем обнаружения тока и шунтирующего сопротивления

Чип-резистор со сверхнизким сопротивлением для определения тока (PMR)

Чип-резистор со сверхнизким сопротивлением

для определения тока / электрод длинной стороны (PML

Вы можете подумать, что схемы обнаружения тока сложны, но сам принцип представляет собой простую схему, в которой используется «закон Ома», который, можно сказать, лежит в основе электронных схем.Резистор для определения тока вставляется последовательно, и падение напряжения на резисторе преобразуется в значение тока с использованием закона Ома для определения тока.
Резистор, используемый для определения тока, называется «шунтирующим резистором».
Шунтирующий резистор – это электронный компонент, используемый для измерения и определения тока. Значения сопротивления варьируются от 100 мкОм до нескольких 100 мОм, при этом наиболее часто используемое значение сопротивления составляет от нескольких мОм до нескольких сотен мОм. В идеале вы должны использовать шунтирующий резистор с минимально возможным сопротивлением, но на самом деле вы должны выбирать его в соответствии с коэффициентом усиления операционного усилителя и измеряемым значением тока.
Особенно при низком сопротивлении величина падения напряжения мала, и микроконтроллеру трудно обнаружить напряжение, поэтому для обнаружения тока используйте высокоточный операционный усилитель с небольшим входным напряжением смещения.
Метод определения тока, использующий шунтирующий резистор и операционный усилитель, называется «усилителем считывания тока».

Между прочим, шунт шунтирующего резистора означает «Шунт: избегать / уезжать». Первоначально это означало, что резистор был вставлен параллельно, чтобы расширить диапазон измерения аналогового амперметра.В последнее время сам чип-резистор для определения тока был назван шунтирующим резистором. Даже если использование со временем меняется, имя обычно остается прежним.

Подключение шунтирующих резисторов к цепям дифференциального усилителя

В принципе, схема определения тока с использованием шунтирующего резистора представляет собой простую схему, которая измеряет только напряжение. Однако, поскольку падение напряжения на шунтирующем резисторе невелико, необходимо создать схему, которая может усилить напряжение с высокой точностью.Поэтому используется схема дифференциального усилителя, в которой используется операционный усилитель.

Для операционных усилителей, используемых для определения тока, используйте высокоточный операционный усилитель с низким входным напряжением смещения. Поскольку напряжение смещения вызывает ошибки измерения при обнаружении малых напряжений, используйте «высокоточный операционный усилитель» с минимально возможным напряжением смещения или «усилитель смещения нуля», который автоматически регулирует входное напряжение смещения.

Обнаружение текущего значения цепи с помощью цепи обнаружения тока

Давайте на самом деле создадим схему обнаружения тока, используя шунтирующий резистор и операционный усилитель, и проверим, как этот ток обнаруживается.Схема обнаружения тока выглядит следующим образом.

Это цепь обнаружения тока, которую необходимо изготовить. Схема дифференциального усилителя определяет напряжение шунтирующего резистора, затем усиливает его до сигнала напряжения, который в 15 раз выше, и выдает его.

В качестве шунтирующего резистора используется микросхема 62 МОм. Максимальное значение тока, которое можно измерить, определяется потребляемой мощностью чип-резистора. В настоящее время мы используем продукт мощностью 1 Вт, поэтому он становится W = I2R, 1 Вт ≒ 4 А × 4 А × 62 мОм, и было подсчитано, что ток может протекать до 4 А.

Серия ЛРТ18 резистора обломока обнаружения тока

РОХМ, резистор обломока 62мОм 1Вт

Если степень усиления для измерения тока слишком велика, она превысит рабочее напряжение операционного усилителя, поэтому отрегулируйте степень усиления с учетом максимального тока. Поскольку на этот раз степень усиления установлена ​​в 15 раз, на выходе операционного усилителя будет 3 В, когда протекает максимальный ток шунтирующего сопротивления 4 А.

Операционный усилитель ROHM LMR1802G-LB.Усилитель датчика с низким уровнем шума, низким входным напряжением смещения и низким входным током смещения.

ROHM использует в качестве операционного усилителя самый малошумящий в отрасли операционный усилитель EMARMOUR «LMR1802G-LB». Этот операционный усилитель имеет небольшое входное напряжение смещения 5 мкВ (тип.), И он используется для измерительных устройств.

Операционный усилитель и шунтирующий резистор на универсальной плате. Поскольку он экспериментально установлен на универсальной плате, его просто паять, но в реальной схеме проектирования соответствующий рисунок выполняется на основе таблицы данных сопротивления шунта.

Поскольку ток измеряется шунтирующим резистором, давайте рассмотрим, как определять токи с помощью простой схемы, подключенной к универсальной плате.

Измерьте напряжение осциллографом и наблюдайте за движением тока

Подключите нагрузку к завершенной цепи обнаружения тока и наблюдайте за измеренной формой волны. Подключите щеточный двигатель постоянного тока к нагрузке. Если ток можно легко обнаружить, должна быть возможность измерить форму волны тока, при которой катушка двигателя переключается, а также состояние изменения при приложении нагрузки к вращению.

Шунтирующий резистор включен последовательно с двигателем и источником питания. Мотор работает от 5В.

Ток холостого хода двигателя 0,32 А. Эффективное значение сигнала на выходе операционного усилителя составляет 202 мВ, что определяется как 0,3 А. Полоса пропускания осциллографа и пробника составляет 50 МГц.

Когда вы вращаете двигатель, вы можете видеть, что ток изменяется в соответствии с переключением коммутатора. Когда нагрузка увеличивается до остановки вращения, изменение значения тока, обнаруживаемого шунтирующим резистором, также изменяется как сигнал напряжения.

Если вы подключите выход обнаружения тока операционного усилителя к плате микроконтроллера, такой как Arduino, вы сможете определять ток двигателя в реальном времени, что позволяет обнаруживать отклонения, такие как блокировка двигателя и короткое замыкание слоя катушки.
При обнаружении тока могут быть добавлены различные функции, такие как защита корпуса двигателя / цепи привода от перегрузки двигателя, а также обнаружение блокировки двигателя.

Повышение точности и детектирования тока за счет изменения сопротивления шунта

Когда вы фактически используете схему обнаружения тока в качестве защиты цепи, выберите продукт с низким сопротивлением и большим током, который не превышает максимальную мощность шунтирующего резистора.
Мы используем чип-резистор общего назначения, а что касается высокопроизводительных шунтирующих резисторов, также доступны высокомощные типы, которые могут работать с высокой мощностью до 5 Вт, и высокоточные шунтирующие резисторы со сверхнизким сопротивлением 0,1 мОм. Вы можете выбрать один из множества шунтирующих резисторов в соответствии с вашими потребностями.

Ссылка: Чип-резистор для определения тока (шунтирующий резистор) | ROHM
https://www.rohm.co.jp/products/resistors/current-detection-resistors/information

Сводка

Этот метод определения тока с помощью шунтирующего резистора и операционного усилителя широко используется, поскольку он недорогой, высокоточный и простой в использовании.Однако, если добавляется резистор и это отрицательно влияет на схему, он также имеет явный недостаток: его нельзя использовать для высоких нагрузок, когда потери мощности шунтирующего резистора велики.
В принципе, потери могут быть уменьшены за счет уменьшения значения сопротивления шунтирующего резистора, поскольку падение напряжения шунтирующего резистора также уменьшается и становится труднее обнаруживать незначительные напряжения, поэтому существует компромисс между маленьким шунтом резистор и точность обнаружения.
В частности, обнаружение тока, которое используется для управления бесщеточными двигателями и преобразователями постоянного тока постоянного тока и обнаружения оставшегося заряда батареи, требует как больших токов, так и высокой точности обнаружения.Следовательно, требуется не только низкое сопротивление шунта, но и высокоточный операционный усилитель.
При фактическом обнаружении токов с помощью шунтирующего резистора учитывайте максимальный ток и приложение нагрузки, которую вы хотите обнаружить. Это означает, что вам нужно принять максимальный ток и спрогнозировать, какую точность и потери можно допустить. По сути, вам нужно подумать о стоимости, когда вы приступите к проектированию схем и выбору компонентов.

При использовании обнаружения тока для защиты следует помнить, что, поскольку сама цепь обнаружения тока обнаруживает только ток, необходимо добавить функции для защиты и управления.Например, необходимо добавить реле или выключатель нагрузки, чтобы его можно было отключить, при этом вам также нужно будет выбрать программу или схему для его работы и при каких условиях будут выполняться защитные операции.
Если установлена ​​цепь обнаружения тока, схема и управление усложняются, и порог немного поднимается, но это незаменимая схема для повышения безопасности и увеличения количества электронных комплектов.

Как осциллограф может измерить ток?

Большинство осциллографов напрямую измеряют только напряжение, а не ток, однако есть несколько способов измерить ток с помощью осциллографа:

1.Измерьте падение напряжения на шунтирующем резисторе – в конструкции некоторых источников питания могут быть встроены шунтирующие резисторы для обратной связи. Один из способов – измерить падение дифференциального напряжения на таком резисторе. Обычно это резисторы небольшого номинала, часто менее 1 Ом.

2. Измерение тока с помощью токового пробника – При использовании в сочетании с возможностями измерения напряжения осциллографа, токовые пробники могут обеспечивать широкий спектр важных измерений мощности, таких как мгновенная мощность, средняя мощность и фаза.

Чтобы ваши текущие измерения были максимально точными, необходимо выбрать и правильно применить наиболее подходящую технику. У каждого из двух вышеперечисленных методов есть свои преимущества и недостатки, которые мы рассмотрим ниже:

Измерение тока как падения напряжения на шунтирующем резисторе

Если в блоке питания встроен резистор считывания тока («шунтирующий» резистор), это наиболее удобный подход. Измерение падения напряжения на измерительном резисторе с помощью активного дифференциального пробника даст хорошие результаты, если синфазный сигнал находится в пределах указанного рабочего диапазона пробника, а падение напряжения достаточно велико.

Однако использование дифференциального пробника для сигналов низкого уровня требует некоторого внимания к снижению шума в системе измерения.

  • Используйте наименьшее доступное затухание пробника и ограничьте полосу пропускания пробника или осциллографа
    для уменьшения шума системы измерения.
  • Кроме того, имейте в виду, что емкость и сопротивление зонда будут подключены параллельно
    с резистором считывания, и хотя они предназначены для минимизации воздействия на
    тестируемое устройство, вы должны знать, что они существуют.


Подключение сенсорного резистора последовательно с нагрузкой требует тщательного проектирования. Когда значение сопротивления
увеличивается, падение напряжения на ампер увеличивается в соответствии с законом
Ома, таким образом улучшая качество измерения тока. Однако рассеиваемая мощность в резисторе увеличивается пропорционально квадрату тока, и необходимо учитывать дополнительное падение напряжения. Кроме того, резисторы добавляют цепи индуктивное сопротивление.И не забывайте, что входная емкость дифференциального пробника появляется параллельно измерительному резистору, образуя RC-фильтр.

Если вы добавляете в схему резистор считывания, попробуйте добавить его как можно ближе к земле, чтобы минимизировать синфазные сигналы на резисторе, которые измерительная система должна отклонять. И, в отличие от высокопроизводительных токовых пробников, характеристика подавления синфазного сигнала при измерениях дифференциального напряжения имеет тенденцию к падению по частоте, что снижает точность измерений высокочастотного тока с помощью измерительных резисторов.

Измерение тока с помощью токоизмерительного щупа

Ток, протекающий через проводник, вызывает формирование поля электромагнитного потока вокруг проводника
. Токовые пробники предназначены для определения силы этого поля и преобразования ее в соответствующее напряжение
для измерения с помощью осциллографа.

Это позволяет просматривать и анализировать формы сигналов тока с помощью осциллографа. При использовании в
в сочетании с возможностями измерения напряжения осциллографом, токовые пробники
также позволяют выполнять широкий спектр измерений мощности.В зависимости от математических возможностей осциллографа формы сигнала
, эти измерения могут включать в себя мгновенную мощность
, истинную мощность, полную мощность и фазу.

Существует два основных типа токовых пробников для осциллографов:

  • Пробники переменного тока
  • Датчики постоянного / переменного тока


Оба типа используют принцип действия трансформатора для измерения переменного тока (AC) в проводнике
. Для работы трансформатора через проводник должен протекать переменный ток.

Этот переменный ток заставляет магнитное поле нарастать и коллапсировать в соответствии с амплитудой и направлением тока. Когда чувствительная катушка помещается в это магнитное поле, изменяющееся магнитное поле индуцирует пропорциональное напряжение на катушке посредством простого действия трансформатора. Этот связанный с током сигнал напряжения затем преобразуется и может отображаться на осциллографе в виде масштабированного по току сигнала.

Простейшие пробники переменного тока представляют собой пассивные устройства, которые представляют собой просто катушку, которая
намотана в соответствии с точными характеристиками на магнитный сердечник, например, из ферритового материала.Некоторые из них представляют собой твердотельные тороиды
и требуют, чтобы пользователь проложил проводник через сердечник. В токовых пробниках с разъемным сердечником используется точно спроектированная механическая система, которая позволяет открывать сердечник и зажимать его вокруг проводника без разрыва цепи при испытании. Пробники тока с разъемным сердечником обладают высокой чувствительностью и работают без питания, но являются механически жесткими и обычно имеют небольшую апертуру, что может ограничивать их универсальность.

Пробники переменного тока

, основанные на технологии катушки Роговского, являются альтернативой пробникам с твердым сердечником и пробникам с разъемным сердечником
.Катушка Роговского использует воздушный сердечник и является механически гибкой,
позволяет открывать катушку и наматывать ее на провод или вывод компонента. И поскольку сердечник не является магнитным материалом, катушки Роговского не насыщаются магнитным полем при высоких уровнях тока, даже в тысячи ампер. Однако они, как правило, имеют более низкую чувствительность, чем пробники с разъемным сердечником, и для них требуются активные формирователи сигнала для интеграции сигнала с катушки и, следовательно, требуется источник питания.

Для многих применений преобразования энергии пробник переменного / постоянного тока с разъемным сердечником является наиболее универсальным, точным и простым в использовании решением.В датчиках переменного / постоянного тока используется трансформатор для измерения переменного тока и устройство на эффекте Холла для измерения постоянного тока. Поскольку они включают в себя активную электронику для поддержки датчика Холла, для работы зондов переменного / постоянного тока требуется источник питания. Этот источник питания может быть отдельным источником питания или может быть интегрирован в некоторые осциллографы.

Видеообзор того, как измерить ток осциллографом:

Ознакомьтесь с продуктами Tektronix на RS:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *