Содержание

Обозначение резисторов на схемах – Основы электроники

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°)

.

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Типы резисторов

Слово «резистор» произошло от латинского « resisto », что значит сопротивляюсь. Резисторы относятся к наиболее распространенным деталям радиоэлектронной аппаратуры.

Основным параметром резисторов является их номинальное сопротивление, измеряемое в Омах ( Ом ), килоомах ( кОм ) или мегаомах ( МОм ). Номинальные значения сопротивлений указываются на корпусе резисторов, однако действительная величина сопротивления может отличаться от номинального значения. Эти, отклонения устанавливаются стандартом в соответствии с классом точности, определяющим величину погрешности.

Постоянные резисторы

Широко используются три класса точности допускающие отклонение сопротивления от номинального значения:

  • I класс – на ± 5 %
  • II класс – на ± 10 %
  • III класс – на ± 20 %

Существует так же так называемые прецизионные резисторы, они выпускаются с допусками:

  • ± 2 %
  • ± 1 %
  • + 0,2 %
  • ± 0,1 %
  • ± 0,5 %
  • ± 0,02 %
  • ± 0,01 %

Помимо сопротивления резисторы характеризуются предельным рабочим напряжением, температурным коэффициентом сопротивления и номинальной мощностью рассеяния.

Предельным рабочим напряжением называют максимально допустимое напряжение, приложенное к выводам резистора, при котором он надежно работает. Температурный коэффициент сопротивления ( ТКС ) отражает относительное изменение величины сопротивления резистора при колебании температуры окружающей среды на 1 °С . В зависимости от материала, из которого изготовлен резистор, его сопротивление с увеличением температуры может возрастать либо уменьшаться. В первом случае ТКС оказывается положительным, а во втором – отрицательным.

Если на резисторе выделяется большая мощность, чем предусмотрено, его температура будет повышаться, и он даже может перегореть. В большинстве устройств РЭА применяются резисторы с номинальной мощностью рассеяния от 0,125 до 2 Вт.

Номинальное значение сопротивления и допускаемое отклонение указываются на

резисторе с помощью специальных буквенных обозначений:

  • Е (К) – от 1 до 99 Ом
  • К – от 0,1 до 99 кОм
  • М – от 0,1 до 99 МОм

Пример обозначений номинальных сопротивлений резисторов:

  • 27Е27 Ом
  • 4Е74,7 Ом
  • К680680 Ом
  • 1К51,5 кОм
  • 43К43 кОм
  • 2М42,4 МОм
  • 3 МОм

Различают два основных вида резисторов: нерегулируемые ( постоянные ) и регулируемые ( переменные и подстроечные ).

Особую группу составляют полупроводниковые резисторы.

Постоянные резисторы

Постоянные резисторы могут быть проволочными и непроволочными. Проволочные резисторы представляют собой цилиндрическое тело, на которое наматывается проволока из металла, обладающего большим удельным сопротивлением. Первыми элементами обозначения таких резисторов являются буквы:

  • ПЭ
  • ПЭВ
  • ПЭВ-Р
  • ПЭВТ

Из наиболее широко применяемых непроволочных резисторов можно назвать углеродистые, типа:

Металлизированные резисторы, лакированные эмалью, теплостойкие:

  • МЛТ
  • ОМЛТ
  • МТ
  • МТЕ

Композиционные резисторы, с стеклянным основанием, на которое наносится токопроводящий материал-смесь нескольких веществ:

На электрических схемах постоянные резисторы, независимо от их типа, изображаются в виде прямоугольников, выводы от концов резисторов – линиями, проведенными от середин меньших сторон.

Допустимая рассеиваемая мощность резистора указывается внутри прямоугольника. Рядом с условным графическим обозначением наносят латинскую букву R, после которой следует порядковый номер резистора, согласно принципиальной схеме, а также номинальное его сопротивление.

Обозначение постоянного резистора

Для сопротивления от 0 до 999 Ом единицу измерения не указывают, для сопротивления от 1 кОм до 999 и от 1 МОм и выше к числовому его значению добавляют обозначения единиц измерения.

Сопротивление резистора ориентировочное

 

 

Если величина сопротивления резистора на схеме указана ориентировочно и в процессе настройки может быть изменена, к условному обозначению резистора добавляется звездочка

*.

При необходимости подчеркнуть, что данный резистор должен обязательно быть проволочным, рядом с символом R делается надпись « пров ».

Переменные резисторы

Регулируемые, или переменные резисторы являются радиоэлементами, сопротивления которых можно изменять от нуля до номинальной величины. Как и постоянные, регулируемые резисторы могут быть проволочными и непроволочными.

Регулируемый резистор без отводов

Регулируемый непроволочный резистор представляет собой токопроводящее покрытие, нанесенное на диэлектрическую пластинку в виде дуги, по которому перемещается пружинящий контакт (движок), скрепленный с осью. От этого контакта и от краев токопроводящего покрытия сделаны выводы.

Функциональная характеристика переменного резистора

По виду зависимости сопротивления между начальным выводом от токопроводящей части и движком от угла поворота оси различают резисторы типов:

  • А – линейная зависимость
  • Б – логарифмическая
  • В – показательная зависимость

Регулируемый резистор с двумя дополнительными отводами

Сдвоенный переменный резистор

Двойной переменный резистор

Регулируемый резистор с выключателем

Подстроечные резисторы

Разновидностью регулируемых резисторов являются подстроечные резисторы, которые не имеют выступающей оси, скрепленной с движком. Изменять положение движка и, следовательно, сопротивление между ним и одним из концов токопроводящего слоя в подстроечном резисторе можно только с помощью отвертки.

Подстроечные резисторы

Терморезисторы

Терморезистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого возрастает при уменьшении температуры и понижается при ее увеличении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов отрицательный.

Позистор – полупроводниковый резистор, включаемый в электрическую цепь, сопротивление которого увеличивается при увеличении температуры и уменьшается при ее уменьшении. Температурный коэффициент сопротивления ( ТКС ) таких резисторов положительный.

Терморезисторы (термисторы)

Условное графическое обозначение варисторов

 

 

Варисторами – называют полупроводниковые резисторы, в которых используется свойство уменьшения сопротивления полупроводникового материала при увеличении приложенного напряжения.

Система обозначений варисторов включает буквы

СН (сопротивление нелинейное) и цифры.

Первая из цифр обозначает материал

  • 1 – карбид кремния
  • 2 – селен

Вторая цифра – конструкцию

  • 1,8 – стержневая
  • 2, 10 – дисковая
  • 3 – микромодульная

Третья цифра – порядковый номер разработки. Последним элементом обозначения также является число. Оно указывает на классификационное напряжение в вольтах, например – СН-1-2-1-100.

Варисторы применяют для защиты от перенапряжений контактов, приборов и элементов радиоэлектронных устройств, высоковольтных линий и линий связи, для стабилизации и регулирования электрических величин и т. д.

Фоторезисторы

Фоторезисторами – называют полупроводниковые резисторы, сопротивление которых изменяется от светового или проникающего электромагнитного излучения. Более широко используются фоторезисторы с положительным фотоэффектом. Их сопротивление уменьшается при освещении или облучении электромагнитными волнами.

Условное графическое обозначение фоторезисторов

 

Благодаря высокой чувствительности, простоте конструкции, малым габаритам фоторезисторы применяются в фотореле различного назначения, счетчиках изделий в промышленности, системах контроля размеров и формы деталей, устройствах регулирования различных величин, телеуправлении и телеконтроле, датчиках различных величин и др.

Система обозначений фоторезисторов ранних выпусков содержит три буквы и цифру. Первые две буквы – ФС (фотосопротивление), за ними следует буква, обозначающая материал светочувствительного элемента:

  • А – сернистый свинец
  • К – сернистый кадмий
  • Д – селенистый кадмий

Затем идет цифра, указывающая на вид конструкции, например: ФСК-1.

В новой системе обозначений первые две буквы СФ (сопротивление фоточувствительное). Следующая за ними цифра указывает на материал чувствительного элемента, а последняя цифра означает порядковый номер разработки, например: СФ2-1.

ГОСТ 2.728-74 ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.728-74

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
РЕЗИСТОРЫ
, КОНДЕНСАТОРЫ

Unified system for design documentation.
Graphical symbols in diagrams.
Resistors, capacitors

ГОСТ
2.728-74*
(CT СЭВ 863-78 и
СТ СЭВ 864-78)

Взамен
ГОСТ 2.728-68,
ГОСТ 2.729-68
в части п. 12 и
ГОСТ 2.747-68
в части подпунктов 24, 25 таблицы

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 марта 1974 г. № 692 срок введения установлен

с 1975-07-01

1. Настоящий стандарт устанавливает условные графические обозначения (обозначения) резисторов и конденсаторов на схемах, выполняемых вручную или автоматизированным способом во всех отраслях промышленности.

Стандарт полностью соответствует СТ СЭВ 863-78 и СТ СЭВ 864-78.

2. Обозначения резисторов общего применения приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. Резистор постоянный

Примечание . Если необходимо указать величину номинальной мощности рассеяния резисторов, то для диапазона от 0,05 до 5 В допускается использовать следующие обозначения резисторов, номинальная мощность рассеяния которых равна:

0,05 В

0,125 В

0,25 В

0,5 В

1 В

2 В

5 В

2. Резистор постоянный с дополнительными отводами:

а) синим симметричным

б) одним несимметричным

в) с двумя

Примечание. Если резистор имеет более двух дополнительных отводов, то допускается длинную сторону обозначения увеличивать, например, резистор с шестью дополнительными отводами

3. Шунт измерительный

Примечание. Линии, изображенные та продолжения коротких сторон прямоугольника, обозначают выводы для включения в измерительную цепь

4. Резистор переменный

Примечания :

1. Стрелка обозначает подвижный контакт

2. Неиспользуемый вывод допускается не изображать

3. Для переменного резистора в реостатном включении допускается попользовать следующие обозначения:

а) общее обозначение

б) с нелинейным регулированием

5. Резистор переменный с дополнительными отводами

6. Резистор переменный с несколькими подвижными контактами, например, с двумя:

а) механически не связанными

б) механически связанными

7. Резистор переменный сдвоенный

Примечание к пп. 4-7.

Если необходимо уточнить характер регулирования, то следует применять обозначения регулирования по ГОСТ 2. 71-74; например, резистор переменный:

а) с плавным регулированием

б) со ступенчатым регулированием

Для указания разомкнутой позиции используют обозначение, например, резистор с разомкнутой позицией и ступенчатым регулированием

в) с логарифмической характеристикой регулирования

г) с обратно логарифмической (экспоненциальной) характеристикой регулирования

д) регулируемый с помощью электродвигателя

8. Резистор переменный с замыкающим контактом, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Точка указывает положение подвижного контакта резистора, в котором происходят срабатывание замыкающего контакта. При этом замыкание происходит при движении от точки, а размыкание – при движении к точке.

2. При разнесенном способе замыкающий контакт следует изображать

3. Точку в обозначениях допускается не зачернять

9. Резистор подстроечный

Примечания :

1. Неиспользуемый вывод допускается не изображать

2. Для подстроечного резистора в реостатном включении допускается использовать следующее обозначение

10. Резистор переменный с подстройкой

Примечание . Приведенному обозначению соответствует следующая эквивалентная схема:

11. Тензорезистор:

а) линейный

б) нелинейный

12. Элемент нагревательный

13. Терморезистор:

а) прямого подогрева с положительным температурным коэффициентом

с отрицательным температурным коэффициентом

б) косвенного подогрева

14. Bap истор

(Измененная редакция, Изм. № 1, 2).

3. Обозначения функциональных потенциометров, предназначенных для генерирования нелинейных непериодических функций, приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Потенциометр функциональный однообмоточный (например, с профилированным каркасом)

Примечание. Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функции, например, потенциометр для генерирования квадратичной зависимости

2. Потенциометр функциональный однообмоточный с несколькими дополнительными отводами, например, с тремя

Примечания :

1. Линии, изображающие дополнительные отводы, должны делить длинную сторону обозначения на отрезки, приблизительно пропорциональные линейным (или угловым) размерам соответствующих участков потенциометра

2. Линия, изображающая подвижный контакт, должна занимать промежуточное положение относительно линий дополнительных отводов

3. Потенциометр функциональный многообмоточный, например, двухобмоточный, изображенный:

а) совмещенно

б) разнесенно

Примечание . Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образом, что все обмотки находятся на общем каркасе, а подвижный контакт электрически контактирует одновременно со всеми обмотками

4. Потенциометр функциональный многообмоточный, например, трехобмоточный с двумя дополнительными отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечание к пп. 3 и 4. При разнесенном изображении применяют следующие условности:

а) подвижный контакт следует показывать на обозначении каждой обмотки потенциометра;

б) линии механической связи между обозначениями подвижных контактов не изображают;

в) линию электрической связи, изображающую цепь подвижного контакта, допускается изображать только на одной из обмоток, например, двухобмоточный потенциометр с последовательно соединенными обмотками

Примечание . Обозначения, установленные в табл. 2, следует применять для потенциометров, у которых подвижный контакт перемещается между двумя фиксированными (начальным и конечным) положениями. При этом конструктивное пополнение потенциометра может быть любым: линейным, кольцевым или спиральным (многооборотные потенциометры).

4. Обозначения функциональных кольцевых замкнутых потенциометров, предназначенных для циклического генерирования нелинейных функций, приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Потенциометр функциональный кольцевой замкнутый однообмоточный (например, с профилированным каркасом) с одним подвижным контактом и двумя отводами

Примечание . Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функция. например, синусный потенциометр

2. Потенциометр функциональный кольцевой замкнутый однообмоточный с несколькими подвижными контактами, например, с тремя:

а) механически не связанными

б) механически связанными

3. Потенциометр функциональный кольцевой замкнутый однообмоточный с изолированным участком

Примечание . На изолированном участке электрический контакт между обмоткой и подвижным контактом отсутствует

4. Потенциометр функциональный кольцевой замкнутый однообмоточный с короткозамкнутым участком

Примечания .

1. На короткозамкнутом участке потенциометра сопротивление равно нулю.

2. Кольцевой сектор, соответствующий короткозамкнутому участку, допускается не зачернять

3. Потенциометр функциональный кольцевой замкнутый многообмоточный, например, двухобмоточный с двумя отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образам, что все обмотки находятся на общем каркасе, а подвижный контакт электрически -контактирует одновременно со всеми обмотками.

2. При разнесенном изображении действуют условности, установленные в примечании к п.п. 3 и 4 табл. 2

Примечание . Все угловые размеры в обозначениях (углы между линиями отводов, между подвижными механически связанными контактами, размеры и расположение секторов изолированных или короткозамкнутых участков) должны быть приблизительно равны соответствующим угловым размерам в конструкции потенциометров.

5. Обозначения конденсаторов приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Конденсатор постоянной емкости

Примечание . Для указания поляризованного конденсатора используют обозначение

1а. Конденсатор постоянной емкости с обозначенным внешним электродом

2. Конденсатор электролитический:

а) поляризованный

б) неполяризованный.

Примечание . Знак «+» допускается опускать, если это не приведет к неправильному чтению схемы

3. Конденсатор постоянной емкости с тремя выводами (двухсекционный), изображенный:

а) совмещенно

б) разнесенно

4. Конденсатор проходной

Примечание . Дуга обозначает наружную обкладку конденсатора (корпус)

Допускается использовать обозначение

5. Конденсатор опорный. Нижняя обкладка соединена с корпусом (шасси) прибора

6. Конденсатор с последовательным собственным резистором

7. Конденсатор в экранирующем корпусе:

а) с одной обкладкой, соединенной с корпусом

б) с выводом от корпуса

8. Конденсатор переменной емкости

9. Конденсатор переменной емкости многосекционный, например, трехсекционный

10. Конденсатор подстроечный

11. Конденсатор дифференциальный

11а. Конденсатор переменной емкости двухстаторный (в каждом положении подвижного электрода С=С)

Примечание к пп. 8 – 11а. Если необходимо указать подвижную обкладку (ротор), то ее следует изображать в виде дуги, например

12. Вариконд

13. Фазовращатель емкостный

14. Конденсатор широкополосный

16. Конденсатор помехоподавляющий

(Измененная редакция, Изм. № 1).

6. Условные графические обозначения резисторов и конденсаторов для схем, выполнение которых при помощи печатающих устройств ЭВМ установлено стандартами Единой системы конструкторской документации, приведены и табл. 5.

Таблица 5

Наименование

Обозначение

Отпечатанное обозначение

1. Резистор постоянный, изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

2. Конденсатор постоянной емкости, изображенный:

а) в горизонтальной цепи

б) в вертикальной цели

3. Конденсатор электролитический поляризованный изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

Примечание . Линии электрической связи - по ГОСТ 2.721.-74.

(Измененная редакция, Изм. № 2).

7. Размеры условных графических обозначений приведены и табл. 6.

Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Таблица 6

Наименование

Обозначение

1. Резистор постоянный

2. Резистор постоянный с дополнительными отводами:

а) одним

б) с двумя

3. Резистор переменный

4. Резистор переменный с двумя подвижными контактами

5. Резистор подстроечный

6. Потенциометр функциональный

7. Потенциометр функциональный кольцевой замкнутый:

а) однообмоточный

б) многообмоточный, например, двухобмоточный

8. Потенциометр функциональный кольцевой замкнутый с изолированным участком

9. Конденсатор постоянной емкости

10. Конденсатор электролитический

11. Конденсатор опорный

12. Конденсатор переменной емкости

13. Конденсатор проходной

Гост 2.

728-74 ескд. обозначения условные графические в схемах. резисторы, конденсаторы

Где и для чего применяется

Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.

Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.

Rогр=(Uпитания-U­требуемое)/Iноминальный

Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:

Uвых=Uвх(R2/R1+R2)

Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы по теме:

  • Как зависит сопротивление проводника от температуры
  • Маркировка резисторов по мощности и сопротивлению
  • Как выпаивать радиодетали из плат

Разновидности резисторов

Сегодня существует большое количество резисторов, которые встречаются в современных бытовых электроприборах. Можно выделить следующие виды:

  • Резистор металлический лакированный теплостойкий. Его можно встретить в ламповых приборах, которые имеют мощность не меньше чем 0,5 ватта. В советской аппаратуре можно отыскать такие резисторы, которые выпускали в начале 80-х годов. Они имеют разную мощность, которая напрямую зависит от размеров и габаритов радиоаппаратуры. Когда на схемах нет условного обозначения мощности, тогда разрешается использовать переменный резистор в 0,125 ватта.
  • Водостойкие резисторы. В большинстве случаев их находят в ламповых электроприборах, которые производились в 1960 году. В черно-белом телевизоре и радиолах обязательно встречаются эти элементы. Их маркировка очень похожа на обозначение металлических резисторов. В зависимости от номинальной мощности они могут иметь разные размеры и габариты.

Сегодня широко используется общепринятая маркировка резисторов, которые разделены на разные цвета. Таким образом, можно быстро и легко определить номинал без использования пайки схемы. Благодаря цветовой маркировке можно значительно ускорить поиск необходимого резистора. Сейчас производством таких элементов для микросхем занимается большое количество зарубежных и отечественных фирм.

Сборка регулятора

Головка регулировочного винта многооборотника и конусная часть штока обрабатываются активным флюсом и слегка (именно слегка) залуживаются, то же самое делается с отверстиями втулки. Затем втулка нагревается до температуры плавления олова и устанавливается на головку регулировочного винта многооборотного подстроечного резистора. Олово остывает и прочно фиксирует втулку по месту. Затем нагревается шток и так же вставляется во втулку. Данное соединение с первой попытки получается достаточно прочным и абсолютно соосным, то есть при вращении отсутствует биение, которое может постепенно привести к разрушению конструкции.

В корпусе делается пропил по ширине корпуса многооборотника на глубину, при которой соединительная втулка упрётся в дно. Многооборотник с удлинённым штоком вставляем в корпус. Никакой дополнительной фиксации даже в виде клея здесь не требуется. А вот со стороны штока можно (но не обязательно) установить, ранее снятый с этого места, шайбу — фиксатор. И запаять её.

Что такое сопротивление

Резисторы обладают сопротивление, а что такое сопротивление? Постараемся с этим разобраться.

Для ответа на этот вопрос поможет сантехническая аналогия. Под действием силы тяжести или под действием давления насоса, вода устремляется от точки большего давления в точку с меньшим давлением. Так и электрический ток под действием напряжения течет из точки большего потенциала в точку с меньшим потенциалом.

Что может помешать движению воды по трубам? Движению воды может помешать состояние труб, по которым она бежит. Трубы могут быть широкими и чистыми, а могут быть загажены и вообще представлять собой печальное зрелище. В каком случае скорость водного потока будет больше? Естественно, что вода будет течь быстрее если ее движению не будет оказываться никакого сопротивления.

В случае с чистым трубопроводом так и будет, воде будет оказываться наименьшее сопротивление и ее скорость будет практически неизменной. В загаженной трубе сопротивление на водный поток будет значительным, и соответственно скорость движения воды будет не очень.

Резистор с переменным сопротивлением.

Хорошо, теперь переносимся из нашей водопроводной модели в реальный мир электричества. Теперь становится понятно, что скорость воды в наших реалиях представляет собой силу тока, измеряемую в амперах. Сопротивление, которое оказывали трубы на воду, в реальной токоведущей системе будет сопротивление проводов, измеряемое в омах.

Как и трубы, провода могут оказывать сопротивление на ток. Сопротивление напрямую зависит от материала, из которого сделаны провода. Поэтому совсем не случайно провода часто изготавливают из меди, так как медь имеет небольшое сопротивление.

Резистор — это пассивный элемент электрической цепи, обладающий фиксированным или переменным значением электрического сопротивления.

Другие металлы могут оказывать очень большое сопротивление электрическому току. Так для примера, удельное сопротивление (Ом*мм²) нихрома составляет 1.1Ом*мм². Величину сопротивления нетрудно оценить, сравнив с медью, у которой удельное сопротивление 0,0175Ом*мм².

При пропускании тока через материал с высоким сопротивлением, мы можем убедиться, что ток в цепи будет меньше, достаточно провести несложные замеры.

Переменное сопротивление – назначение

Переменные сопротивления главным образом применяются для регулировки громкости в различной бытовой и профессиональной радиоаппаратуре.  Можно сказать, что они предназначены для плавного изменения напряжения или тока в различных электросхемах посредством изменения собственного сопротивления. Например, с их помощью можно плавно регулировать яркость свечения электрической лампочки.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка “зигзаг” с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт — 2 вертикальные черты;
  • 1 Вт — 1 вертикальная черта;
  • 0,5 Вт — 1 продольная линия;
  • 0,25 Вт — одна косая линия;
  • 0,125 Вт — две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Watch this video on YouTube

Устройство

Существует большое количество всевозможных конструкций переменных и подстроечных резисторов мощностью от десятков ватт до нескольких милливатт. Некоторые из них приведены ниже на фото.

Подстроечные резисторы имеют почти одинаковое устройство с переменными. Они состоят из подвижной и неподвижной частей, помещённых в общий корпус. Неподвижная часть представляет из себя пластинку из изоляционной подложки, на которую нанесён по незамкнутому кругу токопроводящий слой. Концы этого слоя выведены на два контакта.

Подвижная часть выполняет роль токосъёмного пружинящего контакта, закрепленного на оси. Таким образом обеспечивается надежная связь с токопроводящим слоем.

Немного другое устройство имеет резистор подстроечный многооборотный. У него проводящий слой нанесён на прямой стержень, а токосъёмный контакт перемещается параллельно ему на винтовом стержне.

Эти два метода изменения сопротивления применяются во всех типах подстроечных резисторов.

Виды резисторов

В настоящее время существует несколько видов резисторов. Вот некоторые из них:

  • Резисторы для поверхностного монтажа ()
  • Переменные резисторы
  • Специальные резисторы

Этот вид резисторов различаются по внешности и размера. Проволочные резисторы, как правило, изготавливают из длинного провода на основе сплавов, обычно хрома, никеля или сплава медно-никель-марганца. Этот вид резистора, пожалуй, один из самых старых видов. Проволочные резисторы имеют превосходные свойства, такие как высокие показатели мощности и низкие значения сопротивления. В процессе эксплуатации эти резисторы могут сильно нагреваться, и по этой причине их зачастую помещают в металлический ребристый корпус для лучшего охлаждения.

Металлопленочные резисторы изготавливаются из оксида металла или в виде небольших керамических стержней с нанесением на них тонкого слоя металла.

Они похожи на углеродно-пленочные резисторы и их сопротивление регулируется за счет толщины слоя покрытия. Характерными свойствами металлопленочных резисторов можно считать их надежность, точность и стабильность. Эти резисторы могут быть изготовлены в широком диапазоне сопротивлений (от нескольких Ом до МОм). наносится на корпус в буквенно-цифровом виде или в виде .

Маркировка

Размер резистивного элемента напрямую связан с его мощностью рассеивания, чем она выше, тем крупнее габариты детали. Если на схемах легко указать любое численное значение, то маркировка изделий бывает затруднена. Тенденция миниатюризации в производстве электроники вызывает необходимость использования элементов все меньших размеров, что повышает сложность как нанесения информации на корпус, так и ее прочтения.

Для облегчения идентификации резисторов в российской промышленности применяют буквенно-цифровую маркировку. Сопротивление обозначается так: цифрами указывают номинал, а букву ставят либо за цифрами (в случае десятичных значений), либо перед ними (для сотен). Если номинал менее 999 Ом, то число наносится без буквы (или могут стоять буквы R либо Е). Если же значение указано в кОм, то за числом ставится буква К, букве М соответствует значение в МОм.

Номиналы американских резисторов обозначаются тремя цифрами. Первые две из них предполагают номинал, третья — количество нулей (десятков), добавляемых к значению.

При роботизированном производстве электронных узлов нанесенные символы нередко оказываются на той стороне детали, которая обращена к плате, это делает прочтение информации невозможным.

Конструктивное исполнение

В промышленности распространены проволочные потенциометрические датчики перемещения. Они обладают высокой точностью и стабильностью, имеют малые величины температурного и переходного сопротивлений и низкий уровень шумов. К недостаткам относятся: небольшая величина сопротивления, малая разрешающая способность, износ подвижных частей и ограниченность применения при работе на переменном токе.

Устройства состоят из трех основных элементов:

  1. Каркас. Изготовлен из теплопроводного изоляционного материала или металла с диэлектрическим покрытием, не меняющий геометрические размеры при нагревании. Форма может быть в виде кольца, изогнутой пластины, стержня.
  2. Изолированная обмотка. Выполняется с точной укладкой провода, от шага которой зависит разрешающая способность прибора.
  3. Подвижная щетка. В местах ее соприкосновения с обмоткой витки очищены от изоляции. Подвижный контакт в устройствах может перемещаться поступательно или вращательно. В последнем случае устройства могут быть одно- или многооборотного исполнения.

Конструкция и принцип действия

Конструкция переменного непроволочного резистора показана на рисунке. На изоляционное основание 1 нанесен проводящий слой 2. Сверху нанесен защитный слой 3. По защитному слою перемещается контактный узел 4. Концы проводящего слоя снабжены токосъемными площадками 5.

1 — изоляционное основание; 2 — проводящий слой; 3 — защитный слой; 4 — контактый узел; 5 — токосъемные площадки.

Один потенциометр может состоять из нескольких резистивных элементов и контактных узлов. Такие потенциометры называются — сдвоенные потенциометры (dual potentiometr). Данный вид нашел применение в аудиотехнике для регулирования громкости нескольких каналов.

У сдвоенных потенциометров один вал перемещает два независимых контактных узла.

В некоторых потенциометрах в начальном положении устанавливают концевой выключатель. Такие потенциометры оснащаются двумя дополнительными выводами.

Изменение сопротивления может осуществляться не только с помощью ручного перемещения контактного узла, но и с помощью внешних сигналов. К таким потенциометрам относятся цифровые потенциометры. Они представляют собой микросхему. Внутри размещена резистивная матрица, изменение сопротивления осуществляется коммутацией транзисторных ключей. Управление может осуществляться дискретными сигналами (больше, меньше), по параллельной или

РЕЗИСТОРЫ

   Продолжаем наш цикл справочных материалов для начинающих радиолюбителей, и в этой статье мы поговорим о резисторах, они присутствуют в любой электронной схеме, даже самой простой. Делятся они на два вида: переменные и постоянные. Распространенные постоянные резисторы, используемые в электронных схемах, имеют мощность от 0.125 до 2 Ватт. Если быть более точным, то это ряд 0.125 Вт, 0.25 Вт, 0.5 Вт, 1 Вт, 2 Вт. Конечно, есть и более мощные резисторы, например проволочные, но они редко используются в электронных схемах. На рисунке ниже изображены внешний вид и габариты резисторов, а также их обозначения на принципиальных схемах. 

Схематическое обозначение постоянных резисторов

   Из них чаще всего в электронике используются резисторы мощностью от 0.125 до 0.5 Ватт. Резисторы бывают как обычные, с допуском 5-10%, так и прецизионные с допуском 0.1-1%. Существуют и более точные резисторы, но в большинстве радиолюбительских конструкций такая точность не требуется. Если резистор может менять сопротивление – его называют переменным (или подстроечным). Фото переменных резисторов:

Резисторы переменные

   Переменные резисторы также бывают проволочные и непроволочные, проволочные обычно бывают рассчитаны на большую мощность. Устройство непроволочного переменного резистора можно видеть на рисунке:

Конструкция переменного резистора

   Устроен резистор следующим образом, на основании из гетинакса в виде дуги нанесен слой из сажи смешанной с лаком. У этого резистора между первым и вторым контактом (на рисунке), другими словами между крайними выводами сопротивление неизменно, а между средним и крайними выводами изменяется при вращении ручки резистора. К этому слою обладающему сопротивлением прилегает подвижный контакт, соединенный с центральным выводом. Очень часто при интенсивном использовании регулятором, этот слой сажи истирается, и сопротивление резистора при вращении ручки резистора изменяется скачкообразно, становясь иногда даже больше максимального положенного по номиналу. Из-за этого износа и происходит шуршание и треск из динамиков, а иногда при сильном износе звучание пропадает совсем. Переменные резисторы бывают как одинарные, так и сдвоенные, сдвоенные обычно используются в устройствах со стерео звучанием. Также к переменным резисторам относятся подстроечные резисторы:

Подстроечный резистор

   Они отличаются от стандартных переменных отсутствием ручки и регулируются вращением вала отвёрткой. Также переменные резисторы бывают однооборотные и многооборотные. Схематическое изображение переменного и подстроечного резистора на рисунке ниже:

Схематическое изображение переменного резистора

   На советских резисторах МЛТ был написан номинал резистора, на импортных резисторах маркировка осуществляется нанесением разноцветных колец, в первых двух кольцах закодирован номинал, третье кольцо множитель, четвёртое кольцо это допуск резистора (для обычных не прецизионных резисторов). 

Цветовая маркировка резисторов

   Встречается маркировка большим, чем четыре, количеством колец, расшифровать маркировку поможет следующий рисунок:

Прецизионные резисторы цветовая маркировка

   Иногда возникает надобность узнать номинал резистора, а по цветовой маркировке это сделать, по каким-либо причинам затруднительно. В таком случае нужно обратиться к принципиальной схеме устройства. На таких схемах номинал резистора обозначается следующим образом, например: 150 означает 150 Ом (единицы измерения не указываются), 100 К означает 100 КилоОм, 2 М означает 2 МегаОма. Иногда при сборке какой-либо схемы нужного номинала нет под рукой, но есть много резисторов других номиналов, в таком случае может помочь последовательное или параллельное соединение резисторов. Формулы подсчета всем известны из учебников физики, но если кто подзабыл, приведу здесь их:

При последовательном соединении


При параллельном соединении

   В последнее время многие переходят на SMD детали, из них наиболее распространены резисторы размеров 0805 и 1206. Определить номинал SMD резистора очень просто, первые две цифры показывают сопротивление резистора, третья цифра количество нулей. Пример: нанесена маркировка 332, это значит 33 плюс два нуля, получается 3300, то есть 3. 3 КилоОма. Менее распространены в электронике, но тем не менее находят применение терморезисторы и фоторезисторы. На рисунке ниже изображено схематическое изображение терморезисторов:

Терморезисторы схематическое изображение

   У терморезисторов сопротивление зависит от температуры. Если с повышением температуры сопротивление терморезистора увеличивается, то температурный коэффициент сопротивления ТКС положительный, если же с повышением температуры сопротивление уменьшается, то ТКС отрицательный. Терморезистор изображен на фотографии ниже:

Терморезистор фото

   На следующем рисунке изображён фоторезистор, как его рисуют на схемах:

Фоторезистор схематическое изображение

   Он представляет собой полупроводниковый прибор, сопротивление которого меняется под действием света.

Фоторезистор – внешний вид

   Фоторезисторы особенно широко используются в устройствах автоматики. Привожу типовую схему включения полупроводникового фотодетектора:

Типовая схема полупроводникового фотодетектора

   В общем резистор можно смело считать кирпичиком любой радиосхемы, так как это самый распространённый элемент в радиоэлектронике. С вами был AKV.

   Форум по деталям

Цветовое обозначение резистора. Обозначение мощности резисторов на схеме

В электрических цепях для регулировки тока применяются резисторы. Выпускается огромное количество различных их видов. Чтобы определиться во всём многообразии деталей, для каждой вводится условное обозначение резистора. Они маркируются различными способами, в зависимости от модификации.

Типы резисторов

Резистор ‒ это устройство, которое имеет электрическое сопротивление, его основное назначение ‒ ограничение тока в электрической цепи. Промышленность выпускает различные типы резисторов для самых разных технических устройств. Их классификация осуществляется разными способами, один из них ‒ характер изменения сопротивления. По этой классификации различают 3 типа резисторов:

  1. Постоянные резисторы. У них не имеется возможности произвольно изменять величину сопротивления. По назначению они делятся на два вида: общего и специального применения. Последние делятся по назначению на прецизионные, высокоомные, высоковольтные и высокочастотные.
  2. Переменные резисторы (их ещё называют регулировочными). Обладают возможностью изменять сопротивление с помощью управляющей ручки. По конструктивному исполнению они очень разные. Есть совмещённые с выключателем, сдвоенные, строенные (то есть на одной оси установлено два или три резистора) и множество других разновидностей.
  3. Подстроечные резисторы. Применяются только во время настройки технического устройства. Органы настройки у них доступны только под отвёртку. Производится большое количество различных модификаций этих резисторов. Они применяются во всевозможных электротехнических и электронных устройствах, начиная от планшетников и заканчивая большими промышленными установками.

Некоторые типы рассмотренных резисторов приведены на нижеприведённой фотографии.

Классификация компонентов по способу монтажа

Существует 3 основных вида монтажа электронных компонентов: навесной, печатный и для микромодулей. Для каждого вида монтажа предназначены свои элементы, они сильно различаются и по размерам, и по конструкции. Для навесного монтажа применяются резисторы, конденсаторы и полупроводниковые приборы. Они выпускаются с проволочными выводами, чтобы можно было их впаивать в схему. В связи с миниатюризацией электронных устройств этот метод постепенно утрачивает актуальность.
Для печатного монтажа применяются более малогабаритные детали, с выводами для впаивания в печатную плату или без них. Для соединения со схемой эти детали имеют контактные площадки. Печатный монтаж существенно способствовал сокращению размеров электронных изделий.

Для печатного и микромодульного монтажа часто используются smd-резисторы. Они очень малы по размерам, легко встраиваются автоматами в печатную плату и микромодули. Они выпускаются различного номинального сопротивления, мощности и размеров. В новейших электронных устройствах преимущественно используются smd-резисторы.

Номинальное сопротивление и рассеваемая мощность резисторов

Номинальное сопротивление, выраженное в омах, килоомах или мегаомах, является основной характеристикой резистора. Эта величина приводится на принципиальных схемах, наносится непосредственно на резистор в буквенно-цифровом коде. В последнее время часто стало применяться цветовое обозначение резисторов.

Вторая важнейшая характеристика резистора – это рассеиваемая мощность, она выражается в ваттах. Любой резистор при прохождении через него тока нагревается, то есть рассеивает мощность. Если эта мощность превысит допустимую величину, наступает разрушение резистора. По стандарту обозначение мощности резисторов на схеме практически всегда присутствует, эта величина часто наносится и на его корпус.

Допуск номинального сопротивления и его зависимость от температуры

Большое значение имеет погрешность, или отклонение от номинальной величины, измеряемая в процентах. Невозможно абсолютно точно изготовить резистор с заявленной величиной сопротивления, обязательно будет отклонение от заданной величины. Погрешность указывается непосредственно на корпусе, чаще в виде кода из цветных полос. Оценивается она в процентах от номинального значения сопротивления.

Там, где существуют большие колебания температуры, немалое значение имеет зависимость сопротивления от температуры, или температурный коэффициент сопротивления, сокращённое обозначение — ТКС, измеряемый в относительных единицах ppm/°C. ТКС показывает, на какую часть от номинального меняется сопротивление резистора, если температура среды увеличивается (уменьшается) на 1°C.

Условное графическое обозначение резистора на схеме

При вычерчивании схем требуется соблюдение государственного стандарта ГОСТ 2.728-74 на условные графические обозначения (УГО). Обозначение резистора любого типа – это прямоугольник 10х4 мм. На его основе создаются графические изображения для других типов резисторов. Кроме УГО, требуется обозначение мощности резисторов на схеме, это облегчает её анализ при поиске неисправностей. В нижеприведённой таблице указаны УГО постоянных сопротивлений с указанием рассеиваемой мощности.

Ниже на фотографии изображены постоянные резисторы разной мощности.


Условное графическое обозначение переменных резисторов

УГО переменных резисторов наносятся на принципиальную схему так же, как и постоянные резисторы, по государственному стандарту ГОСТ 2.728-74. В таблице приведено изображение этих резисторов.

На фотографии ниже изображены переменные и подстроечные резисторы.

Стандартное обозначение сопротивления резисторов

Международными стандартами принято обозначать номинальное сопротивление резистора на схеме и на самом резисторе немного по-разному. Правила этого обозначения вместе с образцами примеров приведены в таблице.

Полное обозначениеСокращённое обозначение
Единица измеренияОбозн. ед. изм.Предел номин. сопротивленияна схемена корпусеПредел номин. сопротивления
ОмОм999,90,51E51 или R5199,9
5,15E1; 5R1
5151E
510510E; K51
КилоомкОм999,95,1k5K199,9
51k51K
510k510K; M51
МегаомМОм999,95,1M5M199,9
51M51M
510M510M

Из таблицы видно, что обозначение на схемах резисторов постоянного сопротивления делаются буквенно-цифровым кодом, сначала идёт числовое значение сопротивления, затем указывается единица измерения. На корпусе резистора принято в цифровом обозначении вместо запятой использовать букву, если это омы, то ставится E или R, если же килоомы, то буква K. При обозначении мегаомов вместо запятой применяется буква M.

Цветовая маркировка резисторов

Цветовое обозначение резисторов было принято, чтобы проще было нанести информацию о технических характеристиках на их корпусе. Для этого наносится несколько цветовых полосок разного цвета. Всего в обозначении полосок принято 12 различных цветов. Каждый из них имеет своё определённое значение. Цветовой код резистра наносится с края, при низкой его точности (20%) наносится 3 полоски. Если точность выше, на сопротивлении можно увидеть уже 4 полоски.

При высокой точности резистора наносится 5-6 полосок. У маркировки, содержащей 3-4 полоски, первые две обозначают величину сопротивления, третья полоска ‒ это множитель, на него умножается эта величина. Следующая полоска определяет точность резистора. Когда маркировка содержит 5-6 полосок, первые 3 соответствуют сопротивлению. Следующая полоска ‒ это множитель, 5-я полоска соответствует точности, а 6-я – температурному коэффициету.

Для расшифровки цветовых кодов резисторов существуют справочные таблицы.

Резисторы для поверхностного монтажа

Поверхностный монтаж — это когда все детали располагаются на плате со стороны печатных дорожек. В этом случае не сверлятся отверстия для монтажа элементов, они припаиваются к дорожкам. Для этого монтажа промышленность выпускает широкий набор smd-компонентов: резисторы, диоды, конденсаторы, полупроводниковые приборы. Эти элементы гораздо меньше по размерам и технологически приспособлены для автоматизированного монтажа. Использование smd-компонентов позволяет существенно уменьшить размеры изделий электроники. Поверхностный монтаж в электронике практически уже вытеснил все другие виды.

При всех достоинствах рассматриваемого монтажа он имеет ряд недостатков.

  1. Печатные платы, изготовленные по этой технологии, боятся ударов и других механических нагрузок, так как при этом повреждаются smd-компоненты.
  2. Эти компоненты боятся перегрева при пайке, потому что от сильных перепадов темературы они могут потрескаться. Этот дефект сложно обнаружить, он проявляется обычно во время работы.

Стандартное обозначение smd-резисторов

В первую очередь smd-резисторы различаются типоразмерами. Самый маленький типоразмер ‒ 0402, чуть больше – 0603. Самый ходовой типоразмер smd-резистора – 0805, и побольше – 1008, следующий типоразмер 1206 и самый большой – 1812. Резисторы самого малого типоразмера имеют и самую малую мощность.

Обозначение smd-резисторов осуществляется специальным цифровым кодом. Если резистор имеет типоразмер 0402, то есть самый маленький, то он никак не маркируется. Резисторы других типоразмеров добавочно различаются по допуску номинального сопротивления: 2, 5, 10%. Все эти резисторы имеют маркировку из 3 цифр. Первая и вторая из них показывают мантиссу, третья – множительный коэффициент. Например, код 473 читается так R=47∙103 Ом=47 кОм.

Все резисторы, которые имеют 1% допуск, а типоразмер больше 0805, имеют маркировку из четырёх цифр. Как и в предыдущем случае, первые цифры показывают мантиссу номинала, а на множитель указывает последняя цифра. Например, код 1501 расшифровывается так: R=150∙101=1500 Ом=1.5 кОм. Аналогично читаются и остальные коды.

Простейшая принципиальная схема

Правильное обозначение на схемах резисторов и других элементов – основное требование государственных стандартов при проектировании электронных и электротехнических изделий. Стандарт устанавливает правила на условные обозначения резисторов, конденсаторов, индуктивностей и других компонентов схем. На схеме указывается не только обозначение резистора или другого элемента схемы, но также его номинальное сопротивление и мощность, а для конденсаторов – рабочее напряжение. Ниже приведён пример простейшей принципиальной схемы с элементами, обозначенными по стандарту.

Знание всех условных графических обозначений и чтение буквенно-цифровых кодов к элементам схем позволит легко разобраться в принципе работы схемы. В данной статье рассмотрены только резисторы, а элементов схем довольно много.

Резисторы

Резистор (или сопротивление) — пассивный элемент электрической цепи. Он может обладать конкретным значением сопротивления или переменным. Резисторы используются практически во всех электронных и электрических устройствах. В электрических цепях резисторы используют в разных целях:

  • Для преобразования силы тока в напряжение
  • Для преобразования напряжения в силу тока
  • Для ограничения тока
  • Для поглощения эл. энергии

Их основные технические параметры — номинальное сопротивление (номинал) в Омах, максимальная рассеиваемая мощность, максимальное рабочее напряжение и класс точности. Есть и другие параметры, такие как температурный коэффициент, термостойкость, влагоустойчивость и другие. Так же имеются паразитные параметры — емкость и индуктивность. Эти параметры важно учитывать при разработке устройств, предназначенных для работы в сложных условиях или требующих высокой точности, но можно опустить при небольших самоделках на Arduino.

Обозначение резисторов

В мире есть несколько общепринятых условных графических обозначений резисторов на схемах. В США рисунок резистора похож на зигзаг, а в России и Европе он выглядит как прямоугольник.

Пример рисунка резисторов в России и Европе (а), и в США (б)

В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:

Обозначения постоянных резисторов по ГОСТ 2.728-74

По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:

Обозначение переменных резисторов по ГОСТ 2.728-74

Маркировка резисторов

Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.

Резистор большой мощности

Для удобства обозначения основных параметров мелких постоянных резисторов используют цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица цветовой маркировки постоянных резисторов либо онлайн калькуляторы.

Цветовая маркировка резисторов

Виды резисторов

Классификаций резисторов очень много:

  • По области применения:
    • Высокоомные (обладающие сопротивление более 10 МОм)
    • Высокочастотные (с уменьшенной паразитарной индуктивностью и емкостью)
    • Высоковольтные (способные пропускать через себя тысячи вольт)
    • Прецизионные (повышенной точности с допуском менее 1%)
  • По способности изменять сопротивление
    • Переменные подстроечные
    • Постоянные
    • Переменные регулировочные
  • По влагозащищенности
    • Обычные незащищенные
    • Покрытые лаком
    • Залитые компаундом
    • Впрессованные в пластмассу
    • Вакуумные
  • По способу монтажа
    • Для навесного монтажа
    • Для монтажа на печатных платах
    • Для микромодулей и микросхем
  • По виду ВАХ (вольт-амперной характеристики)
    • Линейные
    • Нелинейные (фоторезисторы, терморезисторы, варисторы и другие)
  • В зависимости от используемых проводящих элементов
    • Проволочные
    • Непроволочные
  • По виду используемых материалов
    • Углеродистые
    • Металлопленочные
    • Интегральные
    • Проволочные

Далее рассмотрим несколько видов резисторов такие как постоянные, переменные и некоторые нелинейные резисторы.

Постоянный резистор

Постоянный резистор — это тот резистор, характеристики которого предопределены и не изменяются. Иначе говоря это элемент электрической цепи с фиксированным сопротивлением, предельным напряжением, классом точности. Такие резисторы изображены на картинках выше.

Расчет постоянного резистора для светодиода

Постоянные резисторы мы использовали во многих проектах. Например в проекте с подключением светодиода к Ардуино. Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.

Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.

Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. Источником питания для нашего светодиода выступает плата Arduino Uno. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.

  • Vps — напряжение источника питания (5 Вольт)
  • Vdf — падение напряжения на светодиоде (2 Вольта)
  • If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)

Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом

Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).

Подключение светодиода к Arduino

Переменный резистор

Переменный резистор — это электротехническое устройство, используемое для регулирования параметров электрической цепи (напряжение, сила тока) за счет заданного изменения сопротивления.

У переменного резистора есть множество названий и подвидов: реостат, потенциометр, переменное сопротивление, подстроечный резистор, регулировочный резистор. Попробуем разобраться в чем отличия. Переменное сопротивление, переменный резистор и реостат — это всё названия одного класса резисторов. «Потенциометр» — это жаргонное название переменного резистора, подключенного как делитель напряжения (о резисторных сборках и делителях напряжения мы расскажем в отдельной статье).

Реостат, потенциометр, переменный резистор, переменное сопротивление
  • Регулировочный резистор — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
  • Подстроечный резистор — это тоже переменный резистор, который используется для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора.
Подстроечные резисторы в разных исполнениях

Нелинейные резисторы

Нелинейные резисторы — это резисторы сопротивление которых изменяется в зависимости от внешних факторов. Внешними факторами могут быть: температура, количество света, магнитное поле, напряжение в электрической цепи и другие. Вот некоторые примеры нелинейных резисторов, подробнее о которых вы сможете почитать по ссылкам в википедии:

  • терморезисторы — сопротивление меняется в зависимости от температуры;
  • варисторы — сопротивление меняется в зависимости от приложенного напряжения;
  • фоторезисторы — сопротивление меняется в зависимости от освещённости;
  • тензорезисторы — сопротивление меняется в зависимости от деформации резистора;
  • магниторезисторы — сопротивление меняется в зависимости от величины магнитного поля.

Не путайте такие резисторы с датчиками, они не показывают реальные величины, воздействующих на них сил. Изменяется лишь сопротивление. Можно откалибровать данные и привязать значение сопротивления, например терморезистора, к определенной температуре, но это не лучший вариант.

На сегодня это всё. В отдельной статье мы поговорим о соединении резисторов в разных комбинациях, таких как делители напряжения, подключение резисторов последовательно и параллельно.

Видеоурок: Условные обозначения и схемы цепей

Стенограмма видеозаписи

В этом видео мы говорим о условные обозначения и схемы.

В начале, давайте сначала поговорим немного о том, почему существуют такие символы и такие диаграммы. Представьте, что вы разрабатываете дом, и что, как часть работы, вы должны были описать, как этот дом будет использовать электричество.Вы собирались строить планы и затем передайте их строителям дома. Скажите, что вы что-то придумали это выглядит так. Вопрос в том, будут ли строители дома уметь понять этот эскиз, а затем создать то, что он показывает?

Мы видим, что если есть согласованные соглашения о том, как будут выглядеть разные части электрической цепи типа, есть гораздо больше шансов понять, что происходит. И это действительно наша тема, понимание условных обозначений схем и условных обозначений схем.

Скажите, что мы начинаем с это. Мы смотрим на петлю провод и больше ничего. Нет ничего силового Текущий. Резисторов нет. В этом нет ничего схема. Это просто петля проведения провод. Обратите внимание, что мы рисуем это провод по прямой из одной точки в другую.Мы имеем в виду, что мы могли рисовать соединения между точками в нашей цепи, как это, как провод может выглядеть в реальная жизнь. Но соглашение, как для аккуратность, а также ясность, заключается в том, чтобы провода выглядели так.

Теперь, как мы сказали, как есть, это это не очень захватывающая трасса. Нет тока и ничего не происходит, потому что нет ничего, что могло бы питать ток. Нам нужен электродвигатель сила, ЭДС, чтобы протолкнуть заряд. И это устройство предназначено для только то. Он предназначен для подачи тока в схема. Название этого устройства может быть немного сюрприз. В повседневной жизни мы часто обращаемся к это как аккумулятор. Но на самом деле аккумулятор – это то, что формируется, когда мы соединяем несколько таких отдельных единиц вместе. Сами по себе каждый из этих единицы, которые используются для соединения для создания батареи, называются ячейкой.Итак, название отдельной единицы обеспечивающий электродвижущую силу – ячейка. Но когда мы связываем несколько ячеек вместе, чтобы создать комбинированный эффект, который называется батареей.

Причина, по которой мы вникаем в это, заключается в том, что символ, электрический символ, для ячейки отличается от символа для аккумулятор. Как мы уже упоминали, ячейка относится к единичный блок. Если бы мы поместили ячейку в Схема, которая у нас есть, этот символ ячейки будет выглядеть так.Мы видим, что один из этих параллельные линии длиннее других. А более длинная линия указывает положительный вывод ячейки. Но если бы мы ячейку и начать связывать с ней другие ячейки, те, которые создают батарею, затем символ цепи, который представляет это, будет другим. Мы сказали, что батарея какая-то количество соединенных вместе ячеек. И этот символ получает эту идею через.Это показывает нам, что есть по крайней мере здесь задействованы две клетки и, возможно, даже больше. Поэтому каждый раз, когда вы видите этот символ на диаграмма, обозначающая ячейку. С другой стороны, этот символ обозначает цепочку ячеек, то есть батарею.

Тогда у нас есть источник электродвижущая сила в этой проволочной петле. Это означает, что ток пойдет течь. Обычный ток начнет двигайтесь против часовой стрелки.Когда он путешествует по закрытому петле, этот ток встретит любые элементы схемы, которые там могут быть. Один из наиболее распространенных элементов, которые мы На принципиальных схемах можно найти то, что называется резистором. Как следует из названия, функция резистора должен противодействовать протеканию тока в цепи. И символ резистора в схема выглядит так.

Может быть, однажды ты случайно пересекли электрическую схему, которая показывает вам такой элемент.Этот элемент может выглядеть незнакомый. Но на самом деле это еще один способ символизирующий резистор. Эти два символа полностью эквивалентны друг другу. Они означают одно и то же. Когда вы видите резистор символа, похожего на зубы этой акулы, не важно точное количество линии вверх и вниз, которые есть у символа. Есть вариации в этом соглашение. Просто признавая, что это так похожий на рисунок акульих зубов означает, что в схема.

Теперь, прежде чем мы пойдем дальше, полезно знать, что иногда символы на принципиальной схеме имеют метки на их. Например, если резистор мы работали с определенным значением сопротивления, скажем 10 Ом, мы могли бы увидеть, что напечатанный над символом резистора. Точно так же, если бы у нашей батареи был конкретное напряжение питания, скажем 25 вольт, мы могли бы увидеть, что написано выше, что условное обозначение.Иногда эти дополнительные метки существуют, а иногда и нет. Но в любом случае мы узнаем сейчас что они имеют в виду.

Если рассматривать резисторы в цепи, они часто появляются в виде источников света. Например, лампа накаливания резистор в цепи. Что, если бы мы хотели указать, что этот конкретный резистор не был обычным. резистор, но на самом деле это была лампочка, что-то что могло загореться.Символ для этого выглядит как это. Это символ, обозначающий лампочка в электрической цепи. Итак, у нас есть лампочка. А с лампочкой в ​​цепи как показано, он будет гореть.

Но что, если мы хотим создать управление этой лампочкой, переключатель, чтобы она могла быть включена или выключена. Символ переключателя, когда он открытый выглядит так. И это ясно показывает, что текущий теперь перестает проходить через этот цикл.И поэтому все, что в нем требует тока не будет питаться. Это символ открытого выключатель. И если мы хотим закрыть переключатель и так замкните цепь снова, символ для этого выглядит так.

Теперь, когда ток снова течет, что, если бы мы хотели измерить этот ток. Мы бы сделали это с помощью устройства называется амперметр. Символ для этого выглядит как это, 𝐴 с кружком вокруг него.Теперь у нас есть возможность Измерьте ток, протекающий в этой цепи. Что, если бы мы хотели выяснить напряжение, разность потенциалов на нашей лампочке? В этом случае мы бы прикрепили вольтметр параллельно лампочке. Аналогично символу для амперметр, для вольтметра это кружок с в нем.

Теперь, когда мы измеряем количества в этой схеме, допустим, мы хотим ограничить схему так, чтобы если ток превышает определенное значение, все будет отключено.В этом случае мы устанавливаем то, что вызвал предохранитель в цепи. Это устройство ломается, когда ток в нем превышает определенное значение. Поломка предохранителя означает, что больше нет замкнутого контура для прохождения тока и всей цепи выключается. Обозначение предохранителя обычно выглядит вот так. Это коробка с работающей схемой через это.

Допустим, помимо нашего предохранитель, мы также хотели установить в этой цепи вентиль, чтобы ток мог только поток в одном из двух направлений.Электрический компонент, который это называется диодом. Это только позволяет току течь через него в одном направлении. Это символ диод. И мы можем сказать, каким образом это позволяет ток течь, глядя в направлении стрелки. Как этот диод настроен, он позволяет току течь против часовой стрелки, но не по часовой стрелке. направление. Это заблокировало бы любую текущую попытку двигаться туда.

Давайте теперь представим, что вместо имея предохранитель здесь в нашей цепи, мы хотим заменить его резистором, но не просто любой орд. резистор. Мы вставим резистор, который изменяется в зависимости от окружающей среды. Есть несколько разных разновидностей резистора этого типа. Один тип называется термистор. Это резистор, сопротивление которого значение зависит от его температуры. Хороший символ термистора потому что мы начинаем с символа резистора, как мы видели раньше, а затем проденьте через него такую ​​линию с небольшой полосой на конце.Это символ термистор, то есть резистор, величина сопротивления которого зависит от его температура.

Но есть еще один параметр, который значение сопротивления может зависеть от. Это свет, падающий на резистор. Этот компонент называется светозависимый резистор или сокращенно LDR. Обратите внимание, что он начинается с символ основного резистора затем окружает его кружком. И тогда у нас идут эти стрелки к нему, указывая на падающий свет на резисторе.

Пока мы обсуждаем тему электрические компоненты и свет, возвращаясь к нашему диоду, одним из видов диодов является Тип, излучающий свет, называется светодиодом или светодиодом. Символ для этого также включает в себя обведите базовый электрический компонент. И на этот раз стрелки указывают этот свет выходит из устройства, потому что он излучает свет, а не светозависимый резистор, поглощающий свет.Но, возвращаясь к нашему резистору, в в данном случае это резистор, зависящий от света, другой вид резистора, символизируемый Другими словами, это тот, который просто называют переменным резистором. Это обозначено символом символ обычного резистора, а затем добавьте диагональную стрелку поверх него. Переменный резистор – это тот, который может настраиваться, возможно, вручную, чтобы регулировать значение сопротивления.

Кстати, этот символ диагональная стрелка, обозначающая переменную, является общим обозначением электрических компоненты. Если мы поместим ту же стрелку поверх символ какого-либо другого компонента, который может быть изменен, например, батареи, а затем того, что укажет на переменную батарею. Есть еще символы для электрические схемы, которые мы могли изучить. Но это хороший набор для начала с участием. Теперь, когда мы рассмотрели эти символы, давайте попрактикуемся в их использовании на нескольких примерах.

На схеме показаны четыре цепи символы.Какой символ представляет переменную резистор?

Здесь мы видим четыре символа показано. И нам сказали, что один из них представляет собой переменный резистор в цепи. Вспоминая, что означают символы схем действительно задача запоминания. Давайте начнем сверху и запомните, что представляет каждый из этих символов.

Вариант A показывает нам символ для электрический предохранитель. Это устройство, используемое для ограничения максимальный ток, протекающий через цепь.В варианте B мы признаем Узор этого символа в виде акульих зубов говорит нам, что это резистор. Вариант C похож на вариант B. Но мы видим, что у него есть дополнительные диагональная стрелка, проходящая через резистор. Это говорит нам о том, что ценность этот резистор можно варьировать. Это переменный резистор. Тогда наш ответ – вариант C. Это показывает нам символ переменный резистор.

Просто ради интереса, давайте рассмотрим, что нам показывает вариант D.Мы видим, что иногда резистор представлен в этой рамке, а иногда и в виде акульего зуба шаблон. Представления эквивалент. И какой из них мы используем, зависит только от на каком соглашении мы узнали. Во всяком случае, эта линия с наклоном прохождение через резистор указывает на то, что это термистор, резистор сопротивление которых зависит от температуры. Наш ответ – это вариант ответа С.Это символ, который представляет переменный резистор.

Давайте посмотрим на секунду вопрос, связанный с обозначениями схем.

На схеме показано электрическое схема. Сколько светодиодов делает схема содержат? Сколько термисторов делает цепь содержать? Сколько вольтметров делает цепь содержать?

Глядя на эту диаграмму, мы видим на самом деле он представляет собой электрическую цепь с рядом электрических компонентов в Это.Чтобы ответить на эти вопросы о том, сколько определенных компонентов находится в цепи, нам нужно знать, что эти компоненты выглядят как символы. Другими словами, чтобы ответить сколько светодиодов в этой схеме, нам нужно знать символ для светодиода. И так же для термисторов как а также вольтметры, нам нужно знать символы для каждого из этих компонентов. Как только мы вспоминаем символы, это просто нужно подсчитать, сколько раз этот символ появляется в цепи в диаграмму.

Итак, начнем с нашего первого вопрос, сколько светодиодов в схеме? Светодиод – это, прежде всего, все, диод, символ которого выглядит так. И когда этот диод излучает свет, мы измените символ так, чтобы вокруг него был круг с двумя стрелками, выходящими из круга. Возникает вопрос, глядя на нашей принципиальной схеме, сколько раз мы видим этот символ? Оглядываясь на схему, мы видим это. появляется здесь, это один раз, а затем здесь.В другой раз. Этот символ здесь выглядит как немного хотел светодиод. Но не хватает стрел, уходящих круг. Эти стрелки указывают на свет испускается. Так что это не считается светодиод в схеме. Итак, у нас есть два светодиоды в этой схеме. И мы запишем это как наш отвечать.

Следующий вопрос касается количество термисторов, содержащихся в цепи.Помните, что термистор – это резистор, сопротивление которого зависит от его температуры. Распространенный способ символизировать термистор такой. Все начинается с простого резистора. символ, а затем добавляет к нему эту диагональную линию с небольшим наклоном. Оглядываясь на нашу схему, мы видим несколько похожий на вид символ прямо здесь. Но у этого символа диагональ стрелка над резистором, тогда как обозначение термистора немного отличается.В целом, мы не видим никаких термисторы в этой цепи. Так что мы запишем это как наш отвечать.

И, наконец, мы хотим знать, как в этой схеме много вольтметров. Вспоминая символ для вольтметр, это кружок со знаком. В нашей схеме есть круг с в этом. Но это амперметр, прибор для измерение тока, а не вольтметром. Мы не видим ни одного из них в Схема показана.Итак, еще раз записываем ответ ноль.

Тогда в этой электрической цепи есть два светодиода, нулевой термистор и нулевой вольтметр.

Давайте подведем итог тому, что мы узнали пока что про условные обозначения и схемы. На этом уроке мы увидели, что ячейка, символизируемый таким образом, является единым блоком, из которого изображена батарея, обозначенная таким образом, сделан. Мы также видели, что резистор, очень общий элемент в электрических цепях, можно обозначить таким образом, используя то, что мы называется узор акульих зубов или так.И вместе со всем этим мы узнали связка схемных символов. Мы также узнали символы для предохранителя, термистора, размыкателя, светозависимого резистора, переменного резистор, диод, светодиод, лампочка, амперметр и вольтметр. Это все обозначения схем, которые мы узнали и теперь можем использовать.

Найдите токи через каждый резистор в цепи, показанной на схеме (Рисунок 1).Использование …

  • Рассмотрим схему, представленную на рисунке (рисунок 1). Предположим, что четыре резистора в этой цепи имеют …

    Рассмотрим схему, представленную на рисунке (рисунок 1). Предположим, что четыре резистора в этой цепи имеют значения R1 = 13 Ом, R2 = 7,2 Ом, R3 = 6,2 Ом, R4 = 13 Ом, и что ЭДС батареи равна E = 18 В. Часть А Найдите ток через каждый резистор, используя правила для последовательные и параллельные резисторы. Выразите свои ответы с помощью двух значащие цифры через запятую.I1, I2, I3, I4 = ______ А Часть B …

  • Рассмотрим схему, представленную на рисунке. Предположим, что четыре резисторы в этой цепи имеют …

    Рассмотрим схему, показанную на рисунке. Предположим, что четыре резисторы в этой цепи имеют значения R1 = 12 Ом, R2 = 7,1 Ом, R3 = 7,1 Ом, R4 = 13 Ом, а ЭДС батареи E = 18 В. Часть А Найдите ток через каждый резистор, используя правила для последовательные и параллельные резисторы. Выразите свои ответы двумя значащими цифрами, разделенными знаком запятые.I1, I2, I3, I4 = ___________…

  • Найдите следующие токи

    Найдите следующие токи. Ток I_1 через резистор сопротивлением R1 = 15,0 Ом. * Ток I2 через резистор сопротивлением R2 = 45,0 Ом. * Ток I3 через резистор сопротивлением R3 = 20,0 Ом. * Ток I4 через резистор сопротивлением R4 = 25,0 Ом. Найдите сквозные токи и разность потенциалов на каждом резисторе в цепи, показанной на схеме.Используйте следующие значения: EMF = …

  • Обзор части A Рассмотрим схему, показанную на рисунке (рисунок 1). Предположим, что четыре резистора в …

    Обзор части A Рассмотрим схему, показанную на рисунке (рисунок 1). Предположим, что четыре резистора в этой цепи имеют значения R1-10 Ом, R2- 7,2 Ом, R3 6,4 Ом и R-12 Ом, и что ЭДС батареи составляет E-18 В. Найдите ток через каждый резистор, используя правила для последовательных и параллельных резисторов. Выражайте свои ответы двумя значащими цифрами, разделенными запятыми.11,12,13,14 = Отправить рисунок 1 части B Найти …

  • Рассмотрим схему, показанную на рисунке (Рисунок 1). Предположим, что четыре резистора в этой схеме имеют …

    Рассмотрим схему, показанную на рисунке (Рисунок 1). Предположим, что четыре резистора в этой цепи имеют значения R1 10 Ом, R2-8,0 Ом. R3 8,0 Ом и R4-1252 и что ЭДС батареи & 18 В. Вы можете просмотреть (Стр. 748-751) PartA Найдите ток через каждый резистор, используя правила для последовательных и параллельных резисторов. Выразите свои ответы, используя две значащие цифры, разделенные запятыми.I1, 12, I3, I4- Отправить Часть B …

  • ЭДС на рисунке ниже 1 = 5,00 В и 2 = 18,0 В. …

    ЭДС на рисунке ниже 1 = 5,00 В и 2 = 18,0 В. Сопротивления равны R1 = 18,0 Ом, R2 = 32,0 Ом, R3 = 45,5 Ом, а R4 = 56,0 Ом. Найдите величину тока в каждом резисторе, когда переключатель находится в следующих состояниях. (а) открытый I1 = А I2 = А I3 = А I4 = А (б) закрыто I1 = А I2 = А I3 = А I4 = А …

  • Проблема 21.61 Обзор PartA Рассмотрим схему, показанную на рисунке (Рисунок 1). Допустим, четыре резистора …

    Проблема 21.61. Обзор PartA. Рассмотрим схему, показанную на рисунке (Рисунок 1). Предположим, что четыре резистора в этой цепи имеют значения R-10 Ом, R 7,2 S2, R3 6,42 и R4 12 2, и что ЭДС батареи E = 18 В. Найдите ток через каждый резистор, используя правила для последовательных и параллельных резисторов. Выразите свои ответы двумя значащими цифрами, разделенными запятыми.I1, I2, I3, I4 – отправка ответа на запрос, рисунок 1 из …

  • Сколько тока проходит через каждый из четырех резисторов?

    Рассмотрим схему, показанную на схеме ниже. Батарея имеет напряжение V = 12,0 В и резисторы имеют следующие значения: R1 = 3,89 Ом; R2 = 7,78 Ом; R3 = 19,45 Ом; R4 = 11,67 Ом Сколько тока проходит через каждый из четырех резисторов? I1 = I2 = I3 = I4 =

  • какие из этих схем эквивалент цифры? Часть A Найдите токи через каждый.

    ..

    какие из этих схем эквивалент цифры? Часть A Найдите токи через каждый резистор в цепи, показанной на схеме (Рисунок 1). Используйте следующие значения: E = 12,0 В, R1 = 35,0 N2, R2 = 22,0 N2, R3 = 41,0 12 и R4 = 14,02. Схема уже приведена во введении к задаче. Однако вы можете перерисовать эту схему, чтобы упростить преобразование в схему с …

  • Найдите сквозные токи и разность потенциалов на каждом резисторе в цепи, показанной на схеме (рисунок 1).

    Цель обучения: отработать стратегию решения проблем 23.1 Цепи резисторов Найдите сквозные токи и разность потенциалов на каждом резисторе в цепи, показанной на схеме (рисунок 1). Используйте следующие значения: E = 12,0 VR = 15,0 Ом, кг = 45,0 Ом, R = 20,0 Ом и R = 25,02 Ом. Часть A Шаг за шагом уменьшите схему до минимально возможного количества эквивалентных резисторов, чтобы найти Эквивалентное сопротивление Req всей цепи Часть B Рисунок Найдите leq, ток…

  • Цепи серии

    19.

    2 | Texas Gateway

    Электрические схемы и резисторы

    Теперь, когда мы понимаем понятие электрического тока, давайте посмотрим, что мы можем с ним сделать. Как вы, несомненно, знаете, современный образ жизни в значительной степени зависит от электрических устройств. Эти устройства содержат оригинальные электрические цепи, представляющие собой законченные замкнутые пути, по которым протекает электрический ток. Возвращаясь к нашей аналогии с водой, электрическая цепь предназначена для электрического заряда, как сеть труб – для воды: электрическая цепь направляет электрический заряд от одной точки к другой, пропуская заряд через различные устройства по пути для извлечения работы или информации.

    Электрические цепи изготавливаются из многих материалов и охватывают огромный диапазон размеров, как показано на рис. 19.9. Компьютеры и сотовые телефоны содержат электрические цепи, размеры которых могут составлять примерно миллиардную долю метра (нанометра, или 10-9 м · 10-9 м). Пути, которые направляют ток в этих устройствах, создаются сверхточной химической обработкой кремния или других полупроводников. С другой стороны, большие энергосистемы содержат электрические цепи, характеристики которых измеряются в масштабе метров.Эти системы переносят такие большие электрические токи, что их физические размеры должны быть относительно большими.

    Рисунок 19.9 На фотографии слева показана микросхема , которая содержит сложную интегральную электрическую схему. Такие чипы лежат в основе таких устройств, как компьютеры и сотовые телефоны. На фотографии справа показана типовая электрическая схема, необходимая для передачи электроэнергии большой мощности.

    Пути, образующие электрические цепи, сделаны из проводящего материала, обычно из металла в макроскопических цепях.Например, медные провода внутри здания школы образуют электрические цепи, питающие освещение, проекторы, экраны, динамики и т. Д. Чтобы представить электрическую цепь, мы рисуем принципиальные схемы. Мы используем линии и символы для обозначения элементов схемы. Простая электрическая схема показана в левой части рисунка 19.10. Справа – аналогичный водяной контур, о котором мы поговорим ниже.

    Рисунок 19.10 Слева приведена принципиальная схема, показывающая батарею (красным цветом), резистор (черный зигзагообразный элемент) и ток I .Справа аналогичный водяной контур. Насос подобен батарее, песочный фильтр подобен резистору, ток воды подобен электрическому току, а резервуар подобен земле.

    Есть много разных символов, которые ученые и инженеры используют в принципиальных схемах, но мы сосредоточимся на четырех основных символах: провод, батарея или источник напряжения, резисторы и земля. Тонкие черные линии на электрической схеме обозначают путь, по которому должен идти электрический заряд.Предполагается, что эти пути являются идеальными проводниками, поэтому электрический заряд может перемещаться по ним без потери энергии. На самом деле провода в цепях не идеальны, но они подходят для наших целей достаточно близко.

    Зигзагообразный элемент с обозначением R представляет собой резистор, который представляет собой элемент схемы, обеспечивающий известное сопротивление. Макроскопические резисторы часто имеют цветовую кодировку для обозначения их сопротивления, как показано на рисунке 19.11.

    Красный элемент на рисунке 19.10 – аккумулятор с указанием положительного и отрицательного полюсов; более длинная линия представляет собой положительный полюс батареи, а более короткая линия – отрицательный полюс. Обратите внимание, что значок батареи не всегда окрашен в красный цвет; это сделано на рис. 19.10, чтобы облегчить идентификацию.

    Наконец, элемент с надписью , земля в нижнем левом углу цепи указывает, что цепь подключена к Земле, которая представляет собой большой, по существу нейтральный объект, содержащий бесконечное количество заряда.Помимо прочего, земля определяет потенциал отрицательной клеммы аккумулятора. Обычно потенциал земли определяется равным нулю: Vground≡0Vground≡0. Это означает, что весь нижний провод на рисунке 19.11 находится под напряжением ноль вольт.

    Рисунок 19.11 Некоторые типовые резисторы. Цветные полосы указывают значение сопротивления каждого резистора.

    Электрический ток на рисунке 19.10 обозначен синей линией I . Стрелка указывает направление, в котором будет течь положительный заряд в этой цепи.Напомним, что в металлах электроны являются мобильными носителями заряда, поэтому отрицательные заряды фактически текут в противоположном направлении по этой цепи (то есть против часовой стрелки). Однако мы проводим ток, чтобы показать направление, в котором будет двигаться положительный заряд.

    В правой части рисунка 19.10 изображен аналогичный водяной контур. Вода под более высоким давлением покидает верхнюю часть насоса, что подобно зарядам, покидающим положительный полюс батареи. Вода движется по трубе, как заряды по проволоке.Затем вода проходит через песочный фильтр, который нагревается по мере протекания воды. Этот шаг подобен заряду, проходящему через резистор. Когда заряды проходят через резистор, они действительно нагревают резистор. Пройдя через песочный фильтр, вода преобразует свою потенциальную энергию в тепло, поэтому ее давление ниже. Точно так же заряды, выходящие из резистора, преобразовали свою потенциальную энергию в тепло, поэтому они имеют более низкое напряжение. Напомним, что напряжение – это всего лишь потенциальная энергия на заряд.Таким образом, давление воды аналогично электрической потенциальной энергии (то есть напряжению). Возвращаясь снова к водяному контуру, мы видим, что вода возвращается в нижнюю часть насоса, что подобно заряду, возвращающемуся на отрицательную клемму аккумулятора. Водяной насос использует источник энергии, чтобы снова перекачивать воду до высокого давления, создавая давление, необходимое для повторного прохождения через контур. Водяной насос подобен батарее, которая использует химическую энергию для увеличения напряжения заряда до уровня положительной клеммы.

    Потенциальная энергия на заряд на положительном выводе батареи – это номинальное напряжение батареи. Это напряжение похоже на давление воды в верхней трубе. Точно так же, как более высокое давление заставляет воду двигаться к более низкому давлению, более высокое напряжение заставляет электрический заряд течь к более низкому напряжению. Насос забирает воду под низким давлением и работает над ней, выбрасывая воду под более высоким давлением. Точно так же аккумулятор заряжается при низком напряжении, работает на нем и выбрасывает заряд при более высоком напряжении.

    Обратите внимание, что ток в водяном контуре, показанном на Рисунке 19.10, одинаков во всем контуре. Другими словами, если мы измерим количество молекул воды, проходящих через поперечное сечение трубы в единицу времени в любой точке цепи, мы получим один и тот же ответ независимо от того, где в цепи мы измеряем. То же самое и с электрической схемой на том же рисунке. Электрический ток одинаков во всех точках этой цепи, в том числе внутри батареи и в резисторе. Электрический ток не ускоряется в проводах и не замедляется в резисторе.Это создаст точки, в которых будет накапливаться слишком много или слишком мало заряда. Таким образом, ток одинаков во всех точках цепи, показанной на рисунке 19.10.

    Хотя ток везде одинаковый как в электрическом, так и в водяном контурах, напряжение или давление воды изменяется по мере того, как вы перемещаетесь по контурам. В водяном контуре давление воды на выходе из насоса остается неизменным до тех пор, пока вода не пройдет через песочный фильтр, при условии отсутствия потерь энергии в трубе. Точно так же напряжение в электрической цепи одинаково во всех точках данного провода, потому что мы предположили, что провода являются идеальными проводниками.Таким образом, как показывает постоянный красный цвет верхнего провода на рис. 19.12, напряжение на этом проводе постоянно и равно V = VbatteryV = Vbattery. Затем напряжение падает, когда вы проходите через резистор, но как только вы дойдете до синего провода, напряжение останется на новом уровне V = 0V = 0 вплоть до отрицательной клеммы батареи (то есть синей клеммы аккумулятор).

    Рисунок 19.12 Напряжение в красном проводе постоянно при V = VbatteryV = Vbattery от положительного полюса батареи до верха резистора.Напряжение в синем проводе постоянно и равно V = Vground = 0V = Vground = 0 от нижней части резистора до отрицательной клеммы батареи.

    Если перейти от синего провода через аккумулятор к красному проводу, то напряжение возрастет от V = 0V = 0 к V = VbatteryV = Vbattery. Аналогичным образом, если мы перейдем от синего провода через резистор к красному проводу, напряжение также изменится с V = 0V = 0 на V = VbatteryV = Vbattery. Таким образом, используя закон Ома, мы можем написать

    Врезистор = Vbattery = IR. Vresistor = Vbattery = IR.

    Обратите внимание, что VresistorVresistor измеряется от нижней части резистора до верхней части, что означает, что верхняя часть резистора находится под более высоким напряжением, чем нижняя часть резистора. Таким образом, ток течет от верхней части резистора или с более высоким напряжением к нижней части резистора или с более низким напряжением.

    Virtual Physics

    Схема батарейного резистора

    Используйте это моделирование, чтобы лучше понять, как связаны сопротивление, напряжение и ток. Моделирование показывает батарею с резистором, подключенным между выводами батареи, как на предыдущем рисунке.Вы можете изменить напряжение аккумулятора и сопротивление. Моделирование показывает, как электроны реагируют на эти изменения. Он также показывает атомные сердечники в резисторе и то, как они возбуждаются и нагреваются по мере прохождения большего тока через резистор.

    Нарисуйте принципиальную схему цепи, обязательно нарисовав стрелку, указывающую направление тока. Теперь отметьте три точки вдоль проволоки. Не меняя настроек, позвольте моделированию работать в течение 20 секунд, пока вы подсчитываете количество электронов, проходящих через это пятно.Запишите номер на принципиальной схеме. Теперь проделайте то же самое с двумя другими точками контура. Что вы заметили по поводу количества зарядов, проходящих через каждое пятно за 20 с? Помните, что этот ток определяется как скорость заряда, протекающего по цепи. Что это значит для тока во всей цепи?

    Проверка захвата

    С помощью ползунка напряжения подайте на аккумулятор положительное напряжение. Обратите внимание, что электроны в левом проводе расположены дальше друг от друга, чем в правом.Как это отражает напряжение в двух проводах?

    1. Напряжение между статическими зарядами прямо пропорционально расстоянию между ними.
    2. Напряжение между статическими зарядами прямо пропорционально квадрату расстояния между ними.
    3. Напряжение между статическими зарядами обратно пропорционально расстоянию между ними.
    4. Напряжение между статическими зарядами обратно пропорционально квадрату расстояния между ними.

    Другие возможные элементы схемы включают конденсаторы и переключатели. Они нарисованы, как показано в левой части рисунка 19.14. Выключатель – это устройство, которое размыкает и замыкает цепь, как выключатель света. Он аналогичен клапану в водяном контуре, как показано в правой части рисунка 19.14. При разомкнутом переключателе ток в цепи не проходит. Когда переключатель замкнут, он становится частью провода, поэтому ток проходит через него без потери напряжения.

    Конденсатор обозначен буквой C слева на Рисунке 19.14. Конденсатор в электрической цепи аналогичен гибкой мембране в водяном контуре. Когда переключатель замкнут в цепи, показанной на рисунке 19.14, батарея заставляет электрический ток течь к конденсатору, заряжая верхнюю пластину конденсатора положительным зарядом. Когда это происходит, напряжение на обкладках конденсатора увеличивается. Это похоже на мембрану в водяном контуре: когда клапан открывается, насос заставляет воду течь к мембране, заставляя ее растягиваться для удержания излишков воды.Когда это происходит, давление за мембраной увеличивается.

    Теперь, если мы разомкнем выключатель, конденсатор будет удерживать напряжение между своими пластинами, потому что зарядам некуда идти. Точно так же, если мы закроем клапан, воде некуда будет идти, и мембрана будет поддерживать давление воды в трубе между собой и клапаном.

    Если переключатель в электрической цепи замкнут в течение длительного времени или если клапан в водяном контуре долгое время открыт, ток в конечном итоге перестанет течь, потому что конденсатор или мембрана полностью заряжены.Теперь каждая цепь находится в установившемся состоянии, что означает, что ее характеристики не меняются со временем. В этом случае установившееся состояние характеризуется нулевым током, и он не меняется, пока переключатель или клапан остаются в том же положении. В установившемся режиме через конденсатор не проходит электрический ток и через мембрану не проходит ток воды. Разница напряжений между пластинами конденсатора будет такой же, как и напряжение батареи. В водяном контуре давление за мембраной будет таким же, как давление, создаваемое насосом.

    Хотя схема на рис. 19.14 может показаться немного бессмысленной, потому что все, что происходит, когда переключатель замкнут, – это зарядка конденсатора, это показывает способность конденсатора накапливать заряд. Таким образом, конденсатор служит резервуаром для заряда. Это свойство конденсаторов используется в схемах по-разному. Например, конденсаторы используются для питания цепей во время зарядки аккумуляторов. Кроме того, конденсаторы могут служить фильтрами. Чтобы понять это, вернемся к аналогии с водой.Предположим, у вас есть шланг для воды и вы поливаете свой сад. Ваш друг думает, что он забавный, и перегибает шланг. Пока шланг перекручен, вода не течет. Когда он отпускает, вода снова течет. Если он сделает это очень быстро, вы почувствуете, что вода – нет воды – вода – нет воды, и это действительно не способ поливать свой сад. Теперь представьте, что шланг наполняет большое ведро, и вы поливаете его из нижней части ведра. Если у вас с самого начала была вода в ведре, и ваш друг не перегибал шланг слишком долго, вы сможете поливать свой сад без перерывов.Ваш друг, перегибающий водяной шланг, отфильтрован , а поступает из большого ведра с водой, поэтому это не повлияет на вашу способность поливать сад. Мы можем думать о прерываниях тока (будь то вода или электрический ток) как шум . Конденсаторы действуют аналогично ведру для воды, помогая отфильтровывать шум. Конденсаторы имеют так много применений, что очень редко можно найти электронную схему, в которой нет конденсаторов.

    Рис. 19.14 Слева представлена ​​электрическая цепь, содержащая батарею, переключатель и конденсатор.Слева – аналогичный водяной контур с насосом, клапаном и растягивающейся мембраной. Насос подобен батарее, клапан – переключателю, а растяжимая мембрана – конденсатору. Когда переключатель замкнут, электрический ток течет по мере зарядки конденсатора и увеличения его напряжения. Точно так же в водяном контуре, когда клапан открыт, поток воды течет по мере того, как растягивающаяся мембрана растягивается, и давление воды за ней увеличивается.

    Работа в физике

    Что нужно, чтобы стать инженером-электриком

    Физика используется в самых разных областях.Одна из областей, требующая очень глубоких знаний физики, – это электротехника. Инженер-электрик может работать над чем угодно, от крупномасштабных энергосистем, обеспечивающих энергией большие города, до электронных схем нанометрового масштаба, которые используются в компьютерах и сотовых телефонах (рис. 19.15).

    Работая с энергетическими компаниями, вы можете нести ответственность за обслуживание электросети, которая поставляет электроэнергию на большие территории. Хотя большая часть этой работы выполняется из офиса, обычно их вызывают на сверхурочную работу после штормов или других стихийных бедствий.Многим инженерам-электрикам нравится эта часть работы, которая требует от них гонок по сельской местности, ремонтирующих высоковольтные трансформаторы и другое оборудование. Однако одним из наиболее неприятных аспектов этой работы является удаление трупов несчастных белок или других животных, забредших в трансформеры.

    Другая карьера в области электротехники может включать разработку схем для сотовых телефонов, что требует втиснуть около 10 миллиардов транзисторов в электронный чип размером с ноготь большого пальца.Эти работы могут включать в себя много работы с компьютерным моделированием, а также могут включать другие области помимо электроники. Например, линзы диаметром 1 м, которые используются для изготовления этих схем (по состоянию на 2015 год), настолько точны, что их отправляют с производства на завод по производству микросхем в грузовиках с контролируемой температурой, чтобы гарантировать, что они будут удерживаться в определенный температурный диапазон. Если они нагреваются или охлаждаются слишком сильно, они слегка деформируются, делая их бесполезными для сверхточной фотолитографии, необходимой для производства этих чипов.

    Помимо глубоких знаний физики, инженеры-электрики должны, прежде всего, быть практичными. Рассмотрим, например, как одной корпорации удалось запустить несколько противоракетных ракет на ракетном полигоне Уайт-Сэндс в Нью-Мексико в 1960-х годах. Перед запуском обшивка ракеты должна была иметь такое же напряжение, что и рельс, с которого она запускалась. Рельс был соединен с землей большим медным проводом, соединенным с колом, вбитым в песчаную землю. Однако ракета была соединена с помощью пуповины с оборудованием в диспетчерской в ​​нескольких метрах от нее, которое было заземлено через другую цепь заземления.Перед запуском ракеты разница напряжений между обшивкой ракеты и направляющей должна быть менее 2,5 В. После особенно засушливой погоды запуск ракеты невозможен, так как разница напряжений составляет 5 В. Группа электрических цепей. инженеры, в том числе отец вашего автора, стояли вокруг, размышляя, как уменьшить разницу напряжений. Ситуация разрешилась, когда один из инженеров понял, что моча содержит электролиты и неплохо проводит электричество.При этом четыре инженера быстро решили проблему, помочившись на шип. Разница напряжений сразу упала ниже 2,5 В, и ракета была запущена по графику.

    Рисунок 19.15 Системы, над которыми работают инженеры-электрики, варьируются от микропроцессорных схем (слева) до ракетных систем (справа).

    Virtual Physics

    Развлекайтесь, строя схемы всех форм и размеров. Это моделирование предоставляет вам различные стандартные элементы схемы, такие как батареи, источники переменного напряжения, резисторы, конденсаторы, лампочки, переключатели и т. Д.Вы можете подключить их в любой конфигурации, которая вам нравится, и затем увидеть результат.

    Создайте схему, которая начинается с резистора, подключенного к конденсатору. Подключите свободную сторону резистора к положительной клемме батареи, а свободную сторону конденсатора – к отрицательной клемме батареи. Нажмите кнопку сбросить динамику , чтобы увидеть, как течет ток, начиная с нулевого заряда конденсатора. Теперь щелкните резистор правой кнопкой мыши, чтобы изменить его значение. Когда вы увеличиваете сопротивление, схема достигает установившегося состояния быстрее или медленнее?

    Проверка захвата

    Когда схема достигла установившегося состояния, как напряжение на конденсаторе сравнивается с напряжением батареи? Какое напряжение на резисторе?

    1. Напряжение на конденсаторе больше, чем напряжение аккумулятора.В установившемся режиме через эту цепь не протекает ток, поэтому напряжение на резисторе равно нулю.
    2. Напряжение на конденсаторе меньше напряжения батареи. В установившемся режиме через эту цепь протекает конечный ток, поэтому напряжение на резисторе конечно.
    3. Напряжение на конденсаторе такое же, как напряжение аккумулятора. В установившемся режиме через эту цепь не протекает ток, поэтому напряжение на резисторе равно нулю.
    4. Напряжение на конденсаторе такое же, как напряжение аккумулятора. В установившемся режиме через эту цепь протекает конечный ток, поэтому напряжение на резисторе конечно.

    Как работают резисторы? Что внутри резистора?

    Когда вы впервые узнаете об электричестве, вы обнаружите, что материалы делятся на две основные категории, называемые проводниками и изоляторы.Проводники (например, металлы) пропускают электричество через их; изоляторы (например, пластмассы и дерево), как правило, этого не делают. Но Нет ничего проще, не так ли? Любое вещество будет вести электричество, если на него подать достаточно большое напряжение: даже воздух, который обычно является изолятором, внезапно становится проводником, когда в облаках накапливается мощное напряжение – вот что делает молния. Вместо того, чтобы говорить о проводниках и изоляторах, это часто яснее говорить о сопротивлении: легкость, с которой что-то позволит электричеству течь через него.У проводника низкое сопротивление, в то время как изолятор имеет гораздо более высокое сопротивление. Устройства под названием резисторы позволяют вводить точно контролируемые величины сопротивления в электрические цепи. Давайте подробнее разберемся, что они из себя представляют и как они работают!

    Фото: четыре типичных резистора, расположенных бок о бок в электронной схеме. Резистор работает путем преобразования электрической энергии в тепло, которое рассеивается в воздухе.

    Что такое сопротивление?

    Электричество течет через материал, переносимый электронами, крошечные заряженные частицы внутри атомов.В широком смысле говоря, материалы, которые хорошо проводят электричество, – это те, которые позволяют электронам свободно течь. через них. В металлах, например, атомы заперты в прочная кристаллическая структура (немного похожа на металлическую подъемную раму в детская площадка). Хотя большинство электронов внутри этих атомов зафиксированные на месте, некоторые из них могут проходить сквозь конструкцию, унося с собой электричество. Поэтому металлы – хорошие проводники: металл относительно небольшое сопротивление протекающим через него электронам.

    Анимация: Электроны должны проходить через материал, чтобы переносить через него электричество. Чем тяжелее электронам течь, тем больше сопротивление. Металлы обычно имеют низкое сопротивление потому что электроны могут легко проходить через них.

    Пластмассы совсем другие. Хотя часто они твердые, у них нет того же кристаллическая структура. Их молекулы (которые обычно очень длинные повторяющиеся цепи, называемые полимерами), связаны между собой в такие способ, которым электроны внутри атомов полностью заняты.Там Короче говоря, нет свободных электронов, которые могут перемещаться в пластмассах. проводить электрический ток. Пластик – хорошие изоляторы: ставят до высокого сопротивления протекающим через них электронам.

    Это все немного расплывчато для такого предмета, как электроника, которая требует точного контроля электрических токов. Вот почему мы определяем сопротивление, точнее, напряжение в вольтах, необходимое для через цепь протекает ток 1 ампер. Если требуется 500 вольт для сделать расход 1 ампер, сопротивление 500 Ом (написано 500 Ом).Ты можешь см. это соотношение, записанное в виде математического уравнения:

    V = I × R

    Это известно как закон Ома для немецкого языка. физик Георг Симон Ом (1789–1854).

    Фото: Используя такой мультиметр, вы можете автоматически определить сопротивление электронного компонента; измеритель пропускает через компонент известный ток, измеряет напряжение на нем и использует закон Ома для расчета сопротивления. Хотя мультиметры достаточно точны, вы должны помнить, что провода и щупы также имеют сопротивление, которое внесет ошибку в ваши измерения (чем меньше сопротивление, которое вы измеряете, тем больше вероятная ошибка).Здесь я измеряю сопротивление громкоговорителя в телефоне, которое, как вы можете видеть на цифровом дисплее, составляет 36,4 Ом. Вставка: переключатель на мультиметре позволяет мне измерять различные сопротивления (200 Ом, 2000 Ом, 20K = 20000 Ом, 200K = 200000 Ом и 20M = 20 миллионов Ом).

    Сопротивление бесполезно?

    Сколько раз вы слышали такое в фильмах о плохих парнях? Это часто верно и в науке. Если материал имеет высокое сопротивление, он означает, что электричеству будет сложно пройти через него.Чем больше электричеству приходится бороться, тем больше энергии потрачено впустую. Это звучит вроде плохая идея, но иногда сопротивление далеко не «бесполезно» и на самом деле очень полезно.

    Фото: Нить накаливания внутри старой лампочки. Это очень тонкий провод с умеренным сопротивлением. Он нагревается, поэтому ярко светится и излучает свет.

    В лампочке старого образца, например, электричество проходит через очень тонкий кусок проволоки называется нитью.Провод такой тонкий, что электричество действительно нужно бороться, чтобы пройти через это. Это делает провод чрезвычайно горячий – настолько сильно, что даже излучает свет. Без сопротивление, такие лампочки не работают. Конечно недостаток в том, что приходится тратить огромное количество энергии на нагрев нить. Такие старые лампочки зажигают свет, тепло, поэтому их называют лампами накаливания; Новые энергоэффективные лампочки излучают свет, не выделяя много тепла, благодаря совершенно иному процессу флуоресценции.

    Тепло, которое выделяют нити, не всегда тратится впустую. В таких приборах, как электрические чайники, электрические радиаторы, электрические души, кофеварки и тостеры, есть более крупные и прочные версии волокон, называемые нагревательные элементы. Когда через них протекает электрический ток, они получают достаточно горячей, чтобы вскипятить воду или приготовить хлеб. В нагревательных элементах, по крайней мере, сопротивление далеко не бесполезно.

    Сопротивление

    также полезно в таких вещах, как транзисторные радиоприемники и телевизор. наборы.Предположим, вы хотите уменьшить громкость на телевизоре. Ваш ход ручка громкости, и звук становится тише, но как это происходит? Регулятор громкости на самом деле является частью электронного компонента, называемого переменный резистор. Если вы уменьшите громкость, вы на самом деле повышение сопротивления в электрической цепи, которая приводит в движение громкоговоритель телевизора. Когда вы включаете сопротивление, электрический ток, протекающий по цепи, уменьшается. С меньшим током, меньше энергии для питания громкоговорителя, поэтому он звучит намного тише.

    Фотография: «Переменный резистор» – это очень общее название компонента, сопротивление которого может изменяться в зависимости от перемещение диска, рычага или какого-либо элемента управления. Более конкретные виды переменных резисторов включают потенциометры (небольшие электронные компоненты с тремя выводами) и реостаты (обычно намного больше и сделанные из нескольких витков спирального провода со скользящим контактом, который перемещается по катушкам, чтобы «отвести» некоторую часть сопротивления). . Фотографии: 1) Маленький переменный резистор, действующий как регулятор громкости в транзисторном радиоприемнике.2) Два больших реостата от электростанции. Вы можете увидеть регуляторы набора, которые “отталкивают” большее или меньшее сопротивление. Фото Джека Баучера из журнала Historic American Engineering Record любезно предоставлено Библиотекой Конгресса США.

    Как работают резисторы

    Люди, занимающиеся изготовлением электрических или электронных цепей для особых рабочие места часто нуждаются в точном сопротивлении. Они могут сделайте это, добавив крошечные компоненты, называемые резисторами. Резистор – это маленький пакет сопротивления: подключите его к цепи, и вы уменьшите ток на точную величину.Снаружи все резисторы выглядят более-менее то же самое. Как вы можете видеть на верхнем фото на этой странице, резистор – это короткий червеобразный компонент с цветными полосами на сторона. Он имеет два соединения, по одному с каждой стороны, так что вы можете зацепить это в цепь.

    Что происходит внутри резистора? Если вы сломаете одну открытую и соскоблите внешнее покрытие изоляционной краски, вы можете увидеть изолирующий керамический стержень, проходящий через середину, с медной проволокой, обернутой снаружи.Такой резистор называют проволочным. Количество витков меди регулирует сопротивление очень точно: чем больше витков меди, тем тоньше медь, тем выше сопротивление. В резисторах меньшего номинала предназначен для схем малой мощности, медная обмотка заменена на спиральный узор из углерода. Такие резисторы намного дешевле марки и называются карбон-пленкой. Как правило, резисторы с проволочной обмоткой более точны и стабильны при более высоких рабочих температурах.

    Фото: внутри резистора с проволочной обмоткой.Разломайте пополам, соскребите краску, и вы сможете отчетливо увидеть изолирующий керамический сердечник и проводящий медный провод, обернутый вокруг него.

    Как размер резистора влияет на его сопротивление?

    Предположим, вы пытаетесь протолкнуть воду по трубе. Различные виды трубок будут более или менее услужливыми, поэтому более толстая труба будет сопротивляться воде меньше, чем более тонкая и более короткая труба будет оказывать меньшее сопротивление, чем более длительное. Если вы заполните трубу, скажем, галькой или губкой, вода будет по-прежнему просачиваться через него, но гораздо медленнее.Другими словами, длина, площадь поперечного сечения (площадь вы смотрите в трубу, чтобы увидеть, что внутри), и все, что внутри трубы, влияет на ее сопротивление воде.

    Электрические резисторы очень похожи – на них действуют те же три фактора. Если вы сделаете провод тоньше или длиннее, электронам будет труднее перемещаться по нему. И, как мы уже видели, электричеству труднее проходить через одни материалы (изоляторы), чем через другие (проводники). Хотя Георг Ом наиболее известен тем, что связывает напряжение, ток и сопротивление, он также исследовал эту взаимосвязь. между сопротивлением и размером и типом материала, из которого изготовлен резистор.Это привело его к другому важному уравнению:

    R = ρ × L / A

    Проще говоря, сопротивление (R) материала увеличивается с увеличением его длины (поэтому более длинные провода обеспечивают большее сопротивление) и увеличивается с уменьшением его площади (более тонкие провода обеспечивают большее сопротивление). Сопротивление также связано с типом материала, из которого изготовлен резистор, и это обозначено в этом уравнении символом ρ, который называется удельным сопротивлением и измеряется в единицах Ом · м (омметры).У разных материалов очень разные удельные сопротивления: проводники имеют гораздо более низкое удельное сопротивление, чем изоляторы. При комнатной температуре алюминий имеет сопротивление около 2,8 x 10 −8 Ом · м, тогда как медь (лучший проводник) значительно ниже – 1,7 −8 Ом · м. Кремний (полупроводник) имеет удельное сопротивление около 1000 Ом · м, а стекло (хороший изолятор) измеряет около 10 12 Ом · м. Из этих цифр видно, насколько разные проводники и изоляторы обладают способностью переносить электричество: кремний примерно в 100 миллиардов раз хуже, чем медь, а стекло снова примерно в миллиард раз хуже!

    Диаграмма: Хорошие проводники: Сравнение удельного сопротивления 10 обычных металлов и сплавов с удельным сопротивлением серебра при комнатной температуре.Например, вы можете видеть, что нихром, сплав, используемый в нагревательных элементах, имеет примерно в 66 раз большее сопротивление, чем аналогичный кусок серебра. Данные из разных источников.

    Сопротивление и температура

    Сопротивление резистора не является постоянным, даже если это определенный материал фиксированной длины и площади: оно постепенно увеличивается на при повышении температуры. Почему? Чем горячее материал, тем сильнее его атомы или ионы качаются и тем труднее его выдерживать. электроны должны пробираться сквозь них, что приводит к более высокому электрическому сопротивлению.Говоря в широком смысле, удельное сопротивление большинства материалов линейно увеличивается с температурой (поэтому, если вы увеличите температура на 10 градусов, удельное сопротивление увеличивается на определенную величину, а если вы его увеличите еще на 10 градусов удельное сопротивление снова возрастает на ту же величину). Если вы охладите материал, вы понизите его удельное сопротивление, а если охладите его до чрезвычайно низкого температуры, иногда можно заставить сопротивление вообще исчезнуть, что является известным явлением. как сверхпроводимость.

    Диаграмма: Сопротивление материала увеличивается с температурой. На этой диаграмме показано, как удельное сопротивление (основное сопротивление материала, независимо от его длины или площади) увеличивается почти линейно при повышении температуры от абсолютного нуля до примерно 600 К (327 ° C) для четырех обычных металлов. Построено с использованием исходных данных из “Удельное электрическое сопротивление выбранных элементов” П. Десаи и др., J. Phys. Chem. Ref. Data, Том 13, № 4, 1984 г. и «Удельное электрическое сопротивление меди, золота, палладия и серебра» Р.Matula, J. Phys. Chem. Ref. Data, Vol 8, No. 4, 1979, любезно предоставлено Национальным институтом стандартов и технологий США. Открытые данные.

    Обозначение переменного резистора

    : Полное руководство

    Электронный символ – это пиктограмма, используемая для обозначения различных электрических и электронных устройств или функций, таких как провода, батареи, резисторы и транзисторы, на принципиальной схеме электрической или электронной схемы. Сегодня эти символы в значительной степени стандартизированы на международном уровне, но могут отличаться от страны к стране или могут иметь разные инженерные дисциплины, основанные на традиционных соглашениях.В этой статье Linquip рассмотрит обозначение переменного резистора. Читай дальше, чтобы узнать больше.

    Стандарты для символов

    Графические символы, используемые для электрических компонентов в принципиальных схемах, подпадают под национальные и международные стандарты, в частности:

    • IEC 60617 (также известный как британский стандарт BS 3939)
    • Существует также IEC 61131-3 – для символов релейной логики.
    • Символы JIC (Объединенного промышленного совета), утвержденные и принятые NMTBA (Национальная ассоциация производителей станков).Они взяты из Приложения к спецификации NMTBA EGPl-1967
    • ANSI Y32.2-1975 (также известной как IEEE Std 315-1975 или CSA Z99-1975).
    • IEEE Std 91 / 91a: графические символы для логических функций (используются в цифровой электронике). На него есть ссылка в ANSI Y32.2 / IEEE Std 315.
    • Австралийский стандарт AS 1102 (основан на слегка измененной версии IEC 60617; отменен без замены с рекомендацией использовать IEC 60617).

    Количество стандартов приводит к путанице и ошибкам.Использование символов иногда является уникальным для инженерных дисциплин, и существуют национальные или местные варианты международных стандартов. Например, символы освещения и мощности, используемые как часть архитектурных чертежей, могут отличаться от символов устройств, используемых в электронике.

    Что означает символ переменного резистора?

    Переменный резистор, также называемый регулируемым резистором, состоит из двух выводов, где один из выводов является скользящим или подвижным контактом, часто известным как стеклоочиститель.Обозначение переменного резистора IEC представлено прямоугольной рамкой и стрелкой поперек (или над ним), как показано на рисунке ниже.

    Обозначения различных типов переменных резисторов

    Здесь представлены символы различных типов переменных резисторов для электронной конструкции.

    Символ потенциометра очень похож на символ переменного резистора; однако это устройство с тремя выводами. Когда все три клеммы используются в цепи, а выходное напряжение снимается с подвижной клеммы, переменный резистор известен как потенциометр.

    Здесь две фиксированные клеммы подключены к источнику напряжения. Это означает, что падение напряжения на всей резистивной дорожке не что иное, как напряжение источника. Выходная цепь подключена к подвижной клемме. Таким образом, контролируя / изменяя положение подвижной клеммы, мы можем изменить сопротивление и, следовательно, напряжение на нагрузке.

    Этот символ переменного резистора на принципиальной схеме представлен, как показано на рисунке ниже.

    По конструкции реостат почти аналогичен потенциометру.Как и потенциометр, реостат также состоит из трех выводов. Однако в этом типе переменного резистора используется одна из фиксированных клемм и подвижная клемма, а третья фиксированная клемма остается неиспользованной. Такое подключение помогает уменьшить или увеличить ток в цепи, просто изменив положение движущегося стеклоочистителя. При изменении сопротивления ток изменяется обратно пропорционально. То есть при увеличении сопротивления ток в цепи уменьшится.

    Прямоугольная коробка с тремя клеммами и стрелкой поперек нее представляет собой символ реостата.

    Термистор – это тип резистора, сопротивление которого быстро изменяется при небольшом изменении температуры. Обозначение термистора по международному стандарту показано на рисунке ниже.

    Предустановленный переменный резистор – это микроверсия переменного резистора, имеющая три ножки или клеммы. Его можно установить прямо на схему.Предустановленное значение регулируется только один раз в процессе калибровки контура. Он имеет регулируемый винт, прикрепленный к резистору, который регулируется с помощью отвертки, чтобы получить желаемое сопротивление. Сопротивление здесь изменяется логарифмически. Этот символ переменного резистора показан на рисунке ниже.

    Фоторезистор, также называемый светозависимым резистором (LDR), представляет собой переменный резистор, сопротивление которого изменяется обратно пропорционально интенсивности света. Чтобы представить фоторезистор на принципиальной схеме, выбранный символ указывает на то, что это светозависимое устройство, а также тот факт, что это резистор.Символ представляет собой резистор с кружком вокруг него. Есть также две стрелки, указывающие на него, представляющие свет.

    Магниторезистор – это особый вид переменного резистора, электрическое сопротивление которого зависит от приложенной к нему внешней магнитной силы.

    На принципиальной схеме магнитосопротивление представлено символом, показанным ниже. Стрелка, проходящая через символ резистора, обозначает переменный резистор, а «x» под ним означает, что используемый переменный резистор является магниторезистором.

    Итак, это все, что вам нужно знать о символе переменного резистора. Если вам понравилась эта статья в Linquip, дайте нам знать, оставив ответ в разделе комментариев. Есть вопросы, с которыми мы можем вам помочь? Не стесняйтесь: зарегистрируйтесь на нашем сайте , чтобы получить самые профессиональные консультации от наших экспертов.

    Роль резисторов в электрических цепях

    Роль резисторов в электрической цепи: ПРИМЕЧАНИЕ: диаграммы, ссылки и практические вопросы в этот документ еще не добавлены: В электрических цепях постоянного или переменного тока, у которых есть резистор, как следует из названия, сопротивляется потоку электронов.Это один из самых основных электрических компонентов. Его можно использовать для уменьшения доступного напряжения или тока в цепи. Хотя существуют различия в том, как резистор влияет на два разных типа источников тока (постоянного или переменного тока), в зависимости от конструкции резистора и задействованной частоты переменного тока, можно предположить, что нижеследующее в равной степени применимо к обоим. Для цепей переменного тока может потребоваться указать способ представления напряжения, среднее значение, пиковое значение или среднеквадратичное значение (RMS).Если не указывается тип напряжения переменного тока, обычно предполагается, что это значение (RMS).

    Как обсуждалось в разделе Закона Ома, в электрической цепи напряжение (измеренное в вольтах и ​​обозначенное буквой V) равно току (измеренному в амперах и обозначенному буквой I), умноженному на сопротивление (измеренное в Ом и обозначенное буквой I). буквой R) присутствует в цепи. Это представлено следующей формулой.

     V = IR или E = IR (закон Ома)
     

    (Напряжение иногда обозначается буквой «E», что означает электродвижущую силу)

    Электрическая цепь может включать в себя множество резисторов.То, как эти резисторы воздействуют на цепь, зависит от того, как они расположены в цепи. Резисторы могут быть расположены последовательно или параллельно источнику напряжения. См. Пример ниже.

    На рисунке 1 представлена ​​электрическая цепь с двумя последовательно включенными резисторами. Чтобы ток замкнул электрическую цепь, он должен течь от источника напряжения (B1) и проходить через резистор 1 (R1) и резистор 2 (R2), а затем обратно к B1.

    Общее сопротивление в цепи представляет собой сумму двух номиналов резисторов (измеряется в омах, обозначается греческой буквой Ω).Следовательно, на рисунке 1 полное сопротивление цепи (RT) равно R1 + R2, что равно 100 Ом.

    На рисунке 2 представлена ​​электрическая цепь с двумя параллельными резисторами. Чтобы ток замкнул электрическую цепь, он должен течь от источника напряжения (B1), а затем у тока есть два доступных пути, чтобы вернуться к B1. Часть тока пройдет через резистор 1 (R1) обратно в B1, а часть пройдет через резистор 2 (R2), а затем обратно в B1.

    Общее сопротивление в параллельной цепи не так просто, как в последовательной цепи.Общее сопротивление в цепи на рисунке 2 является обратной величиной суммы обратной суммы двух номиналов резисторов (измеряется в омах, обозначается греческой буквой Ω). Следовательно, на рисунке 2 полное сопротивление цепи (RT) равно 1 / (1 / R1 + 1 / R2), что равно 25 Ом.

    Важно отметить влияние на схему расположения резисторов. Используя закон Ома, мы можем определить, что полный ток, протекающий в каждой из двух цепей, значительно отличается, даже если для обеих использовались одни и те же компоненты.

    Применяя небольшую алгебру к уравнению закона Ома, мы можем определить полный ток для каждой цепи.

    Для схемы на рисунке 1 полный ток в цепи выражается уравнением: I = V / R. Подставляя известные нам числа, где V = 10 вольт и R = 100 Ом, мы получаем общий ток, протекающий в цепи, равный 10/100, что равняется 0,1 ампера.

    Для схемы на рисунке 2 полный ток в цепи снова выражается уравнением: I = V / R.Подставляя известные нам числа, где V = 10 вольт и R = 25 Ом, мы получаем общий ток, протекающий в цепи, равный 10/25, что равняется 0,4 ампера.

    Последовательные резисторы:

    При последовательном использовании резисторы можно назвать «сетью деления напряжения». Это связано с тем, что в последовательной цепи ток, протекающий через каждый резистор, имеет одинаковое значение, но напряжение, присутствующее на каждом резисторе, составляет только часть общего значения напряжения цепи. Снова посмотрев на схему с рисунка 1, мы можем определить напряжение на каждом резисторе.

    <Схема>

    Основываясь на том факте, что в последовательной цепи ток, протекающий через каждый резистор, одинаков, мы снова можем использовать закон Ома, чтобы предсказать, какое напряжение будет присутствовать на каждом резисторе. Поскольку мы уже знаем, что общий ток цепи равен 0,1 А, а R1 равен 50 Ом, общее напряжение на R1 равно 0,1 А X 50 Ом = 5 вольт. Поскольку R2 имеет то же значение, что и R1, на R2 также будет подаваться 5 вольт.

    Мы можем дважды проверить нашу математику, сложив вместе все напряжения, присутствующие на всех резисторах.В этом случае 5 В + 5 В = 10 В, что соответствует общему присутствующему напряжению.

    Сопротивление параллельно:

    При параллельном использовании резисторы можно назвать «токораспределительной сетью». Это связано с тем, что в параллельной цепи напряжение на каждом резисторе имеет одинаковое значение, но ток, протекающий через каждый резистор, составляет лишь часть общего значения тока цепи. Снова посмотрев на схему на рисунке 2, мы можем определить ток, протекающий через каждый резистор.

    Основываясь на том факте, что в параллельной цепи напряжение на каждом резисторе одинаково, мы снова можем использовать закон Ома, чтобы предсказать, сколько тока будет протекать через каждый резистор. Поскольку мы уже знаем, что полное напряжение цепи равно 10 вольт, а R1 равно 50 Ом, общий ток, протекающий через R1, равен 10 В / 50 Ом = 0,2 ампера. Поскольку R2 имеет то же значение, что и R1, на R2 также будет подаваться 0,2 ампер.

    Мы можем дважды проверить нашу математику, сложив вместе все токи, протекающие через все резисторы.В этом случае 0,2 А + 0,2 А = 0,4 А, что согласуется с общим током, который мы ранее определили для рисунка 2.

    Сопротивление сложной цепи:

    В некоторых схемах вы найдете как последовательные, так и параллельные резисторы. Те же правила применяются в этих более сложных схемах, где присутствуют оба типа схем, как и в более простых схемах, где присутствует только одна. В случае сложных последовательных / параллельных резистивных цепей лучше всего переопределить параллельные части цепи в последовательную эквивалентную цепь, а затем использовать закон Ома для определения общего тока и присутствующего сопротивления.Затем вы можете использовать значения общего тока и напряжения для определения напряжений и токов, присутствующих на каждом из резисторов в цепи.

    <ДИАГРАММА>

    Начните с определения общего сопротивления параллельной комбинации R2 и R3, которое равно:

     [R2 & 3 = 1 / (1 / R2 + 1 / R3)] → [R2 & 3 = 1 / (1/100 + 1/400)] → [R2 & 3 = 1 / (0,01 + 0,0025)] → [R2 & 3 = 1 / (0,0125)] → R2 и 3 = 80 Ом
     

    Затем вы можете перерисовать схему, показанную на рисунке 3, в последовательную эквивалентную схему, которая выглядит как рисунок 4.

    <ДИАГРАММА>

    Теперь мы можем определить полное сопротивление цепи, просто сложив все резисторы в последовательной эквивалентной схеме:

     [RT = R1 + R2 & 3 + R4 + R5] → [RT = 50 + 80 + 100 + 20] → RT = 250 Ом
     

    Вооружившись общим сопротивлением цепи и полным напряжением цепи, теперь мы можем вычислить полный ток цепи, используя закон Ома:

     [VT = ITRT] → [IT = VT / RT] → [IT = 10 В / 250 Ом] → IT = 0,04 A
     

    Теперь мы можем вычислить напряжение и ток, присутствующие на каждом из резисторов, используя закон Ома и два правила для цепей сопротивления:

    1) В последовательной цепи ток одинаков на всех резисторах – цепи делителя напряжения.2) В параллельной цепи присутствующее напряжение одинаково для всех резисторов – цепи делителя тока.

    Для R1:

     [VR1 = IT X R1] → [VR1 = 0,04 A X 50 Ом] → VR1 = 2 В
     

    Для R2 и 3:

     [VR2 & 3 = IT X R2 & 3] → [VR2 & 3 = 0,04 A X 80 Ом] → VR2 и 3 = 3,2 В
     

    Для R2:

     [IR2 = VR2 и 3 / R2] → [IR2 = 3,2 В / 100] → I R2 = 0,032 A
     

    Для R3:

     [IR3 = VR2 & 3 / R3] → [IR2 = 3.2V / 400] → I R2 =.008A
     

    Для R4:

     [VR4 = IT X R4] → [VR4 = 0,04 A X 100 Ом] → VR4 = 4 В
     

    Для R5:

     [VR5 = IT X R5] → [VR5 = 0,04 A X 20 Ом] → VR5 = 0,8 В
     

    Двойная проверка для проверки точности нашего анализа схемы подтверждает, что все отдельные напряжения, присутствующие на каждом резисторе в последовательной эквивалентной схеме, составляют в сумме 10 вольт, доступных от источника, а все токи в параллельной части схемы составляют полный ток по цепи 0.04А.

    Наука в помощь! 1. По схеме где находится резистор? а, б, в или г 2. Согласно

    1). Резистор расположен в точке D на данной схеме.

    2). Переключатель расположен в точке B на данной диаграмме.

    Пояснение:

    Резистор в цепи – это компонент, который препятствует прохождению тока через цепь. Сопротивление – это измерение препятствия, создаваемого проводником на пути тока, протекающего через него.

    С другой стороны, выключатель – еще одна важная часть полной схемы. Выключатель – это компонент, который используется для включения и выключения тока, протекающего по цепи.

    Другими важными компонентами полной цепи являются батарея, соединительные провода и т. Д. Батарея является источником энергии, который управляет всей цепью, а соединительные провода являются средой, которая обеспечивает протекание тока от одного конца цепи к другой конец.

    Символы различных компонентов показаны на прилагаемом ниже рисунке:

    Следовательно,

    Часть (1):

    Резистор расположен в точке D на данной схеме.6 м / с brainly.com/question/1979815

    3. Сравните отношение площади поверхности к объему Земли и Венеры brainly.com/question/7227193

    Подробности ответа:

    Класс: Средняя школа

    Тема: Физика

    Глава: Электричество

    Ключевые слова: Резистор, переключатель, полная цепь, помеха, ток, включение и выключение, точка D, точка B, согласно схеме, резистор расположен, компоненты.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *