Содержание

По какой формуле найти ёмкость (объем) конденсаторов

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Конденсаторы

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

C=q/U, где:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

С=Co*ε, где:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Устройство конденсатора

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

Если нужно рассчитать плоский конденсатор, то необходимо учесть площадь обкладок и расстояние между ними. Это отражено в формуле, по которой рассчитывается ёмкость плоского конденсатора:

C=ε/d, где:

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

C=(2π*l*R*ε)/d, где:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

C=(4π*l*R1*R2*ε)/(R2-R1), где:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.

Формулы ёмкости конденсаторов различной формы

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников.

Параметры заряженного элемента рассчитывается по формуле:

C=Q/φ, где:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Способы соединения элементов

Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.

Соединение конденсаторов

Параллельное соединение

Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.

При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:

C=C1+C2+…Cn,

где C1-Cn – параметры деталей, участвующих в параллельном соединении.

Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.

Последовательное соединение

Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.

При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.

Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.

Рассчитываются эти параметры следующим образом:

  • Допустимое напряжение:

Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;

  • Общая ёмкость:

1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.

Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).

Смешанное соединение

Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:

  1. определяются группы элементов, соединённые параллельно;
  2. для каждой группы в отдельности рассчитывается эквивалентные значения;
  3. рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
  4. получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.

Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.

Видео

Оцените статью:

Емкость конденсаторов: определение, формулы, примеры.

Определение 1

Конденсатор – это совокупность двух любых проводников, заряды которых одинаковы по значению и противоположны по знаку.

Его конфигурация говорит о том, что поле, созданное зарядами, локализовано между обкладками. Тогда можно записать формулу электроемкости конденсатора:

C=qφ1-φ2=qU.

Значением φ1-φ2=U обозначают разность потенциалов, называемую напряжением, то есть U. По определению емкость положительна. Она зависит только от размерностей обкладок конденсатора их взаиморасположения и диэлектрика. Ее форма и место должны минимизировать воздействие внешнего поля на внутреннее. Силовые линии конденсатора начинаются на проводнике с положительным зарядом, а заканчиваются с отрицательным. Конденсатор может являться проводником, помещенным в полость, окруженным замкнутой оболочкой.

Выделяют три большие группы: плоские, сферические, цилиндрические. Чтобы найти емкость, необходимо обратиться к определению напряжения конденсатора с известными значениями зарядов на обкладках.

Плоский конденсатор

Определение 2

Плоский конденсатор – это две противоположно заряженные пластины, которые разделены тонким слоем диэлектрика, как показано на рисунке 1.

Формула для расчета электроемкости записывается как

C=εε0Sd, где S является площадью обкладки, d – расстоянием между ними, ε - диэлектрической проницаемостью вещества. Меньшее значение d способствует большему совпадению расчетной емкости конденсатора с реальной.

Рисунок 1

При известной электроемкости конденсатора, заполненного N слоями диэлектрика, толщина слоя с номером i равняется di, вычисление диэлектрической проницаемости этого слоя εi выполняется, исходя из формулы:

C=ε0Sd1ε1+d2ε2+...+dNεN.

Сферический конденсатор

Определение 3

Когда проводник имеет форму шара или сферы, тогда внешняя замкнутая оболочка является концентрической сферой, это означает, что конденсатор

сферический.

Он состоит из двух концентрических проводящих сферических поверхностей с пространством между обкладками, заполненным диэлектриком, как показано на рисунке 2. Емкость рассчитывается по формуле:

C=4πεε0R1R2R2-R1, где R1 и R2 являются радиусами обкладок.

Рисунок 2

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Цилиндрический конденсатор

Емкость цилиндрического конденсатора равняется:

C=2πεε0llnR2R1, где l - высота цилиндров, R1 и R2 - радиусы обкладок. Данный вид конденсатора имеет две соосные поверхности проводящих цилиндрических поверхности, как показано на рисунке 3.

Рисунок 3

Определение 4

Важной характеристикой конденсаторов считается пробивное напряжение - напряжение, при котором происходит электрический разряд через слой диэлектрика.

Umax находится от зависимости от толщины слоя и свойств диэлектрика, конфигурации конденсатора.

Электроемкость плоского конденсатора. Формулы

Кроме отдельных конденсаторов используются их соединения. Наличие параллельного соединения конденсаторов применяют для увеличения его емкости. Тогда поиск результирующей емкости соединения сводится к записи суммы Ci, где Ci- это емкость конденсатора с номером i:

C=∑i=1NCi.

При последовательном соединении конденсаторов суммарная емкость соединения всегда будет по значению меньше, чем минимальная любого конденсатора, входящего в систему. Для расчета результирующей емкости следует сложить величины, обратные к емкостям отдельных конденсаторов:

Пример 1

Произвести вычисление емкости плоского конденсатора при известной площади обкладок
1 см2 с расстоянием между ними 1 мм. Пространство между обкладками находится в вакууме.

Решение

Чтобы рассчитать электроемкость конденсатора, применяется формула:

C=εε0Sd.

Значения:

ε=1, ε0=8,85·10-12 Фм;S=1 см2=10-4 м2;d=1 мм=10-3 м.

Подставим числовые выражения и вычислим:

C=8,85·10-12·10-410-3=8,85·10-13 (Ф).

Ответ: C≈0,9 пФ.

Пример 2

Найти напряженность электростатического поля у сферического конденсатора на расстоянии x=1 см=10-2 м от поверхности внутренней обкладки при внутреннем радиусе обкладки, равном R1=1 см=10-2 м, внешнем – R2=3 см=3·10-2 м. Значение напряжения - 103 В.

Решение

Производящая заряженная сфера создает напряженность поля. Его значение вычисляется по формуле:

E=14πεε0qr2, где q обозначают заряд внутренней сферы, r=R1+x - расстояние от центра сферы.

Нахождение заряда предполагает применение определения емкости конденсатора С:

q=CU.

Для сферического конденсатора предусмотрена формула вида

C=4πεε0R1R2R2-R1 с радиусами обкладок R1 и R2.

Производим подстановку выражений для получения искомой напряженности:

E=14πεε0U(x+R1)24πεε0R1R2R2-R1=U(x+R1)2R1R2R2-R1.

Данные представлены в системе СИ, поэтому достаточно заменить буквы числовыми выражениями:

E=103(1+1)2·10-4·10-2·3·10-23·10-2-10-2=3·10-18·10-6=3,45·104 Вм.

Ответ: E=3,45·104 Вм.

формула для расчета электрической емкости

Конденсатор – радиоэлектронный прибор, способный накапливать и отдавать заряд. Как правило, на его корпусе дается информация о его емкости, но иногда требуется самому рассчитать этот номинал. Конденсаторами могут выступать и проводники, они также обладают определенной емкостью. Для расчета существует несколько формул емкости конденсатора, их и рассмотрим.

В чем измеряется емкость конденсатора

Что такое заряд еще проходят в школе, когда эбонитовую палочку натирают о шерстяную ткань и подносят к маленьким кусочкам бумаги. Под действием электромагнитных сил бумага прилипает к палочке. Подобный заряд накапливается в конденсаторе. Но для начала познакомимся с самим конденсатором.

Простейшим конденсатором являются две металлические пластины, разделенные диэлектриком. От качества диэлектрика зависит, как долго энергия заряженного конденсатора может сохраняться. На этих пластинах, они еще называются обкладками, накапливается разноименный заряд. Как это происходит?

Электрический заряд, а в случае с металлами это электроны, способен перемещаться под действием электродвижущей силы (э. д. с.). Подключая металлические пластинки к источнику тока, мы получаем замкнутую цепь, но разделенную диэлектриком. Электростатическое поле проходит этот диэлектрик, замыкая цепь, а электроны, дойдя до препятствия, останавливаются и скапливаются.

Получается, на одной обкладке наблюдается избыток электронов, и эта пластина имеет отрицательный знак, а на другой пластине электронов недостает настолько же, знак на этой обкладке, конечно же, будет положительным.

Вот теперь нужна для определения емкости конденсатора формула, определяющая, какой заряд способен разместится на конкретном конденсаторе.

В качестве единицы измерения в международной системе (СИ) емкость определяется в Фарадах.

Много это или мало - емкость в 1Ф? Чтобы конденсатор обладал емкостью в 1Ф, он должен содержать в себе заряд в 1К (кулон) и при этом напряжение между обкладками должно равняться 1 вольту.

Интересно. Что такое заряд в 1 кулон? Если два предмета, каждый из которых имеет заряд в один кулон разместить в вакууме на расстоянии один метр, то сила притяжения между ними будет равна силе притяжения землей тела массой в один миллион тонн.

Как и любая буквальная емкость один и тот же конденсатор может вмещать разное количество заряда.

Рассмотрим пример.

  • В трехлитровую банку входит три литра воздуха. Его хватит для дыхания, допустим, на 3 минуты. Но если воздух закачать под каким-то давлением, то емкость так и останется три литра, однако дышать можно будет дольше. Так устроен акваланг для ныряльщиков. Получается, количество воздуха в банке зависит от давления, которое в ней создается. Точно так же есть некая зависимость между различными силами, влияющими на емкость.

Формула емкости плоского конденсатора

Прежде чем узнать, по какой формуле вычисляется емкость плоского конденсатора, рассмотрим формулу для одиночного проводника. Она имеет вид:

  • где Q – заряд,
  • φ – потенциал.

Как видно емкость конденсатора, формула которого здесь приведена, будет тем больше, чем больший заряд способен накапливаться на нем при незначительном потенциале. Чтобы легче это было понять, рассмотрим получившие широкое распространение плоские конденсаторы разных размеров.

Для получения качественного конденсатора важны любые мелочи:

  1. ровная поверхность каждой обкладки;
  2. обе пластинки по всей площади должны располагаться на одинаковом расстоянии;
  3. размеры обкладок должны быть строго идентичными;
  4. от качества диэлектрика, расположенного между пластинками, будет зависеть ток утечки;
  5. емкость напрямую зависит от расстояния между обкладками, чем оно меньше, тем больше емкость.

Теперь обратимся к плоскому конденсатору. Формула определения емкости конденсатора несколько отличается от приведенной выше:

  • где S – площадь одной обкладки,
  • ε- диэлектрическая проницаемость диэлектрика,
  • ε0 - электрическая постоянная,
  • d – расстояние между обкладками.

Электрическая постоянная выражается числом 8,854187817×10-12.

Внимание! Эта формула справедлива только тогда, когда расстояние между пластинами намного меньше их площади.

Попробуем разобраться с каждой переменной подробнее. Площадь измеряется в м2, точнее, приводится к этой величине. А вот проницаемость диэлектрика может обозначаться по-разному.

В России это ε(также означает относительная проницаемость), в англоязычной литературе встречается ε(также означает абсолютная проницаемость), а то может и вовсе использоваться без индекса, просто ε. О том, что здесь используется диэлектрическая проницаемость диэлектрика можно понять из контекста.

Дальше идет ε0. Это уже вычисленное значение, измеряемое в Ф/м. Последняя переменная – d. Измеренное расстояние также приводится к метру. Емкость конденсатора, формула которого сейчас рассматривается, показывает сильную зависимость от расстояния обкладок. Поэтому стараются это расстояние по возможности сокращать. Почему этот показатель так важен?

Идеальными условиями для получения наибольшей емкости – это отсутствие промежутка между обкладками, чего, конечно, добиться невозможно. Чем ближе находятся разноименные заряды, тем сильнее сила притяжения, но здесь возникает компромисс.

При уменьшении толщины диэлектрика, а именно он разделяет разноименные заряды, возникает вероятность его пробоя из-за разности потенциалов на обкладках. С другой стороны, как уже говорилось, при увеличении напряжения увеличивается количество зарядов. Вот и приходится выбирать между емкостью и рабочим напряжением конденсатора.

Есть другая формула для плоского переменного конденсатора:

Здесь диэлектрическая проницаемость обозначена буквой ε, π = 22/7 ≈ 3,142857142857143, d – толщина диэлектрика. Формула предназначена для конденсатора, состоящего из нескольких пластин.

Допустимая толщина диэлектрика d также зависит от εr, чем выше коэффициент, тем тоньше можно использовать диэлектрик, тем большую емкость будет иметь конденсатор. Это был самый сложный материал, дальше будет легче.

Формула емкости цилиндрического конденсатора

Теперь поговорим о том, как найти емкость конденсатора цилиндрической формы. К ним относятся конденсаторы, состоящие из двух металлических цилиндров, вставленных один в другой. Для разделения между ними расположен диэлектрик. Формула емкости конденсатора выглядит следующим образом:

Здесь видим несколько новых переменных:

  • l – высота цилиндра;
  • R1 и R2 – радиус первого и второго (внешнего) цилиндров;
  • ln – это не переменная, а математический символ натурального логарифма. На некоторых калькуляторах он имеется.

Всегда нужно помнить, что все величины должны приводиться к единой системе, в приведенной ниже таблице указаны международные системы единиц (СИ).

Из нее видно, что все расстояния нужно приводить к метру.

Еще стоит обращать внимание на качество диэлектрика. Если толщина диэлектрика влияет только на емкость конденсатора, то его качество затрагивает сохранность энергии. Другими словами, конденсатор с качественным диэлектриком будет иметь меньший саморазряд.

Определить качество можно по числу, стоящему возле вещества, чем оно больше, тем лучше качество. Сравнение производится по вакууму, значение которого равно единице.

Формула емкости сферического конденсатора

Последнее что осталось разобрать – формулу определения емкости конденсатора, состоящего из двух сфер. Причем одна сфера находится внутри другой. Формула имеет следующий вид:

Из приведенных переменных здесь все знакомо. Стоит обратить внимание лишь на сам конденсатор.

Кроме своей необычной формы у него есть свои особенности: внутри малой сферы никакого заряда нет, он образуется на внешней части малой сферы и внутренней части большого шара. Также заряд отсутствует и на внешней стороне внешней сферы.

Так же как и все другие конденсаторы, сферы разделены диэлектриком. Толщина и качество диэлектрика оказывают такое же влияние на емкость, как в случае с другими конденсаторами.

После того как были рассмотрены формулы, стоит испробовать их на практике. Рассмотрим, как найти емкость конденсатора каждого вида.

Примеры решения задач

Начнем с плоского конденсатора. Формула для этого вида:

Допустим, у нас есть следующие значения:

  • в качестве диэлектрика возьмем слюду толщиной 0,02 мм, ε = 6;
  • конденсатор квадратный со сторонами в 7 мм.

Определяем площадь пластин: 7×7 = 49 мм2.

Приводим к единой системе: 4,9×10-5 = 0,000049 м2. Толщина диэлектрика 0,02×10-5 = 0,00002 м. Электрическая постоянная 8,854187817×10-12.

Подставляем в формулу и высчитываем числитель: 6×8,854187817×10-12 ×4,9×10-5, сокращаем и решаем 6×49×8,854187817×10-17 = 2,603131218198×10-14.

Делим на толщину диэлектрика: 2,603131218198×10 / 2×10 = 1301,565609099×10 = 1,301565609099×10. Шесть нулей – это тысячи или приставка «микро», получается округлено 1,3 мкФ.

Возможно, при вычислении была допущена ошибка, но это не экзамен по математике. Важно понять сам метод вычисления.

Формула для цилиндрического конденсатора:

Выбираем значения:

  • l = 1 см;
  • R1 = 0,25 мм;
  • R2 = 0,26 мм;
  • ε = 2.

Подгоняем под единую систему: l - 1 см = 1×10-2 = 0,01 м; R1 – 0,25 мм = 0,0025 м; R2 – 0,26 мм = 0,0026 м.

Подставляем значения в числитель: 2×3,142857142857143×8,854187817×10-12×2×0,01 1,11×10-12. Находим знаменатель: 0,26:0,25 = 1,04.

Находим натуральный логарифм, он равен примерно 0,39. Числитель делим на знаменатель: 1,11×10-12/0,39 = 2,85×10-12.

Число с 12 нулями это приставка «пико», получаем 2,85 пФ.

Формула для сферического конденсатора:

Выбираем значения:

  • ε= 4;
  • r1= 5 см;
  • r2= 5,01 см.

Снова все подгоняем: 5 см = 0,05 м; 5,01 см = 0,0501 м. Заполняем числитель. 4×3,142857142857143×4×8,854187817×10-12×0,05×0,0501 1,11×10-12 Вычисляем знаменатель: 0,0501 – 0,05 = 0,01. Производим деление: 1,11×10-12×0,01 = 1,11×10-10. Снова получили пикофарады, а именно 1,11 пФ.

Похожие материалы на сайте:

Понравилась статья - поделись с друзьями!

 

Электрическая емкость (страница 1)

Решение:
При перемещении пластины емкость конденсатора в данный момент времени определяется той частью площади пластин, по которой они перекрывают друг друга. В моменты времени t1 и t2 площади

где l=10 см-длина стороны пластины. В эти моменты времени конденсатор имеет емкости

а заряды на его пластинах

11 Найти заряд, который нужно сообщить двум параллельно соединенным конденсаторам с емкостями C1 = 2 мкФ и С2=1 мкФ, чтобы зарядить их до разности потенциалов V=20кВ.

Решение:
Общий заряд параллельно соединенных конденсаторов

12 Два одинаковых плоских конденсатора соединены параллельно и заряжены до разности потенциалов V0 = 6 В. Найти разность потенциалов V между пластинами конденсаторов, если после отключения конденсаторов от источника тока у одного конденсатора уменьшили расстояние между пластинами вдвое.

Решение:

13 Два конденсатора с емкостями С1 = 1 мкФ и С2 = 2мкФ зарядили до разностей потенциалов V1=20B и V2 = 50 В. Найти разность потенциалов V после соединения — конденсаторов одноименными полосами.

Решение:



14 Конденсатор емкости C1 = 20 мкФ, заряженный до разности потенциалов V1 = 100B, соединили параллельно с заряженным до разности потенциалов V1=40 В конденсатором, емкость которого С2 неизвестна (соединили одноименно заряженные обкладки конденсаторов). Найти емкость С2 второго конденсатора, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V=80 В.

Решение:

15 Конденсатор емкости С1=4мкФ, заряженный до разности потенциалов V1 = 10B, соединен параллельно с заряженным до разности потенциалов V2 = 20 В конденсатором емкости С2 = 6 мкФ (соединили разноименно заряженные обкладки конденсаторов). Какой заряд окажется на пластинах первого конденсатора после соединения?

Решение:
Заряды конденсаторов до их соединения q1 = C1V1 и q2 = C2V2. После соединения разноименно заряженных обкладок конденсаторов общий заряд q = |q2-q1| = (C1 + C2)V и заряд первого конденсатора где V-разность потенциалов между обкладками конденсаторов после соединения; отсюда

16 Конденсатор, заряженный до разности потенциалов V1 = 20 В, соединили параллельно с заряженным до разности потенциалов V2 = 4 В конденсатором емкости С2 = 33 мкФ (соединили разноименно заряженные обкладки конденсаторов). Найти емкость С1 первого конденсатора, если разность потенциалов между обкладками конденсаторов после их соединения V=2 В.

Решение:
После соединения разноименных обкладок общий заряд q = CV равен разности зарядов q1 = C1V1 и q2 = C2V2 отдельных конденсаторов, где С=С1 + С2 — общая емкость после соединения. Таким образом,


17 Конденсатор емкости С1 = 1 мкФ, заряженный до разности потенциалов V1 = 100B, соединили с конденсатором емкости С2 = 2 мкФ, разность потенциалов V2 на обкладках которого неизвестна (соединили разноименно заряженные обкладки конденсаторов). Найти разность потенциалов V2, если разность потенциалов между обкладками конденсаторов после соединения оказалась равной V=200 В.

Решение:
До соединения заряды первого и второго конденсаторов

После соединения разноименных обкладок общий заряд

Двойной знак мы здесь поставили потому, что заранее не известно, какой из зарядов, q2 или q1 больше; отсюда

Решение со знаком минус соответствует случаю, когда знаки зарядов на пластинах первого конденсатора после соединения пластин не меняются, а со знаком плюс-случаю, когда эти знаки становятся обратными. Так как в нашем случае , а величина |V2| должна быть всегда положительной, то существует лишь одно решение-со знаком плюс. В результате |V2| = 350 В.

18 Два проводящих шара с радиусами R1 и R2 расположены так, что расстояние между ними во много раз больше радиуса большего шара. На шар радиуса R1 помещен заряд q. Каковы будут заряды на шарах после соединения их проводником, если второй шар не был заряжен? Емкостью проводника, соединяющего шары, пренебречь.

Решение:


19 Два проводящих шара с радиусами R1 = 8см и R2 = 20 см, находящихся на большом расстоянии друг от друга, имели электрические заряды q1=40 нКл и q2=— 20 нКл. Как перераспределятся заряды, если шары соединить проводником? Емкостью проводника, соединяющего шары, пренебречь.

Решение:
Соединение шаров проводником эквивалентно параллельному соединению конденсаторов. После соединения


20 Два проводящих шара с радиусами R1 = 10см и R2 = 5см, заряженных до потенциалов φ1=20B и φ2=10В, соединяются проводником. Найти поверхностные плотности зарядов на шарах σ1 и σ2 после их соединения. Расстояние между шарами велико по сравнению с их радиусами. Емкостью проводника, соединяющего шары, пренебречь.

Решение:
Заряды на шарах до и после соединения Общий потенциал шаров после соединения определим из условия сохранения заряда
Заряды на первом и втором шарах после соединения

Поверхностные плотности зарядов на шарах


21 Плоский воздушный конденсатор, заряженный до разности потенциалов V0 = 800 В, соединили параллельно с таким же по размерам незаряженным конденсатором, заполненным диэлектриком. Какова диэлектрическая проницаемость e диэлектрика, если после соединения разность потенциалов между пластинами конденсаторов оказалась равной V=100В?

Решение:

22 Найти емкость С трех плоских воздушных конденсаторов, соединенных параллельно. Размеры конденсаторов одинаковы: площадь пластины S=314 см2, расстояние между пластинами d=1 мм. Как изменится емкость трех конденсаторов, если пространство между пластинами одного конденсатора заполнить слюдой (диэлектрическая проницаемость ε1 = 7), а другого — парафином (диэлектрическая проницаемость ε2 = 2)?

Решение:
Емкость трех конденсаторов без диэлектрика При заполнении двух конденсаторов диэлектриками емкость трех конденсаторов

23 В заряженном плоском конденсаторе, отсоединенном от источника тока, напряженность электрического поля равна Е0. Половину пространства между пластинами конденсатора заполнили диэлектриком с диэлектрической проницаемостью ε (толщина диэлектрика равна расстоянию между пластинами). Найти напряженность электрического поля Е в пространстве между пластинами, свободном от диэлектрика.

Решение:
Если d-расстояние между пластинами и С0 — емкость конденсатора без диэлектрика, то разность потенциалов между пластинами конденсатора (без диэлектрика) и заряд на пластинах Конденсатор, половина которого заполнена диэлектриком, можно рассматривать как два соединенных параллельно конденсатора (рис. 341), причем один не содержит диэлектрика и имеет емкость а в другом все пространство между пластинами заполнено диэлектриком, и поэтому его емкость Полная емкость конденсатора, половина которого заполнена диэлектриком, При отключенном источнике тока заряд на пластинах сохраняется, поэтому разность потенциалов между пластинами V=q/C, и напряженность электрического поля в пространстве между пластинами, свободном от диэлектрика,


24 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 3 мкФ подключены к источнику тока с напряжением V =220 В. Найти напряжение на каждом конденсаторе.

Решение:
Если V1 и V2 — напряжения на первом и втором конденсаторах, то V= V1 + V2, а заряды на них одинаковы и равны
q=C1V1=C2V2; отсюда

При последовательном соединении конденсаторов на конденсаторе меньшей емкости напряжение больше, чем на конденсаторе большей емкости.

25 Два последовательно соединенных конденсатора с емкостями C1 = 1 мкФ и С2 = 2 мкФ подключены к источнику тока с напряжением V =900 В. Возможна ли работа такой схемы, если напряжение пробоя конденсаторов Vпр = 500 В?

Решение:
Напряжения на первом и втором конденсаторах (см. задачу 24). Работать при указанном в условии задачи напряжении пробоя конденсаторов нельзя, ибо произойдет пробой первого, а затем и второго конденсаторов.

26 Два последовательно соединенных конденсатора подключены к источнику тока с напряжением V= 200 В (рис. 79). Один конденсатор имеет постоянную емкость C1 = 0,5 мкФ, а другой — переменную емкость С2 (от Cmin = 0,05 мкФ до Сmах = 0,5 мкФ). В каких пределах изменяется напряжение на переменном конденсаторе при изменении его емкости от минимальной до максимальной?

Решение:
При изменении емкости переменного конденсатора С2 от Cmin до Сmax, напряжение на нем V изменяется в пределах (см. задачу 24)

27 При последовательном соединении трех различных конденсаторов емкость цепи С0 = 1 мкФ, а при параллельном соединении емкость цепи С=11мкФ. Найти емкости конденсаторов С2 и С3, если емкость конденсатора С1 = 2 мкФ.

Решение:

28 При последовательном соединении трех различных конденсаторов емкость цепи С0 = 0,75 мкФ, а при параллельном соединении емкость цепи С = 7 мкФ. Найти емкости конденсаторов С2 и С3 и напряжения на них V2 и V3 (при последовательном соединении), если емкость конденсатора C1 = 3 мкФ, а напряжение на нем V1 = 20B.

Решение:
При последовательном соединении конденсаторов имеем

при параллельном

Из этих уравнений находим

Согласно теореме Виета С2 и С3 должны быть корнями квадратного уравнения

Решая его, найдем

Заряды на всех конденсаторах при последовательном соединении равны между собой:


29 Три последовательно соединенных конденсатора с емкостями С1 = 100пФ, С2 = 200 пФ, С3 = 500 пФ подключены к источнику тока, который сообщил им заряд q=10нКл. Найти напряжения на конденсаторах V1, V2 и V3, напряжение источника тока V и емкость всех конденсаторов С0.

Решение:
При последовательном соединении конденсаторов заряд каждого конденсатора равен q, поэтому

Напряжение источника тока равно полному напряжению на всех конденсаторах:

Так как при последовательном соединении
то

30 Три последовательно соединенных конденсатора с емкостями С1=0,1мкФ, С2 = 0,25 мкФ и С3 = 0,5 мкФ подключены к источнику тока с напряжением V =32 В. Найти напряжения V1, V2 и V3 на конденсаторах.

Решение:


31 Два одинаковых воздушных конденсатора емкости С=100пФ соединены последовательно и подключены к источнику тока с напряжением V= 10 В. Как изменится заряд на конденсаторах, если один из них погрузить в диэлектрик с диэлектрической проницаемостью ε = 2?

Решение:
При последовательном соединении конденсаторов заряды на конденсаторах равны. До погружения одного из них в диэлектрик заряд на каждом конденсаторе

после погружения одного из них в диэлектрик заряды конденсаторов будут

Учитывая, что

Изменение заряда на конденсаторах


32 Два плоских воздушных конденсатора с одинаковыми емкостями соединены последовательно и подключены к источнику тока. Пространство между пластинами одного из конденсаторов заполняют диэлектриком с диэлектрической проницаемостью ε = 9. Во сколько раз изменится напряженность электрического поля Е в этом конденсаторе?

Решение:
Первоначальная напряженность электрического поля в каждом конденсаторе

где d-расстояние между пластинами конденсатора. После заполнения одного конденсатора диэлектриком напряженность электрического поля в нем

Отношение напряженностей


33 Решить предыдущую задачу для случая, когда конденсаторы после зарядки отключаются от источника тока.

Решение:
После отключения конденсатора от источника тока и заполнения его диэлектриком заряд на нем не изменяется:

Напряженность электрического поля в конденсаторе, заполненном диэлектриком,

Отношение напряженностей

34 Два плоских воздушных конденсатора с одинаковыми емкостями С=10пФ соединены последовательно. Насколько изменится емкость конденсаторов, если пространство между пластинами одного из них заполнить диэлектриком с диэлектрической проницаемостью ε = 2?

Решение:
Изменение емкости соединенных конденсаторов


35 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а ее толщина намного меньше d. Найти емкость конденсатора с проводящей пластинкой, если пластинка расположена на расстоянии l от одной из обкладок конденсатора.

Решение:
После введения пластинки образовалось два последовательно включенных конденсатора с емкостями

(рис. 342). Их общую емкость определим из соотношения

где С-первоначальная емкость конденсатора. Таким образом, после введения пластинки при любом ее положении С0 = С.

36 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d введена параллельно обкладкам проводящая пластинка, размеры которой равны размерам обкладок, а толщина dп = d/3

Решение:
Введение проводящей пластинки между обкладками конденсатора приводит к образованию двух последовательно включенных конденсаторов с расстояниями между обкладками d1 и d2 и емкостями

(рис.343). Их общую емкость находим из соотношения

При -первоначальная емкость конденсатора.

37 Плоский воздушный конденсатор заряжен до разности потенциалов V0 = 50 В и отключен от источника тока. После этого в конденсатор параллельно обкладкам вносится проводящая пластинка толщины dп= 1 мм. Расстояние между обкладками d=5 мм, площади обкладок и пластинки одинаковы. Найти разность потенциалов V между обкладками конденсатора с проводящей пластинкой.

Решение:
Емкости конденсатора до и после внесения проводящей пластинки толщины dп (см. задачу 36)
Заряд конденсатора, отключенного от источника тока, не изменяется:

отсюда разность потенциалов между обкладками конденсатора после внесения проводящей пластинки

38 В плоский воздушный конденсатор с площадью обкладок S и расстоянием между ними d вводится параллельно обкладкам диэлектрическая пластинка толщины d1<d/ Диэлектрическая проницаемость пластинки равна ε, площади обкладок и пластинки одинаковы и равны S. Найти емкость конденсатора с диэлектрической пластинкой.

Решение:

По какой формуле найти ёмкость (объем) конденсаторов

Емкостный показатель является одной из основных характеристик не только батареек и аккумуляторных элементов, но и конденсаторных устройств. Любому человеку, работающему с электросхемами, необходимо знать, от чего зависит эта величина, может ли она уменьшиться или увеличиться под влиянием внешних факторов (как, например, период времени, зарядка элемента или частота напряжения), и как выглядит выражающая емкость конденсатора формула для разных типов элементов.

Измерение емкостных данных мультиметром

Расчёт конденсаторов

В общем случае емкостной показатель С определяется по формуле:

C=q/U,

где q – заряд конденсатора на одной из его пластин, U – значение напряжения на конденсаторе.

Из этого выражения можно вывести формулу заряда конденсатора, величину которого можно найти, измерив два других показателя с помощью мультиметра.

Часто возникает вопрос, может ли этот параметр измениться. Он является постоянной величиной, присущей данному элементу и зависящей от его габаритов и устройства. Узнать емкостное значение можно с помощью мультиметра. Пользуясь этими данными, можно рассчитать целевую индуктивность дросселя для колебательного контура или параметры резистора.

В чем измеряется емкость? За измерительную единицу принимается параметр конденсаторного устройства, который можно зарядить 1 Кл до состояния, когда разница потенциалов будет равной 1 вольту. Название этой единицы – фарад (Ф).

Важно! Если сравнить два устройства, идентичных по габаритам, но различающихся тем, что у одного в зазоре между пластинами находится диэлектрический материал, а у другого – воздушное пространство, то при помещении одинаковых зарядов потенциальная разница первой детали будет в Е раз больше. Е – это число, равное диэлектрической проницаемости материала, из которого состоит использованный слой.

Ниже приведены формулы для конденсаторных элементов разной конфигурации. Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь.

Формула электрической емкости плоского конденсатора

В основном электрополе пластин плоского конденсатора бывает однородным, за исключением боковых частей, влиянием которых обычно принято пренебрегать. Однако, если пространство между обкладками велико в сопоставлении с их габаритами, краевые искажения нужно учитывать. В общем случае, чтобы высчитать, сколько фарад составит емкость плоского конденсатора, пользуются выражением:

C=E*E0*S/d, где S – площадь меньшей обкладки, E0 – электрическая константа, d – длина пространства между пластинами.

Плоский конденсаторный элемент

Формула электрической емкости цилиндрического изделия

Такой компонент состоит из пары разных по размеру коаксиальных цилиндрических элементов проводника, в пространстве между которыми расположили диэлектрический материал. В этом случае для нахождения емкостной величины не нужно узнавать значение заряда на обкладках конденсатора. Можно воспользоваться следующей формулой емкости:

С=2 π *E*E0*l / ln(R2/R1).

Здесь R1 и R2 – радиусы, соответственно, внутреннего и наружного цилиндров, l – их высота (она одинакова, в то время как радиальные параметры отличаются).

Цилиндрическое изделие

Формула для сферического изделия

Сферическая деталь состоит из двух проводниковых сфер с диэлектрическим слоем между ними. Вот как найти емкость круглого конденсатора:

C=4 π *E*E0* R1* R2 / R2 — R1.

Буквами R обозначены, как и в предыдущем примере, радиусы компонентов.

Ёмкость одиночного проводника

Это характеристика способности твердого проводникового компонента к удержанию электрозаряда.  Она определяется особенностями средового окружения (в частности, диэлектрической проницаемостью), взаиморасположением тел, имеющих на себе заряд, размерами детали. От силы тока и величины заряда она не зависит.

Способы соединения элементов

Монтаж изделия на плату может быть вертикальным или горизонтальным. При использовании нескольких изделий они могут быть соединены между собой разными способами.

Параллельное соединение

Для его организации нужно подключить группу  деталей к электроцепи так, чтобы обкладки всех деталей были подсоединены напрямую к местам включения. Поскольку все компоненты получают заряд от одного источника тока, у них будет одинаковая разность потенциалов. Но так как заряд копится на каждом изделии отдельно, количество электричества на группе можно выразить как сумму количеств на ее деталях. Это справедливо и для емкостных данных – значение для конфигурации равно сумме значений каждой единицы. Поэтому такую группу можно считать равной одному конденсатору, емкостной параметр которого равен сумме таковых для всех частей.

Параллельное подключение

Последовательное соединение

Эта схема подразумевает соединение устройств одно за другим, когда к местам подключения к цепи подсоединены только два крайних изделия. Количество электричества для каждой детали будет одинаковым. При этом, чем менее емкое устройство, тем большее значение напряжения на нем будет наблюдаться.

Важно! Емкостной показатель такой системы будет еще меньше, чем у устройства, обладающего наименьшим его значением. Соотношение выглядит так: 1/С = 1/С1 + 1/С2 + 1/С3 + … Опираясь на него, можно произвести вывод непосредственно формулы С. Для двух элементов: С = С1*С2 / С1+С2.

Последовательное подключение

Смешанное соединение

Такая сложная конструкция содержит фрагменты с двумя вышеприведенными типами соединений. Чтобы подсчитать полную емкость, схему делят на простые блоки, состоящие только из деталей, соединенных каким-то одним образом. Находят эквивалентные значения для каждого блока и затем рисуют схему заново в упрощенном виде. Рассчитывают  данные для получившейся системы.

Чтобы суметь подобрать подходящий конденсаторный набор, нужно уметь узнавать емкостные данные. Важно также знать, как рассчитывается показатель для конфигурации из нескольких деталей, соединенных между собой тем или иным образом.

Видео

Глава 20. Конденсаторы

Для накопления разноименных электрических зарядов служит устройство, которое называется конденсатором. Конденсатор — система двух изолированных друг от друга проводников (которые часто называют обкладками конденсатора), один из которых заряжен положительным, второй — таким же по величине, но отрицательным зарядом. Если эти проводники представляют собой плоские параллельные пластинки, расположенные на небольшом рас-стоянии друг от друга, то конденсатор называется плоским.

Для характеристики способности конденсатора накапливать заряд вводится понятие электроемкости (часто говорят просто емкости). Емкостью конденсатора называется отношение заряда конденсатора к той разности потенциалов , которая возникает между обкладками при их заряжении зарядами и (эту разность потенциалов проводников часто называют электрическим напряжением между обкладками и обозначают буквой ):

(20.1)

Поскольку величины и (или ) в формуле (20.1) зависимы, то емкость (20.1) не зависит от и , а является характеристикой геометрии системы проводников. Действительно, при сообщении проводникам зарядов и проводники приобретут потенциалы, разность которых будет пропорциональна заряду . Поэтому в отношении (20.1) заряд сокращается.

Выведем формулу для емкости плоского конденсатора (эта формула входит в программу школьного курса физики). При заряжении параллельных пластин, расположенных на небольшом расстоянии друг от друга, зарядами и , в пространстве между ними возникает однородное электрическое поле с напряженностью (см. гл. 18):

(20.2)

Разность потенциалов между пластинами равна

(20.3)

где — площадь пластин, — расстояние между ними. Отсюда, вычисляя отношение заряда к разности потенциалов (20.3), находим емкость плоского конденсатора

(20.4)

Если все пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью , то поле (20.2) и разность потенциалов (20.3) убывает в раз, а емкость конденсатора в раз взрастает

(20.5)

Для конденсаторов, соединенных в батареи, вводится понятие эквивалентной емкости, как емкости одного конденсатора, который при заряжении его тем же зарядом, что и батарея дает ту же разность потенциалов, что и батарея конденсаторов. Приведем формулы для эквивалентной емкости, а также для заряда и электрического напряжения на каждом конденсаторе при последовательном и параллельном их соединении.

Последовательное соединение (см. рисунок). При сообщении левой пластине левого конденсатора заряда , а правой пластине правого заряда , на внутренних пластинах благодаря поляризации будут индуцироваться заряды (см. рисунок; значения индуцированных зарядов приведены под пластинами). Можно доказать, что в результате поляризации каждый конденсатор будет заряжен такими же зарядами и , как и заряды крайних пластин, напряжение на всей батарее конденсаторов равно сумме напряжений на каждом, а обратная эквивалентная емкость батареи — сумме обратных емкостей всех конденсаторов

(20.6)

Параллельное соединение (см. рисунок). В этом случае если сообщить левому проводнику заряд , правому сообщить заряд , заряд распределится между конденсаторами, вообще говоря, не одинаково, но по закону сохранения заряда .

Поскольку правые пластины всех конденсаторов соединены между собой, левые — тоже, то они представляют собой единые проводники, и, следовательно, разность потенциалов между пластинами каждого конденсатора будет одинакова: . Можно доказать, что при таком соединении конденсаторов эквивалентная емкость батареи равна сумме емкостей отдельных конденсаторов

(20.7)

Заряженный конденсатор обладает определенной энергией. Если конденсатор емкости заряжен зарядом , то энергия этого конденсатора (можно говорить энергия электрического поля конденсатора) равна

(20.8)

С помощью определения электрической емкости (20.1) можно переписать формулу (20.8) еще в двух формах:

(20.9)

Рассмотрим в рамках этого минимума сведений о конденсаторах типичные задачи ЕГЭ по физике, которые были предложены в первой части книги.

Электроемкость конденсатора — его геометрическая характеристика, которая при неизменной геометрии не зависит от заряда конденсатора (задача 20.1.1 — ответ 3). Аналогично не меняется емкость конденсатора при увеличении напряжения на конденсаторе (задача 20.1.2 — ответ 3).

Связь между единицами измерений (задача 20.1.3) следует из определения емкости (20.1). Единица электрической емкости в международной системе единиц измерений СИ называется Фарада. 1 Фарада — это емкость такого конденсатора, между пластинами которого возникает напряжение 1 В при зарядах пластин 1 Кл и -1 Кл (ответ 4).

Поскольку электрическое поле в плоском конденсаторе однородно, то напряженность поля в конденсаторе и напряжение между пластинами связаны соотношением (см. формулу (18.9)) , где — расстояние между пластинами. Отсюда находим напряженность поля между обкладками плоского конденсатора в задаче 20.1.4

(ответ 4).

Согласно определению электрической емкости имеем в задаче 20.1.5

(ответ 2).

Из формулы (20.4) для емкости плоского конденсатора заключаем, что при увеличении площади его пластин в 3 раза (задача 20.1.6) его емкость увеличивается в 3 раза (ответ 1).

При уменьшении в раз расстояния между пластинами емкость плоского конденсатора возрастет в раз. Поэтому новое напряжение на конденсаторе (задача 20.1.7) можно найти из следующей цепочки формул

где и — новый заряд конденсатора (ответ 3).

Так как конденсатор в задаче 20.1.8 подключен к источнику, то между его пластинами поддерживается постоянное напряжение независимо от расстояния между ними. Поэтому заряд конденсатора изменяется при раздвигании пластин так же, как изменяется его емкость. А поскольку при увеличении расстояния между пластинами вдвое емкость конденсатора уменьшается вдвое (см. формулу (20.4)), то вдвое уменьшается и заряд конденсатора (ответ 2).

В задаче 20.1.9 конденсатор отключен от источника в процессе сближения пластин. Поэтому не меняется их заряд. А поскольку напряженность электрического поля между пластинами определяется соотношением (20.2)

то напряженность электрического поля между пластинами также не изменяется (ответ 3). Этот же результат можно получить и через определение емкости с учетом того, что

произведение от расстояния между пластинами не зависит (см. формулу (20.4)).

Из формул (20.8), (20.9) видим, что только одно из приведенных в качестве ответов к задаче 20.1.10 соотношений (а именно — 2) определяет энергию конденсатора.

При последовательном соединении конденсаторов (задача 20.2.1) одинаковыми будут их заряды независимо от значений их электрических емкостей (ответ 2). При параллельном соединении конденсаторов (задача 20.2.2) одинаковыми будут напряжения на каждом из них (ответ 3).

Поскольку конденсатор в задаче 20.2.3 отключен от источ-ника напряжения, его заряд не меняется в процессе раздвигания пластин. Поэтому для исследования изменения энергии конденсатора удобно воспользоваться формулой (20.8)

(1)

Так как при увеличении расстояния между пластинами в раз электрическая емкость конденсатора уменьшается в раз, то согласно формуле (1) энергия конденсатора увеличится в раз (ответ 1).

В задаче 20.2.4 не изменяется напряжение на конденсаторе. Поэтому воспользуемся первой из формул (20.9)

Из этой формулы заключаем, что при увеличении в раз расстояния между пластинами энергия конденсатора уменьшится в раз — ответ 2. (Разница с предыдущей задачей связана с тем, что здесь кроме внешних сил, совершающих работу при раздвигании пластин, совершает работу источник напряжения.)

В задаче 20.2.5 изменяют расстояние между пластинами (и, следовательно, емкость) и заряд конденсатора. Поэтому удобно воспользоваться формулой (20.8)

Из этой формулы заключаем, что при увеличении расстояния между пластинами в 2 раза и увеличении заряда конденсатора в 2 раза его энергия возрастет в 8 раз (ответ 4).

Поскольку в задаче 20.2.6 конденсаторы соединены последовательно, емкость батареи конденсаторов можно найти по формуле (20.6), откуда находим емкость батареи конденсаторов (ответ 2).

В задаче 20.2.7 конденсаторы соединены параллельно, поэтому емкость батареи конденсаторов можно найти по формуле (20.7): (ответ 2).

Основной вопрос, на который нужно ответить в задаче 20.2.8, это как соединены конденсаторы? Последовательно, параллельно, по-другому? Попробуем по-другому расположить в пространстве и изменить длину соединительных проводов, чтобы схема стала более понятной. Очевидно, что можно соединить вершину 1 и вершину 3 («уменьшив» длину провода 1-3), а также вершины 2 и 4. При этом средний конденсатор разворачивается в пространстве, и схема приобретает вид, показанный на рисунке, откуда видно, что конденсаторы соединены параллельно. Поэтому (ответ 1).

Когда в заряженный плоский конденсатор вставляют металлическую пластинку (задача 20.2.9), параллельную обкладкам конденсатора, напряженность электрического поля внутри пластинки становится равным нулю, вне пластинки между обкладками конденсатора остается таким же, каким оно было в отсутствие пластинки , где — заряд конденсатора, — площадь его пластин. Поэтому напряжение между обкладками конденсатора определяется соотношением:

где — расстояние между обкладками конденсатора, — толщина пластинки. Отсюда находим емкость рассматриваемого конденсатора

(ответ 4).

Чтобы найти емкость сферического конденсатора (задача 20.2.10) сообщим его обкладкам заряды и , найдем напряжение между обкладками, вычислим отношение заряда к напряжению. Разность потенциалов двух концентрических сфер, заряженных зарядами и (напряжение между обкладками сферического конденсатора), определена в задаче 19.2.5., откуда находим электрическую емкость сферического конденсатора (ответ 3):

формула, в чем измеряется и как, от чего зависит емкость

В схемах электронных устройств конденсаторы выполняют большое количество полезных функций. Хотя конструкция этих приспособлений остаётся максимально простой. Но надо внимательно изучить ёмкость конденсатора и сами устройства, чтобы узнать, какого эффекта можно от них добиться.

Что это такое

Конденсатор — устройство, внутри которого сгущается или собирается электрический заряд в определённых количествах. Можно назвать это приспособление своеобразным аккумулятором. Отличие от существующих аналогов — в готовности сразу отдать всё накопленное, буквально в несколько секунд. Ещё одна отличительная черта — отсутствие внутри источника ЭДС. Как найти ёмкость, будет рассказано далее.

Возможные модели

Для чего нужен

Эти устройства отличаются также широкой сферой применения. Вот лишь некоторые допустимые варианты:

  1. Хранение аналоговых сигналов.
  2. Сохранение цифровых данных.
  3. Сфера телекоммуникационной связи. В этом случае главная функция — регулировка частоты, настройка профессионального оборудования.
  4. Использование при создании различных источников питания.
  5. Сглаживание выпрямленного напряжения на выходе устройств. Другой вопрос — в чём измеряется ёмкость конденсаторов.

Ещё одна возможная функция — генерация высокого напряжения, которое во много раз больше по сравнению с входными параметрами. Конденсаторы могут быть отличным хранилищем для электронов. Даже при отключении цепи от заряда энергия продолжает сохраняться внутри, на протяжении длительного времени.

Разные габариты

Принцип действия

Основные элементы любого конденсатора — это две проводящие обкладки. У каждой из них — свой электрический заряд, знаки у них противоположные. Этот заряд сохраняется благодаря диэлектриком, который разделяет обкладки.

В конденсаторах используется несколько разновидностей материалов в качестве изоляции. Это касается таких решений:

  • Полистирол;
  • Тантал;
  • Слюд;
  • Керамика.

Воздух вместе с бумагой и пластиком тоже популярные материалы, с помощью которых создают конденсаторы. Благодаря их применению обкладки внутри не соприкасаются друг с другом.

Электролитические изделия

Характеристики

На корпусе устройства обычно пишут о том, какие параметры для него характерны. Из других важных сведений из маркировки — дата выпуска, наименование фирмы производителя, тип конденсатора.

  • Показатель номинальной ёмкости.

Интересно. Один из самых важных. ГОСТ 2.702 — основной документ, регулирующий это направление. На схемах без указания единиц измерения пишут ёмкость, если она находится в пределах от 0 до 9 999 пФ. Если диапазон больше — то о микрофарадах обязательно упоминают. На самом конденсаторе соответствующая маркировка тоже стоит.

  • Отклонения от номинального значения.
  • Номинальное напряжение. Благодаря ему проще понять, как определить ёмкость конденсатора, формула которой остаётся одинаковой.

Для работы рекомендуется брать конденсаторы, у которых есть некоторый запас относительно данного параметра. С меньшим значением применять приборы не рекомендуют. Иначе диэлектрик пострадает от пробоя, устройство выйдет из строя раньше указанного времени.

  • Рабочие температуры, постоянный и переменный ток — характеристики дополнительные, информация о них не всегда выносится на этикетку.
  • Конденсаторы бывают однофазными и трёхфазными, для внутренней или наружной установки.
Внутреннее устройство

Величина заряда конденсатора

Как уже говорилось, конденсаторы — это электронные устройства, главное предназначение которых — накопление заряда в определённых количествах. Эта способность зависит от другой главной характеристики, получившей название ёмкости.

Её можно определить по формуле:

C = q/U.

Это как соотношение между количеством электрического заряда и напряжением. Самое простое объяснение, какой может быть ёмкость конденсатора, формула через площадь у которой несколько иная.

Керамические

В чём измеряется

Для этого используются величины, названные фарадами и микрофарадами. В честь учёного, который открыл соответствующее явление.

Разные устройства

Формула ёмкости

Основная формула уже была описана выше. Ёмкость относят к величинам постоянного характера. Её определяют другие параметры, например — размер конденсатора, конструктивные особенности.

За единицу ёмкости принимают ёмкость конденсатора, которому хватает единичного заряда для получения разности потенциалов в 1 Вольт. Определять конечные цифры благодаря этому очень просто.

Горизонтальные

Плоского

Обычно между обкладками внутри плоского конденсатора создаётся так называемое однородное поле. Только около краёв подобное свойство может быть нарушено. Этими эффектами у краёв часто пренебрегают, когда организуют расчёты. Но такой подход допустим, только если расстояние между пластинами достаточно маленькое по сравнению с линейными размерами.

Плоский конденсатор отличается ёмкостью, которую считают по формуле:

C = (Ee0S)/d.

E0 — постоянная электрическая величина.

S — площадь каждой пластины. Часто учитывают детали конструкции с минимальной площадью.

D — обозначение расстояния между пластинами.

Другое дело — когда конструкцию строят на нескольких слоях диэлектрика. Тогда их тоже включают в формулу, обычно добавляют к знаменателю. Без объёма в такой ситуации тоже не обойтись.

Особенности применения

Сферического

Сферический — это конденсатор, обкладки которого выполнены в виде двух сферических проводящих поверхностей. Диэлектрик заполняет пространство между указанными выше деталями. В таком случае формула в знаменателе содержит дополнительные обозначения R — радиус каждой из пластин.

 

Суперконденсаторы

Цилиндрического

В данном случае пластины выглядят как две соосные или коаксиальные цилиндрические поверхности с проводящим эффектом. При этом радиус у каждого элемента разный. И здесь пространство между разными частями заполнено диэлектриком. L — обозначение высоты цилиндра. И к формуле добавляют символ для диаметра. Его измеряют отдельно для обкладки внутри и снаружи.

Назначение

Как с помощью закона Гаусса рассчитать ёмкость конденсатора?

Главное — чтобы изначально присутствовала ёмкость с заданной геометрией у конденсатора. Остаётся вставить в стандартную формулу разность между потенциалами. Благодаря этому уменьшается общий уровень нагрузки, который обозначают как Q.

Соотношения между полями E и V применяют для поиска характеристик, которые остались неизвестными для формулы. Закон Гауса — универсальный инструмент, упрощающий любые вычисления в этой сфере. Измеряться так могут многие показатели.

Разнообразие выбора

Эксплуатационные характеристики

Не идеальные, но реальные конденсаторы обладают рядом дополнительных характеристик помимо тех, о которых сказано выше. Среди них:

  1. Зависимость между ёмкостью и температурой.
  2. Потери диэлектрического характера.
  3. Сопротивление материала, из которого изготовлены обкладки.
  4. Ток утечки.
  5. Уровень полярности.
  6. Номинальное напряжение.

Важно разобраться, какой источник может быть у потерь. Но для этого необходимо разобраться с таким понятием, как графики синусоидного тока, различные направления этого вида энергии. В обкладках ток равен нулю, когда конденсатор набрал максимальный заряд. Напряжение в этом случае у изделия отсутствует. То есть, по фазе напряжение вместе с током сдвигаются на угол в 90 градусов. Идеальная ситуация — когда у конденсатора появляется только реактивная мощность.

Важно. Но реальность такова, что у обкладок появляется собственное сопротивление. Часть энергии нужна, чтобы температура диэлектрика повысилась до определённого уровня. Из-за этого и появляются потери внутри конструкции. Эта характеристика в большинстве случаев остаётся незначительной, но в некоторых ситуациях пренебрегать ей не получится.

Тангенс угла диэлектрических потерь — главная единица измерения, применяемая в этом случае. Это соотношение между активной и реактивной разновидностями мощности. Измерение величины возможно, но только в теоретическом плане. Иначе рассчитать результаты невозможно.

Переменный вид

Каким ещё бывает техническое исполнение конденсаторов?

Постоянные и переменные, подстроечные — группы конденсаторов, которые выделяются в зависимости от возможности регулировать основные рабочие параметры. Форма позволяет выделить плоские и цилиндрические, сферические разновидности. Но тип диэлектрика — главное свойство, по которому чаще всего проводят классификацию.

Импортные и отечественные разработки

Бумажные

Бумага, чаще всего — промасленная — вот главный диэлектрик для таких ситуаций. Конденсаторы данного вида известны крупными габаритами. Без промасливания можно изменить характеристику в меньшую сторону. Обычно служат устройствами со стабилизирующей и накопительной функциями. Но из современной электроники их всё чаще вытесаняют плёночные аналоги, которые считают более современными.

Если промасливание отсутствует, появляется серьёзный недостаток — реакция на влажность воздуха, даже если упаковка остаётся абсолютно герметичной. Энергопотери увеличиваются при наличии промокшей бумаги.

Разные характеристики

Диэлектрики-органические плёнки

Выполняются из органических полимеров, например:

  • Фоторопласт.
  • Полистирол.
  • Полипропилен.
  • Полисульфон.
  • Поликарбонат.
  • Полиамид.
  • Полиэтилентерифталат.

Размеры таких конденсаторов более компактные, если сравнить с предыдущим вариантом. При этом диэлектрические потери не становятся больше, даже если влажность увеличивается. Но при перегреве многие устройства часто выходят из строя. А если недостаток отсутствует — приобретение прибора связано с дополнительными расходами.

Твёрдые неорганические материалы

Примеры — стекло и керамика, слюда.

Стабильность, линейность указанных характеристик — главное преимущество. Некоторые устройства реагируют даже на уровень радиации окружающей среды. Но иногда такая зависимость может стать и проблемой. Чем менее выражены недостатки — тем дороже стоит устройство.

Оксидные диэлектрики

Подходят для производства танталовых и твердотельных конденсаторов, моделей из алюминия. Отличаются такой характеристикой, как полярность. При неправильном подключении могут быстро выйти из строя. То же касается ситуации с высоким номиналом напряжения. Но зато это компактные устройства со стабильной работой, достаточными показателями по ёмкости. Могут проработать около 60 тысяч часов, если эксплуатировать устройство правильно.

Маркировка конденсаторов

Ёмкость вместе с номинальным напряжением — характеристики, которые должны быть отражены в маркировке. Ещё применяют циферно-буквенную разновидность обозначений для основных параметров.

Интересно. В российской практике существует четыре буквы для обозначения устройств.

Первая буква К позволяет понять, что перед покупателем — именно конденсатор. Далее идёт цифра для обозначения разновидности применяемого диэлектрика. Следующим указывают назначение, тоже в виде буквы. Последние значки могут иметь разное назначение.

Эксплуатация

Выбор и эксплуатация

Главное — использовать приборы в режимах, не превышающих номинальные значения. Тогда никаких дефектов и проблем появиться не должно.

Обратите внимание. Электрохимические процессы диэлектрика — главная причина старения основных элементов при воздействии постоянного напряжения. Причина — постоянный ноль, увеличение влажности и температуры в окружающей среде. Вид диэлектрика, конструктивное исполнение определяют, как поведёт себя то или иное устройство в этих условиях.

Ионизационные процессы станут причиной старения в случае с переменным напряжением, импульсными режимами.

Защищённые керамические конденсаторы считаются наиболее прочными и надёжными моделями из всех. Либо стоит отдавать предпочтение оксидно-полупроводниковым вариантам. Каждый из них гарантирует максимальный срок службы.

Со временем любой конденсатор теряет ёмкость. Это нормальный процесс, проходящий в оборудовании. Поэтому не рекомендуется размещать устройства с другими предметами, которые подвержены сильному нагреву. Электролиты могут стать слабым местом для любой электроники. Качество детали во многом зависит от того, какого выбрать производителя. Но такая проблема заслуживает отдельного разговора.

Как рассчитать емкость?

Обновлено 6 декабря 2020 г.

Крис Дезил

Вместимость контейнера - это еще одно слово, обозначающее объем материала, который он вмещает. Обычно его измеряют в литрах или галлонах. Это не то же самое, что емкость, которую бы вытеснил контейнер, если бы вы погрузили его в воду. Разница между этими двумя величинами заключается в толщине стенок емкости. Эта разница незначительна, если контейнер сделан из тонкого материала, но для деревянных или бетонных контейнеров со стенками, которые могут быть толщиной в несколько дюймов, это не так.При измерении емкости всегда лучше измерять внутренние размеры. Если у вас нет доступа внутрь, вам необходимо знать толщину стенок емкости, чтобы получить точный результат.

TL; DR (слишком длинный; не читал)

Рассчитайте вместимость контейнера, измерив его размеры и используя формулу объема, соответствующую форме контейнера. При измерении снаружи необходимо учитывать толщину стен.

Прямоугольные контейнеры

Объем V прямоугольного контейнера определяется путем измерения его длины (l), ширины (w) и высоты (h) и умножения этих величин.

V = l \ times w \ times h

Вы выражаете результат в кубических единицах. Например, если вы измеряете в футах, результат будет в кубических футах, а если вы измеряете в сантиметрах, результат будет в кубических сантиметрах (или миллилитрах). Поскольку емкость обычно выражается в литрах или галлонах, вам, вероятно, придется преобразовать результат, используя соответствующий коэффициент преобразования.

Если у вас есть доступ к внутренней части контейнера, вы можете измерить внутренние размеры и рассчитать емкость напрямую, используя формулу для объема.Если вы можете измерить только внешние размеры, но знаете, что стены, основание и верх имеют одинаковую толщину, вы должны сначала вычесть удвоенную толщину стенки и удвоенную толщину основания из каждого из этих измерений. Если толщина стенок и основания равна t, вместимость определяется по формуле:

\ text {capacity} = (l-2t) (w-2t) (h-2t)

Если вы знаете, что стенки, основание и верхние имеют разную толщину, используйте их вместо 2т. Например, если вы знаете, что у контейнера есть основание толщиной 1 дюйм и крышка толщиной 2 дюйма, высота будет h - 3.2 \ times (h-2t)

Обратите внимание, что вы не удваиваете толщину стенки перед вычитанием ее из радиуса, потому что радиус представляет собой одну линию от центра к внешней стороне круглого поперечного сечения. 2 \ times (h-2t)} {4}

You удвоить толщину стенки, потому что линия диаметра дважды пересекает стены.3

Пирамиды и конусы

Объем пирамиды с размерами основания l и w и высотой h равен:

V = \ frac {Ah} {3} = \ frac {lwh} {3}

Если у пирамиды есть стены толщиной t, и вы измеряете снаружи, ее емкость приблизительно определяется как:

\ text {capacity} = \ frac {(l-2t) (w-2t) (h-2t)} { 3}

Это приблизительное значение, поскольку стены расположены под углом, и вы должны учитывать угол при вычислении t. В большинстве случаев разница достаточно мала, чтобы ее можно было игнорировать.2 (ht)} {3}

Как рассчитать емкость цилиндра

Обновлено 5 декабря 2020 г.

Крис Дезиел

Будь то резервуар для воды, банка с краской или пробирка, в каждом цилиндрическом контейнере есть две общие характеристики. Он имеет круглое поперечное сечение и особое расширение в пространстве, называемое его длиной или высотой. Если вы хотите узнать вместимость цилиндра, т.е. сколько он вмещает, вы, по сути, рассчитываете его объем. Для этого есть простая формула, но есть загвоздка.Также необходимо учитывать толщину стенок емкости. В большинстве случаев это количество незначительно, но не всегда. Еще одна вещь: емкость обычно измеряется в галлонах или литрах, поэтому, если вам нужны эти единицы, вам придется конвертировать из кубических футов, дюймов или метрических единиц.

TL; DR (слишком длинный; не читал)

Поскольку емкость отличается от внешнего объема, вам необходимо измерить внутренние размеры, если цилиндр имеет толстые стенки.

Объем и емкость

Слова «объем» и «емкость» часто используются как синонимы, но означают разные вещи.Объем цилиндра равен объему пространства, которое он занимает, и вы можете измерить его, погрузив его в воду и измерив количество вытесненной воды. Емкость, с другой стороны, относится к количеству жидкого или твердого вещества, которое может вместить цилиндр. 2 h

На практике измерить радиус сложно, потому что для этого вам нужно точно определить центр горловины цилиндра.2 ч} {4}

Если стенки пренебрежимо тонкие, объем равен емкости, но если стенки толстые, емкость меньше объема. Чтобы убедиться, что вы рассчитываете вместимость, а не объем, вам следует измерить внутренний радиус цилиндра, а также длину от внутреннего дна до горловины цилиндра.

Преобразование в галлоны или литры

Если вы производите измерения в дюймах, результат будет в кубических дюймах. Точно так же измерьте в футах, и вы получите емкость в кубических футах, или измерьте в сантиметрах или метрах, и вы получите результат в кубических сантиметрах или кубических метрах соответственно.Во всех случаях вам понадобится коэффициент преобразования, чтобы выразить результат в галлонах или литрах:

  • 1 кубический дюйм = 0,004329 галлона США
  • 1 кубический дюйм = 0,000579 кубических футов
  • 1 кубический фут = 7,4813 галлона США
  • 1 кубический сантиметр (1 миллилитр) = 0,000264 галлона США
  • 1 кубический метр = 264 галлона США
  • 1 литр = 0,264201 галлона США; 1 галлон США = 3,79 литра
  • 1 британский галлон = 1.2 галлона США; 1 галлон США = 0,832701 британский галлон

Пример

Цилиндрический бетонный резервуар для воды имеет 3-дюймовые стенки и 3-дюймовое основание. Его внешние размеры: диаметр = 8 футов; высота = 5 футов. Какая у него емкость?

Стенки этого цилиндра не пренебрежимо тонкие, поэтому вам нужны внутренние измерения. Поскольку вы знаете толщину стенок, вы можете их рассчитать. Вычтите двойную толщину стенки (6 дюймов) из заданного внешнего диаметра, чтобы получить внутренний диаметр (8 футов = 96 дюймов; 96-6 = 90 дюймов внутреннего диаметра).3

V = 362 618,33 кубических дюймов или 209,74 кубических футов, 1569,77 галлона США, 1307,15 британских галлона или 5 949,43 литра.

Калькулятор длины, ширины и высоты до объема

Нажмите «Сохранить настройки», чтобы перезагрузить страницу с уникальным адресом веб-страницы для создания закладок и обмена текущими настройками инструмента.

✕ очистить настройки

Инструмент «Отразить» с текущими настройками и рассчитать длину, ширину или высоту

К сожалению, здесь не удалось отобразить графику, потому что ваш браузер не поддерживает холст HTML5.

Сопутствующие инструменты

Руководство пользователя

Этот онлайн-инструмент рассчитывает объем прямоугольной коробки, сплошного тела или пространства на основе размеров длины, ширины и высоты. Нет необходимости вводить значения в одних и тех же единицах измерения, просто выберите желаемые единицы для каждого измерения и рассчитанного объема.

После ввода размеров длины, ширины и высоты рассчитанный объем отобразится в поле ответа. Также будет показано изображение масштабированного трехмерного чертежа с правильными пропорциями и помечено каждым размером и рассчитанным объемом.

Формула

Формула, используемая данным калькулятором для расчета объема объекта прямоугольной формы:

В = Д · Ш · В

Обозначения
  • V = Объем
  • L = длина
  • W = Ширина
  • H = высота

Объемные размеры - длина, ширина и высота

Введите длину, ширину и высоту прямоугольной формы.

Для преобразования единиц измерения длины, ширины и высоты используются следующие коэффициенты преобразования единиц СИ в метрах (м):

SI Метрические единицы длины префикса
  • йоктометр (мкм) - 1 x 10 -24 м
  • зептометр (мкм) - 1 x 10 -21 м
  • аттометр (am) - 1 x 10 -18 м
  • фемтометр (фм) - 1 x 10 -15 м
  • пикометр (пм) - 1 x 10 -12 м
  • нм (нм) - 1 x 10 -9 м
  • мкм (мкм) - 0.000001 м
  • миллиметр (мм) - 0,001 м
  • сантиметр (см) - 0,01 м
  • дециметр (дм) - 0,1 м
  • метр (м) - 1 м
  • декаметр (плотина) - 10 м
  • гектометров - 100 м
  • километр (км) - 1000 м
  • мегаметр (мм) - 1000000 м
  • гигаметр (Gm) - 1 x 10 +9 м
  • тераметр (Тм) - 1 x 10 +12 м
  • петаметр (Pm) - 1 x 10 +15 м
  • exametre (Em) - 1 x 10 +18 м
  • зеттаметр (Zm) - 1 x 10 +21 м
  • йоттаметр (Ym) - 1 x 10 +24 м
Британские и американские единицы длины
  • тысячная дюйма (тыс.) - 0.0000254 м
  • дюймов (дюйм) - 0,0254 м
  • фут (фут) - 0,3048 м
  • ярд - 0,9144 м
  • миль (миль) - 1609,344 м
  • морская миля (морская миля) - 1852 м
Астрономические единицы
  • астрономическая единица (у.е.) - 149 597 870 700 м
  • световых лет - 9 460 730 472 580 800 м
  • парсек (шт) - 30 856 775 814 913 672,789… м
  • килопарсек (кпк) - 3,08567758142789… x 10 +19 м
  • мегапарсек (Мпк) - 3.08567758142789… x 10 +22 м
  • гигапарсек (Гпк) - 3,08567758142789… x 10 +25 м

Расчет объема

Это объем прямоугольной формы, который соответствует размерам, указанным для длины, ширины и высоты. Объем рассчитывается путем умножения каждого измерения и последующего преобразования его в выбранные единицы измерения объема.

Для перевода расчетного объема в различные единицы измерения используются следующие коэффициенты пересчета в кубические метры (м³):

Метрические единицы измерения объема
  • кубический нанометр (куб. Нм) - 1 x 10 -27 м³
  • кубических микрометров (куб мкм) - 1 x 10 -18 м³
  • кубический миллиметр (куб мм) - 1 x 10 -9 м³
  • кубический сантиметр (куб см) - 1 x 10 -6 м³
  • миллилитр (мл) - 1 x 10 -6 м³
  • чайная ложка (ч.л., метрическая) - 5 x 10 -6 м³
  • столовая ложка (столовая, метрическая) - 1.5 x 10 -5 м³
  • стакан (метрический) - 2,5 x 10 -4 м³
  • литр (л) - 1 x 10 -3 м³
  • куб.м - 1 м³
  • килолитр (kL) - 1 м³
  • мегалитр (ML) - 1000 м³
  • кубический километр (куб км) - 1 x 10 +9 м³
Английские имперские единицы измерения объема
  • тыс. Куб. (Тыс. Куб.) - 1,6387064 x 10 -14 м³
  • кубических дюймов (у.е.) - 1,6387064 x 10 -5 м³
  • жидких унций (жидких унций, английская система мер) - 2.84130625 x 10 -5 м³
  • пинта (пинта, дюймовая) - 5,68 26125 x 10 -4 м³
  • галлонов (галлоны) - 4,54609 x 10 -3 м³
  • кубических футов - 0,028316846592 м³
  • кубический ярд (куб. Ярд) - 0,764554857984 м³
  • кубических миль - 4168181825,440579584 м³
  • кубическая морская миля (cu nmi) - 6352182208 м³
Единицы измерения объема в США
  • тыс. Куб. (Тыс. Куб.) - 1,6387064 x 10 -14 м³
  • чайная ложка (ч. Л., Сша) - 4.92892159375 x 10 -6 м³
  • столовая ложка (Tbsp, usa) - 1.478676478125 x 10 -5 м³
  • кубических дюймов (у.е.) - 1,6387064 x 10 -5 м³
  • жидких унций (жидких унций, сша) - 2,95735295625 x 10 -5 м³
  • чашка (США) - 2.365882365 x 10 -4 м³
  • пинта (pt, usa liquid) - 4,73176473 x 10 -4 м³
  • галлонов (галлон, жидкость США) - 3,785411784 x 10 -3 м³
  • кубических футов - 0.028316846592 м³
  • баррель (барр., Нефть) - 0,158987294928 м³
  • кубический ярд (куб. Ярд) - 0,764554857984 м³
  • кубических миль - 4168181825,440579584 м³
  • кубическая морская миля (cu nmi) - 6352182208 м³
Литры Метрическая префикс Единицы измерения объема
  • йоктолитр (yL) - 1 x 10 -27 м³
  • зептолитр (zL) - 1 x 10 -24 м³
  • аттолитр (al) - 1 x 10 -21 м³
  • фемтолитр (фл) - 1 x 10 -18 м³
  • пиколитр (пл) - 1 x 10 -15 м³
  • нанолитров (кв.нл) - 1 x 10 -12 м³
  • микролитр (кв мкл) - 1 x 10 -9 м³
  • миллилитр (кв. Мл) - 0.000001 м³
  • сантилитр (кв.кл) - 0,00001 м³
  • децилитр (дл) - 0,0001 м³
  • литр (кв. Л) - 0,001 м²
  • декалитр (дал) - 0,01 м³
  • гектолитр (гл) - 0,1 м³
  • килолитр (кв.кл) - 1 м³
  • мегалитр (ML) - 1000 м³
  • гигалитр (GL) - 1000000 м³
  • тералитр (TL) - 1 x 10 +9 м³
  • петалитр (PL) - 1 x 10 +12 м³
  • exalitre (EL) - 1 x 10 +15 м³
  • цетталитр (ZL) - 1 x 10 +18 м³
  • йотталитр (YL) - 1 x 10 +21 м³
Кубические метры СИ Метрическая префикс Единицы измерения объема
  • кубический йоктометр (куб.м) - 1 x 10 -72 м³
  • кубический зептометр (куб.м) - 1 x 10 -63 м³
  • кубический аттометр (куб.м.) - 1 x 10 -54 м³
  • кубический фемтометр (куб.фм) - 1 x 10 -45 м³
  • кубический пикометр (куб.м.) - 1 x 10 -36 м³
  • кубический нанометр (куб. Нм) - 1 x 10 -27 м³
  • кубических микрометров (куб мкм) - 1 x 10 -18 м³
  • кубический миллиметр (куб мм) - 1 x 10 -9 м³
  • кубический сантиметр (куб см) - 0.000001 м³
  • кубический дециметр (куб дм) - 0,001 м³
  • куб.м - 1 м³
  • кубических декаметров (куб. Дам) - 1000 м³
  • кубический гектометр (куб.м.) - 1000000 м³
  • кубический километр (куб км) - 1 x 10 +9 м³
  • кубических мегамметров (куб. Мм) - 1 x 10 +18 м³
  • кубический гигаметр (куб Гм) - 1 x 10 +27 м³
  • кубических тераметров (куб.тм) - 1 x 10 +36 м³
  • кубических петаметр (куб.м.) - 1 x 10 +45 м³
  • кубический эталон (куб.м.) - 1 x 10 +54 м³
  • кубический зеттаметр (куб. М3) - 1 x 10 +63 м³
  • кубический йоттаметр (куб.см) - 1 x 10 +72 м³
Кубические астрономические единицы
  • кубическая астрономическая единица (у.е.) - 3.347928975810748964239359243 x 10 +33 м³
  • кубических световых года (кубических световых года) - 8.4678666462371516595551248694562 x 10 +47 м³
  • куб. Парсек (у.е. шт) - 2,937998946096347255544756436543… x 10 +49 м³
  • кубических килопарсек (у.е. кпк) - 2,937998946096347255544756436543… x 10 +58 м³
  • кубических мегапарсек (у.е. МПк) - 2,937998946096347255544756436543… x 10 +67 м³
  • кубических гигапарсек (куб. Гигапарсек) - 2,937998946096347255544756436543… x 10 +76 м³

Приложения

Используйте этот калькулятор длины x ширины x высоты для определения объема в следующих приложениях:

  • Объем отправляемой посылки для добавления в отгрузочные документы
  • Объем гравия, необходимый для заполнения дорожки, автостоянки или проезжей части.
  • Прямоугольный резервуар для хранения.
  • Вместимость грузового отсека автомобиля, грузовика или фургона.
  • Объем загрузки автомобиля для перемещения хранилища.
  • Максимальный объем резервуара для воды.
  • Сколько топлива необходимо для заправки бака.
  • Размер связки, необходимый для предотвращения утечек и разливов из контейнеров IBC.
  • Количество мешков, необходимых для каждого материала для строительного проекта.
  • Количество почвы, необходимое для заполнения ящика сеялки.
  • Количество воды, необходимое для заполнения аквариума / аквариума.
  • Заливная емкость для пруда.
  • Вместимость складского помещения из габаритов.
  • IBC вместимость.
  • Объем плавательного бассейна.
  • Возможное место для багажа внутри чемодана.
  • Цементная смесь, необходимая для заполнения фундаментов / опор.
  • Объем кузова пикапа.
  • Объем корпуса аудиодинамика.
  • Кормушка для кормления животных.
  • Садовый сарай, солярий или парник, объем цементной подушки.

Справка

Резервуар 25 x 10 x 12 дюймов в галлонах США

Сколько галлонов США вмещает резервуар шириной 10 дюймов, высотой 12 дюймов и длиной 25 дюймов?

Если исходить из внутренних размеров или без толщины стенок, объем резервуара составляет 12,987013 галлонов США.

Как рассчитать производственную мощность

Понимание производственной мощности позволяет компании оценить будущие финансовые показатели и составить график поставки продукции.Он определяется как максимальный результат, который организация может произвести с доступными ресурсами в заданный период. Производственная мощность может быть рассчитана на основе одного типа продукта или комбинации продуктов.

TL; DR (слишком долго; не читал)

Формула производственной мощности - это машинно-часовая мощность, деленная на время, необходимое для производства одного продукта.

Расчет мощности в машино-часах

Первым шагом к пониманию производственной мощности является расчет мощности фабрики или завода-изготовителя в машино-часах.Например, предположим, что на заводе 50 станков, и рабочие могут использовать их с 6 утра до 10 вечера или по 16 часов в день. Ежедневная производственная мощность завода в часах составляет 16 часов, умноженных на 50 машин, или 800 машинных часов.

Расчет производственных мощностей для одного продукта

Планирование производственных мощностей для одного продукта - довольно простой расчет. Определите, сколько времени требуется для производства одной единицы продукта, затем разделите дневную производительность завода в часах на время, необходимое для производства продукта, чтобы достичь суточной производственной мощности.Например, предположим, что на создание виджета у рабочего на машине уходит полчаса (0,5 часа), а мощность составляет 800 машинно-часов. Производственная мощность 800 делится на 0,5, или 1600 виджетов в день.

Расчет производственной мощности для нескольких продуктов

Расчет производственной мощности для набора продуктов может быть более сложным. Например, предположим, что помимо создания виджетов, которые занимают полчаса, предприятие также производит кнопки, которые занимают 15 минут (0.25 часов) на автомате. В этом сценарии количество виджетов, умноженное на 0,5, плюс количество кнопок, умноженное на 0,25, равняется общей почасовой мощности (800). Найдите две переменные: количество виджетов и количество кнопок. При 800 моточасах одной из возможных комбинаций может быть производство 800 виджетов и 1600 кнопок.

Понимание коэффициента использования производственных мощностей

Если вы знаете свои производственные мощности, вы можете измерить, насколько хорошо вы их используете.Коэффициент использования производственных мощностей - это показатель того, на каком процентном уровне мощности в настоящее время работает бизнес. Формула коэффициента использования производственных мощностей представляет собой фактический объем производства, деленный на потенциальный объем производства. Например, предположим, что предприятие может производить 1600 виджетов в день, как в приведенном выше примере, но производит только 1400. Коэффициент загрузки производственных мощностей составляет 1400 на 1600, или 87,5 процента. Чем выше процент, тем ближе бизнес к выходу на полную мощность.

Основы управления операциями: мощность, узкое место, производительность процесса, скорость потока и использование

Для выполнения следующих вычислений время обработки должно быть определено как время, затраченное на выполнение определенной задачи (например,грамм. одна станция в сэндвич-ресторане). Нам также понадобятся ранее введенные определения скорости потока и времени потока.

Емкость : Емкость можно рассчитать для каждой станции в бизнес-процессе. Это всегда m / время обработки, где m - это количество ресурсов (например, рабочих), выделенных станции. Если, например, одному рабочему требуется 40 секунд, чтобы приготовить бутерброд, производительность этой станции составляет 1/40 в секунду или 1,5 бутерброда в минуту.Если на одной станции работают два рабочих, производительность увеличивается до 2/40 в секунду или до 3 бутербродов в минуту.

Узкое место : Узкое место определяется как этап процесса (станция) на блок-схеме с наименьшей производительностью («самое слабое звено»). Хотя узким местом часто является этап процесса с наибольшим временем обработки, важно всегда учитывать возможности для вынесения суждения.

Производительность процесса : Производительность процесса всегда эквивалентна мощности узкого места.Полезно рассчитать понятное число, такое как количество клиентов в час или количество частей в день (вместо труднопостижимого числа, такого как 1/40 клиентов в секунду или 1/345 частей в секунду).

Скорость потока : Несмотря на то, что скорость потока была определена ранее, определение необходимо дополнить, поскольку скорость потока является минимумом потребности и производительности процесса. Хотя логически скорость потока никогда не может быть выше пропускной способности узкого места, она вполне может быть ниже, если спрос недостаточен.

Использование : Использование говорит нам, насколько хорошо используется ресурс. Рассчитывается делением расхода на производительность (например, 1/40 / 1/25). Коэффициент использования всегда находится в пределах от 0% до 100%.


Эти конспекты лекций были сделаны в 2013 году во время проведения МООК «Введение в операционный менеджмент», преподаваемого профессором доктором Кристианом Тервишем из Wharton Business School Университета Пенсильвании на Coursera.org.

Калькулятор объема

.Определение | Формулы

Калькулятор объема рассчитает объем некоторых из наиболее распространенных трехмерных твердых тел. Прежде чем мы перейдем к тому, как рассчитать объем, вы должны знать определение объема. Объем отличается от площади, которая представляет собой объем пространства, занимаемого двухмерной фигурой. Поэтому вы можете быть сбиты с толку относительно того, как найти объем прямоугольника, а не как найти объем коробки. Калькулятор поможет вычислить объем сферы, цилиндра, куба, конуса и прямоугольных тел.

Что такое объем? Определение объема

Объем - это объем пространства, занимаемого объектом или веществом. Как правило, под объемом контейнера понимается его вместимость, а не пространство, которое сам контейнер перемещает. Кубический метр (м 3 ) - это единица измерения объема в системе СИ.

Однако термин том может также относиться ко многим другим вещам, например,

  • степень громкости или интенсивность звука (вы можете проверить наш калькулятор шумового загрязнения или калькулятор дБ)
  • количество или количество чего-либо (обычно большого количества)
  • формальное слово для книги или одной из набора связанных книг.

Единицы объема, таблица пересчета

Популярные единицы объема:

  1. Метрические единицы объема
  • кубических сантиметров (см³)
  • кубических метров (м³)
  • литров (л, л)
  • миллилитров (мл, мл)
  1. Стандарт США, Великобритания
  • жидкая унция (жидкая унция)
  • кубических дюймов (у.е.)
  • кубических футов
  • стаканов
  • пинт (пт)
  • кварты (кварты)
  • галлонов (гал.)

Если вам нужно преобразовать единицы объема, вы можете использовать наш конвертер больших объемов.Еще один полезный инструмент - наш калькулятор граммов в чашки, который может помочь, если вы хотите использовать рецепт еды из другой страны. Обратите внимание, что это не простое преобразование, а переход от веса (граммы) к единице объема (чашки) - поэтому вам нужно знать тип ингредиента (или, точнее, его плотность).

Кроме того, вы можете взглянуть на эту аккуратную таблицу преобразования единиц объема, чтобы узнать коэффициент преобразования в мгновение ока:

кубических дюйма кубических футов кубических ярда галлонов жидкости сша американских сухих галлона imp жидких галлонов баррелей (нефть) чашки жидких унций (Великобритания) жидких унций (США) пинты (Великобритания)
м3 6.1 10 4 35,3 1,30 8 264,2 227 220 6,29 4227 3,52 10 4 3,38 10 4 1760
кубический дециметр 61.02 0,035 1,3 10 -3 0,264 0,227 0,22 0,006 4,23 35,2 33,8 1,76
кубический сантиметр 0.061 3,5 10 -5 1,3 10 -6 2,64 10 -4 2,27 10 -4 2,2 10 -4 6,29 10 -6 4,2 10 -3 3,5 10 -2 3.34 10 -2 1,76 10 3
кубический миллиметр 6,1 10 -5 3,5 10 -8 1,31 10 -9 2,64 10 -7 2,27 10 -7 2,2 10 -7 6.3 10 -9 4,2 10 -6 3,5 10 -5 3,4 10 -5 1,76 10 -6
гектолитров 6,1 10 3 3,53 0,13 26.4 22,7 22 0,63 423 3,5 10 3 3381 176
литров 61 3,5 10 -2 1.3 10 -3 0,26 0,23 0,22 6,3 10 -3 4,2 35,2 33,8 1,76
сантилитров 0,61 3.5 10 -4 1,3 10 -5 2,6 10 -3 2,3 10 -3 2,2 10 -3 6,3 10 -5 4,2 10 -2 0,35 0,338 1.76 10 -2
миллилитры 6,1 10 -2 3,5 10 -5 1,3 10 -6 2,6 10 -4 2,3 10 -4 2,2 10 -4 6,3 10 -6 4.2 10 -3 3,5 10 -2 3,4 10 -2 1,76 10 -3
куб. Дюймы 1 5,79 10 -4 2,1 10 -5 4,3 10 -3 3.7 10 -3 3,6 10 -3 10 -4 6,9 10 -2 0,58 0,55 2,9 10 -2
кубических футов 1728 1 0.037 7,48 6,43 6,23 0,18 119,7 997 958 49,8
кубических ярдов 4,7 10 4 27 1 202 173.6 168,2 4,8 3232 2,69 10 4 2,59 10 4 1345
жидких галлонов сша 231 0,134 4,95 10 -3 1 0.86 0,83 0,024 16 133,2 128 6,7
сухих галлонов сша 268,8 0,156 5,76 10 -3 1.16 1 0,97 0,028 18,62 155 148,9 7,75
imp жидких галлонов 277,4 0,16 5,9 10 -3 1.2 1,03 1 0,029 19,2 160 153,7 8
баррелей (нефть) 9702 5,61 0,21 42 36.1 35 1 672 5596 5376 279,8
чашек 14,4 8,4 10 -3 3,1 10 -4 6.2 10 -2 5,4 10 -2 5,2 10 -2 1,5 10 -3 1 8,3 8 0,4
жидких унций (Великобритания) 1,73 10-3 3.7 10 -5 7,5 10 -3 6,45 10 -3 6,25 10 -3 1,79 10 -4 0,12 1 0,96 5 10 -2
жидких унций (США) 1.8 10 -3 3,87 10 -5 7,8 10 -3 6,7 10 -3 6,5 10 -3 1,89 10 -4 0,13 1,04 1 0.052
пинт (Великобритания) 34,7 0,02 7,4 10 -4 0,15 0,129 0,125 3,57 10 3 2,4 20 19.2 1

Как рассчитать объем? Формулы объема

На этот вопрос нет однозначного ответа, так как он зависит от формы рассматриваемого объекта. Вот формулы для некоторых наиболее распространенных форм:

  1. Куб = с³ , где с - длина стороны.

  2. Сфера = (4/3) πr³ , где r - радиус.

  3. Цилиндр = πr²h , где r - радиус, а h - высота.

  4. Конус = (1/3) πr²h , где r - радиус, а h - высота.

  5. Прямоугольное тело (объем ящика) = lwh , где l - длина, w - ширина и h - высота (примером такой формы может служить простой бассейн).

  6. Пирамида = (1/3) Ач , где A - площадь основания, а h - высота. Для пирамиды с правильным основанием также может использоваться другое уравнение: Пирамида = (n / 12) * h * длина_сокры ² * кроватка (π / n) , где n - количество сторон основания для правильный многоугольник.

  7. Призма = πAh , где A - площадь основания, а h - высота. Для прямоугольной призмы уравнение можно легко вывести, как и для правой прямоугольной призмы, которая, по-видимому, имеет ту же форму, что и прямоугольник.

Форма Имя Формула

Куб В = с³

Прямоугольная призма правая (прямоугольная, прямоугольная) V = lwh

Призма или цилиндр В = Ач

Пирамида или конус В = Ач / 3

Сфера В = 4πr³ / 3

Калькулятор объема и инструменты, предназначенные для определенных форм

Мы решили сделать из этого калькулятора объема простой инструмент, охватывающий пять самых популярных трехмерных фигур.Однако не все уравнения объема и формы могут быть реализованы здесь, поскольку это сделает калькулятор перегруженным и не интуитивно понятным. Так что, если вы ищете конкретную форму, ознакомьтесь с калькуляторами, посвященными объемам выбранных форм:

Калькулятор объема - как использовать

Давайте посмотрим на примере использования этого калькулятора объема:

  1. Выберите тип 3D-формы . Если вы не можете найти форму, объем которой хотите рассчитать, выберите другие специальные специальные калькуляторы (ссылки вы найдете выше).В этом примере предположим, что вы хотите рассчитать объем цилиндра.

  2. Выберите правую часть калькулятора объема . В нашем случае это деталь под названием Объем цилиндра .

  3. Введите данные в соответствующие поля . Наш цилиндр имеет радиус 1 фут и высоту 3 фута. Вы можете изменить единицы измерения простым щелчком по названию единицы.

  4. Вот и все! Отображается объем выбранной формы .В нашем случае это 9,42478 куб. Футов

Если вы хотите проверить, сколько это в баррелях США, просто нажмите на название единицы и выберите бочки из раскрывающегося списка. Наш цилиндр имеет емкость ~ 2,24 баррелей масла.

Измерение объема твердых тел, жидкостей и газов

Как найти объем объектов с разным состоянием материи?

  1. Цельный
Для обычных трехмерных объектов вы можете легко вычислить объем, измерив его размеры и применив соответствующее уравнение объема.Если это неправильная форма, вы можете попробовать сделать то же самое, что заставило Архимеда выкрикнуть знаменитое слово * Эврика *! Вероятно, вы слышали эту историю - Архимеда попросили выяснить, сделана ли корона Иеро из чистого золота или просто позолочена, но не сгибая и не разрушая ее. Идея пришла ему в голову, когда он принимал ванну - войдя в ванну, он заметил, что уровень воды поднялся. Из этого наблюдения он пришел к выводу, что объем вытесненной воды должен быть равен объему той части его тела, которую он погрузил в воду.Зная объем необычного объекта и его вес, он мог вычислить плотность и сравнить ее с плотностью чистого золота. Легенда гласит, что Архимед был так взволнован этим открытием, что выскочил из ванны и побежал голым по улицам Сиракуз.

Итак, если вы хотите измерить объем необычного объекта, просто следуйте по стопам Архимеда (хотя вы можете опустить часть «голая гонка»):

  • Возьмите емкость больше, чем объект, объем которого вы хотите измерить, .Это может быть ведро, мерный стаканчик, стакан или мерный цилиндр. На нем должна быть шкала.

  • Налейте воду в емкость и снимите показания объема.

  • Поместите объект внутрь . Он должен быть полностью погружен для измерения всего объема объекта. Прочтите том. Этот метод не сработает, если ваш объект растворяется в воде.

  • Разница между измерениями - это объем нашего объекта.

Эти измерения необходимы для расчета выталкивающей силы, основанной на принципе Архимеда.

  1. Жидкость

Обычно измерить объем жидкости довольно просто - все, что вам нужно, это какой-нибудь мерный сосуд с градуировкой. Выберите тот, который соответствует вашим потребностям: необходимо учитывать количество жидкости и степень точности. Емкости, используемые для выпечки торта (посмотрите отличный калькулятор для рецепта блинов), будут отличаться от тех, которые используются в химии (например.грамм. в расчетах молярной концентрации) будет отличаться от тех, которые используются в медицинских целях (например, доза лекарства).

  1. Газ

Мы должны использовать более сложные методы для измерения объема газа. Вы должны помнить, что на объем газа влияют температура и давление, и что газы расширяются, чтобы заполнить любой контейнер, в который они помещены. Вы можете попробовать измерить это:

  • Надуйте баллон газом, который вы хотите измерить (например,г., с гелием, чтобы поднять вас в воздух). Затем можно воспользоваться методом Архимеда - опустить баллон в ведро с водой и проверить разницу объемов. Вы найдете подробные инструкции на странице wikihow.

  • Проверьте показатели, связанные с объемом ваших легких, с помощью устройства под названием спирометр .

  • В химии, газовый шприц используется для ввода или отбора объема газа из закрытой системы . Эту лабораторную посуду также можно использовать для измерения объема газа, выделяющегося в результате химической реакции.

Или рассчитать :

  • Найдите объем газа, , учитывая его плотность и массу . Используйте простое уравнение объема V = m / d .

  • Рассчитайте объем сжатого газа в баллоне, используя уравнение идеального газа.

Как найти объем * прямоугольника * по сравнению с объемом * коробки *

Вы не можете рассчитать объем прямоугольника , объем круга или объем квадрата, потому что это двухмерные геометрические фигуры.Таким образом, прямоугольник не имеет объема (но имеет площадь). Вероятно, вы ищете объем прямоугольного кубоида (или, говоря более общим языком, вы хотите найти объем коробки), который представляет собой трехмерный объект.

Чтобы найти объем коробки, просто умножьте длину, ширину и высоту - и готово! Например, если размер коробки 5х7х2 см, то объем коробки составляет 70 кубических сантиметров. Для размеров, которые представляют собой относительно небольшие целые числа, легко вычислить объем вручную.Для больших или десятичных чисел использование калькулятора объема очень эффективно.

В реальной жизни есть много приложений, в которых может пригодиться калькулятор объема. Один из таких примеров - строительство дорог или тротуаров, где должны быть построены бетонные плиты. Как правило, бетонные плиты представляют собой твердые тела прямоугольной формы, поэтому можно использовать калькулятор бетона, который является приложением калькулятора объема.

Также формулы объема могут быть полезны, если вы увлеченный садовник или просто счастливый обладатель дома с двором.Ознакомьтесь с нашими замечательными инструментами, такими как:

Более того, вы можете встретить объем у себя на кухне или в ванной: у любой жидкости, которую мы пьем (например, воды в бутылках), а также косметических товаров или зубной пасты на упаковке продукта указан объем (в миллилитрах / литрах или жидких унциях). / галлоны).

Еще одно родственное приложение, хотя и немного другое, - это концепция площади поверхности. Предположим, весь фасад здания должен быть окрашен. Чтобы знать, сколько нужно купить краски, необходимо рассчитать площадь здания.Удобный в использовании калькулятор площади рассчитает это за вас.

FAQ

Как найти объем?

Формула объема зависит от формы объекта . Одной из самых популярных форм является прямоугольная призма, также известная как коробка, где вы можете просто умножить длину на ширину на высоту , чтобы найти ее объем. Другой распространенной формой является цилиндр - чтобы найти его объем, умножьте высоту цилиндра на площадь его основания (π ⨉ r 2 ).Для других трехмерных фигур проверьте Калькулятор объема Omni.

Как измерить объем?

Измерение объема зависит от состояния вещества вашего объекта. Для жидкостей вы можете использовать мерный цилиндр или бюретку для измерений в химической лаборатории или мерную чашку и ложку для повседневных нужд. Что касается газов, чтобы приблизительно измерить объем, вы можете надуть баллон и использовать его для вытеснения воды в мерном цилиндре. Аналогичный метод работает для твердых тел - поместите объект в градуированный контейнер и измерьте изменение показаний.

Объем - квадрат или куб?

Объем кубический, так как это трехмерная мера. Площадь - это «квадратное» значение, поскольку площадь фигуры охватывает два измерения. Вы можете вспомнить, что объем представляет собой кубическое значение, вспомнив несколько названий единиц объема, например, кубических метров , кубических футов или кубических ярдов .

Как рассчитать объем?

В зависимости от формы объекта вы можете использовать разные формулы для расчета объема:

  • Объем куба = сторона 3 .
  • Кубоид (прямоугольная коробка) объем = длина ⨉ ширина ⨉ высота
  • Объем сферы = (4/3) ⨉ π ⨉ радиус 3
  • Объем цилиндра = π ⨉ радиус 2 ⨉ высота
  • Объем конуса = (1/3) ⨉ π ⨉ радиус 2 ⨉ высота
  • Объем пирамиды = (1/3) площадь основания ⨉ высота

В чем измеряется объем?

Кубический метр - единица объема в системе СИ.Однако, поскольку это непрактично, чаще всего вы можете встретить объем, выраженный в:

.
  • Кубические сантиметры
  • Кубические дюймы
  • Миллилитры
  • литров
  • галлонов

Как найти объем жидкости?

Градуированные цилиндры и Колбы Эрленмейера подойдут, если вам нужно приблизительно измерить объем жидкости. Для более точных измерений нужно использовать мерную пипетку и бюретку.Однако, если вы печете торт или готовите вкусное блюдо и в рецепте используются единицы измерения объема, вы можете просто использовать мерный стакан, стакан или ложку.

Какая единица измерения объема в системе СИ?

Кубический метр (м 3 ) - единица измерения объема в системе СИ. Он образован от основной единицы длины в системе СИ - метра. Хотя кубический метр является основной единицей СИ, чаще используются другие единицы: для метрической системы популярны миллилитры, литры или кубические сантиметры, а для имперской системы вы можете найти объем, выраженный в пинтах, галлонах, кубических дюймах и т. Д. кубические футы или кубические ярды.

Объемный интенсивный или экстенсивный?

Объем - это обширное свойство , такое же, как количество вещества, массы, энергии или энтропии. Экстенсивное свойство - это мера, которая зависит от количества вещества . Посмотрите на этот пример: стакан, бочка и бассейн, полный воды, имеют разные объем и массу ( расширенных свойств ), но вода в этих трех контейнерах будет иметь одинаковую плотность, показатель преломления и вязкость ( интенсивных свойств ). ).

В чем разница между площадью поверхности и объемом?

Объем - это трехмерная мера , а площадь поверхности - двумерная . Объем сообщает нам о кубическом пространстве, которое занимает объект, а площадь поверхности - это сумма всех областей, образующих трехмерную форму. Возьмем, например, картонную коробку 📦:

  • Объем - это объем места, занимаемый коробкой, просто пространство, доступное внутри коробки
  • Площадь поверхности - это пространство , занимаемое сторонами коробки, вычисленное при покраске сторон или упаковке коробки в бумагу.

Как найти объем объекта неправильной формы?

Вы можете использовать метод смещения жидкости для твердых объектов неправильной формы:

  1. Заполните емкость водой и отметьте уровень воды.
  2. Бросьте ваш объект внутрь и снова отметьте уровень. Убедитесь, что ваш объект не растворяется в воде.
  3. Для масштабированных контейнеров вы можете всего вычесть исходного объема из нового объема. И все, поздравляю!

Но если на вашем оригинальном контейнере нет весов:

  1. Вынуть предмет.
  2. Заполните вашу емкость водой до второй отметки, налейте этой воды в мерный цилиндр / другую мерную емкость.
  3. Повторите шаг 6 для другого отмеченного уровня и вычтите объемы.
  4. Pat себе на спину - вы нашли объем объекта неправильной формы!

Что измеряет объем?

Объем измеряет объем пространства, занимаемого объектом в трех измерениях .Еще один близкий термин - вместимость, то есть объем внутреннего пространства объекта. Другими словами, вместимость описывает, сколько контейнер может вместить (воды, газа и т. Д.).

Каков объем Земли?

Объем Земли примерно равен 1,08321 × 10 12 км 3 ( 1,08 квадриллион кубических километров ), или 2,59876 × 10 11 кубических миль ( 259 триллионов кубических миль ). Вы можете получить этот результат, используя формулу объема сферы (4/3) ⨉ π ⨉ radius 3 и предполагая, что средний радиус Земли составляет 6371 километр (3958.76 миль).

Как рассчитать отношение площади поверхности к объему?

Чтобы рассчитать отношение площади поверхности к объему SA: V, вы просто разделите площадь поверхности на объем . Для некоторых выбранных форм:

  • Соотношение SA: V для куба = (сторона 6 ⨉ 2 ) / (сторона 3 ) = 6 / сторона
  • Отношение SA: V для сферы = (4 ⨉ π ⨉ радиус 2 ) / ((4/3) ⨉ π ⨉ радиус 3 ) = 3 / радиус
  • Соотношение SA: V для цилиндра = (2 ⨉ π ⨉ радиус 2 + 2 ⨉ π ⨉ радиус ⨉ высота) / (π ⨉ радиус 2 ⨉ высота) = 2 ⨉ (радиус + высота) / ( радиус ⨉ высота)

Знание своей производственной мощности - рост вашего малого бизнеса

Избегайте взрыва механизма доходов - посещение вашей производственной мощности

Многие малые и средние предприятия борются за увеличение продаж, потому что не знают своих производственных возможностей.Когда я спрашиваю «сколько еще продаж вы хотите» и чаще, чем мне кажется, отвечаю «столько, сколько вы можете получить», но это неправильный ответ! Этот ответ поднимает красный флаг, свидетельствующий о том, насколько хорошо работает их бизнес. Вам нужно убедиться, что вы понимаете свои операционные показатели, а не только финансовые.

Незнание того, сколько еще бизнеса вы сможете вести, может убить вашу компанию. Если вы не можете выполнить свои заказы, вы выйдете из бизнеса быстрее, чем если у вас слишком мало продаж.

Вы точно знаете, сколько денег может принести ваша коммерческая деятельность? В течение 90 дней я провел семинар по нашей модели управления «Настройка механизма доходов» для более чем 100 владельцев бизнеса и профессионалов. Меньше горстки фактических сотрудников знали, что их бизнес составляет , максимальная вместимость - человек. Не зная максимальной мощности вашего бизнеса, вы не можете точно знать, какой доход он может принести без добавления дополнительных активов в свою деятельность! Вы видите здесь проблему?

Как рассчитать максимальную вместимость?

На самом деле все очень просто.Во-первых, определите, сколько времени требуется человеку, работающему круглосуточно, чтобы выполнить одну единицу вашей услуги или продукта. Это называется временем вашего цикла.

Затем возьмите общее количество доступных рабочих часов и умножьте его на количество сотрудников, выполняющих работу, а затем разделите это число на время вашего цикла. Результатом является максимальное количество единиц, которое может произвести ваш бизнес - , ваша максимальная мощность . Чтобы определить максимальный доход, просто умножьте максимальную мощность на среднюю цену за единицу.

Давайте посмотрим на небольшой пример. Сервисная компания с доходом около 2,1 миллиона долларов хочет увеличить свой доход до 3,5 долларов. Могут ли они добраться отсюда?

Затем техническому специалисту, которого у них есть 20, требуется около 3 часов, чтобы предоставить свои услуги клиенту для выполнения одной работы. Таким образом, в обычный день технический специалист может сделать 2 сервисных вызова или около 6 часов оплачиваемого времени. Если умножить это время на 20 дней в среднем за месяц, то получится 120 оплачиваемых часов в месяц.

Вот их максимальный расчет:

__800___ = 120 X 20 ÷ ___3___

Максимум Общ.Доступен. Количество операционных часов до

Производительность Часы Персонал Производство 1 Единица

Узнайте больше о расчете максимальной емкости и использовании операционных показателей для принятия более прибыльных решений с помощью решения о доходах. Просто щелкните ссылку, чтобы получить дополнительную информацию об этом мощном онлайн-курсе «Упрощенный рост бизнеса».

Почему операционная мощность важна при принятии решений

Теперь давайте посмотрим, каков их максимальный потенциал дохода в этом примере.Средняя цена 295 долларов. Это означает, что их максимальный доход составляет 236 000 долларов в месяц или 2 832 000 долларов в год.

В этом примере мы видим, что они не могут достичь своей цели в 3,5 миллиона долларов без увеличения операционных мощностей (больше сервисных технологий). Это означает, что им нужны капитальные вложения, поэтому владельцу, возможно, придется пересмотреть свою цель по доходам или начать откладывать на неизбежную аренду.

Ключевым моментом здесь является то, чтобы точно знать, сколько вы можете продать, прежде чем столкнетесь с операционным узким местом, теперь вы можете соответствующим образом установить свои цели продаж.В другом посте я смотрю на расчеты продаж «Настройка механизма дохода», чтобы вы могли подсчитать, сколько потребуется от продаж, чтобы произвести 2,8 миллиона долларов мощности, доступной для продажи.

Нужна помощь в расчете вашей производственной мощности?

Хотите самостоятельно рассчитать свою производственную мощность? Затем воспользуйтесь нашей простой, но мощной моделью управления «Настройка механизма доходов». Полученные показатели помогут вам принимать более эффективные и прибыльные решения. Начните применять эту мощную модель в своем бизнесе, используя один из множества предлагаемых нами методов.Просто щелкните значок и узнайте больше.

Ищете более быстрые результаты?

Расчет операционных возможностей и их интеграция в бизнес-планирование - лучший способ увидеть немедленные результаты. Используйте свои расчеты операционной мощности с помощью наших инструментов высокоэффективного бизнес-планирования и обеспечьте более высокий уровень контроля в своих повседневных действиях и мониторинге производительности. Нажмите кнопку ниже и просмотрите 3 различных способа применения высокоэффективного бизнес-планирования в своем бизнесе.

Если вы все еще застряли и нуждаетесь в помощи, воспользуйтесь частичным операционным директором, чтобы привлечь в свою команду опытного оперативного руководителя, которого вам может не хватать. Такие шестизначные специалисты могут за считанные часы оценить вашу работу и разработать прогнозные показатели, которые помогут вам повысить подотчетность на всех уровнях вашего малого бизнеса. Если вы хотите такого рода понимание и контроль в своем малом бизнесе, свяжитесь с нами сегодня по адресу [email protected]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *